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Summary
Phase transitions play an important role in the field of statistical mechanics and such

phenomena are manifest in everyday life. Examples include the evaporation of water,

magnetisation of metals and the jamming of traffic. The purpose of this project is to

examine the properties of phase transitions in the model of magnets known as the Ising

model and to test a recent approach (extended scaling) to their analysis. The literature

is abundant with many models which describe phase transitions; with the Ising model

being the one which is most broadly studied (approximately 700-900 papers are published

each year, which have some relationship to the Ising model). The first objective is to

analyse the Ising model as an example of a mathematical model of phase transitions. In

particular, the exact solution of the Ising model in one dimension is derived and the mean

field approach is also considered. The scaling behaviour of these Ising models is examined

in the context of the scaling relations which are also derived.

Since no exact solution is available, approximate methods must be used to investigate

the phase transition of the Ising model in higher dimensions. In particular, one is in-

terested in the scaling behaviour of various thermodynamic functions close to the phase

transition. One such method is the high-temperature series expansion. A new method has

recently been proposed to extract the scaling behaviour, which is claimed to be superior

to the traditional approach. This so-called extended scaling approach has been tested

only in two and three dimensions at temperatures above the phase transition.

Here, the new scheme is retested in two dimensions to gain experience in the technique.

It is then applied and tested for the first time above the upper critical dimension. It is

demonstrated to be successful there in the sense that it follows the critical expansion in

the critical regime and follows the high temperature series expansion in the high temper-

ature regime.

The application of this new technique in high dimensions led on to a jointly authored

paper which has now been published (Appendix D).
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Abstract

Properties of phase transitions are investigated in the Ising model in various dimensions.

The re-derivation of the exact solutions of one and infinite-dimensional models using the

transfer matrix technique and the mean field method is presented. The scaling behaviour

of these Ising models is examined in the context of the scaling relations which are also

derived. The recently proposed extended scaling method to extract scaling behaviour,

which is claimed to be superior to the conventional approach, was retested in the two-

dimensional Ising model to gain experience. It is then applied and tested in an analysis

of the magnetic susceptibility of the Ising systems above the upper critical dimension,

four. It is seen that the extended scaling method broadens the high-temperature critical

scaling regime to a range of temperatures much wider than that achieved traditionally,

and is demonstrated to be applicable in high dimensions.

viii



1 Introduction

Statistical Mechanics has proven to be an extremely important area of science and mathe-

matics. Phase transitions and critical phenomena are two aspects of statistical mechanics

and are of central interest to this research. Phase transitions in general can be seen in

everyday life, for instance, the transitions between solid, liquid and gaseous state and the

traffic congestion. The central aim of this project is to examine the properties of the

phase transitions in the Ising model in various dimensions.

The Ising model is an example of a model of a magnet which helps in analyzing the

systems which undergo phase transitions. A sample of iron which is usually referred as

a ferromagnet, for example, can be magnetized at room temperature. However, at and

above certain temperature, known as critical temperature, the magnet losses its magnetic

properties and becomes demagnetised. I.e, the system changes its phase from ferromag-

netic to paramagnetic. While in day-to-day life ones experience is with magnets in three

dimensions, the mathematical Ising model allows for consideration of magnetisation in

any number of dimensions.

Inspired and guided by W. Lenz, in 1922 E. Ising created a landmark in the history

of physics by solving the model in d=1 dimension and established that no phase tran-

sition occurs at finite temperature. In 1944, L. Onsager established the occurrence of

phase transitions in the two-dimensional version of the model, which he solved in the

absence of an external magnetic field. To this day, no accepted exact solution exists in

two dimensions in field, or in three or higher dimensions. The mean-field version of the

model has, however, been exactly solved and is applicable to infinite-dimensional space.

In the first part of this project, experience in the Ising model is gained by rederiving

the exact solutions given for one-dimensional and mean field theory. Since, the first two

objectives involve re-deriving the solution of Ising model in one-dimension and infinite

dimensions (mean field theory) they involve not only advanced mathematics (drawing on
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calculus, algebra and various statistical-mechanical concepts) but also involves theoretical

knowledge of statistical mechanics. The emphasis in the first part of the project, there-

fore, lies with the analytical approach as used in previous studies for the exact solutions.

In particular, the transfer matrix technique is used for d = 1 and the Bragg-Williams ap-

proach, Weiss Mean Field and the saddle point solution gives the Ising model in infinite

dimensions.

The second and principle part of the project involves an investigation into the scaling

behaviour of the Ising model in high dimensions, with d=5, 6, 7 and 8 being targeted. To

gain experience, the analyses proposed recently will first be reproduced in d=2 dimen-

sions. Subsequently, high-temperature series expansions in 5, 6, 7 and 8 dimensions will

be analysed using traditional and extended scaling approaches with a view to comparing

their applicability. This original research will involve a approach where the expansions

for the magnetic susceptibility will be used. Since these expansions are to fifteenth order

in the inverse temperature, the symbolic manipulation package MAPLE is used.

Thus, the central aim of this work is to present a first investigation of the efficacy of

the extended scaling approach in high dimensions. In the following chapter, statistical

mechanics is introduced and then the phase transitions are discussed in generally. In

chapter 3, the Ising model is presented together with a brief discussion of its history.

Types of phase transitions and the other models in Statistical mechanics are discussed

in chapter five and six, respectively. Scaling relations are determined in chapter 7. The

exact solution to the one-dimensional Ising model and it mean field version are presented

in chapter 8 and 9. Finally, the extended scaling is introduced in chapter 10 and applied

to the Ising model in d = 2 dimension and the above the upper critical dimension d = 4.
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2 Statistical Mechanics

According to the Dalton atomic theory of 1803, “matter is made up of very tiny particles

called atoms” (Dalton 1805). This means that even a small sample of some material will

be composed of a very large number of such tiny particles. The number of particles is

of the order of Avogadro’s number NA = (6.022 141 79 ± 0.000 000 30) × 1023. Because

of this it is impossible to determine the properties of the full system by tracking the

behaviour of the individual particles. Instead a statistical approach must be used. The

field of statistical mechanics aims to make a connection between the macroscopic and

microscopic properties of the system by statistically relating the properties of the whole

system with the properties of its individual particles (see, e.g., Glazer and Wark (2006)).

Statistical mechanics has proven to be an extremely important area of science, math-

ematics and engineering in addressing many diverse problems (see e.g., Ruelle (1988)).

Furthermore, statistical-mechanics concepts and methods are widely used in various other

different areas such as dynamical systems, turbulence, communications, quantum field

theory, finance and bioinformatics. Statistical mechanics was developed by Willard Gibbs

and others in the middle of nineteenth century as a way to study the influence of micro

physics on the macroscopic properties of matter. This development of statistical me-

chanics explains thermodynamics (which deals only with the large-scale properties) at a

microscopic level i.e, relating the thermodynamic properties of a large system with the

individual atoms and molecules. Thus, the microstates of the system gives the detailed

specification of all the particles in a system, i.e., the properties of the system are de-

termined by its microstates. On the other side, the macroscopic picture only gives the

essential information which are required for the description of any system, i.e., it is a

description of the thermodynamic variables: energy, volume, pressure, temperature and

magnetisation. As a result, it can be said that large number Ω of microstates correspond

to single macrostate of the system i.e, determining the individual particles in the system,

the thermodynamic properties of the large system can be found.
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The fundamental postulate of statistical mechanics is stated as “all possible microstates of

an isolated assembly are equally probable.” This postulate implies that the most probable

macrostate is the one with the largest number of microstates.

Next, in order to justify this assumption consider N distinguishable particles associated

with the energies ε1, ε2, · · · , εj, · · · and the given macrostates of the system are the total

internal energy U and the volume V . Thus, a given distribution should follow

n1 particles with an energy ε1

n2 particles with an energy ε2

...

nj particles with an energy εj (2.1)

...

Therefore, the number of particles is

N =
∑
j

nj, (2.2)

and the total internal energy which is the sum of the individual energies of the distribution

is then

U =
∑
j

njεj. (2.3)

The number of microstates for the above given distribution is the number of ways in which

N object can be divided into piles with n1 in the first pile, n2 in the second pile, etc. This

is

t =
N !

n1!, n2! · · ·nj! · · ·
. (2.4)

A different distribution will have different values for n1, n2, · · ·. The total number of

microstates Ω is

Ω =
∑

distributions

t =
∑

n1,n2,···

N !

n1!, n2! · · ·nj! · · ·
. (2.5)

Next, in order to demonstrate this, consider an assembly of three distinguishable particles,

A, B and C where each particle is assumed to have any energy from ε0 = 0, ε1 = ε, ε2 =
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2ε · · · εj = jε. Suppose, the total internal energy is fixed by

U = 3ε. (2.6)

There exist only three possible ways in which the internal energy can be divided among

the three particles. These three distributions I, II and III, are

I ε ε ε

II 3ε 0 0

III 2ε ε 0

In the first distribution each particle has energy ε, so n0 = n2 = n3 = 0 and n1 = 3. As a

result, from (2.4), the number of microstate for this distribution is

t(1) =
3!

3!0!0!0!
= 1. (2.7)

Similarly, the number of possible microstates for the other distributions is given by (2.4).

As a result, the second and third distribution have 3 and 6 microstates. From (2.5), the

total number of microstates is Ω = 10. Table 2.1 shows the arrangement of all these

possible 10 microstates. As each column indicates one microstate, therefore, there are 10

microstates which are all equally probable for this assembly.

It can be seen from table 2.1 that the most probable distribution is the third one because

it occurs 6 times. Therefore, the maximum value of t is

tmax = 6. (2.8)
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When large numbers of particles are involved, it turns out (Guenault 2007) that the most

probable distribution is overwhelmingly more probable than the others i.e., the function

t has a sharp peak. Therefore, instead of considering all the distributions, the results can

be found by simply choosing the most probable distribution. From (2.4) and (2.5), the

microstate Ω is

Ω ' tmax (2.9)

Now maximize Ω subject to two conditions (2.2) and (2.3). At maximum

dΩ = 0. (2.10)

Since

d(ln Ω) =
1

Ω
dΩ = 0. (2.11)

Therefore, ln Ω can be maximized instead of Ω.

Next, for any small change in n1, n2 · · ·, the change in ln Ω is

d ln Ω =
∂ ln Ω

∂n1

dn1 +
∂ ln Ω

∂n2

dn2 + · · · . (2.12)

and the above expression equals zero for the ln Ω maximum. Since N and U in (2.2) and

(2.3) are fixed,

dN =
∑
j

dnj = 0, (2.13)

and

dU =
∑
j

εjdnj = 0. (2.14)

Thus the problem is one of maximization subject to contraint. Multiplying (2.13) by α

and (2.14) by −β, where α and β are Langrange multipliers, and then adding both to

(2.12) gives ∑
j

[
∂ ln Ω

∂nj
+ α− βεj

]
dnj = 0. (2.15)

Since the particles in the above formulation are independent of each other therefore, one

can consider
∂ ln Ω

∂nj
+ α− βεj = 0. (2.16)
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Using the Stirling Approximation, expression (2.9) can be written as

ln Ω = ln
N !

n1!n2! · · ·nj! · · ·
,

= lnN !−
∑
j

lnnj!,

= lnN !−
∑
j

(nj lnnj − nj). (2.17)

Differentiating the above expression gives

∂ ln Ω

∂nj
= − ∂

∂nj
(nj lnnj − nj),

∂ ln Ω

∂nj
= − lnnj. (2.18)

Substituting the above result in (2.16) gives

− lnnj + α− βεj = 0. (2.19)

which can be equivalently written as

nj = eαe−βεj . (2.20)

Now substituting the value for nj in (2.2) gives

N = eα
∑
j

e−βεj , (2.21)

Rearranging above for α gives

eα =
N∑
j e
−βεj

. (2.22)

Let Z =
∑
j e
−βεj . Then

nj =
N

Z
e−βεj . (2.23)

This scheme is called the Boltzmann distribution. The normalization factor Z is known

as the partition function, which will be important subsequently.

Next, substituting (2.23) into (2.3) gives

U =
N

Z

∑
j

εje
−βεj . (2.24)
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The internal energy per particle is

U

N
=

1

Z

∑
j

εje
−βεj . (2.25)

which is the expectation value taken over the Boltzmann distribution.

It turns out that β can be identified as proportional to the inverse absolute tempera-

ture.

β =
1

kT
. (2.26)

where k is the Boltzmanns constant whose value is 1.3807× 10−23JK−1.
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3 Phase Transitions

Defining Phase Transitions

Phase transitions play important roles in the field of statistical mechanics and such phe-

nomena are manifest in many day to day experiences, for example, melting of ice and

evaporation of water. Moreover, scientifically, one can describe a phase transition as a

transmutation of a thermodynamic system from one phase to another. For example, tran-

sitions between solid, liquid, and gaseous states of matter. Water at room temperature is

in liquid form. If the temperature is sufficiently reduced, the liquid forms into ice (solid)

and if the temperature is sufficiently increased then water changes into steam or vapour

(gas). This transition is possible due to change in either temperature or pressure of the

system or both. This is an example of a liquid-gas-solid transition and is illustrated in

figure 3.1.

Figure 3.1: Phase transitions of water (Dobrosavljevic 2005)

This figure represents the pressure and temperature graph where coexistence of all the

three states (gas, liquid and solid) occur at one point known as the triple point. Also,

when both temperature and pressure increases, it reaches at a stage where liquid as well

as gas are in an equilibrium state. This state is known as supercritical fluid (Poliakoff

9



2001). The point where there is a change in phase from one to another is known as the

critical point, a notion introduced by Andrews (1869).

Non-Equilibrium Transitions: Besides water, another common example of phase tran-

sition can involve traffic congestion. Traffic may be in a free-flowing phase or in a congested

(stationary) phase. Between them is another phase transition. A reduction in symmetry

is associated with such a phase transition. In the example of traffic congestion, when a

number of vehicles are clustered together, the system possesses fewer symmetrical prop-

erties compared to the vehicles moving smoothly where the system is more symmetrical.

I.e, the smooth flow of traffic is associated with a higher degree of symmetry than the

congestion in traffic. A more familiar example of a phase transition in statistical physics

is magnetisation, discussed in the next paragraph.

Ferromagnetism

A sample of iron, for example, can be magnetized at room temperature. This common

type of a magnet is usually called a ferromagnet. From a molecular point of view any

ferromagnetic material shows the phenomenon of long range ordering, which means that

the inherent molecules exist in aligned sets of domains. There is also a possibility for these

sets of domains to be unaligned, however, an external field can force these domains to

become aligned and consequently show magnetic properties (Nave 2006). It is important

to note that one common property of any ferromagnet, be it iron or nickel or gadolinium,

is that they all lose their magnetic properties at and above a certain temperature known

as the critical temperature, Tc. Thus, above the critical temperature this substance can be

described as paramagnetic. The change in magnetic properties between the paramagnetic

phase and ferromagnetic phase is a phase transition. Figure 3.2 exhibits this behaviour

and also shows that on an increase in temperature, the system’s magnetism keeps de-

creasing until the temperature Tc is reached. At any temperature beyond Tc the system

is demagnetised.

10



Figure 3.2: Phase transition of a magnet

At a point where the system’s temperature is just less than the critical temperature Tc,

the magnetic strength can usually be mathematically described as

m ∼ |Tc − T |β for T < Tc. (3.1)

where β is a critical exponent. This statement is a result of empirical observation. A

critical exponent, first introduced by Verschaffelt (1900), describes the behaviour of the

system near the critical temperature. Critical exponents depend upon the dimension of

both the system and spins as well as on the range of interaction. Now, in order to describe

the thermodynamic quantities near the critical temperature, the reduced temperature, t,

is introduced. The standard reduced temperature is defined as

t =
T − Tc
Tc

. (3.2)

The Ferromagnetic behaviour can also be written in terms of the reduced temperature as

m ∼

 |t|
β for t < 0

0 for t > 0
(3.3)

The system is in an ordered phase when the system’s magnetisation is non-zero and is in

a disordered phase when the magnetisation is zero. Thus, this thermodynamic quantity,

magnetisation discriminates the phase. For this reason it is known as an order parameter.
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4 Ising Model

The Ising model is one of the most renowned in statistical mechanics. It exhibits the be-

haviour of a simple magnet near the critical temperature. As the temperature increases

the system loses it magnetic properties and becomes demagnetised, as shown in figure

3.2. While in day-to-day life one’s experience is with magnets in three dimensions, the

mathematical Ising model allows for consideration of magnetisation in any number of

dimensions. In this project the cases of the one-dimensional and mean field Ising model

are considered.

Description

At a microscopic level, a piece of iron, for example, may be considered to be made up of

spins, each with its own south and north poles. In figure 4.1, the spins are represented

using arrows which are pointing in random direction.

Figure 4.1: Microscopic image of a magnet

Now, the spins may be restricted to point in a particular direction, as shown in figure

4.2, where they only point upward or downwards. Furthermore, the spins are placed on

a lattice of N sites, each site labelled by i = 1, 2 · · · , N . If there are L sites in each of the

d dimensions then

N = Ld. (4.1)

12



The spin si at each site i has two possible values, given by ±1, indicating the spins in

an upward direction when si has a value of +1 and in a downward direction at a value -1.

Figure 4.2: Spins restricted to a regular lattice

On a lattice, at high temperature these spins do not direct themselves to any particular

direction and makes the piece of iron symmetric. On the other hand, at low temperature,

which is usually referred as a ‘broken phase’, the spins align themselves in one direction

either in southwards or northwards. This disturbs the inherent symmetry of the system.

The energy of the system is associated with the interaction between the spins. Conse-

quently, the parallel spins result in a relatively low energy i.e., −J whereas others result

in a relatively higher energy i.e., J . Therefore, the energy related to the spins, si and sj

may be defined as

E = −Jsisj, (4.2)

where J is the interaction strength. In this scenario every spin is just allowed to interact

with only the nearby neighbours, as shown in figure 4.3. Thus, the energy can now be

defined as

E = −J
∑
<i,j>

sisj. (4.3)

where the summation is over all the nearest neighbours i and j.

13



Figure 4.3: A representation of the nearest neighbours on a lattice.

It is important to note that there are many patterns in which the spins can be configured

and as the number of spins are increased then automatically the number of ways to ar-

range the spins also increases. Since, each spin has two possible directions to point in and

in a system there are N sites, therefore, there are 2N configurations. Three such possible

arrangement of spins are illustrated in figure 4.4, where each arrangement has four spins

pointing up and two pointing down. Even though all the three arrangements have almost

the same outlook, however, they have different microscopic characteristics.

Figure 4.4: Possible arrangements of spins

Now, an external magnetic field is introduced to the system. This interacts with each

spin in the system and the associated energy is given by

−
∑
i

Hsi. (4.4)

14



From (4.3) and (4.4) the total energy of the system ET , in the presence of external field

is given by

ET = −J
N∑

〈i,j〉=1

sisj −H
N∑
i=1

si. (4.5)

Now, the total magnetisation M of a configuration is the sum of the spins;

M =
N∑
i=1

si. (4.6)

Therefore, the total energy may be written as

ET = E −HM. (4.7)

From the theory of Statistical Mechanics, the magnetisation of the system can be defined

as a weighted average of the configurational magnetisation (Binney et al. 2002) i.e,

m =
1

N
〈M〉 =

1

N

∑
i

〈si〉. (4.8)

where M is defined in (4.6). Assuming translational invariance (the question of boundary

conditions will be discussed at the end of this section), 〈si〉 is independent of i. Then the

magnetisation is given by

m = 〈si〉 , (4.9)

=
1

Z

∑
{si}

sie
− 1
kT
ET . (4.10)

where k is the Boltzmann constant and the sum is taken over the configurations. The

normalization factor Z is known as the partition function and is defined in terms of

temperature and the external field as

Z(T,H) =
∑
{si}

e−βET . (4.11)

Here

β =
1

kT
, (4.12)

Next, introduce the reduced external field as

h = βH. (4.13)
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The expression for the partition function can now be expressed as

Z(β, h) =
∑
{si}

e−βE+hM . (4.14)

Another important thermodynamic quantity in statistical mechanics is the free energy

per particle f , which is simply derived by taking the partition function’s logarithm:

f =
−kT
N

lnZ(β, h). (4.15)

Thermodynamic Functions

In thermodynamics, magnetisation, magnetic susceptibility, internal energy and specific

heat are thermodynamic functions that can be derived from the partition function. These

quantities react to the effects in the change of external conditions i.e. temperature T and

external field H. In Appendix A, it is shown that the magnetisation is the first derivative

of the free energy with respect to H;

m = − ∂f
∂H

. (4.16)

The magnetic susceptibility, denoted by χ, is defined as the variance of the total mag-

netisation of all the spins, which can be written as

χ =
1

N
〈(〈M〉 −M)2〉. (4.17)

and from the definition of total magnetisation (4.6), this can be equivalently written as

χ = 〈(si − 〈si〉)2〉. (4.18)

(provided the system is translationally invariant). Also, susceptibility is the second deriva-

tive of the free energy in terms of reduced external field (Ravndal 1976) and is denoted

by

χ =
∂2f

∂h2
. (4.19)
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This relation has been derived in Appendix A.

The internal energy is defined as the expectation value of the energy and also can be

expressed as the first derivative of the free energy, with respect to β. Its derivation is

given in Appendix A and is denoted by

e =
∂f

∂β
=

1

N
〈E〉. (4.20)

Finally, the specific heat C is defined as the variance of the energies. This can also be

expressed using the free energy i.e, differentiating twice the free energy with respect to β

gives the specific heat as

C(β, h) =
∂2f

∂β2
=

1

N
〈(〈E〉 − E)2〉. (4.21)

The derivation of the above relation has been given in Appendix A. This term can also be

rewritten in terms of temperature by using the definition of β. Thus, again differentiating

twice the free energy with respect to temperature yields

C = −T ∂
2f

∂T 2
. (4.22)

These derivations of all the thermodynamic variables reveal changes in a system brought

by the change in temperature and external magnetic field. This also forms the basis for

further calculations involved in the later sections.

Brief History of Ising Model

The Ising model is one of the most broadly studied model in statistical mechanics and

provides an example description of a phase transition. This model of ferromagnetism was

formulated by Wilhelm Lenz and analysed by his student Ernst Ising in one dimension

in 1922 (Brush 1967). Prior to that it was uncertain how to handle phase transitions in

ferromagnets theoretically. Ising’s (1925) work solved the model in one dimension and es-

tablished that no phase transition occurs at any non-zero temperature (Wolf 2000; Brush

1967; Kobe 1996). Ising believed the same to be true in other dimensions and stopped
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conducting research. This also prompted Heisenberg (1928) to develop his own theory of

ferromagnetism with more complex interaction between spins.

Gorsky (1928) attempted to construct a theory by making an hypothesis that the amount

of work required to move an atom from an ordered phase to a disordered phase is pro-

portional to the degree of order which already exist. Later, on the basis of Gorsky’s

theory, Bragg and Williams (1934) investigated the model in effectively infinite dimen-

sions in one of the various approaches to mean field theory (MFT) (discussed in Section 9).

Immediately, Bethe (1935) modified the approximation made by Bragg and William by

incorporating the short-range ordering between interactions. In the same year, Guggen-

heim (1935) introduced a new method, called the ‘quasi chemical’ method, of nearby

neighbours interaction in liquids, which was later modified by Rushbrooke (1938).

In 1936, Rudolf Peierls investigated the Ising model and predicted the occurrence of

phase transitions in both two and three dimensions (Peierls 1936). However, later his

idea was found to be not exact (Griffith 1964). The basic idea is still of interest and

since then many mathematicians and scientists have improved and extended the models

mentioned above. However, it was not until 1942 that another exact solution to the Ising

model was found. It was proposed by the physical chemist Onsager (1944), who found

an exact solution for the two dimensional case, in the absence of external magnetic field,

using the techniques formulated by Kramers and Wannier (1941).

To this day, no accepted exact solution exists in two dimensions in field, or in three

or higher dimensions. Recent claims as to the exact nature of the transition in three

dimensions have been made in (Kaupuzs 2001). The mean-field version of the model has,

however, been exactly solved and is applicable to infinite-dimensional space (Baxter 2007;

McCoy and Wu 1973). The current status of solutions to the Ising model is summarised

in Table 4.1. Many mathematical physicists, chemists and biologists have tried to solve

the remaining cases of the Ising model, but none yet have succeeded in doing so.
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Table 4.1: Status of exact solution of the Ising Model for various dimensions.

The Ising model remains an important research area and will continue to be so. This is

illustrated in the fact that almost one thousand papers are published on this subject each

year.

Boundary Conditions

It is required to know about the behaviour of all the boundaries of the system which

necessitates the application of boundary conditions. The two possible boundary con-

dition which are discussed here are periodic and free boundary conditions, which are

considered for the one and two-dimensional Ising models.

Periodic Boundary Conditions

If periodic boundary conditions are imposed on the one-dimensional system, then there is

a link between the Nth site and the first one. Each site is connected with two other links

and the system therefore has same number of sites and links. This situation is illustrated

in figure 4.5 below. In this situation the system is translationally invariant because all

the sites in the system have equivalent properties i.e., the system does not distinguish

between the various sites.
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Figure 4.5: One-Dimensional Ising model with periodic boundary conditions

Employing periodic condition for the two-dimensional system, exhibits that every spin in

the system is surrouded by four nearby neighbours and interacts with these four nearby

spins. This means that the location of the spin on a lattice is not necessary to be known

because all the spins exhibits equivalent properties as all the spins are surrounded by the

same number of spins. Thus, it can be said that the system is translationally invariant.

This is shown in figure 4.6.

Figure 4.6: Two-Dimensional Ising model with periodic boundary conditions
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Free Boundary Conditions

Free boundary conditions are different to those of periodic boundary. In this case, the

ends of the system are not joined to each other. As a result, in the case of the one-

dimensional system, the first site and the Nth site have only one link whereas the other

sites are associated with two links. This scenario is depicted in figure 4.7.

Figure 4.7: One-Dimensional Ising model with free boundary conditions

Since, the ends are not linked with each other, therefore, in case of the two-dimensional

system only the middle spins on the lattice has four neighbours and interactions whereas

the spins which are located on the outer side of the lattice have either three or two nearest

neighbours, as shown in figure 4.8.

Figure 4.8: Two-dimensional Ising model with free boundary conditions

Thus for such cases the location of the spin is necessary to be known in order to make

calculation and assumptions, which makes it more sophisticated and the translational

invariance does not hold.
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5 Types of Phase Transitions

In section 3, three different examples of phase transitions were discussed. However, there

are different types of transitions depending on different types of cases due to the difference

in the physical properties. This differing transitions necessitates their classification. The

difference between the first and the second order phase transition is discussed. The two

classified form of phase transitions are Ehrenfest and the Modern classification.

Ehrenfest Classification

Phase transitions were first classified by P. Ehrenfest (O’Connor and Robertson 2001),

on a non-analyticity basis. Under this classification scheme, a first order phase transition

is when a discontinuity occurs in the first derivative of the free energy (Gitterman and

Halpern 2004). The solid-liquid and the liquid-gas transitions are the examples of first

order phase transitions. Since the magnetisation is the first derivative of the free energy

with respect to the reduced external field h, figure 5.1 which exhibits a field driven phase

transition is also a first order phase transition.

Figure 5.1: An example of field driven phase transition.
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In second order phase transitions, the first derivative of the free energy is continuous,

however, the discontinuity lies in the second derivative of the free energy. Second order

phase transitions include superconductivity and the ferromagnetism transitions. As the

first derivative of the specific heat with respect to temperature is continuous and the

second derivative is discontinuous, it is said that the specific heat is of second order phase

transition. This behaviour of specific heat is illustrated in figure 5.2.

Figure 5.2: The second derivative of the free energy.

Under this classification, besides first and second order transitions, there can be third,

fourth and higher-order ones. For nth order phase transitions, the first n−1 derivatives of

the free energy are continuous and the nth derivative is discontinuous. For the theory of

higher order phase transition the reader is referred to Janke, Johnston and Kenna (2006).

Ehrenfest’s scheme refers only to discontinuous phase transitions. However, other non-

analytic behaviour can occur. For instance, the specific heat diverges near the critical

temperature, shown in figure 5.3, and Ehrenfest classification does not take into account

such divergent behaviour. This is an addition to Ehrenfest’s classification and is usually

referred as modern classification of phase transitions.
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Figure 5.3: Behaviour of specific heat near the critical temperature

Modern Classification

The modern classification in a nutshell, encapsulates first-order and second order phase

transitions, which accounts for diverging phase transition. Phase transitions are termed

first or higher order irrespective of whether there is an discontinuity or divergence. Sec-

ond order transitions are also known as continuous phase transitions. The ferromagnetic

phase transition is an example of a continuous phase transition (Gitterman and Halpern

2004).

Apart from these two, there also exist infinite order transitions which are continuous

transitions that do not break symmetry. These phase transitions include the Kosterlitz-

Thouless transition for two-dimensional XY model. Phase transitions of finite order three

and higher have not been confirmed experimently, though there is no physical reason why

they should not exist. A theoretical study of such transitions is given in Janke, Johnston

and Kenna (2006). However, this project is restricted to first and the second order phase

transition and the interested reader is referred to Binney et al. (2002).
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Critical Exponents and Second Order Phase Transitions

Introduced by Verschaffelt (1900), critical exponents describes all the properties of the

system when it reaches critical temperature. There are six exponents which defines the

behaviour of the thermodynamic functions. Out of these six exponents, the critical ex-

ponent β which outlines the behaviour of magnetisation has already been discussed in

section 3. Besides β, magnetisation also gives another relationship in terms of δ. This

relation is written as

m ∼ H1/δ for T = Tc. (5.1)

Another thermodynamic function specific heat, offers another critical exponent which is

α. Figure 5.3 exhibit the behaviour of specific heat near the critical temperature and the

behaviour satisfies the relationship

C ∼ |T − Tc|−α, (5.2)

This relationship can also be written in terms of the reduced temperature, which is given

by

C ∼ |t|−α. (5.3)

The critical behaviour of the magnetic susceptibilty can be characterized as

χ ∼ |t|−γ. (5.4)

All the above thermodynamic variables exhibits the macroscopic properties of the system,

however, the microscopic properties provide another perspective about phase transitions.

The correlation function is introduced, which describes the relation between any two

spins of the system (Parwani 2003). This relation, using the expression (4.9), can be

mathematically defined as the difference of the average of the product of two spins and

the product of average of two spins, si and sj and is denoted by

G(xi − xj) = 〈sisj〉 − 〈si〉 〈sj〉 . (5.5)

where the (xi − xj) is the separation between the two spins (Ravndal 1976), si and sj.

As the distance between the two spin increases i.e., (xi − xj) → ∞, the correlation

25



function approaches towards zero. From the appendix A, the relationship between the

susceptibility and the free energy justifies the expression

χ =
1

N

 1

Z

∂2Z

∂h2
−
(

1

Z

∂Z

∂h

)2
 , (5.6)

The above expression is then simplified to give

χ =
1

N

[〈
M2

〉
− 〈M〉2

]
. (5.7)

Since, M is the total magnetisation per configuration, therefore, the above equation can

be written as

χ =
1

N

∑
i

∑
j

[〈sisj〉 − 〈si〉 〈sj〉] . (5.8)

Substituting (5.5) in above result yields

χ =
1

N

∑
i

∑
j

G(xi − xj). (5.9)

In the above expression if the term (xi−xj) is replaced by x then an extra factor, N , must

be introduced in order to modify the expression in terms of only one set. This formulation

is given by

χ =
1

N
N
∑
x

G(x), (5.10)

=
∑
x

G(x). (5.11)

Thus, this makes both the expressions (5.9) and (5.11) equal. Now, if the distance between

the lattice approaches to zero i.e, very small then the summation in the above expression

can be replaced by an integral (Ravndal 1976), which gives

χ =
∫
ddxG(x). (5.12)

This gives an expression for the susceptibility in terms of the correlation function. Further,

observing the correlation function experimentally, one can say that the behaviour below

and above the critical temperature can be expressed as

G(x)|T=Tc ∼ x−(d−2+η)e−x/ξ. (5.13)

26



This defines the other critical exponent η known as anomalous dimension and ξ known as

the correlation length. With the help of the correlation function, the correlation length

of the system can be obtained. As shown in figure 5.4, the correlation length is found to

be diverging near the critical point.

Figure 5.4: Behaviour of correlation length close to the critical temperature

This behaviour can be mathematically written as

ξ ∼ |t|−ν . (5.14)

where ν is a critical exponent (Ravndal 1976). Having defined the critical behaviour of

all thermodynamic functions, the following table summaries all the critical exponents:

Thermodynamic Function Symbol Definition Behaviour

Magnetisation m ∂f
∂h m ∼ |t|β

Magnetisation m ∂f
∂h m ∼ |H|1/δ

Susceptibility χ ∂2f
∂h2 χ ∼ |t|−γ

Specific Heat C ∂2f
∂β2 C ∼ |t|−α

Correlation Function G(x) 〈sisj〉 − 〈si〉 〈sj〉 G(x) ∼ x−(d−2+η)e−x/ξ

Correlation Length ξ ξ ∼ |t|−ν

Table 5.1: Critical Behaviour of Thermodynamic Functions

27



6 Other Statistical Mechanical Models

There are several other models, apart from the Ising model, in statistical mechanics which

play important roles in the theory of phase transitions. In order to contrast them with

the Ising model, some of these are outlined briefly below.

The Potts Model

The Potts model is an extension of the Ising model. While the Ising model consists

of spins which can take two different values, the Potts model spins can have q different

values (Potts 1952). The interaction energy between the nearby spins is non-zero, if they

have the same value and the interaction energy is zero if the values are different. Thus,

the Potts model is same as the Ising model when q = 2 (Wu 1982). In two dimensions

when q ≤ 4 there occurs a temperature-driven transition which is continuous and this

continuous transition is identical to the Ising transition when q = 2. The transition is of

first order if q > 4 and when q < 4 the transition is either of first or the second order in

various dimensions. Table 6.1 below exhibits different transitions when q < 4.

Table 6.1: Different transitions in various dimensions

28



The XY Model

The XY model is an arrangement of spins on a d-dimensional lattice where the spins lie

in a plane and have fixed length. In this case, the spins in the system are described by

two component vector (Binney et al. 2002). According to the Mermin - Wagner theorem

(1966), there occurs no long-range order in such a system in two dimensions. However,

Kosterlitz and Thouless (1973) showed the occurrence of a phase transition for this model

causes by ‘topological excitations of vortex-antivortex pairs’.

The Heisenberg Model

In case of the Heisenberg model, the spins on each lattice site, like XY model, also have a

freedom to move in any direction. This model consists of spins in D dimensions and the

XY model can be obtained when D = 2.

General O(n) models

The general O(n) models consists of spins placed on d-dimensional lattice. The spins

at each site has n possible directions to exist in the system and the XY and general

Heisenberg model are obtained when n = 2 and n = 3.

On the basis of the assumptions made within the models, as discussed above, all the

critical exponents can be obtained. The values for all the critical exponents for these

models and 2-d and 3-d Ising model have been listed in table 6.2, however, for the deriva-

tions for these the reader is referred to Plischke and Bergersen (2006), Domb and Lebowitz

(2001) and Binney et al. (2002).
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Table 6.2: Values of Critical Exponents of Various Statistical Mechanical Models

Universality

When two systems of different specifications have the same critical exponents, it is known

as Universality. This states that the critical exponents of any system are not dependent

on the microscopic details of that system, instead they depend on the dimensionality of

the system and the spins and also on the interaction range. Therefore, large systems can

be simplified using models with the same dimensionality and interaction range.

30



7 Scaling Relations

In the early sixties four relationships between the six critical exponents were developed

(see e.g., Binney et al. 2002). The original relationships were three inequalities and one

equality, namely

νd ≥ 2− α, (7.1)

2β + γ ≥ 2− α, (7.2)

β(δ − 1) ≤ γ, (7.3)

γ = ν(2− η). (7.4)

In 1965, Widom proved the first and the third inequalities to be equalities (Binney et al.

2002) and Essam and Fisher in 1963 proved the second relation to be an equality. Here,

in this section these four scaling relations are developed. The first relation is known as

Josephson’s Law (Widom 1965, Kadanoff 1966 and Josephson 1967) and using the hyper-

scaling hypothesis its derivation can be obtained. In this case the dimensionality plays

an important role and the relation turns out to be valid only for dimensions less than

or equal to four. Alternatively, this can also be derived from the Kadanoff block-spin

construction (see e.g., Ravndal 1976). Next, the other two scaling relations, known as

Rushbrooke’s Law (Essam and Fisher 1963, Rushbrooke 1963)and Griffith’s Law (Widom

1964 and Griffiths 1965), can be obtained using the Widom scaling hypothesis where the

free energy is a homogeneous function (see e.g., Ravndal 1976). The remaining Fisher

equality (Fisher 1964) is also presented.

Hyperscaling Hypothesis

In order to derive the first scaling relation, the free energy is assumed to behave as

the inverse of the correlation volume such that

f ∼ ξ−d. (7.5)
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The above assumption is known as hyperscaling hypothesis. This expression can be

modified using the expression for correlation length in (5.14), which gives

f ∼ |t|νd. (7.6)

Since the specific heat is the second derivative of the free energy, differentiating with

respect to t yields

C ∝ |t|νd−2. (7.7)

Comparing this with the behavior of specific heat in (5.3) results in the equality

νd = 2− α. (7.8)

This is known as Josephson’s Law and was formulated in 1960’s.

Next, considering the behaviour of correlation function as in (5.13) and substituting the

value for G(x) in (5.12) gives another scaling relation.

χ ∼
∫ ξ

0
ddxx−(d−2+η)e−x/ξ, (7.9)

having introduced ξ as the upper integral limit, following the original work of Fisher

(1964). Now converting the above expression to polar coordinates yields

χ ∼
∫ ξ

0
rd−1drr−(d−2+η)e−r/ξ, (7.10)

having integrated over the angular coordinates. This integral gives

χ ∼ r2−ηe−r/ξ|ξ0,

∼ ξ2−η. (7.11)

Substituting the expression for ξ from (5.14) in the above result yields

χ ∼ |t|−ν(2−η). (7.12)

Comparing this with the behaviour of susceptibility in (5.4) results another scaling rela-

tion:

γ = ν(2− η). (7.13)
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This equality is known as Fisher’s Law.

Widom Scaling Hypothesis

Using an assumption of homogeneous functions the remaining two relations can be ob-

tained. Suppose F (x) is a homogeneous function of one variable, which means that if x

is multiplied with an arbitrary factor λ, the value of the function F (x) is then rescaled

by a function of λ, i.e.,

F (λx) = g(λ)F (x). (7.14)

Now rescaling again, by a factor µ gives

F (λµx) = F (λ(µx)),

= g(λ)F (µx),

= g(λ)g(µ)F (x). (7.15)

Applying the property (7.14) to the left hand side of (7.15) gives

F (λµx) = g(λµ)F (x). (7.16)

Thus, comparing the above expressions gives

g(λµ) = g(λ)g(µ). (7.17)

So differentiating this with respect to µ yields

λg′(λµ) = g(λ)g′(µ). (7.18)

Now, choosing µ = 1 and g′(1) = p, the above differentiation equals

λg′(λ) = g(λ)p. (7.19)

or
g′(λ)

g(λ)
=
p

λ
. (7.20)

Since the differentiation of ln g(λ) with respect to λ is same as the right hand side of the

above expression, therefore, this can be alternatively written as

d

dλ
ln g(λ) =

p

λ
, (7.21)
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Integrating this results in

ln g(λ) = p lnλ+ c, (7.22)

or alternatively

g(λ) = ecep lnλ, (7.23)

∼ λp. (7.24)

Therefore a homogeneous function for one variable involves a power like behaviour i.e.,

F (λx) ∼ λpF (x). (7.25)

Rewriting λ as λ′1/p in above gives

F (λ′1/px) = λ′F (x), (7.26)

Let a = 1/p and rename λ′ as λ:

F (λax) = λF (x). (7.27)

Similarly, this also holds true for multi-variable functions i.e.,

F (λax, λby) = λF (x, y). (7.28)

Now, recalling the expression for the free energy as in (4.15) and writing in terms of

reduced external field and reduced temperature, yields

f(t, h) =
−kT
N

lnZ(t, h). (7.29)

Now, making an assumption that close to the critical point the free energy consists of

regular, fR and a singular, fS part, which is

f(t, h)|T→Tc = fR(t, h)|T→Tc + fS(t, h)|T→Tc . (7.30)

Further, again assuming that the singular function of the free energy to be a homogeneous

function:

f(λat, λbh) = λf(t, h), (7.31)
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The above hypothesis is called Widom Scaling for the free energy. Since the generalised

homogeneity was expressed in terms of parameters a and b, the critical exponents are

evaluated in terms of the same parameters. From (4.16), the magnetisation is given to be

a first derivative of the free energy with respect to h, therefore differentiating the above

expression yields

λbm(λat, λbh) = λm(t, h). (7.32)

If the external field approaches zero then this becomes

m(t, 0) = λb−1m(λat, 0). (7.33)

Choose λ = (−t)−1/a as t is negative. Substituting this in above expression gives

m(t, 0) = (−t)(1−b)/am(−1, 0). (7.34)

The critical exponent β can now be identified by comparing the above equation with the

behaviour of β. Doing this gives β to be

β =
1− b
a

. (7.35)

Similarly, the critical exponent δ can also be evaluated. So letting t = 0 in (7.32) gives

λbm(0, λbh) = λm(0, h), (7.36)

and if λ is replaced by h−1/b then this simplifies to

m(0, h) = λb−1m(0, λbh),

= h
1−b
b m(0, 1). (7.37)

As before, comparing this with the defination of δ gives

δ =
b

1− b
. (7.38)

Next in order to find the exponent γ, consider the behaviour of the susceptibility which

is the second derivative of the free energy with respect to h. Following this the second

derivative of the free energy from (7.31) is

λ2bχ(λat, λbh) = λχ(t, h). (7.39)
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In the absence of external field and above the critical temperature, this becomes

λ2bχ(λat, 0) = λχ(t, 0). (7.40)

Choosing λ = (t)−1/a and replacing this in above yields

χ(t, 0) = t(1−2b)/aχ(1, 0). (7.41)

Comparing this with the behaviour of the susceptibility then,

γ =
2b− 1

a
. (7.42)

Below the critical temperature the value for the susceptibility exponent is same as the γ.

Now rearranging the expressions for β and δ to give a and b:

b =
δ

1 + δ
, (7.43)

and

a =
1− b
β

,

=
1− δ

1+δ

β
,

=
1

β(1 + δ)
. (7.44)

Substituting these results into (7.42) gives

γ =
2( δ

1+δ
)− 1

1
β+βδ

,

=
β(1 + δ)(δ − 1)

(1 + δ)
,

γ = β(δ − 1). (7.45)

This simplification gives the third scaling relation which is known as Griffith’s Law and

was formulated 1965.

Next to find the last scaling relation consider the specific heat, which is the second deriva-

tive of the free energy with respect to t. Differentiating (7.31) gives

λ2aC(λat, λbh) = λC(t, h). (7.46)
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In the absence of external field this results in

λ2aC(λat, 0) = λC(t, 0). (7.47)

and choosing λ = (t)−1/a simplifies to

C(t, 0) = t(1−2a)/aC(1, 0). (7.48)

The critical exponent α is then found by comparing the above expression with the be-

haviour of the specific heat:

α =
2a− 1

a
. (7.49)

Substituting the value of a in this yields

α =
2

β+βδ
− 1

1
β+βδ

,

= 2− β(δ + 1). (7.50)

The above expression is the last scaling relation known as Rushbrooke’s Law and was

found in 1963. Thus, all the scaling inequalities have been proved as equality and these

equalities has been illustrated below.

Table 7.1: Four scaling relations

Josephson’s Law fails above d = 4. This is discussed in chapter 9.
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8 One-Dimensional Ising Model

Guided by W.Lenz, E. Ising solved the model in one dimension showing that no phase

transition occurs at any non-zero temperature (Ising 1925). Deriving the exact results for

the Ising model in one dimension is one of the objectives of this project. The technique

which has been considered throughout the calculations for one dimension in this section is

the transfer matrix technique, introduced by Kramers and Wannier (1941). The concept

of this technique is to first write the partition function in terms of a matrix, known as the

transfer matrix and then calculate its eigenvalues. With the help of these eigenvalues it

is then simple to derive all the thermodynamic functions. Following the method (i) the

critical exponents are derived, (ii) the scaling relations are examined and (iii) it is shown

that no phase transition occurs at T 6= 0.

As discussed in section 4, if periodic boundary conditions are imposed on system in one

dimension, then there is a link between the N th site and the first one, i.e., the system has

same number of sites and links. This scenario is depicted in figure 4.5. In this situation

the system is translationally invariant because all the sites in the system have equivalent

properties. Now the magnetisation, with respect to temperature and external field, from

(4.8) can be expressed as an average of magnetic spin per site which is

m(H,T ) =
1

N
〈s1 + s2 + · · · sN〉 , (8.1)

Since the system is translationally invariant, the average magnetisation of every spin will

be the similar to the neighbouring spins. Thus the magnetisation can be written as

m(T,H) = 〈s1〉 = 〈s2〉 = ...... = 〈sN〉, (8.2)

or this can also be rewritten, in terms of si which is assumed to be any site of the system,

as

m(T,H) = 〈si〉. (8.3)

Substituting the expression for the energy and total magnetisation in (4.14) gives

ZN =
∑
{si}

exp

K ∑
<i,j>

sisj + h
∑
i

si

 . (8.4)
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where K = J/kT , h = H/kT and the summation is over all configurations which the

system can be in. Now, the first exponent is

∑
<i,j>

sisj = s1s2 + s2s3 + .....+ sN−1sN + sNs1 =
N∑
i=1

sisi+1. (8.5)

As a result, the partition function can now be written as

ZN =
∑
{si}

exp

(
K

N∑
i=1

sisi+1 + h
∑
i

si

)
, (8.6)

Now clearly
∑
i si =

∑
i si+1, so ∑

i

si =
1

2

∑
i

(si + si+1). (8.7)

Substituting this in the previous expression for the partition function, one has

ZN =
∑
{si}

exp

(
K

N∑
i=1

sisi+1 +
h

2

∑
i

(si + si+1)

)
. (8.8)

Keeping in mind the two nearby spins the exponential in (8.8) can be factored giving

ZN =
∑
{si}

e
[Ks1s2 +

h

2
(s1 + s2) +Ks2s3 +

h

2
(s2 + s3) + · · ·+KsNs1 +

h

2
(sN + s1)]

,

=
∑
{si}

e
Ks1s2 +

h

2
(s1 + s2)

.e
Ks2s3 +

h

2
(s2 + s3) · · · e

KsNs1 +
h

2
(sN + s1)

. (8.9)

With si and sj any two neighbouring sites of the system, write

V (si, sj) = eKsisj+
h
2
(si+sj). (8.10)

The partition function can now be expressed as

ZN =
∑
{si}

V (s1, s2) · V (s2, s3) · · ·V (sN−1, sN)V (sN , s1). (8.11)

Since the si, sj in (8.10) can only take value from the set {±1}, there are only four possible

arrangements for a pair of spins i.e, both positive, both negative and two sets of positive

and negative. As a result, using these arrangements V (si, sj) can be expressed as an

element of a 2 × 2 matrix:

V =

 V (1, 1) V (1,−1)

V (−1, 1) V (−1,−1)

 ,

=

 eK+h e−K

e−K eK−h

 . (8.12)
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Now using the multiplication property of matrices on the s2, s3, · · · , sN and the summation

over s1 is expressed as

ZN =
∑
{si}

V N = TrV N . (8.13)

Now, let ~x and ~y be the two eigenvectors of V

~x =

 x1

x2

 and ~y =

 y1

y2


and λ1 and λ2 be the corresponding eigenvalues, such that

V ~x = λ1~x, and V ~y = λ2~y. (8.14)

Considering another a 2 × 2 matrix R such that

R =

 x1 y1

x2 y2

 . (8.15)

In order to satisfy the two expressions in (8.14), first consider the multiplication of matrix

V and R:

V R =

 V11 V12

V21 V22


 x1 y1

x2 y2

 ,

=

 V11x1 + V12x2 V11y1 + V12y2

V21x1 + V22x2 V21y1 + V22y2

 . (8.16)

and next multiply the matrix R with an eigenvalue matrix giving

R

 λ1 0

0 λ2

 =

 x1 y1

x2 y2


 λ1 0

0 λ2

 ,

=

 x1λ1 y1λ2

x2λ1 y2λ2

 . (8.17)

Comparing the first column of the above multiplications yields

V11x1 + V12x2 = λ1x1,

V21x1 + V22x2 = λ1x2.
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which implies

V ~x = λ1~x.

Similarly, comparing the second column satisfies both the expressions in (8.14). This

results that the above multiplications are equal and can be written as

V R = R

 λ1 0

0 λ2

 . (8.18)

Next multiplying both sides of (8.18) with R−1 gives

V = R

 λ1 0

0 λ2

R−1, (8.19)

The power of V in (8.13) now reads

V N = R

 λ1 0

0 λ2

R−1 · · ·R

 λ1 0

0 λ2

R−1,

= R

 λ1 0

0 λ2


N

R−1. (8.20)

Using the cyclic properties of trace, R in above cancels out, leaving only the trace of

two-by-two matrix. Thus, the partition function becomes

ZN = Tr

 λ1 0

0 λ2


N

. (8.21)

Since the trace of a matrix is equal to the sum of the diagonal terms, therefore, the above

equation equivalently can be written as

ZN = λN1 + λN2 . (8.22)

To obtain the values of both the eigenvalues, one writes the characteristic equation of V

as

det(V − λI) = 0. (8.23)

In detail,

det

 eK+h − λ e−K

e−K eK−h − λ

 = 0,
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giving

(eK+h − λ)(eK−h − λ)− e−2K = 0.

Expanding gives a quadratic equation namely

λ2 − λeK(eh + e−h) + e2K − e−2K = 0. (8.24)

The solution is

λ =
eK(eh + e−h)±

√
e2K(eh + e−h)2 − 4(e2K − e−2K)

2
.

Now using the hyperbolic functions and trigonometric identity of sinh, this becomes

λ = eK coshh±
√
e2K cosh2 h− e2K + e−2K ,

= eK coshh±
√
e2K sinh2 h+ e−2K . (8.25)

Free Energy

Next consider one of the eigenvalues, let say λ1 to be the larger of the two, and write

(8.22) as

ZN = λN1

(
1 +

λN2
λN1

)
.

Taking logarithm on both sides gives

lnZN = ln

λN1
1 +

(
λ2

λ1

)N ,
which is equivalent to

N−1 lnZN = lnλ1 +N−1 ln

1 +

(
λ2

λ1

)N . (8.26)

As N tends to infinity, therefore, second logarithm term on the right hand side of the

above equation approaches zero. Thus, substituting this result in the expression for free

energy, as earlier discussed in section 4, yields

f(H,T ) = −kT lim
N→∞

N−1 lnZN ,

= −kT lnλ1,
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Replacing λ1 by (8.25) in the above expression results

f(H,T ) = −kT ln[eK coshh+
√
e2K sinh2 h+ e−2K ]. (8.27)

The above equation is an expression for the free energy which has been defined in terms

of H and T .

Magnetisation

The magnetisation can be expressed as the negative first derivative of free energy with

respect to external field H. This can be expanded and written as

m = − ∂f
∂H

= −∂f
∂h

∂h

∂H
. (8.28)

In order to obtain an expression for the magnetisation for one-dimensional model differ-

entiate the free energy (8.27) with respect to h and the reduced external field (4.13) with

respect to H. As a result, the free energy now given as

∂f

∂h
=
−kT [eK sinhh+ e2K sinhh coshh(e2K sinh2 h+ e−2K)−1/2]

[eK coshh+ (e2K sinh2 h+ e−2K)1/2]
,

=
−kTeK sinhh[(e2K sinh2 h+ e−2K)1/2 + eK coshh]

[e2K sinh2 h+ e−2K ]1/2[eK coshh+ (e2K sinh2 h+ e−2K)1/2]
,

=
−kTeK sinhh

[e2K sinh2 h+ e−2K ]1/2
. (8.29)

and the reduced external field now written as

∂h

∂H
= β. (8.30)

Substituting the last two results in (8.28) gives

m(H,T ) =
eK sinhh

[e2K sinh2 h+ e−2K ]1/2
. (8.31)

The above equation is an expression for the magnetisation defined in terms of temperature

and the external magnetic field.
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Correlations

Next the solution for the correlation length ξ will be discussed. From (4.11) the probability

that the system is in a state ‘si’ is

Z−1e−E(si)/kT = Z−1
N V (s1, s2)V (s2, s3)V (s3, s4) . . . V (sN , s1). (8.32)

In particular, the average of the product of any two spins in the system, for instance s1s3,

is

〈s1s3〉 = Z−1
N

∑
si

s1V (s1, s2)V (s2, s3)s3V (s3, s4) . . . V (sN , s1). (8.33)

Using the previous notations, the above expression can also be expressed in the form of

a matrix. Now defining another two by two diagonal matrix A in terms of si and sj such

that it is equal to siδ(si, sj) where δ(si, sj) is 1 si = sj

0 si 6= sj
.

Therefore, the matrix A can be written as

A =

 1 0

0 −1

 . (8.34)

Now taking trace of expression (8.33) and using (8.34), the average of spins becomes

〈s1s3〉 = Z−1
N TrAV V AV · · ·V = Z−1

N TrAV 2AV N−2. (8.35)

Similarly, the average value of sisj and the individual spin si would be

〈sisj〉 = Z−1
N TrAV j−iAV N+i−j, (8.36)

and

〈si〉 = Z−1
N TrAV N . (8.37)

The average value of sisj is dependent on i and j and the si is independent of i. Thus it

is clear that the two equations exhibits the translational invariance behaviour.
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Next substituting the value of V in the first expression of (8.14) yields eK+h e−K

e−K eK−h


 x1

x2

 = λ1

 x1

x2

 , (8.38)

Multiplying the matrices on left hand side gives

eK+hx1 + e−Kx2 = λ1x1, (8.39)

Rearranging the equation in order to form a fraction of x1 and x2 and substituting the

value for λ1 gives

x2

x1

= eK
[
eK coshh+

√
e2K sinh2 h+ e−2K − eK+h

]
, (8.40)

Using the hyperbolic function for sinh and cosh, the above fraction becomes

x2

x1

=
√
e4K sinh2 h+ 1− e2K sinhh. (8.41)

Defining any number φ, which lies between 0 and π/2, by

cot 2φ = e2K sinhh, (8.42)

and substituting this into (8.41) yields

x2

x1

= (cot2 2φ+ 1)1/2 − cot 2φ,

= cosec2φ− cot 2φ, (8.43)

Using the trigonometric identities results in

x2

x1

=
1

sin 2φ
− cos 2φ

sin 2φ
,

=
1− (2 cos2 φ− 1)

2 sinφ cosφ
, (8.44)

which can be equivalently written as

x2

x1

=
sinφ

cosφ
. (8.45)
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Therefore, the value of the eigenvectors x1 and x2 is choosen to be cosφ and sinφ. Simi-

larly, the other eigenvectors can be obtained and following the procedure yields ~y of (8.14)

to be − sinφ and cosφ. Arranging the eigenvectors forms an orthogonal matrix R as

R =

 cosφ − sinφ

sinφ cosφ

 . (8.46)

Using matrix inverse formula, the inverse of square matrix R is then given by

R−1 =
1

cos2 φ+ sin2 φ

 cosφ sinφ

− sinφ cosφ

 . (8.47)

The matrix V and A in expression (8.36) and (8.37) remains to be the same even if they

are replaced by (8.19). Therefore, using the inverse of R, the matrix V can be written as

R−1V R =

 λ1 0

0 λ2

 , (8.48)

and A is written as

R−1AR =

 cosφ sinφ

− sinφ cosφ


 1 0

0 −1


 cosφ − sinφ

sinφ cosφ

 ,

=

 cos2 φ− sin2 φ −2 sinφ cosφ

−2 sinφ cosφ sin2 φ− cos2 φ

 , (8.49)

Using the trigonometric identities in the above matrix gives a more simplified version,

which is

R−1AR =

 cos 2φ − sin 2φ

− sin 2φ − cos 2φ

 , (8.50)

Taking the limit N → ∞ and keeping j − i fixed, substitute the above expressions into

(8.36) and (8.37). Using the matrix multiplication property, first multiplying the matrices,

then taking their trace and finally substituting the expression for the partition function

gives an expression for the average value of sisj:

〈sisj〉 = Z−1
N TrR−1AR(R−1V R)j−iR−1AR(R−1V R)N+i−j,

= Z−1
N

[
λN1 cos2 2φ+ λN+i−j

1 λj−i2 sin2 2φ+ λj−i1 λN+i−j
2 sin2 2φ+ λN2 cos2 2φ

]
,
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=
[λN1 + λN2 ]

[
cos2 2φ+ sin2 2φ(λ2/λ1)

j−i
]

λN1 + λN2
,

= cos2 2φ+ sin2 2φ

(
λ2

λ1

)j−i
. (8.51)

Similarly, the average value of si can be obtained. This is given by

〈si〉 = Z−1
N TrR−1AR(R−1V R)N ,

=
cos 2φ(λN1 − λN2 )

λN1 + λN2
,

=
cos 2φ(1− (λ2/λ1)

N)

(1 + (λ2/λ1)N)
, (8.52)

Again using the fact that λ2/λ1
N approaches zero in the infinite volume limit,

〈si〉 = cos 2φ. (8.53)

This expression is an alternative equation for magnetisation which is equivalent to (8.31).

Next, the correlation function ‘gij’ can be found by substituting the values for the averages

from (8.51) and (8.53) in (5.5) yields

gij = 〈sisj〉 − 〈si〉〈sj〉,

= sin2 2φ

(
λ2

λ1

)j−i
. (8.54)

Finally using the above expression the correlation length ξ can be found. Since the

eigenvector λ1 is greater than λ2, therefore it can be noticed that the correlation function

tends exponentially to zero. As a result, the exponential in the above expression yields

gij = sin2 2φeln(λ2/λ1)j−i ,

= sin2 2φe|j−i| ln(λ2/λ1),

From (5.13) letting (j − i) be r then the correlation scale as

g(r) ∼ e−r ln(λ1/λ2). (8.55)

Therefore, comparing with (5.13) gives an expression for correlation length ξ. I.e.,

ξ =

[
ln

(
λ1

λ2

)]−1

. (8.56)
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Critical Behaviour near T = 0

The correlation length diverges when

λ1

λ2

= 1. (8.57)

Substituting the value of λ1 and λ2 and setting h = 0, the above expression becomes

eK + e−K = eK − e−K , (8.58)

e−2K = 0. (8.59)

where K = J/kT . Usually Tc is defined as the value for T for which the correlation length

is infinite, therefore, it is considered that Tc = 0. In the light of (8.59), it is sensible to

define the reduced temperature by

t = e−2K ,

= e−2J/kT . (8.60)

where K is J/kT . Now that the value for t is found, all the critical exponents can be

evaluated. When h = 0 both the eigenvectors can be found.

λ1 = eK coshh+
√
e2K sinh2 h+ e−2K ,

= eK + e−K ,

= 2 coshK, (8.61)

Similarly, λ2 equals

λ2 = 2 sinhK, (8.62)

Substituting the above results in (8.56) yields

ξ =
[
ln
(

1 + t

1− t

)]
(8.63)

Letting t to be much smaller than one and Taylor expanding the logarithmic terms gives

ξ ∼ (2t)−1. (8.64)
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This simplification is justified by the critical behaviour of the correlation length which is

of the form, ξ ∼ |t|−ν , therefore, the first critical exponent ν is found to be equal to

ν = 1. (8.65)

Next, substituting the reduced temperature (8.60) in the expression for magnetisation

(8.31) gives

m(H,T ) =
t−1/2 sinhh

t−1/2
√

sinh2 h+t2
, (8.66)

Taylor expanding the term sinh yields

m(H,T ) =
h√

h2 + t2
. (8.67)

Letting temperature approaches the critical temperature, the expression for magnetisation

becomes constant and comparing this situation with (5.1) yields δ to be infinite:

δ =∞. (8.68)

Recalling (8.67)

m(H,T ) =
h

h
√

1 + t2/h2
. (8.69)

Letting t = 0, the magnetisation becomes one, i.e,

m(H,T ) = 1 (8.70)

Comparing the above expression for magnetisation with (3.1) yields another critical ex-

ponent ‘β’ to be

β = 0. (8.71)

Next in order to find the value for the critical exponent γ, differentiating the expression

(8.31) with respect to reduced external field h gives

χ(H,T ) =
eK coshh[e2K sinh2 h+ e−2K ]1/2 − e3K sinh2 h coshh[e2K sinh2 h+ e−2K ]1/2

[e2K sinh2 h+ e−2K ]
,

=
eK coshh[e2K sinh2 h+ e−2K − e2K sinh2 h]

[e2K sinh2 h+ e−2K ]3/2]
,

=
e−K coshh

[e2K sinh2 h+ e−2K ]3/2
. (8.72)
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Letting h = 0 and using (8.60), the above expression becomes

χ =
e−K

e−3K
,

= t−1. (8.73)

This formulation gives the critical behaviour of susceptibility, where χ ∼ |t|−γ, showing

the value of γ to be one.

γ = 1. (8.74)

The naive expression for the specific heat

C =
∂e

∂T
. (8.75)

would lead to a value for the exponent α which is inconsistent with the scaling relations.

But since the reduced temperature is defined as in (8.60) it is more sensible to define

specific heat as a derivative with respect to t (Campbell 2008). In fact, from section 7,

one has

f ∼ t2−α. (8.76)

Now, letting h = 0 the expression for the free energy (8.27) becomes

f = −kT ln[eK + e−K ],

= −kT
[
ln eK + ln(1 + e−2K)

]
,

= −kT [K + ln(1 + t)],

∼ ln(1 + t), (8.77)

Using the taylor expansion, this can be written as

f ∼ t1 − 1

2
t2 + · · · . (8.78)

Comparing (8.76) and (8.78) gives the critical exponent α to be

α = 1. (8.79)

Having calculated all the exponents as depicted in the following table, all the scaling

relations corresponding to these exponents are now satisfied.
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Thermodynamics functions Behaviour d=1

Specific Heat C ∼ |t|−α α = 1

Spontaneous Magnetisation M ∼ (t)β β = 0

Susceptibility χ ∼ |t|−γ γ = 1

Magnetisation M ∼ H
1
δ δ =∞

Correlation Length ξ ∼ |t|−ν ν = 1

Table 8.1: Critical exponents in one-dimensional Ising model
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9 Mean Field Theory

Approaches to Mean Field Theory

The solution for any system consisting of multiple bodies is beyond easy calculation -

it is almost impossible to calculate the exact value of partition function for non-trivial

models, for instance, certain two or three-dimensional models (Yeomans 1997). This

necessitates the introduction of mean field theory (MFT) which involves an average in-

teraction of all neighbouring bodies instead of individual interactions. Thus, MFT gives

an approximation for such cases. Furthermore, there are various ways to generate this

approximation, for example, Landau theory (Dobrosavljevic 2005), Bogoliubov Inequality

(Callen 1985) and Van der Waals approach (Dobrosavljevic 2005). However, the three

approaches, Bragg-Williams (Baxter 2007), Weiss MFT (Ravndal 1976) and Saddle Point

Solution (Dobrosavljevic 2005), are outlined in this section. The idea behind this the-

ory is to analyze the properties of the previously discussed model of a magnet and then

chronologically examine the behaviour of all the thermodynamic functions.

Bragg-William’s Approximation

In 1934, Bragg and Williams investigated the Ising model in infinite dimensions. The

idea behind this approach is that it allows the spins to interact with all the other spins.

As a result, the total energy of the system (4.5) can now be altered by breaking the first

term into two parts: ∑
i

si

−J q∑
j=1

sj

 , (9.1)

where the summation is over the q sites which interacts with the site i. Using this idea,

if there are N sites in a system then the number of possible interaction will be (N − 1).

However, in (4.5) the summation is over the nearest neighbour i.e, there are (N − 1)/q

extra sites. In order to balance, divide the above expression by (N − 1)/q. Consequently,
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the above expression takes the form

−Jq(N − 1)−1
N−1∑
j=1

sj. (9.2)

Substituting this into (4.5) gives

ET =
∑
i

si

−Jq(N − 1)−1
N−1∑
j=1

sj

−H∑
i

si,

= −Jq(N − 1)−1
∑
i,j,i6=j

sisj −H
∑
i

si. (9.3)

The above equation is the expression for the total energy of the system. Since each spin

interacts equally with all the other spins, therefore, the system is in infinite dimensions.

Now squaring both the sides of (4.6) gives

M2 =

(
N∑
i=1

si

)2

, (9.4)

= (s1 + s2 + s3 + · · ·+ sN)2,

= (s2
1 + s1s2 + s1s3 + · · ·+ s1sN + s2s1 + s2

2 + s2s3 + · · ·+ s2sN + · · ·+ s2
N),

= s2
1 + s2

2 + · · ·+ s2
N + 2(s1s2 + s1s3 + · · ·+ s1sN + s2s3 + · · ·+ s2sN + · · ·),

=
N∑
i

s2
i + 2

∑
i,j,i6=j

sisj. (9.5)

Since, si takes only two values i.e., ±1, therefore, squaring either +1 or −1 will be positive

only. As a result, the above equation becomes

M2 =
N∑
i

1 + 2
∑
i,j,i6=j

sisj.

Therefore,
1

2
(M2 −N) =

∑
i,j,i6=j

sisj. (9.6)

Substituting the above expression in (9.3) yields

ET =
−Jq

2
(N − 1)−1(M2 −N)−HM. (9.7)

Consider N spins in a system and let r spins be pointing downward (i.e, have value −1)

then the number of spins pointing upward is N − r. Thus, the magnetisation which is
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equal to the total spins pointing upward (i.e, N − r) minus the spins pointing downward

(i.e, r) becomes

M = (N − r)− r,

= N − 2r. (9.8)

There are NCr arrangements for the spins;

NCr =
N !

r!(N − r)!
. (9.9)

Substituting (9.8) and (9.9) in (4.11) gives an expression for the partition function. I.e.,

Z =
N∑
r=0

(
N !

r!(N − r)!
e

1
2
βJq([N−2r]2−N)/(N−1)+βH(N−2r)

)
, (9.10)

=
N∑
r=0

cr. (9.11)

where

cr =
N !

r!(N − r)!
e

1
2
βJq([N−2r]2−N)/(N−1)+βH(N−2r). (9.12)

Next replacing M by N − 2r in (4.8), simplifies the magnetisation to give

m =
1

N

1

Z

N∑
r=0

(N − 2r)e−βE,

=
1

Z

N∑
r=0

(1− 2r/N)e−βE. (9.13)

Substituting the expression for the total energy gives

m =
1

Z

N∑
r=0

(1− 2r/N)e
1
2
βJq([N−2r]2−N)/(N−1)+βH(N−2r). (9.14)

Since this concept relates to the interaction of all the spins and the above expression does

not compute the possible arrangement of the spins so this must be modified to give

m =
1

Z

N∑
r=0

(1− 2r/N)
N !

r!(N − r)!
e

1
2
βJq([N−2r]2−N)/(N−1)+βH(N−2r), (9.15)

Using cr as in (9.12) gives an expression for an average magnetisation per site:

m =
1

Z

N∑
r=0

(
1− 2r

N

)
cr. (9.16)
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Now consider the relation dr = cr+1/cr by which it is possible to observe the behaviour of

cr at different values of N . Using (9.12), dr is written as

dr =
cr+1

cr
, (9.17)

=

N !
(r+1)!(N−r−1)!

e
1
2
βqJ([N−2(r+1)]2−N)/(N−1)+βH(N−2[r+1])

N !
r!(N−r)!e

1
2
βqJ([N−2r]2−N)/(N−1)+βH(N−2r)

,

=
(N − r)
(r + 1)

[
e

1
2
βqJ(([N2+4(r+1)2−4N(r+1)]−N−[N2+4r2−4Nr]+N)/(N−1))+βH(N−2r−2−N+2r)

]
,

=
(N − r)
(r + 1)

e
1
2
βqJ(4N−8r−4)/(N−1)−2βH ,

=
(N − r)
(r + 1)

e−2βqJ
(N−2r−1)

(N−1)
−2βH . (9.18)

Once the expression for dr is found, substitute the different values of r i.e., from 0 · · ·N

in order to see the behaviour of dr. Therefore, when r equals zero

d0 = Ne−2βqJ−2βH . (9.19)

Similarly, when r equals N − 1, dr becomes

dN−1 = N−1e2βqJ−2βH . (9.20)

It can be seen from the above formulation that right hand side increases from order N

(maximum value) to order N−1 (minimum value) when different values of r, increasing

from 0 to N − 1, are substituted. Now making an assumption that dr decreases, when r

goes from 0 to (N−1), monotonically. There should be a value r0 such that the condition

dr0 ≈ 1 holds true. The relation of dr as given in (9.17) can be written as

drcr = cr+1. (9.21)

When dr > 1 then cr+1 is greater than cr and the cr’s increases as r goes from 0 to r0− 1.

On the other side when dr is less than 1, then cr+1 < cr and the cr’s are decreasing when

r equals r0 + 1 · · ·N . Since the largest value of cr relates to the point r0, cr0 is therefore

maximum. Taking N →∞ then dr can be written as

dr =
1− r

N
r
N

e−2βqJ(1−2r/N)−2βH . (9.22)
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Letting 1− 2r/N be x gives

dr =
1− 1

2
(1− x)

1
2
(1− x)

e−2βqJx−2βH ,

=
1 + x

1− x
e−2βqJx−2βH . (9.23)

which can be equivalently written as a function of x;

dr = φ(x). (9.24)

which means that dr = 1 corresponds to φ(x) = 1. Now let x0 be the solution of the

equation φ(x) = 1. Next assuming that cr0 dominates all the other cr which means that

in this approach all the other cr’s are assumed to be negligible. Using this assumption,

the partition function can now be expressed as

Z ≈ cr0 . (9.25)

Magnetisation

Further, in order to obtain the expression for magnetisation, substituting the above ex-

pression in (9.16) gives

m = 1− 2r0
N
. (9.26)

which can be equivalently written as

m = x0. (9.27)

Since, x0 is given by φ(x0) = 1, in the same way m is given by φ(m) = 1. This means the

expression (9.23) can be written as

1 =
1 +m

1−m
e−2βqJm−2βH . (9.28)

Rearranging the above gives a simplified version of magnetisation

1− e−2β(qJm+H) = m(e−2β(qJm+H) + 1),

m =
1− e−2β(qJm+H)

1 + e−2β(qJm+H)
,
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m = tanh[(qJm+H)/kT ]. (9.29)

The above equation is an expression for magnetisation as a function of H and T . This

was first developed in 1934 by Bragg and Williams.

Free Energy

Using (9.12), the expression for the free energy f can be obtained. Substituting (9.25) in

(4.15) gives

f = lim
N→∞

1

N
ln cr0 . (9.30)

Now, using Stirling’s approximation:

n! ∼ (2π)1/2e−nnn+1/2 (9.31)

Equation (9.12) becomes

cr0 =
NN+1/2

(2π)1/2r0r0+1/2(N − r0)N−r0+1/2
e

1
2
βqJ([N−2r0]2−N)/(N−1)+βH(N−2r0). (9.32)

Substituting the above expression into (9.30), the free energy can be written as

f =
1

N

[
ln(NN+1/2)− ln(2π)1/2 − ln(r0)

r0+1/2 − ln(N − r0)N−r0+1/2
]

+

1

N

[
1

2
βqJ [(N − 2r0)

2 −N ]/(N − 1) + βH(N − 2r0)
]
,

=
(

1 +
1

2N

)
lnN − 1

2N
ln 2π −

(
r0
N

+
1

2N

)
ln r0 −

(
1− r0

N
+

1

2N

)
ln(N − r0)

+
1

2
βqJ

[
(1− 2r0

N
)2 − 1

N

1− 1
N

]
+ βH

[
1− 2r0

N

]
. (9.33)

As N approaches to infinity, the constant terms and terms like 1/2N , 1/N will not be

considered and using the relationship m = 1− 2r0/N , the free energy becomes

f = lnN − 1

2
(1−m) ln

(
N(1−m)

2

)
−
(

1− 1

2
(1−m)

)
ln
(
N − N

2
(1−m)

)
+

1

2
βqJm2 + βHm,

= lnN − 1

2
(1−m)

[
lnN + ln

(
1−m

2

)]
− 1

2
(1 +m)

[
lnN + ln

(
1 +m

2

)]
+

1

2
βqJm2 + βHm,
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= −1

2
(1−m) ln

(
1−m

2

)
− 1

2
(1 +m) ln

(
1 +m

2

)
+

1

2
βqJm2 + βHm,

= −1

2

[
ln

(
1−m2

4

)
+m ln

(
1 +m

1−m

)]
+

1

2
βqJm2 + βHm, (9.34)

Using the hyperbolic function tanh−1 in the second logarithm term yields

f = −1

2
ln
(

4

1−m2

)
−m tanh−1m+

1

2
βqJm2 + βHm, (9.35)

Next, substituting the expression for tanh−1m from (9.29) in the above formulation gives

f =
1

2
ln
(

4

1−m2

)
− 1

2
βqJm2. (9.36)

The above equation is an expression for the free energy f as a function of m and T .

Rewrite the equation (9.29) as a function of m and T for H:

H = −qJm+ kT tanh−1m. (9.37)

Once the expression for H is obtained then it is possible to construct the graph of H in

terms m and vice-versa. In order to do that first consider the constant terms, q, J and k,.

Setting each single term to unity, only stretches or compresses the graph, however, the

shape of the graph remains the same regardless of the value for the respective terms. In

other words, to observe the behaviour of functions H, m and T the constant terms can be

set to unity and easily a graph can be constructed i.e, of function H = −m + tanh−1m.

However, there still exist three terms in the expression which means if a graph of m is

plotted against H then the variable T is left. Therefore, to examine the expression for T ,

setting external field to zero in (9.37) gives

0 = −qJm+ kT tanh−1m. (9.38)

Since H = 0, m is called spontaneous magnetisation and is denoted by m0. Rearranging

the expression (9.38) and changing m to m0 gives

m0 = tanh
(
qJm0

kT

)
. (9.39)

Now if m0 is small. Using a Taylor expansion the above expression can be written as

mo =
qJm0

kT
+O(m2

0). (9.40)

58



As a result,
qJ

kT
= 1, (9.41)

Rearranging the above expression to give T

T =
qJ

k
, (9.42)

and when the temperature T approaches critical temperature Tc, the above expression

becomes

Tc =
qJ

k
. (9.43)

Since in one-dimensional model, spins interact only with the nearby neighbours i.e, q = 2.

Therefore, using (9.43) the critical temperature for d = 1 will be given by Tc = 2J/k.

However, the critical temperature for one-dimensional model equals zero. As a result, this

shows that MFT is not true for atleast d = 1.

Setting constant terms to one in (9.37), there exists three scenarios for T which need

to be considered. These are

T = Tc, T > Tc and T < Tc. (9.44)

Thus, the graph of m against H can be constructed. Figure 9.1 illustrates that when

temperature equals critical temperature the magnetistaion vanishes which means as the

temperature approaches to critical temperature the system gets demagnetised.

Figure 9.1: The graph of m as a function of H when T = Tc
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On the other hand when the temperature is increased further and is more than the critical

temperature, depicts that the system remains to be same as continuous but the graph

founds to be more extended and stretched. This scenario when T > Tc is shown in figure

9.2

Figure 9.2: The graph of m as a function of H when T > Tc

The third graph illustrated in figure 9.3 depicts the relationship of magnetisation and H

when the temperature is below the critical temperature.

Figure 9.3: The graph of m as a function of H when T < Tc
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However, this graph gives three values for the magnetsiaion in the absence of external

magnetic field which is not valid as the magnetisation can take only one value at one

time. The reason behind this contradiction is the assumption which was made in expres-

sion (9.18) because if temperature is less than Tc than it can be seen from (9.18) that

dr is not monotonically decreasing and the function cr instead of cr0 maximum will now

have two maximum points. In order to correct this contradiction a new graph can be

constructed showing only one value for the magnetisation.

Now using the above expressions for magnetistaion and the free energy, the critical ex-

ponents can be found. In order to do that, substitute (9.43) in the expression for the

reduced temperature (3.2) gives

t =
kT − qJ
qJ

. (9.45)

which can also be written as

kT = tqJ − qJ,

T =
qJ

k
(t+ 1). (9.46)

Substituting the equation for T in (9.39) yields

tanh−1m0 =
qJm0

qJ(t+ 1)
,

m0 = (t+ 1) tanh−1m0. (9.47)

When T > Tc, the spontaneous magnetisation is small. Taylor expanding the hyperbolic

function tanh gives

tanh−1m0 = m0 +
m3

0

3
+
m5

0

5
+
m7

0

7
+ · · · , (9.48)

Since m0 is small therefore the higher than three terms can be considered negligible and

the expansion tanh can be written as

tanh−1m0 ≈ m0 +
m3

0

3
. (9.49)

Substituting this in (9.47) gives

m0 = (t+ 1)

(
m0 +

m3
0

3

)
,
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m0 =

√
−3t

t+ 1
, (9.50)

which can also be written as

m0 = (−3t)1/2(1 + t)1/2. (9.51)

Next Taylor expanding (1 + t)1/2 gives

(1 + t)1/2 = 1− t

2
+

3t2

8
· · · , (9.52)

The above expansion will be considered to order t because near the critical temperature

Tc, the reduced temperature is zero. As a result, equation (9.51) can now be written as

m0 = (−3t)1/2{1 +O(t)}. (9.53)

where O(t) is the terms of order t. Now considering T < Tc and comparing the above

expression with (3.1) gives

m0 = (−t)1/2. (9.54)

and the first critical exponent β is given by

β = 1/2. (9.55)

Now in order to evaluate the free energy and the critical exponent α consider the scenario

T > Tc. If H approaches zero then m→ 0. The free energy (9.36) can be expressed as

−f
kT

=
1

2
ln[4],

−f/kT = ln 2. (9.56)

Diiferentiating twice the free energy with respect t equals zero in this case. On the other

side, m approaches to m0 when T < Tc. Substituting this in the free energy (9.36) gives

f/kT = ln 2− 1

2
ln(1−m2

0)−
1

2

qJm2
0

kT
, (9.57)

Next, using Taylor expansion and substituting the expression for the temperature and

spontaneous magnetisation gives

f/kT = ln 2− 3t

2(1 + t)

(
1− 1

1 + t

)
+

9

4

t2

(1 + t)2
− 9

4

t3

(1 + t)3
+O(t4),

= ln 2− 3t2

2(1 + t)2
+

9

4

t2

(1 + t)2
− 9

4

t3

(1 + t)3
+O(t4),

= ln 2 +
3

4

t2

(1 + t)2
− 9

4

t3

(1 + t)3
+O(t4), (9.58)
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Now 1/(t+ 1)→ 1 if t is small and negative which means

f/kT = ln 2 +
3

4
t2 − 9

4
t3 +O(t4). (9.59)

As mentioned in (4.21), the specific heat is mathematically defined as the second derivative

of the free energy with respect to β. Differentiating the above equation with respect to

reduced temperature gives

f ′ =
3

2
t− 27

4
t2, (9.60)

f ′′ =
3

2
− 27

2
t. (9.61)

which can also be written in terms of order t i.e,

f ′′ = C =
3

2
t0 +O(t). (9.62)

From the above expression for the free energy (9.56) and (9.59), it can be observe that

the free energy at critical temperature is continuous, however, the specific heat shows a

discontinuity because specific heat is zero at t < 0 and is equal to 3/2 when t > 0. Hence,

it displays discontinuity and does not justify the behaviour of specific heat c ∼ |t|−α which

implies the critical exponent ‘α’ to be zero, i.e,

α = 0. (9.63)

Next in order to find the value for the critical exponent γ, differentiate the expression

(9.37) with respect to external field ‘H’, keeping T fixed.

1 = −qJ ∂m
∂H

+ kT
1

1−m2

∂m

∂H
,

∂m

∂H
=

1−m2

−qJ(1−m2) + kT
. (9.64)

Replacing T by (9.46) gives
∂m

∂H
=

1−m2

qJ(t+m2)
. (9.65)

The susceptibility is the first derivative of magnetisation with respect to external field,

therefore, the above expression yields

χ =
1−m2

qJ(t+m2)
. (9.66)
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Next consider the scenario when T > Tc. In the absence of external field, the magnetisa-

tion approaches zero. Therefore, the above expression becomes

χ =
1

qJt
. (9.67)

On the other side, if temperature is less than critical temperature then m approaches m0

and susceptibility in (9.66) is written as

χ−1 = −qJ +
kT

1−m2
0

, (9.68)

Substituting the value for spontaneous magnetisation (9.50) and using the taylor expan-

sion, the susceptibility becomes

χ−1

kTc
=

1

Tc

[
−Tc + T (1− 3t+ (3t)2 · · ·)

]
,

=
T − Tc
Tc

− 3T

Tc
t+

9T

Tc
t2 · · · ,

= t− 3T

Tc
t+

9T

Tc
t2 · · · , (9.69)

Using (9.43) and (9.46), the above expansion can be written as

χ−1 = qJ(−2t+ 6t2 + 9t3 · · ·), (9.70)

or

χ = (−2tqJ)−1[1− 3t− 9/2t2 · · ·]−1, (9.71)

Near the critical temperature the expansion is of order t, therefore, the susceptibility

becomes

χ = (−2tqJ)−1[1 + 3t], (9.72)

and when t is small then χ approximately equivalent to

χ ≈ (−2tqJ)−1. (9.73)

Recalling the behaviour of the susceptibility as in (5.4) and comparing with (9.67) and

(9.73) gives the critical exponent γ as

γ = 1. (9.74)
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Using (9.37) and taylor expanding the hyperbolic function tanh−1, the last critical expo-

nent δ can be obtained.

H = −qJm+ kT

(
m+

m3

3
+
m5

5
+
m7

7
+ · · ·

)
, (9.75)

Substituting (9.46) in the above expression gives

H = −qJm+ qJ(t+ 1)

(
m+

m3

3
+
m5

5
+
m7

7
+ · · ·

)
,

H

kTc
= tm+ t

m3

3
+ t

m5

5
+ t

m7

7
+
m3

3
+
m5

5
+
m7

7
. (9.76)

Setting reduced temperature to be zero yields

H

kTc
=
m3

3
+
m5

5
+
m7

7
, (9.77)

The terms of higher order than three are negligible if m is small. Thus, the above expan-

sion can now be written as
H

kTc
=
m3

3
, (9.78)

which implies

H ∼ m3. (9.79)

Comparing this with (5.1) gives the critical exponent δ

δ = 3. (9.80)

Finally, all the critical exponents are examined above except the correlation length be-

cause according to this approach every spin interacts with all other spins and there is no

description about the location of spins. Thus, the exponents ν, η and µ are not defind for

this theory. However there is another approach called thehigh temperature series expan-

sion which can be used to find the remaining exponents. This approach is been elaborated

in a later section.
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Weiss MF Theory

Weiss MF is another approach to solve Ising model. Historically this technique was

invented by P. E. Weiss (1865-1940) as a theory of magnetism. The underlying assump-

tion of Weiss theory is to assume that energy of the system can be represented by an

average external field, HW , acting on the spins.

HW = λm, (9.81)

whereHW is denoted by the average external field and the total magnetic fieldHT enacting

on all the spins is then given by the sum of initial magnetic field plus the Weiss assumption,

which is

HT = H + λm. (9.82)

Replacing the external magnetic field by equation (9.82) and β in the definition of reduced

magnetic field i.e.,

h =
H + λm

kT
. (9.83)

If the spins in the system have no interaction with each other then the energy equals zero.

From (4.14), the partition function takes the form

Z =
∑
{si}

ehM . (9.84)

where h is the reduced external field as in (9.83). Now substituting the expression for M

and expanding the summation si by using the properties of exponentials gives

Z =
∑
{si}

eh
∑N

i=1
si , (9.85)

=
∑
{si}

ehs1 .ehs2 .ehs3 · · · , (9.86)

The spin at site i takes only two values ±1, therefore, this becomes

Z =
∑
{si}

eh(±1)eh(±1)eh(±1)eh(±1) · · · , (9.87)

= (eh + e−h)(eh + e−h)(eh + e−h)(eh + e−h) · · · ,
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which is

Z =
∏
N

(eh + e−h), (9.88)

Using the hyperbolic function for cosh, the partition function becomes

Z =
∏
N

(2 cosh(h)), (9.89)

which is equivalent to

Z = (2 cosh(h))N . (9.90)

The next step is to determine the magnetisation of the system which is defined as the

negative first derivative of the free energy in terms of external field H. Recalling the

expression for the free energy (4.15) and substituting the partition function (9.90) yields

f = −kT 1

N
ln(2 cosh(h))N , (9.91)

= −kT ln(2 cosh(h)). (9.92)

Differentiating the free energy with respect to reduced external field and replacing h by

(9.83), gives magnetisation

m = tanh

(
H + λm

kT

)
. (9.93)

In the absence of external field, the magnetisation of the system becomes

m = tanh

(
λm

kT

)
, (9.94)

This can be represented graphically by plotting both the curves in terms of their coordi-

nates. This has been illustrated in Figure 9.4.

Figure 9.4: The graphical solution to m = tanh
(
λm
kT

)
in the absence of external field.
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Now making an assumption that m is small and temperature approaches the critical

temperature Tc, using taylor expansion on tanh gives

m ≈ λm

kTc
, (9.95)

This gives an expression for the critical temperature:

Tc =
λ

k
. (9.96)

Next, in the presence of external field the expression for magnetisation, using (9.96), can

be written as

m = tanh

(
H

kT
+
λm

kT

)
,

= tanh
(
H

kT
+
Tcm

T

)
. (9.97)

If Tc/T is denoted by the variable x, then magnetisation can be rewritten as

m = tanh
(
H

kT
+mx

)
. (9.98)

The above equation is the expression for the magnetisation which recovers the equation of

Bragg-William’s (9.29). As a result, one can find the critical exponents β, γ and δ using

the similar procedure as used earlier. Since both the expressions are equal, therefore, they

share the same values for the critical exponents, as listed below:

β =
1

2
, γ = 1 and δ = 3.

However, the other critical exponent α can be analyzed by replacing h in (9.92) by (9.83).

f = −kT ln

(
2 cosh

(
H + λm

kT

))
. (9.99)

and in the absence of external field the free energy simplifies to

f = −kT ln

(
2 cosh

(
λm

kT

))
, (9.100)

Next in order to examine the behaviour of the free energy consider two cases i.e, above and

below the critical temperature. When temperature is larger than the critical temperature

then the magnetisation equals zero and the free energy becomes

−f/kT = ln(2). (9.101)
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This formulation is similar to the expression for Bragg-William’s in (9.56). Further dif-

ferentiating the above expression of free energy twice yields a specific heat of zero. Now,

when the temperature is less than critical temperature, the expression for the free energy,

using (9.96), becomes

f = −kT ln
(

2 cosh
(
Tcm

T

))
. (9.102)

Now, when the temperature approaches the critical temperature, T → Tc, this modifies

the above expression to give

f = −kT ln(2 cosh(m)). (9.103)

From the Bragg-William’s approach, when the temperature was less than the critical

temperature, the magnetisation was found to be t1/2, therefore, substituting this in (9.103)

gives

f = −kT ln(2 cosh(t
1
2 )). (9.104)

Finally in order to examine the behaviour of the specific heat, differentiate the free en-

ergy in terms of reduced temperature t and then let t equal zero, which yields a non

zero value. As a result, it shows a discontinuity when the temperature equals zero and

does not satisfy the relationship C ∼ |t|−α. So the critical exponent ‘α’ is found to be zero.

Saddle Point Solution

Apart from Bragg and William and Weiss approach, there also exist another approach

to MF. Since many assumptions have been made in relation to the MFT, the accuracy

of the calculated critical exponents is unclear due to which continuous observations have

been carried out to check their reliability. However, it appears that the description of

the critical exponents is not necessarily valid (Dobrosavljevic 2005). The overall plan of

this section is to re-derive more rigorous expressions for MF by considering the Weiss

approach to be exact.

In order to do that, a limit must be identified. At any temperature the spin at site

i, takes only two values so it is either positive or negative and has no preferred direction.
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This means that the external magnetic field can be stated as the total of N random spins

variables. From the definition of elementary statistics “ any sum of random numbers is

increasingly well represented by its algebraic average, provided that the number of terms

becomes larger and larger” (Dobrosavljevic 2005), it can be assumed that MF approxima-

tion is exact for large N . Next, in order to check how large n should be for the accuracy of

MF approach consider the scale of interaction i.e, first set J → J
N

and the limit N →∞.

As a result, MFT becomes exact and free energy becomes finite. Using the assumption,

the energy of the system is given by

E = − J

2N
M2, (9.105)

Substituting the above expression in (4.7), the total energy of the system becomes

ET = − J

2N
M2 −HM. (9.106)

The partition function now takes the form:

Z =
∑
{si}

e
βJ
2N

M2+βHM . (9.107)

Next, using the Gaussian identity (see Appendix B)

∫ ∞
−∞

e−ax
2+bx+cdx = e

b2

4a
+c
(
π

a

) 1
2

(9.108)

in the first exponential term of (9.107) gives

e
βJ
2N

M2

= e
βJ
2N

M2

(
2βJπ

N

) 1
2

,

=

(
N

2πβJ

) 1
2 ∫ ∞
−∞

e
−N
2βJ

x2+Mxdx. (9.109)

The partition function can then be rewritten as

Z =

(
N

2πβJ

) 1
2 ∫ ∞
−∞

e
−N
2βJ

x2

dx
∑
{si}

e(βH+x)Mdx. (9.110)

Letting

Z1 =

∑
{si}

e(βH+x)M

N , (9.111)
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and substituting the value for M gives

Z1 = 2 cosh(βH + x)N . (9.112)

Substituting this into (9.110) yields

Z =

(
N

2πβJ

) 1
2 ∫ ∞
−∞

dx(e
−N
2βJ

x2

+ 2 cosh(βH + x)N),

=

(
N

2πβJ

) 1
2 ∫ ∞
−∞

dx(e
N

[
−x2
2βJ

+ln 2+ln(cosh(βH+x))

]
). (9.113)

The saddle point solution can be applied, if the assumption that N approaches infinity

is made, i.e., the graph of expression (9.113) has a maximum peak, denoted by Tmax and

equals βJm. Implementing the method yields

f(x,H) = − x2

2βJ
+ ln 2 + ln(cosh(βH + x)). (9.114)

Differentiating with respect of x gives

∂

∂x
f(x,H) = − x

βJ
+ tanh(βH + x). (9.115)

Setting this equation to zero and letting x→ Tmax gives

−Tmax

βJ
+ tanh(βH + Tmax) = 0. (9.116)

Next, substituting the value for Tmax which is known to be βJm gives

−βJm
βJ

+ tanh(βH + βJm) = 0, (9.117)

which can be equivalently written as

m = tanh(βH + βJm). (9.118)

The above equation is an expression for magnetisation which is identical to the expression

found earlier in the Weiss theory. Thus, the expression of magnetisation can now be used

to determine all the critical exponent.

To determine the accuracy, the magnitude of N needs to be known. In the absence
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of external magnetic field, the sharp maxima of the equation (9.110) is at x = 0 whereas

if H 6= 0 and finite then the maximum point alters to either left or right. Since the inte-

grand is symmetric, the partition function is an even function of H and the magnetisation

in the absence of external field is

m = lim
H→0

1

N

∂

∂βH
lnZ(H) = 0. (9.119)

which means the first derivative equals zero at the origin, for an even function. It can be

seen from figure 9.2 that for finite N the graph of m against H always passes through

origin. That means there is no discontinuity in the graph. Finally, the magnetisation is

given below in various limits:

lim
H→0

m = 0 for N finite,

lim
N→∞

lim
H→0

m = 0 for T > Tmax,

lim
H→0

lim
N→∞

m 6= 0 for T < Tmax.

This means that discontinuity occurs when N is infinite. Thus, to prove the accuracy of

Weiss approach to MF N should be infinite.

High Temperature Series Expansion

Since the location of the spins is not known, therefore, the remaining critical exponents

are not apriori justified for the MF theories discussed above. However, using the high

temperature series expansion (HTSE), the remaining exponents can in fact be obtained.

In order to do this, the notion of second moment must be introduced. The second moment

is denoted by µ and defined as

µ2 =
∑
~x

~x2〈s(0)s(x)〉,

=
∑
i

xi
2〈sisj〉. (9.120)

where x is the lattice spacing. When x approaches zero, the second moment becomes

µ2 =
∫ ξ

0
ddx〈s0sx〉x2,
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=
∫ ξ

0
r3−ηdrD(r/ξ),

= ξ4−η,

= ξ2ξ2−η. (9.121)

Using (7.11), the second moment equals

µ2 = ξ2χ. (9.122)

A HTSE is a taylor expansion for an exponential term. Recalling the expression for the

partition function (4.14) where β = 1/kT . If the temperature increases, then β is small

and using the taylor expansion, the partition function becomes

Z =
∑
{si}

[
1− βET +

β2

2!
E2
T + · · ·

]
. (9.123)

which turns out to be (Butera and Comi 2002)

χ = 1 + qβ + (q2 − q)β2 + (q3 − 2q2 + q)β3 + · · · , (9.124)

and the second moment to be

µ2 = qβ + 2q2β2 + (3q3 − 2q2 + q)β3 · · · . (9.125)

where q is the number of nearby neighbours and for MFT q equals 2d where d is the

dimensions of the system. Now, letting d → ∞ gives q → ∞. When q is large, then the

higher power terms of q will dominate. I.e.,

χ→ 1 + qβ + q2β2 + q3β3 + · · · , (9.126)

and

µ2 = qβ(1 + 2qβ + 3q2β2 + · · ·). (9.127)

Next, taylor expanding (1− qβ)−1 gives

(1− qβ)−1 = 1 + qβ + q2β2 + · · · ,

= χ. (9.128)
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and taylor expanding (1− qβ)−2 gives

(1− qβ)−2 = 1− 2(−qβ) +
−2− 3

2!
(−qβ)2 + · · · ,

= 1 + 2qβ + 3(qβ)2 · · · . (9.129)

Substituting the above result into (9.127) yields

µ2 = qβ(1− qβ)−2. (9.130)

Rearranging the equation (9.128) gives

χ =
1

1− qβ
,

= −1

q

(
β − 1

q

)−1

,

≈ (β − βc)−1. (9.131)

Comparing the above expression with (5.4) gives the value for the critical exponent γ to

be one. Similarly, the second moment is

µ2 ∼ (1− qβ)−2,

= (β − βc)−2,

∼ t−2. (9.132)

Substituting this in (9.122) gives

t−2 = ξ2χ,

t−2 = t−2νt−γ,

−2 = −2ν − γ,

ν =
1

2
. (9.133)

Thus, the critical exponent ν is now known in MF, using the HTSE.
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Mean Field Theory and Scaling Relations

The five critical exponents found are listed below

α = 0, β =
1

2
,

γ = 1, δ = 3 and

ν =
1

2
.

Finally, the accuracy of the critical exponents is checked by substituting the values for

the critical exponents in four scaling relations.

Griffith’s law and Rushbrooke’s law are found to be satisfied when the value of α, β,

γ and δ are substituted in equations (7.45) and (7.50). Substituting the values of ν and

α in Josephson’s law (7.8) gives the dimensionality of the system to be four. Since the

MF assumption are for dimensions greater and equal to four, this means the Josephson’s

law fails for d = 5 and above.

Finally, the Fisher law (7.13) involves the critical exponent η. Now η cannot be ob-

tained using the methods mentioned above. However, replacing γ and ν in (7.13) by their

respective values gives the critical exponent η to be

η = 0. (9.134)

Hence, the mean field theory give accurate results for dimensions greater than four which

describes the behaviour of the system near the critical point and also satisfies all the

scaling relations in four dimensions.
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10 Extended Scaling

One is interested in the scaling behaviour of various thermodynamic functions close to

phase transitions. According to the traditional approach, the divergent thermodynamic

functions near the critical temperature typically display scaling behaviour in the form of

O(T ) ≈ AOt
−ρ. (10.1)

where AO is a critical amplitude, ρ is a critical exponent and t is the usual reduced

temperature (3.2). However, it has been observed that this formulation is justified only

close to the critical temperature, Tc and this makes it difficult to analyze data from both

numerical simulations and experimental analysis (Barber 1983). For this reason other

thermal scaling variables have been considered in the literature.

Inspired by the high-temperature series expansion (HTSE), Campbell, Hukushima and

Takayama (2006) recently proposed a new method to extract the scaling behaviour in

a manner which is claimed to be superior to the traditional approach. This “extended

scaling” approach has been tested in two and three dimensions at temperatures above the

phase transition. The central aim of this work is to investigate the efficacy of the extended

scaling approach in a variety of circumstances, including dimensions five, six, seven and

eight. In particular, Campbell, Hukushima and Takayama (2006) proposed replacing the

standard variable t by

τ =
T − Tc
T

= 1− β

βc
. (10.2)

In the first half of this section, using the rationale given by Campbell, Hukushima and

Takayama (2006) the new scaling variable τ will be shown to be more powerful than the

conventional scaling variable t between the lower 1 and the upper critical dimensions 2 by

retesting it in the two-dimensional Ising model. The extended scaling scenario for systems

below the lower critical dimension is analysed in Katzgraber, Campbell and Hartmann

1The lower critical dimension is that below which no phase transition takes place. This is d = 2 in

the ising case.
2The upper critical dimension is that above which MFT applies. This is d = 4 in the Ising case as

shown in chapter 9.
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(2008). In the second half, this scheme will be tested and applied for dimensions greater

than four i.e., above the upper critical dimension of the Ising model.

The relationships between the two reduced temperatures are

t =
τ

1− τ
= τ + τ 2 + τ 3 + · · · , (10.3)

τ =
t

1 + t
= t− t2 + t3 − · · · . (10.4)

Therefore, near the critical point the divergent thermodynamical functions will display

the same scaling behaviour as in (10.1) for the new scaling variable τ :

O(T ) ≈ AOτ
−ρ. (10.5)

The scaling variables t and τ both become zero as the critical point is approached. How-

ever, they have very different high-temperature limits,

lim
T→∞

t =∞, (10.6)

lim
T→∞

τ = 1. (10.7)

From (10.6), the form (10.1) forces O(T ) to vanish in the high temperature limit. To

accommodate a non-zero value for O(T ) in the limit, suppose that the amplitude AO in

(10.5) is extended to a temperature dependent amplitude, whose scaling behaviour is

O(T ) ∝ O∗(T ) ∼ TψO(T − Tc)−ρ,

∼ TψO−ρ
(

1− Tc
T

)−ρ
, (10.8)

∼ βφOτ−ρ. (10.9)

where φO = ρ− ψO. Taking limit of the above expression using (10.7) gives

lim
T→∞

O∗(T ) ∼ βφO . (10.10)

Since the limit is non-zero, φO can be chosen to match the HTSE for O(T). Thus, from

(10.9) the observable O(T) can be expressed as

O(T ) = AOO
∗(T ) = AOβ

φOτ−ρ + . . . , (10.11)
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where the dots represent higher-order corrections. The reduced magnetic susceptibility

χ(T )/β is defined in (4.17). In the paramagnetic phase, T > Tc and 〈M〉 = 0 by definition.

There,
χ(T )

β
=

1

N
〈M2〉 =

1

N

∑
i,j

〈sisj〉. (10.12)

In the infinite temperature limit, the system is completely randomized; spins are up or

down with no preferred direction. Thus, 〈sisj〉 = 0 if i 6= j. But if i = j, 〈sisj〉 = 〈s2
i 〉 = 1.

Therefore, in the high-temperature limit, the reduced susceptibility approaches one.

lim
T→∞

χ(T )

β
= 1. (10.13)

The HTSE for the reduced susceptibility is an expansion about high T or small β. This

has the form

χ(T )/β = a0 + a1β + a2β
2 + a3β

3 + . . . . (10.14)

Therefore, as temperature approaches infinity the expansion gives

lim
T→∞

χ(T )

β
= a0. (10.15)

Form (10.13), a0 = 1 for all dimensions d. It can be said that φχ = 0 when the above

expression is compared with (10.10). Thus this makes (10.5) a suitable expression to rep-

resent the susceptibility over broader temperature range. However, for the conventional

scaling t the high temperature limit restricts the temperature scaling analysis to be close

to the critical point.

The generic form for the susceptibility is known to be

χ/β = At−γ
(
1 + a1t

θ + a2t
2θ + · · ·+ b1t+ c2t

2 + · · ·
)

(10.16)

there are two types of corrections. Those involving the universal exponent θ are called

confluent corrections and the remaining correction are called analytic.
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Two-Dimensional Case

For the two-dimensional case, the new scaling variable τ offers the scaling behaviour

for the magnetic susceptibility as

χ ≈ Aχτ
−γ. (10.17)

where the critical exponent γ is known to be 7/4. In the vicinity of the critical point, the

susceptibility for temperature greater than the critical temperature is expressed (Garten-

haus and McCullough 1988) as

χ/β = C0t
−7/4 + C1t

−3/4 +D0 + C2t
1/4 + E0t ln(t) +D1t+ C3t

5/4 + · · · , (10.18)

where the values for the above constants are known and are given in Gartenhaus and Mc-

Cullough (1988) as C0 = 0.9625817322 . . ., C1 = 0.074988 . . ., D0 = −0.10413324511 . . . ,

C2 = 0.147019 . . ., E0 = 0.139942 . . ., D1 = 0.0403255003 . . . and C3 = −0.14869 . . .. Now

using τ as the scaling variable instead of t, the critical expansion can be written as

χ/β = C0τ
−7/4 + C ′1τ

−3/4 +D0 + C ′2τ
1/4 + E0τ ln(τ) +D1τ + C ′3τ

5/4 + · · · (10.19)

where C ′1, C
′
2 and C ′3 are obtained by putting (10.3) into (10.18) and expanding.

Gofman et al. (1993) give the HTSE up to the fifteenth order in tanh(β) for d-dimensional

Ising models. Converting this to a power series in β in two dimensions, one obtains

χ/β = 1 + 4β + 12β2 +
104

3
β3 + 92β4 +

3608

15
β5 +

3056

5
β6 +

484528

315
β7 +

400012

105
β8 +

26548808

2835
β9 +

107828128

4725
β10 +

8625391648

155925
β11 +

6926560288

51975
β12 +

1945106545216

6081075
β13 +

10844734860976

14189175
β14 +

8130987171952

4465125
β15 +

O(β16). (10.20)

This expansion is to fifteenth order. It was compared to the most recent HTSE for the

d = 2 model in Butera and Comi (2002) and checked for consistency.

In terms of t and τ , β can be written

β =
1

Tc(1 + t)
=

1− τ
Tc

. (10.21)
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For the Ising model in two dimensions, the critical temperature on a square lattice is

exactly known to be (Kramers and Wannier 1941)

Tc =
2

ln(1 +
√

2)
= 2.269185 · · · . (10.22)

Equations (10.20), (10.21) and (10.22) give the HTSE in terms of t and τ . While (10.18)

and (10.19) give the critical expansion in terms of t and τ .

Now, in order to demonstrate and compare the behaviour of both the scaling variables, the

susceptibility is plotted against ln(t) and ln(τ) on the logarithmic scale following Camp-

bell, Hukushima and Takayama (2006). Figures 10.1 and 10.2 depict the comparison of

both the scalings using the HTSE and the critical analysis (see Appendix C for Maple

Worksheet).

Figure 10.1: Susceptibility of the d = 2 Ising model as a function of t. The leading term

Aχt
−γ (boxes) follows the critical expansion (diamonds) for small t but misses the HTSE

(points) at large t.

In Figure 10.1, the critical expansion is plotted in terms of t as in (10.18) along with the
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HTSE also in terms of t (10.20). Following Campbell, Hukushima and Takayama (2006),

the leading behaviour

Aχt
−γ.

is also depicted, with Aχ = 0.962581 · · · and γ = 7/4. It is clear that, while this curve

overlaps with the critical expansion, it deviates from the HTSE for large enough t. This

situation is usually considered as due to strong correction terms.

Figure 10.2: Susceptibility of the d = 2 Ising model as a function of τ . The extended

scaling curve (crosses) follows the critical expansion (diamonds) for small τ and the

HTSE (points) for large τ .

In Figure 10.2, the critical expansion is plotted in terms of τ as in (10.19) together with

the HTSE (10.20) expressed in terms of τ . Again following Campbell, Hukushima and
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Takayama (2006), these are compared with

Aχτ
−γ.

Now, the τ curve follows the critical curve for small τ and switches to the HTSE for larger

τ . In this manner, τ -scaling is claimed to be superior to t-scaling.

In the above scheme, Aχ in (10.17) was set to 0.96258 . . .. Since τ → 1 as T → ∞,

(10.17) cannot satisfy (10.13). To remedy this, one may instead plot

χ/β = Aχτ
−7/4 + C. (10.23)

where C = 1−Aχ. In the d = 2 cases, C = 0.03742 and its inclusion would not be visible

in figures 10.1 and 10.2. However, in the higher dimension and an analysis that follows,

C is included in the extended scaling scheme (Berche et al. 2008).

Extended Scaling in High Dimensions

Now, above four dimensions, the leading scaling behaviour for the susceptibility comes

from mean field theory (MFT) where γ takes the value 1. The critical expansion for

d = 5, 6, 7 and 8 is given by Guttmann (1981):

χ(T )/β = At−1 +Bt−
1
2 + C +Dt

1
2 + . . . , for d = 5, (10.24)

χ(T )/β = At−1 +B ln t+ C +Dt ln t+ . . . , for d = 6, (10.25)

χ(T )/β = At−1 + C +Dt
1
2 + . . . , for d = 7, (10.26)

χ(T )/β = At−1 + C +Dt+ . . . , for d = 8. (10.27)

Guttmann (1981) with the help of series analysis technique examined corrections to scal-

ing in dimensions five and six and also determined the critical temperatures and the

amplitudes. In particular, Guttmann estimated A = 1.311(9) and B = −0.48(3) in five

dimensions and A = 1.168(8) in six dimensions. Since the corrections for d = 6 are

logarithmic, it was not possible to measure the amplitudes in six dimensions using his
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technique.

Next, using the new extended scaling method, the critical expansion for the five-dimensional

case (10.24) is written as

χ(T )/β = Aτ−1 +Bτ−
1
2 + C(τ), (10.28)

where the higher order corrections are given by C(τ), which in the high-temperature

regime goes to a constant C. Since both τ and χ(T )/β approach one, therefore the

constant C equals 1− A−B. Similarly, the extended critical expansion for six is

χ(T )/β ∼ Aτ−1 +B ln (τ) + C, (10.29)

and for higher (i.e, seven and eight) dimensions it is

χ(T )/β ∼ Aτ−1 + C. (10.30)

where C = 1− A.

Gofman et al. (1993) give the high temperature series expansion (HTSE) up to fifteenth

order in tanh(β) for d-dimensional Ising models. Following this, Münkel et al. (1993)

analyzed the HTSE for d = 5. The logarithmic term in six dimensions was also not ex-

plicitly handled in the series expansion approach of Gofman et al. (1993).

Next, in order to test the extended scaling scheme in five and six dimensions, the two

scaling variables t and τ are plotted against χ on the logarithmic scale.

Five-Dimensional Case

In Figure 10.3, the critical expansion is plotted in terms of t as in (10.24) together with

the HTSE (Gofman et al. 1993) which is

χ/β = 1 + 10β + 90β2 +
2420

3
β3 + 7150β4 +

190084

3
β5 +

1678172

3
β6 +

311122568

63
β7 +

304644370

7
β8 +

217457614564

567
β9 +
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3190680657532

945
β10 +

926942841142568

31185
β11 +

1631038171336396

6237
β12 +

254381021406383608

110565
β13 +

193326245082386872

9555
β14 +

22722245900829817525936

127702575
β15 +O(β16). (10.31)

In this case, the critical temperature Tc, known from the previous estimates, is 8.77844

(Luijten et al. 1999 and Aktekin et al. 1999). It is clear that, in the lower temperature

limit both the curves are far away from each other (as the HTSE is inaccurate) and as the

temperature increases the curves get closer and closer. However, at a certain temperature

the critical expansion (which now becomes inaccurate) completely deviates from HTSE.

Figure 10.3: Five-Dimensional Ising model as a function of (t). The picture illustrates

the deviation of the critical expansion (dots) from the HTSE (dashes).

On the other hand, in Figure 10.4, the extended critical expansion is plotted in terms of

τ as in (10.28) along with the HTSE (Gofman et al. 1993) expressed in terms of τ and

the critical expansion (Guttmann 1981). The extended scaling curve follows the critical

curve and switches to the HTSE for high temperature (τ → 1). The figure shows that in

high temperature regime the critical curve (Guttmann 1981) deviates from the extended

critical expansion and the HTSE shifts away from the extended curve in the low temper-

ature regime. However, the extended scaling curve follows the critical expansion and the
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HTSE. Thus, it is clear that the extended scaling scheme is superior than the conventional

scheme in high dimensions. However, in order to build confidence in this approach, the

testing was next done in dimension six.

Figure 10.4: Five-Dimensional Ising model as a function of (τ). The extended critical

expansion (line) follows the critical expansion (dots) for small τ and the HTSE (dashes)

for large τ .

Six-Dimensional Case

In Figure 10.5, on the logarithmic scale the critical expansion (10.25) and HTSE (Gofman

et al 1993) in terms of t are plotted. In this case, the critical temperature Tc, measured

by Gofmann et al. (1993), is 10.8348(4) and the HTSE is

χ/β = 1 + 12β + 132β2 + 1448β3 + 15764β4 +
858008

5
β5 +

27958288

15
β6 +

2125714096

105
β7 +

23067124964

105
β8 +

2252809008008

945
β9 +

17453066574784

675
β10 +

14575983595475296

51975
β11 +

43103828200446848

14175
β12 +

66834599442777894016

2027025
β13 +

5071868185418360071376

14189175
β14 +
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824760514955203306230992

212837625
β15 +O(β16). (10.32)

As in the five-dimensional case, figure 10.5 illustrates the deviation of critical expansion

from the HTSE in the high temperature limit.

Figure 10.5: Six-Dimensional Ising model in terms of (t). The inset exhibits the

deviation of critical expansion (dots) form the HTSE (dashes).

Figure 10.6 exhibits the extended critical curve (10.29) where Aχ = 1.168(8) together

with the HTSE and the critical curve in terms τ . It is clear from the figure that the

extended curve coincides with the critical and the HTSE curve in the regions where they

are valid. As in d = 5, the critical curve and HTSE for six dimensions deviates from the

extended critical curve when theirs an increase and decrease in temperature. In the same

manner, it is clear that the extended scaling method is more powerful than the standard

reduced temperature, respectively. Thus, the confidence has now been build up in the

new approach and the analysis for seven and eight dimensions can be carried out only

using the extended scaling approach.
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Figure 10.6: Six-Dimensional Ising model in terms of (τ). The extended scaling curve

(line) coincides with the HTSE (dashes) and the critical expansion (dots).

Now that extended scaling is shown to be better than the t, one can apply this technique

to higher dimensions to measure critical temperature and the amplitudes. In particular,

a computational method was used to generate points which corresponds to the HTSE.

Best fits were performed to equation (10.28), (10.29) and (10.30). While this procedure

lies outside the remit of this project, the results are summarized (Table 10.1) here for

completeness and the reader is referred to Berche et al. (2008).

Seven-Eight Dimensional Case

For the seven-eight dimensional case, the extended critical expansion as in (10.30) and

the HTSE (Gofmann et al. 1993) as function of τ , given by,

χ/β = 1 + 14β + 182β2 +
7084

3
β3 +

91406

3
β4 +

5896828

15
β5 +

227931844

45
β6 +

2936779784

45
β7 +

37818523538

45
β8 +

4383097815604

405
β9 +

282145777215532

2025
β10 +

39956654372229944

22275
β11 +

1543020715401325036

66825
β12 +
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Table 10.1: Summary of the computational results recently obtained by Berche et al.

(2008).

23473837517766645928

78975
β13 +

1789600002676293361688

467775
β14 +

4491746752664089971107008

91216125
β15 +O(β16). (10.33)

are plotted against the susceptibility on the logarithmic scale. The critical amplitude and

the critical temperature are known from the recent analysis by Berche et al. (2008) for

seven as A = 1.1008(5), C = −0.1008(5), Tc = 12.8690(3) and γ = 1.000(2) and eight

dimensions as A = 1.0836(5), C = −0.0836(5), Tc = 14.8933(8) and γ = 0.998(2). The

inset in the figure 10.7 and 10.8 illustrates the cross over of the extended critical curve

and the HTSE in the high temperature. However, at low temperature the extended curve

deviates from the HTSE. This simulation shows the perfectness of the variable τ .

It would be interesting to apply this technique to other spin models such as discussed

in section 6.
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Figure 10.7: Seven-Dimensional Ising model as a function of (τ). The figure illustrates

the cross over of the extended critical expansion (line) and the HTSE (dashes).

Figure 10.8: Eight-Dimensional Ising model as (τ) scaling variable. The inset shows the

cross over of extended expansion (line) and the high temperature expansion (dashes).
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11 Conclusion

In this project, an introduction to statistical mechanics was given. The Ising model of

phase transitions was then introduced and different types of transitions discussed. Con-

tinuous phase transitions are described by six critical exponents. These are, however, not

all independent, instead they are linked through the scaling relations, which were also

derived. Re-derivations of the one-dimensional Ising model and MF theory were then

performed and the scaling relations were seen to be satisfied.

On the basis of the rationale given by the Campbell, Hukushima and Takayama (2006),

the new extended scaling method was retested in two-dimensional Ising model and shown

to be superior to the conventional scaling approach. Extended scaling was than tested

and applied above the upper critical dimensions i.e., for d > 4. The suitability of this ap-

proach in five and above dimensions was shown. The qualitative results presented herein

formed the basis for a more quantitative collaborative work which has now been published

(Berche et al. 2008) and here presented in Appendix D.
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A Appendix

The Relationship between Magnetisation and the Free Energy

Following is the derivation of the relationship (4.16). Differentiating the free energy

(4.15) with respect to reduced external field h gives

∂f

∂h
=
−kT
N

1

Z

∂Z

∂h
. (A.1)

The first derivative of the partition function (4.14) with respect to h is

∂Z

∂h
=
∑
{si}

e−βE+hMM, (A.2)

and the expectation value of the total magnetisation is

〈M〉 =
1

Z

∑
{si}

e−βE+hMM. (A.3)

Thus, using (A.2), (A.3) and (4.8), the expression (A.1) can be expressed as

∂f

∂h
= −kT 〈M〉

N
, (A.4)

= −kTm. (A.5)

Next differentiating the reduced field (4.13) with respect to H gives

∂h

∂H
= β. (A.6)

Multiplying (A.5) and (A.6) yields

∂f

∂h

∂h

∂H
= −m. (A.7)

Therefore, the above expression gives the relationship (4.16), which is the first derivative

of the free energy with respect to H.

m = −∂f
∂h

∂h

∂H
= − ∂f

∂H
. (A.8)
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The Relationship Between Susceptibility and the Free En-

ergy

Now, differentiating the free energy twice with respect to reduced external field yields

∂2f

∂h2
=

1

N

∂2(lnZ)

∂h2
,

=
1

N

∂

∂h

[
1

Z

∂Z

∂h

]
. (A.9)

Altering the differential term in the above equation gives the free energy to

∂2f

∂h2
=

1

N

∂

∂h
(Z−1Z ′),

=
1

N
[−Z−2Z ′Z ′ + Z−1Z ′′],

=
1

N

 1

Z

∂2Z

∂h2
−
(

1

Z

∂Z

∂h

)2
 . (A.10)

Differentiating (A.2) again gives

∂2Z

∂h2
=
∑
{si}

M2e−βE+hM . (A.11)

Substituting (A.2) and (A.11) into (A.10) and using (A.3) gives

∂2f

∂h2
=

1

N
[
〈
M2

〉
− 〈M〉2] (A.12)

Now, manipulating the expression in (4.17) gives

χ =
1

N

〈
(〈M〉 −M)2

〉
, (A.13)

=
1

N

〈
〈M〉2 − 2 〈M〉M +M2

〉
,

=
1

N

[〈
〈M〉2

〉
− 2 〈M〉 〈M〉+

〈
M2

〉]
,

=
1

N

[
−〈M〉2 +

〈
M2

〉]
. (A.14)

Thus, comparing this with (A.12) yields that susceptibility equals the second derivative

of the free energy;

χ =
∂2f

∂h2
. (A.15)
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The Relationship Between the Internal Energy and the Free

Energy

Since, the internal energy is the first derivative of the free energy, in terms of β. Therefore,

it is written as
∂f

∂β
=

1

N

1

Z

∂Z

∂β
, (A.16)

The differential term in the above expression can be simplified to give

∂f

∂β
=

1

N

1

Z

∑
{si}

(−E)e−βE+hM . (A.17)

However, the expectation value of the energy is

〈E〉 =
1

Z

∑
{si}

(−E)e−βE+hM . (A.18)

Substituting the above expression in (A.17) yields

∂f

∂β
= e. (A.19)

Hence, the above result gives another relationship of thermodynamic quantities.

The Relationship Between Specific Heat and the Free Energy

In order to prove the specific heat and the free energy relation, differentiate twice the

free energy with respect to β.

∂2f

∂β2
=

1

N

∂

∂β

[
1

Z

∂Z

∂β

]
. (A.20)

Differentiating further gives

∂2f

∂β2
=

1

N

∂

∂β
(Z−1Z ′),

=
1

N
(−Z−2Z ′′ + Z−1Z ′′),

=
1

N

 1

Z

∂2Z

∂β2
−
(

1

Z

∂Z

∂β

)2
 . (A.21)
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From (4.15), the first and the second derivative of the free energy can be found. Therefore,

substituting these derivatives results

∂2f

∂β2
=

1

N

(〈
E2
〉
− 〈E〉2

)
. (A.22)

The internal energy is the variance of the energies and rearranging this energy gives

C =
1

N

〈
(E − 〈E〉)2

〉
, (A.23)

=
1

N

[〈
E2 − 2E 〈E〉+ 〈E〉2

〉]
,

=
1

N

[〈
E2
〉
− 〈2E 〈E〉〉+

〈
〈E〉2

〉]
,

=
1

N

[〈
E2
〉
− 〈E〉2

]
. (A.24)

Thus, comparing these results with (A.22) yields the wanted relationship which is

∂2f

∂β2
= C. (A.25)

101



B Appendix

Derivation of the Gaussian Identity

Consider

I =
∫ ∞
∞

e−ax
2+bx+cdx. (B.1)

Manipulating the above expression gives

I =
∫ ∞
∞

e
−
(√

ax− b
2
√
a

)2

+ b2

4a
+c
dx,

= e
b2

4a
+c
∫ ∞
∞

e
−
(√

ax− b
2
√
a

)2

dx. (B.2)

Let
√
ax− b

2
√
a

= y, differentiating y gives

dx =
1√
a
dy. (B.3)

Substituting the value for dx in (B.2) gives

I = e
b2

4a
+c
∫ ∞
∞

e−y
2 1√

a
dy. (B.4)

Using the polar coordinates y change to r, the integral becomes

I = e
b2

4a
+c 1√

a

√∫ 2π

0

∫ ∞
0

e−r2rdrdθ,

= e
b2

4a
+c 1√

a

√
2π
[
−1

2
e−r2

]∞
0
,

= e
b2

4a
+c

√
π

a
. (B.5)

From (B.1) and (B.5), the gaussian identity is obtained.

∫ ∞
∞

e−ax
2+bx+cdx = e

b2

4a
+c

√
π

a
. (B.6)
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