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Abstract

Brain-computer interface (BCI) allows for communication between a human and a machine with-

out the use of normal output pathways (e.g. muscles and peripheral nerves), however a substantial

number of people are unable to effectively control BCI devices. In this thesis we present two BCI

investigations. In experiment one we investigate the use to commercially available BCI system

for relaxation. A number of studies investigated the factors affecting BCI illiteracy, however no

research into psychological and cognitive factors of BCI performance has been conducted. In ex-

periment two, we investigate the relation between BCI illiteracy and attention. The results of the

first experiments show that the participants using BCI as neurofeedback did not obtain higher level

of relaxation then the participants watching video or sitting with their eyes closed. The results of

the second experiments showed no connection between BCI illiteracy and attention.
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Chapter 1

Introduction

Brain-computer interface (BCI) allows users to control computer by

using their thoughts. BCI systems decode users’ thoughts and trans-

late them into commands that are understandable to a machine. BCI

applications include communication, motor restoration, locomotion,

environmental control, entertainment and other. BCI systems can

also be used as biofeedback to provide users with alternative means of

relaxation or attentional training, however not everyone is able to con-

trol a BCI system and this phenomenon is called BCI illiteracy. It is

not obvious how psychological and cognitive factors such as attention

affects the user’s ability to control BCI devices. As mentioned above

BCI technology can be used for relaxation and attentional training,

it is however unknown if off-the-shelf BCI systems can be successfully

used for these purposes.

13



1.1 Motivation

BCI is a new and exciting technology. Numerous applications for this

technology have been proposed (see section 2.9). A substantial pro-

portion of the potential users are, however unable to control a BCI

device. This phenomenon is called BCI illiteracy. Understanding the

factors the determine BCI performance and BCI illiteracy is crucial

for continued development and popularisation of this technology. If

BCI is to become popular across the wider population it is also im-

portant that off-the shelf, commercial devices can bring benefits to

end users. Our motivation can be summarised in the two following

research questions.

1.1.1 Is attention a factor influancing BCI performance and BCI illiter-

acy?

Understanding the role played by attention, and our ability to control

these it is crucial for the development of BCI systems. BCI illiteracy

is a complex symptom, not only reflecting contextual effects (whether

the user actually care to perform well), but also due to fundamental

differences in our abilities to control, steer and focus our attention on

events in the environment. In this thesis we investigate if attentional

abilities play a role in BCI performance. We investigate this question

in experiment 2.
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1.1.2 Can off-the-shelf BCI systems be used for relaxation?

As mentioned above, a number of sophisticated BCI systems have been

proposed for training of attention. In similar manner we investigated

if, off-the-shelf Emotiv EPOCH system can be used to induce a state

of relaxation in the user. We try to answer this question in experiment

1.

1.2 Contributions

This thesis investigates two important aspects of BCI: the determi-

nants of BCI illiteracy and the use of commercial BCI system to in-

duce a state of relaxation. However, both performed studies did not

provide significant results.

1.3 Outline of the Thesis

In chapter 2, we present a literature review concentrating on differ-

ent types of BCI systems, neurological basis for EEG recordings, the

phenomenon of BCI illiteracy, models of attention and the connec-

tions between attention, meditation and BCI performance. In chapter

3, an experiment investigating the use of BCI systems as neurofeed-

back to obtain a greater level of relaxation is presented. In chapter 4,

we describe an experiment investigating the connection between the

attention, measured by two behavioural tasks, and performance on

15



P300-based BCI. In chapter 5, considerations for future investigations

are presented.
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Chapter 2

Background

2.1 Introduction

In this chapter we present a literature review concentrating on differ-

ent types of BCI systems, neurological basis for EEG recordings, the

phenomenon of BCI illiteracy in different BCI paradigms, the models

of attention and the connections between attention, meditation and

BCI performance.

2.2 What are Brain-Computer Interfaces?

A brain computer interface (BCI), also known as brain-machine inter-

face (BMI) is a system that allows for direct communication between

a human and a machine without using traditional channels of interac-

tion, e.g. the muscles of the arm and hand and computer keyboard,

and instead relies on brain signals directly (Wolpaw et al., 2002). This

fact makes BCI technology especially attractive for people with severe

17



motor disabilities such as multiple sclerosis (MLS) or locked-in syn-

drome (LIS). In extreme cases such interface is the only way by which

a person can communicate with the external world, which can greatly

improve their quality of life. The idea of BCI was initially unattrac-

tive to science, the idea of deciphering human thoughts seemed weird

and remote. BCI systems were limited to laboratory and clinical use;

however the recent developments in machine learning technology and

increase in computational power of personal computers made BCI ac-

cessible not only to researchers and clinicians, but also for everyday

users. The number of research groups investigating BCI technology,

as well as the number of published articles has increased substantially

over the last decade.

BCI is an artificial intelligence system that employs machine learning.

Such a system consists of hardware and software components with the

aim of recognising patterns in the signals emitted by the brain, and to

translate them into practical commands. In a typical BCI system, five

consecutive stages can be identified (Nicolas-Alonso and Gomez-Gil,

2012).

1. Signal acquisition - various types of signal are captured by a neu-

roimaging device such as electroencephalography (EEG); a BCI

system may be acquiring several kinds of signals at the same time,

provided they are synchronised and time-locked to the interaction

18



with the device.

2. Signal pre-processing or signal enhancement - signal is prepared to

further processing, including artefact removal (e.g. muscle move-

ment and noise reduction) are typically performed at this stage.

3. Feature extraction - discriminative features are identified and then

mapped onto a vector; these may include first order parameters,

like amplitude of signal or latency, and second-order parameters

that require more processing, like time-frequency parameters ex-

tracted from a Fourier transform.

4. Classification - involves the categorisation of the features previ-

ously extracted, with the aim of ascribing meaning to them; var-

ious techniques from machine learning can be applied and these

are described in more detail in section 2.8.

5. Control interface - results of classification are translated into com-

mands and send to a connected machine such as a wheelchair or

a computer, which provide the user with feedback and close the

interactive loop between the user and the device.

2.3 Classification of BCI systems

Different types of BCI systems have been proposed. These types can

be classified according to a number of criteria: place of signal acqui-

sition, type of measured brain activity, requirement of sensory stim-
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ulation to elicit brain activity, the presence of a cue determining the

onset, offset and duration of operations. Classification according to

the mentioned criteria is presented below.

2.3.1 BCI systems according the place of signal acquisition

Two approaches can be identified in this category: invasive and non-

invasive. In case of invasive approach the signal is acquired using

electrodes placed inside the scalp. The electrical activity of single

neurons (intracortical neuron recording) or neural assemblies (electro-

corticography) is recorded. This method is used mainly to re-establish

interrupted connections (e.g. people with paralysis or locked-in syn-

drome, use voluntary motor signals in order to control a prosthetic

limb (Lebedev and Nicolelis, 2006). The main advantage of this ap-

proach is the good quality of signal and the possibility to acquire the

signal of good special resolution from selected cortical areas of the

brain (e.g. motor cortex in case of prosthetic limb). Many researchers

agree that restoration of limb movement with multiple degrees of free-

dom can only be achieved through invasive BCI. However, the invasive

methods require open skull surgery which poses serious health risks

and restricts their use to clinical and experimental settings.

In non-invasive BCI the signal is acquired outside of the scalp. Dif-

ferent indicators of brain activity as well as different neuroimaging

techniques can be used for signal acquisition and these are described
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in section 2.3.4.

2.3.2 BCI systems according to the requirement of sensory stimulation

In this category we can distinguish two types of BCI systems: depen-

dent and independent. BCI does not use neural pathway and muscles

to communicate the signal from the brain to the computer or machine,

however dependent BCIs really on external stimulation, sensory organs

and neural pathways to elicit brain activity that is later measured and

recoded to a command that is passed to a machine. Examples of de-

pendent BCI paradigms include P300 and SSVEP. In SSVEP-based

BCIs (Cheng et al., 2002), a flickering stimuli is necessary to elicit an

EEG response of the same frequency or harmonics of that frequency.

In BCI systems employing P300 paradigm, visual or auditory stimuli

must be presented in order to produce P300 response (Mugler et al.,

2010; Furdea et al., 2009).

In case of independent BCIs the engagement of sensory organs, pe-

ripheral nerves and muscles is not needed. Most examples of indepen-

dent BCI are based on sensorimotor rhythms (SMR) (Pfurtscheller

et al., 1993) slow cortical potentials (SCP) (Hinterberger et al., 2004)

and non-motor imagery (Curran et al., 2004; Cabrera and Dremstrup,

2008).
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2.3.3 BCI systems according to the presence of a cue

Synchronous BCI systems are cue based, which means that they de-

pend on a protocol to determine the onset, offset and the duration of

the operations. The appearance of a cue informs the subjects about

the task they are to perform. An example of this kind of BCI is a

system where the participant sitting in front of a computer is asked

to move the cursor to the left or to the right of the screen. Left hand

imagery moves the cursor to the left and right hand imagery moves

it to the right. The appearance of the target on the left or right side

of the screen informs the user which mental activity to perform. Ex-

amples of synchronous systems can be found in (Allison et al., 2008;

Donchin et al., 2000).

On the other hand, asynchronous BCIs are always active and search

for predefined activation patterns of the brain associated with mental

operations performed by the user, which inform the machine to per-

form certain action. These types of systems can also detect an idle

state when the participants are not trying to control the BCI and are

not performing any predetermined mental activities. In this case the

system does not provide feedback. Examples of asynchronous systems

can be found in Bashashati et al. (2006) and Fatourechi et al. (2008).
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2.3.4 BCI systems according to the type of recorded brain activity

There are two types of brain activity that can be used for this purpose:

metabolic and electromagnetic. Only the latter type of systems is

currently available for day-to-day BCI devices. For each of the brain

activity modalities there are two different neuroimaging techniques

that can be used. These methods are discussed below.

BCI based on metabolic brain activity

In case of BCI systems that use changes in metabolic brain activity

as a source of signal, there are two technologies that are currently uti-

lized: functional magnetic resonance imaging (fMRI) and functional

near infrared spectroscopy (fNIRS). They both rely on very different

method of signal acquisition, and are consequently sensitive to very

different variations in the signal. fMRI is primarily used in research,

because it is not practical for day-to-day use, whereas fNIRS, which

may be more accessible to a wider audience, is still under development.

fMRI measures brain activity by detecting associated changes in blood

flow (Huettel et al., 2004). This technique utilizes the fact that the

neural activity and cerebral blood flow are coupled. In response to

the increased brain activity in a certain area, the blood flow to that

brain area increases (haemodynamic response) in order to supply the

stressed neural tissues with nutrients such as oxygen and glucose and
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allow them to function. This supply of highly oxygenated blood causes

change in the magnetic field which is recorder by MRI scanner.

A number of fMRI-based BCI systems have been developed, that in-

clude spelling machines (Sorger et al., 2012), computer games (Yoo

et al., 2004; Peplow, 2004), and systems controlling robotic arms (Nam

et al., 2013). Goebel developed a system in which two participants

could play a computer ping pong game while in the scanner (Peplow,

2004). Another fMRI-based BCI game has been proposed by Yoo

et al. (2004) where participants navigate through a two - dimensional

labyrinth.

Nam et al. (2013) developed a system that enabled participants to

control a robotic arm. To achieve the best control the action has to

be delayed by 6 seconds. This shows one of the main limitations of

fMRI-based BCI; the low temporal resolution of fMRI end the tempo-

ral delay of haemodynamic response limits the throughput that can

be achieved using these systems. The information transfer rate in

fMRI-based BCIs is between 0.60 and 1.20 bits/min (Ward and Maza-

heri, 2008) as compare approximately 4 bits/min for fNIRS-based BCI

(Power et al., 2011) and can reach up to 60 bits/min for EEG-based

BCI (Wolpaw et al., 2000). Secondly, MRI scanners are very large,

expensive, require specially prepared room and the participants have

to be lying down while using the scanner. The above limitations re-

strict the use of this kind of devices to clinical settings and research
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(e.g. rehabilitation).

fNIRS uses the properties of near-infrared light in the spectrum of

700-900 nm to assess the level of oxygenated versus deoxygenated

haemoglobin in the cerebral blood. The scalp and bone tissue are

invisible to the near-infrared light, however the oxygenated and de-

oxygenated haemoglobin absorbs the light of a different wave length

at a different rate. Therefore, by using the two different wave lengths

the relative concentration of oxygenated to deoxygenated haemoglobin

can be calculated (Jobsis, 1977). The light is emitted to the brain by

an infrared light emitting diode (IRED) and the reflected light is de-

tected on the scalp. Due to the shallow penetration of the light to the

brain this technique is limited to the outer cortical layer.

Although fNIRS has been adapted to the BCI research fairly recently

(Coyle et al., 2007, 2004) and at the moment the information trans-

fer rate achieved using this method is relatively low (Power et al.,

2011). It may, however be increased in the future and this method is

a promising alternative to the most popular EEG-based BCI, which,

due to its limitations cannot be used with certain groups of people

(for more see 2.10).
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BCI based on electromagnetic brain activity

There are two methods that measure electrical brain activity from out-

side of the skull. These are magnetoencephalography (MEG) and elec-

troencephalography (EEG). They are both based on the same neuro-

physiological mechanisms but measure complementary signals, namely

magnetic fields and electrical potentials, respectively.

MEG is a non-invasive imaging technique that registers changes in

magnetic field associated with the electrical activity within the brain

(Waldert et al., 2009). MEG and EEG record signal associated with

the same neurophysiological processes. However, the magnetic field is

less prone to distortions introduced by the skull and the scalp than

the electric field (Salmelin et al., 1995), therefore the quality of signal

provided by the MEG is better than in case of EEG. MEG provides

better spatio-temporal resolution, which leads to reduced training time

needed to attain satisfactory control and makes it a useful technique

for BCI (Mellinger et al., 2007). Lal et al. (2005) presented the first

online MEG-based BCI that allowed subjects to write a short name

using movement imagery. Other MEG-based BCI systems have been

proposed (Kauhanen et al., 2006; Georgopoulos et al., 2005; Mellinger

et al., 2007; Sabra and Wahed, 2011; Zhang et al., 2011), however this

method is still in its early stage, as compared to EEG-based BCI. The
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main limitations of MEG-based BCI are similar to the ones of fMRI-

based BCI. These include: high cost and large equipment that cannot

be used outside of laboratory.

EEG is the oldest and most widely used neuroimaging technique.

Since its discovery in 1929 (Berger, 1969), EEG has been used by sci-

entists to answer questions about the functioning of the human brain

as well as by clinicians as a diagnostic tool. BCI systems also allow

using EEG as neurofeedback in neurorehabilitation. One of the rea-

sons for the popularity of EEG based systems is the relative low cost,

portability and low complexity of these systems. EEG recordings are

usually performed using small metal electrodes placed on the scalp in

standardised positions. The number of electrodes can vary. The elec-

trode configuration is shown in Figure 2.1. Electrode caps are used

to affix electrodes to the scalp and ensure that the electrodes stay in

place throughout the recording. To improve the conductivity between

scalp and electrodes conductive gel or saltwater is used.
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Figure 2.1: Standardised electrodes location according to International 10–20 system.

EEG is the recording of electrical potentials along the scalp. The

electrical potentials recorded by EEG result from the neural activa-

tion within the brain. EEG is the most widespread neuroimaging

technique and the most widely used modality in BCI. The popularity

of EEG stands from the fact that electrical signal can be easily and

cheaply recorded through electrodes placed on the scalp (Baillet et al.,

2001). However, electric current has to cross the scalp, skull and other

tissues surrounding the brain which significantly distorts the acquired

signal. EEG signal is also distorted by the electrical noise in the en-

vironment and electric current produced by muscle activity.

Researches using EEG identified distinctive patterns in the EEG sig-

nal. These patterns are related to specific cognitive activities. Al-

though, the exact meaning of most of these patterns is still unknown,

some of them have been thoroughly studied and are used in BCI sys-

28



tems. The three EEG signal features that are most often used in

BCI research are P300, sensorimotor rhythms and steady state vi-

sually evoked potentials. These are described in more detail in sec-

tions: 2.10.2, 2.10.1 and 2.10.3.

BCI systems often use alpha frequency band (8–13 Hz), as it is rel-

atively easy to produce (eyes open vs. eyes closed), and is typically

emitted when the participant daydreams or falls asleep. It is there-

fore typically used as a gross measure of attention. As we will see in

the following sections, however, attention is a multifaceted cognitive

ability that cannot be simplified to one single parameter, like the am-

plitude of the alpha band, and this parameter should not be used as

a direct measure of attention.

As both investigations presented in this thesis use EEG-based BCI

system, in the next sections we will discuss the subject of electroen-

cephalography and the neural basis EEG signal in more detail and

further describe the elements and stages of EEG-based BCI system:

such as feature extraction and classification.

2.4 How is EEG signal generated?

To explain the relation between EEG and information processing in

the brain, it is necessary to first describe the structure and functioning

of neurons. Neuron is a cell in the nervous system that processes and
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transmits information using electrical and chemical signals. A typical

neuron possesses a cell body (soma), dendrites, and an axon. The cell

body can give rise to many dendrites. Dendrites are thin structures

that span for hundreds of microns and form a dendritic tree. The cell

body can give rise to multiple dendrites, but can produce only one

axon, however axons can branch out hundreds of times before they

terminate. A human axon can extend for up to one meter. Dendrites

and axons connect neurons forming neural networks. Information from

one neuron to another is passed through synapses. In most cases a

synapse connect an axon to a dendrite, however there are exceptions

(e.g. axon can connect directly to the body of the neuron).
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Figure 2.2: Simple representation of brain cortex showing production of EEG signal for activation

of excitatory neurons. On the left the axon of the excitatory cell connects to the dendrite close

to the soma of the pyramidal cell, which results in positive potential detectable on the scalp. On

the right the axon of the excitatory cell connects to the dendrite close to the surface of the cortex,

which results in negative potential detectable on the scalp. For historical reasons, the positive

potential is shown on the graph as a decrease and the negative potential is shown as an increase.

1 - soma of the pyramidal cell, 2 - apical dendrite of the pyramidal cell, 3 - skull and scalp, 4 and

5 - axons of excitatory neurons. Adapted from Martin (1991)

Neurons communicate through action potentials, i.e. electrical dis-

charge produced by the soma of the cell. Action potential travels

along the axon and when the action potential arrives at the synapses

neurotransmitter is released. Neurotransmitter triggers change in po-

tential of the membrane of the receiving cell (flow of ions through the

cell membrane) and if this potential reaches a threshold, new action
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potential is triggered and the information is transmitted to another

neuron.

The signal measured using EEG equipment is thought to be gener-

ated mostly by the pyramidal neurons located in the cerebral cortex

(Martin, 1991). Pyramidal neurons have large soma of a shape that

resembles a pyramid (see Figure 2.2) and a large dendrite extending

from the apex of the soma and is directed perpendicular to the surface

of the cortex. Activation of an excitatory synapse creates excitatory

post-synaptic potential (i.e. inflow of positively charged ions from the

extracellular space to body of the neuron). As a result, the extracel-

lular region of the synapse becomes negatively charged and in turn

regions distant from the synapse become positively charged and cause

a change of potential (extracellular current) to flow towards the region

of the synapse. The spatio-temporal summation of these extracellular

currents at hundreds of thousands of neurons with parallelly oriented

dendrites creates the change of potential that is detectable on the sur-

face of the scalp. If a large number of excitatory synapses are activated

close to the surface of the cortex, the resulting potential, detectable on

the surface of the scalp, is negative. If synapses of the same type are

activated closer to the body of the pyramidal neurons, deeper in the

cortex the resulting potential is positive. Reverse relation is observed

for inhibitory synapses. Activation of a large number of inhibitory

synapses close to the surface of the brain produces positive potential
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and activation of inhibitory synapses in the deeper layers of the cortex

results in negative potentials recordable on the surface of the scalp. It

is therefore possible to infer the type of synapses activated from the

polarity of the signal acquired on the surface of the scalp.

2.5 Oscillatory nature of EEG signal

EEG signal collected on the surface of the scalp has an oscillatory

nature; it has a sinusoid like form of different frequencies and am-

plitudes. The frequency of the signal differs depending on the type

of activity performed. Over decades researchers recognised frequency

bands and connected them with activities or states of the brain. This

classification is somewhat conventional and researchers often differ in

their definition of these frequency bands. Well known frequency bands

and their functional significance are shortly described below (Sanei

and Chambers, 2008) and the visual representation of these frequency

bands is presented in Figure 2.3.
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Figure 2.3: Visual representation of alpha, beta, theta and delta EEG frequencies. Adapted from

(Sanei and Chambers, 2008).

Delta (0 Hz to 4 Hz) is the highest in amplitude. It is normally seen

in adults during sleep and in babies in awake state.

Theta (4 Hz to 7 Hz) is seen normally in young children. In adults

and teens is often observed in state of drowsiness and idling, however

large contingents of theta frequency in walking adults is likely to have

pathological origins. It is also often observed when a person tries to

inhibit a response to action. Theta waves are also observed in medi-

tation (Cahn and Polich, 2006).

Alpha (7 Hz to 14 Hz) is the best known and studied EEG frequency

band. It is observed in the posterior and occipital regions of the brain.

Alpha frequency can easily be induced by closing the eyes or by re-
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laxation. Opening the eyes or performing any mental operation (like

calculating or intensive thinking) results in rapid suppression of alpha

frequency. The exact origin of alpha frequency is still unknown and

some postulate the existence of three different types of alpha waves:

one - observed in relaxed state (as mentioned above), second - in REM

phase of sleep and third - alpha-delta or slow-wave state (SWS).

Mu (8 Hz to 13 Hz), also called the Rolandic rhythm, overlaps with

Alpha frequency. It is believed to reflect the synchronous firing of mo-

tor neurons in rest state. It disappears when motor action is observed

and this suppression is believed to result from the desynchronisation

of motor neurons.

Beta (15 Hz to around 30 Hz) is usually observed symmetrically on

both sides of the brain and is mostly evident frontally. It is closely

associated with motor behaviour. A suppression of beta wave can be

observed during active movement. It is a dominant rhythm in patients

who are alert and have their eyes open.

Gamma (30 Hz to 100 Hz) is believed to correspond to binding of

different populations of neurons to perform a cognitive or motor task

(Niedermeyer and da Silva, 2005).
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2.6 Artefacts in BCI

Artefacts are undesired signals that contaminate neurological signal

making deciphering user intention more difficult. Artefacts originate

from physiological and non-physiological sources. Non-physiological

artefacts include power-line noise or changes in electrode impedances,

and can be usually avoided by proper filtering, shielding, etc. Physio-

logical artefacts are generated by muscular, ocular and heart activity,

known as electromyography (EMG), electrooculography (EOG), and

electrocardiography (ECG) respectively. EMG artefacts are usually

large disturbances in brain signal caused by muscle activity when par-

ticipants are talking, chewing or swelling. EOG artefacts are caused

by blinking or eye movement. Blinking produces high-amplitude pat-

terns; these are in fact muscle artefacts caused by muscles contractions

when participants blink. The artefacts caused by eye movement are

of low-frequency and are caused by the different polarisation of the

retina and the cornea. EOG artefacts are most pronounced in the

frontal area due to the spacial proximity of the eyes. ECG artefacts

introduce to the EEG a rhythmic signal which reflects the activity

of the heart. Changes in signal produced by brain activity can also

be considered as artefacts. For example, in P300-based BCI, a visual

evoked potential (VEP) does not contribute to the signal and removing

it is likely to provide better signal-to-noise ratio; it can, therefore also
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be considered an artefact. Similarly, visual alpha rhythms that appear

in a Mu-based BCI system can contaminate the signal and should be

treated as artefacts (McFarland et al., 1997). Handling physiologi-

cal artefacts is more challenging than non-physiological artefacts and

three approaches to the artefact problem are presented below.

2.6.1 Artefact Avoidance

The simplest method of handling artefacts is to avoid them by is-

suing proper instructions to the user. Many artefacts are produced

by voluntary muscle movements. Subjects can be instructed to avoid

blinking or moving their body during the experiments. This method

has one very simple advantage - it does not create any computational

demands, as it is assumed that the artefacts are not present in the sig-

nal. Some physiological activities, such as heart beat are involuntary;

therefore this method cannot be applied to this type of contamina-

tion. It is not easy to control eye and other movements during the

process of data acquisition and different participants can present dif-

fering degrees of control, we therefore cannot be sure if the signal is

contaminated and how much, moreover collecting sufficient amount of

data without artefacts in participants with neurological disabilities is

very difficult (Vigário, 1997). Avoiding artefacts introduces another

cognitive task which can interact with the BCI task. It has been shown

that refraining from eye blinking results in changes in the amplitude
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of some evoked potentials (Ochoa and Polich, 2000).

2.6.2 Artefact Rejection

Another approach to the problem of artefacts is artefact rejection. In

this case, epochs where the brain signal is contaminated with particu-

lar artefact are discarded. This procedure can be performed manually

- by visual inspection as well as automatically.

Automatic artefact rejection approach is far less labour intensive and

time consuming than manual approach and can be therefore applied

in real-time BCI system. However, automatic rejection still suffers

from sampling bias and loss of valuable data (Ramoser et al., 2000).

If EMG signal is collected, epochs where EMG signal reaches a pre-

determined threshold can be removed. However, many BCI systems,

especially those commercially available, do not provide the means of

EMG acquisition, therefore contaminated epochs have to be identified

and rejected relaying on EEG signal only. Because of the large amount

of artefact that exist in BCI systems it is impossible to reject all the

contaminated epochs and in practice only the signal with the largest

artefacts is rejected.

Rejecting artefacts in off-line analysis, where the continuity of the data

is not so important can be very useful in providing cleaner data. How-

ever, using artefact rejection in on-line systems creates an important

problem. Rejection of signal creates a period of time in which the
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communication between the human and the device is broken and the

system is unresponsive. This provides a false feedback to the user and

decreases the fluency of BCI control. On the other hand, if the arte-

facts are not handled false positive classifications may occur, which is

very frustrating and decreases the level of BCI control.

2.6.3 Artefact Removal

Artefact removal attempts to remove artefact from the brain signal

while leaving as much of the signal related to the relevant brain activity

intact. A number of methods of artefact removal have been proposed

and the most popular of them are shortly described below.

Linear Filtering

Linear filtering is a useful method of artefact removal if the signal of

interest is in the different frequency band than the artefacts signal

(Gotman et al., 1973). Low-pass and high-pass filters can be distin-

guished. In simple terms, low-pass filters remove the signal above a

certain frequency and high-pass filters remove signal below a desired

frequency.

Linear filtering is a relatively simple method. It does not require

any additional information regarding EMG and EOG activity. This

method cannot, however be used when the frequency of the signal of

interest lies in the same frequency band than the artefacts (de Beer
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et al., 1995) and this is often the case in BCI, which means that the

use of linear filtering may result in removal of the signal of interest. If

the frequency of the artefact and the frequency of the signal overlap,

compromise can be made and appropriate cut-off points can be found

that allow to remove parts of the artefact and preserve the signal of

interest. EOG artefacts consist of low-frequency components, there-

fore using high-pass filter will remove large part of these artefacts.

This filter can be used in systems that rely on features extracted from

high frequency components of the EEG signal, such as Mu and Beta

rhythms. For EMG artefacts, which consist of high-frequency compo-

nents, low pass filter can be used.

Regression

The most popular method of artefacts removal is the use of linear

combination of EOG-contaminated EEG signal and the EOG signal

(Croft and Barry, 2000). It is assumed that EEG signal collected

on the scalp is a linear combination of signals resulting from brain

activity and EOG artefacts. By subtracting EOG signal from the

contaminated EEG signal we can obtain the true EEG signal. A

constant K is introduced to specify the amount of EOG signal to be

subtracted. One of the most popular techniques of estimating the

value of K is linear regression (Croft et al., 2005). The different types

of K can be estimated for different types of EOG (Gratton, 1998)
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artefacts and different frequencies of EOG artefacts (Gasser et al.,

1985). One of the main disadvantages of this method is the fact that

EOG signal is also contaminated by EEG signal, therefore using this

method will always result in removing part of genuine EEG signal.

Blind Signal Separation

In artefact removal, Blind Signal Separation (BSS) identifies the com-

ponents that are attributed to artefacts. This part of the signal is

removed and the signal is reconstruct without these components. Two

important techniques of BBS are used in BCI: Independent Compo-

nent Analysis (ICA) and Principal Component Analysis (PCA). These

methods are also used in feature extraction and are described below.

ICA has been successfully used to remove ocular artefacts in BCI by

Jung et al. (2001) and Vigário et al. (2000). De Clercq et al. (2006)

have used ICA to remove muscle artefacts. PCA has been used by

Lagerlund et al. (1997) to remove ocular artefacts. The main advan-

tage of BBS techniques is the fact that they do not require any EOG

information to perform artefact rejection, however visual inspection

is often required to identify the artefact components. The main dis-

advantage of the BBS methods is the requirement of independence of

the artefacts from the signal of interest. This requirement is especially

important in case of PCA and it cannot always be met, as the eye and

muscle movement are often strongly correlated with the performed
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task and therefore with the EEG signal.

Instead of avoiding, rejecting or removing signal artefacts some human-

computer interface (HCI) systems acquire artefacts and process them

to provide the communication path. An example of this kind of sys-

tem that allows users to control a spelling program and web browser

was proposed by Królak and Strumi l lo (2009). Some systems combine

BCI technology with artefact processing. This kind of systems provide

good reliability, often greater than BCI systems, they cannot however

be classified as BCI, as the communication between the man and the

machine involves the use of muscles. Moreover, these systems cannot

be used by severely disabled people for whom the control of voluntary

movements is impaired.

2.7 Feature Extraction

BCI tries to classify patterns in brain signal according to its features.

In order to successfully classify signal patterns appropriate features

that distinguish the patterns have to be extracted. Feature extraction

algorithms attempt to find the features best capture the similarities

within the class and differences between the classes. The fact that

brain signals are very noisy and the signal of interest may be over-

lapped by signals generated by other brain activities that are not

related to the performed task as well as signals generated by mus-
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cles and external noise (e.g. electrical noise) makes this task very

challenging. The techniques used for feature extraction can be cate-

gorised into a number of distinctive groups: dimensionality reduction,

time frequency algorithms and common spatial pattern algorithm.

2.7.1 Dimensionality Reduction

In BCI systems, especially those EEG based feature vectors are often

of high dimensionality. EEG samples from multiple channels are usu-

ally concatenated to form feature vectors. Dimensionality reduction

attempts to limit the size of the feature vector to make classification

more robust and less computationally demanding.

Principal Component Analysis

Principal Component Analysis is a statistical procedure that trans-

forms (using orthogonal transformation) a set of observations (some

of which may be correlated) into uncorrelated variables called princi-

ple components. The number of principle components may be lower

or equal to the number of original variables. The first component

accounts for the largest amount of variance in the data. Every next

component accounts for lower chunk of variance. If lower number of

components than the number of original variable explains all the vari-

ance then the number of principle components will be smaller than the

number of original variables. In practice, the components that explain
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very small amount of variance may be excluded as insignificant and

the dimensionality of data is reduced.

PCA does not guaranty the most optimal dimensionality reduction

as the produced components may not contain the features that best

distinguish between the classes, however it has been proven to be a

reliable method of noise reduction.

Independent Component Analysis

As we have already said, signals collected on the top of the scalp are a

mixture of signals from different sources (multiple cognitive activities

and artefacts). Independent Component Analysis tries to separate the

components of the initial signal. The assumptions required by ICA are

that the components of the signal are non-gaussian and independent.

ICA can be used for pre-processing (e.g. removal of ocular artefacts)

(Gao et al., 2010), however artefacts are not always independent of the

neural activity that we try to classify. In this case removal of artefacts

can lead to the removal of components that would be good features

for classification.

2.7.2 Time-frequency Algorithms

Time-frequency algorithms attempt to transform the signal from time

to frequency domain. The most often used type of time frequency al-

gorithm is Fourier transform (for explanation see Sanei and Chambers
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(2008)). This algorithm is sometimes used in BCI to provide a simple

measure of participant’s state.

Wavelet Transform

Fourier Transform provides information about the frequency content

of the signal; it does not however provide information about the tem-

poral position of this frequency content and this information is very

important for feature extraction. To solve this problem a short term

Fourier transform (STFT) was proposed. The STFT partitions signal

into small time windows and applies FT to these time windows. This

method creates a trade-off between the temporal and frequency resolu-

tion. The shorter the time window the higher the temporal resolution

and the lower the frequency resolution, and vice versa. To overcome

this limitation, wavelet transform (WT) uses mother function that

is applied to a modulated window that is shifted at various scales.

This allows WT to provide good spatial and temporal resolution. WT

has been successfully used to extract features in P300, ERP and SCP

based BCI systems (Bostanov, 2004; Senkowski and Herrmann, 2002;

Mason and Birch, 2000). One of the drawbacks of WT is the fact

that the success of this method relies on the appropriate choice of the

mother function.
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Matched Filtering

In Matched Filtering a known signal (template) is correlated with an

unknown signal to detect the presence of known signal in the unknown

signal. In EEG-based BCI the EEG signal is correlated with a number

of templates, where each template represents different intention of

the user. The higher correlation implies better matching between the

signal and the user’s intention.

2.7.3 Common Special Pattern

In Common Special Pattern (CSP) the EEG signal is projected into

a subspace where the similarities between classes are minimised and

differences are maximised. This data transformation creates output

data with the optimal variance for subsequent classification. CSP has

been shown to be effective for data motor imagery based BCI (Wang

et al., 2006).

2.7.4 Genetic Algorithm

Genetic algorithm (GA) belongs to the larger class of evolutionary

algorithms. It is an optimization procedure that mimics the process

of natural selection. GA generates solutions to optimization problems

using techniques inspired by natural evolution, such as inheritance,

mutation, selection, and crossover. In the field of BCI, GA has been

used as a feature extraction method (Dal Seno et al., 2008). In GA,
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the optimal solution is obtained by an evolution of a population of can-

didate solutions (called individuals, creatures or phenotypes). Each

candidate solution possesses a set of properties (called chromosomes

or genotype) which are encoded as strings of binary or non-binary in-

formation. These strings can be mutated or altered. Different types

of GAs are used. A simple GA is presented here.

GA starts with a number of randomly generated candidate solutions,

the initial population. If information regarding the previous final so-

lutions is available, the initial population can be directed towards the

areas where optimal solutions are more likely to be found using smaller

number of iterations. The fitness of each of the candidates in the pop-

ulation is evaluated and some of them (those with lower fitness) are

discarded to create space for newly generated individuals. Others can

be selected as parents to create the next generation. New individ-

uals are created by crossover operation. In this step, chromosomes

of previously selected parents are fragmented and combined to create

a new offspring. To keep the population size stable, the number of

offsprings is usually the same as the number of discarded candidates

from the previous generation. After the crossover step, mutations are

introduced to avoid being trapped in local sub-optimum and explore

the entire search space. The algorithm is terminated when one of the

criteria is met: (1) solution is found that satisfies minimum fitness, (2)

predetermined number of generations is reached, (3) allocated time is
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reached or (4) the results have reached a plateau – each successive

iteration no longer produces better results.

2.8 Classification

BCI systems employee machine learning algorithms for classification

of neurological signals. Two different approaches in machine learning

include regression and classification. Regression is mostly used to

predict a continuous value of a parameter (e.g. price of a house given

area, number of rooms and age of the house) and is of little use in

BCI. Classification allows assigning a sample value into a number of

discrete classes (e.g. reaction to target or non-target letter in BCI

speller). Two types of classification can be distinguished: supervised

and unsupervised. In case of unsupervised classification the training

data does not contain labels (information regarding the class to which

each sample belongs). The procedure attempts to find the classes in

the data and then assign the test samples to the classes created. In

supervised learning the label is provided. Supervised classification is

the method most often used in BCI. The most popular classification

algorithms are discussed below.

2.8.1 Artificial Neural Networks

Artificial Neural Networks (ANN) are, together with linear classifiers,

one on the most often used machine learning methods. ANN were
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inspired by the structure and the functionality of brain cortex (see

section 2.4) and are a simplified representation of the cortex. Artificial

neural network is a system of neurons which are interconnected.

A typical ANN used in BCI is a Multilayer Perceptron (MLP), which is

composed of a several layers of neurons (see Figure 2.4). The number

of hidden layers may be higher than one. Each neuron connects to the

neurons of the previous layer and the output neurons determine the

class of the input feature vector (Bishop et al., 1995).

Figure 2.4: Visual representation of neural networks. Circles represent neurons organised in three

layers and arrows represent connections.

2.8.2 k-Nearest Neighbours Classifier

k-Nearest Neighbours Classifier is based on the assumption that mem-

bers of different classes create clusters in the feature space; which
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means that if we plot samples belonging to different classes in n-

dimensional space (where n is the number of features taken into ac-

count - length of the feature vector) the samples of different classes

will form distinctive clusters. Measuring the metric distance between

the sample to be classified (test feature vector) and k nearest neigh-

bours (samples lying closest to the test sample), taking into account

the class to the neighbours allows to class the test sample as a mem-

ber of one of the classes. In a very simple example, the test sample is

included into the class from which the higher number of nearest neigh-

bours comes. k-Nearest Neighbours Classifier is proven to be effective

in low-dimensional vectors; therefore its use in BCI is limited. It has,

however been successfully used in MI-based BCI with multiple classes

(Schlögl et al., 2005; Kayikcioglu and Aydemir, 2010).

2.8.3 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) is by far the most popular classi-

fication algorithm used for BCI. LDA provides relatively good classi-

fication accuracy with relatively low computational complexity. LDA

is therefore ideal for BCI systems that require fast response with low

computational power. LDA assumes that the classes are linearly sep-

arable by a hyperplane (for two classes) or a number of hyperplanes

(for more than two classes) in the feature space. The class, to which

the test sample belongs, depends on which side of the hyperplane it is
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found (see Figure 2.5). A number of BCI systems used LDA for signal

classification (Blumberg et al., 2007).

Figure 2.5: On the left, visual representation of LDA. On the right, visual representation of SVM.

Both for two-class problem.

2.8.4 Support Vector Machine (SVM)

Support Vector Machine (SVM) classifiers are similar to LDA classi-

fiers. Similarly to LDA, SVM constructs a hyperplane or a set of hy-

perplanes and separate the feature vectors into several classes. How-

ever, SVM introduces margins which are the distance between the

hyperplane and the nearest training samples (see Figure 2.5). The

position of the hyperplane is selected to maximise the margins.

2.8.5 Combining classifiers

Most BCI systems use a single classifier for classification. However,

recently systems that combine a number of classifiers have been pro-

posed. A combination of classifiers is likely to provide better classifica-

tion accuracy than one classifier. The following combination strategies
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can be used.

Boosting

In boosting a number of classifiers perform classification in cascade.

Each classifier focuses on the errors of the previous one. Boosting can

result in a very strong classifier based on several weak ones and it is

very unlikely to over-train. It is however very sensitive to mislabelling

of data. Boosting has been applied in BCI (Boostani and Moradi,

2004).

Voting

In algorithms using voting, a number of classifiers are used. Each of

the classifiers classifies the input feature vector and the final class of

the feature vector is the one which was selected by the majority of the

classifiers. Voting is the simplest and most popular way of combining

classifiers (Rakotomamonjy and Guigue, 2008; Qin et al., 2005).

Stacking

In case of stacking more than one ”layer” of classifiers is used. The

output of a set of primary classifiers (level-0) is feed to a meta-classifier

(level-1) which performs the final classification (Lee and Choi, 2003).
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2.9 BCI Applications

Different applications have been proposed for BCI. Historically the

researchers had been concentrated on clinical aspects of BCI such as

communication, motor restoration, neurorehabilitation, environmen-

tal control and locomotion. Recently, however the interests are shifting

towards entertainment. Each of the mentioned applications is shortly

described below.

2.9.1 Communication

As communication is an essential human activity, it has always been

one the main areas for BCI application. BCI technology provides the

ability to communicate for severely disabled people, who are other-

wise not able to do it. This kind of application, together with motor

restoration is the most pressing area of research in BCI. A number

of approaches have been used and they use different BCI paradigms.

What is common in all of the approaches is the fact that most of them

use a display of a keyboard on the screen and the user selects the

letter from the alphabet by the means of BCI. These devices are often

called spellers. Hinterberger et al. (2004) used slow cortical potentials

(SCPs) for letter selection. SCP requires extensive training. However,

paralysed users were able to move a cursor on the screen by altering

their SCP.
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The most popular BCI paradigm used for spellers is P300 paradigm.

The main advantage of this paradigm is the fact that P300 response

is spontaneous and does not require long training. Many systems of

this kind have been developed using different types of classifiers and

displays. To choose an appropriate letter (out of 26 in English alpha-

bet) each of the 26 letters has to be illuminated at least once. This

is very time consuming and the researchers try to minimise the time

required for letter selection by proposing different displays.

Townsend (Farwell and Donchin, 1988) developed a speller in which

the letters are illuminated in rows and columns. Their system con-

tained 36 symbols displayed in a 6 x 6 array. Rows and columns were

randomly illuminated (twelve illuminations in total). Each symbol was

illuminated twice - once in a row and once in a column. The identifi-

cation of the correct row and correct column allows finding the symbol

on which the users concentrated. Fazel-Rezai and Abhari (2009) pro-

posed a two stage approach to a BCI speller. The selection of the letter

is performed in two stages. Firstly, letters are organised in groups that

are presented together in different regions of the screen and flash to-

gether. In the first stage, the user chooses one of the groups and then

only the letters from this group are displayed. Recently, predictive dic-

tionaries, well known from mobile phones, have been adapted for BCI

spellers (Ron-Angevin and da Silva-Sauer, 2013). Predicted words are

displayed on the screen and the user can concentrate on one of these
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words instead of “typing them to the end”.

Other devices relying on BCI artefacts, like eye blinks, have been pro-

posed. These systems, however, cannot be classified as BCI, because

eye blinks engage muscles and the communication between the brain

and the machine is indirect.

2.9.2 Motor Restoration

Many neurological conditions such as spinal cord injury (SCI), multi-

ple sclerosis (MS) or stroke can destroy sensory and motor functions

dramatically decreasing people’s quality of life. BCI can provide help

for those people by restoring their motor functions. Two approaches

can be identified.

Functional electrical stimulation (FES) can be used if the functions

of some peripheral nerves and muscles are intact. Peripheral nerves

are depolarised by electrical currents which leads to contraction of

muscles. EEG-based BCI can be used to create commands that con-

trol the FES. Based on these technologies, Pfurtscheller et al. (2003a)

created a system that allows users to grasp a cylinder with paralysed

hand. For patients with more severe motor disabilities neuroprosthe-

ses can be used. In this case, the signals provided by EEG (or ECoG)

are translated into command that move a prostatic device, usually a

prostatic hand. Pfurtscheller et al. (2000) showed that Rolandic os-

cillations produced by motor imagery could be used to control a hand
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orthosis in tetraplegic patient with spinal cord injury, however long

training was required.

A different approach was proposed by Müller-Putz et al. (2005), who

used SSVEP-based BCI to control the prostatic limb. The user could

concentrate on one of flickering light build into the prostatic device

and depending which light the user concentrates on, different com-

mand would be send to the device.

2.9.3 Neurorehabilitation

The studies described in section 2.9.2 provide an alternative for normal

motor functions using prostatic or orthotic devices. BCI can also be

used to restore natural motor functions in people who suffered stroke.

In this case, a BCI system is used as neurofeedback device that allows

for restoration of the functions in the brain areas damaged by stroke

relying on the phenomenon of brain plasticity.

In a study of clinical population, Ang et al. (2010) showed that stroke

patients could control BCI based on motor imagery and a four week

training led to significant improvement in motor control. Systems us-

ing MEG-based BCI technology have also been successfully used for

rehabilitation of stroke patients. As describer in section 2.3.4, MEG

provides better spatial resolution which allows for more precise target-

ing of the damaged brain area. Caria et al. (2011) used a combination

of EEG and MEG BCI training to restore lost motor functions in
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a post-stroke patient, and using fMRI and diffusion tensor imaging

showed changes in the brain structures associated with motor control.

2.9.4 Environmental Control

One of the main goals of BCI is to promote the independence of people

with severe mobility problems and decrease their reliance on carers and

social support systems. People with mobility and motor difficulties are

often housebound and moving inside the house as well as controlling

household appliances poses difficulties. BCI can help in solving these

problems.

Large number of systems have been developed that attempt to pro-

vide environmental control for the users. Most of these systems rely

on EEG recording. Gao et al. (2003) developed a system that con-

trolled video tape recorder, television set and air conditioning using

SSVEP-BCI. The main advantage of this system was the small amount

of training required.

A system developed by Cincotti et al. (2008) allows users with varying

disabilities of motor functions to control domestic appliances (lights,

TV and stereo sets, a motorized bed, an acoustic alarm, a front door

opener, and a telephone, as well as wireless cameras to monitor the

surrounding environment). A combination of traditional inputs (key-

board, joystick), head tracking and sensorimotor based BCI is used to

control the system. fNIRS-BCI has also been proposed for this pur-
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pose. A study by Ayaz et al. (2011) showed that 84 per cent of users

(healthy participants) of fNIRS-BCI were able to use it to engage with

object in virtual environment. Participants were required to navigate

a maze using computer keyboard, however to enter and exit the maze

they had to open virtual door and this could only be done by interact-

ing through fNIRS-BCI protocol. This study does not present the use

of fNIRS-BCI in real home environment; it does however show that

application of fNIRS-BCI in home environment is feasible.

Invasive techniques have been shown to be very promising for this

type of applications. Tetraplegic user with sensors implanted in pri-

mary motor cortex was able to control devices such as television, as

well as email application, while conversing (Hochberg et al., 2006).

2.9.5 Locomotion

A very important aspect of independence is the ability to move freely,

something healthy people take for granted. Application of BCI tech-

nology enables users with severe motor disabilities to control wheelchair.

This is however a difficult task as the low rate of information trans-

fer makes a continuous and fluid control of a wheelchair challenging.

However, a number of studies using different BCI paradigms often

coupled with other technologies show that this goal is in fact feasible.

Tanaka et al. (2005) developed a BCI controlled wheelchair based

on motor imagery. The limitation of this approach was that the
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wheelchair could move only between specified positions on the floor.

This idea was refined by Carlson and Millán (2013) who combined

motor imagery BCI with computer vision/obstacle detection and mo-

tion planning to create a truly intelligent BCI wheelchair, which can

successfully navigate in changing environment. Preliminary studies

showed that four healthy users could master the use of this wheelchair.

Iturrate et al. (2009) applied P300 paradigm to this problem. In their

system the user is presented with a simplified surrounding displayed

on the screen in front of him. A number of flickering stimuli is overlaid

on the display. By concentrating on one of the stimuli the user chooses

the area to which to move the wheelchair. This machine was also able

to avoid collisions with obstacles in the environment detected by a

laser scanner.

2.9.6 Entertainment

The main focus of the BCI field has been on creating application

for disabled users. Improvement in the technology and the advent

of relatively cheap and portable devices like Emotive Epoch (Emo-

tiv EEG Neuroheadset) and NeuroSky MindWave (NeuroSky Mind-

Wave), available to the wider public, opened the possibility for in-

dependent programmers to create entertainment applications and the

use of BCI as an input device for computer games. Researchers also

explore these possibilities.
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Simple games such as pong and pacman have been adopted to use

BCI. Marshall et al. (2013) and Bordoloi et al. (2012) created pacman

games in which a user could navigate a maze using motor imagery.

A pong game relying on simple biofeedback (Moyes and Jiang, n.d.).

Different variants of the tetris game have presented by Pires et al. re-

lying on P300 and motor imagery BCI. BCI technology was applied to

a well know computer game World of Warcraft by van de Laar et al.

(2013). They used the power of alpha band over parietal regions,

which is believed to be linked to relaxation. By controlling the alpha

band the user could change the controlled avatar from a bear - for a

state of low relaxation to a druid - for a state of high relaxation. The

abilities of the avatars in the game correspond to the state indicated

by the measured alpha frequency in EEG signal. Relaxed user con-

trolled a druid that requires intelligence and mental concentration and

a user in the state of ”stress or agitation” controlled a bear (for review

of BCI technology in computer games see Marshall et al. (2013).).

2.9.7 Other and Potential Applications

The imagination of engineers and developers has no limits. Some of

their creations include: BCI-controlled cat ears that show the user’s

mood (Show your mood with brain-controlled ”NECOMIMI” cat ears)

as well as a mind controlled flame thrower (The joy of mind-controlled

flamethrowers). BCI has also been applied in neuromarketing; one of

60



rapidly growing areas of market research. A number of companies

offering this kind of services can be found online (NeuroFocus; Neuro

Insight). Using direct information about the neural activity of the

users can provide an inside to costumer behaviour not possible to ob-

tain by conventional market research.

With further improvement of BCI technology new and exciting appli-

cations can be imagined. BCI systems that monitor users’ attention

level while steering a car, a train or a plane would greatly improve

the safety of transport. At this point in time, the amount of electrical

noise in these environments make this applications infeasible, how-

ever with further improvement in artefact removal they may someday

become part of our everyday lives.

2.10 BCI Illiteracy

BCI provides alternative means of communication for people with mo-

tor impairments as well as tools for rehabilitation and entertainment,

but not everyone can benefit from these advantages of BCI technol-

ogy. For each paradigm there is a group of people, around 20 per cent,

that are not able to successfully communicate through BCI (Tan and

Nijholt, 2010). This problem may be caused by a number of reasons.

Some users may not be able to use a certain paradigm due to the in-

dividual variations in their brain structures.
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All healthy brains have the same structures in roughly the same places,

however some cortical areas may not produce EEG signal detectable

on the scalp. For example, this may result from the folding of the

brain. If the area of interest is placed deep in the brain sulcus the ac-

tivity generated by this area may be difficult to detect on the surface

of the scalp. Some users may also produce very strong muscle arte-

facts that may decrease signal-to-noise ratio in the recorded EEG and

make the classification of the signal difficult. This may be observed

in patients with cerebral palsy (CP), a developmental condition which

symptoms include spasticities, spasms and other involuntary move-

ments (e.g. facial gestures) as well as unsteady gait and problems

with balance (Rosenbaum et al., 2007). Patients with very severe CP

may be unable to walk or speak and would greatly benefit from the

development of suitable BCI technology.

BCI performance may also be affected by other psychological and cog-

nitive factors. These factors, as well as the mechanisms determining

performance and illiteracy in three of the most popular BCI paradigms

are described below.

2.10.1 Illiteracy in SMR-based BCI

EEG equipment can detect sensorimotor, such as mu (7–13 Hz) and

beta (13–30 Hz) frequency bands (Pfurtscheller and Lopes da Silva,

1999). These rhythms are strongly associated with motor action. The
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amplitude of sensorimotor rhythms changes when neural activity re-

lated to motor action is performed, although the actual movement is

not necessary (Jeannerod, 1995; Pfurtscheller et al., 1997) and im-

agery of motor action produces sensorimotor rhythms similar to the

ones produced by movement (Jeannerod, 1995). Moreover, users can

learn to control the modulation of sensorimotor rhythms, making this

brain signal a prime candidate for use with BCI systems (Pfurtscheller

and Neuper, 2001; Blankertz et al., 2010).

Sensorimotor rhythms manifest as two types of amplitude modula-

tions: They either appear and their amplitude is enhanced, known as

event-related synchronization (ERS), or disappear and their amplitude

is reduced, called event-related desynchronisation (ERD) (Pfurtscheller

and Neuper, 2001). ERD can be observed in the mu band (where

it starts 2.5 s before the onset of the movement, reaches maximum

shortly after the onset of the movement and recovers to the baseline

level within a few seconds) and in the beta band (a short ERD can be

observed during movement initiation followed by ERS that reaches its

peak after movement execution. This ERS in beta band occurs while

the ERS is still observable in mu rhythm. Another rhythm that can

be related to movement execution and imagery is gamma rhythm (36-

40 Hz). Gamma ERS can be observed shortly before the movement

onset.

Communication using ERD-based BCI systems is possible if the user
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can reliably produce activation that result in different EEG patterns

associated with different movements (Neuper et al., 2005). Voluntary

modulation of sensorimotor rhythms through motor imagery is pos-

sible, it is, however not easy. It is important to concentrate on first

person, kinaesthetic imagery as the third person visual imagery pro-

vides activation patterns much different than the ones produced by

real movement.

It has been found that proficient ERD-based BCI users engaged signif-

icantly larger cortical area (measured by fMRI) during motor imagery

and motor observation (Halder et al., 2011) as compared to illiter-

ate users. This difference was not observed during motor execution.

Dickhaus et al. (2009) found the performance on SMR-based BCI can

be predicted by power spectral density (PSD) measured during two-

minute period of resting state over left and right motor cortex. Re-

search by Hammer et al. (2012) showed that visuo-motor coordination

and the ability to concentrate on the task correlated positively with

performance. Kinaesthetic motor imagery has also been found to be

predictive of SMR-based BCI performance.

Training systems for sensorimotor modulation have been developed.

Some provide visual or auditory feedback (Nijboer et al., 2008), other

allow trainees to observe their cortical activity on-line (Hwang et al.,

2009). Many of the best known BCI systems: Wadsworth (Wolpaw

et al., 2000), Berlin (Blankertz et al., 2008) or Graz (Pfurtscheller
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et al., 2003b) employ sensorimotor rhythms as the control signal.

2.10.2 Illiteracy in P300-based BCI

The repetition of events and the recording and averaging of the evoked,

time-locked neural signal yields what is known as an event-related po-

tential, which contains characteristic peaks that have amplitudes and

latencies, and which can be used to somewhat disambiguate the signal

from the noise in the EEG data. Peaks are called components when

they are reproducible and named after their amplitude and latency.

The P300 (also called P3) wave is a component of an event related

potential (ERP) which is elicited by infrequent auditory, visual or so-

matosensory stimuli. P300 is a positive peak in EEG signal occurring

300 msec after onset of the event, normally elicited using the odd-

ball paradigm, as a response a low probability stimulus that appears

amongst high probability stimuli (Farwell and Donchin, 1988; Donchin

and Smith, 1970). P300 is also augmented when one perceives a stim-

ulus that is regarded to be important; a stimulus one pays attention

to (Gray et al., 2004).

In P300-besed BCI systems, the classifier tries to identify which flash

elicited a robust P300. In order to successfully encode user’s inten-

tions the attended stimuli has to produce a P300 that is different from

the P300 produced by non-attended targets. A small P300 that is not

very different from the EEG signal elicited by non-target stimuli will
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result in poor BCI performance. According to Polich (1986) and Con-

roy and Polich (2007) ten per cent of participants do not produce P300

components and these subjects may have difficulty using P300-based

BCI.

2.10.3 Illiteracy in SSVEP-based BCI

Steady state visually evoked potentials (SSVEP) are electrical signals

in the brain elicited in response to visual stimuli of a specific frequency

(between 3,5 Hz and 7 Hz) (Beverina et al., 2003). SSVEP produced

by a repeated flash stimulation shows a sinusoidal-like waveform of

frequency the same as (or the multiple of) the frequency of the stim-

ulus. In typical, SSVEP BCI the users can communicate with the

machine by concentrating his eyes on a flashing target on the screen

(Zhang et al., 2010). The acquired EEG signal is transformed into

frequency domain. A spike can be detected for the frequency of the

stimulus or a multiple of that frequency (Allison et al., 2008). If the

spike is large it can be easily distinguish from the background noise.

A small spike, difficult to detect, may result in poor BCI performance.
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2.11 Attention

Attention is a cognitive process that involves selective concentration

on one object or thought while ignoring other stimuli. It can also be

understood as the allocation of cognitive resources (Anderson, 2009,

p. 64). This definition captures the essence of attention, but it does

not, however, fully explain the diversity of cognitive processes involved

in this multifaceted cognitive ability.

Corbetta and Shulman Corbetta and Shulman (2002) proposed a model

of attention with two constituent parts, where two top-down and

bottom-up systems are proposed.

The top-down system is involved in voluntary orienting and its ac-

tivity increases when one is presented with cues indicating where or

when to direct attention.

The bottom-up system is an involuntary attention system that in-

creases activity when abrupt changes in sensory stimuli take place.

Another model of clinical origin was proposed by Sohlberg and Ma-

teer (1989). The model was based on the clinical experience with brain

damage patients and distinguishes five levels of attention:

1. Focused attention which is understood as the ability to respond

to visual, auditory of tactile stimuli.

2. Sustained attention describes ability to continuously respond while

performing a repetitive task.
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3. Selective attention also called ”freedom from distractibility” is un-

derstood as the ability to maintain a behavioural or cognitive task

despite competing destructions.

4. Alternating attention is a type of mental flexibility that allows

people to shift their focus of attention between tasks with different

cognitive requirements.

5. Divided attention is the ability to respond simultaneously to mul-

tiple tasks or multiple task demands.

These five levels of attention are presented in hierarchical order. This

is also the order of attention recovery after brain damage.

Posner proposed (Posner and Petersen, 1990; Posner and Boies, 1971)

tripartite model of attention. This model comprises three functionally

distinctive networks that are responsible for performing the operations

of alerting, orienting, and conflict monitoring (executive attention).

Alerting is a faculty that allows one to stay vigilant towards the sur-

rounding, orienting is responsible for directing attention towards ap-

pearing stimulus and conflict monitoring is used when there is a con-

flict between competing tasks and responses. This model has been

validated using behavioural and neuroimaging studies. The neuro-

logical components of all three attentional systems are presented in

Figure 2.6.
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Figure 2.6: Neurological components of three attentional networks: squares - alerting, circles -

orienting, triangles - executive attention. Adapted from (Posner and Rothbart, 2007).

Posner also developed a task that allow to measure attention across

the three proposed dimensions (see section 4.6.2).

2.12 Dysfunctions of Attention

Attention plays an important role in many areas of life. People with

attention disorders such as attention deficit hyperactivity disorder

(ADHD)or attention deficit disorder (ADD) (Association, 2000), which

is regarded to be one of the most common psychiatric disorder amongst

children (Kooij et al., 2010), experience lower quality of life (Danck-

aerts et al., 2010). ADHD is also associated with increased health

cost for the people and their families, disruption in professional and

personal life as well as lower earning and increased crime rate (Smith,
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2009). In light of these facts finding an efficient ADHD therapy be-

comes an important social and economic challenge.

2.13 Meditation

Meditation has been a subject of research since 1970s (Wallace, 1970),

however no single definition of meditation has yet emerged. The lack

of a single definition may be dictated by the fact that the word medi-

tation describes different practices that originated in different spiritual

traditions. Lutz et al. (2008) grouped meditation into two categories:

focus attention and open monitoring.

1. Focus attention involves sustaining attention of an object (e.g.

sensations caused by breathing). To keep the concentration on the

chosen objects the meditator has to constantly monitor the quality

of attention. Practicing FA meditation trains three skills involved

in the attention regulation. The first is the ability to monitor

distractions without destabilising the focus on chosen objects. The

second is the ability to promptly disengage from the distraction

and the last one is the faculty that allows to promptly return the

attentional focus to the chosen object.

2. Open monitoring, also called mindfulness, involves non-reactive

monitoring of the content of experience from moment to moment.

Focus attention meditation is often used as an initial stage to
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calm the mind and deal with distractions. When this is obtained,

one tries to remain in the monitoring state while being attentive

to everything that occurs in one’s mind without focusing on any

explicit object.

Meditation has been reported to produce beneficial effects in many

aspects of life, from stress reduction (Reibel et al., 2001; Nidich et al.,

2009), through health related behaviour (Haaga et al., 2011) to cog-

nition (Biegler et al., 2009) and overall improvement in quality of life

(Reibel et al., 2001).

Effects of meditation can be observed in structural changes of the brain

and changes in EEG signal. Practice of meditation results in increased

cortical thickness in regions associated with attention, interoception

and sensory processing (Lazar et al., 2005; Grant et al., 2012).

2.13.1 Meditation as Training of Attention

A number of studies have shown the effects of meditation on cognitive

functions such as short term memory and attention. MacLean et al.

(2010) showed that intensive meditation improves sustained attention.

Results obtained by Tang et al. (2007) showed that even short (5–day)

meditation training can bring improvements in attention.

Jha et al. (2007) speculate that focused attention meditation results

in changes to dorsal (voluntary) system and open monitoring changes

ventral (involuntary) attention system.
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2.13.2 Attention, Meditation and BCI Illiteracy

A number of articles describe the use of BCI for attention training. For

instance, Jiang et al. (2011) developed a three-dimensional computer

game which allows users to control the game by focussing attention

on particular stimuli on the display. The aim of this game is to train

attention and combat the symptom of attention deficit hyperactiv-

ity disorder (ADHD). A similar system was developed by Lim et al.

(2012). The researchers investigated the BCI-based attention training

game system on unmedicated ADHD children and obtained significant

improvement after 8 weeks of training.

Meditation has also been linked to BCI performance. Lo et al. (2004)

reported that mind attentiveness focus during the beginning stage of

Zen meditation allows meditators to better control their EEG signal

and improves the proficiency in event-related desynchronisation based

BCI. They suggest that meditation might be used as training for BCI.

Similarly, regular practice of meditation has been shown to be re-

lated to improved classification accuracy. In a study by Eskandari

and Erfanian (2008) meditation practitioners achieved better classifi-

cation accuracy than the control group. Mindfulness meditation was

also investigated with respect to P300-based BCI (Lakey et al., 2011).

Subjects who engaged in mindfulness meditation induction before BCI

task were significantly more accurate than the control subjects.

72



2.13.3 Conclusion

Research into BCI illiteracy has concentrated mostly on demographic

factors of this phenomenon (see section 2.10). The researchers have

not yet investigated the psychological determinates of BCI perfor-

mance. The research cited in section 2.13.2 indicates the existence

of such relation. The two experiments presented in this thesis investi-

gate the relation between attention and BCI performance.
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Chapter 3

Experiment 1

3.1 Introduction

This chapter presents the results of an experiment investigating the use

of an off-the shelf BCI system to induce a state of relaxation, much

like a meditative state. The system uses grid based road network

generator as the visual feedback. The road network displayed on the

screen changes depending on input collected from the Emotiv Epoch

device. The road network generator was used to build on the previous

research described in Appendix G. To stay as close as possible to what

BCI is ”in the real world”, we decided to use Emotiv Epoch device, as

it is one of the off-the-shelf systems most used in the BCI community

(Nicolas-Alonso and Gomez-Gil, 2012).

We compared three following conditions (independent variable): (1)

grid - participants were asked to relax while observing a grid based

road network described in section 3.3.2. Feedback was provided to par-
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ticipants where more symmetrical display corresponded with higher

level of relaxation, (2) video - participants were asked to relax while

watching a video, (3) eyes closed - participants were asked to relax

with their eyes closed. Grid was the experimental condition and video

and eyes closed were the control conditions. On-line feedback was pro-

vided using emotive affective suite and the measure of meditation was

used (for more information see section 3.3.2). EEG signal was also col-

lected for further off-line analysis as well as information regarding the

subjective user experience (dependent variables) were collected and

analysed.

We hypothesised that the use of on-line feedback would lead to higher

level of relaxation measured by EEG and users’ ratings.

3.2 Participants

Eight participants took part in the experiment. The group consisted

of 3 males and 5 females. All participants had correct or corrected to

normal vision and no neurological disorders which could affect the use

of BCI.
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3.3 Experimental Setup

3.3.1 Hardware

The hardware components of the proposed system include the Emotiv

Epoch neuro-headset and a laptop PC. The headset is equipped with

14 wet electrodes and 2 references. The electrodes are placed on the

international 10-20 system (Niedermeyer and da Silva, 2005), an inter-

nationally recognized method of electrode placement for EEG testing.

The headset provided pre-processed EEG and gyroscope data that we

subsequently processed using Emotiv SDK EmoEngine.

3.3.2 Software

The software side of our BCI system was developed using the Emo-

tiv Development Kit and written in the C++ programing language,

spanning interfaces to the Emotiv Epoc headset (Emotiv EEG Neuro-

headset) and a display using OpenGL (OpenGL). The stimuli used in

this project were a simple representation of a grid based road network

(see section 3.3.2). In the proposed experiments the participants could

manipulate two of the display parameters through the BCI system: a)

the amount of vertex displacement and b) the number of roads added

or deleted. The program continuously queried the EmoEngine (Emo-

tive Software Development Kit) for access to the EEG data, through

several variables categorised in the following three groups.
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1. Affective - allows to monitor the user’s emotional state in real time

and includes the following parameters: short and long term excite-

ment, engagement/boredom, frustration and meditation. Accord-

ing to Emotive Software Development Kit User Manual (Emotive

Software Development Kit User Manual), engagement is under-

stood as the experience of alertness and conscious direction of

attention towards task related stimuli and is characterised by in-

creased psychological arousal, increased beta waves and attenu-

ated alpha waves, while excitement is experienced as an aware-

ness or feeling of psychological arousal with a positive value. It

is characterised by an activation of sympathetic nervous system

that manifests in a range of psychophysical responses e.g. pupil

dilation, eye widening, sweat etc. Emotive documentation does

not provide any explanation of mediation and frustration. How-

ever according to (Vaitl et al., 2005) meditation is normally used

to describe practises of engaging a specific attentional set that af-

fects mental event and helps controlling the body and the mind.

The state of meditation is normally associated with the increase

in alpha and theta band power (Andresen, 2000). Emotional

stress (frustration) is often associated with hemispheric asymme-

try. The alpha band power in the right hemisphere is increased

under stress conditions (Coan and Allen, 2004). It is, however un-

known whether these EEG correlates are used by emotive engine
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to calculate the measures of meditation and frustration.

2. Expressive - the signal measured by the headset is used to interpret

user’s facial expressions e.g., smile, eye blink.

3. Cognitive - interprets a user’s conscious thoughts and intents. The

use of these measures requires training in which the user chooses

a mental operation (e.g., motor imagery of moving the right arm)

and this operation is associated with an operation in the virtual

environment (e.g. moving to the right).

The cognitive parameters are intended to control object in virtual

environment or the real world, however each of these parameters can

be used for that purpose.

Road network generator

The road network generation algorithm 1 (see Appendix G), features

were chosen empirically, based on a visual inspection of grid-like cities

using Google Maps (Google Maps). The network is generated in a

number of stages. First, a basic grid is generated that includes ver-

tices as well as tertiary horizontal and vertical roads joining each ver-

tex to its neighbours. At this stage the number of cells is entered as

parameters to the generator. In the second stage, a number of streets
1We developed the road network generator in the first part of this thesis work, and we chose to use it for

performance feedback because it permits the visual representation of orthogonal dimensions. This part of the work
is described in O’ Connor, S., Fialek, S., Roesch, E. B. and Peters, C. (2012). Towards Procedurally Generated
Perceptually Plausible Inhabited Virtual Cities: A Psychophysical Investigation, Proceedings of Intelligent Agents
in Urban Simulations and Smart Cities Workshop, ECAI 2012, Montpellier, France.
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(collection of roads joined together) are removed. Primary and sec-

ondary streets are then introduced. Two final parameters which will

be controlled by the user are: vertex displacement and number of roads

deleted. An example of the effects of alteration of the parameter vertex

displacement is shown in Figure 3.1. Participants were presented with

the changes in the display, reflecting their ”neural state” as registered

by the Emotiv kit, in real time.

Figure 3.1: Example outputs of the grid based road network generation algorithm with different

values of vertex displacement parameter (from 0.0 in the top left to 1.0 in bottom right).

Similar Emotive applications using affective measures have been de-

veloped and these include Mindala (Mindala), in which users can train

their meditation skills by controlling a mandala and Spirit Mountain

(Spirit Mountain Demo Game) (demo version available at the mo-

ment) in which users have to show control of affective parameters

(excitement) to complete tasks in the game.
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3.4 Experimental procedure

Before the experiment Emotiv Epoc headset was applied and cali-

brated using Emotiv Control Panel (Emotive Software Development

Kit User Manual) to ensure the good connectivity and quality of sig-

nal. During the experiment participants were seated in front of the

computer and instructed to relax why performing all three conditions.

To avoid the learning and fatigue effects the conditions were performed

in random order. After each condition the participants were asked to

rate level of relaxation on the scale form one to ten.

3.5 Data analysis

EEG data were pre-processed and analysed using custom scripts utilis-

ing the MatLab EEGLAB toolbox(Works, 2012; Delorme and Makeig,

2004). To compare the values of EEG spectra for the three conditions

repeated measures ANOVA was used followed by post-hock analy-

sis using t-test. To compare the frontal asymmetry for left (F7, F3,

AF3, FC5) vs right (F8, F4, AF4, FC6) frontal electrodes a t-test

was performed. A significance level of .05 was chosen and Bonferroni

correction was applied to counteract the problem of multiple compar-

isons. The data was also inspected for the violation of normality and

sphericity assumptions.
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3.6 Results

Figure 3.2: Comparison of averaged EEG bands for all electrodes and all three conditions (grid,

video, eyes closed). No significant results were found.

Figure 3.3: Comparison of EEG bands for each electrode and all three conditions (grid, video, eyes

closed). Significant results were found for each electrode.

Figure 3.4: Post-hoc comparison of EEG bands for each electrode for conditions grid and video.

No significant results were found.
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Figure 3.5: Post-hoc comparison of EEG bands for each electrode for conditions grid and eyes

closed. Significant results were found for all electrodes.

Figure 3.6: Post-hoc comparison of EEG bands for each electrode for conditions video and eyes

closed. Significant results were found for all electrodes except T7.

Figure 3.7: Topgraphy plot at 11Hz, for all conditions with statistical comparison. Significant

results were found for all electrodes.
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Figure 3.8: Topgraphy plot at 20Hz, for all conditions with statistical comparison. Significant

result was found only for on electrode T7.

Figure 3.9: Comparison of EEG bands for left (F7, F3, AF3, FC5) vs right (F8, F4, AF4, FC6)

frontal electrodes and all three conditions (grid, video, eyes closed). No significant results were

found.

Repeated measures analysis of variance ANOVA (grid vs. video vs.

eyes closed) showed significant differences for all electrodes across the

scalp (see Figure 3.3). Post-hoc analysis showed significant results

for grid vs. eyes closed and video vs eyes closed conditions (Figures

3.5) and 3.6) and no significant results for grid vs. video (Figure
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3.4. The significant results were mostly in the range of alpha power

which is demonstrated in Figure 3.7. Comparison between left and

right frontal activity showed no significant results for any condition

and any electrodes (Figure 3.9). The variance in amplitude between

the three conditions was also compared using F-test of equality of

variances and showed no significant results.

Repeated measures analysis of variance ANOVA was performed to

compare the power at frequency of 11 Hz (F(2,7) = 14.85, p ¡ 0.001).

The averaged values of power at frequency of 11 Hz were as follows:

eyes closed - 41.598, grid - 40.8588, video - 46.6733.

To compare the participants’ reported level of relaxation a repeated

measures analysis of variance ANOVA (before the recording vs. grid

vs. video vs. eyes closed) was performed. No significant differences

were found (F(3,7) = 2.28, p = 0.11).

3.7 Conclusions

The results show the participants did not gain a higher level of re-

laxation during grid condition as compared to video and eyes closed

conditions. Neither the spectrum analysis (Fig. 3.2, 3.3, 3.4, 3.5, 3.6,

3.7, 3.8) nor the analysis of frontal asymmetry (Fig. 3.9) indicated a

difference between the conditions. The analysis of participants’ pen

and paper responses also did not show the pattern. The significant
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result obtained is the higher level of alpha for eyes closed, which is

typically observed when people close their eye for a longer period of

time. The feedback provided to the participants did not result in

higher state of relaxation. The reason for this may be the type of

feedback used. Some participants commented that they did not feel

that they had influence over the shape of the road network and did

not feel that their actions or mental state had any influence on the

state of the road network. More direct and simpler feedback, easier to

understand for participants could provide in better results as well as

the use of better EEG equipment could make a difference. Moreover,

the measure of meditation used for on-line feedback was provided by

Emotiv Engine and it is unknown how it was calculated. It is there-

fore unknown how accurate the on-line feedback was and how closely

the on-line feedback corresponded to the measures used in the off-line

analysis.
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Chapter 4

Experiment 2

4.1 Introduction

As BCI illiteracy affect a large proportion of potential BCI users and

may become an obstacle in the popularization of BCI technology, in

the second experiment we decided to investigate the potential fac-

tors affecting BCI illiteracy. In this experiment we investigated the

relation between P300-based BCI performance and attention. In par-

ticular, with a view to investigating inter-individual differences in the

ability to control a P300-based BCI system and the role played by at-

tentional abilities, we recorded the users’ performance when interact-

ing with a tailored BCI system and measured their attentional abilities

along several dimensions, including temporal attention, which refers to

the ability to allocate processing resources over time, and three com-

ponents of the attentional system: alerting, orienting and executive

attention (Posner and Petersen, 1990). The results of two behavioural
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tasks were correlated with performance on P300-based BCI. We hy-

pothesise that better results in attentional blink task as well as score

in executive attention will correlate with better classification accuracy

on BCI task.

Figure 4.1: Adapted from Raymond et al. (1992) demonstrating the Attentional Blink. Panel a.

Participants’ time dubbed ”Lag-1 sparing”. After the blink has occurred, the cognitive system

slowly recovers. The single task condition is a control condition in which participants are asked to

respond to T2 while ignoring T1.

1. The attentional blink is an effect observed when participant are

presented with items of information rapidly flowing on the screen

(rapid serial visual presentation, RSVP), and occurs when the par-

ticipant is asked to perform a task on one particular target (see

4.1). As the participant is detecting and processing the target,

they are unable to detect and process the second target if it fol-

lows the first target in a window of time for about 300-500 msec

Raymond et al. (1992). This behavioural task provided a measure

of the participants’ ability to switch context rapidly, which is a
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critical ability when interacting with a P300-based BCI system.

Figure 4.2: Representation of endogenous and exogenous cues in the Posner Paradigm.

2. The Posner cueing requires the participant to detect a partic-

ular target, flanked with congruent or incongruent cues. Their

ability to perform can be broken down along three dimensions -

alerting, orienting and executive attention - by way of subtracting

the participant’s results when they undergo different experimental

conditions. Participants are seated in front of the computer and

instructed to focus their eyes on the fixation cross. After a short

period of time a cue is displayed on the screen. Shortly after the

cue is removed, the stimulus appears and participant is asked to

respond by pressing a key on the keyboard. The reaction time is

measured and analysed Posner (1980).
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Figure 4.3: Representation of display used in the experiment

The results of behavioural tasks were correlated with the performance

of the BCI task described in section 4.4 and the results are presented

in section 4.6.

4.2 Participants

Twenty eight participants took part in the experiment. The average

age of participants was 33.2 years. The group consisted of 17 males

and 11 females. All participants had correct or corrected to normal

vision and no neurological disorders which could affect the use of BCI.
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4.3 Experimental Setup

The experimental setup consists of a PC computer and Emotive EEG

device. The experiment was implemented using TOBI Signal Server

(TOBI Signal Server), Psychtoolbox (Psychtoolbox) and everything

was integrated in Simulink (Simulink). The Simulink model is pre-

sented in Figure 4.4.

Figure 4.4: Simulink model used in the experiment

4.4 Experimental Procedure

During experiment participants were seated in front of the computer

and performed three tasks. Two behavioural measures of attention

described above (section 4.1) and a BCI task during which participants

were required to concentrate on and count a particular letter to move

the red ball to either left or right while the letters were flashing in

random, unpredictable order (see Figure 4.3). This task used so called
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oddball paradigm described in section 2.10.2. Participants efficiency

in performing this task was assessed in an off-line analysis using BLDA

described below.

4.5 Data Analysis

4.5.1 Pre-processing

Before applying the classification function, a number of pre-processing

operations were applied to the data. The operations were applied in

the following order.

1. Referencing

The signal was referenced to the mean of all electrodes.

2. Filtering

The data were filtered using fifth order forward-backward But-

terworth low pass filter with cut-off frequency of 100Hz. Using a

forward-backward filter allows to filter the data while avoiding the

phase shift which is very important in case of time locked effect

like P300. The filter was implemented using MATLAB function

butter and to create the filter and the function filtfilt was applied

for filtering.

3. Trial extraction

Single trials of 500 msec were extracted. The trials started at the

stimulus onset and the stimuli were intensified for 100 msec. The
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interstimulus interval (ISI) was 400 msec, therefore the trials did

not overlap.

4. Downsampling

The EEG data was acquired to 128 samples (64 samples per 500

msec epoch) and downsampled by the factor of two to (32 samples

per epoch).

5. Windsorizing

Muscle activity and eye movements create large artefacts in the

EEG signal. To reduce the effects of these artefacts, the data from

each electrode were windsorized. For samples from each electrode

the tenth and ninetieth percentiles were computed. Values lying

outside this range were replaced with 10th and 90th percentile

respectively.

6. Normalisation

The data from each electrode was scaled to the interval from -1

to 1.

7. Feature vector construction

The EEG signal from the selected channels (electrodes) was con-

catenated into a feature vector.
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4.5.2 Classification method

Classifier values were trained on the data from two first sessions and

validated on two left out sessions. Bayesian Linear Discriminant Anal-

ysis (BLDA) based on Fisher’s Linear Discriminant Analysis (FLDA)

was used to learn the classifier. Fisher’s linear discriminant analysis

is a methods used in statistics, machine learning and pattern recogni-

tion. LDA finds a linear combination of features which best separates

two or more classes of objects (Hoffmann et al., 2008).

BLDA is an extension of FLDA. BLDA regularization is used to pre-

vent over-fitting to high dimensional and noisy datasets. Through a

Bayesian analysis allows to estimate the degree of regularization au-

tomatically from training data without the need for time consuming

cross-validation.

4.6 Results

4.6.1 Dual-target rapid serial visual presentation task

The averaged results of dual-target RSVP task are shown in Figure

4.5. The curve represents the accurate T2 report given correct T1

identification as a function of lag times. The results show a typi-

cal attentional blink result with decreased T2 identification when the

temporal separation between T1 and T2 is approximately 200 msec.

The T2 identification rate improves when the temporal separation in-
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creases. The decrease in T2 identification rate at the lag time of 800

msec is unusual and can probably be explained by participants not

expecting (not looking for) T2 so long after T1.

Figure 4.5: Averaged results of attentional blink for all participants. X axis corresponds to partic-

ipants and Y axis shows the percentages of correctly identified target two.

4.6.2 Posner cueing task

The results of attention detection task have been used to compute

three measures of attention: alerting, orienting and executive atten-

tion.

1. Alerting was calculated by subtracting the reaction time for un-

cued trials form the reaction time for congruent trials.

2. Orienting was calculated by subtracting the reaction time for con-

gruent trials with special cue from the reaction time for congruent
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trials with central cue.

3. Executive attention was calculated by subtracting the reaction

time for congruent trials from the reaction time for incongruent

trials.

The results for alerting, orienting and executive attention are pre-

sented in Figure 4.6.

Figure 4.6: Results of Posner cueing task. The figures show distribution of results of all participants

alerting, orienting and executive attention from top to bottom. X axis corresponds to different

participants and Y axis shows the difference in reaction times for each of the contrasts described

in section 4.6.2.

4.6.3 Classification Results

Classification has been obtained for two electrode configurations. One

includes all electrodes and the second included four occipital and pari-
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etal electrodes (P7, P8, O1, O2). The configurations are show in Fig-

ure 4.7. The electrodes were chosen due the fact that P300 effect is

the most pronounced in the parietal and occipital area of the brain.

Figure 4.7: Electrodes included in the electrode configuration are shown in grey.

Classification results obtained from all electrodes were compared with

the classification results obtained from the set of four electrodes (see

Figure 4.8). Paired Sample t-test showed significantly better result for

all-electrode configuration (t(27) = 2.1635, p = 0.035), therefore all

remaining analysis was conducted using all-electrode configuration.
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Figure 4.8: Classification accuracy for all participants as a percentage of correctly classified trials.

Red - four-electrode configuration, blue - all-electrode configuration.

4.6.4 Relation between classification accuracy and measures of atten-

tion.

Pearson’s R correlation was computed to determine the relationship

between the measures attention obtained using Posner cueing task and

classification accuracy. The scatter plots of these results are shown in

Figures: 4.9 - alerting, 4.10 - orienting and 4.11 - executive attention.

97



Figure 4.9: Classification accuracy for all participants as a percentage of correctly classified trials

and the measure of alerting obtained using Posner cueing task.

Figure 4.10: Classification accuracy for all participants as a percentage of correctly classified trials

and the measure of orienting obtained using Posner cueing task.
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Figure 4.11: Classification accuracy for all participants as a percentage of correctly classified trials

and the measure of executive attention obtained using Posner cueing task.

The values for correlation of variables classification accuracy and alert-

ing were (r = 0.09 , p = 0.64). Correlation of variables classification

accuracy and orienting produced values of (r = -0.15, p = 0.43). The

parameters for correlation of variables classification accuracy and ex-

ecutive attention were (r = -0.15, p = 0.43). None of the correlations

mentioned above were significant.

99



Figure 4.12: Correlation results for dual-target rapid serial visual presentation task and classifica-

tion accuracy with each of the T2 positions (lag times).

T2 lag time Pearson’s R Significance (p)

100 msec 0.16 0.40

200 msec 0.22 0.27

300 msec -0.003 0.99

400 msec 0.05 0.78

500 msec 0.07 0.71

600 msec -0.09 0.65

700 msec -0.17 0.39

800 msec -0.08 0.69

Table 4.1: Correlation results for dual-target rapid serial visual presentation task and classification

accuracy.

For dual-target rapid serial visual presentation task classification ac-

curacy was correlated with each of the T2 positions (lag times). The
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exact results are shown in Figure 4.12 and Table 4.1. No significant

correlations were obtained.

4.7 Conclusions

The obtained results do not support the hypothesis that attention is

an important factor influencing P300-BCI performance. The other

factors discussed in section 2.10.2 may play a more important role in

determining who is able to control P300-based BCI. The other reason

why the correlations are not significant may be the fact that none of

the participants obtained a very good BCI control (M = 0.2182, SD

= 0.0672). This relative concentration of the results make it difficult

to obtain significant correlation. The fact that classification accuracy

was obtained using off-line analysis might also have influenced the

results. The inaccuracy of the on-line feedback provided to the partic-

ipants might have influenced their motivation and attention and this

in turn might have changed the shape of their P300 response making

the correct responses difficult to classify.

101



Chapter 5

Conclusions and Future directions

In this chapter the conclusions from the results are presented, followed

by discussion and proposed future directions.

5.1 Conclusions

The results of experiment one showed that participants did not obtain

the higher level of relaxation during grid condition as compared to

video and eyes-closed conditions.

The results of experiment two indicate that attention may not be the

factor defining performance on P300-based BCI systems. It does not,

however, exclude the possibility that it may play an important role in

other BCI paradigms, especially SMR-based BCI.

5.2 Limitations

One of the reasons for insignificant results in experiment one may be

the type of feedback used which was not easily understandable by the
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participants. A simple and more direct feedback may deliver better

results. Users without prior training participated in this experiment,

obtaining significant results may require extensive practice. Longer

sessions may also be required to induce the state of relaxation.

In case of experiment two the use of different classification algorithms

for on-line and off-line analysis might have substantially influenced the

results. The algorithm use during the experiment was much simpler

then the algorithm used in the off-line analysis, therefore the feedback

provided to the users was much less accurate. This was done due to

the hardware limitations.

5.3 Future directions

The use of BCI technology for rehabilitation and metal training is

an interesting and promising field of BCI application. The success of

these systems depends on quality of each constituent part. Embedding

feedback in engaging virtual environment and using computer game

technology will make them more entertaining which can increase their

efficiency. BCI systems for training different mental abilities (e.g.

relaxation, concentration, meditation) can be imagined. A general

framework for these kind of systems would consist of two stages. In the

first stage a brain patters for a particular mental state (e.g. relaxation)

typical for is recorded while participant is induced into this state using
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other methods (e.g. massage, meditation) After that, in the BCI stage,

a feedback is provided for the user which shows how different the

user’s pattern of activity is from the desirable pattern recorded in the

first stage. Using this approach allows us to tailor the BCI system

for each user. Particular mental states are correlated with typical

patterns of brain activation. However, due to individual differences

in brain morphology and physiology these patterns are different for

different users. Using one general pattern for all users may make the

task of matching the user’s pattern with the general pattern extremely

difficult or even impossible. This may cause frustration and discourage

users from using BCI.

The search for factors influencing the BCI performance will continue

and the biological and morphological factors will need to be taken

into account. Other neuroimaging techniques (e.g. fMRI) coupled

with EEG-based BCI can provide more information about the bio-

logical and morphological factors that influence BCI performance. A

series of experiments can be proposed that combine the use of EEG,

fMRI and MRI technology together with experimental measures of

attention to examine the influence of the aforementioned factors on

BCI performance. This could give us the understanding which of the

factors are important and have influence on the BCI performance and

whether BCI illiteracy can be ”cured” by influencing the psychological

factors (e.g. attention training). The use of BCI systems with better
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on-line classification and better feedback will provide more ecologically

valid experimental conditions which may influence users’ attentional

processes and affect the classification accuracy.
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Participant's Consent Form 

 
 
 

You are about to participate in an experiment investigating the use of a brain-computer interface 

technology to enhance the experience of contemplative meditation. We are going to use the Emotiv 

Epoch headset, which has been presented to you. The experiment will take about an 1 hour. There 

will be three sessions and you will be presented with different forms of visual stimuli. 
 

1. Brid - based road network. 

2. Watching a movie. 

3. No visual stimuli -  eyes closed. 
 
 

This research is conducted by Mr Szymon Fialek (Coventry University), with Dr Fotis Liarokapis 

(Coventry University), Dr Chris Peters (KTH Royal Institute of Technology, Sweden) and Dr 

Etienne Roesch (University of Reading). 
 
 
 Please Initial 

in the box 
1. I confirm that I have read and understood the information 

presented to me, and have had the opportunity to ask 

questions. 
 

 

  

 

 
 

2. I understand that my participation is voluntary and that I am 

free to withdraw at any time, without giving a reason. 
 
 

  

     
 

 

 

3. I agree to take part in the above study. 
 
 

 
 

4. I agree for my data to be analysed and published.  

 
 
  

 
 

Name of Participant …………………… Date  …/…/…… Signature ……………….. 
 
 

Name of Researcher …………………… Date  …/…/…… Signature ……………….. 
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Thank you for participation. 
 

 

 
We would like to take this opportunity to ask you a few questions. 

 

 

1. Who relaxed did you feel during each of the sessions? Answer on the scale from 1 – 10, 

where 1 – not at all; 10 – very relaxed. 

 

Session 1:  

...................................................................................................................................................... 

 

Session 2: 

...................................................................................................................................................... 

 

Session 3: 

...................................................................................................................................................... 

 

 

2. How relaxed do you feel now? Answer on the scale from 1 –10: 

 

...................................................................................................................................................... 

 

 

3. Did you feel there was a link between how you felt at the time and what was being 

displayed on the screen? Please explain: 
.................................................................................................................................................................... 

.................................................................................................................................................................... 

.................................................................................................................................................................... 

 

 

3. How comfortable did you feel using the Emotiv Epoch headset? Answer of the scale from 

1 – 10 and describe if you wish: 
.................................................................................................................................................................... 

.................................................................................................................................................................... 

.................................................................................................................................................................... 

 

 

4. Do you have any other comments? 
.................................................................................................................................................................... 
.................................................................................................................................................................... 

.................................................................................................................................................................... 

 

 

 

If you wish to withdraw from the study and want you data to be deleted please contact: 

 
Mr Szymon Fialek at     fialeks@coventry.ac.uk 
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Recording EEG to investigation into illiteracy in 

P300-based BCI 
 

Subject Information 
 

 

Name:   
 
 
 

 

Date of Birth: 
 
 
 

 

Gender: 
 
 
 

male / female 

Handedness: 
 
 
 

right handed / left handed  

  
If yes please provide further details:  

 
 
 
 
 
                      
                      
                      
                     Signature: 

 
 
 
 
 
 
 
 

Date: 
                        

 

Investigator Contact Details: 

Dr. Etienne Roesch     Szymon Fialek 

e:  e.b.roesch@reading.ac.uk    e:  s.fialek@reading.ac.uk  

       m: 07946 777 564 
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ANNEX C  

 

 

Consent Form 

 

1. I have read and had explained to me by Szymon Fialek the accompanying. 

Information Sheet relating to the project: ‘Investigation into illiteracy in P300-

based BCI.’ 
 

2. I have had explained to me the purposes of the project and what will be required of 

me, and any questions I have had have been answered to my satisfaction.  I agree to 

the arrangements described in the Information Sheet in so far as they relate to my 

participation.  

 

3. I understand that participation is entirely voluntary and that I have the right to 

withdraw from the project any time, and that this will be without detriment to any 

care or services I may be receiving or may receive in the future.  

 

4. This application has been reviewed and approved by the Head of the School of 

Systems Engineering and has been given a favorable ethical opinion for conduct 

 

5. I have received a copy of this Consent Form and of the accompanying Information 

Sheet. 

 

6.  I confirm that I do not suffer from epilepsy, never had a seizure nor have a history of 

seizure in immediate family. 

 

 

 

 

 

Name:  

 

Date of birth: 

 

Signed:  

 

Date:  

 

 

Investigator Contact Details: 

 

Dr. Etienne Roesch   Szymon Fialek 

e: e.b.roesch@reading.ac.uk  e:  s.fialek@reading.ac.uk 

     m: 07946 777 564 

Research Ethics Committee 
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Recording EEG to investigation into illiteracy in 

P300-based BCI 
 

Subject Information 
 

 

Name:   
 
 
 

 

Date of Birth: 
 
 
 

 

Gender: 
 
 
 

male / female 

Handedness: 
 
 
 

right handed / left handed  

  
If yes please provide further details:  

 
 
 
 
 
                      
                      
                      
                     Signature: 

 
 
 
 
 
 
 
 

Date: 
                        

 

Investigator Contact Details: 

Dr. Etienne Roesch     Szymon Fialek 

e:  e.b.roesch@reading.ac.uk    e:  s.fialek@reading.ac.uk  

       m: 07946 777 564 
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  Page 1 of 2 
 

 

 

Information sheet 
 

Project: 

 

Investigation into illiteracy in P300-based BCI. 

 

School: 

 School of Systems Engineering 

 

Department: 

 Cybernetics 

 

Principal Investigator: 

 

Dr. Etienne Roesch (e.b.roesch@reading.ac.uk) 

 

Other investigators 

 

 Szymon Fialek   (s.fialek@reading.ac.uk) 

 Dr Fotis Liarokapis  (aa3235@coventry.ac.uk) 

 

 

Date of study commencement: 

 1
st
 July 2013 

 

 

Outline: 

 

 

 

The purpose of this second experiment is to investigate the relation between P300-

based BCI performance and attention. In particular, with a view to investigating inter-

individual differences in the ability to control a P300-based BCI system and the role 

played by attentional abilities, we will record the users's performance when 

interacting with a tailored BCI system and measure their attentional abilities along 

several dimensions, including temporal attention, which is refers to the ability to 

allocate processing resources over time, and three components of the attentional 

system: alerting, orienting and executive attention. 

 

 

 

Research Ethics Committee 
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