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Abstract. 

Introduction:  Exposure to acute hypoxia has been used as a tool to investigate the 

mechanisms limiting oxygen consumption (  2OV ) during predominately lower body 

(LB) exercise.  However, the mechanisms limiting upper body (UB) exercise have 

been investigated to a lesser extent.  Aim:  To compare and contrast the 

cardiorespiratory responses to incremental LB and UB exercise to volitional 

exhaustion at three inspired oxygen fractions.  Participants:  Nine healthy, able 

bodied male participants (age 22 ± 2 years; height 180.6 ± 8.2 cm; body mass 78.7 ± 

12.2 kg; estimated body fat 15.1 ± 6.3 %; estimated muscle mass 57.5 ± 6.5 %) gave 

their informed consent to participate in the study.  Methods:  In a counter balance 

designed study participants performed three LB and three UB incremental exercise 

tests to volitional exhaustion whilst breathing room air (N) or two levels of 

normobaric hypoxia (H1 and H2; FIO2 = 0.21, 0.15 and 0.13, respectively).  Cycle 

ergometry (LB) and arm crank ergometry (UB) commenced at 70 and 35 W and were 

increased by 30 and 15 W every 3 min, respectively.  Each workload was separated 

by 30 s passive recovery for the collection of bloods.  Participants maintained a 

cadence of 70 rev.min-1

 2OV

.  Heart rate (HR), haemoglobin oxygen saturation (SPO2) and 

respiratory gases were collected in the final minute of each workload.  Results:  Peak 

power output (PPO) was reduced in both modes of exercise as FIO2 declined 

(P<0.001) and was highest during LB exercise in all conditions (P<0.001).  During 

LB exercise peak oxygen consumption ( PEAK) declined with FIO2 (N 45 ± 7 vs. 

H1 39 ± 6 mL.kg-1.min-1; P<0.001 and H1 vs. H2 34 ± 5 mL.kg-1.min-1

 2OV

; P<0.05).  

During UB exercise PEAK declined between N (32 ± 6 mL.kg-1.min-1) and H1 (28 

± 5 mL.kg-1.min-1; P<0.001) and tended to be lower between H1 and H2 (26 ± 5 

mL.kg-1.min-1
 2OV; NS).  During LB exercise 13 ± 8 and 24 ± 6 % reductions in PEAK 
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were evident when FIO2 decreased from N to H1 and from N to H2, while during UB 

exercise 15 ± 7 and 19 ± 9 % reductions were observed from normoxic values for H1 

and H2, respectively.  During LB exercise estimated cardiac output ( Q ) was reduced 

between each FIO2 (N, 25.9 ± 2.0 vs. H1, 23.6 ± 1.8 L.min-1; P<0.05 and H1 vs. H2, 

21.1 ± 1.1 L.min-1, P<0.05).  During UB exercise Q  declined between N (20.7 ± 3.0 

L.min-1) and H1 (18.2 ± 3.2 L.min-1; P<0.01) and tended to be lower between H1 and 

H2 (17.0 ± 2.8 L.min-1; NS).  SPO2 declined as FIO2 reduced in LB and UB exercise 

and was lower during LB exercise (P<0.001, main effect).  At N, H1 and H2 SPO2 was 

(LB vs. UB) 96 ± 2 vs. 97 ± 1 (NS), 83 ± 4 vs. 88 ± 5 (NS) and 74 ± 6 vs. 82 ± 4 

(P<0.01) %.  Extraction increased as FIO2 decreased in both modes of exercise 

(P<0.001, main effect).  At N, H1 and H2 extraction (E) was 10 ± 10 (NS), 12 ± 12 

(P<0.05) and 13 ± 11 (P<0.01) % lower during UB compared to LB exercise, 

respectively.  Conclusions:  Both central and peripheral factors contribute to limiting 

 2OV PEAK, however their extent differs between LB and UB exercise.  As previously 

shown LB exercise is limited centrally by oxygen delivery.  However, the present 

study shows that during UB exercise although  2OV PEAK declines as FIO2 is reduced 

this mode of exercise is limited by peripheral physiology. 
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INTRODUCTION 
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1.0 Introduction. 

Humans continually strive to overcome the physical challenges placed before them, 

whether the challenge comes from the natural environment or in pursuit of improved 

sporting performance.  Altitude presents one of the most demanding natural challenges 

to physical performance and in the case of extreme altitude survival alone can be 

challenging.  Early accounts of diminished physical capacity were reported among 

expeditions to high altitude.  Upon ascent to 8,500 m without supplementary oxygen 

Norton (1924) reported being unable to achieve a target of 20 consecutive paces without 

stopping to rest (Ward et al., 2000).  The location of the 1968 Olympic Games (Mexico 

City) at an altitude of 2,240 m above sea level combined altitude and sporting 

competition and demonstrated how altitude can affect athletic performance positively or 

negatively.  Those competing in endurance events found the environmental conditions 

detrimental to performance, while those competing in short duration, explosive events 

(e.g. sprints, jumping and throwing events) experienced improved performance due to 

reduced air resistance (Ward et al., 2000).   

 

In 1996 it was estimated that 140 million people reside at an altitude above 2,500 m 

(WHO, 1996) and these highlanders have undergone adaptations over years/generations 

that enable them to better transport oxygen in hypobaric conditions (Ward et al. 2000).  

Recently increasing numbers of lowlanders have been exposed to altitude, including 

those on occupational tasks (i.e. military operations and high altitude mines), those on 

recreational breaks such as skiing and climbing and athletes.  Of these sports people 

have been reported exposing themselves to altitude to try and attain physiological 

adaptations that will benefit performance (Pugh, 1967; Shepard, 1973; Rusko et al. 

2004).   
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Altitude reduces the transport of oxygen from ambient air to the mitochondria and 

therefore reduces the capacity for physical exercise.  As a consequence of reduced blood 

oxygen content a series of acute or chronic adaptations (dependent on duration of 

exposure) occur in an attempt to maintain homeostasis.  Those indigenous to high 

altitude (highlanders) experience a lesser decrement in exercise capacity at a given 

altitude, due to several physiological/genetic adaptations, while those who usually 

reside at sea level and rapidly ascend experience much greater disturbances in 

homeostasis and exercise capacity (Ward et al., 2000; Mazzeo, 2005).  This thesis 

focuses on acute exposure to highlight the mechanisms limiting exercise.  The series of 

chronic adaptations to altitude is termed ‘acclimatisation’ but is beyond the scope of this 

thesis, for further reading on this subject see West (1993); Chapman et al. (1998) and 

Muza (2007). 

 

Pulmonary diffusion, cardiac output, oxygen carrying capacity and metabolic factors are 

all involved in the transport of O2 from the atmosphere to the cell and each of these 

stages has been investigated as a possible limitation to aerobic power.  Research into the 

mechanisms limiting aerobic power concluded that peak oxygen consumption 

(  2OV PEAK) is limited by the ability to transport O2 to the muscle rather than pulmonary 

diffusion or metabolic factors at the muscle in healthy individuals during lower body 

(LB) exercise (Shepard et al., 1988; Bassett and Howley, 2000).  By removing blood, in 

turn reduced haemoglobin concentration and the content of O2 carried by arterial blood 

(CaO2),  2OV PEAK was reduced and subsequent reinfusion of the red blood cells 

increased CaO2 and  2OV PEAK from control measures (Ekblom et al., 1972; Ekblom et 

al., 1976).  At altitude the barometric pressure and partial pressure of O2 decline which 

reduces the pressure gradient between the lung and blood.  Though the capacity to carry 

O2 is unchanged during acute exposure to hypoxia the saturation of haemoglobin with 
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O2 (SaO2) is reduced (Fig. 2.2) thus as with the above studies delivery of O2 to the 

active tissue is reduced albeit by a different method.   Several reviews have been 

published on the area of limitations to maximal aerobic power, though the literature 

tends to focus on LB exercise as this form of exercise elicits higher peak responses and 

is considered as representative of maximal whole body oxygen consumption in 

comparison to exercise using the upper extremities (Wagner, 1991; Sutton, 1992; 

Bassett and Howley, 2000). 

 

The literature shows that the study of exercising in hypoxic conditions has been 

undertaken almost exclusively using LB exercise (Hammond et al., 1986; Knight et al., 

1993; Ferretti et al., 1997; Robergs et al., 1998; Peltonen et al., 2001a).  Only a few 

studies appear to have examined the effects of breathing hypoxic gas during upper body 

(UB) exercise (Jansen-Urstad et al., 1995; Hopman et al., 2003; Hopman et al., 2004).  

Two studies were found to investigate both LB and UB exercise in the same subject 

group in normoxic and hypoxic conditions (Shepard et al., 1988; Angermann et al., 

2006).  One of these studies used double pole ergometry which was highly specific to 

the subject group and therefore the results should be interpreted with caution in relation 

to other UB protocols (Nordic combined skiers; Angermann et al., 2006).  The second 

study focused on reducing the amount of muscle mass recruited during normoxic and 

hypoxic exercise employing two and one leg cycle ergometry and one arm crank 

ergometry with and without restraints (to stabilise the trunk during locomotion) finding 

that   2OV PEAK declined as active muscle mass was reduced (Shepard et al., 1988). 

 

Studies however, have compared LB and UB exercise in normoxic conditions 

(Bhambhani et al., 1998; Schneider et al., 2000; Schneider et al., 2002; Gass and Gass, 

1998).  It has been shown that  2OV PEAK and peak power output (PPO) are lower when 
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exercising the UB (Bhambhani et al., 1998; Muraki et al., 2004).  It is generally 

reported that UB exercise elicits  2OV PEAK ≈ 60-80 % and PPO ≈ 50 % of that attained 

during LB exercise.  These differences have been attributed to a smaller muscle mass 

and, unless specifically trained, a lower training status of the arm muscles in 

comparison to the legs. 

 

There is a paucity of published work investigating the effects of hypoxia on UB exercise 

thus there is an absence of data illustrating whether the response to hypoxia is similar to 

that during LB exercise and whether maximal exercise capacity is limited by the same 

mechanisms during both forms of exercise.  The amount of individuals exposed to 

altitude and the number of activities involving the UB (climbing, skiing, kayaking and 

rowing), not to mention exercise performed at altitude by those with spinal cord injury 

(Hopman et al., 2003) warrants further investigation into the effect of hypoxia on UB 

exercise and the underlying mechanisms limiting aerobic power.  Also clinical 

populations who are chronically hypoxic (patients with chronic obstructive pulmonary 

disease or heart disease) could benefit from a greater understanding of limitations to 

physical capacity and a greater understanding of exercising in these conditions could aid 

exercise prescription. 

 

By assessing LB and UB exercise in identical conditions, in the same cohort of 

participants, limitations may be established in both modes of exercise.  While the 

limitations to LB exercise have been well published, little work has been dedicated to 

finding what limits UB exercise (Sawka et al., 1983).  This study aims to establish 

whether UB exercise is limited in the same way and to the same extent as LB exercise 

by reducing oxygen delivery in both modes of exercise via hypoxia.  Finally, it is hoped 

that by reporting the effect of reduced FIO2 on cardiorespiratory parameters at  2OV PEAK 
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and LT that the mechanisms limiting both LB and UB exercise can be identified and 

that the above mentioned populations will benefit from a greater preparation and 

understanding of the physical stress undergone during these two exercise modes in 

normoxic and hypoxic environments.  
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LITERATURE REVIEW 
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2.0 Literature review. 

This thesis investigates the effect of acute hypoxia (simulating an altitude ≈ 2700 and  

3700 m above sea level) on cardiorespiratory responses during incremental lower body 

(LB) and upper body (UB) exercise to volitional exhaustion.  While a large body of 

literature is present on the effect of altitude on LB exercise and comparative data 

between LB and UB exercise in normoxia are available, research is limited regarding 

UB exercise under hypoxic conditions.  Firstly, the environment at altitude is described 

before a review of acute physiological/cardiorespiratory responses to hypoxia and the 

consequent reductions in exercise capacity with increasing altitude.  The use of Fick’s 

principle to facilitate explaining the effect of hypoxia on the components of oxygen 

consumption is then discussed.  Finally, differences between LB and UB exercise will 

be presented from normoxic exercise studies.   

 

2.1 Atmosphere/environment at altitude. 

The term hypobaria means reduced barometric pressure and refers to the ambient 

environment at altitude, while the term hypoxia meaning ‘less than normal amount of 

oxygen’ is often used at sea level to simulate conditions at altitude (Thake, 2006).  

Regardless of altitude the ambient air comprises 20.93 % oxygen (O2), 0.03 % carbon 

dioxide (CO2) and 79.04 % nitrogen, however the barometric pressure (PB) decreases as 

altitude increases resulting in a lower partial pressure of these gases.  At sea level the 

standard atmosphere is 760 mmHg resulting in a partial pressure of oxygen (PO2) of 159 

mmHg.  At the summit of Mt. Everest (8,850 m) the PB and PO2 are 231 and 48 mmHg, 

respectively (Ward et al., 2000).  This results in a lower driving pressure of O2 from the 

atmosphere to the cell (Fig. 2.4; West et al., 1983) and represents a significant challenge 

to human performance at altitude.  
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Barometric pressure is not purely affected by altitude, at altitudes 6-16 km barometric 

pressure is greater around the equator.  Prior to Messner and Habeler’s ascent to the 

summit of Mt. Everest without supplementary O2 (1978) it was thought to be beyond 

human capability, as extrapolated values from lower altitudes suggested that  2OV PEAK 

would be just sufficient to maintain basal metabolism towards the summit.  However, as 

Everest is located 28°N of the equator a greater barometric pressure as well as seasonal 

variations in PB result in a higher PO2, making the summit of Everest just within the 

physiological limit of humans (Ward et al. 2000). 

 

2.2 Simulating hypoxia. 

Hypoxia can be split into two categories: hypobaric hypoxia (HH) and normobaric 

hypoxia (NH).  HH can be induced either at altitude in the field (Pugh, 1967) or by 

using a hypobaric chamber (Robergs et al. 1998) whereby the barometric pressure is 

reduced leading to reduced PO2.  Alternatively the fraction of inspired oxygen (FIO2; 

NH) maybe reduced to lower PO2 under constant PB simulating altitude in a laboratory 

environment (Table 2.1; Richardson et al., 1999b; Hopman et al., 2003).  This 

technique is used to simulate altitude in the study communicated in this thesis.  

Equation 2.1 shows the relationship between PB, PO2 and FIO2 and how to simulate the 

PO2 of a given altitude by reducing the FIO2. 

 

Equation 2.1                       PO2 = PB x FIO2  

Therefore, 

PB = PO2 / FIO2  

When simulating altitude (NH), 

FIO2 = PO2 (at desired altitude) / Sea level PB (760 mmHg) 
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Table 2.1 Barometric pressure (PB) and partial pressure of O2 (PO2) at altitude and the 

corresponding inspired O2 fraction (FIO2) to simulate altitude at sea level (adapted 

from West et al., 2000). 

Altitude Barometric Pressure PO2 Normobaric FIO2 

m ft (mmHg) (mmHg)  

     

0 0 760 159 0.209 

1 000 3 281 674 141 0.186 

2 000 6 562 596 125 0.164 

3 000 9 843 526 110 0.145 

4 000 13 123 462 97 0.127 

5 000 16 404 405 85 0.112 

6 000 19 685 354 74 0.097 

7 000 22 966 308 64 0.085 

8 000 26 274 267 56 0.074 

9 000 29 258 231 48 0.064 

 

 

2.3 Physiological/metabolic responses to acute hypoxia. 

2.3.1 Ventilation. 

One of the most apparent responses when acutely exposed to hypoxia is increased 

minute ventilation (  V E), in an attempt to overcome the reduced PO2 and maintain blood 

O2 content.  This increased  V E is termed the hypoxic ventilatory response (HVR) which 

varies between individuals (Fig. 2.1 B).  Reductions in PO2 are detected in the blood by 

peripheral chemoreceptors which result in the respiratory centres of the brain increasing 

the depth and frequency of breathing.  An initial reduction in arterial oxygen tension 

(PaO2) does not result in increased  V E, however when PaO2 reaches ≈ 60 mmHg 

ventilation rapidly increases.  This is consistent with the start of the steep portion of the 
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O2 dissociation curve (Fig. 2.2), thus in order to preserve blood O2 content peripheral 

arterial chemoreceptors are stimulated at this threshold and increase respiratory drive.  It 

can be seen that an initial reduction of PO2 from 80 to 60 mmHg would cause ≈ 8 % 

desaturation of the blood, while a further reduction from 60 to 40 mmHg would result in 

≈ 15 % desaturation (Fig. 2.2).  The response of  V E to reduced PaO2 was demonstrated 

by Weil and co workers (1970) who recorded  V E whilst reducing inspired oxygen 

tension over a 15 – 20 min period (Fig.2.1 A). 

 

 

 

Fig 2.1 Ventilatory response as arterial oxygen tension is reduced in A) one subject 

with each point representing the mean of three successive breaths and B) ten 

participants (Weil et al., 1970). 

 

Gavin et al. (1998) investigated ventilation during acute exposure to hypoxia in two 

groups who were categorised by their normoxic ventilation response at  2OV MAX.  This 

study showed that at rest  V E increased from 8.4 ± 2.6 and 8.6 ± 1.8 L.min-1 to 9.8 ± 2.7 

and 9.6 ± 2.24 L.min-1

 

 when FIO2 = 0.133 (≈ 4000m) for those with low (≤ 27 .7) and 
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high (≥ 30.2)  V E/  2OV at maximal normoxic exercise, respectively.  Maximal  V E was 

significantly higher in those participants with high respiratory responsiveness in both 

normoxic and hypoxic conditions, however neither group’s maximal  V E differed 

between conditions.  This concurs with the findings of Martin and O’Kroy (1993) who 

did not observe an increase in maximal ventilation between normoxia and hypoxia (FIO2 

= 0.13) in trained (  2OV MAX = 67.2 ± 4.0 mL.kg-1.min-1
 2OV) and untrained ( MAX = 45.4 

± 5.5 mL.kg-1.min-1
 V).  While their findings were not significant the trained group’s E 

at maximal exercise declined by 2.0 L.min-1 compared to an 8.2 L.min-1

 V

 increase for the 

untrained group on acute exposure to H compared to N.  Lawler et al. (1988) found that 

maximal E was higher during H vs. N (150.9 ± 7.3 vs. 123.0 ± 3.6 L.min-1

 2OV

) in a 

similarly untrained population ( MAX = 45.0 ± 2.2 mL.kg-1.min-1

 V

) but no difference 

was observed for the trained group ( E = 149.4 ± 6.8 vs. 147.4 ± 6.2 L.min-1
 2OV; MAX 

= 64.5 ± 2.4 mL.kg-1.min-1
 V) when FIO2 = 0.14.  Higher maximal E increases alveolar 

oxygen tension (PAO2) and arterial oxygen saturation (SaO2; section 2.3.2; Gavin et al., 

1998).   

 

Ventilation required per litre of O2 consumed (ventilatory equivalent;  V E/  2OV ) 

increases at maximal exercise during hypoxia in both trained and untrained participants, 

as although  V E may not alter,  2OV  is reduced (Martin and O’Kroy, 1993; Zattara-

Hartmann and James, 1996; Chapman et al., 1999; Peltonen et al., 2001a).  Gavin et al. 

(1998) reported that  V E/  2OV  increased from to 26.4 ± 1.0 to 40.5 ± 4.7 and from 33.4 

± 2.7 to 46.5 ± 5.1 when reducing inspired O2 fraction for participants with low and 

high  V E/  2OV  at maximal normoxic exercise, respectively.   
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When employing HH, at a simulated altitude of 2500 m above sea level maximal  V E 

was significantly higher during hypobaria compared to sea level (153 ± 4 vs. 147 ± 3 

L.min-1

 V

; Ogawa et al., 2007).  While performing maximal exercise at sea level and at 

simulated altitudes (915, 1524 and 2439 m), Robergs et al. (1998) found that maximal 

E was higher at 2439 m and  V E/  2OV  was higher at 1524 and 2439 m compared to sea 

level.  While both HH and NH reduce PO2,  V E appears to respond differently under 

both conditions, possibly due to differences in gas density. 

 

Comparing HH and NH at 1 min intervals, over a 40 min period at rest, showed that 

 V EBTPS and  V ESTPD were consistently higher during NH.  This study found that while 

breathing frequency (f) was lower during NH, tidal volume (Vt) was higher so that  V E 

was higher at each 1 min stage (Savourey, et al., 2003).  Loeppky et al. (1996) reported 

that  V E was 20 and 14 % higher during NH and HH when compared to breathing air.  

Savourey et al. (2003) could not identify the mechanisms responsible but this study and 

a comparison of studies employing either NH or HH indicates that ventilatory response 

differs between NH and HH.  As gas moves from high to low pressure during 

ventilation a reduced PB during HH would reduce the flow from the atmosphere to the 

lung and a greater f would be required to maintain  V E. 

 

2.3.2 Arterial oxygen saturation. 

Estimates of haemoglobin oxygen saturation (SPO2; section 2.3.3), as measured by pulse 

oximetry have been shown to have valid representations of functional arterial oxygen 

saturation (SaO2) measured by arterial blood sampling (Mengelkoch et al. 1994), thus 

within this thesis SPO2 and SaO2 are used interchangeably depending on the method of 

measurement used in the particular study discussed. 
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Decreased PB at altitude or reduced FIO2 both reduce the inspired PO2 in turn reducing 

alveolar oxygen tension (PAO2) lowering the pressure gradient between the lung and 

blood for gas exchange.  Consequently SaO2 is reduced at rest and during exercise and 

the extent of the reduction is dependent upon the altitude to which an individual is 

exposed and their HVR.  At rest Gavin et al. (1998), Peltonen et al. (2001b) and 

Mollard et al. (2007) reported SaO2 of 85.7 ± 3.0, 95.0 ± 1.0 and 90.0 ± 2.3 % using 

inspired O2 fractions of, 0.133, 0.15 and 0.13, respectively.  Upon the completion of 

maximal exercise the studies demonstrate further arterial desaturation compared to rest 

(SaO2 = 71.5 ± 4.2, 84.0 ± 3.0 and 82.1 ± 3.3 %, respectively).  Fig. 2.2 shows arterial 

desaturation in relation to PO2 and its sigmoid shape allows for an initial fall in PO2 

without a large decrease in SPO2 although thereafter continuing reductions in PO2 

results in substantial decrements in SPO2.   

 

 

Fig. 2.2 Oxygen dissociation curve in human blood at 37O

 

C and pH 7.4 (West et al., 

2000).
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Table 2.2 Comparison of normoxic and hypoxic arterial saturation at rest and during maximal exercise.  * significantly different from 

normoxia, † significantly different from rest (P<0.05), data presented to the decimal places as published in original articles. 

Study Participants/methods FIO2 
SPO2 (%) 

          Rest                               Maximal exercise 

     

Calbet et al. (2003) 9 physically active participants 

5 male and 4 female 

Incremental cycle ergometry 

0.21 

0.105 

97.6 ± 0.1* 

82.3 ± 3.1* 

96.1 ± 0.3* 

66.2 ± 2.7* 

Peltonen et al. (2001) 6 male endurance athletes 

Incremental cycle ergometry 

0.32 

0.21 

0.15 

99 ± 1* 

97 ± 0* 

95 ± 1* 

97 ± 1* 

95 ± 1* 

84 ± 3* 

Gavin et al. (1998) 13 endurance trained male participants 

6 = Low  V E /  2OV   (<27.7; L) 

7 = High  V E /  2OV (>30.2; H) 

 based on maximal normoxic  V E /  2OV  

0.21 

 

0.133 

L 96.0 ±1.2 

H 96.2 ± 1.2 

L 85.7 ± 3.0 

H 86.2 ± 2.8 

92.6 ± 1.7 

93.7 ± 1.5 

90.6 ± 7.9 

71.5 ± 4.2 

Zattara-Hartmann and Jammes (1996) 6 healthy male participants 

Incremental cycle ergometry 

Measured PaO2 apposed to SaO2 

0.21 

0.15 

0.10 

89 ± 2* 

60 ± 2* 

45 ± 1* 

76 ± 2*† 

47 ± 1*† 

32 ± 1*† 
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At maximal exercise using FIO2s of 0.30, 0.21, 0.18, 0.16, 0.13 and 0.11 Ferretti and 

colleagues (1997) showed the influence of reducing PO2 on saturation and  2OV MAX.  

The levels of hypoxia resulted in SaO2 of 98.2 ± 0.1, 95.8 ± 0.51, 94.0 ± 0.5, 87.6 ± 1.4, 

80.2 ± 2.4, 66.2 ± 2.9 % and 96.8 ± 0.3, 93.0 ± 1.0, 90.0 ± 1.3, 83.6 ± 2.0, 66.8 ± 2.6, 

53.8 ± 2.2 % for sedentary and endurance trained participants, respectively.  These 

findings are comparable with those of Mollard et al. (2007) who found SPO2 to be lower 

at maximal exercise as FIO2 was reduced (FIO2 = 0.187, 0.173. 0.154, 0.13 and 0.117).  

Table 2.2 shows SPO2 reported for a selection of studies at rest and maximal exercise 

using different FIO2s.  

 

As SPO2 affects oxygen delivery (Equation 2.4) and ultimately consumption, studying 

factors maintaining haemoglobin oxygen saturation could be beneficial to aerobic 

performance and research in this area has highlighted several factors affecting 

desaturation.  One factor found to influence arterial desaturation is normoxic aerobic 

power.  Those individuals with greater  2OV MAX at sea level experience greater 

desaturation upon exposure to altitude (Martin and O’Kroy, 1993; Ferretti et al., 1997).  

Martin and O’Kroy (1993; LB exercise) reported SPO2 in trained (  2OV MAX = 67.2 ± 4.0 

mL.kg-1.min-1
 2OV) and untrained ( MAX = 45.4 ± 5.5 mL.kg-1.min-1) participants, at rest 

and maximal exercise whilst breathing hypoxic gas (FIO2 = 0.13).  At rest they reported 

SPO2 to be 84.0 ± 5.2 and 85.4 ± 5.4 % compared to 67.0 ± 7.1 and 77.5 ± 9.0 % at 

maximal exercise for trained and untrained participants, respectively.  While no 

difference existed at rest SPO2 was significantly lower at maximal exercise indicating 

greater pulmonary diffusion limitation in trained athletes.  A greater cardiac output in 

trained athletes (30-35 L.min-1 compared to 20 L.min-1 for untrained) results in reduced 

pulmonary transit time (PTT) thus reducing the time available for gaseous exchange.  

At rest PTT is ≈ 1 s while at maximal exercise blood sp ends ≈ 0.25 s in the lung 
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(Hopkins et al., 1996).  Lawler et al. (1988) reported normoxic  2OV MAX to be 

positively correlated with ∆  2OV MAX upon exposure to hypoxia (r = 0.94, P<0.05), 

while ∆  2OV MAX was negatively correlated with SPO2 at maximal exercise (r = -0.84, 

P<0.05).  Therefore, although not presented, this data shows that a high normoxic 

 2OV MAX results in greater desaturation during hypoxia, which was reported by Mollard 

et al. (2007) in trained and untrained participants. 

 

As stated in section 2.3.1 ventilation increases at the same point that arterial 

desaturation becomes more rapid (60 mmHg; Fig 2.2).  Investigating the role of 

ventilation on arterial desaturation Gavin et al. (1998) found that resting hypoxic 

ventilatory response (rHVR) had no correlation with SaO2 at maximal exercise in 

aerobically trained athletes.  This study divided their participants dependent upon their 

normoxic  V E/  2OV  responsiveness (  V E/  2OV  <27.2 = LOW n = 6;  V E/  2OV > 30.2 = 

HIGH, n = 7).  For normoxia vs. hypoxia, SaO2 at maximal exercise was 92.6 ± 1.7 vs. 

60.6 ± 7.9 % for the LOW group and 93.7 ± 1.5 vs. 71.5 ± 4.2 % for the HIGH group.  

This represents a 31.9 ± 6.4 % desaturation compared to 22.1 ± 3.7 % in the HIGH 

compared to the LOW group at maximal exercise (P<0.05).  They found that normoxic 

 V E/  2OV  response to maximal exercise was important in maintaining SaO2 (r = 0.6, 

P<0.05) and aerobic power (r = 0.62, P<0.05) during maximal exercise when exposed to 

acute hypoxia.  This study concluded that a low hyperventilatory response to maximal 

exercise results in greater desaturation associated with greater reduction in aerobic 

power. 

 

Exercise induced arterial hypoxemia (EIAH) is a phenomenon whereby desaturation 

occurs during normoxic exercise.  This tends to happen in highly trained individuals 

with high cardiac outputs (Prefaut et al., 2000; Galy et al., 2005).  During normoxic 
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maximal exercise highly trained participants desaturated to 90.6 ± 0.8 % compared to 

94.1 ± 0.2 % in untrained participants (Powers et al., 1989).  When investigated during 

mild hypoxia (FIO2 = 0.187, ≈1000 m) those who demonstrated EIAH (SaO2 <90 %) 

experienced greater desaturation and a significantly greater reduction in  2OV MAX 

opposed to non-EIAH (SaO2 >92 %) whose  2OV max was not significantly reduced and 

did not desaturate to the same extent (Chapman et al., 1999). 

 

Several studies have employed hyperoxia (>21% O2) in the assessment of blood 

oxygenation and aerobic power (Peltonen et al., 2001a; Peltonen et al., 2001b).  While 

normoxic resting SPO2 is ≈ 97 % there is little room for improvement in saturation with 

increasing PIO2, as seen in Fig. 2.2.  One such study showed that an 11 % increase in 

FIO2 (0.32) resulted in a 2% increase in SPO2 (99 ± 1), while 6 % reduction in FIO2 

(0.15) resulted in a 2 % decrease in SPO2 (95 ± 1) compared to normoxic values at rest.  

This became more pronounced at maximal exercise when SPO2 was 97 ± 1, 95 ± 1 and 

84 ± 3 % when FIO2 = 0.32, 0.21 and 0.15, respectively (Peltonen et al., 2001b).  These 

data further demonstrate the flat and steep portions of the O2 dissociation curve, where 

increasing PIO2 has little effect on SaO2 (flat portion) decreasing PIO2 below 60 mmHg 

results in rapid desaturation (steep portion; Fig. 2.2). 

 

2.3.3 Validity and reliability of pulse oximetry. 

Arterial haemoglobin oxygen saturation (SPO2) is commonly used as it offers a non-

invasive means of assessing the degree of arterial hypoxemia in any given circumstance.  

As well as being an important physiological measure it is also essential in ensuring the 

safety of the subject so the oxygen saturation of the blood does not fall beyond safe 

limits (section 3.6).  For these reasons it is important that the validity and reliability of 

pulse oximeters be known prior to their use.  The ‘gold standard’ means to validate 
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pulse oximeters is to compare the SPO2 with haemoglobin oxygen saturations (SaO2) 

directly from arterial blood sampling (Mengelkoch et al., 1994).   The validity of a wide 

range of pulse oximeters have been reported using ear, finger and forehead sensors at 

rest and during exercise in hypoxic and normoxic conditions (Martin et al., 1992; 

Mengelkoch et al. 1992; Mengelkoch et al., 1994; Benoit et al., 1997; Yamaya et al., 

2002 Fernandez et al., 2007).   

 

Several methodological issues also need to be considered when using pulse oximetry, 

especially during exercise trials.  Motion artefact results in increased signal 

noise/interference so the estimated SpO2 is often inaccurate (Mengelkoch et al., 1994).  

This becomes of particular concern during exercise trials as movement of some form is 

inevitable.  Barker and Shah (1997) compared three different oximeters, attached to the 

2nd, 3rd, and 4th fingers of the test hand and placed on a motion table.  The same 

oximeters were attached to the same fingers on the control hand which remained 

motionless.  While altering the FIO2 so saturation varied from 75 to 100% they 

measured the amount of time the test hand was within 7% of the control hand.  While 

one oximeter remained with 7% of the control hand 97% of the time the other oximeters 

were only within 7% of the control hand 68 and 47% of the time.  This shows the effect 

of motion on oximeter validity and also shows the oximetry chosen should be validated 

within the situation it is to be used.  It should also be noted that 7% desaturation (limits 

used in the above study) would be sufficient to significantly reduce arterial oxygen 

content (CaO2) which would dramatically reduce oxygen delivery (  2OD ) thus 

oximeters should be validated within tighter limits.  

 

As pulse oximetry relies on the absorption of light by HbO2 and the pulsatile component 

of blood, anything that reduces blood flow to the site of the pulse oximeter probe will 
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reduce the reliability of data gathered.  Factors that affect peripheral perfusion include 

temperature, hypotension, hypovolemia and pharmacological agents thus where 

possible should be controlled during trials.  While motion and perfusion are of 

considerable importance during exercise trials severity of hypoxia, skin pigmentation, 

ambient light, sensor site and whether the subject smokes can all affect the validity and 

reliability of pulse oximeters (Mengelkoch et al., 1994; Benoit et al., 1997; Fernandez 

et al., 2007). 

 

The pulse oximeter used in the present study (Nonin 8500, Nonin medical Inc, 

Minnesota, USA) used an ear sensor and had a reported accuracy of ± 4 digits (± 2 SD; 

manufacturers guide).  Thake (2006) assessed the reliability of the Nonin 8500 oximeter 

during maximal exercise in normoxia and hypoxia in ten healthy male participants.  A 

strong relationship was observed between test-retest data when normoxic and hypoxic 

data were considered together (r = 0.979, n = 86) and individually (normoxic r = 0.762, 

n = 47; hypoxic r = 0.904, n = 39; P<0.001). 

 

As reported previously (Yamaya et al., 2002) the results of the Thake (2006) show that 

as SPO2 decreases, variability increases (100-95% saturation ± 0.9%, n=39; 95-90% ± 

2.7%, n = 9; 90-85% ± 2.6%, n = 4; 85-80% ± 2.6%, n = 15; 80-75% ± 2.0%, n = 11; 

75-70% ± 3.0%, n = 8).  This study showed only 3 (3.5%) points are outside ± 2SD of 

the mean, thus the reliability for the Nonin 8500 was deemed within acceptable limits. 

These papers suggest that despite several methodological issues, across a physiological 

range of 70-100%, SPO2 accurately estimates SaO2.  For further reading on the validity 

of pulse oximetry see Mengelkoch et al. (1994). 
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2.3.4 Blood lactate. 

The intensity at which exercise is performed is a key factor determining how long it can 

be maintained.  When exercising at low intensities ATP resynthesis can be met 

predominately by aerobic metabolism, however when exercise intensity increases, 

anaerobic resynthesis of ATP becomes progressively more prominent.  Anaerobic ATP 

resynthesis promotes metabolic acidosis through the production of lactic acid and 

increasing acidosis affects the contractile proteins of the muscle.  The point where lactic 

acid production in the muscle and subsequent lactate efflux into the blood accumulates 

exponentially from resting values is named the lactate threshold (LT).   

 

Hypoxia reduces the amount of O2 available to the muscle for metabolism thus an 

increased anaerobic component is evident during hypoxic exercise at the same absolute 

intensity.  This is seen as BLa concentration ([BLa]) is higher at a given workload 

during incremental exercise during acute hypoxia.  Friedmann and colleagues (2005) 

found higher [BLa] at 8, 10 and 12 km.h-1 when investigating lactate threshold (LT) in 

hypoxia compared to normoxia in endurance trained males (68.0 ± 4.3 mL.kg-1.min-1

 2OV

).  

This study demonstrated that LT occurred at a slower running velocity in H with a 

lower HR and lower  (57.3 ± 5.2 and 46.2 ± 3.4 mL.kg-1.min-1

 2OV

 for N and H, 

respectively) however when expressed relative to condition specific MAX LT was 

not significantly different (N = 84 ± 5 and H = 86 ± 6 %).  In participants with a lower 

aerobic power (57.4 ± 7.1 mL.kg-1.min-1
 2OV) using cycling ergometry  at LT was 

significantly lower during hypoxic exercise but occurred at 76 and 78 % of  2OV MAX for 

normoxia and hypoxia respectively (Koistinen et al., 1995).  These two studies are 

representative of the literature where parameters are often lower at LT during hypoxic 
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exercise but when considered in relation to the maximal values in that condition there is 

little difference (Thake, 2006). 

 

Maximal [BLa] is relatively unchanged during normoxic and acute hypoxic exercise 

(Kayser, 1996; Wagner and Lundby, 2007).  Ekblom et al. (1975) reported higher 

maximal [BLa] when CaO2 was reduced during treadmill running (13.0 ± 0.9 vs. 15.0 ± 

0.8 mmol.L-1

A proposed mechanism for these adaptations is that hypoxemia detected by peripheral 

chemoreceptors increases sympathetic drive in turn increasing plasma catecholamines.  

In the presence of increased adrenaline levels phosphorylase b transforms to its active 

form phosphorylase a, which increases glycogenolysis leading to increased lactate 

production at a given exercise intensity.  The metabolic cost of a given workload is the 

same in normoxia and hypoxia, however higher blood lactate concentration indicates a 

greater proportion of ATP resynthesis comes via anaerobic metabolism as a given 

workload represents a higher proportion of maximal exercise capacity in hypoxia 

(Kayser, 1996; Wagner and Lundby, 2007).  It should be noted that the above 

mentioned BLa responses are associated with acute exposure to hypoxia as the 

responses seen during chronic exposure differ.  The different response to acute and 

chronic hypoxic exposure is termed the ‘lactate paradox’.  Lowlanders acclimatised to 

high altitude accumulate lower [BLa] at maximal exercise compared to normoxic 

values.  Those native to high altitude also present lower [BLa] at maximal exercise 

compared to sea level dwellers.  However, when lowlanders return to sea level their 

BLa response to exercise returns to that observed prior to ascent to altitude, while high 

 for N and H, respectively) while the literature generally shows no 

difference during treadmill running (Friedmann et al., 2005; Ogawa et al., 2007) and 

cycle ergometry (Martin and O’Kroy, 1993; Calbet et al., 2003; Mollard et al., 2007).   
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altitude natives continue to accumulate lower [BLa] when at sea level (Hochachka et 

al., 2002; Hochachka et al., 1991).   

 

2.4 Fick equation. 

The Fick equation (below) states that oxygen consumption is a product of oxygen 

delivery via the blood and oxygen extraction at the muscle.  Fig 2.3 shows the Fick 

equation and further divides its components to their constituent parts.  By doing this it 

can be seen how changes in the stated physiological responses affect  2OV .  Within this 

section the components of the Fick equation, the effect that acute hypoxia has upon 

them and how this alters  2OV  will be discussed. 

 

Fick equation    2OV = Q  x a-  v O2Diff.  

Where;   2OV = Oxygen consumption, Q = Cardiac output, a-  v O2Diff. = Arterial – 

mixed venous oxygen difference. 

 

2.4.1 Oxygen consumption. 

The volume of O2 that can be consumed per minute (  2OV ) increases linearly with 

workload until maximal exercise.  There has been much debate regarding the factors 

limiting  2OV MAX, principally the contribution of central and peripheral factors.  

Ekblom et al., (1976) found that by reducing the bloods capacity to carry O2  2OV MAX 

was reduced.  When 800 ml of blood was removed (by venesection)  2OV MAX decreased 

from control (4.27 ± 0.4 to 4.03 ± 0.31 L.min-1

 2OV

) while reinfusion of the red cells (30-35 

days later) led to MAX increasing to 4.61 ± 0.38 L.min-1

Q

 (P<0.05) in normoxia.  

While  and SaO2 were not significantly different between control, postvenesection 

and postreinfusion, CaO2 decreased after venesection and increased after reinfusion 
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(control = 19.94, venesection = 17.88 and reinfusion = 20.77 mLO2.L-1

 2OV

; P<0.05).  The 

removal of blood resulted in a 10% reduction in CaO2 which was accompanied by a 6 % 

reduction in MAX.  As discussed (section 2.4.3) a decrease in CaO2 while Q  

remains unchanged would decrease  2OD  leading to the conclusion that delivery of O2 

to the muscle limits maximal exercise capacity.  Many consider these findings to be 

conclusive in the debate of central vs. peripheral limitation to exercise (Ekblom et al., 

1976; Ferretti, 2003).  
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Fig 2.3 Constituent components of the Fick equation and how they enable the calculation of oxygen consumption.   2OV = oxygen 

consumption, Q = cardiac output, HR = heart rate, SV = stroke volume, a-  v O2Diff. = arteriovenous oxygen difference, CaO2 = arterial 

oxygen content, CvO2 = venous oxygen content, [Hb] = haemoglobin concentration, 1.34 = mLO2.gHb SpO2 = arterial haemoglobin 

oxygen saturation,  2OD = oxygen delivery and E = extraction ratio. 

 2OV  

a-  v O2Diff. CaO2 – CvO2 E 

  Q  HR x SV  2OD  

[Hb] x 1.34 x 
SpO2 
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 2OV MAX is significantly reduced upon exposure to altitude when compared to that 

attained at sea level (Knight et al., 1993; Zattara-Hartmann and Jammes, 1996; Ferretti 

et al., 1997; Cardus et al., 1998; Richardson et al., 1999a; Peltonen et al., 2001a; 

Peltonen et al., 2001b).  Squires and Buskirk (1982) proposed there was little difference 

in aerobic power below an altitude of 1524 m, thereafter a decrease of 3.2 % could be 

seen every additional 305 m, however others have reported reductions ≤ 1000 m (Gore 

et al., 1996; Mollard et al., 2007).  Dempsey and Wagner (1999) reported that for every 

1 % reduction in arterial saturation below 95 %,  2OV PEAK was reduced by 1-2 %. 

 

Hypoxia reduces SaO2 (section 2.3.2), which in turn reduces CaO2 and  2OD and as 

shown by Ekblom et al. (1976) a reduction in  2OD  results in reduced  2OV MAX.  When 

breathing FIO2s of 0.3, 0.21, 0.18, 0.16, 0.13 and 0.11  2OV MAX was 43.7 ± 4.0, 42.1 ± 

2.6, 39.1 ± 2.3, 36.4 ± 2.4, 30.7 ± 3.1 and 26.5 ± 1.7 mL.kg-1.min-1 for sedentary 

participants and 66.3 ±3.2, 62.1 ± 1.8, 56.7 ± 2.4, 53.4 ± 1.7, 43.9 ± 0.8 and 35.6 ± 1.3 

mL.kg-1.min-1

 2OV

 for trained participants, respectively.  This study showed strong 

correlations between MAX as a % of that attained at FIO2 0.30 and SaO2 for 

sedentary (r = 0.87; P<0.001) and trained (r = 0.93; P<0.001), respectively.  These 

results show that the reduction in  2OV MAX during acute hypoxia to be dependent on the 

simulated altitude exposed to and the subsequent degree of arterial desaturation (Ferretti 

et al., 1997).  Agreeing with these findings are Mollard et al. (2007) when exposing 

sedentary and trained participants to simulated altitudes of 1000, 1500, 2500, 3500 and 

4000 m.  They found that as altitude increases the reduction in  2OV MAX becomes 

greater, being significantly reduced from 1000 m compared to sea level.  This study 

showed that, in absolute terms from 1500 m the trained participants experienced greater 

reductions in  2OV MAX when compared to untrained.  However, when ∆  2OV MAX was 
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expressed as a % there was no difference between sedentary and trained participants at 

any altitude.  Calbet et al. (2003) reported that two-thirds of the reduction in  2OV MAX 

could be accounted for by arterial desaturation with the remaining third a result of 

reduced cardiac output, both of which are components of oxygen delivery. 

 

Lawler et al. (1988) and Martin and O’Kroy (1993) both investigated the effect of sea 

level  2OV MAX on aerobic performance at altitude and demonstrated similar findings.  

Lawler et al. (1988) found that when FIO2 = 0.13  2OV MAX was reduced by 26 and 15 % 

for trained and untrained subject groups, respectively.  Martin and O’Kroy (1993) found 

 2OV MAX declined by 26 and 12 % when FIO2 = 0.14 for trained and untrained, 

respectively.  Both these papers demonstrated that trained individuals experience greater 

reduction in aerobic power at altitude and both suggested that an increased Q  for 

trained participants would reduce the pulmonary transit time (PTT) resulting in arterial 

desaturation and therefore reduced  2OD . 

 

Few papers have investigated UB exercise whilst breathing hypoxic gas, however two 

such papers offer interesting findings.  Hopman and co-workers (2003) compared 

hypoxia, normoxia and hyperoxia (FIO2 = 0.15, 0.21 and 0.50) during arm crank 

ergometry in healthy, but not UB trained male participants.  Whilst finding no 

difference between hypoxia and normoxia,  2OV MAX was significantly higher during 

hyperoxia when compared to hypoxia (39.56 ± 7.04 vs. 36.00 ± 5.51 mL.kg-1.min-1

 2OV

; 

P<0.05).  This study was the first to suggest that UB MAX was dependent on O2 

supply where it was previously assumed to be limited by factors at the muscle, however 

the reductions appear to be far smaller then those seen during LB exercise at the same 

FIO2 (Table 2.3).   
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Table 2.3  2OV PEAK during acute hypoxia and normoxia. T = trained ; S = sedentary; A 

= able-bodied; P = paraplegic; T = tetraplegic.   * significantly different from 

normoxia (P<0.05). 

 

Study Participants/methods 
 2OV PEAK  

Normoxia          Hypoxia 
∆  2OV MAX (%) 

     

Angermann et 

al. (2007) 

7 Nordic combined Skiers 

LB = Cycle ergometry 

UB = Double pole ergometry 

Hypoxic FIO2 = 0.146 

LB 57.3 ± 3.7     52.5 ± 3.0* 

UB 53.6 ± 4.2     49.3 ± 3.4* 

mL.kg-1.min-1

8 

8 

 

Hopman et al. 

(2004) 

10 able-bodied males 

6 paraplegic males 

6 tetraplegic males 

Arm crank ergometry 

Hypoxic FIO2 = 0.15 

A 37.2 ± 7.3     36.0 ± 1.8* 

P 24.1 ± 1.6     23.1 ± 1.5* 

T 12.2 ± 1.8     12.7 ± 2.1* 

mL.kg-1.min-1

3 

4 

4 

 

Peltonen et al. 

(2001a) 

11 male endurance athletes 

Cycle ergometry 

Hypoxic FIO2 = 16.6 

59.8 ± 4.5     55.1 ± 4.8* 

mL.kg-1.min-1

8 

 

Peltonen et al. 

(2001b) 

6 male endurance athletes 

cycle ergometry 

Hypoxic FIO2 = 0.15 

4.55 ± 0.32     3.58 ± 0.44* 

L.min-1

21 

 

Gavin et al. 

(1998) 

13 endurance trained males 

6 high  V E /  2OV ; 7 low  V E /  2OV  

Cycle ergometry 

FIO2 = 0.133 

H 60.4 ± 4.8     43.8 ± 4.7 

L 63.7 ± 3.7     42.1 ± 2.3 

mL.kg-1.min-1

27 

34 
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Table 2.3 Continued. 

 

A study using participants who were highly UB trained (Nordic combined skiers) found 

that  2OV MAX was significantly reduced at a simulated altitude of 3200 m (FIO2 = 0.146) 

compared to normoxia (560 m; Angermann et al., 2006).  While at a slightly higher 

simulated altitude than Hopman et al. (2003), which could account for the significant 

reduction in  2OV MAX, the difference in fitness between the participants should be 

considered.  Where the UB elicits a  2OV MAX approximately 60-80% of that attained 

during LB exercise (section 2.5) in participants who are not specifically UB trained, 

Study Participants/methods 
 2OV PEAK  

Normoxia          Hypoxia 
∆  2OV MAX (%) 

     

     

Ferretti et al. (1997) 5 trained participants 

5 sedentary participants 

Cycle ergometry 

Hypoxic FIO2 = 0.11 

T 62.1 ± 1.8     35.6 ± 1.3* 

S 42.1 ± 2.6     26.3 ±1.7* 

mL.kg-1.min-1

43 

38 

 

Zattara-Hartmann 

and Jammes (1996) 

6 healthy male participants 

Cycle ergometry 

Hypoxic FIO2 = 0.10 

3.60 ± 0.18     2.66 ± 0.12* 

L.min-1

26 

 

Martin and O’Kroy 

(1993) 

8 highly trained participants 

8 sedentary participants 

Cycle ergometry 

Hypoxic FIO2 = 0.13 

T 5.53 ± 0.31     3.35 ± 0.23* 

S 3.48 ± 0.58     2.90 ± 0.58* 

L.min-1

39 

17 

 

Lawler et al. (1988) 7 trained participants 

6 untrained participants 

Cycle Ergometry 

Hypoxic FIO2 = 0.14 

T 64.5 ± 2.4     51.1 ± 2.0* 

S 45.0 ± 2.2     40.4 ± 1.5* 

mL.kg-1.min-1

21 

10 
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Angermann et al. (2006) found UB  2OV MAX was 93.5 (P<0.05) and 93.9 % (NS) of 

that reported for the LB for normoxia and hypoxia, respectively. 

 

During LB exercise highly trained individuals experience reduced arterial saturation at 

maximal exercise due to a large cardiac output and reduced PTT, insufficient for 

complete pulmonary diffusion.  Where Q  is usually reduced during UB exercise those 

with highly trained UB musculature may provoke similar cardiovascular responses 

during both modes of exercise, thus it may be possible that they experience greater 

arterial desaturation and reduced oxygen delivery during UB exercise in hypoxia than 

those who are untrained.  Angermann et al. (2006) did report higher HRMAX vs. Hopman 

et al. (2003) for UB normoxic and hypoxic exercise (190 ± 10 and 192 ± 10 vs.176 ± 19 

and 177 ± 16 bt.min-1

Q

, respectively) and the former study reported no significant 

difference for HRMAX between UB and LB exercise.  Neither of these studies reported  

 during hypoxic or normoxic exercise.  Angermann et al. (2006) reported arterial 

saturations of 93.2 ± 2.5 and 75.0 ± 5.9 % at maximal UB exercise for normoxia and 

hypoxia respectively.  Galy et al. (2005) reported that from rest to maximal exercise 

arterial saturation fell from 99 ± 0.2 to 93.4 ± 1.4 % indicating EIAH during LB 

exercise.  Though Angermann et al. (2006) did not report resting SaO2 the low 

saturation at maximal exercise could indicate EIAH during UB exercise.  While these 

two papers offer interesting comparisons it should be noted that all participants 

performed hypoxic exercise first in Angermann and colleagues (2006) study and 

different ergometers were used during UB exercise.  Where Hopman et al. (2003) used 

an arm crank ergometer in the seated position, double poling ergometry (Angermann et 

al. 2006) may engage a greater muscle mass thus the two modes of UB exercise may 

elicit different maximal oxygen consumptions. 
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2.4.2 Cardiac output. 

Cardiac output ( Q ) is derived from heart rate (HR) and stroke volume (SV), a reduction 

in the maximal capacity of either would result in reduced maximal Q .  HR and SV 

respond differently to incremental exercise.  HR increases progressively with workload 

until maximal exercise, while SV increases up to 40-60 %  2OV MAX (lactate threshold) 

where it plateaus until maximal exercise (Stringer et al., 1997).  Therefore, after lactate 

threshold an increase in Q  is predominately due to increased HR. 

 

Wagner (2000) reviewed the cardiovascular adaptations to exercise at altitude, briefly 

discussing the adaptations to acute exposure.  It is generally accepted that when acutely 

exposed to altitudes below ≈ 4500 m Q  is not reduced at maximal exercise, however Q  

is greater at a given  2OV  (Wagner et al., 1986).  SV has been shown not to change up 

to an altitude of 4000 m (Stenberg et al., 1966) thus if maximal HR and SV are 

unchanged during acute hypoxia then Q MAX will not alter.  However some studies have 

contradicted these findings demonstrating reduced HR and Q  during acute hypoxic 

exercise.  At a higher simulated altitude (FIO2 = 0.105; ≈ 5300 m) Calbet and colleagues 

(2003) found HR, SV and Q  to be significantly reduced (8, 9 and 17%, respectively; 

P<0.05) at maximal exercise.  Benoit et al. (2003) stated HRMAX is reduced when 

altitude is greater then 4000 m while a later study found max HR to be significantly 

reduced from 1000 m above sea level in trained participants (65.5 ± 3.1 mL.kg-1.min-1) 

and from 2500 m in untrained participants (44.1 ± 5.3 mL.kg-1.min-1

 2OV

) with the trained 

participants experiencing greater reductions at all simulated altitudes (1000, 1500, 2500, 

3500 and 4500 m; Mollard et al. 2007).  Despite lower HRMAX the observed reductions 

in MAX was attributed to arterial desaturation (r = 0.89 and 0.80 for trained and 
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untrained, respectively; P<0.05).  Peltonen et al. (2001b) found that neither HR nor SV 

were significantly reduced during hypoxia, however both tended to be lower which 

resulted in Q  being significantly reduced at maximal exercise (28.51 ± 2.36 vs. 25.99 

±3.37 L.min-1

 2OV

; FIO2 = 0.15). 

 

Increased activity of the sympathetic nervous system (SNS) during acute hypoxia 

results in greater cardiovascular stress at rest and at a given workload/ .  Increased 

sympathetic activity and increased circulating adrenaline are the main contributors to 

the increased activity of the cardiovascular system (Hopkins et al., 2003; Mazzeo, 

2008).  Calbet et al. (2003) reported significantly higher circulating concentrations of 

adrenaline and noradrenaline at a given workload during hypoxic cycling exercise, 

however there were no differences in these concentrations at maximal exercise.  In spite 

of similar catecholamine concentrations at maximal exercise HR, SV and Q  were 

significantly lower (182 vs. 167 bt.min-1; 128 vs. 116 mL.bt-1 and 23.2 vs. 19.4 L.min-1

Hopkins and co-workers (2003) assessed heart rate and cardiac output during 

incremental exercise in normoxia and hypoxia (FIO2 = 0.125; ≈ 4000 m) while 

separately blocking the β-sympathetic and parasympathetic arms of the autonomic 

nervous system (ANS).  It was found that during the control trials (no pharmacological 

intervention) HR and 

, 

respectively).  This indicates that cardiovascular responses to hypoxia are not solely 

accountable for by catecholamine concentrations. 

 

Q  were higher during submaximal and lower during maximal 

exercise in hypoxia, in agreement with the aforementioned papers (Calbet et al., 2003; 

Mazzeo, 2008).  If the observed difference between HR and Q  during hypoxia was due 

to increased activity of the SNS then blocking the β-sympathetic arm of the ANS would 
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diminish the differences observed between normoxic and hypoxic exercise.  This was 

not the case, β-sympathetic blockage resulted in significantly reduced HR and Q  

compared to control, however HR and Q  were still higher at a given  2OV during 

hypoxia.  It was hypothesised that the SNS and PNS may work reciprocally, i.e. when 

β-sympathetic receptors are blocked increased parasympathetic withdrawal occurs, 

however parasympathetic withdrawal only increases HR to 100-110 bt.min-1

Benoit and colleagues (2003) found that a higher 

.  

Alternatively α-adrenergic receptor excitation by noradrenaline would be unaffected by 

either of the drugs employed and may become prominent when other branches of the 

SNS are blocked (Hopkins et al., 2003). 

 

 2OV MAX at sea level and low SaO2 at 

maximal exercise were correlated with ∆HR MAX in three groups, based on normoxic 

 2OV MAX (HIGH = 64.2 ± 3.3; MED = 50.8 ± 3.9 and LOW = 41.0 ± 1.9 mL.kg-1.min-

1

Q

).  They reported that HIGH experienced greater reduction in HRMAX then MED and 

LOW (P<0.05 and P<0.001, respectively).  Trained athletes have a greater MAX than 

untrained and experience greater ∆  2OV MAX, ∆HRMAX and desaturation during hypoxic 

exercise and are more likely to experience EIAH during normoxic exercise (Benoit et 

al., 2003; Martin and O’Kroy, 1993; Lawler et al., 1988).  Benoit et al. (2003) also 

separated their participants with high normoxic  2OV MAX into those that experience 

EIAH (SaO2 < 92 %) and those that did not.  Those that experienced EIAH also 

experienced significantly greater ∆HR MAX then those who did not (21 vs. 15 bt.min-1

Q

, 

respectively).  It may be that central chemoreceptors interpret larger arterial desaturation 

as potentially dangerous and by reducing HRMAX and therefore MAX, pulmonary 

transit time may increase, aiding gaseous exchange at the lung preventing further 
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desaturation.  Also in the presence of reduced arterial oxygen content a reduced HR 

would ensure that myocardial O2 demand is met.   

 

Non-invasive techniques to measure/estimate Q  have been developed to overcome the 

need for arterial blood sampling, however they often require sophisticated equipment, 

experimenter expertise and the participants to perform complicated manoeuvres which 

can be exaggerated by exercise such as CO2 rebreathing (Stringer et al., 1997).  Two 

studies that identified simpler techniques for the estimation of Q  during exercise have 

used oxygen pulse (  2OV /HR; Bhambhani, 1995) and by characterising the behaviour of 

arterial – mixed venous oxygen content (a-  v O2Diff.) as a percentage of  2OV MAX 

(Stringer et al., 1997).  Bhambhani (1995) reported significant correlation between Q  

estimated from CO2 rebreathing and oxygen pulse for lower and upper body exercise in 

25 males (r = 0.76 and 0.85, respectively; P<0.01) at lactate threshold (difference 

between LB and UB exercise for Q , HR and SV are discussed in section 2.5).  As SV 

remains unchanged from this point, if HRMAX is recorded then Q MAX can be calculated.  

Stringer and colleagues (1997) measured a-  v O2Diff. in five males via blood sampling 

during incremental exercise to exhaustion.  As a-  v O2Diff. responds in a constant 

manner as a function of %  2OV MAX regression analysis allows for the estimation of Q  

and SV from the measurement of  2OV alone (r = 0.94, P<0.0001).  

 

2.4.3 Arterial oxygen content/oxygen delivery. 

CaO2 is derived from the oxygen carry capacity of the blood and the extent to which the 

blood is saturated (SPO2).  The bloods capacity for oxygen transport is dependant on 

haemoglobin concentration ([Hb]) as each gram of haemoglobin carries 1.34 mLO2 (it 

should be noted that a nominal amount of O2 is carried by plasma), therefore; 
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Equation 2.3  CaO2 = ([Hb] x 1.34 x SpO2) + (0.003 x PO2) 

 

Oxygen delivery (  2OD ) is the CaO2 and the rate at which blood is transported to the 

active tissues ( Q ).  Q  increases linearly with workload, if CaO2 remained constant 

 2OD  would increase purely from the changes in Q .   

 

Equation 2.4     2OD  = Q  x CaO2 

 

2.4.4 Arterial – mixed venous oxygen difference. 

Arterial – mixed venous oxygen difference (a-  v O2Diff.) is the difference between the 

CaO2 and the oxygen content of venous blood (CvO2), in other words the amount of 

oxygen extracted from the blood.  Fig 2.4 shows the partial pressure of oxygen (PO2) as 

it is transported from the ambient air to the muscle and into the venous blood at rest and 

during exercise at sea level and at an altitude of 5800 m.  It can be seen that there is a 

strong gradient between arterial and mixed venous PO2 at sea level meaning that there is 

potential for more O2 to be extracted from the blood by the muscle.  At high altitude this 

gradient is diminished, the CaO2 is reduced and less O2 is available at the muscle for 

extraction, a situation further attenuated by exercise.  It should be noted that as 

extraction (E) is a ratio between CaO2 and CvO2 the same ratio can represent two 

different amounts of O2 extracted from the blood. 

 

While O2 tension was the same, Ekblom and co workers (1976) reduced arterial O2 

content (CaO2) by reducing [Hb] and showed that by lowering CaO2, a-  v O2Diff. 

decreased to 137.2 ± 13.0 from 149.0 ± 13.4 mL.L-1

 v

 in the control group.  Exposure to a 

simulated altitude ≈ 5300 m (F IO2 = 0.105) a- O2Diff. was 113 mL.L-1 compared to 
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174 mL.L-1

 2OV

 at sea level during maximal exercise which corresponded to extraction 

ratios of 0.89 and 0.92, respectively (Calbet et al., 2003).  Studies at simulated altitude 

show CaO2 is reduced through desaturation which narrows the gradient between arterial 

and venous O2 content and though extraction ratio tends to increase with altitude the 

absolute amount of oxygen extracted is reduced (Ekblom et al., 1975; Richardson et al., 

1999b).  Jansen-Urstad and colleagues (1995) found that during 10 mins of submaximal 

UB exercise (50 % of exercise-induced increase in , i.e.  2OV PEAK -  2OV REST) a-

 v O2Diff. was similar at rest during normoxia and hypoxia (FIO2 = 0.12) but was lower 

within 45s of commencing exercise during hypoxia compared to normoxia.    

 

 

Fig. 2.4 Partial pressure of oxygen from the atmosphere to the cell at sea level and an 

altitude of 5800 m during rest and exercise (taken from Ward et al., 2000). 
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2.5 Lower vs. upper body exercise. 

Where much debate and research has been directed towards the factors 

limiting  2OV MAX during lower body (LB) exercise (Ekblom et al., 1976; Ferretti et al., 

1997) the limiting factors to upper body (UB) exercise are less conclusive.  The 

realisation of the importance of UB musculature in recreational, military and exercise 

tasks and the increased research into the exercise capacity of those with spinal cord 

injury has led to a greater understanding of UB exercise (Sawka et al., 1983; Hopman et 

al., 2004).  Where the differences between LB and UB exercise have been described, 

the underlying physiological mechanisms limiting exercise in the two modes of exercise 

have been studied to a lesser extent during UB exercise (Bar-Or and Zwiren, 1975; 

Sawka et al., 1983; Bhambhani et al., 1998; Mukari et al., 2004). 

 

Arm cranking elicited 62.5 ± 6.3 % of the  2OV MAX and 88.7 ± 4.9 % of the HRMAX 

attained during treadmill running (Bar-Or and Zwiren, 1975) in 18 healthy male 

participants.  UB exercise (arm crank ergometry) generally elicits 60-80 % of  2OV MAX 

achieved during cycling ergometry.  The above study falls within the lower end of this 

range when using treadmill running for LB exercise, which itself elicits higher  2OV MAX 

compared to cycle ergometry (McKay and Banister, 1976).  However, most studies 

comparing LB and UB exercise employ cyclical exercises (i.e. leg cycling ergometry vs. 

arm crank ergometry). 

 

Using arm crank ergometry and cycling ergometry Bhambhani and colleagues (1998) 

found that  2OV MAX was significantly lower in males and females during arm crank 

ergometry.  At a workload 56.7 and 58.1 % of that attained during LB exercise 

 2OV MAX was 68.5 and 70.2 % for males and females exercise, respectively.  This was 
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only partially accounted for by HRMAX which was reduced to 89.2 and 92.0 % of that 

seen whilst cycling for male and females, respectively.  This is comparable with Mukari 

et al. (2004) who found  2OV MAX and HRMAX to be 70.4 and 92.9 % of that attained 

during LB exercise when exercising the UB in females.  Using untrained male 

participants Schneider et al. (2002) found  2OV MAX and HRMAX to be 66.4 and 93.9 % 

during UB compared to LB exercise, respectively.  This was similar to the findings of 

Bhambhani et al. (1998) whose participants had better aerobic conditioning (  2OV MAX = 

39.0 ± 2.2 vs. 55.0 ± 13.1 mL.kg-1.min-1

 2OV

).  

 

One study showed no difference in MAX between UB and LB exercise.  Angermann 

and co-workers (2006) using Nordic combined skiers, reported  2OV MAX of 53.6 ± 4.2 

and 57.3 ± 3.7 mL.kg-1.min-1

 2OV

for UB and LB exercise, respectively.  In contrast to other 

studies these participants were specifically UB trained and the UB ergometer was 

specific to cross country skiing (custom built double pole ergometer).  Also, where 

continuous cycle ergometry was used during LB exercise the UB protocol was 

discontinuous.  While no difference has been demonstrated in MAX between 

continuous and discontinuous protocols during cycle ergometry and arm crank 

ergometry (McArdle et al., 1973; Stamford, 1976; Sawka et al., 1983; Smith et al., 

2001) this may not be the case for double pole ergometry.   

 

The reduced aerobic power of the UB has been attributed to several factors 1) upper 

body exercise uses a smaller muscle mass; 2) the majority of people have lesser training 

status in their arms; 3) different central responses to upper body exercise; 4) lower 

mechanical efficiency during upper body exercise and 5) a greater recruitment of type II 

muscle fibres (Johnson et al., 1973; Sawka, 1983; Jansen-Urstad and Ahlborg, 1992; 
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Schneider et al., 2002; Hopman et al., 2003; Hopman et al., 2004).  While it had been 

assumed that UB exercise was limited peripherally Hopman et al. (2003) were the first 

to provide evidence that like the LB UB exercise is also limited centrally.  Reducing the 

inspired O2 fraction from 0.5 to 0.15 they found that  2OV MAX was significantly 

reduced.  Unfortunately while increasing and decreasing the FIO2 from normoxia this 

study did not report SaO2 data thus  2OV MAX could not be correlated with arterial 

desaturation or reduced  2OD .  

 

The cardiovascular response to exercise differs between LB and UB exercise, though 

the magnitude of the difference is dependant upon the training status of the UB.  During 

both LB and UB exercise Q  and HR increase linearly with  2OV , however while the 

former is similar for LB and UB exercise HR is higher during UB exercise at a given 

oxygen consumption due to a lower SV (Pendergast, 1989; Tulppo et al, 1999).  

Bhambhani (1995) found HRMAX was 170 ± 13 and 183 ± 10 bt.min-1 for males and 167 

± 16 and 183 ± 12 bt.min-1 for females during UB and LB exercise respectively 

(P<0.05).  Schneider et al. (2002) also reported significantly lower HRMAX for UB 

exercise compared to LB (181 ± 5 vs. 193 ± 2 bt.min-1).  The role of the autonomic 

nervous system differs between these two modes of exercise.  Reviews by Miles et al. 

(1989) and Sawka (1986) stated that higher HR during UB exercise indicated greater 

sympathetic stimulation.  While Tulppo et al. (1999) during submaximal exercise found 

HR to be higher during arm cranking due to a quicker withdrawal of the 

parasympathetic nervous system. 
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Table 2.4  2OV PEAK and peak power output (PPO) from selected studies comparing 

lower (LB) and upper body (UB) maximal exercise.  M = males; F = females; ‡ = W.kg-

1

Study 

; * significantly different from LB exercise (P<0.05). 

 

Participants/methods 
PPO (W) 

        LB                   UB 

 2OV PEAK (mL.kg-1.min-1

 

) 

          LB                   UB 

                          

Angermann et al. 

(2006) 

7 Nordic combined skiers 

Double pole vs. cycle 

ergometry 

5.4 ± 0.2‡ 3.4 ± 0.2* ‡ 57.3 ± 3.7  53.6 ± 4.2* 

Mukari et al. 

(2004) 

27 healthy females 

Arm crank vs. cycle ergometry 

192 ± 35.7 81.2 ± 22.8* 44.4 ± 5.9 30.9 ± 6.5* 

Schneider et al. 

(2002) 

10 healthy male participants 

Arm crank vs. cycle ergometry 

280.2 ± 14.9 128.6 ± 6.9* 39.0 ± 2.2 25.9 ± 1.6* 

Bhambhani et al. 

(1998) 

15 male participants 

10 female participants 

Arm crank vs. cycle ergometry 

M 268 ± 51 

F 186 ± 29 

152 ± 14* 

108 ± 16* 

55.0 ± 13.1 

38.9 ± 10.4 

37.7 ± 7.2* 

27.3 ± 5.4* 

Boileau et al. 

(1984) 

40 healthy male participants 

Arm crank vs. cycle ergometry 

- - 47.6 ± 6.5 34.2 ± 5.4* 

Davis et al.   

(1976) 

39 healthy male participants 

Arm crank vs. cycle ergometry 

- - 48.8 ± 5.4 31.0 ± 4.2* 

Bar-Or and 

Zwiren (1975) 

18 healthy male participants 

Arm crank vs. treadmill 

- - 56.0 ± 6.5 34.6 ± 5.3* 
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SV is also lower during UB exercise which in turn reduces Q  at a given HR in this 

mode of exercise.  Stroke volume during UB exercise is ≈ 20 % lower than during 

exercise with the LB, although individuals with highly trained UB musculature can have 

similar SV for LB and UB exercise (Pendergast, 1989).  Bhambhani (1995) used the 

CO2 rebreathing technique to measure Q  at ventilatory threshold.  Ventilatory 

thresholds offer non-invasive estimates of lactate threshold (LT; measured via arterial 

blood sampling) and previous investigations observed no difference between these two 

techniques during normoxic and hypoxic LB exercise (Thake, 2006).  As SV plateaus 

after LT the measurement of Q  and HR at LT means that SV and Q  can be calculated 

and applied to all exercise intensities above LT, providing HR is known (section 2.4.2).  

In men and women SV was 19 and 22 % lower during UB compared with LB exercise, 

this was accompanied by a lower HRMAX for both genders (P<0.05).  It has been 

proposed that the use of the leg muscles during LB exercise aids venous return via the 

skeletal muscle pump, increasing ventricular filling and therefore stroke volume (Miles 

et al., 1989; Sawka, 1986).  Whilst it has been reported that systolic blood pressure was 

lower during UB exercise several other papers reviewed by Pendergast (1989) indicate 

that blood pressure is higher during UB exercise.  As mentioned earlier Q  is similar at a 

given workload for LB and UB exercise thus greater peripheral resistance during UB 

exercise increases blood pressure impeding SV due to increased afterload resulting in a 

greater HR at a given workload (Sawka, 1986; Miles et al. 1989).  

 

Arteriovenous O2 difference (a-  v O2Diff.) has been reported to be lower for arm 

cranking compared to cycle ergometry (Boileau et al., 1984; Calbet et al., 2005).  

Boileau et al. (1984) reported a-  v O2Diff. at peak exercise of 13.5 ± 2.6 and 15.0 ± 1.9 

mL.100mL-1 for UB and LB exercise, respectively.  When participants were separated 
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into groups based on aerobic conditioning (high and low) during the respective mode of 

exercise a-  v O2Diff. was greater in the more highly conditioned group during both UB 

and LB exercise (P<0.05; Boileau et al., 1984). 

 

It has been well reported that [BLa] is significantly higher for a given exercise intensity 

using the UB (Ahlborg and Jansen-Urstad, 1991; Jansen-Urstad et al., 1993; Bhambhani 

et al., 1998) indicating an increased contribution of anaerobic metabolism for UB 

exercise.  At 150 W Louhevaara and colleagues (1990) reported [BLa] of approximately 

8 vs. 2 mmol.L-1

 2OV

 for UB vs. LB exercise respectively.  This is due to a given workload 

representing a greater % of PEAK in the UB compared to the LB and an increased 

recruitment of type II fibres during UB exercise especially in those who are not 

specifically UB trained.  While submaximal [BLa] is reported to be higher during UB 

exercise generally maximal [BLa] is higher during LB exercise as higher power outputs 

are achieved (Sawka, 1986; Miles, 1989; Schneider et al., 2000; Angermann et al., 

2006).  Louhevaara et al. (1990) found higher maximal BLa during UB vs. LB exercise 

(8.1 ± 1.3 vs. 5.9 ± 1.3 mmol.L-1

Lactate threshold occurs at a lower absolute 

) although blood sampling was taken from the arm 

during both modes of exercise which represents blood directly from the active muscle 

during UB exercise.   

 

 2OV  during UB exercise, however when 

expressed as a percentage of  2OV MAX LT occurs at the same point during UB and LB 

exercise in men (44.7 ± 10.1 and 43.2 ± 9.2%) and women (42.8 ± 10.2 and 44.8 ± 8.5 

%; Bhambhani et al., 1998).  Davis et al. (1976) reported  2OV at LT of 1.22 ± 0.23, 

2.61 ± 0.33 and 2.43 ± 0.29 L.min-1

 2OV

 which represented 46.5 ± 8.9, 63.8 ± 9.0 and 58.6 ± 

5.8 % of MAX during arm cranking, cycling and running, respectively.  This study 
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demonstrated that LT is found at a significantly higher %  2OV PEAK during cycling and 

running compared to arm cranking.  Davis et al. (1976) used an arm cranking frequency 

of 50 rev.min-1

 2OV

 which has been shown not to elicit peak physiological responses 

(Sawka, 1983; Smith et al. 2001).  Higher cadence during arm cranking increases 

PEAK and may increase efficiency so that  2OV  at LT represents a greater % of peak 

oxygen consumption.  Also this study measured LT using ventilatory thresholds 

whereas Bhambhani et al. (1998) used the v-slope method for determining LT from 

blood lactate concentrations. 

  

2.6 Summary 

Whether the experimenters have altered the O2 carrying capacity of the blood (Ekblom 

et al., 1976) or varied FIO2 (Ferretti et al., 1997; Peltonen et al., 2001a; Peltonen et al., 

2001b; Hopman et al., 2003; Mollard et al., 2007) the CaO2 and  2OD  to the exercising 

muscle has been manipulated either through [Hb] or SaO2 resulting in reduced maximal 

aerobic power.  Acute altitude/hypoxia reduces the PIO2 which in turn reduces PAO2; 

PaO2 meaning less O2 is available to the tissue per unit volume of blood for metabolism.  

Studies show that maximal aerobic power is dependant on the delivery of oxygen to the 

working muscle with the ∆  2OV MAX relative, but not exclusively due, to the severity of 

hypoxia experienced as training status and individual responses to acute hypoxia (HVR) 

also influence the effect of hypoxia on exercise (Lawler et al., 1988; Ferretti et al., 

1997; Cardus et al., 1998; Gavin et al., 1998; Richardson et al., 1999a).  However much 

of the literature is based on LB exercise. 

 

More recently UB exercise has been investigated as it cannot be assumed that the same 

mechanisms are at work for UB exercise.  Recently Hopman and colleagues (2003; 

2004) suggested that  2OV PEAK was limited by supply during UB exercise (FIO2 0.50 vs. 
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0.15 but no difference between FIO2 0.21 and 0.15), however these studies have only 

used 1 level of hypoxia, 1 protocol and special populations (spinal cord injury) have not 

been assessed using this mode of exercise (although Hopman et al., 2004 compared able 

bodied people to participants with spinal cord injury).  Clear differences have been 

demonstrated between hypoxic and normoxic exercise (Ferretti et al., 1997; Calbet et al. 

2003; Mollard et al. 2007) and between upper and lower body exercise (Sawka et al., 

1983; Bhambhani et al., 1998; Mukari et al., 2004), yet it is still to be shown what 

happens when these conditions are experienced together (i.e. is ∆  2OV MAX during 

hypoxia the same as normoxia for LB compared to UB exercise). 

 

Further research is therefore needed to assess the response of the UB to hypoxic 

exercise in the laboratory as well as field studies using UB exercise or comparing UB 

and LB responses.  Research in this field will benefit those who are deployed on 

military operations at high altitude where physical activity often involves the UB.  

Furthering the understanding of the mechanisms limiting UB exercise will benefit 

athletes participating in events using the UB (rowers, cross-country skiers, climbers, 

athletes with spinal cord injury etc.).  The use of acute hypoxia/altitude to determine 

alterations to UB exercise may provide the first step towards the development of 

altitude training protocols in order to prepare athletes for competition, which is already 

extensively used by endurance athletes (Wilber, 2007).  Different levels of hypoxia as 

well as variation between different populations (i.e. training status or HVR) also require 

further research during UB exercise to assess whether the responses mirror those seen 

during LB hypoxic exercise.   

 

Accordingly, the aim of this work is to compare and contrast the cardiorespiratory 

responses to incremental LB and UB exercise to volitional exhaustion at three inspired 
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oxygen fractions.  It is hoped that this will identify the mechanisms which limit LB and 

UB exercise.  It is hypothesised that UB  2OV PEAK will be approximately 70 % of that 

attained during LB exercise.  In accordance with published literature,  2OV PEAK will 

decrease as FIO2 is reduced from 0.21 to 0.15 and from 0.15 to 0.13 during LB exercise.  

 2OV PEAK will not reduce to the same extent as FIO2 is reduced during UB compared to 

LB exercise.  Accordingly, UB  2OV PEAK will represent a greater proportion of that 

achieved during LB exercise for hypoxic compared to normoxic exercise.  Arterial 

desaturation will increase as FIO2 decreases in both LB and UB exercise.  HR, SV and 

Q  will be lower at maximal exercise during UB exercise but will not be significantly 

reduced as a result of hypoxia.   2OD  will be lower during UB exercise and reduce as 

FIO2 decreases in proportion to the severity of arterial desaturation in both modes of 

exercise.  Finally  2OV PEAK will correlate with  2OD  at each FIO2 during LB and UB 

exercise and ∆  2OV PEAK will correlate to normoxic aerobic power for both modes of 

exercise.   
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3.0 Methodology. 

3.1 Ethics. 

Ethical approval for the present study was received from Coventry University’s ethics 

committee.  Healthy, non-smoking male participants free from any known 

cardiovascular, respiratory, nervous or skeletal/muscular disease and with normal 

haemoglobin concentrations (>13g.dl-1

• If it was requested by the subject 

) were recruited to participate in the study.  The 

nature of the testing was communicated to the potential participants in verbal and 

written format and all participants completed informed consent forms (APPENDIX A) 

prior to any testing.  Participants completed a physical activity readiness questionnaire 

(PAR-Q; APPENDIX B) on each laboratory visit.  If any indication was given that 

participants were not in a suitable condition for testing (e.g. injury, respiratory illness 

etc.) the trial would be postponed. 

 

To ensure subject safety, heart rate and oxygen saturation were continually monitored 

throughout pre-exercise, during exercise and recovery each trial.  Participants were also 

continuously observed during all trials.  If any of the following occurred exercise would 

be terminated and hypoxic gas replaced with room air: 

 

• If the subject exhibited symptoms or signs of dizziness, mental confusion, 

severe restlessness, vomiting or if the subject faints (subjectively assessed). 

• If the subject reported chest pain or dyspnoea. 

• If arterial oxygen saturation (SpO2) fell below 70 % and is not immediately 

corrected. 

• If a significant item of monitoring or measuring equipment 

failed/malfunctioned. 
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At the end of each trial participants were encouraged to cool down at a low workload 

until heart rate fell below 120 bt.min-1

 

.  In hypoxic trials gas was immediately switched 

to room air (FIO2 = 0.21) at the cessation of exercise. 

 

3.2 Subject information and preparation. 

Nine healthy males, meeting all the inclusion criteria required for ethical approval, 

volunteered to participate in the present study.  All participants were actively involved 

in sport and recreational fitness (≈ 4-6 hours per week) and eight participants exercised 

regularly for university sports teams (5 = Rugby; 2 = Athletics and 1 = Squash).  One 

participant regularly undertook upper body exercise (indoor climbing) but none were 

specifically upper body trained.  Table 3.2 shows participants’ physiological 

characteristics. 

 

Participants visited the laboratory on 7 occasions.  On their first visit anthropometric 

data (section 3.3.1) and an earlobe capillary blood sample (to check haemoglobin 

concentration; section 3.9.3) were collected.  Participants were habituated to the 

exercise ergometers and equipment/instruments to be used in all visits.  Maximal 

exercise tests to volitional exhaustion were performed on each of the six subsequent 

visits.  This consisted of 3 lower body (LB) and 3 upper body (UB) exercise trials whilst 

breathing varied FIO2s (0.21, 0.15 and 0.13) on separate occasions in a counterbalanced 

cross-over design.  Prior to each trial participants were asked to refrain from strenuous 

exercise for 24hrs, consume a similar diet for 48hrs, fast for 4 hrs, and avoid caffeinated 

products and alcohol for 12 hrs.  To avoid diurnal variations participants performed 

each of their 6 trials at the same time of day, individual trials were separated by at least 

4 days. 
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3.3 Preliminary tests. 

3.3.1 Anthropometric measurements. 

Body mass and stature were measured using electronic scales (Tanita Corporation, 

Japan) and a stadiometer (SECA, Germany), respectively.  Body fat was estimated 

using two methods: skinfolds (Harpenden skinfold callipers, Baty international, 

England) and volume displacement (BOD POD, Life measurement Inc., California, 

USA).  Skinfolds were measured at the biceps and triceps (midway between the 

acromiale and the radiale), subscapular, suprailliac, anterior thigh (midway between the 

greater trochanter and lateral condyle) and medial calf (at the point of greatest girth).  

All measurements were taken from the right side of the body, in triplicate and the mean 

value used.  Using Durnin and Womersley (1974) body fat percentage was estimated by 

measuring skinfolds at 4 sites (biceps, triceps, subscapular and suprailliac).   

 

The volume displacement chamber (Fig. 3.1A and B) was calibrated according to 

manufacturer’s instructions.  In brief, calibration was performed when the chamber was 

empty and with a known volume canister (50.126 L) prior to each assessment.  

Participants wore tight shorts and a swim hat (as stated in the manufacturers 

instructions) and sat motionless whilst the BOD POD measured volume displacement.  

The participants then placed on a nose clip and inserted a mouthpiece and were asked to 

perform a respiratory manoeuvre to measure thoracic gas volume.  This enables lung 

volume to be taken into account when estimating body volume. 

 

Limb girths were measured at the thigh and calf at the same point as the skinfold and at 

the forearm around the greatest girth.  Muscle mass was estimated using forearm girth, 

thigh girth, calf girth, thigh skinfold, calf skinfold, stature and body mass (Martin et al., 

1990). 
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3.3.2 Anthropometric results. 

Table 3.1 Comparison of two methods for estimating body fat percentage. 

Subject 
% body fat 

(Durnin & Womersley, 1974) 

% body fat 

(BOD POD) 

1 11.8 13.4 

2 25.3 22.0 

3 16.7 14.2 

4 26.7 25.1 

5 17.0 14.6 

6 09.5 10.0 

7 21.7 17.8 

8 11.1 03.5 

9 11.7 15.0 

Mean 16.8 15.1 

SD 6.4 6.3 

 

Table 3.1 presents individual and mean data for the two methods of estimating body fat.  

A strong correlation (r = 0.87; P<0.01) was evident between the two methods (Fig. 3.2).  

A Bland-Altman plot (Fig. 3.3) shows that all but 1 of the data plots fall within ±2 SD 

of the mean.  The methods varied by 1.8 ± 3.2 % which was not significant (P>0.05).  

These data show that the BOD POD offers estimation of body composition in 

agreement with the method of Durnin & Womersley (1974).  The ‘gold standard’ 

measure of body fat is dual-energy X-ray absorptiometry (DEXA).  Strong correlations 

have been reported between this method and air-displacement plethysmography (BOD 

POD) however, BOD POD tends to underestimate body fat by ≈ 2 – 3 % when 

compared to this method (Fields et al., 2002). 
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                    A 
 
 
 

 

 

        B       

 

 

Fig 3.1 A) BOD POD, electronic scales, stadiometer, calibration weight (2 x 10kg) and 

calibration volume (50.126L) B) Participant appropriately dressed for body 

composition test with nose clip and mouth piece in place (as per respiratory 

manoeuvre).  
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Fig. 3.2 Correlation between body fat as measured by skinfold and BOD POD.  

Pearsons r = 0.87, P<0.01(n = 9). 
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Fig. 3.3 Bland-Altman plot for the difference in body fat percentage against mean body 

fat percentage (skinfold + BOD POD) for each subject, a comparison of skinfold 

measures and volume displacement (± 2 SD, n = 9).  
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Table 3.2 Anthropometric and physiological characteristics of subject group.   2OV PEAK from normoxic cycle ergometry; fat mass (%) 

taken from volume displacement method;  FFM = fat free mass; MM = muscle mass. 

 

Subject No. Age 
(yrs) 

Height 
(cm) 

Body mass 
(kg) 

Fat  mass 
(%) 

Muscle mass 
(%) 

 2OV PEAK 

(L.min-1

 2OV

) 
PEAK 

 (mL.kg-1.min-1

 2OV

) 

PEAK 

 (mL.kgFFM-

1.min-1

 2OV

) 

PEAK 

 (mL.kgMM-

1.min-1

1 

) 

21 162.2 57.5 13.4 58.3 2.67 47 54 80 

2 21 178.1 89.5 22.0 48.7 3.55 39 51 81 

3 22 186.7 79.1 14.2 58.7 4.00 50 59 86 

4 21 188.8 101.9 25.1 48.1 3.50 33 46 72 

5 18 174.4 73.7 14.6 57.2 2.86 38 45 68 

6 24 181.9 74.8 10.0 61.9 3.49 47 52 75 

7 24 183.4 82.3 17.8 53.8 3.87 47 57 87 

8 26 185.5 73.1 3.5 67.1 4.20 57 60 86 

9 22 184.0 76.3 15.0 63.9 3.55 45 55 73 

Mean 22 180.6 78.7 15.8 57.5 3.52 45 53 79 

SD 2 8.2 12.2 6.4 6.5 0.50 7 5 7 
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3.4 Delivery of inspired gas. 

The inspired gas mixture was stored in a suspended 1000 L Douglas bag which was 

inflated using precision gasses (BOC, Gilford, Surrey).  A constant flow of the 

respective FIO2 was fed into the Douglas bag so that the inspired gas reservoir was 

maintained.   A face mask attached to a two-way valve was worn and the inspired side 

of the valve was connected to the gas reserve via polyvinyl tubing.  During the 

normoxic trials the Douglas bag was maximally inflated, so to appear the same for 

every trial, but the valve remained closed and the participants breathed room air.  Fig 

3.4 and 3.5 show a schematic of the gas delivery and collection system used and figures 

of a subject attached to all instrumentation performing LB and UB exercise, 

respectively.  

 

3.5 Protocol. 

Discontinuous incremental lower body (LB) and upper body (UB) exercise to volitional 

exhaustion were performed on a mechanically braked cycle ergometer (Monark 824E) 

and an electronically braked arm crank ergometer (Lode Angio, Groningen, Holland), 

respectively.  During cycle ergometry (Fig. 3.5 A and B) seat position was adjusted so 

that there was slight flexion in the knee when the pedal was at its lowest point.  The arm 

crank ergometer (Fig. 3.5 C and D) used in the present study allows for reproducible 

positioning of seat height and distance from the ergometer so that: (1) the axis of 

rotation was at shoulder height, and (2) there was slight flexion in the elbow at the 

furthest point in the cycle.  Ergometer set up was recorded on the participants’ first visit 

and used on subsequent occasions. 
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Fig. 3.4 Schematic gas delivery/collection system and monitoring equipment.  1 = Subject; 2 = Two-way valve; 3 = Plastic tubing; 4 = 150 

L Douglas Bag; 5 = 1000 L Douglas bag; 6 = Pulse oximeter; 7 = Blood sample site; 8 = Gas cylinder; 9 = Doppler Blood flow meter; 10 

= Three lead ECG; 11 = Sweat rate meter; 12 = Sealable valves. 
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B 

 
 

Fig 3.5 A and B Subject performing LB exercise.  Side and front profiles of laboratory 

setup and instrument placement. 
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C 

 

 

 

 

 

 

 

 

 

 

D 

 

 

Fig 3.5 C and D Subject performing UB exercise.  Side and front profiles of laboratory 

setup and instrument placement. 
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A 10 minute wash in period preceded the onset of exercise where the participants sat at rest 

whilst breathing the inspired gas fraction (FIO2 ≈ 0.21, 0.15 or 0.13).  At the end of this 

wash in period a resting blood sample was taken.   Exercise commenced with a resistance 

of 70 W for cycle ergometry and 35W for arm ergometry and increased by 30 and 15 W 

every 3 mins thereafter, respectively.  Participants maintained a cadence of 70 rev.min-1

 2OV

 

until volitional exhaustion and were verbally encouraged throughout each trial.  Central and 

local rating of perceived exertion (RPE; Appendix E) was collected 15 s prior to the 

collection of expired gas, SpO2 and heart rate which was collected in the final minute of 

each stage of the test (2-3 mins).  Earlobe capillary blood was collected during 30 s passive 

recovery between each exercise stage (Fig. 3.6).   

 

Cycling trials were considered a maximal effort if 2 or more of the following criteria were 

met: (1) <100 mL increase in  with increasing power output, (2) heart rate within 10 

bt.min-1 of age predicted maximum (220-age), (3) respiratory exchange ratio (RER) >1.10, 

(4) central RPE > 18, and (5) blood lactate concentration > 8 mmol.L-1

 2OV

.  Arm cranking 

trials were considered a maximal effort if 2 or more of the following criteria were met: (1) 

<100 mL increase in  with increasing power output, (2) heart rate within 10 bt.min-1 of 

age predicted maximum (200-age), (3) respiratory exchange ratio (RER) >1.10, (4) central 

RPE > 15 (local RPE > 18), and (5) blood lactate concentration > 8 mmol.L-1

The use of a discontinuous protocol in the present study was chosen primarily to aid the 

collection of blood during arm cranking and was used during the cycling trials for parity.  

However it has been previously reported that there is no statistical difference in 

. 

 

 2OV PEAK 

values attained during continuous and discontinuous protocols for upper body (Sawka et 
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al., 1983; Smith et al., 2001) and lower body exercise (McArdle et al., 1973; Stamford, 

1976).  Also a cadence of 70 rev.min-1

 2OV

 has been shown to elicit statistically higher 

PEAK values when compared to slower cadences, however faster cadences had no 

significant effect on peak values during UB exercise (Price and Campbell, 1997; Smith et 

al., 2001).  During LB exercise McKay and Banister (1976) found that  2OV PEAK 

significantly increased from 60 to 80 rev.min-1 while cadences greater the 80 rev.min-1

 2OV

 

resulted in reduced PEAK. 

 

 

Fig. 3.6 Breakdown of the discontinuous, incremental exercise protocol and collection 

points. 

 

3.6 Arterial haemoglobin oxygen saturation. 

The pulse oximeter used in the present study (Nonin 8500, Nonin medical Inc, Minnesota, 

USA) used an ear sensor.  Although it has been reported that the variability of ear sensor is 

Commence exercise Increase workload 

Respiratory gas, HR and SPO2 collection 

RPE collection 

Blood sampling 

10 min wash in 
period 

 3 min 30 s 
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greater than that of finger sensors (Powers et al., 1989) the reasons for this site are 1)  As 

the present study required both upper and lower body exercise the ear lobe represents a 

relatively motionless site during both modes of exercise, thus reducing movement artefact 

(Barker and Shah, 1997; Kist et al., 2002; Galy et al., 2005);  2)  Gripping of the handle 

bars, particularly during upper body exercise could interfere with blood flow to the fingers 

and reduce signal quality (Trivedi et al., 1997). 

 

The left earlobe was firstly cleaned with an alcohol wipe before being massaged with a 

vasodilating cream (Deep heat) to facilitate blood flow to the site and maintain signal 

quality.  Any excess cream was removed prior to the placement of the ear sensor which was 

carefully placed so the LED was completely covered by the earlobe and that the skin 

pigmentation across the site was constant.  The cable was then taped to the neck to further 

reduce and any movement artefact.  If at any point during the trial the signal quality became 

compromised the sensor was removed, cleaned and the ear lobe massaged before being 

repositioned.     

 

3.7 Expired gas analysis. 

Expired gases were collected using the Douglas Bag method via polyvinyl tubing and a 

face mask.  The face mask was attached tightly using a skull cap and adhesive sealant 

added to ensure an air tight seal so that inspired gas did not become contaminated with 

room air and that all expired gases were collected.  Expired gases were analysed for 

fractions of O2 and CO2 (Servomex 1440, East Sussex, UK), volume (Harvard dry gas 

meter, Cranlea UK, Birmingham) and temperature (RS Supplies Thermocouple 206-3722, 

Corby, UK).  Barometric pressure was measured using a mercury barometer (F. Darton and 



 61 

Co Ltd, Watford, England).  Oxygen and carbon dioxide samples were analysed over 1 and 

2 minute periods, respectively.  From this data  V ESTPD,  2OV ,  2COV and RER were 

calculated (APPENDIX C). 

 

The Servomex 1440 gas analyser was calibrated using precision gases (BOC, Gilford, 

Surrey).  O2 and CO2 used a 3 and 2 point calibration, respectively.  The O2 and CO2 

analysers were zeroed using nitrogen before being spanned with known gas concentrations.  

The O2 analyser was spanned with the room air (FO2 = 0.2093) during normoxic trials and 

precision gas (FO2 = 0.15) during hypoxic trials.  Finally a known concentration between 

zero and the spanned concentration was measured to ensure linearity (normoxic FO2 = 0.15; 

hypoxic FO2 = 0.12).  The CO2 analyser was spanned to FCO2 = 0.05.   

 

3.8 Bloods. 

3.8.1 Blood lactate. 

Blood samples (≈ 5 μl) where collected from the earlobe and analysed using a portable 

analyser (Lactate Pro, Arkray factory limited, Shiga, Japan) for blood lactate concentration 

between each exercise stage.  This equipment displays blood lactate concentrations 60 s 

after sampling.  The Lactate Pro measures blood lactate over a range of 0.8 – 23.3 mmol.L-

1, for statistical reasons when blood samples read “Lo” lactate was taken to be 0.5 mmol.L-

1.  Lactate Pro function was checked prior to testing by ensuring the calibration strip 

measured within its defined range (2.1 – 2.6 mmol.L-1

 

).  Blood samples were taken in 

duplicate and mean values used.  
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3.8.2 Lactate threshold. 

Lactate threshold (LT) was identified using the Dmax method (Cheng et al. 1992; Fig. 3.7) 

by plotting blood lactate against  2OV .  In instances where LT could not be identified 

ventilation and/or ventilatory equivalent were plotted in place of lactate.  No significant 

difference has been reported between these three methods of assessing LT in normoxic and 

hypoxic conditions (Thake, 2006).  

 

When plotted and a trend line added (A) the first and last data points are joined with a 

linear line which represent the direction of change (B).  A perpendicular line (C) joins lines 

A and B where their distance is greatest and the point were A and C join represents 

threshold (Fig. 3.7).  The corresponding  2OV  is then read from the x axis.  

 

 

Fig. 3.7 Example of Dmax method employed in the present study. 
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3.8.3 Haemoglobin concentration. 

During the 30 s recovery between stages a blood sample (≈ 20 -40 μL) was collected into an 

80 μL heprinised capillary tube for the analysis of haemoglobin concentration.  After being 

mixed in the capillary tube 10 μL of the blood was added to 2.5 mL of Drabkins reagent 

(cyanmethemoglobin).  This was well mixed and left until the end of the trial at room 

temperature for analysis.  A spectrophotometer (Cecil CE1010, Cecil instruments, 

Cambridge, England) set to 540 nm was zeroed using distilled water and used to read the 

absorbance.  Haemoglobin concentration (g.dl-1) was then calculated by multiplying the 

absorbance reading by 37.66 (Boehringer Mannheim, Germany).  Samples were measured 

in duplicate and the mean value recorded.  Due to large intertrial variation a mean value of 

haemoglobin concentration at maximal exercise was calculated from end values of each 

trial and used in all trials (APPENDIX D). 

 

3.9 Heart rate. 

Heart rate (HR) was continuously monitored at rest and during exercise using a Polar heart 

rate monitor (Polar S120, Polar Electro Ltd, Finland) and a chest strap (Polar T31, Polar 

Electro Ltd, Finland).  Heart rate was recorded at rest, 5 and 10 mins during the wash in 

period and an average HR calculated during each exercise stage from HR data collected 

every 15 s during the final minute of each stage. 

 

3.10 RPE. 

Participants were asked their central (cardiorespiratory stress) and local (either arms or legs 

depending on mode of exercise) RPE during each workload, 15 s prior to the collection of 

gas (Borg, 1970; APPENDIX E). 
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3.11 Estimation of cardiac output, oxygen delivery and extraction. 

Stroke volume (SV) was estimated in the present study using the method of Bhambhani 

(1995) and as heart rate (HR) was continuously measured cardiac output ( Q ) could be 

estimated.  Oxygen pulse is the oxygen consumption per heart beat (mL.beat-1

Q

) and was 

used to estimate SV at lactate threshold using regression equations for LB and UB exercise 

at each FIO2 (equation 3.1).  SV does not significantly alter after lactate threshold in LB and 

UB exercise (Sawka, 1986; Stringer et al., 1997) and knowing maximal HR allows MAX 

to be estimated.  This method was developed during normoxic exercise and the present 

study has assumed that the same relationship is present upon acute exposure to hypoxia.  

 

Equation 3.1    LB – SV = 10.21 x oxygen pulse – 1 (r = 0.76, P<0.01) 

  UB – SV = 5.22 x oxygen pulse + 53 (r = 0.85, P<0.01) 

 

Oxygen delivery (  2OD ) was calculated from Q , and arterial O2 content and extraction 

ratio (E) are calculated by dividing oxygen consumption by oxygen delivery.  Arterial – 

mixed venous oxygen difference (a-  v O2Diff.) was calculated by rearranging the Fick 

equation (equation 3.5).  

 

Equation 3.2           2OD  = Q  x CaO2 

Were, 

Equation 3.3   CaO2 = 1.34 x [Hb] x SPO2 

Equation 3.4            E =  2OV /  2OD  

Equation 3.5   a-  v O2Diff. =  2OV / Q    
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3.12 Data presentation and statistical analysis. 

Data were analysed at maximal exercise and lactate threshold.  Values referred to as ‘peak’ 

are those collected at volitional exhaustion (VEX).  All data are presented as mean ± SD 

and significance was accepted at 5 % (P <0.05).  All participants completed all trial thus n 

= 9 for all data points.  The two modes of exercise, lower and upper body will be referred to 

as LB and UB, respectively.  The three experimental conditions will be referred to as N 

(FIO2 ≈ 0.21), H1 (FIO2 ≈ 0.15) and H2 (FIO2 ≈ 0.13) in the text but as their oxygen fractions 

in tables and figures from this point.  Differences were analysed between exercise modes 

within the same condition and between conditions within the same mode of exercise, where 

condition is inspired oxygen fraction.   

 

Table 3.3 Symbols used to identify level of significance on figures. LB vs. UB = within 

condition, N vs. H1, N vs. H2 and H1 vs. H2 = within exercise mode. 

 P<0.05 P<0.01 P<0.001 
    

LB vs. UB * ** *** 

N vs. H1 ‡ ‡‡ ‡‡‡ 

N vs. H2 σ σσ σσσ 

H1 vs. H2 $ $$ $$$ 

 

Analysis of variance (ANOVA) general linear model was used to analyse main effects for 

exercise mode (LB and UB), condition (N, H1 and H2) and interaction (exercise x 

condition).  Post hoc analysis was performed using Tukey pairwise comparisons.  

Correlation analysis was performed using Pearson’s correlation coefficient.  When viewing 

tables in Chapter 4 # = main effect for exercise, † = main effect for condition and Ф = 

interaction between exercise and condition (P<0.05).  Table 3.3 displays the symbols used 
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to identify significance on figures within Chapter 4.  All data were processed using 

Microsoft Excel (2003) and statistical analysis performed using Minitab statistical software 

release 15.0 (Minitab Inc.).  
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4.0 Results.  

4.1 Performance variables. 

Peak power output (PPO) was reduced in both modes of exercise as FIO2 declined 

(P<0.001) and was highest during LB exercise in all conditions (P<0.001). A greater 

reduction in PPO as a consequence of reduced FIO2 was present during LB exercise 

(P<0.01).  PPO was 273 ± 49 vs. 135 ± 27, 250 ± 37 vs. 127 ± 20 and 223 ± 28 vs. 123 ±18 

W for LB vs. UB during N, H1 and H2, respectively.  PPO at H1 and H2 were 23 ± 20 and 

50 ± 26 W lower than N in LB exercise (P<0.05), although there was no difference between 

H1 and H2 (P=0.053).  UB exercise showed PPO to fall by 8 ± 11 W from N to H1 and by 

12 ± 15 W between N and H2 (NS). 

 

Exercise duration was reduced in both modes of exercise as FIO2 decreased (P<0.001).  

Exercise duration (decimal time) was 27.11 ± 5.74 vs. 26.58 ± 6.61, 24.06 ± 4.21 vs. 24.53 

± 4.98 and 21.22 ± 3.31 vs. 23.56 ± 4.27 min for LB vs. UB for N, H1 and H2, respectively.  

As seen in PPO a reduction was present from N to H1 (P<0.05) and H2 (0.001) but there 

was no difference between H1 and H2 during LB exercise.  In UB exercise, duration was 

reduced between N and H2 (P<0.05) despite no difference in PPO between the two 

conditions. 

 

4.2 Cardiorespiratory variables at  2OV PEAK. 

4.2.1 Ventilation. 

Pulmonary ventilation (  V E; Table 4.1) did not vary between FIO2, however  V E was higher 

during LB compared to UB exercise at each FIO2 (P<0.001).  During N and H2  V E was 

20.8 ± 10.6 and 17.0 ± 18.4 L higher during LB compared to UB exercise, respectively (N, 
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P<0.01 and H2, P<0.05).  A 15.9 ± 19.7 L difference between LB and UB exercise for H1 

was not significant (P=0.09). 

 

4.2.2 Oxygen consumption. 

Table 4.1 shows  2OV PEAK in absolute terms (L.min-1; Fig 4.1) and relative to body mass 

(mL.kg-1.min-1) and muscle mass (mL.kgMM-1.min-1

 2OV

).  When viewed in absolute terms 

PEAK significantly declined as FIO2 decreased (P<0.001) and was greater during LB 

compared to UB exercise in all FIO2s (P<0.001).  Reductions in  2OV PEAK were greater for 

LB exercise as FIO2 decreased (P<0.05).  The same level of significance was present when 

relative to muscle mass however, when expressed relative to body mass interaction was not 

significant (P=0.07).  LB exercise experienced reductions between each FIO2 (N vs. H1 

p<0.001; N vs. H2 P<0.001 and H1 vs. H2 P<0.05), while during UB exercise the reduction 

between H1 and H2 was not significant (N vs. H1 p<0.001 and N vs. H2 P<0.001).  When 

expressed relative to normoxic values, during LB exercise a 13 ± 8 and 24 ± 6 % reduction 

was evident when FIO2 decreased from N to H1 and from N to H2 (P=0.07), respectively.  

During UB exercise a 15 ± 7 and 19 ± 9 % reduction was observed from normoxic values 

for H1 and H2, respectively (Fig. 4.2.).  During N, H1 and H2  2OV PEAK was 28 ± 3, 29 ± 10 

and 24 ± 8 % lower for UB vs. LB exercise, respectively.  

 

4.2.3 Respiratory exchange ratio. 

In both LB and UB exercise respiratory exchange ratio (RER) increased as FIO2 decreased 

(P<0.01) and RER was highest during UB exercise in all conditions (P<0.01).  During LB 

exercise RER increased from 1.19 ± 0.04 to 1.21 ± 0.06 and 1.27 ±0.04, while UB exercise 

elicited an RER of 1.18 ± 0.08, 1.28 ± 0.10 and 1.34 ±0.11 for N to H1 and H2, respectively. 
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Table 4.1 Respiratory variables at peak exercise (mean ± SD).  # = main effect for exercise, P<0.05; † = main effect for condition, 

P<0.05; Ф = interaction between exercise and condition, P<0.05 and mL.kgMM-1.min-1

 

 

 
 
 

 = relative to muscle mass. 

 

  LB UB 

FIO2  
 0.21 0.15 0.13 0.21 0.15 0.13 

        

 V ESTPD (L.min-1 # ) 116.6 ± 22.5 111.3 ± 23.9 109.1 ± 22.2 95.8 ± 22.2 95.4 ± 24.5 92.2 ± 19.8 

 2OV PEAK (L.min-1 #  †  Ф ) 3.52 ± 0.5 3.04 ± 0.46 2.68 ± 0.27 2.53 ± 0.35 2.15 ± 0.40 2.04 ± 0.34 

 2OV PEAK (mL.kg-1.min-1 #  † ) 45 ± 7 39 ± 6 34 ± 5 32 ± 6 28 ± 5 26 ± 4 

 2OV PEAK (mL.kgMM-1.min-1 #  †  Ф ) 79 ± 7 68 ± 6 60 ± 5 57 ± 6 48 ± 6 46 ± 6 

RER #  † 1.18 ± 0.04 1.21 ± 0.07 1.27 ± 0.04 1.21 ± 0.08 1.28 ± 0.10 1.34 ± 0.11 

 V E /  2OV  #  † 36.93 ± 5.65 40.64 ± 4.50 44.03 ± 5.59 42.45 ± 8.98 47.34 ± 9.84 50.75 ± 9.57 

 V E/  2COV  #  † 31.28 ± 4.72 33.74 ± 4.55 34.49 ± 3.86 34.94 ± 6.56 36.70 ± 6.18 37.84 ± 5.68 
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Fig 4.1  2OV PEAK (mean ± SD) during LB and UB exercise.  LB vs. UB ***P<0.001; N vs. 

H1 ‡‡P<0.01, ‡‡‡P<0.001; N vs. H2 
σσσP<0.001 and H1 vs. H2 $

 V

P<0.05. 

 

4.2.4 Ventilatory equivalent. 

Ventilatory equivalent (Table 4.1) for O2 ( E/  2OV ) and CO2 (  V E/  2COV ) increased as 

FIO2 decreased during LB and UB exercise (  V E/  2OV  P<0.01 and  V E/  2COV  P<0.05).  

 V E/  2OV  and  V E/  2COV  was highest during UB compared to LB exercise at all FIO2s 

(P<0.001).  V E/  2OV  increased significantly during LB and UB exercise between N and H2 

(LB = 36.93 ± 5.65 and 44.03 ± 5.59; UB = 42.45 ± 8.98 and 50.75 ± 9.57, respectively; 

P<0.05).  Post hoc analysis for  V E/  2COV  shows no difference between FIO2 within 

exercise mode or between exercise modes at a given FIO2. 
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Fig 4.2 ∆  2OV PEAK (mean ± SD) when expressed as a percentage of normoxic  2OV PEAK 

values.  LB H1 vs. H2 P=0.07, UB H1 vs. H2 P>0.1.   

 

4.2.5 Stroke volume, heart rate and cardiac output. 

Stroke volume (SV) decreased as FIO2 decreased (P<0.001) and was higher during LB 

compared to UB exercise at each FIO2 (P<0.001).  During LB and UB exercise SV was 

significantly reduced during H1 and H2 compared to N (P<0.05) but there was no statistical 

difference between H1 and H2 (Table 4.4).  HR (Fig. 4.3) declined as FIO2 was reduced 

(P<0.01) and was highest during LB exercise (P<0.001).  At N and H1 HR was higher 

during LB vs. UB exercise (189 ± 12 vs. 180 ± 12 bt.min-1, P<0.01 and 188 ± 12 vs. 180 ± 

13 bt.min-1, P<0.05, respectively) no significant difference was present between LB and 

UB exercise during H2 (183 ± 13 vs. 176 ± 14 bt.min-1

Inspired oxygen fraction 

; P=0.07).   

 

 

∆V
O

2P
EA

K
 (%

) 



 73 

160

165

170

175

180

185

190

195

200

205

0.21 0.15 0.13

LB UB

 

Fig. 4.3 HR (mean ± SD) at peak exercise during LB and UB exercise.  LB vs. UB 

**P<0.01 and *P<0.05. 
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Fig. 4.4 Q  (mean ± SD) at peak exercise during LB and UB exercise.  LB vs. UB 

***P<0.001; N vs. H1, ‡P<0.05 and ‡‡P<0.01; N vs. H2 
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Q  (Fig 4.4) was reduced as FIO2 declined in both modes of exercise (P<0.001) and was 

higher during LB exercise at each FIO2 (P<0.001).  At H1 and H2 Q  was reduced by 9 ± 4 

and 18 ± 4 % during LB exercise (N vs. H1, P<0.05; N vs. H2, P<0.01 H1 vs. H2, P<0.05) 

and by 12 ± 10 and 18 ± 9 % during UB exercise (N vs. H1, P<0.01; N vs. H2, P<0.01 H1 vs. 

H2, NS) when compared to N, respectively.  Q  was 21 ± 7, 23 ± 10 and 20 ± 10 % lower 

during UB compared to LB exercise for N, H1 and H2, respectively. 

 

4.3 Haemodynamic variables at  2OV PEAK and lactate threshold (LT). 

Blood lactate (BLa; Table 4.2) at maximal exercise showed no difference with FIO2 for 

either LB or UB exercise but was highest during LB exercise in all FIO2s (P<0.01).  No 

difference was observed for BLa concentration at LT for both LB and UB exercise.  BLa at 

LT tended to increase as FIO2 decreased from N to H2 in both modes of exercise (NS). 

 

The  2OV  that elicited LT declined as FIO2 was reduced (P<0.001) and was highest during 

LB vs. UB exercise in all conditions (N= 32 ± 6 vs. 20 ± 4, H1 = 29 ± 5 vs. 19 ± 3 and H2 = 

25 ± 4 vs. 18 ± 3 mL.kg.min-1
 2OV; P<0.001).  During LB compared to UB exercise the  at 

LT tended to decline by a greater amount (P=0.54).  LT as a %  2OV PEAK increased as FIO2 

decreased in both modes of exercise (P<0.05) and occurred at a greater %  2OV PEAK during 

LB exercise (P<0.001).  During LB exercise  2OV  at LT was reduced by 3 ± 2 mL.kg-

1.min-1 from N to H1 (P<0.01) and by 4 ± 2 mL.kg-1.min-1 between H1 and H2 (P<0.05).  

During UB exercise there was a 2 ± 2 mL.kg-1.min-1 reduction between N and H1 (NS) and 

a further 3 ± 3 mL.kg-1.min-1
 2OV reduction between N and H2 (P<0.05).  When  at LT was 

expressed as a percentage of  2OV PEAK, LB LT was 8 ± 5 % higher than UB during N 
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(P<0.05).  All other significant differences observed in absolute terms were not present 

when LT is expressed relative to  2OV PEAK in each FIO2 (Table 4.2). 
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Table 4.2 Peak blood lactate (BLa), blood lactate at LT,  2OV  at LT and %  2OV PEAK at LT (mean ± SD).  # = main effect for exercise, 

P<0.05; † = main effect for condition, P<0.05 and Ф = interaction between exercise and condition, P<0.05. 

 
 

Table 4.3 Central and local RPE (mean ± SD) at peak exercise.  # = main effect for exercise, P<0.05. 

 

  LB UB 

FIO2  
 0.21 0.15 0.13 0.21 0.15 0.13 

        

Peak BLa (mmol.L-1 # ) 11.5 ± 2.4 12.3 ± 2.5 11.5 ± 2.4 10.8 ± 2.0 10.7 ± 1.7 10.6 ± 2.1 

BLa @ LT (mmol.L-1  ) 4.7 ± 1.0 5.3 ± 1.2 5.4 ± 1.1 5.0 ± 0.6 5.0 ± 1.0 5.5 ± 1.1 

 2OV  (mL.kg-1.min-1 #  † ) @ LT 32 ± 6 29 ± 5 25 ± 4 20 ± 4 19 ± 3 18 ± 3 

%  2OV PEAK @ LT #  † 71 ± 3 74 ± 6 73 ± 3 63 ± 9 67 ± 6 68 ± 6 

  LB UB 

FIO2  
 0.21 0.15 0.13 0.21 0.15 0.13 

        
RPE – Central # 18 ± 1 18 ± 2 17 ± 2 17 ± 2 17 ± 2 16 ± 2 

RPE – Local  19 ± 1 19 ± 1 19 ± 0 19 ± 1 19 ± 1 19 ± 1 



 77 

4.4 Oxygen delivery and the Fick equation. 

Tables 4.4 and 4.5 present the components of the Fick equation and arterial oxygen 

saturation (SpO2), respectively.  SV was estimated using the method of Bhambhani 

(1995) according to O2 pulse, where all other variables were directly measured or 

calculated from direct measurements (section 3.12).  It can be seen from table 4.5 that 

reduced  2OV PEAK as FIO2 declines is accompanied with reductions in Q , CaO2 and  

 2OD while E increased (P<0.05, main effect).  In addition  2OV PEAK, Q , a-  v O2Diff., 

CaO2,  2OD  and E were all highest during LB compared to UB exercise (P<0.05, main 

effect). 

 

4.4.1 Arterial oxygen saturation. 

Arterial oxygen saturation (SPO2) are presented as both lowest recorded in each trial 

(Lowest SPO2) and values at volitional exhaustion (SPO2VEX; Table 4.5).  Lowest SPO2 

values were lower in all conditions during LB exercise (P<0.01) and declined as FIO2 

decreased during both modes of exercise (P<0.001).  Reduction in SPO2 also occurred to 

a greater extent during LB exercise (P<0.05).  During LB and UB exercise lowest SPO2 

declined between N and H1 (LB+UB, P<0.001) and between H1 and H2 (LB P<0.001; 

UB P<0.01).  Arterial desaturation occurred to a lesser extent during UB compared to 

LB exercise at H2 (73 ± 4 vs. 79 ± 4 %; P<0.01).  SPO2VEX declined as FIO2 reduced in 

LB and UB exercise (P<0.001) and was lower during LB exercise in all conditions 

(P<0.001) however, interaction between exercise and condition was close to 

significance (P=0.075).  As with lowest SPO2 only H2 was significantly different as a 

result of exercise (LB vs. UB = 74 ± 6 vs. 82 ± 4 %; P<0.01).   SPO2VEX during LB and 

UB exercise experienced a 13 ± 5 and 9 ± 5 % reduction when FIO2 reduced from N to 

H1 (LB+UB P<0.001) and a 9 ± 4 and 6 ± 5 % reduction between H1 and H2, 
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respectively (LB P<0.001; UB P<0.01).  Arterial desaturation was greatest during LB 

exercise in H2, being significantly lower than all other trials (P<0.001). 

 

4.4.2 Arterial oxygen content. 

As the present study used a constant haemoglobin concentration (14.9 ± 0.1g.dL-1; 

section 3.8.3) and the capacity for haemoglobin to transport oxygen is fixed (1.34 

mLO2.g-1

 2OD

) the only factor able to alter CaO2 is SPO2.  For this reason the statistical 

significance mimics that observed for SPO2 at maximal exercise.  CaO2 (Table 4.4) was 

higher during UB exercise in all conditions (P<0.001) and reduces as a result of 

condition from N to H1 and from H1 to H2 (P<0.001), whist interaction between exercise 

and FIO2 was not significant (P=0.075). 

 

4.4.3 Oxygen delivery. 

Oxygen delivery ( ; Table 4.4) was reduced in both modes of exercise as FIO2 

declined (P<0.001) and was higher during LB exercise during each condition (P<0.001).  

The observed reduction in  2OD  tended to be greater during LB compared to UB 

exercise (P=0.064).  During LB and UB exercise  2OD  reduced from N to H1 (LB = 

P<0.001; UB = P<0.001) and from H1 to H2 (LB = P<0.001; UB = P=0.68). LB exercise 

experienced 21 ± 6 and 37 ± 6 % reductions in  2OD  during H1 and H2 compared to N, 

respectively.  During H1 and H2  2OD  was reduced by 20 ± 12 and 30 ± 9 % when 

exercising the UB when compared to N (Fig. 4.5).   2OD  was 20 ± 8, 18 ± 14 and 11 ± 

14 % lower during UB exercise for N, H1 and H2 compared to LB exercise, respectively. 
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Table 4.4 The Fick equation, arterial oxygen content (CaO2), oxygen delivery (  2OD ) and extraction (E) at maximal exercise (mean ± SD).  

# = main effect for exercise, P<0.05; † = main effect for condition, P<0.05 and Ф = interaction between exercise and condition, P<0.05. 

Exercise FIO2  2OV  (L.min-1 = ) HR (bt.min-1) x SV (mL.beat-1 x ) a-  v O2Diff. (mL.dL-1  ) CaO2 (mL.dL-1  2OD)  (L.min-1 E ) 

  #  † Ф  #  †  #  #  † † #  † 

LB 

0.21 3.41 ± 0.58 = (189 ± 12 x 137 ± 15) x 13.54 ± 1.06  19.2 ± 1.0 4.98 ± 0.43 0.71 ± 0.07 

0.15 2.97 ± 0.48 = (188 ± 12 x 126 ± 13) x 12.83 ± 1.09  16.7 ± 1.3 3.94 ± 0.42 0.77 ± 0.06 

0.13 2.65 ± 0.26 = (183 ± 13 x 116 ± 12) x 12.61 ± 0.68  14.9 ± 1.3 3.15 ± 0.33 0.85 ± 0.09 

UB 

0.21 2.48 ± 0.38 = (180 ± 13 x 115 ± 20) x 12.29 ± 0.81  19.4 ± 0.8 4.01 ± 0.58 0.63 ± 0.04 

0.15 2.10 ± 0.41 = (180 ± 13 x 102 ± 21) x 11.83 ± 0.85  17.7 ± 1.4 3.23 ± 0.66 0.68 ± 0.08 

0.13 1.97 ± 0.38 = (176 ± 14 x  97 ± 20) x 12.01 ± 0.87  16.4 ± 1.0 2.78 ± 0.45 0.73 ± 0.06 

 

Table 4.5 Lowest arterial oxygen saturation recorded in each trial (Lowest SPO2) and volitional exhaustion (SPO2VEX; mean ± SD).  # = 

main effect for exercise, P<0.05; † = main effect for condition, P<0.05 and Ф = interaction between exercise and condition, P<0.05. 

  LB UB 

FIO2  
 0.21 0.15 0.13 0.21 0.15 0.13 

        
Lowest SpO2 (%) #, †, Ф 96 ± 2 83 ± 4 73 ± 4 96 ± 2 85 ± 5 79 ± 4 

SpO2VEX (%) #, † 96 ± 2 83 ± 4 74 ± 6 97 ± 1 88 ± 5 82 ± 4 
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Fig 4.5 Reduction in oxygen delivery (mean ± SD) during hypoxic exercise relative to 

normoxic values.  H1 vs. H2 $P<0.05, $$

 v

P<0.01. 

 

4.4.4 Arterial – mixed venous oxygen difference and extraction. 

Arterial – mixed venous oxygen difference (a- O2Diff.; Table 4.4) was higher during 

LB exercise compared to the UB (P<0.001), and tended to decrease as FIO2 was reduced 

(P=0.062).  During LB exercise a-  v O2Diff. decreased from 13.54 ± 1.06 mL.dL-1 

during N to 12.83 ± 1.09 and 12.61 ± 0.68 mL.dL-1

 v

 for H1 and H2, respectively.  UB 

exercise resulted in a- O2Diff. decreasing between N and H1 from 12.29 ± 0.81 to 

11.83 ± 0.85 mL.dL-1 before increasing to 12.01 ± 0.87 mL.dL-1

 

 during H2. 

 

Extraction (E; Table 4.4) increased as FIO2 decreased in both modes of exercise 

(P<0.001) and E was highest during LB exercise (P<0.001).  At N, H1 and H2 E was 10 

± 10 (NS), 12 ± 12 (P<0.05) and 13 ± 11 (P<0.01) % lower during UB compared to LB 

exercise, respectively.   
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Fig. 4.6 Correlation between oxygen delivery (  2OD ) and oxygen consumption (  2OV ) at 

maximal exercise (Individual subject data, n = 9).  A = LB 0.21, r = 0.80, P<0.01, B = UB 

0.21, r = 0.89, P<0.01; C = LB 0.15, r = 0.89, P<0.01; D = UB 0.15, r = 0.85, P<0.01; E 

= LB 0.13, r = 0.44, P>0.05; F = UB 0.13, r = 0.90, P<0.001.   
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Fig. 4.7 Correlation between cardiac output ( Q ) and oxygen consumption (  2OV ) at 

maximal exercise (Individual subject data, n = 9).  A = LB 0.21, r = 0.92, P<0.001, B = UB 

0.21, r = 0.91, P<0.001; C = LB 0.15, r = 0.93, P<0.001; D = UB 0.15, r = 0.93, P<0.001; 

E = LB 0.13, r = 0.97, P<0.001; F = UB 0.13, r = 0.90, P<0.001.   
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4.5 Oxygen delivery and cardiac output vs. oxygen consumption. 

Fig 4.8 and 4.9 show the correlation between  2OD , Q  and  2OV  at peak exercise in 

each experimental condition, respectively.  Significant positive correlations were 

present for  2OD  vs.  2OV  (r = 0.86, P<0.001; n = 54) and for Q  vs.  2OV  (r = 0.95, 

P<0.001; n = 54).  Correlations were stronger for Q  compared to  2OD  during each 

experimental condition. 

 
 
4.6 Aerobic power and severity of exposure to acute hypoxia. 

When  2OV PEAK was plotted against reduction in  2OV PEAK a negative correlation was 

present in all conditions (Fig. 4.8).  Correlations tended to be stronger during LB 

exercise and in both LB and UB exercise the strongest correlations were seen during H2, 

r = 0.73 (P<0.05) and 0.56 (NS), respectively.  H1 resulted in correlations between 

 2OV PEAK and reduction in  2OV PEAK of r = 0.54 and 0.21 (NS) for LB and UB, 

respectively.  When  2OV PEAK is expressed relative to muscle mass then r = 0.62 

(P=0.07), 0.73 (P<0.05), 0.36 (NS) and 0.41 (NS) for LB H1, LB H2, UB H1 and UB H2, 

respectively. 
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Fig 4.8 Relationship between aerobic fitness and the ∆ from normoxic  2OV PEAK during hypoxic exercise (individual subject data, n = 9).  A = LB 

H1, r = 0.54 (NS); B = LB H2, r = 0.73, P<0.05; C = UB H1, r = 0.21 (NS); D = UB H2, r = 0.56(NS). 
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4.7 Rating of perceived exertion. 

Central and local rating of perceived exertion (RPE; Table 4.3) did not vary between 

FIO2.  Central RPE was highest during LB exercise in all conditions (P<0.01), while 

local RPE did not differ between LB and UB exercise.  ∆RPE  (central RPE – local 

RPE) was higher in UB exercise (P<0.001).  For N, H1 and H2 ∆RPE (Fig. 4.9) was 1 ± 

2, 1 ± 1 and 2 ± 2 for LB exercise and 3 ± 2, 3 ± 2 and 3 ± 2 during UB exercise, 

respectively. 

0
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Fig. 4.9 ∆RPE at peak exercise during LB and UB exercise (mean ± SD). LB vs. UB for 

H2 P=0.087. 

 

4.8 Results summary. 

Peak power output declined as FIO2 was reduced during LB and UB exercise but this 

reduction was greater during LB exercise.  Ventilation was highest during LB compared 

to UB exercise but no difference was observed as FIO2 was reduced.  The present study 

has shown that  2OV PEAK decreased from N to H1 in LB and UB exercise and from H1 to 

H2 in LB exercise.  RER increased as FIO2 decreased in both modes of exercise and was 
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R

PE
 

Inspired oxygen fraction 



 86 

highest while exercising the UB.  HR and Q  were highest during LB exercise for N and 

H1 but no difference was apparent for H2 and Q  was higher in N compared to H2 in LB 

exercise. 

 

BLa concentration was highest during LB exercise at volitional exhaustion, while at LT 

there was no difference in BLa concentration for exercise or condition.   2OV  at LT 

decreased between N and H1 and from H1 to H2 during LB exercise.  During UB 

exercise  2OV  at LT decreased between N and H2.  When expressed as a % of  2OV PEAK 

LT was higher during LB exercise during N. 

 

During LB and UB exercise SPO2VEX decreased from N to H1, however a further 

decrease between H1 and H2 only occurred during LB exercise.   2OD  decreased as FIO2 

declined in both modes of exercise but there were no differences in  2OD  between LB 

and UB exercise at any FIO2.  CaO2 mimics that that of SPO2VEX.  Extraction was 

highest during LB exercise at each FIO2.  As FIO2 decreased a-  v O2Diff. was reduced in 

both modes of exercise, however it reduced to a greater extent during LB exercise.  

Participants RPE was higher locally (i.e. arms or legs) than centrally during LB and UB 

exercise and this ∆RPE tended to be greater during UB exercise (NS). 

 

Significant correlations were present between  2OD , Q   and  2OV  at maximal exercise 

during LB and UB exercise for N, H1 and H2 (FIO2 = 0.21, 0.15 and 0.13, respectively).  

At H2 during LB exercise participants with the greatest  2OV PEAK during N experienced 

the greatest reduction in aerobic power. 
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5.0 Discussion. 

The present study shows that  2OV PEAK is reduced when an individual is acutely 

exposed to normobaric hypoxia when compared to normoxia during both LB and UB 

exercise.  This supports the tendency observed by others who suggested the reduced 

 2OV PEAK as FIO2 declined during UB exercise to be indicative of central limitation 

(Hopman et al., 2003; 2004).  The present study demonstrated that  2OV PEAK declined 

by 13 ± 8 and 23 ± 6 % during LB exercise and 15 ± 7 and 19 ± 9 % during UB exercise 

for H1 and H2, respectively.  Evidence is presented for different mechanisms limiting 

aerobic power in the two modes of exercise.  The Fick equation states that  2OV  is 

dependent on the delivery of O2 to the active tissue (  2OD ) and the ability of that tissue 

to extract that O2 (E).  The present study shows that during LB exercise  2OV PEAK is 

predominately limited centrally by  2OD  whilst during UB exercise peripheral factors 

(E) predominately limit aerobic power (Fig. 5.1). 

 

 

 

 

Fig 5.1 Adapted Fick equation and the prominence of central vs. peripheral limitation 

to aerobic power during LB and UB exercise. 

 

 

UB 

LB 
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5.1 Oxygen consumption. 

Sawka (1986) reported UB  2OV PEAK to be 60-80 % of that attained during LB exercise 

which is in agreement with the present study where UB  2OV PEAK was 72 ± 3 % 

compared to LB exercise during N.  The present study is the first to show that the 

relationship between UB and LB  2OV PEAK remains evident in H where UB  2OV PEAK 

was 71 ± 10 and 76 ± 8 % of that attained for LB exercise during H1 and H2, 

respectively.  Although the absolute ∆  2OV PEAK was greater during LB exercise with 

reduced FIO2 (Fig. 4.1) the relative ∆  2OV PEAK was similar for LB and UB exercise 

(Fig. 4.2) hence the relationship between LB and UB exercise holds true at simulated 

altitude.  Peak power output (PPO) attained during UB exercise was 50 ± 6, 49 ± 5 and 

45 ± 3 % of that attained during LB exercise for N, H1 and H2 respectively.  PPO is 

reduced by a greater relative amount than  2OV PEAK indicating reduced mechanical 

efficiency during UB compared to LB exercise. These findings are in agreement with 

previous authors when using sedentary participants with little experience of UB exercise 

(Sawka, 1986; Bhambhani et al., 1998; Schneider et al., 2002; Mukari, 2002; Mukari et 

al., 2004).  However, participants with highly trained UB musculature may elicit PPO 

and  2OV PEAK during UB exercise similar to that during LB exercise (Angermann et al., 

2006; Table 2.4).    

 

The ∆  2OV PEAK when acutely exposed to hypoxia during LB exercise is in agreement 

with a range of FIO2s previously reported (Ekblom et al., 1975; Ferretti et al., 1997; 

Cardus et al., 1998; Peltonen et al., 2001a; Mollard et al., 2007; Table 2.3).  In the 

present study during LB exercise as FIO2 was reduced aerobic power declined 

(∆  2OV PEAK = 13 ± 8 and 23 ± 6 % for H1 and H2, respectively) though the magnitude 

of the reduction was greater than previously reported in sedentary participants when 
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FIO2 = 0.13.  Investigating the effect of hypoxia (FIO2 = 0.13) on  2OV PEAK in trained 

(Normoxic  2OV PEAK = 67.2 ± 4.0 mL.kg-1.min-1) and untrained (Normoxic  2OV PEAK = 

45.4 ± 5.5 mL.kg-1.min-1) participants Martin and O’Kroy (1993) reported ∆  2OV PEAK 

of 26.2 ± 2.3 and 14.9 ± 5.1 %, respectively in hypoxia.  Similar findings were observed 

by Lawler et al. (1988) using FIO2 = 0.14 in trained and untrained participants.  The 

present study used untrained participants (  2OV PEAK = 45 ± 7 mL.kg-1.min-1) similar to 

those used in the above study however, the ∆  2OV PEAK was higher in the present study 

and similar to the trained participants.  In the untrained participants Martin and O’Kroy 

(1993; FIO2 = 0.13) reported higher HR and SPO2 at maximal exercise when compared 

to the present study (189 ± 4 vs. 183 ± 13 bt.min-1

 V

 and 78 ± 9 vs. 74 ± 6 % at the same 

simulated altitude, respectively).  In addition Martin and O’Kroy (1993) reported higher 

E/  2OV  during hypoxic exercise than the present study (55.1 ± 5.4 vs. 44.0 ± 5.6) 

indicating greater hyperventilation at maximal exercise which has been shown to reduce 

arterial desaturation, all of which are beneficial in maintaining  2OV PEAK (Gavin et al., 

1998). 

 

Reduced  2OV PEAK during acute normobaric hypoxia in the present study supports the 

tendency observed by Hopman et al. (2003; 2004) in able bodied participants.  They 

reported that  2OV PEAK was reduced significantly from hyperoxia (FIO2 = 0.5) to 

hypoxia (FIO2 = 0.15) but did not vary between normoxia and hypoxia.  They suggested 

that  2OV PEAK during UB exercise is limited centrally by oxygen supply but only 

reported a 3 % reduction in  2OV PEAK between normoxia and hypoxia compared to 13 ± 

8 % in the present study at the same simulated altitude (FIO2 = 0.15).  Hopman et al.’s 

(2003; 2004) participants (n = 10) were of similar age, mass, stature and UB  2OV PEAK 

in normoxia as the present study but used a continuous ramp protocol compared to the 
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discontinuous step protocol in the present study.  If the exercise increments were 

smaller in the present study then participants may have been able to progress further; 

however, secondary data indicate that maximal effort was attained in each trial in the 

present investigation. Although Hopman and colleagues (2003; 2004) reported the 

 2OV PEAK to be limited centrally the mechanism were not explored as SPO2, CaO2 or 

 2OD  were not reported and it is therefore difficult to identify why the present results 

differ from those reported by Hopman et al. (2003; 2004). 

 

Previous papers have reported that those with a greater  2OV PEAK during normoxia 

experience greater reduction in aerobic power when exposed to simulated altitude 

(Lawler et al., 1988; Martin and O’Kroy, 1993; Mollard et al., 2007).  When the 

reduced aerobic power is expressed relative to normoxic  2OV PEAK Mollard et al. (2007) 

observed no difference between trained and untrained while others observed greater 

reductions in aerobic power in trained athletes (Lawler et al., 1988; Martin and O’Kroy, 

1993).  In H2 ∆  2OV PEAK was correlated with normoxic  2OV PEAK during LB exercise (r 

= 0.73, P<0.05; Fig. 4.8) as was reported previously when using FIO2s of 0.14 (r = 0.94, 

P<0.05) and 0.13 (r = -0.91, P<0.01; Lawler et al., 1988; Martin and O’Kroy, 1993, 

respectively) but were not significantly correlated during H1.  The present study only 

used sedentary participants while the above mentioned studies had a greater number of 

participants and compared both sedentary and aerobically trained individuals thus had 

data across a greater physiological range which may have added to the strength of their 

correlations.  During UB exercise weak correlations (r = 0.21 and r = 0.56, P>0.05 for 

H1 and H2, respectively) were present for normoxic  2OV PEAK vs. ∆  2OV PEAK indicating 

that in sedentary participants normoxic  2OV PEAK is not an indication of ∆  2OV PEAK 
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however the addition of data from UB trained individuals may increase the strength of 

these correlations. 

 

5.2 Ventilation. 

 V E was higher during LB exercise at each FIO2.   V E has been reported ≈ 20 % lower 

during normoxic UB exercise in men and women (Bhambhani et al., 1998; Mukari et 

al., 2004; Angermann et al., 2006).  Angermann and colleagues (2006) reported  V E to 

be 21.1 and 14.9 % lower during UB compared to LB exercise in N and H (FIO2 = 

0.146), respectively.  This is in agreement with those reported in the present study (N = 

18 ± 9, H1 = 14 ± 17 and H2 = 15 ± 17 % lower during UB exercise).  UB exercise 

should not be viewed solely as arm exercise, especially at higher workloads as 

movement of the torso increases to aid performance.  Muscles that usually assist 

ventilation may be recruited to aid locomotion during UB exercise, therefore reducing 

the musculature recruited for ventilation itself.  However, when restraints were used 

during UB exercise in an attempt to reduce torso movement  V E was 18 % lower than 

LB exercise (Boileau et al., 1984) suggesting that torso movement does not impede 

recruitment for ventilation or that other mechanisms are responsible.   V E requires a 

pressure gradient between the lung and the environment; if this gradient was altered it 

could subsequently affect tidal volume (Vt).  Increased intrathoracic pressure during UB 

exercise has been reported previously with regards its effect on SV (Sawka, 1986), 

however it may reduce the pressure gradient between lung and environment in turn 

impeding the flow of gas and reducing Vt. 

 

In the present study  V E was unchanged as FIO2 was reduced, however  V E tended to 

decrease as FIO2 declines.  It is generally seen that  V E is unchanged (Martin and 

O’Kroy, 1993; Zattara-Hartmann and Jammes, 1996) or increased (Lawler et al., 1988; 
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Gavin et al., 1998; Ogawa et al., 2007) when acutely exposed to hypoxia, however the 

ventilatory response is also associated with training status and hypoxic ventilatory 

response (HVR), which itself has a great deal of individual variability.  Lawler et al. 

(1988) found that  V E at maximal exercise increased significantly during hypoxic 

exercise in untrained males (123.0 ± 3.6 vs. 150.9 ± 7.3 L.min-1

 V

), whereas trained 

participants maximal E was unchanged (147.4 ± 6.2 vs. 149.4 ± 6.8 L.min-1

 V

).  

Exercising at a higher simulated altitude than Lawler et al. (1988; FIO2 = 0.13 vs. 0.14) 

Martin and O’Kroy (1993) found that maximal E was not significantly different 

between normoxic and hypoxic exercise in trained and untrained participants.   

 

During maximal exercise 10-15% of Q   is directed to the respiratory muscles for 

ventilation (Harms et al., 1998).  If it is assumed that the same occurs during acute 

hypoxia the reduced  V E as FIO2 declines could be a result of reduced CaO2 and 

therefore oxygen delivery to the respiratory muscles at maximal exercise.  In addition 

the hyperventilatory response to hypoxic exercise may reduce the CO2 concentrations in 

the blood (Hypocapnia) in turn blunting the drive to ventilate (Ward et al., 2000).  This 

possibility is supported by ventilatory equivalent for CO2 which increases as FIO2 

decreases.  Diaphragmatic fatigue in resting humans results in increased vascular 

resistance in the limbs as blood flow is directed to the diaphragm, this reflex may also 

be present during intense exercise (Dempsey et al., 2006).  The greater  V E observed 

during LB compared to UB exercise may have induced greater diaphragmatic fatigue 

therefore increasing the blood flow to the diaphragm and increased vascular resistance 

at the exercising muscle.  This may contribute to the greater reductions in performance 

and  2OV PEAK observed during LB exercise.  With the measurement of breathing 



 94 

frequency and/or tidal volume it may have been possible to identify why  V E responds 

differently at different FIO2s. 

 

Ventilatory equivalent (  V E/  2OV ) in the present study increased in both LB and UB 

exercise as FIO2 was reduced.  This is in agreement with other studies when acutely 

exposed to hypoxia where  V E is higher at a given oxygen consumption (Lawler et al., 

1988; Mollard et al., 2007; Ogawa et al., 2007).  Higher  V E increases alveolar oxygen 

tension (PAO2) which increases haemoglobin oxygen saturation (SaO2) and CaO2 in turn 

benefiting oxygen delivery.  Arterial desaturation and  2OV MAX are reduced less in 

those who have greater normoxic  V E/  2OV  (Gavin et al., 1998).  In the present study 

during H1 and H2  V E/  2OV  was highest during UB exercise (P = 0.054 and P<0.05, 

respectively) as was SPO2 (P = 0.051 and P<0.05, respectively).  These data indicate 

that a hyperventilatory response at a given  2OV  maintains SPO2 during hypoxic 

exercise. 

 

5.3 Metabolic factors. 

No significant difference was observed for maximal blood lactate concentration ([BLa]) 

between LB and UB exercise at N, H1 and H2 in the present study.  This indicates a 

similar contribution of anaerobic metabolism at maximal exercise across the three 

conditions, however significantly higher workloads achieved during LB compared to 

UB exercise at each FIO2.  These findings concur with others who have shown BLa and 

the anaerobic contribution to exercise is higher at a given exercise intensity during UB 

exercise (Louhevaara et al., 1990; Ahlborg and Jansen-Urstad, 1991; Jansen-Urstad et 

al., 1993; Bhambhani et al., 1998).  Unless specifically trained, the UB musculature is 

used to a lesser extent than that of the LB which is used in daily locomotion and the 
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majority of athletic events in healthy individuals.  Due to this relative inactivity of the 

UB a higher proportion of type II fibres are present compared to LB muscles (Johnson 

et al., 1978), however athletes with trained UB musculature display higher proportion of 

type I fibres (Angermann et al., 2006).  A greater proportion and recruitment of type II 

fibres during UB exercise elicits greater BLa concentrations at a given exercise intensity 

due to the reduced aerobic capacity of these fibres (Sawka, 1986; Hopman et al., 2003).  

Angermann and colleagues (2006) reported that the medial deltoideus muscle 

comprised 69 ± 11, 23 ± 9 and 8 ± 12 % type I, IIa and IIx, respectively in cross country 

skiers who are highly UB trained and have aerobic power similar to that observed in the 

LB.  In untrained participants Johnson et al. (1978) reported the superficial deltoid 

consisted of 53.3 % type I fibres and 46.7 % type II fibres.  Angermann et al. (2006) 

reported that at maximal exercise PPO was lower during UB exercise as was [BLa] 

where previously [BLa] was found to be unchanged while PPO was lower during UB 

compared to LB exercise (Sawka, 1986).  A higher proportion of type I fibres in the 

trained participants would result in a greater contribution of aerobic metabolism to 

exercise thus reducing the [BLa] at a given exercise intensity and at maximal exercise.  

 

PPO is greater when the exercising muscle mass is increased, as observed in the present 

study where the smaller muscle mass of the UB elicited a lower PPO.  Shepard (1988) 

found that as active muscle mass was reduced (2 leg cycle ergometry; 1 leg cycle 

ergometry; 1 arm ergometry without restraints; 1 arm ergometry with restraints) PPO 

and  2OV MAX declined.  These findings should be interpreted with caution as the slow 

cadences employed (LB = 50 rev.min-1; UB = 40 thrusts.min-1) have been subsequently 

shown not to elicit peak physiological responses (McKay and Banister, 1976; Smith et 

al., 2001) and affects economy at lower exercise intensities.  This is further supported 

by the low heart rates reported at maximal exercise. 



 96 

RER at maximal exercise was highest during UB exercise, reflecting the higher 

 V E/  2OV  and  V E/  2COV in this mode of exercise.  This adds further evidence that 

anaerobic metabolism is higher at a given exercise intensity/  2OV  during UB exercise 

as the same [BLa] and higher RER are accompanied by lower  2OV  at maximal 

exercise.  In addition the same workload represents a greater proportion of maximal 

exercise capacity during UB exercise (Bhambhani et al., 1998; Mukari et al., 2004).  

The same  2COV at maximal exercise in hypoxia when accompanied with a lower  2OV  

will result in an increased RER, as seen in the present study and by others (Knight et al., 

1993; Martin and O’Kroy, 1993; Gavin et al., 1998). 

 

[BLa] at lactate threshold (LT) did not differ between LB and UB exercise or between 

FIO2 as this is a physiological fixed point.  However, the  2OV  at LT was lower during 

UB exercise at each FIO2 and decreased from N to H1 and from H1 to H2 during LB 

exercise and from N to H2 during UB exercise.  Koistinen et al. (1995) found BLa 

concentrations at LT to be unchanged when acutely exposed to 3000 m but the 

corresponding  2OV  was significantly lower during hypoxic LB exercise.  Koistinen 

and colleagues (1995) reported LT to occur at 76 and 78 %  2OV PEAK for normoxia and 

hypoxia compared to 71 ± 3 and 74 ± 5 % during N and H1 (≈ 2700 m) in the present 

study, respectively.  This is supported by others who found no difference in %  2OV PEAK 

at LT during LB exercise as FIO2 is reduced (Freidmann et al., 2005; Thake, 2006).  

Comparing three exercise modes (arm crank ergometry, cycle ergometry and treadmill 

running) LT occurred at 46.5, 63.8 and 58.6 %  2OV PEAK, respectively (Davis et al. 

1976).  While lower than that observed in the present study, possibly due to lower 

cadences employed, this study showed that LT occurs at a lower %  2OV PEAK during UB 

compared to LB exercise.  Our findings indicate that LT as a %  2OV PEAK responds 
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similarly during LB and UB exercise (tending to occur at a higher %  2OV PEAK as FIO2 

decreases) however, there is a lack of literature assessing LT during acute hypoxic UB 

exercise.      

 

5.4 Oxygen delivery. 

 2OV PEAK is limited centrally by oxygen delivery (  2OD ; Equation 2.4) during LB 

exercise (Ekblom et al., 1976; Ferretti et al., 1997; Peltonen et al., 2001a) and central 

physiology has been suggested to be a key factor during UB exercise (Hopman et al., 

2003).  Consideration of the factors determining  2OD  and any differences that exist 

between LB and UB exercise will provide an insight into the differences observed in 

∆  2OV PEAK between LB and UB exercise.  The following discusses the components of 

and their subsequent effect on  2OD during LB and UB exercise. 

  

5.4.1 SV, HR and Q . 

Mollard and co workers (2007) found that HRMAX was reduced in untrained participants 

from 2500 m (FIO2 = 0.154) during cycle ergometry whilst it was previously thought 

that for HRMAX to be reduced during acute hypoxia the simulated altitude must be 

greater than ≈  3800 m (Benoit et al., 2003; Calbet et al., 2003).  The present study 

found that HRMAX tended to decrease as FIO2 was reduced between sea level and 

simulated altitude ≈ 3700 m (N vs. H2 P = 0.06) during LB exercise, however HRMAX 

did not vary during UB exercise.  During LB exercise greater aerobic power has been 

associated with a greater ∆HR MAX (Benoit et al., 2003) with reduced HRMAX occurring 

at a lower simulated altitude (1000 m; Mollard et al., 2007).  Studies at similar 

simulated altitudes and exercise protocols in untrained participants as the present study 
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have shown HRMAX to be unchanged (Lawler et al., 1988; Martin O’Kroy, 1993; 

Peltonen et al., 2001) but the tendency is for HRMAX to decline. 

 

HR is higher at a given  2OV  during hypoxic exercise but is unchanged or reduced at 

maximal exercise.  This was thought to be due to increased sympathetic drive during 

hypoxic exercise, supported by increased circulating catecholamines (Calbet et al., 

2003).  However, when the sympathetic pathways were blocked HR remained higher 

during hypoxia at a given  2OV  indicating other mechanisms to be responsible for the 

observed differences (Hopkins et al., 2003).  Benoit et al., (2003) highlighted two 

mechanisms by which HRMAX may be reduced during acute hypoxic exercise; 1) 

reduced FIO2 has a direct effect on myocardial physiology including repolarisation 

length and transmission time at the AV node (Roach et al., 2003) and 2) that skeletal 

muscle  2OV  dictates Q  during hypoxic exercise and if it is assumed the SV is constant 

HR would be reduced (Wagner, 2000).  It has also been proposed that the central 

nervous system (“central governor”) could limit the muscle mass recruited in order to 

maintain the supply of O2 to the heart (Mollard et al., 2007). 

 

HRMAX is lower during UB compared to LB exercise (Bhambhani, 1995; Schneider et 

al., 2002) but is higher at a given  2OV .  HRMAX during UB exercise in the present 

study was 95 ± 4, 96 ± 3 and 97 ± 4 % whilst  2OV PEAK was 72 ± 3, 71 ± 10 and 76 ± 8 

% of that attained during LB exercise for N, H1 and H2, respectively.  While HRMAX was 

lower during UB exercise it was higher for the aerobic output achieved.  At a given  

 2OV  Q  has been reported to be similar for LB and UB exercise, however to maintain 

Q  HR is higher due to ≈ 20 % lower stroke volume in UB exercise (Sawka, 1986; 

Miles et al., 1989; Bhambhani, 1995).  Angermann et al. (2006) reported no difference 
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in HRMAX between LB and UB exercise however this study used double pole ergometry 

which may recruit a greater muscle mass than arm crank ergometry.  In addition 

individuals with highly trained UB musculature were used whose SVMAX is similar 

during LB and UB exercise thus maintaining Q   at a similar HR (Pendergast, 1989). 

 

Bhambhani et al. (1995) found using the CO2 rebreathing technique that SV was 19 % 

higher during cycling compared to arm crank ergometry in healthy males when 

breathing room air.  Using the method of Bhambhani et al. (1995; section 3.11) to 

estimate SV using O2 pulse SV was 16 ± 8, 20 ± 11 and 17 ± 9 % lower for UB exercise 

during N (P<0.01), H1 (P<0.05) and H2 (P=0.07) respectively.  The reduced SV during 

UB exercise may be due to the absence of the skeletal muscle pump of the inactive legs, 

which during LB exercise increases venous return, end diastolic volume and therefore 

SV.  Also increased intrathoracic pressure during UB exercise increases afterload and 

therefore reduces the ejection fraction (Sawka, 1986; Miles et al., 1989). 

 

SV was lower during H1 and H2 compared to N (P<0.05) however while lower, no 

significant difference was observed between H1 and H2 for LB and UB exercise.  At ≈ 

4,000 m SV has been shown to decrease (Hopkins et al., 2003) or remain unchanged 

(Stenberg et al., 1966) however, at higher altitudes (5,260 m) SV has been shown to 

decrease (Calbet et al., 2003).  At 5,260 m (FIO2 = 0.105) SV was 116 mL.beat-1 

compared to 128 mL.beat-1

 2OV

 during normoxia (Calbet et al., 2003) while in the present 

study SV was reduced from a simulated altitude of ≈ 2,700 m (Table 4.4), lower than 

previously reported.  The above studies have directly measured SV while the present 

study estimated SV from O2 pulse at LT based on methods validated during normoxic 

exercise.  At LT during hypoxic exercise  decreased (Table 4.2) and HR increased 

(LB vs. UB = 150 ± 16 vs. 140 ± 12; 160 ± 15 vs. 144 ± 14 and 160 ± 13 vs. 144 ± 16 
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bt.min-1 for N, H1 and H2, respectively) resulting in lower O2 pulse at LT which could 

cause SV to be underestimated during hypoxic exercise. 

 

Q  and SV were lower during UB exercise at each FIO2 and HR was lower during N and 

H1 and tended to be lower during H2 (P<0.07; Table 4.4) compared to LB exercise.  

This is in accordance with the literature where even if HR and SV are not significantly 

reduced but tend to be lower, Q  can be significantly reduced (Peltonen et al., 2001b).  

As reported previously Q  was reduced on acute exposure during LB exercise and was 

reduced further as severity of hypoxia increased; however, the present study used lower 

simulated altitudes (Calbet et al., 2003; Hopkins et al., 2003).  During UB exercise Q  

was reduced from N to H1 in the presence of reduced SV without a reduction in HR, 

while from H1 to H2 Q  was unchanged as neither HR nor SV were significantly 

changed.  To date no literature is available regarding the response of Q  to hypoxia 

during UB exercise and the present study suggests that Q  seems to respond in a similar 

fashion to LB exercise.  During LB exercise Q  was reduced by 9 ± 4 and 18 ± 4 % and 

during UB exercise by 12 ± 10 and 18 ± 9 % for H1 and H2, respectively compared to N.  

However the greater intersubject variation during UB exercise weakens the statistical 

power.   

 

The above findings should be interpreted with caution as the method used to estimate 

SV and therefore Q  has potential for error and has not been validated during hypoxic 

exercise.  Bhambhani (1995) estimated Q  at 7 and 10 mins of submaximal exercise, 

equivalent to LT using the CO2 rebreathing technique and derived regression equations 

to estimate SV from O2 pulse.  The CO2 rebreathing technique is an indirect estimate 
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thus Bhambhanis’ method (1995) is an estimation based on an estimation therefore, the 

potential for error is increased.  In addition during CO2 rebreathing a theoretical [Hb] 

concentration of 15.8 g.dL (so that testing remained non-invasive) was used to estimate 

the arterial/venous CO2 content and used in the calculation of Q , furthering the 

potential for error.  While Bhambhani (1995) reported significant correlation between 

SV and O2 pulse for LB and UB exercise, ≈ 50 % of the data points lie outside the 95 % 

confidence intervals.  Despite their mathematical connection, significant correlations 

were not present for O2 pulse and a-  v O2Diff. during LB and UB exercise (Equation 

5.1).  Comparisons between the CO2 rebreathing technique and direct measurements of 

Q  have reported on average ≈ 12 % error (Marks et al., 1985; Bhambhani, 1995).  

When Bhambhani’s (1995) equations were retrospectively applied to studies SV was 

within 10 % of the value reported in the respective study, whether direct or indirect 

measures for SV where used.               

 

Equation 5.1   O2 pulse = SV x a-  v O2Diff. 

   

In the present study HR was higher and  2OV  lower at LT during hypoxia, causing O2 

pulse to decline, in turn estimations of SV declined as FIO2 was reduced.  This is a 

contentious area during LB exercise as studies have reported SV during acute hypoxia 

to be unchanged (Stenberg et al., 1966) or reduced (Calbet et al., 2003) albeit at higher 

simulated altitudes than the present study.  Bhambhani (1995) compared upright cycle 

and arm crank ergometry and the participants LB and UB  2OV PEAK were similar to 

those reported in the present study (LB = 43.9 ± 6.3 and UB = 30.3 ± 6.6 mL.kg.min-1

 2OV

).  

Their method predicts SV from O2 pulse at LT assuming that SV remains unchanged 

after this point.  SV was thought to plateau at ≈ 40-50 % PEAK however, different 
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populations respond differently during incremental exercise.  Where endurance athletes 

SV can continually increase until maximal exercise, untrained populations SV response 

can vary between individuals and may increase/decrease when approaching maximal 

workload after an initial plateau during submaximal work (Gonzalez-Alonso, 2008).  If 

this is the case in the present study, estimates of SV at LT cannot be used to accurately 

estimate SV/ Q  at maximal exercise. 

 

The method used in the present study (Bhambhani, 1995) offers estimates of SV during 

LB and UB exercise in a similar population.  While this allows the possible mechanisms 

limiting aerobic power to be explored, there is potential for error in the estimation of SV 

and subsequent estimates of Q ,  2OD , a-  v O2Diff. and E.    

 

5.4.2 CaO2/SPO2. 

Arterial desaturation occurred to a greater extent during LB exercise compared to UB 

exercise (Table 4.5).  SPO2 reduced from N to H1 and from H1 to H2 in both LB and UB 

exercise.  This is in agreement with studies using similar FIO2s during LB exercise 

(Lawler et al, 1988; Martin and O’Kroy, 1993; Ferretti et al., 1997; Mollard et al, 

2007), while there are no reports of SPO2 during arm crank ergometry in hypoxia.  

Angermann and co workers (2006) using double pole ergometry (UB exercise) reported 

SaO2 of 93.2 ± 2.5 and 75.0 ± 5.9 % for normoxia and hypoxia (FIO2 = 0.146), 

respectively during maximal UB exercise.  At a simulated altitude of 3,200 m 

Angermann et al. (2006) reported lower SaO2 than observed in the present study which 

simulated a higher altitude (≈ 3,700 m; S PO2 = 82 ± 4 %).  There are three possible 

explanations for these differences; 1) double pole ergometry elicits more of a whole 

body response compared to arm crank ergometry thus higher Q  and reduced pulmonary 

transit time (PTT) may cause greater desaturation similar to those observed during LB 
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exercise.  Angermann et al.’s (2006) study there was no difference in HRMAX between 

double pole and cycle ergometry in normoxia and hypoxia indicating a similar whole 

body response, 2) recruitment of greater muscle mass during LB exercise would extract 

more O2 from the blood in turn reducing the oxygen content of venous blood (CvO2) 

and greater saturation of the blood would be required in the lung compared to arm crank 

ergometry, and 3) the participants were of a higher training status then those in the 

present study and normoxic SPO2 was 92.8 ± 1.4 and 93.2 ± 2.5 % for LB and UB 

exercise, respectively which is indicative of exercise induced arterial hypoxemia 

(EIAH; Prefaut et al., 2000; Galy et al., 2005).  EIAH occurs in trained athletes with 

high Q  and has been associated with greater desaturation during hypoxic maximal 

exercise (Chapman et al., 1999; Mollard et al., 2007).   

 

During LB and UB exercise SPO2 decreased with FIO2 as does Q  during LB exercise, 

however during UB exercise Q  was not reduced at H2 from H1.  During N and H1 SPO2 

was not different between LB and UB exercise, while at H2 SPO2 was significantly 

higher during UB compared to LB exercise.  This indicates that at simulated altitudes 

above ≈ 2,700 m arterial desaturation is due to a combination of reduced P IO2 and Q  

which dictates PTT as when Q  is unchanged from H1 to H2 in UB exercise SPO2 

remains significantly higher than that seen during LB exercise.  This may be due to 

reduced consumption at the muscle resulting in higher oxygenation of venous blood 

returning to the lungs.  This is of interest as reduced PTT is generally only seen in 

highly trained athletes with large Q , however the present study shows that when FIO2 = 

0.13 reduced Q   and therefore increased PTT is beneficial to SPO2 in untrained 

participants with lower Q .  Due to methodological issues (section 3.8.3) a constant 
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haemoglobin concentration ([Hb]) was used in the present study thus arterial oxygen 

content (CaO2) showed the same response as SPO2. 

 

5.4.3 Effect on delivery 

As both maximal Q  and CaO2 are reduced as FIO2 declines during LB exercise, 

 2OD PEAK is reduced at H1 and H2 from N as was  2OV PEAK.  UB exercise did not 

respond in the same manor as although CaO2 was reduced and Q  tended to be lower 

between H1 and H2  2OD PEAK and  2OV PEAK tended to be lower (NS).   2OD PEAK was 

not different between LB and UB exercise during H2 due to greater SaO2 and therefore 

CaO2 while  2OD  was significantly higher during LB exercise in all other conditions 

due to higher flow ( Q ).  During H2 where  2OD PEAK was not reduced during UB 

exercise from H1 no further reduction was present for  2OV PEAK while during LB 

exercise  2OD PEAK and  2OV PEAK decreased further between H1 and H2 (P<0.05). 

 

5.5 Extraction. 

Arterial – mixed venous oxygen difference (a-  v O2Diff.) was higher during LB exercise 

in normoxia compared to UB exercise, which is in agreement with a previous study 

despite using different ergometers and participants who were both LB and UB trained 

(Calbet et al., 2005).  a-  v O2Diff. did not vary between LB and UB hypoxic exercise 

however tended to be lower during UB exercise.   Sawka (1986) reported that for a 

given  2OV  muscle blood flow is similar in LB and UB exercise.  Greater capillary 

density reduces diffusion distance and is beneficial to extraction at the muscle.  Type II 

muscle fibres have a reduced fibre capillary ratio than type I, and type II fibres are 

prominent in the UB musculature of the untrained population.  This would result in 

increased diffusion distance for O2 during UB exercise thus reducing the extraction 
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capacity of the muscle, as seen in the present study as E was lower at each FIO2 during 

UB exercise.   2OV  has been reported higher in some studies during UB exercise and 

unchanged in others at a given power output with some authors highlighting that UB 

exercise is less efficient than LB (Sawka, 1986).  Extraction of O2 at the muscle is 

dependent on a concentration gradient between the blood (PaO2) and muscle, the greater 

the gradient the greater the potential for E.  Hypoxia reduces the concentration gradient 

and therefore a-  v O2Diff. is lower, as seen in the present study. 

 

Several reasons could explain the differences observed for E between LB and UB 

exercise.   2OD  can be maintained either through an increased blood flow or by an 

increased CaO2, however the latter of these components would be more beneficial to the 

concentration gradient between the blood and the muscle.  That is to say, a low CaO2 

rapidly delivered to the muscle will maintain delivery but compromise the extraction.  

While a-  v O2Diff. declines during hypoxia, extraction ratio (E) increases as the absolute 

amount of O2 consumed by the muscle declines to a lesser extent than the amount of O2 

delivered to the muscle (  2OD ).  However it has been commented that the muscles’ 

ability to extract O2 is not fully taxed during maximal exercise (Calbet et al., 2005) as 

studies have shown that hyperoxia increases  2OV PEAK from normoxia during LB 

exercise.  SPO2 and Q  tended to be higher thus increasing CaO2 and the O2 

concentration gradient between blood and muscle (Peltonen et al., 2001b).  During UB 

exercise  2OV PEAK only increased by 3 % (NS) from normoxia when acutely exposed to 

hyperoxia (FIO2 = 0.5) which may indicate that extraction is fully taxed in this mode of 

exercise, however delivery and extraction were not reported in this study (Hopman et 

al., 2003).     
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5.6 Limitations to aerobic power. 

The present study supports those previously published using LB exercise (Ekblom et al. 

1976; Wagner, 1991; Ferretti et al., 1997; Bassett and Howley, 2000) where  2OV PEAK 

has been suggested to be limited centrally.  Ekblom and colleagues (1976) found that 

when CaO2 was reduced by 10 %  2OV PEAK was reduced by 6 %.  The present study 

found that at H1 and H2  2OV vs. CaO2 was reduced by 13 ± 8 vs. 13 ± 5 and 23 ± 6 vs. 

23 ± 7 %, respectively.   2OV  vs.  2OD  in the present study was reduced by 13 ± 8 vs. 

21 ± 6 and 23 ± 6 vs. 37 ± 6 % for H1 and H2 from N, respectively. 

 

Significant correlations were observed for  2OV  and  2OD  during LB exercise in N and 

H1 but not H2 (Fig. 4.6).  The difference at H2 may be due to greater arterial 

desaturation and therefore reduced CaO2 rather than reduced Q  from normoxia.  Thus 

the arterial - tissue PO2 gradient would be reduced, which is detrimental to O2 diffusion 

and  2OD  would be maintained via flow rather than content.  Also the pulse oximeter 

used in the present study has been validated across a physiological range of 70 – 100 % 

and when FIO2 = 0.13 arterial saturation fell to the lower end of the range (mean 74 ± 6 

%; range 66 – 84 %) where there may be more error (section 2.3.3).  When combined 

with the estimated Q  the multiplication of error may weaken the correlation in this 

condition. 

 

UB exercise has much less literature published on the mechanisms limiting maximal 

exercise capacity and the data in the present study offer arguments for both central and 

peripheral limitation.  Hopman et al. (2003) found no difference for  2OV PEAK between 

FIO2 0.21 and 0.15 while the present study found a significant reduction (15 ± 6 %) 

between these two inspired O2 fractions.  Hopman and co-workers (2003) used a 
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continuous exercise protocol with smaller increments in exercise intensity which may 

have facilitated the high workloads achieved.  However Hopman et al. (2003) reported 

that  2OV PEAK reduced from hyperoxia (FIO2 = 0.5) to hypoxia (FIO2 = 0.15) suggesting 

that this FIO2 dependency indicates that UB aerobic power was limited centrally.  While 

suggesting that this reduction in  2OV PEAK as inspired O2 tension was reduced resulted 

in reduced  2OD  they could not discount the possibility that peripheral factors limited 

exercise as SaO2, Q ,  2OD  and E were not reported.  

 

The present study as with Hopman and colleagues (2003; 2004) observed that  2OV PEAK 

reduced as FIO2 declined during UB exercise.  At H1 and H2 ∆  2OV PEAK vs. ∆  2OD   was 

15 ± 6 vs. 20 ± 12 and 19 ± 8 vs. 30 ± 9 %, respectively.  The data so far indicate that 

LB and UB exercise respond similarly during exposure to acute hypoxia, however when 

the components of oxygen consumption (Table 4.4) are assessed differences are 

apparent.  During LB exercise the normoxic  2OV PEAK of 3.41 ± 0.58 L.min-1

 2OD

 cannot be 

met at H2 as  is only 3.15 ± 0.33 L.min-1
 2OD.  However during UB exercise  at H2 

(2.78 ± 0.45 L.min-1
 2OV) is sufficient to sustain normoxic PEAK (2.48 ± 0.33 L.min-1

 2OD

) if 

E could reach 0.89.  Also, although  is higher during LB exercise in each condition 

CaO2 is lower thus delivery is maintained via flow rather than content.  Assuming the 

active tissue PO2 is the same in LB and UB exercise the concentration gradient for O2 

diffusion at the muscle would be greater during UB exercise, which should aid E.  

 

The peripheral limitations to  2OV PEAK during UB exercise could be attributed to 

several factors; 1) reduced muscle mass recruited, 2) inadequate perfusion of the active 

tissue bed, 3) reduced O2 transit time within the muscle and 4) lower oxidative capacity 

of the muscles used during UB exercise.  At a given power output a smaller muscle 
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mass would operate at a higher percentage of its peak tension, increasing intramuscular 

tension and impeding blood flow (Sawka et al., 1983).  Also a smaller muscle mass 

with reduced capillary network (compared to the leg muscles) would reduce the time 

oxygenated blood spends in the muscle and therefore the time available for O2 to 

transfer from erythrocytes to mitochondria (Calbet et al., 2005).  This is further 

supported in the present study as SPO2 and CaO2 were higher but E was lower during 

UB exercise in H2.  Reduced offloading of O2 at the muscle would result in increased 

oxygenated blood returning to the lungs and enabling greater saturation when compared 

to LB exercise where greater amounts of O2 are consumed for metabolism as it seems in 

the present study.  Finally the musculature of the UB, especially in those who are not 

UB trained, has a greater proportion of type II muscle fibres, thus these fibres with 

reduced oxidative capacity are recruited more during UB exercise (Johnson et al., 1973; 

Sawka, 1983; Jansen-Urstad and Ahlborg, 1992; Schneider et al., 2002; Hopman et al., 

2003; Angermann et al., 2006).    

 

Calbet and colleagues (2005) when using participants who were highly UB trained 

found that extraction was higher during LB compared to UB exercise.  This study 

compared diagonal stride (whole body), double poling (UB) and leg skiing (LB) in 

cross country skiers while the present study used cycle and arm crank ergometry in an 

untrained population but also found that extraction was lower during UB compared to 

LB exercise.  This is supported further by considering the Fick equation (Fig. 2.3); to 

maintain  2OV  when extraction is lower cardiovascular stress must be increased, as is 

the case during UB exercise (Sawka et al., 1986; Calbet et al., 2005). 
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5.7 Summary/applications. 

The present study confirms that both LB and UB  2OV PEAK is reduced when acutely 

exposed to simulated altitude but offers evidence that different mechanisms are 

responsible for these reductions.  The present study is in agreement with the large body 

of literature investigating the effects of acute hypoxia during LB exercise with reduced 

oxygen delivery insufficient to maintain previously attained  2OV PEAK during normoxia 

(Ferretti et al., 1997; Cardus et al., 1998; Peltonen et al., 2001a; Mollard et al., 2007).  

Recently Hopman and colleagues (2003) proposed that UB exercise is also limited 

centrally however it has also been suggested that peripheral factors limit UB exercise 

(Calbet et al., 2005).  During LB exercise studies have shown that  2OV PEAK is 

increased from normoxia to hyperoxia (Peltonen et al., 2001b) indicating that extraction 

is not fully taxed in this mode of exercise while this does not occur during UB exercise 

(Hopman et al., 2003).  The present study shows that  2OD  is sufficient to maintain 

 2OV PEAK if extraction were able to increase during UB exercise at ≈ 3700 m, thus 

indicating peripheral limitation. The observed reduction in CaO2 during acute hypoxia 

would reduce the O2 concentration gradient between the blood and the active tissue bed 

creating an environment detrimental to extraction causing  2OV PEAK to decline during 

UB exercise. 

 

The present study simulated altitudes commonly used by athletes during training or 

competitions and it is hoped the improved knowledge of the physiological consequences 

will enable better preparation and ultimately performance in these conditions.  

Knowledge of the mechanisms limiting LB exercise have been used during exercise 

prescription to maximise the physiological/performance adaptations.  The present study 

offers evidence that UB exercise is limited peripherally, therefore training programmes 

that elicit peripheral adaptations may aid performance during UB aerobic exercise more 
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than those eliciting central adaptations.  Indeed Angermann and co workers (2006) 

reported a higher proportion of type I fibres in the UB musculature in cross country 

skiers.  This was accompanied by an UB  2OV PEAK of 94 % of that attained for LB 

exercise, dramatically higher than typically reported in untrained populations (60-80 

%).  This information has been commonly used during LB exercise but may now be 

applied to UB exercise which will benefit cross country skiers, rowers, wheel chair 

athletes and other activities involving the UB undertaken at altitude.  Arm crank 

ergometry is a commonly used mode of exercise to test UB  2OV PEAK but may be 

applicable to one event more than another (i.e. wheelchair athletes vs. cross country 

skiers) and it has yet to be shown whether different populations (aerobically trained 

athletes) respond in the same manner during hypoxic UB exercise as differences are 

apparent during LB exercise. 
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6.0 Limitations and future research. 

6.1 Limitations. 

The present study estimated stroke volume (SV) based on the method of Bhambhani 

(1995) which uses O2 pulse at lactate threshold (SV remains consistent post threshold) 

during cycle and arm crank ergometry in normoxia.  No studies have yet assessed the 

validity and reliability of this or any other method of estimating SV/ Q  during hypoxic 

exercise.  When exercising under hypoxic conditions HR was slightly increased and  

 2OV  decreased at LT compared to normoxia resulting in reduced O2 pulse.  This would 

result in the underestimation of SV as severity of hypoxia increased in both modes of 

exercise.  This is a contentious issue in LB exercise as SV has been reported to be 

reduced (Calbet et al., 2003) or unchanged (Stenberg et al., 1966) when acutely exposed 

to hypoxia (at greater simulated altitudes than employed in the present study) and has 

yet to be reported during UB exercise.  If these assumptions were incorrect and SV was 

underestimated, this would subsequently result in underestimation of Q  and  2OD  and 

the overestimation of a-  v O2Diff. and extraction.  The rationale for using this method 

was based on the model observed during LB exercise.  During LB exercise in hypoxia 

extraction ratio increases as the same quantity of O2 is utilised from a reduced content 

(CaO2) and this was apparent when using the above mentioned assumptions.  These 

assumptions were also applied to UB exercise. 

 

Due to large intertrial variation for haemoglobin concentration ([Hb]) a mean value 

(calculated as the mean of the [Hb] at maximal exercise in each trial) was used for the 

calculation of CaO2.  When [Hb] is not measured a fixed concentration of 15 g.dL-1 can 

be assumed, the mean [Hb] for all participants in the present study was 14.9 ± 0.7 g.dL-1 

(range 13.7 – 16.2 g.dL-1).  Thus it was considered better to use the mean of a measured 

variable rather than a hypothetical fixed concentration despite the observed variation.  



 113 

This may have resulted in errors when calculating CaO2 from [Hb] and SpO2 leading to 

possible errors in  2OD  (further compounded by possible error when estimating Q ).  As 

the interassay variability was within acceptable limits (coefficient of variation = 2.9 %).  

The discrepancies between trials may be due to differences between different mixtures 

of reagent increasing possible measurement error between trials.   

 

The assumptions enable the most accurate estimations of SV, Q , CaO2,  2OD  and E 

from the data collected and offer the reader possible correlations to ∆  2OV PEAK.  This 

said there is possibility of error in these estimations and therefore should be interpreted 

with caution. 

 

The present study used moderate – high simulated altitudes (FIO2s 0.15 and 0.13 

equivalent to ≈ 2700 and 3700, respe ctively; Barry and Pollard, 2005) where others 

when investigating LB exercise have used higher simulated altitude (Benoit et al., 2003; 

Calbet et al., 2003; Mollard et al., 2007).  Ferretti and co-workers (1997) found that 

when using FIO2s from 0.3 to 0.11 that the reduction in  2OV PEAK as FIO2 was reduced 

is dictated by the shape of the O2 dissociation curve (sigmoid).  The comparison of LB 

and UB exercise at greater simulated altitudes may identify different responses during 

extreme simulated altitudes, as in the present study the significant reduction in 

 2OV PEAK between FIO2 0.15 – 0.13 during LB exercise was not observed during UB 

exercise. 

 

The present study used sedentary participants none of whom undertook regular UB 

exercise.  While from a mechanistic approach this population provides useful 

information regarding the limiting factors in the two mode of exercise, from an 
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application viewpoint the data can only be applied to a similar cohort.  The findings of 

the present study would benefit athletes participating in events using the UB (rowers, 

cross-country skiers, climbers, athletes with spinal cord injury etc.) who will be 

specifically UB trained and therefore may respond differently to the untrained 

population used in the present study as seen during LB exercise (Lawler et al., 1988; 

Martin and O’Kroy, 1993; Mollard et al., 2007). 

 

6.2 Future research. 

First it is recommended that future research should be directed towards addressing the 

limitations of the present study.  The use of different subject population (i.e. trained vs. 

untrained, wheelchair athletes) would identify if the differences observed between 

populations for LB exercise were still present during UB exercise and when combined 

with the finding of the present study enable the application of the data in better context.  

The present study used cycle and arm crank ergometry as these two forms of cyclical 

exercise offer good comparisons.  Recently other studies have used double pole 

ergometry (Calbet et al. 2005; Angermann et al. 2006).  Using exercise protocols 

similar to the activities undertake at altitude (i.e. skiing, rowing, wheelchair ergometry) 

or field studies at altitude would enable better application of these data.  Further 

research  should also investigate more severe hypoxia as well as hyperoxia during UB 

exercise and their effect on aerobic power as this would further the understanding of the 

mechanisms limiting exercise and highlight whether the LB and UB respond similarly 

at different FIO2s.  The model of Ekblom et al. (1976) may also be beneficial when 

applied to UB exercise as this offers a different means of reducing  2OD .  Ekblom et al. 

(1976) reduced and enhanced [Hb] from control thus altering the capacity of blood to 

transport O2 and would add further evidence to the mechanisms limiting UB exercise.  
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This protocol would reduce the ability of blood to transport O2 by the same amount for 

both modes of exercise whereas with hypoxia, desaturation occurs to different extents. 

 

A model is required for the non-invasive estimation of SV/ Q  during hypoxia for both 

LB and UB exercise.  Methods have been developed that accurately estimate Q  non-

invasively during normoxia for LB (Stringer et al. 1997) and LB and UB exercise 

(Bhambhani, 1995).  To this author’s knowledge these methods have not been validated 

during hypoxia, thus future studies should be directed towards either validating the 

above mentioned methods in hypoxia or develop new methods that offer accurate and 

reliable estimates of SV/ Q  from non-invasive measures in hypoxia. 

 

Hypoxic studies using LB exercise have identified that ∆  2OV PEAK to be closely related 

to arterial desaturation and factors that reduce arterial desaturation also reduce 

∆  2OV PEAK (Gavin et al. 1998).  Also those that experience exercise induced arterial 

hypoxemia (EIAH) during normoxia experience greater desaturation and ∆  2OV PEAK 

upon exposure to hypoxia (Chapman et al. 1999).  Research could now attempt to 

establish characteristics that maintain saturation and therefore  2OV PEAK during UB 

exercise when exposed to hypoxia/altitude.  Further studies could also investigate which 

peripheral factors are responsible for reduced extraction during UB exercise (i.e. 

capillary transit time, O2 off-loading or oxidative capacity of the muscle) and the use of 

training studies could identify which peripheral factors are associated with  2OV PEAK.    

 

To date all studies investigating hypoxia and UB exercise have used normobaric 

hypoxia but with athletic activities using the UB taking place at altitude more field 

studies may be advantageous.  These studies could progress the work already 



 116 

undertaken during LB exercise and apply them to the UB exercise (i.e. acclimatisation 

and its effects on UB exercise).  Athletes also use altitude as part of their training 

programme as preparation for an upcoming event and much research has been directed 

at what altitude training programme is most beneficial (i.e. live hi – train low).  This 

should now be applied to UB exercise to see whether altitude training invokes similar 

responses as those seen in LB exercise.  Further research should also investigate which 

peripheral factors limit exercise capacity then exercise programmes can be specifically 

designed to improve these aspects of physiology. 

 

Hypoxia during UB exercise is still a relatively new area of investigation with many 

questions to be answered.  Much of the research that has been undertaken using LB 

exercise should now be replicated using UB exercise to establish whether the responses 

are the same and this will inevitably raise more points for investigation in the future. 
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Appendices. 
 
APPENDIX A. Informed consent form. 
 
TITLE: The effect of reduced inspired oxygen fraction on the cardiorespiratory response to 
upper and lower body exercise. 
 
 
1. I have read the subject information form and I am aware what is required of me 
before the test. 
 
2. I understand the protocol of the test which I am participating in and understand 
what is required of me. 
 
3. I am aware that the study consists of 6 separate trials each requiring physical 
exercise and that there may be some risks associated with exercise at that intensity such as 
fainting, light headiness and nausea. 
 
4. I understand that the research staff will take the appropriate action if any of the 
above risks occur, and will fully assume that risk. 
 
5. I understand that the side effects that could manifest as a result of hypoxia (see 
subject information) may continue for several hours after the experiment. 
 
6. I understand that I have the right to withdraw myself from the study, without 
explanation, at anytime before, during or after testing. 
 
7. I understand that the information gathered as a result of the study will be kept 
confidential and not be disclosed to anyone else other then the research staff. 
 
8. I release the laboratory and its employees from any liability for any injury or illness 
that may occur either directly or indirectly as a result of this study. 
 
9. I agree to abide by the guidelines stated in the subject information form and present 
myself in a suitable condition for testing.  
 
 
Signed ………………………………..        Date …/…/…   
 
Print Name ……………………………………. 
 
Investigator’s Statement 
 
I confirm that I have explained the nature, demands and possible risks associated with the 
present study to the volunteer prior to the testing. 
 
Signed ………………………………..        Date …/…/…   
 
Print Name …………………………………….    
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APPENDIX B. Physical activity readiness questionnaire (PAR-Q). 
 
 
NAME _____________________________________________ 
 
DATE OF BIRTH ________________________ AGE ________ 
 
TEST PLANNED FOR TODAY (TO BE COMPLETED BY THE EXPERIMENTER) 
________________________________________________________________________________________
________________________________________________________________________________________ 
 
 
GENERAL PHYSICAL FITNESS 
 
HOW OFTEN DO YOU TAKE REGULAR  HOW LONG HAVE YOU BEEN EXERISING  
PHYSICAL EXERCISE?    AT THIS FREQUENCY? 
 

•     LESS THEN ONCE A WEEK   •     LESS THEN 1 MONTH 
•     ONCE A WEEK     •     1-6 MONTHS 
•     TWO TO THREE TIMES A WEEK  •     MORE THEN 6 MONTHS 
•     MORE THEN THREE TIMES A WEEK 

 
IS YOUR CURRENT BODYWEIGHT  SMOKING HABITS (TICK ALL THAT APPLY) 
 
       •     NORMAL RANGE    •     NEVER SMOKED 
       •     OVERWEIGHT     •     GAVEN UP MORE THEN 1 MONTH 
       •     UNDERWEIGHT     •     TOTAL YEARS SMOKED FOR 
       •     SMOKE/USED TO SMOKE LESS 

       THEN 20 CIGARETTES PER DAY 
•     SMOKE/USED TO SMOKE MORE 
       THEN 20 CIGARETTES PER DAY 

 
GENERAL HEALTH 
 
DO YOU SUFFER OR HAVE YOU EVER SUFFERED FROM THE CONDITIONS BELOW? (GIVE 
DETAILS IF YES) 
 
       •     HEART DISEASE AND/OR CIRCULATORY •     KIDNEY DISEASE 
              PROBLEMS     •     CLOTTING DISORDERS 
       •     DIABETES     •     ANEMIA OR OTHER BLOOD 
       •     HIGH BLOOD PRESSURE         DISORDERS 
       •     HIGH CHOLESTEROL    •     ANY OTHER LONG TERM MEDICAL 
       •     ASTHMA OR ANY OTHER LUNG DISEASE                 CONDITION  
 
DETAILS _______________________________________________________________________________ 
________________________________________________________________________________________ 
 
DO YOU REGULARY TAKE 
 
       •     ANY PERSCRIBED MEDICINES 
       •     ANY OVER THE COUNTER MEDICINES 
       •     ANY OTHER DRUGS 
       •     ANY SUPPLEMENTS 
 
DETAILS_______________________________________________________________________________ 
________________________________________________________________________________________ 
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HAVE YOU EVER HAD ANY PAST INJURIES THAT MIGHT BE AFFECTED BY THE TEST 
PLANNED FOR TODAY? 
 
 
 
IS THERE ANY OTHER INFORMATION THAT MIGHT AFFECT YOUR SAFTY/HEALTH IN 
CARRYING OUT THESE TESTS? 
 
________________________________________________________________________________________ 
 
 
YOUR HEALTH TODAY 
 
HAVE YOU HAD ANY OF THE FOLLOWING HEALTH PROBLEMS IN THE LAST FEW DAYS? 
 
       •     COUGHS/COLDS 
       •     HEADACHES 
       •     SHORTNESS OF BREATH 
       •     MUSCLE/JOINT PAIN 
       •     ANY OTHER HEALTH PROBLEMS 
 
DETAILS_______________________________________________________________________________
________________________________________________________________________________________ 
 
DO YOU CURRENTLY HAVE ANY OF THE FOLLOWING SYMPTOMS? 
 
       •     SORE THROAT OR BLOCKED NOSE 
       •     SHORTNESS OF BREATH 
       •     HEADACHE AND/OR DIZZINESS 
       •     NAUSEA 
       •     PAIN IN MUSCLES/TENDONS/BONES 
       •     ANY OTHER FEELINGS/PAINS THAT YOU DO NOT NORMALLY HAVE 
 
DETAILS_______________________________________________________________________________
________________________________________________________________________________________ 
 
ARE YOU PREGNANT? 
________________________________________________________________________________________ 
 
IS THERE ANY OTHER INFORMATION THAT MIGHT AFFECT YOUR SAFETY/ HEALTH IN 
CARRYING OUT THE TESTS TODAY? 
________________________________________________________________________________________
________________________________________________________________________________________ 
 
 
I CONFIRM THAT I HAVE GIVEN DETAILS OF ANY INFORMATION THAT MAT AFFECT 
MY SUITIBILITY TO PARTICIPATE AS A SUBJECT TODAY.  I HAVE ALSO READ AND 
SIGNED THE SUBJECT INFORMATION AND INFORMED CONSENT FORMS FOR TODAYS 
TEST.  
 
 
SIGNATURE OF SUBJECT ____________________________________________________________ 
 
AUTHORISED BY (PRINT NAME) _____________________________________________________ 
 
        (SIGNATURE)  _____________________________________________________ 
 
DATE__________________________ 
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APPENDIX C. Respiratory gas calculations. 

Expired volume correction to standard temperature pressure dry (STPD). 

 

VESTPD = VEATPS           273O                  PI – PH2O 

                      273O

 2OV

 + Ta             760 mm Hg 

 

VESTPD = Expired volume standard temperature pressure dry 

VEATPS = Expired volume ambient temperature pressure and saturated 

Ta = Temperature of expired gas 

PI = Barometric pressure of inspired gas 

PH2O = Partial pressure of water vapour at ambient temperature 

 

Oxygen consumption. 

 = (  V I x FIO2) – (  V E x FEO2) 

 
 V I x FIN2 =  V E x FEN2 

 
FEN2 = 1 – (FEO2 + FECO2) 

 

 2OV  = Oxygen consumption  FEO2 = expired oxygen fraction   

 V I = Inspired gas volume  FECO2 = expired carbon dioxide fraction 

 V E = Expired gas volume  FIN2 = Inspired nitrogen fraction 

FIO2 = Inspired oxygen fraction  FEN2 = Expired nitrogen fraction 

 

Respiratory exchange ratio (RER). 

RER =  2COV /  2OV  
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APPENDIX D. Interassay/intertrial variability. 

Coefficient of variation between duplicate haemoglobin measurements collected in the 

present study.  Total number of data sets = 353. 

 

Coefficient of variation for haemoglobin concentration (g.dl-1

 

) at rest between 

experimental trials.  
          

  Subject 

Exercise FIO2 1 2 3 4 5 6 7 8 9 

   
        

LB 

0.21 14.4 14.0 14.9 14.6 13.7 15.7 11.4 14.7 14.9 

0.15 15.2 13.9 15.7 15.5 15.1 13.6 11.9 13.7 12.7 

0.13 13.0 18.2 15.5 14.8 15.1 13.7 14.5 13.3 15.1 

UB 

0.21 11.9 14.1 14.6 14.7 15.8 12.8 13.3 16.6 14.9 

0.15 14.0 13.7 15.9 15.3 14.7 11.5 14.8 13.6 14.0 

0.13 13.8 14.3 14.8 13.7 12.3 13.5 15.9 11.9 13.2 

           

Mean 13.7 14.7 15.2 14.8 14.4 13.5 13.6 14.0 14.1 

SD 1.2 1.7 0.5 0.6 1.3 1.4 1.8 1.6 1.0 

CV 8.4 11.6 3.5 4.3 8.7 10.2 13.1 11.2 7.1 

Sample 1 
(A) 

Sample 2 
(B) 

Difference 
(C) 

Square route of the difference squared 
(D) 

Eg.  A – B √(C2

15.1 

) 

15.4 -0.3 0.3 
    

Mean of  “D” 0.87 

Sum of “D” 307.12 

Square route of the sum of the difference 
divided by number of samples 

     √ 307.12 
           706 0.02 

CV         ( 0.02 )  *  100 
          0.87 2.86 
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Coefficient of variation for haemoglobin concentration (g.dl-1

 

) at maximal exercise 

between experimental trials.  
          

  Subject 

Exercise FIO2 1 2 3 4 5 6 7 8 9 

   
        

LB 

0.21 15.9 13.7 15.8 16.1 16.2 16.9 12.3 13.4 16.0 

0.15 15.1 14.5 15.9 16.8 16.1 13.6 14.4 15.8 12.5 

0.13 13.2 13.0 17.2 14.6 14.3 14.6 12.8 14.5 16.1 

UB 

0.21 14.1 14.5 15.6 15.9 16.0 14.6 13.6 16.0 16.5 

0.15 15.9 15.9 15.9 15.4 16.3 13.2 15.2 15.2 15.4 

0.13 14.4 14.8 16.5 13.6 14.2 13.7 14.0 13.9 14.3 

           

Mean 14.8 14.4 16.2 15.4 15.5 14.4 13.7 14.8 15.1 

SD 1.1 1.0 0.6 1.1 1.0 1.3 1.1 1.0 1.5 

CV 7.2 6.9 3.7 7.4 6.4 9.2 7.7 7.1 9.9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 141 

APPENDIX E. Borg rating of perceived exertion (RPE) scale. 
 
 
 
6 NO EXERTION AT ALL 
 
 
7 EXTREMELY LIGHT 
 
 
8 
 
 
9 VERY LIGHT 
 
 
10 
 
 
11 LIGHT 
 
 
12 
 
 
13 SOMEWHAT HARD 
 
 
14 
 
 
15 HARD (HEAVY) 
 
 
16 
 
 
17 VERY HARD 
 
 
18 
 
 
19 EXTREMELY HARD 
 
 
20 MAXIMAL EXERTION 
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APPENDIX F. British Association of Sport and Exercise Science (BASES) abstract 
2008. 
 
The effect of acute hypoxia on peak oxygen consumption during upper compared to 

lower body exercise. 

C.D. Thake, C. Simons, & M.J. Price 

Coventry University, UK 

 

At sea level upper body exercise elicits approximately 70% OV 2 peak of that 

attained during lower body exercise (Sawka et al., 1983: Journal of Applied Physiology, 

54, 113-117). Although it is well established that exposure to altitude results in reduced 

OV 2 peak these data are almost exclusively from lower body exercise studies. Therefore 

we examined the effect of reduced FIO2 and the magnitude of reduction in OV 2 peak in 

upper compared to lower body exercise. 

With local ethical committee approval nine healthy male participants (age mean 22, 

s = 2 years) undertook three upper and three lower body discontinuous (30 sec intervals) 

incremental exercise (UBX; LBX) tests to volitional exhaustion whilst breathing either 

normoxia (N) or normobaric hypoxia (H1 and H2); FIO2s ≈ 0.21, 0.15 and 0.13 respectively. 

Exercise commenced with a resistance of 70 W for cycle ergometry and 35 W arm 

cranking and was increased by 30 and 15 W respectively every 3 min thereafter; cadence 

was maintained at 70 rpm throughout. Heart rate (HR) and arterial haemoglobin oxygen 

saturation (SpO2) were monitored continually. Data were examined using general linear 

model analysis of variance.  

Physiological responses are given in Table I. UBX OV 2 peak was 71 ± 10 and 76 ± 

8% of that in LBX at H1 and H2 respectively. Peak blood lactate was >10 mmol.L-1 in UBX 

and LBX and did not vary with FIO2. 
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Table 1: Physiological variables at peak exercise (mean ± s).   

   LBX    UBX  
         
  N H1 H2  N H1 H2 
 
Peak Power 
output (W) 
 

#, † 273 ± 49 250 ± 37 223 ± 28 

 

135 ± 27 127 ± 20 123 ±18 

 
peakOV   2  

(L.min-1) 
 

#, †, Ф 3.52 ± 
0.50 

3.04 ± 
0.46 

2.68 ± 
0.27 

 
2.53 ± 
0.35 

2.15 ± 
0.40 

2.04 ± 
0.34 

 
HR 
(bt.min-1) 
 

#, δ 189 ± 12 188 ± 12 183 ± 13 

 

180 ± 13 180 ± 13 176 ± 14 

 
SpO2 (%) 
 

#, †, Ф 96 ± 2 83 ± 4 73 ± 4  96 ± 2 85 ± 5 79 ± 4 

 
#P<0.001 exercise mode; †P<0.001, δP<0.01 FIO2; ФP<0.05 exercise mode × FIO2; effect 

size eta2 = 0.03 to 0.80 

To conclude, the reduction in peakOV   2  appears to be less in UBX compared to 

LBX at the lowest FIO2. This is potentially relevant to athletes conducting UBX at altitude. 

 
 
Reference:  Thake, C. D., Simons, C and Price, M. J. (2008). The effect of reduced 

inspired oxygen fraction on the VO2 peak during upper compared to lower body exercise. 

Submitted to British Association of Sport and Exercise Annual Conference, Brunel 

University In press 
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APPENDIX G. British Paralympic Association (BPA) abstract 2008. 
 
The effect of acute hypoxia on the VO2 peak during upper compared to lower body 

exercise.  

C D Thake, C Simons and M J Price  

Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 5FB. 

 

Introduction: At sea level upper body exercise elicits approximately 70% OV 2 peak of 

that attained during lower body exercise (Sawka et al., 1983, Journal of Applied 

Physiology (54) 113-117). Although it is well established that exposure to altitude results in 

reduced OV 2 peak these data are almost exclusively from lower body exercise studies 

(Martin and O’Kroy, 1993, Journal of Sport Sciences, (11) 37-42).  

Aim: To examine the relationship between reduced FIO2 and the magnitude of reduction in 

VO2peak during upper compared to lower body exercise. 

Patricipants: In accordance with ethical approval from Coventry University Ethics 

committee nine healthy able bodied male participants (age 22±2 years; height 180.6±8.2 

cm; body mass 78.7±12.2 kg; estimated body fat 15.8±12.4%; estimated muscle mass 

57.5±6.5 %; haemoglobin 15.1±0.6 g.dl-1; n=9) gave their informed consent to participate 

in the study. 

Methods: Using a crossover type design participants undertook three upper and three 

lower body discontuous incremental exercise (UBX; LBX) tests to volitional exhaustion 

(VEX) whilst breathing either normoxia (N) or normobaric hypoxia (H1 and H2); FIO2s ≈ 

0.21, 0.15 and 0.13 respectively. Exercise commenced with a resistance of 70W for cycle 

ergometry (Monark 824E) and 35W arm cranking (Lode Angio, Groningen, Holland) and 

was increased by 30 and 15W respectively every 3 min thereafter. A cadence of 70rpm was 

maintained throughout. Heart rate (HR) and arterial haemoglobin oxygen satuation (SpO2) 
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were continually monitored. A 30 sec interval between work stages enabled the collection 

of earlobe capillary blood for lactate (BLa) analysis. 

Statistical analysis: General linear model analysis of variance (ANOVA) was used to 

examine differences between upper and lower body exercise and between FIO2s (level of 

hypoxia). Significant main effects were further investigated with Tukey post-hoc tests.  

Results: Peak power output declined with reduced FIO2 and was higher during LBX 

compared to UBX (N, 273 ± 49 vs. 135 ± 27; H1, 250 ± 37 vs. 127 ± 20 and H2, 223 ± 28 

vs. 123 ±18 W; P<0.001, main effects for exercise mode and FIO2). In accord OV 2 peak 

decreased with FIO2 (P<0.001, main effect). The reduction in OV 2 peak from N was lower 

in UBX compared to LBX (P<0.05, mode ×  FIO2). Post hoc tests revealed reductions 

between each FIO2 in LBX (N, 3.52 ± 0.50 vs. H1, 3.04 ± 0.46 L.min-1, P<0.001; H1 vs. H2, 

2.68 ± 0.27 L.min-1, P<0.05). Whereas significant reductions were not evident between 

each FIO2 in UBX (N, 2.53 ± 0.35 vs. H1, 2.15 ± 0.40 L.min-1, P<0.001; H1 vs. H2, 2.04 ± 

0.34 L.min-1, NS). The relative reduction in OV 2 peak from that at N being similar between 

exercise modes (H1, 13 ± 8 and 15 ± 6; H2 23 ± 6 and 19 ± 8 % for LBX and UBX 

respectively). Peak BLa did not vary with FIO2 and was highest during LBX exercise e.g. 

H2, LBX 11.5 ± 2.4 vs. UBX, 10.6 ± 2.1 mmol (P<0.01, main effect).  The lowest SpO2 

recorded in the final work stage declined between N (LBX and UBX, 96 ± 2%) and H1 

(LBX, 83 ± 4 % and UBX, 85 ± 5 %, P<0.001) and H2 (LBX, 73 ± 4 %, P<0.001; UB 79 ± 

4 %, P<0.01); with the magnitude of reduction being greater in LBX compared to UBX at  

H2 (P<0.01). Whereas peak HR declined with FIO2 (P<0.01, main effect) and was lower in 

UBX at each FIO2 e.g. H2 UBX, 176 ± 14 vs. LBX, 183 ± 13 bt. min-1 (P<0.001, main 

effect). Further analyses estimated that oxygen extraction ( OV 2/ O2 delivery) during the 

last minute of exercise did not vary with FIO2 and was lower in UBX (0.61 ± 0.05) 

compared to LBX (0.85 ± 0.07; P<0.05) at volitional exhaustion.     
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Conclusions: These data indicate that the relationship between FIO2 and OV 2 peak varies 

between LBX and UBX in the same subjects. The FIO2s used are representative of 

terrestrial altitudes often used for training and competition. Such findings are potentially 

relevant to both able bodied and paralympic athletes conducting predominantly UBX at 

altitude and form the basis for further study. 

Reference:  Thake, C. D., Simons, C and Price, M. J. (2008). The effect of acute hypoxia 

on the VO2 peak during upper compared to lower body exercise. Proceedings of the British 

Paralympic Association Conference, Loughborough, March 2008. 
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