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ABSTRACT 

AIM:  This study aimed to investigate and compare the physiological, cognitive and 

cardiovascular responses during explosives ordnance disposal (EOD) type activity in 

moderate and hot environments whilst wearing an EOD suit and phase change material 

cooling garments on either the head or torso. 

METHODS: Following ethical approval from Coventry University’s Ethical 

Committee, and after providing informed consent, six healthy, unacclimatised males took part 

in the study (age: 23 (3) yrs; height: 1.74 (0.05) m; mass: 65.1 (2.0) kg).  Each participant 

underwent 9 sessions performed on separate days consisting of; three pre-trial practice 

sessions (no EOD suit worn), one trial familiarisation session (light-weight EOD suit worn) 

and six experimental sessions (consisting of 6 experimental trials; light-weight EOD suit 

worn), with a week separating the familiarisation and each experimental session.  The 

experimental trials involved six separate conditions, two without cooling (20NC and 40NC), 

two with head cooling (20HC and 40HC) and two with torso cooling (20TC and 40TC) 

performed at 20 °C and 40 °C.  Conditions were applied in a randomised cross-over type 

design.  Cooling consisted of a phase change material (PCM) scrum cap (head cooling) and 

PCM vest (torso cooling) donned by the participant prior to wearing a light-weight 3010 

Ergotec EOD suit 15 minutes before each trial.  Each trial consisted of 6 activity stations; 1. 

Treadmill walking (4 km·hr-1); 2. Manual loading; 3. Searching and crawling; 4. The postural 

challenge; 5. Unloaded arm ergometry (60 rev·min-1); 6. The spatial working memory 

(SWM) test, performed 4 times through to make up 4 cycles lasting a total of 80 minutes per 

trial. 
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RESULTS: There was an increase in physiological, perceptual and cardiovascular strain 

with duration in all conditions.  Physiological strain was greater in 40 °C air than in 20 °C air 

(p<0.001).  The heart rate (HR), core temperature (TcP), skin temperature (Tsk), chest 

temperature (Tc), rate of percieved exertion (RPE), thermal sensation (ThS) and thermal 

comfort (ThC) responses (excluding Tf) were lowest  during the 20TC trial when compared to 

20HC and 20NC.  At 40 °C, the physiological strain was reduced with both cooling 

condidions (40HC and 40TC).  During 40HC, TcP, Tf, and PhSI, were lowest for upto 60 

minutes of activity (3 cycles) when compared to 40NC.  40TC produced the lowest Tsk 

responses for up to 60 minutes of activity (3 cycles) and Tc responses throughout the 80 

minute trial, compared to 40NC and 40HC.  The recovery of mean arterial blood pressure 

(MAP) was not comprimised in response to standing at 40 °C, however during both cooling 

trials within the first cycle at 20 °C MAP did not recover back to the pre-stand reponse.  At 

40 °C, HR peaked significantly post-stand and remained greater than that during the pre-

stand response.  Completion speed of the cognitive spatial working memory test was greatest 

during the final cycle of activity, (p<0.017). 

CONCLUSION:  At 20 °C torso cooling created the most benefit when compared to 

head cooling at reducing the physiological and perceptual strain experienced.  At 40 °C, both 

cooling methods (TC and HC) were effective at lowering the physiological, perceptual and 

cardiovascular strain when compared to the non-cooling control (40NC).  The majority of this 

benefit was observed within the first hour of activity.  It is recommended that the torso 

cooling garment be used within the light-weight EOD suit to reduce the thermal strain 

experienced at 40 °C, and that when using the light-weight EOD suit at 20 °C the PCM 

cooling garments are not required as the physiological strain experienced at this temperature 

is less than that experienced at 40 °C. 
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1. INTRODUCTION 

Personal protective clothing (PPC) is impermeable and designed to protect operatives 

from harmful and in some cases potentially life-threatening environments.  The type 

(weight, thickness, and coverage) of clothing depends on the level of protection required.  

Problems arise because the PPC results in a thermal layer of air that forms between the suit 

and skin surface.  This layer is known as the microclimate which can potentially limit the 

rate of heat exchange between the skin and external environment (Holmer et al. 1999; 

Parsons et al. 1999).  When the evaporative capacity of the environment is less than the 

required evaporative capacity for efficient skin surface cooling, a situation of 

uncompensable heat stress (UHS) ensues (Cheung, McLellan and Tenaglia 2000).  The 

body can no longer thermoregulate efficiently; heat becomes stored, increasing 

physiological and perceptual strain.  UHS is exacerbated by the impermeable properties, 

and the mass of PPC worn, high ambient temperatures (>35 °C), physical activity 

(increasing metabolic heat production), and ineffective cooling; leading to hyperthermia, 

heat illness and if untreated – death (Taylor 2006).  Operatives’ safe work time is therefore 

determined by the severity of UHS which further determines the rate of onset of 

hyperthermia.  Thus, reducing the severity of UHS and rate of increase in heat storage is 

key to maintaining operative performance and extending safe work limits (Taylor and 

Orlansky, 1993). 

Cooling methods have been devised to attenuate the rise in heat storage, and reduce the 

consequent heat strain of individuals that can arise whilst wearing protective clothing.  

Examples of these include conductive and convective mechanisms that use air, water, ice 

or a combination of air and water as a means of cooling the skin surface in an attempt to 
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lower the rate of rise in core body temperature during periods of exercise and/or enhance 

heat loss during rest.   

Research has been based upon the effectiveness of localised skin cooling of different 

regions of the body, as well as whole body cooling.  In particular many studies have been 

conducted surrounding cooling of the torso and/or the head, and in addition whilst wearing 

personal protective clothing.  This is presumed to be because the chest, back and head are 

high in thermal sensitivity and thus are likely to produce greater reductions in body 

temperature.  By not cooling the entire body the mass of any cooling garment worn is 

lighter, possibly improving comfort of the wearer, there is a reduction in the layers that 

need to be worn (if conductive cooling) and potentially cost of use.   

Cooling the head and torso beneath PPC has been found to be effective at reducing 

body temperature, sweating rate, and the perceived exertion, whilst also improving the 

thermal comfort of individuals.  This thesis sets out to compare the physiological, 

cardiovascular, perceptual and cognitive responses to both types of cooling when worn 

beneath an Explosives Ordnance Disposal suit during various representative activities 

within moderate and hot environments.  Thus, the following aims, objectives and 

hypotheses were determined: 

1.1. AIMS 

1. To investigate and compare the physiological, perceptual and cognitive responses 

to EOD related activity in a light-weight EOD suit in 20 °C and 40 °C 

2. To investigate and compare the cardiovascular response to standing (from 

kneeling) during an EOD related activity sequence in a light-weight suit in 20 °C 

and 40 °C 
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3. To investigate and compare the influence of cooling the head to cooling the chest 

upon these responses (physiological, perceptual, cognitive and cardiovascular) to 

EOD activity in a light-weight EOD suit in 20 °C and 40 °C 

1.2. OBJECTIVES 

1. To assess these aims using six conditions; head cooling at 20 °C and 40 °C, chest 

cooling at 20 °C and 40 °C, no cooling at 20 °C and 40 °C. 

2. To measure physiological responses using three core temperature sites, five skin 

temperature sites, heart rate (HR), and body mass. 

3. To measure perceptual responses using the rate of perceived exertion (RPE) scale, 

thermal sensation (ThS) and thermal comfort (ThC) scales. 

4. To measure cognitive responses using a specific psychological spatial working 

memory (SWM) test on a touch screen computer. 

5. To measure cardiovascular responses to standing using a digital-arterial non-

invasive blood pressure device known as the Portapres Model II. 

6. To apply conductive localised skin cooling to the head and chest with the use of 

phase change material set to a phase change (solid          liquid) of 25 °C . 

1.3. HYPOTHESES 

1. Physiological and perceptual responses will increase, with a reduction in cognitive 

performance at 40 °C when compared to 20 °C. 

2. Cardiovascular strain (HR and BP) in response to standing (from kneeling) will be 

greatest in 40 °C when compared to 20 °C. 

3. Torso cooling will produce the greatest reduction in physiological strain and 

perception of strain, when compared to head cooling at both 20 °C and 40 °C. 
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4. Torso cooling will produce the greatest reduction in cardiovascular strain when 

compared to head cooling at both 20 °C and 40 °C. 

 

2. LITERATURE REVIEW 

2.1. THERMOREGULATION AND THE PRINCIPLES OF HEAT TRANSFER 

At rest, within most cells of the human body, a state of thermal equilibrium (core body 

temperature of ≈37±0.5 °C) is present (Taylor 2006; Lim, Byrne, and Lee 2008).  The 

hypothalamus in the brain receives afferent information from the thermoreceptors in the 

skin and dictates whether the body should initiate the process of cooling down (through the 

stimulation of sweat glands and increased skin blood flow by vasodilatation) or warming 

up (by vasoconstriction of the cutaneous blood vessels, increasing metabolic activity, and 

thermogenesis (Charkoudian 2003).  The inability of an individual to thermoregulate can 

result in serious consequences, such as the onset of hypothermia or hyperthermia and 

ultimately death.  Thus, the transfer and removal of heat, both within the human body and 

between the skin and the surrounding environment is vital for survival (Taylor 2006). 

Conduction, convection, radiation and evaporation are all forms of heat exchange.  At 

normal room temperature (≈22 °C) and during rest, heat is transferred internally from the 

core to the periphery by vascular conductance where it is lost to the environment 

(Benzinger 1959).  When the body comes into contact with cooler objects heat will be lost 

through conductive transfer.  In addition, convective air flow, and electro-magnetic 

radiation also dissipate heat to the surrounding environment provided the air and 

surrounding objects are cooler than skin surface temperature (≈27 °C to 35 °C; Burton 

1935).   
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In hotter climates, where the surrounding environmental temperature is greater than 

skin temperature, heat is gained by the process of radiation, conduction and convection and 

in such conditions; the body has to rely solely on the evaporation of sweat for cooling.  

However, the evaporation of sweat can be limited by the evaporative capacity of the 

surrounding environment.  Increases in the relative humidity (RH) reduce the capacity for 

water vapour resulting in increases in skin wettedness and a reduction in the rate of heat 

removal (Cheung, McLellan and Tenaglia 2000). 

The rate of heat gain or removal between humans and the environment is governed by 

thermal gradients.  The gradient between the core and the skin and the skin surface and 

external environment is ever changing and influenced by many factors (see Figure 2.1), for 

example; the rate of metabolic heat production (effected by level of activity), ambient 

temperature (Tamb; °C), core temperature (Tre; °C), skin temperature (Tsk; °C), wind speed 

(m s-1), radiant heat (the sun), including types of clothing worn and the number of layers 

(creating additional micro-environments).  All of these factors in combination dictate the 

rate and direction of heat exchange (Havenith 1999).  

Ski

Co

 

Figure 2. 1: Schematic of the microclimate-skin-core relationship in relation to heat transfer. 
M=Metabolic Heat Production (internal heat source). Tamb = Ambient Temperature (external heat 
source; Cheung, McLellan and Tenaglia 2000).  
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2.2. MEASURING STRAIN WITHIN PROTECTIVE CLOTHING 

2.2.1. PHYSIOLOGICAL STRAIN 

Heart rate (HR) measured by the use of a heart rate monitor (Sports Tester; Polar 

Electro Oy) or Electrocardiogram (ECG) has been used as an index of physiological strain 

during a range of laboratory and field based settings both with and without personal 

protective clothing (PPC; Barnett and Maughan 1993; McLellan et al. 1996; Lafrenz et al. 

2007) and has been shown to increase, when wearing PPC, compared to normal sports-

wear, within physically active males (Turpin-Legendre and Meyer 2006). 

Core temperature has been measured using various sites around the body.  The rectum 

is one example, whereby a rectal thermometer is inserted past the anal sphincter and taped 

to the skin.  This method is a valid and reliable measure of core temperature, widely used 

to monitor fluctuations in core temperature of humans under various conditions, most 

commonly within sporting environments to monitor temperature fluctuations in athletes 

(Casa et al. 2007).   However brain temperature is usually slightly greater in temperature 

than any other site, and the delay that can occur as heat dissipates through deep body tissue 

means safety is an issue with increasing core temperature and anyone using a rectal 

thermometer should be aware of this by setting low hyperthermic cut-off limits (Lim, 

Byrne and Lee 2008).   

Thus, in the interest of safety, when measuring core temperature, some studies have 

combined the use of the rectal thermometer with the use of an aural thermistor (Thake et 

al. 2009b).  The aural thermistor is placed close to the tympanic membrane and responds 

faster to fluctuations in core temperature than the rectal thermometer. This therefore allows 

for a more immediate indication of whether heat is being stored or lost by the body.  
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However in a further interest of safety, the difference in the temperature measured rectally 

compared to aurally should be noted, especially if the aural thermistor was used as a 

standalone measure of core temperature.  This is due to the position of these sites within 

the body and that deep tissue temperature is likely to be greater than that of superficial 

tissue temperature (Lim, Byrne and Lee 2008). 

Oesophageal temperature (Tes) measures may not always be appropriate if participants 

are ingesting water or are the type that could interfere with breathing apparatus or oxygen 

consumption ( O2) measures. Telemetric pill sensors measure core body temperature from 

within the gastrointestinal (GI) tract (Casa et al. 2007).   They are more comfortable for 

the participant and easier to administer than the Tre but are limited by the affect of water 

ingestion and time.  They require swallowing approximately two hours before 

experimental testing, for the pill to be thoroughly within the GI tract and to produce 

reliable readings for approximately 8 hours, (Waterhouse et al. 2005; Lim, Byrne and Lee 

2008). 

Skin temperature can be measured using thermistors, placed at different sites of the 

body. Attaching thermistors to specific sites such as the forehead, or chest, make it 

possible to assess the direct impact of passively or actively cooling or heating those areas.  

Mean skin temperature (Tsk) can be calculated from individual skin temperatures using 

various methods that assign skin sites with specific weightings according to their body 

surface area (BSA) and/or thermal sensitivity (Ramanathan 1964).  Overall body 

temperature (Tb) can be used to assess how the localised cooling/heating effects the whole 

body, by combining specified weightings of Tsk (0.2) and core temperature (0.8).  

Furthermore, changes in heat storage capacity of the body over time can be calculated 

from these variables and used as an additional measure of physiological strain.  Although 
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this method is potentially flawed as during UHS the core to skin gradient reduces and thus 

the specified weightings would need to change in accordance with this. 

 It has been found that careful attention should be paid when affixing skin thermistors 

to the participant and that uncovered thermistors produce the most accurate readings of 

skin temperature, with covered thermistors preventing heat loss surrounding the measured 

site and consequently causing an increase in the readings.  The greatest difference was 

found to be 1.3 °C between the covered vs. uncovered sites when compared within a 

thermoneutral environment.  This impact may be less when the EOD suit is worn due to its 

encapsulating nature.  Difficulty arises when conducting studies in the heat, and covering 

them is required to ensure they remain in position.  Therefore, when tape is required the 

application of skin thermistors should be conducted in the same way each time with the 

same type and amount of tape (Buono and Ulrich 1998). 

 

2.2.2. PERCEPTUAL STRAIN 

Subjective measures of physiological and thermal strain, include Borg’s (1974) 15 

point rate of perceived exertion (RPE; 6 to 20) scale and the perceptions of thermal strain 

(PTS) scales by Young et al. (1987).  Smith et al. (2001) used these to measure the effects 

of strenuous live fire-fire fighting drills.  They were also used to assess thermal comfort, 

and effort of men when exercising in EOD protective clothing (Thake and Price 2007).  

Other methods of measuring thermal comfort have been for the participant to draw lines 

between 0 (perfectly comfortable) to 10 cm (absolutely intolerable) that equate to the 

extent of comfort experienced (known as a semantic differential; Nunneley and Maldonado 

1983).  These measures need to be clearly explained as they are open to misinterpretation 

by the participant, and so all participants need to understand the scales before experimental 
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tests commence.  The scales used by Nunneley and Maldonado (1983) may be difficult to 

include in the following study for a combination of reasons; the participants will be 

exercising whilst in moderate and hot environments, thus they are likely to have sweaty 

palms and fingers and so a verbal response may more feasible and require less time. 

However, if the scales used required a verbal response then this may influence the 

responses of others if more than one participant was being tested at any one time and so 

the scale used by Nunneley and Maldonado would be the better one to use.  This 

emphasises that the scales used need to be selected carefully based on the design of the 

study. 

 

2.2.3. PHYSIOLOGICAL AND PERCEPTUAL STRAIN INDICES 

Physiological strain can be determined from a range of variables including; Tre, HR, 

O2 and RS  .  When observing the changes over time with any one of these variables there 

is a noticeable rise with increasing intensity of exercise and ambient temperature.  To see 

the main effect that exercise or environmental stressors have on the whole body, these 

variables need to be combined.  Thus, a physiological strain index (PSI) was developed 

(Moran, Shitzer and Pandolf 1998) that combined normalised HR and Tre responses and 

calculated a value representing on a scale of 0 (no strain) to 10 (very high strain) the 

degree of whole body physiological strain experienced.  The PSI has shown to successfully 

differentiate between the physiological strain experienced over a range of different 

hydration status’ and exercise intensities extending to heat stress environments, (Moran, 

Shitzer and Pandolf 1998).   However, the PSI uses upper limits of 180 beats·min-1 and 

39.5 °C for HR and Tre, respectively.  Therefore, the extent of physical exertion and heat 

storage experienced by each participant is limited.   
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Thus, a different Physiological Strain Index (PhSI) was devised (Tikuisis, McLellan 

and Selkirk 2002) in an attempt to reduce such limitations.  The PhSI used a standard 

baseline value of 60 beats·min-1 for resting HR with participants measured HR max as the 

upper limit, making the index more specific to the individual, although it may still be 

limiting to physically trained individuals, due to them usually having a lower than the 60 

beats·min-1 resting heart rate included here.   

A perception based strain index (PeSI) that was thought to parallel increases in PhSI, 

was also developed (Tikuisis, McLellan, and Selkirk 2002). Findings in support of this, 

have shown significant correlations under different conditions between thermal sensation 

(0 to 8 scale) and Tre (0.72; p<0.001; Casa et al. 2007).   The PeSI also used a 0 (no strain) 

to 10 (very high strain) scale.  PeSI was obtained through calculating normalised ratings of 

perceived exertion (RPE) and thermal sensation (TS) responses.  However, PeSI did not 

appear to parallel increases in PhSI of individuals that were endurance trained ( O2Max; 

59.0±6.2 ml·min-1·kg-1) vs. individuals that were untrained ( O2Max; 43.6±3.8 ml·min-

1·kg-1), and so it is thought that highly trained individuals must underestimate their RPE 

constituting an underestimated PeSI value.  This therefore should be taken into account for 

safety when testing aerobically fit individuals, although this was within 40 °C 30 % RH 

ambient environment.  Fire-fighters within moderate ambient climates (25 °C and 30 °C) 

under varying intensities of exercise (Selkirk and McLellan 2003), showed PeSI to also be 

underestimated when compared to the physiological strain measured (PhSI), of which was 

not the case at 35 °C, (PeSI, 6.80±1.52; and PhSI, 6.91±0.67).  Therefore it would be 

interesting to compare the disparity (if any) present between PhSI and PeSI at 20 °C and 

40 °C and between cooling conditions in the current study. 
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2.2.4. CARDIOVASCULAR STRAIN (BLOOD PRESSURE CHALLENGES) 

When the cardiovascular system has to work hard to meet the demands of the body, 

heart rate (HR; beats·min-1) increases, and blood pressure (BP; mmHg) fluctuates 

(dependent upon the situation), both of which indicate a level of cardiovascular strain, 

(Imholtz et al. 1998).  Therefore when working within PPC at high ambient temperatures, 

with increased physical exertion over time, there is a lot of stress placed on the 

cardiovascular system with regard to attempting to cool the body and maintain BP and as a 

consequence cerebral blood flow may become compromised, leading to an increased risk 

of syncopal symptoms as body temperature increases (light-headedness, loss of 

consciousness, Latzka et al. 1998).  Syncope presents dangers to EOD operatives in the 

field with regard to safety and so reducing the risk of syncope with heat stress is of high 

importance.  Therefore, it would be useful to investigate the risk of syncope within the 

current study and if present, whether skin cooling could provide benefit by reducing the 

thermal load and consequent cardiovascular strain, (Cui, et al. 2005; Wilson, et al. 2006).  

Measuring HR and BP simultaneously is one method that allows the monitoring of the 

current cardiovascular state of an individual in response to specific situations or stressors 

(exercise, orthostasis; Imholtz 1990).  Specifically, researchers have detailed the difficulty 

with supine to or sit to standing manoeuvres and the large drop in BP that results within 

the first 30 seconds post  manoeuvre in moderate environments (Borst, et al. 1982; Tanaka, 

Sjoberg, and Thulesius 1996) and in the heat (Lucas et al. 2008).  In many instances it is 

not uncommon that an operative would need to bend down to assess a situation during an 

operation and thus these findings suggest it would be useful to incorporate a postural 

challenge manoeuvre within the current study to assess the risk of syncope whilst wearing 
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the EOD suit particularly when the cardiovascular system is under stress and the benefit 

that cooling may have upon reducing that cardiovascular strain, if present.  

The methods that can be used to monitor and measure changes in BP can be 

categorized into two parts; i) direct invasive methods, ii) indirect non-invasive methods.  

Direct invasive methods include the measurement of intra-arterial pressure which involves 

a hollow needle inserted into the brachial or radial artery of the arm or even aortic arch.  

The needle contains a long thin liquid filled catheter that gets positioned inside the artery, 

and is ideally stiff, short in size, with a large diameter for accuracy.  The catheter is 

attached to a manometer (pressure gauge) which detects changes in pressure (Van Burgen 

1954; Langewouters et al. 1998).  This method is beneficial with regard to gauging a direct 

measurement of blood pressure, but requires a trained individual to conduct the procedure; 

ethical approval and like any invasive procedure carries a risk of infection.  There is also 

incidence for error due to the size and type of catheter used which may cause an 

overestimation of systolic pressure (Gardner 1981).  This would also be a very difficult 

method to use on exercising volunteers wearing PPC. 

Indirect non-invasive methods include the auscultatory, oscillatory and Penaz/Wessling 

techniques.  Using a sphygmommanometer is an example of an auscultatory method, 

whereby a cuff is applied to the upper arm over the brachial artery and a stethoscope to the 

artery at the elbow, the cuff is inflated until no pulse is felt at the wrist and then deflated 

until Korotkoff sounds can be heard (systolic pressure detected), when the sounds are no 

longer present or muffled, this is taken as the diastolic pressure reading.  This method has 

found to underestimate systolic or overestimate diastolic pressure when compared to 

invasive methods, (Langewouters et al. 1998).  Furthermore, earlier research found that 
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accuracy of indirect measurements compared to direct measurements decreased with 

increasing pressure (Van Burgen et al. 1954).  

In contrast, later studies have shown that measuring finger arterial pressure (non-

invasively) is as reliable in the tracking of BP variability with regard to MAP and Diastolic 

pressures as invasive methods (Imholtz et al. 1998), and in one orthostatic study in 

response to several orthostatic manouvers, the BP response by Finapres was almost 

identical to the invasive intra-brachial waveforms (Imholtz et al. 1990).   

Devices such as the Finapres and (most recent) Portapres (developed for ambulatory 

use) use the Penaz/Wessling technique to measure non-invasive finger arterial pressure and 

to allow for continuous 24 hr recordings to be made (Imholtz et al. 1998).  Furthermore, 

the most recent Finapres and Portapres devices include a hydrostatic height correction 

mechanism for correcting that of finger arterial pressure to that of brachial arterial pressure 

leading to greater alignment with invasive methods, (Guelen et al. 2003).   

In summary, the Portapres model 2 device has been considered as a reliable and 

accurate measure of BP during low to moderate levels of stress brought on by exercise 

(Eckert et al. 2002), and appears to be the most reasonable tool to use to monitor 

cardiovascular strain in response to standing within the current investigation. To date and 

to current knowledge it has also not so far been used to test the orthostatic response of 

participants wearing protective clothing. 
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2.3. PHYSIOLOGICAL RESPONSES TO VARIOUS INTERNAL AND 

EXTERNAL VARIABLES WHILST WEARING PERSONAL 

PROTECTIVE CLOTHING (PPC) 

 

Air force pilots (Faerevik and Reinersten 2003), explosive ordnance disposal (EOD) 

personnel (Frim and Morris 1992), nuclear biological and chemical (NBC) protective 

workers (Cheung and McLellan 1998), army soldiers (Rayson et al. 2000), certain sports 

players (Godek et al. 2004), and fire fighters (Eglin 2006) all wear a form of PPC that has 

been specifically designed to protect them from harm as a result of the tasks they are 

required to undertake. 

Explosives ordnance disposal (EOD) personnel are required to wear a highly protective 

encapsulating suit, the type of suit ranges according to the task and manufacturer, two 

examples are the 3010 and 4010 Ergotec (NP Aerospace Ltd, Coventy, UK) weighing ≈18 

kg and ≈37 kg in mass respectively.  The EOD personnel are highly trained individuals 

that will work for as long as it takes to dispose of a potential threat, taking breaks where 

necessary.  They can be deployed to countries all over the world and thus be subjected to 

environments with high ambient temperatures (≈40 °C).  Due to the encapsulating nature 

of the suit and the weight of the suit, this can lead to UHS.  Thus, the internal (metabolic 

rate, hydration status, fitness capacity) and external (ambient temperature, exercise 

intensity, load and encapsulation properties of the PPC) factors that may exacerbate or 

reduce the extent of UHS have been discussed. 
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2.3.1. LOAD AND ENCAPSULATION  

Increasing and decreasing load can influence physiological strain, by contributing to 

the overall energy expenditure of the individual.  Wearing a 20 kg load with normal 

clothing compared to wearing just normal clothing alone, has shown to result in significant 

increases in HR and oxygen consumption ( O2) of exercising participants, (Keren et al. 

1981).  In support of this HR was found to be ≈ 70beats·min-1 greater during the arm 

ergometry station of the final cycle of activity (after approximately 60 minutes of activity) 

when a full EOD suit (≈ 37 kg) was worn vs. no EOD suit (Thake and Price 2007), 

emphasising the physiological strain brought on by wearing an EOD suit during exercise.  

Therefore, wearing PPC such as the light-weight (≈ 18 kg) or heavy-weight (≈ 37 kg) EOD 

suit will increase the metabolic rate of the exercising participant and consequently increase 

the potential for heat storage within the body, as they will be working at a higher 

percentage of their physical capacity.   

Thake and Price (2007) demonstrated the impact of load on an increase in metabolic 

activity when a lighter-weight trouser configuration was worn compared to that of a full 

EOD ensemble, with regard to physiological and psychological performance at 40 °C.  

Both were compared to a control trial whereby no EOD suit was worn.   Wearing the suit 

caused a considerable increase in physiological and perceptual stain (HR, Tre, Tsk, RPE; 

p<0.01), with sweat production being twice as great as when no suit was worn.  This 

reflected how the encapsulating nature of the suit combined with its mass increased 

metabolic work rate, impeded necessary heat dissipation, and increased the risk of 

dehydration.  The lighter-weight trouser ensemble helped to reduce this physiological 
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strain by reducing the increase in Tre (p<0.05), thus, reducing the rate of heat storage that 

could subsequently allow personnel to work safely for longer (Thake and Price 2007).   

Furthermore, a similar study (n=4; Thake et al. 2009c) using the same protocol 

duration as Thake and Price (2007) conducted the manual loading and search and crawling 

with fixed work rates, whilst exploring the benefits of wearing a lighter EOD suit (3010; 

≈18 kg) vs. a heavier EOD suit (≈37 kg) within two ambient temperatures, once at 20±1 

°C and once at 40±1 °C.  It was evident that both suit type and ambient temperature (Tamb) 

affected the physiological strain experienced by participants.  Strain was greater at 40 °C 

than at 20 °C, (p<0.001).  The rate of rise in Tre, and HR whilst wearing the 3010 (light-

weight) suit was less, reducing heat storage with a lower PhSI index that could be 

attributed mainly to the differences in HR.  Lower RPE responses and subsequent PeSI 

values were also found when wearing the lighter weight suit.  Furthermore, overall RPE 

during the final cycle of activity was the same for the 3010 suit at 40 °C when compared to 

the 4010 suit at 20 °C.  Thus, emphasising the impact of both Tamb and load on 

physiological strain and how reducing the load (-19 kg) can be highly beneficial at 

reducing the physiological stress experienced at these temperatures (20 °C and 40 °C).   

Not only load but also encapsulation leads to significant physiological strain.  The 

nuclear, biological, and chemical (NBC) protective suit is moderately lightweight (≈9 kg; 

McLellan 1999) when considering other forms of personal protective clothing (EOD suit; 

≈37 kg; Thake and Price 2007) yet fully encapsulates its wearer.  Encapsulating the wearer 

in an NBC suit contributed to an increase in expired minute ventilation (VE l·min-1), 

metabolic heat production (kj·m-2·h-1), and sweat production (kg·h-1), vs. normal combat 

clothing. Untrained (UT) and endurance trained (ET) heat-acclimated subjects wore 

normal combat clothing (4.4kg) and NBC clothing (8.2 kg; a difference of 3.8 kg) whilst 
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exercising at 4.8km·h-1 on a motorised treadmill in a hot ambient temperature (40 °C 30 % 

RH).  The difference noted above highlights the extra strain that is placed on nuclear, 

biological and chemical protective workers by being completely contained within the suit.  

The evaporative efficiency of the suit was 30 % which was less than half that of the 

combat clothing which was reduced further with an increased sweat production, 

emphasising that sweat is wasted as evaporation is restricted within the impermeable layer 

leading to a greater rate of heat storage, which in this case consequently lead to reduced 

tolerance times of workers by greater than half that of the normal combat clothing trials 

(Aoyagi, McLellan, and Shephard 1994). 

 Reducing the load and encapsulation should therefore help to improve tolerance times, 

by reducing the rate of heat storage and physiological strain.  In support of this, a study by 

Montain et al. (1994), found that male subjects wearing full PPC walking on a treadmill in 

the heat (43 °C; 20 % RH), presented lower Tre at exhaustion (p<0.05), when compared 

with subjects partially covered in PPE.  Noted in this study, was that the partially clothed 

subjects exposed their neck, face and hands, (12 % of the skin surface area) and presented 

similar Tre at exhaustion to those subjects not wearing PPC under the same conditions.  

Therefore, emphasising either the areas of the body that are useful for dissipating heat 

and/or that only a small reduction in load may be required to reduce physiological strain.   

In support of the latter, the forehead, check bones, and chin have been found to have 

the highest convection coefficients and so it is plausible that cooling through evaporative 

sweat was increased with the greater exposure to convective air flow creating a greater 

evaporative capacity (Clark and Toy 1975; Holmer et al. 1999), however in contrast it is 

also plausible that the additional load of the helmet once removed reduced metabolic heat 
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production (Dorman and Havenith 2005), and a combination of the two reduced the 

physiological strain experienced.   

 

 

2.3.2. AMBIENT TEMPERATURE AND EXERCISE 

Tre has been shown to increase with exercise time, under hot ambient conditions as 

well as cold ambient conditions whilst wearing PPC (McLellan et. al. 1996; Rissanen and 

Rintamäki 2007).  Despite the severe cold (-33 °C), participants marching at a high 

intensity within an NBC suit managed to increase their core temperature to just below 

38°C, highlighting the impermeable encapsulating nature of the suit to the extent that 

metabolic heat gains could not be dissipated at a rate that would maintain a thermal 

equilibrium (Rissanen and Rintamäki, 2007).  This is because the micro-environment 

within the suit has only a limited evaporative capacity, that when the environment is 

saturated will no longer aid the dissipation of metabolic heat, despite the large temperature 

difference present between the skin and external ambient air (≈-60 °C).  This further 

emphasises the influence of the rate of metabolic heat production within PPC upon the 

degree of physiological strain experienced.  However, the mean skin temperatures were 

considerably low (25 °C) particularly when measured at the extremities (15 °C), which 

would have initiated vasoconstriction of the blood vessels reducing the rate of convective 

and conductive heat loss from the core to the environment, and localised initiation of 

sweating, leading to an increase in heat storage and core temperature. 

Exercise combined with high ambient temperatures, places demands on the body that 

increase physiological stress.  The extent of the stress experienced is dependent upon the 

mode, frequency, duration, and the volume and the intensity of exercise performed.  Whilst 
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wearing NBC clothing (≈8kg) in hot dry environments (40 °C 15 %RH), heavy intensity 

(500W) exercise caused a greater increase in HR and sweat rate ( RS  ; 39 %) when 

compared to light intensity (350 W) exercise, and that tolerance time was reduced during 

the heavy intensity exercise trial (within the NBC ensemble) to half (63.5 minutes) that 

found at the end of the lighter intensity exercise trial (120 minutes; McLellan 1996).  

Reasons for this are that the increase in intensity increases the metabolic rate, and 

consequent metabolic heat production per unit time, and therefore the rate of heat storage, 

leading to a greater physiological strain.  Wearing EOD clothing and varying the exercise 

intensity (by comparing the different activity stations used) has also shown with increases 

in intensity comes an increase in oxygen consumption, HR and physiological strain (Thake 

and Price 2007).  Thus by reducing exercise intensity whilst wearing EOD clothing it is 

possible to maintain a slower increase in heart rate, reduce the rate of rise in Tre and 

prolong safe operational performance times of workers.  An alternative method to reducing 

the intensity would be the introduction of work:rest cycles, although this may be 

ineffective at improving tolerance times due to the continuous increase in heat storage that 

is present under hot ambient conditions at rest (Cheung, McLellan, and Tenaglia 2000).  

 

2.3.3. HYDRATION 

One of the physiological consequences of wearing PPC is the risk of dehydration, 

caused (as previously described) by the great volumes of sweat that can be lost over a 

working period (1.30 l·h-1; McLellan et al. 1999).  Being dehydrated by 2.3 % body mass 

whilst performing treadmill walking (4.8km·h-1) under hot ambient conditions (35 °C 50 

% RH) in PPC, has lead to significant reductions in sweat rate (-37 %), and tolerance times 

(-11.3 minutes) vs. individuals that were adequately euhydrated, (McLellan et al. 1999).  
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Sweat rate measured 1.30 kg·h-1 during the euhydrated trial reduced to 0.95 kg·h-1 during 

the dehydrated trial.  There were no differences in final core temperature responses 

between the euhydrated trial (38.52±0.39 °C) and the dehydrated trial (38.43±0.45 °C).  

Thus, hydration status of participants should be checked prior to trials whereby hydration 

is or is not the dependant variable.  Although there was a tendency towards a higher HR in 

the dehydrated trial, there was no significant difference in HR between trials.  Core 

temperature (Tre) at the end of both euhydrated and dehydrated trials were similar 

(38.52±0.39 °C and 38.43±0.45 °C), meaning the rate of increase in Tre was greater in the 

dehydrated trial.  Thus, the resultant effect of being dehydrated is a reduction in the heat 

storage capacity of the body, potentially due to a reduced blood volume causing cutaneous 

vasoconstriction in an attempt to maintain blood pressure (Charkoudian 2003).  To 

maintain physiological performance NBC workers should be adequately hydrated before 

being deployed to deal with specific tasks.  Although further research shows that 

additional water intake prior to exercise in chemical protective ensembles did not increase 

the capacity for heat storage or reduce the rate of rise in Tre (Latzaka et. al. 1998). 

 

2.3.4. FITNESS AND TRAINING 

Endurance exercise training reduced the rate of rise in Tre over long durations of 

exercise in the heat (walking at 4.8km·h-1 with 2 % grade; 40 °C 30 % RH) significantly 

between 110 and 120 mins when wearing normal protective clothing, however, when 

conducting the same exercise in the heat wearing NBC clothing no obvious reduction due 

to training was found, (Aoyagi, McLellan and Sheppard, 1994). This possibly reflects the 

impermeable nature of the clothing, and its total encapsulation preventing any 
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physiological adaptations due to training, such as increased sweat production, from 

benefiting subjects due to the limited evaporative capacity within the micro-environment.  

Participants that are highly trained with greater aerobic capacities (46.0±2.9; vs. 

59.5±0.4 l·min-1) have been linked to the ability to tolerate higher rectal temperatures  (Tre) 

during exercise testing, and associated with lower Tre prior to exercise testing when 

compared to moderately trained individuals.  Thus, providing them with a greater heat 

storage potential vs. untrained/sedentary individuals.  Tolerance times whilst wearing PPC 

were greater by ≈22 minutes with the highly trained individuals.  The 'fitter' subjects were 

stopped due to reaching the ethical limit of 39.3 °C, when compared to the moderately fit 

subjects that 'gave-up' due to voluntary exhaustion below 39.3 °C.  This highlights that 

significant changes to tolerance time (TT) whilst exercising in the heat, can be achieved 

when wearing PPC, if the training is long enough to induce significant changes in aerobic 

capacity, and/or if subjects already have a high aerobic capacity ( O2max).  Training has 

shown to increase blood volume, and trained athletes posses greater cardiac outputs during 

exercise compared to untrained individuals (Convertino 1991).  Therefore, trained 

individuals are able to work at a lower level of physiological and cardiovascular strain due 

to a more efficient oxygen delivery vs. untrained participants, and can afford to 

compromise a greater volume of blood for cutaneous cooling. 

In summary, high intensity exercise, greater degrees of encapsulation and load, and 

greater ambient temperatures have shown to reduce the physiological tolerance of 

participants wearing PPC.  These variables do so by increasing the metabolic rate, and rate 

of rise in heart rate, Tre and Tsk.  Internal individual factors such as being dehydrated, and 

possessing a low level of aerobic fitness contribute to this reduction in tolerance.  Thus, the 

physiological responses observed emphasise the need for personnel to be aerobically 
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trained with regular monitoring of well being (physiological responses), for workers to 

ensure adequate hydration before beginning tasks, and to take breaks during higher 

intensity exercise, without compromising the work required per unit time.  The use of 

cooling systems within PPC ensembles to enhance heat dissipation and physiological 

performance by skin surface cooling have been investigated, and further investigations are 

required to determine the best methods and types of cooling garments that may be worn. 

 

2.4. COGNITIVE RESPONSES TO EXERCISE IN MODERATE AND HOT 

ENVIRONMENTS WHILST WEARING PPC 

The extent to which UHS impairs cognitive performance is debatable, and many 

researchers have found either; differences in cognitive performance under situations of 

UHS due to changes in deep core body temperature, or no differences in cognitive 

performance.  However, this may be a consequence of the type of cognitive task chosen 

and the aspects of performance they assess, such as, memory, reaction time, vigilance, and 

tracking performance, it may also be down to the skill level and experience of the 

participants being tested, whereby those who have practiced and over-learned a specific 

task will have developed stronger automotive processes that are better able to withstand 

high levels of stress, (Hancock and Vazmatzidis 2003). 

It has been suggested that the fluctuation and rate of rise in core body temperature 

appears to influence changes in cognitive performance, but that sustained attention can be 

maintained if participants establish a stable thermic state (Hancock and Vazmatzidis 

2003).  Furthermore, the ability to sustain attention and keep a pointer aligned with a target 

marker under warm humid conditions (41 °C) was shown to deteriorate over time (30 

minutes) with steady increases in Tre (Pepler 1959).  PPC has been shown (when worn by 
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pilots), to cause a rise in rectal core body temperature (Tre; 1.2 °C) with ambient 

temperatures of 40 °C at 19 % relative humidity (RH).  This rise in Tre was correlated with 

an increase in the number of incorrect reactions as performed on a vigilance test (r = 0.907; 

P<0.002), chosen to assess concentration, reaction time and accuracy, and to mimic tasks 

commonly performed by Norwegian Air force pilots. The number of incorrect reactions 

were greatest within the 40 °C condition when compared to both 23 °C (P<0.006) and 0 °C 

(p<0.03).  Furthermore, it was found that the ambient temperatures that caused the greatest 

deviation in Tre from normal range (40 °C and 0 °C) were more likely to cause incorrect 

reactions, (Faerevik and Reinersten 2003).   

Simmons et al. (2008) suggested that high core body temperature is a limiting factor of 

cognitive performance in the heat.  They conducted cognitive performance tests based on 

reaction times and accuracy.  The first battery of cognitive tests were performed under 

conditions of initial low skin and core temperatures (LL) where the environmental 

chamber was set to 25 °C 50 % RH for 30 minutes, followed by passive heating of skin 

temperature (HL) for a further 30 minutes as the chamber temperature was increased to   

45 °C 50 % RH, whereby a second battery of cognitive tests were conducted, finally a 

third battery of cognitive tests were conducted once core body temperature had risen by 1 

°C.  This was repeated on separate days either with (HC) or without (CON) a liquid cap 

providing head and neck cooling.  Faster reaction times with a decrease in accuracy were 

observed with increased core and skin temperature, however due to the experimental 

design the duration of exposure and fatigue may have influenced these findings.  Head 

cooling did not improve upon these decrements in cognitive performance.   

A study by Thake and Simons (2009a) investigated men working in a pressurised 

breathing air suit (PBAS) at 20 °C and 40 °C for three hours at a time (6 x 30 minute 
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activity cycles). There was an increase after two hours at 40 °C in the total number of 

errors made on a cognitive, touch screen spatial working memory (SWM) test.  The test 

took longer to complete at 40 °C vs. 20 °C, where the rate of rise in Tre was greatest, 

reflecting a reduction in attention due to the increase in errors made, however, the duration 

required to complete the test at 40 °C (6.32±1.24 min vs. 5.64±0.68 min) when comparing 

the 1st cycle to the 6th cycle was generally faster, supporting the findings of Simmons et al. 

(2008) that increases in core temperature results in faster reaction times, but with increased 

errors. 

However, it has also been found that despite steady increases in Tre (0.45 °C·h-1) the 

ability of trained military personnel to perform rifle marksmanship and target detection 

tasks were maintained for up to 4 hours within the heat (42 °C; passive liquid cooling suit) 

whilst hydrated and dehydrated.  Thus, skill level and practice may be enough to eliminate 

the effects of thermal strain on cognitive performance.  However, it should be noted that 

controlling core temperature, maintaining a thermal balance, or stabilising core 

temperature at a certain hyperthermic level, may also reduce the number of errors of 

cognitive performance. 
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2.5. COOLING METHODS USED TO BENEFIT WORKERS WITHIN 

UNCOMPENSABLE HEAT STRESS (UHS) ENVIRONMENTS 

A range of microclimate cooling methods have been devised and tested with the aim of 

reducing UHS, and preventing work induced hyperthermia.  Types of microclimate 

cooling include; liquid conditioned suits, ice packs and ice vests, convective air flow, and 

phase change materials (PCM).  Further investigation has arisen with regard to the body 

parts selected for cooling.  Various cooling applied to the head, neck, chest, back and 

extremities (Kissen et al. 1976; Nunneley and Maldonado, 1983; Cohen, Allan, and 

Sowood 1989; McLellan, Frim and Bell 1999; House 2003) have shown to reduce heat 

stress experienced by exercising humans and occupational workers (including EOD, NBC, 

and Flight Crew), and the extent to which is discussed with reference to defining which 

methods, body parts, and temperatures have the best outcome for operative workers. 

 

2.5.1. METHOD OF COOLING 

Different types of cooling such as liquid, ice and air based systems have been 

investigated with regard to reducing physiological strain whilst working in protective 

clothing (Kissen et al. 1976; Frim and Morris 1992; McLellan, Frim and Bell 1999; 

McLellan 2007).  Air (AC; 23±0.5 °C), water (WC; 20±1 °C) or air and water combined 

(AWC) as types of applied cooling have shown to reduce Tre, HR, heat storage and sweat 

loss when participants wore Nomex flight coveralls and helmet whilst sat in a heated 

environmental chamber (46.1 ±0.5 °C).  The cooling was focused on the back and crown 

of the head with liquid tubes for water based cooling and slits within the top of a helmet 

whereby (≈ 200 l/min) air based cooling was administered (Kissen et al. 1976).   
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Combining air and water (AWC), reduced the rise in HR by 54 % vs. the no cooling 

(NC) condition, and with air and water cooling separately by 30 % vs. NC.  The Tre 

increased by 0.74 °C overall within the NC condition and this increase was reduced to less 

than half that (0.32 °C) with the use of AWC combined. Futhermore, the 50 % reduction in 

sweat loss by the combination of air and water head cooling only reinforces the degree of 

thermal sensitivity surrounding the head, and face (Crawshaw et al. 1975; Cotter and 

Taylor 2005) and how effective it can be in reducing physiological strain amongst 

workers. 

 The face (including forehead and cheeks), has been found to have a high convective 

coefficient (Clark and Toy 1975) combined with a high sweat production from the 

forehead (Nunneley and Maldonado 1983), and as evaporative cooling is the most 

beneficial form of heat loss (Havenith 1999; Flouris and Cheung 2006) explains why 

AWC provided the ideal conditions for heat removal, when compared to NC with both 

types providing the potential for a greater evaporative capacity.  The participants were not 

exercising or physically active during these trials, and so the greatest improvements to 

physiological strain may be due in part to the low level of metabolic heat production, 

therefore with greater metabolic rates such benefits may not occur. 

The use of micro-climate cooling by air vests (McLellan 2007) has shown to benefit 

those exercising within protective clothing by maintaining Tre after 3 hours of work (in 

either hot dry or warm humid environments), to that measured at rest (prior to the 

commencement of the trial).  This was compared to the same trial without cooling, where 

Tre increased by 2 °C in the hot dry condition, and 1 °C in the warm humid condition.  

Thus, despite the extra layer presented by the air-vest, micro-climate conditioning was 

effective in maintaining core body temperature (Tre), which was probably due to the air-
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vest aiding heat dissipation by sweat evaporation, and providing a sufficient evaporative 

capacity within the suit.  This type of cooling may also assist in the thermoregulation of 

those wearing EOD suits, and appears to be more effective at maintaining a body 

temperature throughout exercise that is close to the response given at rest, when compared 

to the liquid based head-cooling methods (Watanuki 1993). 

In contrast to the study by McLellan (2007) where air was used as the main cooling 

type, one favourable method with respect to the EOD suit was found to be the liquid-based 

Exotemp® Personal Cooling System.  Frim and Morris (1992) evaluated a liquid cooled 

undergarment (Exotemp® Personal Cooling System) and an air vest, within three 

experimental conditions; 18 °C and 40 % relative humidity (RH); 34 °C and 40 % RH; and 

34 °C and 80 % RH.  Each trial involved 90 minutes of repeating simulated EOD tasks 

with approximately a 5:4 work:rest ratio. One of the tasks included treadmill walking at 

3.5 km·h-1 for 10 minutes, followed by unstacking, carrying and re-stacking weighted 

boxes (15 kg) across a distance of 2.5 m. 

The liquid-based suit brought about reductions in physiological strain under warm 

humid conditions (34 °C; 80 % RH) comparable to that measured when no protective 

clothing was worn.  The highest fluid loss (2.8kg) was present in the EOD suit trial 

without cooling, (34 ºC 80 % RH) combined with the highest percentage of dehydration 

(1.98 %). Thus, placing emphasis on the contribution of an EOD suit to overall thermal 

stress, and the importance of cooling garments in general as well as specifically the 

Exotemp® Personal Cooling System at maintaining thermoneutrality and subsequent 

performance of workers.  

It was noted that these results (fluid loss and dehydration) were obtained from the 

'fittest' participant, reinforcing the advantage physically trained individuals have over 
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physically untrained individuals with regard to dissipating heat through greater levels of 

sweat production.  However, this advantage becomes a disadvantage when working in high 

ambient temperatures, especially when wearing impermeable PPE, due to the increased 

sweat response leading to a decrease in time to dehydration and an increased risk of heat 

illness without fluid ingestion (Montain et al. 1994).  Thus, cooling methods as opposed to 

acclimation and/or training methods can actually reduce the loss of sweat, and consequent 

dehydration that hinders performance and exacerbate feelings of nausea and discomfort. 

 

2.5.2. THE EFFECT OF COOLING DIFFERENT BODY REGIONS ON 

THERMAL AND PHYSIOLOGICAL RESPONSES 

There has been a lot of research based around head and torso cooling within PPC, 

cooling of the extremities (hands and feet), and the use (as previously stated) of full body 

cooling suits.  Research has shown that the perception of physiological strain in terms of 

thermal sensation and comfort, to be significantly reduced with the aid of cooling portions 

of the head (frontal; occipital and temporal) whilst participants were seated within an 

environmental chamber (40 °C; 50 % RH), (Katsuura 1992).  Forearm skin blood flow and 

sweat rate also had a tendency to be higher without head cooling, although the rise in Tre 

did not change, therefore this could imply that cooling the head can significantly influence 

subjective responses more so than physiological responses, and may present dangers if an 

individual were to misjudge their own thermal state.  In support of these findings, further 

research by Hayashi and Tokura (1996) found significantly reduced thermal sensation and 

comfort when using similar subjective scales with two positioned (250 g each) frozen gel 

strips as the head cooling device, both with and without PPE. 
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In contrast to the previous aforementioned studies, head cooling during exercise in the 

heat and within protective clothing, has been found to be 2-3 times more effective than 

torso cooling at reducing the rate of rise in HR, Tre, total body sweat rate (SRT) and 

forehead sweat rate (SRF; 49 vs. -29 g/m2·h) when compared to torso cooling, (Nunneley 

and Maldonado, 1983).  However, these responses for the head and torso were compared 

in relation to 1 % of the total body surface area (BSA) covered, and torso cooling resulted 

in the greatest physiological strain reductions overall.  Cooling was administered using a 

liquid-cooling garment (15.5 °C) a flow rate of 0.8 l/min for the cap (XH) and 1.0 l/m for 

the vest (XT).   

In support of the latter, the face has been found to be 2-5 times more thermosensitive 

than the torso, forearm, thigh, leg and foot, with regard to sudomotor response, (Cotter and 

Taylor 2005). Cotter and Taylor (2005) found that a combination of cooling presented the 

best responses producing near baseline responses for all measured variables with a 

significantly lowered Tsk at the forehead and chest (25 °C to 26 °C).   

In relation to BSA, and in support of Nunneley and Maldonados’ (1983) findings, head 

cooling (7.5 °C; 12 % BSA) has also been found to be more effective than suit cooling 

alone (torso, arms and thighs; 9.9°C; 60 % BSA) or head and suit cooling combined (head; 

torso, arms, and thighs; 9.9 °C; 72 % BSA), as head cooling only required 0.5 % BSA to 

be cooled for a reduction of 1 heart beat per minute compared to 1.6 % and 2.6 % for suit 

cooling and hood and suit cooling combined.  This is most likely due to the difference in 

head vs. torso heart rate responses to localised cooling.  However, the overall effect of the 

hood and suit cooling combined was the finding of the greatest magnitude of reduction in 

physiological strain compared to hood and suit cooling separately.  
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The benefits of torso and head cooling have been emphasised further with findings 

from a study that was conducted using an original liquid-conditioned vest (flow rate of 1 

l/min) under Aircrew Chemical Defence (ACD) clothing, (Cohen, Allan, and Sowood 

1989).  Trials were performed wearing the vest only (V; 15±0.57 °C), or combining the 

vest with either a neck cooling collar (NV; 13±0.73 °C) or head cooling cowl (HV; 

13±2.06 °C).  Trials were ≈2 hours in duration, and consisted of six cycles of 15 minutes 

exercise and 5 minutes rest, within an experimental chamber (40 °C; 25 % RH).  Head and 

torso cooling (HV) were more effective at reducing thermal comfort to a cooler and more 

tolerable range (3 to 5) when compared to neck and torso cooling (NV; 5 to 6.5), reasons 

for this as previously discussed may have been due to the increased thermosensitivity of 

the head, and chest vs. head and neck and/or a result of the greater surface area being 

cooled. 

   

2.5.3. THE EFFECT OF THE TEMPERATURE OF THE COOLING SYSTEM 

USED UPON THERMAL AND PHYSIOLOGICAL RESPONSES 

The temperature of the cooling materials is also a significant factor when investigating 

the benefits of cooling on reducing thermal strain.  House (2003) demonstrated that hand 

immersion in 10 °C of water could help improve safe work tolerance times of NBC 

workers by 62.5 %, with rest periods and by 37.5 % with the use of an ice-vest when 

activity was continuous.  It was suggested that combining the ice-vest with hand 

immersion and/or lower temperatures may increase the rate of heat removal by increasing 

the surface area being cooled or increasing the thermal gradient, improving tolerance times 

even further but that it may possibly impede the rate of heat removal due to 

vasoconstriction.   
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Whole body immersion in water of varying temperatures (2 °C, 8 °C, 14 °C and 20 °C) 

for post exercise-induced hyperthermia (Tre of 40 °C) showed temperatures as low as 2 °C 

offering the highest rate of heat removal, (Proulx, Ducharme, Kenny 2003).  However, it 

should be noted that the study covered the extremities (hands and feet) in mits and that 

participants were only immersed up to their clavicle, leaving their head exposed.  Thus, it 

may be possible that if the hands and/or feet were involved, vasoconstriction may have 

resulted due to the heads high thermosensitivity initiating vasoconstriction and shivering 

(Crawshaw et al. 1975; Cotter and Taylor 2005; Wilson 2007). 

In contrast, excessive cooling (15 ºC) of the head has shown to cause a significant 

increase in core temperature (tympanic temperature; Tty) and torso temperature (T) during 

cycling activity when compared to 20 °C head cooling (Watanuki 1993), presenting 

possibly dangerous consequences, especially because of the association of head cooling 

producing lower perceptual responses.  However, Katsuura et al. (1992) when using 10ºC 

of cooled liquid on either the frontal, occipital or temporal portions of the head, 5ºC cooler 

than that of Watanuki (1993), found no significant increase in core temperature (Tre).  This 

could be due to the difference in core temperature measure site (Tre vs. Tty) whereby 

according to Desruelle and Candas (2000) Tty is thought to be influenced by air 

temperature.   

However, in Katsuura et al.’s (1992) study partial cooling of the head provided less of 

an overall cooling effect by covering less surface area of the head, the participants were 

also stationary (compared to cycling in Watanuki's study) and so there would have been 

less metabolic heat production, and a smaller thermal gradient present between the liquid 

tubules, scalp and blood vessels within the brain.  It is useful however, to note that head 

cooling could potentially cause an adverse affect on body temperature.  Suggestions of 
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selective brain cooling (Cabanac and Caputa 1979a) support this further whereby 

reductions in Tty were in contrast to the increases found in Tes during face fanning of 

exercising humans in an ambient temperature of 10 °C, thus cooling of the brain was 

proposed to produce an upper re-setting of core temperature (Tes).  Leading to possible 

implications preventing the use of cooler temperatures (<10 °C) surrounding the head. 

Phase-change vests of various temperatures (0 °C (CV0), 10 °C (CV10), 20 °C (CV20) 

or 30 °C (CV30) have been investigated when worn under fire-fighter protective clothing in 

the heat.  Participants did 45 minutes of light-stepping followed by 45 minutes of rest-

recovery (House 2009).  All cooling vests maintained lower Tre at rest when compared to 

the control trial (P<0.05).  The PCM cooling vest with a melting temperature of 10 °C was 

the best option of all temperatures when considering participant thermal comfort.  Both the 

CV0 and CV10 vests with regard to physiological responses helped to reduce heat strain 

with the removal of 66 W and 69 W of heat respectively.  However, cooling benefits were 

seldom during exercise and mainly observed during rest therefore the cooling rate during 

exercise provided by the PCM vests was not sufficient enough to manage the rate of 

metabolic heat production, this can be supported by findings from previous research 

(Carter 2007), whereby during continuous fire-fighting activity at moderate ambient 

temperatures a PCM vest of 28 °C did not benefit workers with regard to heat storage, and 

the rise in Tre remained unchanged between conditions. 

 

2.5.4. THE USE OF PHASE-CHANGE MATERIAL (PCM) WITHIN PPC 

PCM garments have been investigated with regard to reducing physiological thermal 

strain of occupational workers, as they are easier to manage, less costly, and easier to 

apply than most liquid based cooling systems (Flouris and Cheung 2006).  PCM garments 
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are made from a variety of different substances, such as, crystalline dehydrate of sodium 

sulphate, glauber’s salt, or sodium acetate trihydrate (Cabeza, et al. 2003; Reinertsen 

2008) and are currently used commercially as methods of latent heat storage.  They can be 

made to melt and subsequently absorb and store heat at a range of different temperatures, 

(Sharma, et al. 2007), and so have the potential to be a highly beneficial source of heat 

removal for workers wearing protective clothing.  

The use of PCM vests (28 °C) under fire-fighter clothing during activities 

representative of the work conducted by fire-fighters (Carter, et al. 2007),  has shown to be 

of no benefit with regard to reducing thermal strain, with no differences found in Tsk, final 

Tre, sweat rate, thermal sensation or comfort vs. a control trial.  The fire-fighters carried 

equipment (≈ 35 kg), whilst participants walked in pairs (≈ 4.2 km·h-1) along an 

underground rail service tunnel for a duration of 2 hrs.  The phase-change material (PCM) 

vest had a melting point set to ≈ 28 °C, and was stored for two hours prior to use at 10 °C 

to 15 °C, with a mass of ≈ 3.0 kg.  Furthermore, fire-fighting activities were conducted 

within a firehouse that was either heated (170 °C measured at a height of 1.2  m) or not 

heated (15 °C to 20 °C), either wearing or not wearing a PCM vest (different manufacturer 

to latter study with the only difference being a mass of 2.5 kg).    There was also no change 

in work duration in the heated condition between the vest cooling trial and no cooling 

control trial. 

A combination of reasons may have accounted for the aforementioned findings; the 

contribution of load (2.5 kg to 3 kg) by the PCM vest could have added to the metabolic 

heat production, the temperature of the PCM melting point may have been set too high for 

significant rate of heat removal to be achieved, and thus the rate of metabolic heat 

production must have outweighed the rate of heat removal.   
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However, in contrast to the previous study, there have been reductions in the rate of 

rise of Tsk, thermal comfort, thermal sensation, and in sweating rate of the back of 

participants, when a PCM suit was worn vs. a placebo suit, underneath well-insulated 

protective clothing, while sat within an environmental chamber (27±0.5 °C; 50±5 % RH) 

for 120 minutes, supporting that PCM can effectively reduce thermal load when worn 

within PPC (Reinertsen 2008).   

Reasons for this reduction may have been related to the PCM melting point, as it has 

been found that PCM melting and freezing points are an important factor with regard to 

heat removal (House 2009), with the lower melting points providing the most benefit (10 

°C), although again this benefit was greatest at resting recovery and minimal during 

exercise.  It was also suggested that the amount and distribution of the PCM garment were 

related to the reduction, (Reinertsen 2008).  Thus, it would be interesting to see if the same 

findings could be reproduced during exercise within hotter ambient climates.  

The benefits of the PCM vest over other cooling methods are that it can be easily 

donned and is cheaper to maintain over other liquid and air based cooling methods.  The 

downfalls are that once melted the capacity to remove heat reduces and the PCM has 

potential to act as a thermal insulator (Shim and McCullough 2000).  Furthermore, the use 

of PCM garments for heat removal is limited to the duration they can be worn and by their 

maximum heat storage capacity.  It has also been found that condensation from the 

garment can increase humidity of the microclimate and subsequently reduce the capacity 

for evaporative cooling (Flouris and Cheung 2006), of which is already limited within the 

PPC micro-climate.  In summary, it is evident that more information is required to draw 

conclusions, with regard to the potential benefit that PCM may provide to workers exposed 

to UHS, in particularly what areas are best such as, cooling the head vs. cooling the chest.  
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Thus, once again the current study aims to investigate this by comparing the physiological, 

perceptual and cognitive responses to EOD related activity of participants wearing either a 

PCM skull cap or PCM vest. 

 

2.6. SUMMARY 

The use of both liquid tubes and air ventilated systems have been shown to reduce or 

maintain subjective and physiological measures of thermal strain when wearing PPC 

(McLellan, Frim and Bell, 1999).  Workers within PPC tended to benefit more from the 

Expotemp® Personal Cooling System (liquid based), when compared to personally 

pumped air, or air vest systems (Kissen et al. 1976; Frim and Morris 1992; McLellan, Frim 

and Bell 1999; McLellan 2007).  However, liquid cooling systems are complicated and 

costly when compared to air or PCM, it is also difficult in the hotter based climates to 

supply cool liquid through the suit, therefore the use of PCM instead of liquid based 

cooling may be preferred as it is more logistically feasible and the PCM material can be re-

charged within a commercial fridge for re-use (Reinertsen 2008).   

Head cooling managed to significantly reduce subjective measures of thermal strain in 

all head cooling studies, despite the portion of the head that was covered, combined with 

significant reductions in sweat rate (SRT and SRF) and in few cases core and/or body 

temperature (Nunneley and Maldonado, 1983; Katsuura et al. 1992).  Cooling the torso 

was less effective when compared to head cooling when they were compared 

proportionally with BSA, although when not compared proportionally to BSA the torso 

cooling garment resulted in the better outcome, and combined, both managed to improve 

thermal strain significantly due to the larger surface area covered.  Monitoring 

temperatures of the cooling systems has shown to be an important factor, especially with 
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regard to cooling the head and/or different regions of the body.  The success of these 

cooling systems at maintaining resting core temperature and/or a thermoneutral 

environment depends upon a variety of factors and all studies show benefits of 

implementing cooling when compared to no cooling within a PPC (NBC and EOD) 

ensemble.  This re-enforces the need for cooling systems in the field, to maintain 

performance, and reduce the risks of heat illness.  The need for careful consideration of 

study design when testing these systems is also an important factor.   
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3. METHOD 
 

3.1 PARTICIPANTS 

 

With approval from Coventry University Ethics Committee, six male volunteers (n = 6; 

Table 3.1) took part in the current study.  All were non-heat acclimated, non-smokers and in 

accordance with the completion of a PAR-Q Health Screen Questionnaire had no history of 

illness (cardio-respiratory or metabolic disease) or injury.  Three of the six participants were 

current members of the Officer Training Corps (OTC) and all six participants took part in 

regular activity (a combination of running and cycling for greater than 120 minutes per week). 

 

Table 3. 1: Anthropometric characteristics (mean ± SD) of each participant (n=6).   

Participant Sex Age 
(yrs) 

Height 
(m) 

Body 
Mass 
(kg) 

+Body 
Mass 
Index 
(BMI) 

*Body 
Surface 

Area (BSA; 
m2) 

1 Male 21 1.72 65.2 22.0 1.77 

2 Male 22 1.78 67.6 21.3 1.84 

3 Male 21 1.63 64.3 24.2 1.69 

4 Male 29 1.74 67.0 22.1 1.81 

5 Male 19 1.78 64.6 20.5 1.81 

6 Male 22 1.77 62.1 19.9 1.77 

MEAN±SD - 22±3 1.74±0.05 65.1±2.0 21.7±1.5 1.78±0.05 

+BMI was calculated using weight (kg)/height (m2). *BSA was calculated using the method of DuBois and 
DuBois (1916), {BSA (m²) = 0.20247 x Height(m)0.725 x Weight(kg)0.425}. 
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3.2 STUDY DESIGN 

 

The study ran from February through to June.  It consisted of three pre-trial 

familiarisation sessions, one trial familiarisation session and six experimental trials for each 

participant.  All of which took place within the same laboratory housed in the James Starley 

Building at Coventry University.  The six experimental trials consisted of two no cooling (NC) 

control trials, two torso cooling (TC) trials, and two head cooling (HC) trials.  Each conducted 

on separate occasions at ≈20 °C and 40 °C (in a randomised format).  Thus, the six trials are 

annotated as; 20NC; 40NC; 20TC; 40TC; 20HC; and 40HC, respectively.  A Latin square 

design was used to allocate the chronological order of trial completion in a randomised format, 

for each participant, thus eliminating any potential order effect (Table 3.2).  The trials were 

completed at the same time of day for each participant (either 10 am or 2 pm) to account for 

circadian rhythm changes in core temperature and cardiovascular responses (Waterhouse, 

Drust, Weinert, et al., 2005) and were separated by one week to reduce the risk of heat 

acclimation to participants (Barnett and Maughan 1993). 

 

Table 3.2: A Latin square design was used to allocate participants (n=6) to a trial order for the six 
conditions (NC = No Cooling; HC = Head Cooling; TC = Torso Cooling; Order1-6).  

CONDITON NC HC TC NC HC TC 

TEMP (°C) 20 40 20 40 20 40 

PARTICIPANT NO.             

1 1 2 3 4 5 6 

2 6 1 2 3 4 5 

3 5 6 1 2 3 4 

4 4 5 6 1 2 3 

5 3 4 5 6 1 2 

6 2 3 4 5 6 1 
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3.2.1 PRE-TRIAL TEST SESSIONS 

 

Three pre-trial test sessions were conducted on separate days at 20 °C. A session lasted 

one hour in duration.  After donning the light-weight EOD suit (Ergotec 3010), participants 

completed a spatial working memory (SWM) test (CANTAB® neuropsychological tests; 

Cambridge Cognition Ltd; Cambridge; UK).  The test lasted ≈ 6 minutes and was repeated four 

times per session.  Within the same session participants practised a postural challenge test (2 

min 10 sec in duration; see section 3.2.4, for a description and explanation of the test), that was 

repeated three times per session.  The purpose of conducting three pre-trial test sessions was to 

establish a clear baseline of performance on the SWM test and for the participants to perform 

the postural challenge manoeuvre in a reproducible manner. 

 

3.2.2 FAMILIARISATION SESSION 

 

The familiarisation session was completed by participants one week prior to 

commencing the experimental phase of the project.  The familiarisation session was used as a 

tool for each participant to practice the required trial activities and sequence of events that 

would take place during each of the six experimental trials, (see section 3.2.3).  The ambient 

temperature of the experimental chamber was set to 30ºC and the light-weight EOD suit with 

no phase change material (PCM) was worn.  The reasoning for an ambient temperature of 30ºC 

was to ensure completion of the trial (4 activity cycles), and because it was between the 

temperatures that the participants were going to be exposed to (20 °C and 40 °C). 
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3.2.3 EXPERIMENTAL TRIALS 

 
Each laboratory trial consisted of a series of four activity cycles each containing six 

activity stations.  One cycle lasted 20 minutes resulting in a total trial duration of 80 minutes.  

The six activity stations (1. to 6.) are described below (Figure 3.1). 

1. Treadmill walking (4 km·hr-1; 3 min) 

The participants walked on the treadmill for a total duration of 3 minutes with a 0 % 

incline, which equated to 200m in distance, (Figure 3.1). 

2. Manual loading (2 min) 

This involved the participants kneeling in front of a shelving unit, lifting up and putting 

down metallic disc shaped weights to the beat of a metronome (30 beats·min-1; Seiko DM-20, 

Hattori Seiko Co. Ltd; Japan) four 1.25 kg weights, whereby one beat equalled one action.  The 

weights were positioned side by side on a top shelf situated 64 cm from the floor and were 

moved in turn on to a bottom shelf situated 27 cm from the floor, this was then repeated so that 

the weights were moved back on to the top shelf and so forth, until two minutes had past.  The 

participant then progressed within 30 seconds over to the searching and crawling station, 

(Figure 3.1).   

3. Searching and crawling (2 min) 

Involved the use of a 2.25 m ‘ladder’ marked out in black tape along the experimental 

chamber floor, (Figure 3.1).  The starting position for the participant required them to be 

situated on their hands and knees with both hands shoulder width apart.  Their hands were in 

line with the first black line of the ladder, and all movement was completed in time to a 

metronome (30 beats·min-1; Seiko DM-20, Hattori Seiko Co. Ltd; Japan), with one movement 

to the next rung per beat.  Participants began by ‘searching,’ which required looking to the left, 

down, right, and then down again, to the beat of the metronome, before proceeding to crawl 
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forwards.  Crawling involved moving their left hand followed by their right to each marked 

rung on the ladder.  Each rung was staggered 24 cm apart and one stretch of the ladder 

(including one search) took 30 seconds to complete.  Once the participant reached the end of 

the ladder they repeated the ‘searching’ task before commencing backwards leading with their 

feet.  The participant moved their hands to each rung in time with the metronome.  The 

participants went back and forth along the ladder twice (2 min) to complete the searching and 

crawling station.  

4. The postural challenge (2 min 10 sec) 

Participants stopped searching and crawling and knelt upright distributing their weight 

evenly on their knees and balls of their feet (shoulder width apart situated on the first rung of 

the ladder).  In this position the participants gluteals were resting on their heels, (see Figure 3.1; 

image 4.B), and the blood pressure recording device fitted to the participant.  The blood 

pressure (BP) response was measured using a Portapres Model-2 device (Beatscope FMS, 

Finapres Medical Systems BV, Amsterdam; The Netherlands).  An appropriately sized finger 

cuff (either small, or medium) was applied to the left hand of each participant.  The cuff was 

positioned on the middle phalanx of the index or forefinger and remained fixed for each 

participant. 

   

To normalise the system for hydrostatic pressure the following procedure was used:  

The left arm and finger were lifted forwards (at 90º parallel to the floor) away from the body 

and in line with a previously determined marker (on a meter rule; set per participant) that was 

in line with the participant’s heart, this was determined as the height null, and the distance 

between the forefinger and the height null was continuously measured throughout the 

manoeuvre.  This height null was carried out so that during analysis, corrections and 

conversions could be made of the blood pressure (mmHg) measured in the digital artery of the 
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participants forefinger to that of blood pressure (mmHg) measured in the brachial artery of the 

upper arm.  This height null was followed by an internal system calibration that was conducted 

within 60 seconds from the initiation of kneeling.  A three second count down was given from 

86 seconds and the participant asked to stand to the beat of the metronome (30 beats·min-1), in 

three stages beginning with the first beat at 90 seconds as follows: 

 Stage 1) – (90 sec) the right arm was placed on the adjacent treadmill (Figure 3.1; 

image 4.A);  

 Stage 2) – (92 sec) the participant then rolled back onto the balls of their feet into a 

squat-like position (figure 3.1; image 4.B; using their right arm to balance - hence first 

stage);  

 Stage 3) – (94 Sec) from balancing in a squat-like position on the balls of their feet the 

participant moved vertically to a standing position instructed to do so in a relaxed 

manner as fast as physically possible, (Figure 3.1; image 4.C).   

The three stage manoeuvre from kneeling to standing, took a total of approximately 6 

seconds and the participant was then instructed to remain standing as relaxed as possible 

without talking or holding their breath for a further 34 seconds, while post-stand digital-arterial 

blood pressure (mmHg) was recorded.  The station lasted a total of 2 minutes 10 seconds 

leaving 20 seconds transfer time to the arm ergometer. 

5. Unloaded arm ergometry (60 rev·min-1; 3 min; Thake and Price 2007)  

The participant stood at an arm ergometer with one hand on either handle, and when 

instructed to do so, rotated the handles at a speed of 60 rev·min-1 for a total duration of three 

minutes (Figure 3.1). 

6. The SWM test (6 min) 
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A cognitive spatial working memory (SWM) test was conducted, on a touch screen 

computer whilst the participant was seated at rest, (Figure. 3.2).  The test measures the ability 

of an individual to retain and manipulate spatial information within their working memory 

whilst testing the participants’ heuristic strategy (Cambridge Cognition Ltd 2009).  The test 

began with a series of coloured square boxes (n=3) positioned randomly on the screen, the 

participant would press on each of these boxes in turn, to reveal a blue square ‘token.’  Once 

the blue square token was found it was placed into a clear black column on the right hand side 

of the screen, (Figure 3.2).  The number of tokens to find per stage and the size of the clear 

black column corresponded to the number of boxes available, e.g. 3 boxes = 3 blue tokens; 6 

boxes = 6 blue tokens.  The token would never appear in the same box twice and the number of 

boxes per stage increased from 3 through to 8 boxes, increasing test difficulty at each stage.  

The test lasted for as long as it took for the participant to complete all of the available stages.   

The participants were instructed to use either hand and/or finger they felt comfortable with and 

to complete the test as fast as they felt were possible with some using two hands as developed 

in the familiarisation session.  Pilot studies prior to commencing any trials indicated that 

completion time was generally between 4 minutes 30 seconds and 5 minutes 30 seconds 

dependent upon the individual and so 6 minutes was provided as the overall station time. 
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0:00       3:30   6:00           8:00                           10:30                 14:00                    20:00 
        Time (min) 

                                                           
  A. Kneeling (90sec)        +      B. Three stage Squatting Manoeuvre (6 sec)   +  C. Standing (34 sec) = Total time (2mins 10 sec)  
 
Figure 3. 1: Schematic diagram of one 20 minute cycle (6 stations).  A complete experimental trial is 4x20 min cycles (80 minutes).  Solid blue lines represent 30 
seconds of transfer time between activity stations, and the solid red line represents 20 seconds of transfer time between activity stations.  A break-down of the postural 
challenge (2 min 10 sec) manoeuvre is also included.  Time represents start time of each station.  Coloured boxes represent (not to scale) when in the cycle variables 
were measured; ThS, ThC, RPE (purple); HR manually recorded (red); BP & HR(light red); temperatures manually recorded (orange); PCM, Tsk,, Tau, Tre, TcP 

(transparent green); & HR (transparent green). 

1. Treadmill         2. Manual              3. Searching and Crawling             4. Postural              5. Arm Ergometry          6. SWM Test 
     Walking             Loading                    Challenge 
 
     3min   2 min    2 min              2 min: 10 sec          3 min                   6 min 

   

 

        



45 
 

 
Figure 3. 2: The SWM test (station 6) completed on a touch screen computer. Two different stages (A and 
B) are shown with an example of the found blue tokens visible within the black right hand column. 
 

A. 

B. 
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3.2.4 EXPLANATION OF TRIAL PROTOCOL  

 

The laboratory based protocol included manual, and cognitive tasks representative of 

EOD type activity based on previous research (Thake and Price 2007; Thake, et al., 2009b).  

Changes made to the previous EOD protocols (Thake and Price 2007; Thake, et al., 2009b), 

included the incorporation of a postural challenge station (2 min:10 sec; Figure 3.1; section 

3.2.3) situated directly after the searching and crawling task and the inclusion of a cognitive 

spatial working memory (SWM) test (6 min) in place of previous physical seated rest (5 min; in 

lew of previously used tests of inadequate sensitivity/specificity).   

 

The postural challenge represents an operative moving from kneeling to standing (after 

searching and crawling), and was introduced and standardised especially for this study to 

examine the impact of thermal stress on orthostatic tolerance.  The SWM test and physical 

seated rest (touch screen computer; 6 min) assesses the area of cognition thought to be integral 

to EOD related tasks and was incorporated into the following study to examine how this 

cognition may change in relation to increasing thermal strain. 
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3m

5m

1. 
Treadmill

Stool6. SWM Test

Entrance/Exit3. Searching and 
Crawling and 
4. Postural Challenge 
Start-line

2. Manual Loading

5. Arm Ergometry

2.25m

 

Figure 3. 3:  A schematic diagram (not to scale) outlining the layout of the 
experimental area with stations (1.-6.). 



48 
 

3.3 STUDY ATTIRE 

 

3.3.1 EOD UNDERGARMENTS 

 

The participants wore shorts while thermistors were fixed to the skin (see 

section 3.5).  During the pre-trial preparation and before donning the EOD suit the 

participants wore a set of normal combat clothing, consisting of t-shirt, trousers, and 

boots (size 8, 9, or 11 dependant on the participant).   

 

3.3.2 EOD SUIT 

 

The EOD suit (3010 Ergotec; NP Aerospace Ltd; Coventry; UK), was worn 

during the pre-trial sessions, familiarisation session and experimental trials.  The suit 

consisted of trousers, jacket, helmet, and boots, with a total mass of ≈ 18 kg.  The 

helmet of the 3010 Ergotec was equipped with visor and did not fully encapsulate the 

head (Figure 3.4).  The suit was also equipped with a single internal fan unit powered 

by a battery pack (16 AA batteries).  The internal fan unit blew ambient air (≈ 200 

l/min-1) through the suit that was dispersed across the participants’ back.  

 

3.4 PHASE CHANGE MATERIALS (PCM) 

 

Phase change material (PCM) is used commercially as a form of latent heat 

storage (Mondal 2008).  The PCM used in this study had a melting point of 25 ºC, and 

was thus solid below 25 ºC; whereas above 25 ºC it was in the liquid phase.  This 

process of changing state was initiated mainly by the conductive heat transfer between 
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the PCM, undergarments and/or skins surface, and additionally by the ambient air of 

the internal fan. 

 

Figure 3. 4: Picture A. the inside of the ‘Scrum Cap’ from a front view, and picture B. the outside 
of the ‘Scrum Cap’ from a side view.  The ‘Scrum Cap’ was used as a head cooling method 
covering the hairline and ears of each participant during both head cooling trials (20HC and 
40HC).   
 

PCM was used as head and torso cooling in the experimental trials (20HC, 

40HC, 20TC and 40TC).  The scrum cap was designed to cover the participants’ head, 

and had a total mass of 402 g.  The vest was designed to cover the participants’ torso 

(back and chest) and had a mass of 1122 g.  

 

The PCM vest and scrum cap were designed with a honeycomb (hexagon 

shaped) type structure, (Jackson Technical Solutions Ltd, Norfolk, UK; Figures 3.4 

and 3:5).  The scrum cap covered the hairline of the head and the ears.  A soft strap 

went under the chin of each participant, and attached (with Velcro) to both sides of 

the scrum cap over either ear to ensure the cap was secure, (Figure 3.4 A. and B.).  

The vest had two sides (back and chest) and four straps with velcro attachments to 

connect them together over and around the participants’ torso, (Figure 3.5 C. and D.). 

 

A. B. 

Forehead 

Forehead 
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Figure 3. 5: Pictures C. and D. the PCM vest used in all torso cooling trials (20TC and 40TC).  
Pictures C. and D. the chest and back panel of the of the PCM vest.  Picture C. the inside of the 
vest, and Picture D. the outside of the vest, with velcro strap attachments used to connect the 
chest and back panels over and around the participants’ torso.  
 

3.4.1 PCM STORAGE AND APPLICATION 

 

Both the PCM vest and scrum cap were cooled in a commercial Fridge set to 5 

ºC prior to usage.   The recommend commercial guidelines (as instructed by NP 

Aerospace Ltd) stated the time required to ‘charge’ the PCM material was no less than 

30 minutes.  The PCM charging duration was kept the same per participant per trial 

but varied between participants due to the initial speed at which they managed to 

dress and prepare themselves for the trial (34 to 50 minutes) this was to avoid long 

periods where the participant could have been standing or waiting.  The PCM was 

applied over the undergarment t-shirt for the chest and back and over the hairline for 

the head.  The PCM was donned by the participant 15 minutes before each 

experimental trial commenced and remained on throughout the entire 80 minute trial. 

 

 

 

 

 

C. D. 
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3.5 TRIAL INSTRUMENTATION 

 

3.5.1 PREPARATION 

 

Upon arrival to the lab the participants completed a PAR-Q health screen 

questionnaire.  Each participant was required to swallow a gastrointestinal pill 

(CorTemp™ Ingestible Core Body Temperature Sensor HT150002; HQ Inc. Wireless 

Sensing Systems and Design; Palmetto, USA) two hours prior to arrival time into the 

lab.  A check was conducted using the CorTemp™ Data Recorder (with Polar® Heart 

Rate HTT150016; HQ Inc. Wireless Sensing Systems and Design; Palmetto, USA), to 

ensure the appropriate read-out (≈37 °C) could be attained on arrival at the laboratory.  

The participant then proceeded into the experimental chamber (Figure 3.3; 20 °C) to 

execute a baseline SWM test on the touch screen computer (section 3.2.3; 6), 

followed by a baseline postural challenge digital-arterial blood pressure measurement 

(section 3.2.3; 4). For hot trials (30 °C to 40 °C) the experimental chamber was then 

heated, using five commercially available heaters positioned at two opposing corners 

of the experimental chamber with two heaters situated in one corner and three heaters 

in another.  The PCM was then placed in a fridge (5 °C) on the same shelf each time 

and a clock was started to ensure the PCM was charged for the set duration required 

per participant.  A helmet check was then carried out to ensure the EOD helmet would 

be fitted correctly to the participants head prior to donning the EOD suit, with a 

specific configuration set per participant that was then kept the same for each of their 

trials. 

 

The participants then proceeded into the bathroom, to don a pair of shorts kept 

the same per participant and continued with the pre-trial preparation.  The participants 
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were asked to insert a flexible translucent PVC rectal probe (Grant Instruments 

(Cambridge) Ltd, Shepreth, UK) into their rectum (approximately 10 cm beyond the 

anal sphincter).  Record three nude body mass measurements (kg; to obtain an 

average) using the same balance each time and one mid-flow urine sample to monitor 

the hydration status of each participant prior to each experimental trial. 

 

Once the participant returned to the lab, stainless steel temperature thermistors 

(Grant Instruments (Cambridge) Ltd, Shepreth, UK) were applied to the lateral calf, 

medial thigh, upper arm, and chest; (Ramanathan 1964) followed by the forehead.  

The thermistors were fixed using self adhesive tape.  An aural thermistor (Grant 

Instruments (Cambridge) Ltd, Shepreth, UK) was inserted into the outer ear and held 

in place using cotton wool and self adhesive tape.  All thermistors were then 

connected to the Squirrel SQ data logger (2020 series; Grant Instruments (Cambridge) 

Ltd, Shepreth, UK) and checked to ensure they were working correctly.   

 

A Polar® heart rate chest belt (Polar Accurex Plus, Polar electro Oy; 

Kempele, Finland) was moistened, applied and tightened around the participants’ 

torso in line with the bottom of the sternum.  The undergarment t-shirt, trousers and 

boots were then donned by the participant.  Once dressed, the Cosmed K4b2 head 

strap and mask (Cosmed Pulmonary Function Equipment; Rome, Italy) were fitted to 

the head and face, (Figure 3.6).  
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3.5.2 BASELINE MEASURES (WITHOUT SUIT) 

 

Baseline measures (B1; without the suit) were conducted once the Cosmed 

K4b2 mask and head strap were in place, prior to the participant donning the EOD 

suit.  Heart rate (HR), skin temperature (Tsk,), aural temperature (Tau), rectal 

temperature (Tre), gastrointestinal temperature (TcP), thermal comfort (ThC) and 

thermal sensation (ThS) were manually recorded, (Section 3.6). 

 

3.5.3 DONNING THE EOD SUIT  

 

The participant donned the EOD trousers two minutes before the end of the 

cooling charge duration.   Once the relevant time for charging the PCM had been 

completed, the PCM (either scrum cap or vest) was removed from the fridge.  A 

temperature thermistor was then attached to the PCM using adhesive tape and the 

PCM fitted to the participant.  In the instance of no cooling (control trials; 20NC and 

40NC) the EOD trousers were donned, followed directly by the rest of the EOD 

ensemble.  The EOD jacket was then donned followed by the helmet.  Once dressed in 

the full EOD ensemble the Cosmed K4b2 control unit was added and fixed over the 

jacket using the Cosmed K4b2 strap, (Figure 3.6).   
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Figure 3. 6: The 3010 Ergotec EOD ensemble with instrumentation prior to entering the 
experimental chamber. 
 
 
3.5.4 BASELINE MEASURES (WEARING THE SUIT) 

 

Baseline measures (B2; wearing the EOD suit) were conducted once the 

Cosmed K4b2 was started and set to record breath-by-breath data telemetrically, prior 

to entering the experimental chamber.  Thermal measures and HR, Tsk, Tau, Tre, TcP, 

ThC and ThS were manually recorded, (see section 3.6).  Participants proceeded into 

the experimental chamber ≈ 3 minutes before starting the trial.   Three suited body 

mass values (to gain an average) were obtained using the same balance each time and 

the participant proceeded onto the treadmill to commence the 80 minute experimental 

trial. 
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3.6 MEASUREMENTS AND CALCULATIONS 

 

3.6.1 TEMPERATURE MEASUREMENTS 

 

The experimental chamber temperature was measured using a Kestrel® 4100 

Pocket Air Flow Tracker (Richard Paul Russell Ltd; Lymington; UK).  Relative 

humidity (RH; %), and temperature (ºC) were monitored regularly throughout the trial 

and recorded manually (instrument accuracy of ± 1 ºC for temperature and ± 3 % for 

RH) at the beginning of every station within each cycle by the investigator (Table 

3.3).  The average temperature and RH measured at the beginning of each trial was as 

follows; 22.2±0.4 (20NC), 22.3±0.6 (20HC), 22.0±0.4 (20TC), 40.3±0.3 (40NC), 

40.2±0.6 (40HC), 40.5±0.4 (40TC), (see Appendix A). 

 

The gastrointestinal pill data was logged manually at B1, B2 and at the SWM 

test station (once per cycle).  The CorTemp™ Data Recorder was worn by the 

participant on the outer side of the EOD Jacket, and was set to log both HR 

(beats·min-1) and TcP (ºC) every 20 seconds throughout the trial.  All core temperature 

ingestible sensors came coded meaning that they could then be tracked by using this 

code once it had been typed into the data recorder at the beginning of each trial.  Tre, 

Tau, Tsk, and PCM temperatures were logged manually at B1, B2 and the arm 

ergometry and SWM test stations (twice every cycle), and every 15 seconds 

throughout the trial by the Squirrel SQ 2020 series data logger (Grant Instruments 

(Cambridge) Ltd, Shepreth, UK; section 3.2.3, Figure 3.1). 
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3.6.2 MEAN SKIN TEMPERATURE AND HEAT STORAGE CALCULATIONS 

 

Mean skin temperature (Tsk,; ºC), was calculated from the lateral calf, medial 

thigh, upper arm, and chest temperatures (Equation 1; Ramanathan 1964).  Heat 

storage (J·g-1) was calculated using Tsk, and TcP as the core temperature (Tc) variable 

(Equation 2; Havenith, Luttikholt and Vrijkotte 1995). 

Equation 1:  
 
Mean Skin Temperature (ºC) = 0.30 (Chest + Arm) + 0.20 (Thigh + Calf)  

 
 
Equation 2:  
 
Heat Storage (J·g-1) = [(0.8 × Δ TcP) + (0.2 × Δ Tsk,)] × CB  

  
CB denotes specific heat capacity of the body (3.49 J·g-1)  

 

 

3.6.3 CARDIOVASCULAR MEASUREMENTS 

 

Digital-arterial blood pressure (bp; mmHg) and HR (beats·min-1) were 

recorded and monitored non-invasively by the volume-clamp method (Penaz, 1973) 

and plethsmography, using a Portapres Model-2 device (Beatscope FMS, Finapres 

Medical Systems BV, Amsterdam; The Netherlands).  Participants wore one finger 

cuff on the middle phalanx of either the index or forefinger.  The cuff was connected 

to a front-end unit by an air hose and cuff cable, and the front-end unit to the main 

unit and pump.  At the start of each recording a ‘physiocal’ (calibration) was 

automatically conducted to detect a ‘set point’ diameter of the digital-artery.  This 

included the cuff inflating and deflating accordingly to adjust to changes in intra-

arterial pressure.  The diameter of the digital-artery was ‘clamped’ when the 
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transmural pressure equated to zero.  The physoical was then turned off while the 

participants’ digital-arterial BP was measured and displayed using Plethsmography.   

 

Embedded and aligned parallel within the cuff was a light emitting diode 

(LED) and infrared photodiode sensor.  Changes in the volume of light passing 

through the artery are directly proportional to the changes in diameter, thus, changes 

in arterial diameter were compared to the participants ‘set point,’ and a BP waveform 

was computed using an algorithm embedded within the software. 

 

3.6.5 CALCULATIONS OF PHYSIOLOGICAL STRAIN  

 

HR (beats·min-1) and core temperature (Tre and TcP; ºC) were used to calculate 

the physiological strain experienced by each participant within each condition.  

Physiological strain was calculated using the physiological heat strain index (PhSI; 

Equation 3; Tikuisis, McLellan and Selkirk 2002), first with Tre then again with TcP as 

the core temperature variable.  The index provides physiological strain on a scale of 0 

to 10, with 0 representing no physiological strain and 10 representing maximal 

physiological strain.   

 
Equation 3:  
 
PhSI = 5[(TCt* − TC0*) ÷ (39.5 − TC0*)] + 5[(HRt − 60) ÷ (HRmax − 60)]  
t denotes values at a given time point. 0 denotes baseline value.   

max denotes maximum HR value seen from all trials.  *substitute with TcP or Tre  
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3.6.6 SUBJECTIVE MEASUREMENTS 

 

A 15-point scale (6 to 20; Borg 1970; Appendix B) was used to monitor the 

participants overall ratings of perceived exertion (RPE) of three individual body 

segments (upper back and shoulders, lower back, and legs).  Thermal sensation (TS; 

Appendix C; Young, Sawka, and Epstein et al. 1987) and thermal comfort (TC; 

Appendix D; modified from Epstein and Moran 2006) were rated by participants 

using a 9-point scale (0-8). Participants were asked to provide values for TS and TC 

referring to their overall body followed by 5 other body segments (head, back, chest 

and arms, groin, and legs).  RPE, TS and TC were recorded manually by the 

investigator at B1, B2 and during the treadmill and arm ergometry stations of every 

cycle. 

 
3.6.7 CALCULATIONS OF PERCEPTUAL STRAIN 

 

Ratings of perceived exertion (RPE) and thermal sensation (ThS) from the 

treadmill and arm ergometry stations (twice per cycle) were used to calculate an 

overall perception based strain index (PeSI; 0-10).  For the PeSI to be calculated 

(equation 4; Tikusis, McLellan and Selkirk 2002) the RPE and ThS scores were altered 

from 15 (6 to 20) and 9 (0 to 8) point scales to 11 (0 to 10) and 7 (7 to 13) point 

scales, respectively.   

Equation 4:  

PeSI = 5[(ThSt - 7) ÷ 6] + 5[RPEt ÷ 10] 

ThS and RPE denote thermal sensation and perceived exertion respectively. 

t denotes values at a given time point. 
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3.8 BP ANALYSIS 

 

The BP portapres waveforms from each cycle were merged to produce one 

portapres file per trial using BeatScope 1.1a software (FMS, Finapres Medical 

Systems BV, Amsterdam, The Netherlands).  A beat-to-beat analysis was then 

conducted on the merged file using BeatFast (within BeatScope).  The level correction 

was turned on (correcting pressure from finger to brachial level using the height null 

information) with the analysis execution speed set to very high (>10 times real time; 

with no effect to original readings).  This produced a beat data file (showing pulsatile 

BP values and HR) aligned with the original portapres file (showing height null and 

the BP waveform).  Both the Portapres file and Beat data file were viewed together 

using Beatscope (Figure 3.8) and saved as a session file (one session file equated one 

trial) for analysis.  Each BP waveform was viewed and analysed as follows (Figure 

3.8): 

 A 10 second mean of HR (beats·min-1), and BP (Sys, Dia, MAP; mmHg) were 

obtained prior to the event marker (standing).  In an attempt to eliminate 

artefact the mean was obtained from >4 seconds prior to the event marker and 

when the height null measured was constant (i.e. 34cm). 

 Once stood (>2 seconds after event marker and when the height null was 

constant) recovery values (HR and BP) were obtained closest to 25 seconds 

after the event mark.  The lowest (trough) and highest (peak) recorded BP 

values and the highest (peak) HR values obtained within the 25 second 

recovery phase were noted with the time point at which they occurred.  
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 Means of each data point for each cycle and trial were then calculated using 

Microsoft Office Excel (versions 2003 and 2007).  Graphs were drawn to 

represent the pre-stand mean, peak and recovery HR and the pre-stand mean, 

trough, peak and recovery BP response to the postural challenge, per cycle and 

trial.  
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A.

 
B. 

 
 
Figure 3. 7: An example BP waveform from one participant during a baseline measurement, 
prior to an experimental trial.  Two viewports are shown (A. and B.) to aid explanation; A. 
highlights a 10 second period before the event mark (pre-stand) and B. highlights a 25 second 
period after the event mark (post-stand) used in the analysis. 
 
 
 
 
 
 
 
 

Event Mark 

Pre-Stand Post-Stand 

Portapres 
File 

Beat data 
File 
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3.9 TRIAL DISCONTINUATION CRITERIA 

 

For the participants safety, an experimental trial was terminated when; 

participants heart rate exceeded 95 % of maximum (220-AGE) for 3 minutes, 

gastrointestinal, rectal, or aural temperature reached 39.5ºC.  If perceptual scores 

reached maximum on either the RPE (19/20), ThC (8), ThS (8), and/or GSQ (3) scales, 

and if a participant elected to withdraw at any point throughout the trial/study the 

current trial was terminated and/or participation in the study discontinued. 

 
3.10 STATISTICS 

 
The management and calculations of experimental data collected from all 

trials and conditions within the current study were performed using Microsoft Office 

Excel (versions 2003 and 2007).  Once managed, a general linear model analysis of 

variance (GLM ANOVA) statistical test was conducted (with the use of MINITAB 15 

software) separately on the thermal, subjective, cognitive, and postural challenge data, 

for time (points 0 to 24), and then again for cycle (1 to 4).  The model was set to 

include main effects for condition (20TC, 20HC, 20NC, 40TC, 40HC, 40NC), 

participant (n=6), and order (1 to 6).  If a significant P value (P≤0.05) was obtained 

for any main effect or interaction (condition x time; condition x cycle), then a Tukey 

post hoc test was conducted to determine the exact points of significance within the 

data. 
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4. RESULTS 
 

 
4.1 HEART RATE 

 

Heart rate (HR; beats·min-1; Figure 4.1) varied within each activity cycle and 

between conditions with the greatest response achieved in the 40 °C compared to the 20 

°C trials (P<0.001; condition*time) during the arm ergometry station (not including the 

postural challenge station).  There are noticeable peaks and troughs within each cycle 

relative to the different workloads, for example, HR was lowest during the 6th station 

(SWM test) and highest during the 1st (treadmill) and 5th (arm ergometry) stations of 

each cycle.  

 

Within the 20 °C trials, HC resulted in the greatest HR response (P<0.001 vs. 

20NC and 20TC) throughout the 80 minute trial, with a peak HR of 107±16 beats·min-1 

during the arm ergometry (5th) station of the final cycle when Tf measured was lowest 

and TcP was greatest.   

 

At 40 °C, HR remained lowest during both the HC (P<0.001 vs. NC) and TC 

conditions (P<0.001 vs. NC) throughout the 80 minute trial.  Towards the end of the 

trial during the 5th (arm ergometry) station of the 3rd cycle (≈ 50 mins) and the 1st 

(treadmill) station of the 4th cycle (≈ 60 mins), HR was lower with TC compared to HC 

(111±14 vs. 121±18 beats·min-1 and 118±12 vs. 125±21 beats·min-1).  The greatest HR 

occurred within 40NC during the postural challenge station of the final cycle 148±12 

beats·min-1 (see section 4.7.3). 
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Figure 4. 1: Heart Rate (HR; beats·min-1; mean±SD; n=6).  Significant main effects for condition, time, and condition x time, (P<0.001).  80 minutes of explosives ordnance disposal related 
activity in 20 °C and 40 °C. (TC=torso cooling; HC = head cooling; NC = no cooling) 

20NC vs. 20HC = P<0.001 
20NC vs. 20TC = NS 
20TC vs. 20HC = P<0.001 

40NC vs. 40HC =P<0.001 
40NC vs. 40TC = P<0.05 
40TC vs. 40HC = NS 
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4.2 TEMPERATURE MEASUREMENTS 

 
4.2.1 GASTROINTESTINAL, AURAL, AND RECTAL TEMPERATURE 
 

 

Core temperature remained within safe limits, measuring below 38 °C within all 

conditions, with no significant increases from B1 to the end of exercise at 20 °C with 

either Tre or TcP measures.  A summary of the response variables at 80 minutes is 

presented in Table 4.7. 

 

Core body temperature measured by a gastrointestinal pill (TcP; Figure 4.2) 

transiently declined in all conditions within the first 10 minutes of the 1st cycle, (e.g. 

minus 0.02 to minus 0.09 °C).  Thereafter, TcP remained below that measured at rest 

(37.10±0.15 °C) in 20TC only, for the entire 80 minute duration.  The magnitude of rise 

was greatest in 40°C trials (TC 0.51±0.21°C; HC 0.66±0.33°C; NC 0.59±0.11°C) when 

compared to the 20 °C trials (TC, minus 0.06±0.26°C; HC, minus 0.03±0.10°C; NC, 

0.05±0.25°C; P<0.05).  

 

At 20 °C, TcP responses during TC were significantly lower than HC and NC 

during the 80 minute sequence (P<0.001).  HC and NC did not significantly vary.  At 80 

minutes, TcP did not vary between trials (37.00±0.21 °C for TC, 37.22±0.23 °C for HC 

and 37.19±0.21 °C for NC).    

 

In the 40 °C trials, TcP was lowest overall with HC (P<0.05 vs. TC; P<0.001 vs. 

NC) however, the difference between HC (37.70±0.31 °C) and TC (37.65±0.27 °C) was 

no longer evident at 60 minutes.   
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The magnitude of rise with Tau, Tre and TcP was greatest at 40 °C when 

compared to 20 °C for the NC and TC conditions (P<0.001; post hoc for condition; 

Table 4.1).  At 20 °C, Tau and Tre were greatest with HC when compared to NC and TC, 

whereas the opposite was present at 40 °C, with the lowest Tre and Tau responses 

measured during HC when compared to NC and TC, (P<0.001; post hoc for condition; 

Table 4.1).  Core temperature measured at baseline with an aural thermistor was 

approximately 1 °C lower than that measured with Tre or TcP, with Tau detecting the 

greatest rise between B1 and 80 minutes within all conditions (20NC, 0.35 °C; 20HC, 

0.31 °C; 20TC, 0.27 °C; 40NC, 1.13 °C; 40HC, 1.04 °C; 40TC, 0.93 °C).  Tau continued 

to increase with no evidence of an initial decrease within the first cycle, which differs to 

that of the overall trend found with the Tre and TcP, with an initial decrease present 

typically between B1 and the end of the first cycle before rising again between the 2nd 

and 4th cycle (Table 4.1).  
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Figure 4. 2: Core temperature (TcP; °C; mean±SD; n=6).  Significant main effect for condition, time, and condition x time, (P<0.001).  80 minutes of explosives ordnance disposal related 
activity in 20 °C and 40 °C. (TC=torso cooling; HC = head cooling; NC = no cooling). 
 
 
 

20NC vs. 20HC = NS  
20NC vs. 20TC = P<0.001  
20TC vs. 20HC = P <0.001 

40NC vs. 40HC = P<0.001  
40NC vs. 40TC = P<0.001  
40TC vs. 40HC = P <0.05 
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Table 4. 1:  Three core temperature variables (TcP; Tre; Tau; °C; mean±SD) (n=6).  Significant main effect for condition, time, 
condition x time, (P<0.001) with all conditions.  Responses taken from baseline without the suit, prior to trial start (B1; PRE), and 
at the end of each cycle throughout 80 minutes of explosive ordnance activity (1, 20; 2, 40; 3, 60; 4, 80). 
 

 

4.2.2 MEAN SKIN TEMPERATURES 
 

Tsk (Figure 4.3) increased throughout the 80 minute trial duration (4 activity cycles) in all conditions 

(P<0.001; main effect for time).  In all conditions the greatest rise in Tsk occurred within the first 20 minutes 

of activity (ranging from 1.15 °C to 1.93 °C), with a gradual incline thereafter.  However, the magnitude of 

rise overall was greatest in 40 °C compared to the 20 °C trials (P<0.001).  In both 20 °C and 40 °C, Tsk was 

lowest with TC when compared to HC and NC during the 3rd activity cycle and values were equivalent to 

those of HC and NC during the 2nd activity cycle.   

                                                                                                                                                                              

In 20 °C, Tsk was lowest overall with TC (vs. 20HC & 20NC  P<0.001; post hoc for condition) this 

was similar to the response in 40 °C, whereby Tsk was lowest in 40TC when compared to both 40HC and 

40NC, (P<0.001; post hoc for condition).  Although, in 40°C after the 3rd cycle of activity (60 minutes) Tsk 

did not vary between conditions and Tsk at the end of each trial was 37.19±0.17 °C 40NC; 37.09±0.15 °C 

40HC; and 36.94±0.18 °C 40TC. 

Condition Cycle 
Time 
(min) 

Core Temperature at 20°C Core Temperature at 40°C 

TcP Tre Tau TcP Tre Tau  

NC 
 

B1 PRE 37.15±0.13 37.06±0.09 36.11±0.45 37.22±0.11 37.10±0.09 36.25±0.32 

1 20 36.97±0.11 36.94±0.14 36.19±0.30 37.09±0.15 36.97±0.09 36.55±0.26 

2 40 37.04±0.15 36.95±0.12 36.34±0.28 37.19±0.24 37.06±0.17 36.84±0.31 

3 60 37.13±0.16 37.01±0.23 36.42±0.35 37.46±0.22 37.32±0.17 37.07±0.30 

4 80 37.19±0.21 37.09±0.28 36.46±0.35 37.80±0.15 37.59±0.22 37.38±0.28 

HC 

B1 PRE 37.24±0.19 37.23±0.22 36.31±0.48 37.04±0.14 37.01±0.14 36.00±0.33 

1 20 37.06±0.12 37.04±0.21 36.27±0.31 36.90±0.07 36.90±0.10 36.15±0.28 

2 40 37.09±0.10 37.01±0.16 36.41±0.30 37.08±0.10 37.01±0.11 36.41±0.26 

3 60 37.18±0.19 37.09±0.21 36.53±0.30 37.33±0.05 37.20±0.10 36.69±0.21 

4 80 37.22±0.23 37.20±0.28 36.63±0.30 37.70±0.31 37.49±0.16 37.05±0.22 

TC 

B2 PRE 37.05±0.11 37.00±0.05 36.10±0.40 37.14±0.11 37.22±0.22 36.35±0.24 

1 20 36.95±0.11 36.81±0.17 36.13±0.33 37.03±0.23 37.15±0.15 36.65±0.12 

2 40 36.92±0.10 36.86±0.30 36.25±0.27 37.18±0.28 37.15±0.18 36.91±0.13 

3 60 36.97±0.21 36.93±0.25 36.34±0.27 37.41±0.05 37.31±0.22 37.05±0.14 

4 80 37.00±0.21 37.04±0.27 36.38±0.28 37.65±0.27 37.58±0.26 37.28±0.16 
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Figure 4. 3: Mean Skin temperature (Tsk; °C; mean±SD; n=6).  Significant main effects for condition, time, and condition x time, (P<0.001).  80 minutes of explosives ordnance disposal 
related activity in 20 °C and 40 °C. (TC=torso cooling; HC = head cooling; NC = no cooling). 

20NC vs. 20HC = NS 
20NC vs. 20TC = P<0.001 
20TC vs. 20HC = P <0.001 

40NC vs. 40HC = NS 
40NC vs. 40TC = P<0.001 
40TC vs. 40HC = P <0.001 
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4.2.3 SKIN TEMPERATURES 
 

Temperature (PCM, upper arm, thigh and calf; °C; Table 4.2) increased over the 80 minute activity 

duration with the magnitude of rise being greatest in the 40 °C vs. 20 °C (P<0.001; main effect for time) and 

varied between conditions (P<0.001).  At 20 °C, upper arm and thigh temperatures were lowest with TC 

when compared to both HC (P≤0.05) and NC (P<0.001) conditions.  Calf temperatures did not vary between 

conditions.  At 40 °C, upper arm, thigh and calf temperatures were lowest with HC when compared to TC 

(P<0.001) and NC (P<0.001; upper arm only).  The rise in PCM temperature over the 80 minute duration 

was greatest with 20HC (≈6 °C) when compared to 20TC (≈3 °C), and greatest with 40HC (≈9.5 °C) when 

compared to 40TC (≈8 °C).   

 

Table 4. 2: Temperatures (°C) recorded at baseline (B2; -5 minutes prior to trial start; equating to 10 minutes of wearing the 
PCM; responses were taken before entering the experimental chamber), and end of trial (Cycle 4; 80 minutes). Significant main 
effects for time, condition, condition x time, (P<0.001; all variables). 
 

Condition Cycle 
Time 
(min) 

Temperature Variable (°C) 

 PCM   Upper   
Arm 

Medial 
Thigh 

Lateral 
Calf  

20NC 
B2 -5   32.45±0.52 32.51±0.57 32.89±0.33

4 80   35.67±0.48 35.35±0.37 35.68±0.44

20HC 
B2 -5 26.86±0.85 32.02±1.08 32.04±1.26 32.53±0.71

4 80 32.94±2.26 36.04±0.44 35.28±0.64 35.73±0.47

20TC 
B2 -5 24.12±1.02 32.14±0.61 32.12±0.79 32.44±0.39

4 80 27.75±2.66 35.54±0.25 35.02±0.44 35.74±0.38

40NC 
B2 -5   33.00±0.88 32.36±0.96 33.06±0.70

4 80   37.30±0.15 37.25±0.18 37.16±0.16

40HC 
B2 -5 27.22±1.76 32.84±0.61 32.64±0.70 33.36±0.77

4 80 36.82±0.17 36.71±1.13 37.10±0.20 37.16±0.21

40TC 
B2 -5 25.89±0.40 33.03±0.32 33.20±0.31 33.49±0.49

4 80 33.78±0.75 37.27±0.13 37.20±0.12 37.19±0.30
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4.2.4 CHEST TEMPERATURES 
 

Tc (Figure 4.4) increased in all conditions, with the magnitude of rise being 

greatest during the 40 °C trials compared to the 20 °C trials, (P<0.001).  In both 20 °C 

and 40 °C conditions, chest temperature was lowest with TC by >1 °C when compared 

to HC and NC (P<0.001; main effect for condition).  However, at 40 °C this was less 

evident after the 3rd cycle (60 minutes) with the end of trial temperatures being; 

36.98±0.35 °C NC; 36.87±0.47 °C HC; and TC; 36.28±0.46 °C.  At 20 °C chest 

temperature increased over the 80 minute trial by 2.41 °C with TC, 3.81 °C with  NC, 

followed by and 4.32 °C with HC, of which the majority of the increase occurred 

during the first two cycles of activity (85 % NC; 82 % HC; 54 % TC).  At 40 °C the 

increase overall was greatest with NC (4.41 °C) followed by HC (4.33 °C) and TC 

(3.49 °C), of which the majority of the increase occurred during the first 40 minutes of 

activity, (89 % HC; 86 % NC; 59 % TC).  
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Figure 4. 4: Chest temperature (Tc; °C; means±SD; n=6).  Significant main effects for condition, time, and condition x time, (P<0.001).  80 minutes of explosives ordnance related activity in 
20 °C and 40 °C. (TC=torso cooling; HC=head cooling; NC=no cooling). 

40NC vs. 40HC = NS 
40NC vs. 40TC = P<0.001 
40TC vs. 40HC = P<0.001 

20NC vs. 20HC = NS 
20NC vs. 20TC = P<0.001 
20TC vs. 20HC = P <0.001 
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4.2.5 FOREHEAD TEMPERATURES 
 

Tf (Figure 4.5) increased in all conditions, with the magnitude of rise being greatest during the 40 °C 

trials compared to the 20 °C trials, (P<0.001; main effect for condition).  In both 20 °C and 40 °C 

conditions, after cycle 1 (20 minutes), Tf was ≈1.0°C lower in HC compared to TC and NC, (P<0.001).  

Within the 20 °C conditions, Tf was the lowest during 20HC, (P<0.001 vs. 20TC and 20NC) which was 

evident throughout the trial with end of trial temperatures of 35.10±0.50 °C (20HC), 35.72±0.17 °C (20TC), 

and 35.97±0.44 °C (20NC). At 40 °C, HC maintained the lowest Tf throughout the 80 minute trial (P<0.001 

vs. 40TC and 40NC) however at the end of the forth cycle there was no significant difference between 40HC 

(36.99±0.17 °C), and 40TC (37.12±0.11 °C).  
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Figure 4. 5: Forehead temperature (Tf; °C; mean±SD; n=6).  Significant main effects for condition, time, and condition x time, (P<0.05).  80 minutes of explosives ordnance disposal related 
activity in 20 °C and 40 °C. (TC=torso cooling; HC = head cooling; NC = no cooling). 

20NC vs. 20HC = P<0.001 
20NC vs. 20TC = P<0.001 
20TC vs. 20HC = P <0.001 

40NC vs. 40HC = P<0.001 
40NC vs. 40TC = NS 
40TC vs. 40HC = P<0.001 
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4.3 HEAT STORAGE 

 

Heat storage (HS; J·g-1; Figure. 4.6) was greater at 40 °C compared to 20 °C, 

(P<0.001; post hoc for condition).  Heat storage was lowest throughout the 20 °C trials with 

TC, compared to HC and NC (P<0.001; post hoc for condition), the difference between TC 

and NC was no longer evident during the fourth activity cycle (after 60 minutes).  Heat 

storage at the end of the 80 minutes of activity was 3.16 J·g-1 with HC; 2.59 J·g-1 with 20NC; 

and 2.51 J·g-1 with 20TC). 

 

Within the 40 °C trials, heat storage increased significantly between cycles in all 

conditions (P<0.001; post hoc for cycle).  The heat storage during 40TC was significantly 

lower than that found during 40HC and 40NC (P<0.001; post hoc for condition).  The rise in 

heat storage was approximately twice as great during the first 40 minutes of activity, 

compared to the last 40 minutes of activity, (40TC 2.88 J·g-1 vs. 1.00 J·g-1; 40NC 3.20 vs. 

0.89 J·g-1; and 40HC 3.25 vs. 0.73 J·g-1).   
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Figure 4. 6: Heat Storage (J·g-1; mean±SD; n=6).  Significant main effects for condition, time, and condition x time, (P<0.001).  80 minutes of explosives ordnance disposal related activity in 
20 °C and 40 °C. (TC=torso cooling; HC = head cooling; NC = no cooling). 

20NC vs. 20HC = P<0.001 
20NC vs. 20TC = P<0.001 
20TC vs. 20HC = P <0.001 

40NC vs. 40HC = NS 
40NC vs. 40TC = P<0.001 
40TC vs. 40HC = P<0.001 
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4.4 SWEAT RATE  

 

Sweat rate ( RS  ; L·hr-1; Figure 4.7) in the 40 °C trials was approximately double that 

during the 20 °C trials, (P<0.005).  TC produced the largest inter-individual difference 

(Figure 4.6) in SR compared to HC and NC, both at 20 °C (±0.112 L·hr-1) and 40 °C (±0.181 

L·hr-1). 

 

 

Figure 4. 7: Sweat Rate ( RS  ; L·hr-1; mean (SD); n=6).  Significant main effect for condition, (P<0.001).  80 
minutes of explosives ordnance disposal related activity in 20 °C and 40 °C. (TC = torso cooling; HC = head 
cooling; NC = no cooling). 
 

NS 

NS

P<0.005 
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4.5 PHYSIOLOGICAL STRAIN INDEX 

 

There was an overall increase in the physiological strain index (PhSI; Figure 4:8) 

throughout the 80 minute trial duration (4 activity cycles) in all conditions except 20TC with 

the magnitude of rise being greatest in 40 °C when compared to 20 °C, (P<0.001).  PhSI 

values calculated at the end of each trial at 40 °C (NC 3.46±0.36; HC 3.37±1.09; TC 

3.12±0.70), were twice as high as the PhSI calculated at the end of each trial at 20 °C, (NC 

1.22±0.63; HC 1.05±0.65; TC 0.69±0.68).  

 

In all conditions and within each cycle (20 minutes of activity) there are peaks and 

troughs relative to the changes in workload, whereby the PhSI is lower during the final 

station of activity (SWM test with physical seated rest), and higher during the 1st and 5th 

(treadmill walking and arm ergometry) stations of activity, predominately due to fluctuations 

in HR (see section 3.6.4 for the PhSI calculation).   

 

In 20 °C, PhSI was found to be lowest within 20TC (P<0.001; post hoc for condition, 

cycle) when compared to 20HC and 20NC which were no different to each other.  There was 

a significant increase in PhSI within the 20HC and 20NC trials between B2 and 80 minutes of 

activity (P≤0.01; post hoc for time), thus emphasising further that the least physiological 

strain was experienced during 20TC. 

 

In 40 °C, although PhSI did not significantly vary between conditions; after 40 

minutes of activity, PhSI tended to be lowest with 40HC than 40NC and 40TC (≈0.3 units) 

with no change from the value calculated at the first activity station of the first cycle. 
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Figure 4. 1: Physiological strain index (PhSI; mean±SD; n=6).  Significant main effects for condition, time, and condition x time, (P<0.001).  80 minutes of explosives ordnance disposal 
related activity in 20 °C and 40 °C. (TC=torso Cooling; HC = head Cooling; NC = no cooling). 

40NC vs. 40HC = NS 
40NC vs. 40TC = NS 
40TC vs. 40HC = NS 

20NC vs. 20HC = NS 
20NC vs. 20TC = P<0.001 
20TC vs. 20HC = P<0.001 
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4.6 PERCEPTUAL AND COGNITIVE RESPONSES  

 

4.6.1 PERCEIVED EXERTION  
 

 Perceived exertion (RPE; Table 4.3) was greatest at the end of the 40 °C trials when 

compared to the 20 °C trials, (P<0.01).  RPE increased at a greater rate during the NC trials 

when compared to the cooling trials (HC and TC).  The greatest RPE mean values were given 

in response to ‘overall’ and ‘upper back and shoulders’ questions when compared to ‘lower 

back’ and ‘legs’.  The overall RPE was greatest in 40NC when compared to both 40HC and 

40TC, within the arm ergometry (5th) station of the 4th cycle.  

 

4.6.2 THERMAL SENSATION  
 

The greatest differences in thermal sensation (ThS; Table 4.4) response were between 

the 20 °C conditions.  At 20 °C, the responses were lowest during TC in response to ThS 

‘overall’ (P<0.001 vs. NC and P<0.05 vs. HC) and ThS ‘back’ (P<0.01 vs. NC).   As 

expected, ThS in response to ‘chest and arms,’ was lowest with the TC condition at both 20 °C 

and 40 °C (P<0.001 vs. NC).  At 20 °C, ThS in response to ‘head’ was lower within both 

cooling conditions (TC and HC) than with no cooling (P<0.001 vs. NC) and at 40 °C, when 

compared to NC, both HC (P<0.001) and TC (P=0.006) had lower ThS ‘head’ responses.  

 

4:6:3 THERMAL COMFORT 
 

Thermal Comfort (ThC; Table 4.5) responses given to ‘overall,’ at 20 °C were lowest 

with TC when compared to NC (P≤0.05), and at 40 °C, both cooling conditions (HC and TC) 

produced lower ThC responses for ‘overall,’ when compared to NC (P≤0.05).  By the 4th 
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activity cycle, during NC, the groin (20 °C) and the chest & arms (40 °C) were perceived to 

be 7.7±0.5 which was associated with the verbal anchor, ‘uncomfortably hot’.  

By the 4th activity cycle, at both 20 °C and 40 °C, TC resulted in the lowest responses 

when compared to HC in response to all body segments.     
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Table 4. 3: RPE (mean±SD) responses (n=6) for ‘overall,’ ‘upper back and shoulders,’ ‘lower back,’ and ‘legs,’ during the 
treadmill (1st) and arm ergometry (5th) stations of the 1st and 4th cycles of activity, within all conditions (20TC, 20HC, 20NC; 
40TC, 40HC, 40NC).  Main effects for condition, cycle, condition*cycle are annotated as; ***P<0.001.  Differences in RPE 
within each condition were located by Tukey post hoc tests between cycles 1 and 4 of the relative activity stations and are 
annotated as; ###P<0.001, ##P<0.01, #P<0.05.  

Condition Cycle Station RPE 

      

O
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ll*

**
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p
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k*
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L
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**

 

20NC 

1 
Treadmill 10.0±0.9 10.3±1.4 10.0±0.9 9.8±1.0 

Arm 10.7±1.4 11.3±1.4 9.8±1.0 9.8±1.0 

4 
Treadmill 12.2±1.9## 11.8±1.7 10.7±1.0 11.2±1.6 

Arm 12.0±1.8 12.2±1.5 11.0±2.0 11.0±1.8 

20HC 

1 
Treadmill 10.0±1.3 10.7±1.0 9.7±1.0 10.0±0.8 

Arm 10.7±1.0 11.2±0.9 10.2±0.9 10.2±0.8 

4 
Treadmill 12.0±0.9## 12.3±1.3 11.3±1.0 11.2±1.0 

Arm 12.0±0.9 12.2±1.4 11.0±0.8 10.7±0.8 

20TC 

1 
Treadmill 9.8±1.0 10.3±1.0 9.7±1.0 9.8±0.8 

Arm 10.7±1.0 11.0±0.9 10.0±0.9 9.8±0.8 

4 
Treadmill 12.0±0.9## 12.0±1.3 11.2±1.0 11.3±1.0 

Arm 12.2±1.5 12.3±1.4 11.2±0.8 11.2±0.8 

40NC 

1 
Treadmill 9.8±1.0 10.3±1.5 9.7±1.2 10.0±0.9 

Arm 10.7±1.6 11.2±1.5 9.8±1.0 10.0±0.9 

4 
Treadmill 14.2±1.5### 14.2±1.9### 12.8±1.5### 12.3±1.2### 

Arm 14.5±1.5### 14.7±1.9### 13.0±1.4### 12.7±1.2### 

40HC 

1 
Treadmill 10.8±1.1 11.2±1.1 10.0±1.0 10.4±0.9 

Arm 11.0±1.3 11.3±1.4 9.8±1.0 10.0±1.3 

4 
Treadmill 13.2±1.2### 13.0±0.9## 11.5±0.5 11.8±0.4 

Arm 13.5±1.2## 13.7±1.4## 12.0±0.9### 11.8±0.8# 

40TC 

1 
Treadmill 10.3±1.0 11.0±1.3 10.2±0.9 10.0±0.9 

Arm 11.0±1.8 11.8±1.5 10.2±1.0 9.8±1.0 

4 
Treadmill 13.3±1.4### 13.2±1.7## 12.2±1.0## 11.8±1.5# 

Arm 13.5±1.5### 13.3±2.1 11.8±2.0 11.2±1.9 
# 
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Table 4. 4: ThS (mean±SD) responses (n=6) for ‘overall,’ ‘head,’ ‘back,’ ‘chest & arms,’ ‘groin,’ and ‘legs,’ during the treadmill 
(1st) and arm ergometry (5th) stations of the 1st and 4th cycles of activity, within all conditions (20TC, 20HC, 20NC; 40TC, 
40HC, 40NC).  Main effects for condition, cycle, condition*cycle are annotated as; ***P<0.001.  Differences in TS within each 
condition were located by Tukey post hoc tests between cycles 1 and 4 of the relative activity stations and are annotated as; 
###P<0.001, ##P<0.01, #P<0.05.  

Condition Cycle Station Thermal sensation 
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20NC 

1 
Treadmill 4.2±0.4 4.2±0.4 3.7±0.5 4.2±0.4 4.2±0.4 4.0±0.0 

Arm 4.5±0.5 4.5±0.5 4.0±0.0 4.7±0.5 4.5±0.5 4.5±0.5 

4 
Treadmill 5.5±0.8# 5.3±0.8 5.3±1.0## 5.7±0.5# 5.8±1.0### 5.8±1.0### 

Arm 5.5±0.8 5.8±1.0# 5.5±0.8# 5.7±0.5 5.8±1.0## 5.8±1.0## 

20HC 

1 
Treadmill 4.0±0.0 3.5±0.5 3.8±0.4 4.0±0.0 4.0±0.0 4.0±0.0 

Arm 4.0±0.0 3.5±0.5 3.8±0.4 4.0±0.0 4.2±0.4 4.2±0.4 

4 
Treadmill 5.3±0.5# 4.8±0.4# 5.3±0.5# 5.3±0.5# 5.7±0.5### 5.3±0.8## 

Arm 5.2±0.4 5.2±0.4### 5.3±0.5# 5.7±0.5## 5.5±0.5## 5.2±0.8 

20TC 

1 
Treadmill 4.7±0.5 4.0±0.0 3.0±0.6 3.2±0.8 4.0±0.0 3.8±0.4 

Arm 3.8±0.4 4.0±0.0 3.5±0.5 3.5±0.5 4.0±0.0 4.0±0.6 

4 
Treadmill 4.8±0.4 4.8±0.8 4.7±0.5## 4.7±0.5## 5.0±0.9 5.0±0.6 

Arm 5.0±0.6 5.0±0.6 4.8±0.8 5.0±0.6## 5.3±0.8## 5.5±1.0### 

40NC 

1 
Treadmill 5.0±0.6 5.0±0.6 4.7±0.5 4.7±0.5 4.8±0.8 4.5±0.5 

Arm 5.3±0.8 5.2±0.8 5.3±0.8 5.7±0.5 5.2±0.8 5.3±0.8 

4 
Treadmill 7.0±0.6### 6.7±0.8### 7.0±1.1### 7.2±0.8### 7.0±0.6### 7.0±0.6### 

Arm 7.0±0.6### 7.0±0.6### 7.0±0.6# 7.2±0.8## 7.0±0.6### 6.8±0.8### 

40HC 

1 
Treadmill 4.5±0.5 3.8±0.8 4.0±0.0 4.5±0.5 4.7±0.5 4.3±0.5 

Arm 5.2±0.8 4.5±0.5 5.2±0.8 5.3±0.5 4.8±0.8 4.7±0.8 

4 
Treadmill 7.0±0.6### 6.7±1.0### 6.7±1.0### 7.0±0.6### 7.0±0.6### 7.0±0.6### 

Arm 7.2±0.4### 6.8±0.8### 7.0±0.6### 7.2±0.4### 7.2±0.4### 7.0±0.6### 

40TC 

1 
Treadmill 4.7±0.5 4.7±0.5 3.8±0.8 3.8±0.4 4.5±0.5 4.3±0.5 

Arm 5.2±0.8 5.0±0.0 4.3±0.5 4.5±0.8 5.0±0.6 5.0±0.6 

4 
Treadmill 6.8±0.4### 6.5±0.5### 6.3±0.8### 6.5±0.8### 6.8±0.4### 6.7±0.5### 

Arm 6.8±0.4### 6.7±0.5### 6.7±0.8### 6.8±0.4### 7.0±0.6### 6.8±0.8### 
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Table 4. 5: ThC (mean±SD) responses (n=6) for ‘overall,’ ‘head,’ ‘back,’ ‘chest & arms,’ ‘groin,’ and ‘legs,’ during the treadmill 
(1st) and arm ergometry (5th) stations of the 1st and 4th cycles of activity, within all conditions (20TC, 20HC, 20NC; 40TC, 
40HC, 40NC).  Main effects for condition, cycle, condition*cycle are annotated as; ***P<0.001.  Differences in TS within each 
condition were located by Tukey post hoc tests between cycles 1 and 4 of the relative activity stations and are annotated as; 
###P<0.001, ##P<0.01, #P<0.05.  

Condition Cycle Station Thermal Comfort 
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20NC 

1 
Treadmill 4.0±0.0 4.0±0.0 4.0±0.0 4.0±0.0 4.0±0.0 4.0±0.0 

Arm 4.2±0.4 4.0±0.0 4.0±0.0 4.3±0.5 4.2±0.4 4.2±0.4 

4 
Treadmill 5.3±1.0# 5.2±1.0 5.3±1.0 5.5±0.8 5.7±1.0### 5.7±1.0### 

Arm 5.5±0.8# 5.5±1.0# 5.3±1.0 5.5±0.8# 5.7±1.0### 5.8±0.8### 

20HC 

1 
Treadmill 4.0±0.0 3.8±0.4 4.0±0.0 4.0±0.0 4.0±0.0 4.0±0.0 

Arm 4.2±0.4 3.8±0.4 3.8±0.4 4.2±0.4 4.2±0.4 4.2±0.4 

4 
Treadmill 5.2±0.8# 4.7±0.8 5.0±0.6 5.0±0.6 5.2±0.4## 5.0±0.6 

Arm 5.2±0.8# 4.8±0.8# 5.3±0.8 5.5±0.8# 5.3±0.5## 5.2±0.8 

20TC 

1 
Treadmill 4.0±0.0 4.0±0.0 3.7±0.5 3.5±0.8 4.2±0.4 3.8±0.4 

Arm 4.0±0.0 4.0±0.0 3.8±0.4 3.7±0.5 4.0±0.0 4.0±0.0 

4 
Treadmill 4.8±0.8 4.8±0.8 4.5±0.5 4.5±0.5 4.8±1.0 5.0±0.9 

Arm 5.0±0.9# 4.8±0.8 4.8±0.8 4.8±0.8# 5.2±1.0## 5.2±1.0### 

40NC 

1 
Treadmill 4.3±0.5 4.5±0.5 4.5±0.5 4.3±0.5 4.2±0.4 4.2±0.4 

Arm 5.2±0.8 5.3±0.8 5.8±1.0 5.8±0.4 5.2±0.8 4.8±1.0 

4 
Treadmill 7.0±0.6### 7.0±0.6### 7.2±0.8### 7.3±0.8### 7.0±0.6### 6.8±0.8### 

Arm 7.5±0.5### 7.5±0.5### 7.3±0.5### 7.7±0.5### 7.5±0.5### 7.5±0.5### 

40HC 

1 
Treadmill 4.0±0.0 3.5±0.5 4.0±0.0 4.2±0.4 4.2±0.4 4.0±0.6 

Arm 5.2±0.8 4.7±0.8 5.2±0.8 5.2±0.8 4.8±0.8 4.5±0.8 

4 
Treadmill 7.0±0.6### 6.7±1.0### 6.7±1.0### 7.0±0.6### 7.0±0.6### 7.0±0.6### 

Arm 7.2±0.4### 6.8±0.8### 7.0±0.6### 7.2±0.4### 7.2±0.4### 7.0±0.6### 

40TC 

1 
Treadmill 4.0±0.0 4.0±0.0 3.8±0.4 3.7±0.5 4.2±0.4 4.0±0.0 

Arm 5.0±0.0 5.0±0.0 4.3±0.5 4.3±0.5 4.8±0.4 5.0±0.6 

4 
Treadmill 6.8±0.4### 6.5±0.8### 6.2±1.2### 6.7±0.5### 6.8±0.4### 6.7±0.5### 

Arm 6.8±0.4### 6.7±0.5### 6.7±0.8### 6.8±0.4### 7.0±0.6### 6.8±0.8### 
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4.6.4 PERCEPTUAL STRAIN INDEX 
 

The perceptual strain index (PeSI; Figure 4.9) increased throughout the 80 minute period and the rate 

of rise in PeSI was greatest in 40 compared to 20 °C (P<0.001; main effect for time, condition).  At 20 °C, 

perceptual strain was lowest in the TC condition (P<0.001 vs. NC).  At 40°C perceptual strain was lowest in 

the TC and HC conditions during the 2nd and 3rd cycles of activity, when compared to NC.  However, by the 

5th station (arm ergometry) of the forth activity cycle, within 20 °C (6) and also within 40 °C (8) PeSI was 

the same regardless of the condition (HC/TC/NC). 

 

4.6.5 SPATIAL WORKING MEMORY (SWM) TEST 
 

Individual differences in cognition (SWM; Table 4.6) were found within strategy, test duration and 

total errors (P<0.001; main effect for participant).  The total number of errors made by the participants were 

directly proportional to the test difficulty (number of boxes displayed).  Less than 6 % of the total errors 

made were attributed to working with 4 boxes and >64 % of the total errors made were attributed to working 

with 8 boxes.   

 

Time taken to complete the SWM test decreased from cycle 1 to cycle 4 for all conditions except 

20NC (P=0.017; main effect for cycle).  The greatest decrease in test duration between cycle 1 and 4 was 

with 40HC (minus 0.41 min) and 40NC (minus 0.35 min).  The SWM test took the least time to complete 

within 20NC (4.69±0.32 min; cycle 1) and longest to complete during 40HC (5.24±0.76 min; cycle 1) and 

40NC (5.22±0.62 min; cycle 1).   
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Figure 4. 2: PeSI (mean±SD) responses (n=6).  Significant main effects for condition, time, and condition x time, (P<0.001).  Six experimental trials (20TC; 20HC; 20NC; 40TC; 40HC; 
40NC), with a trial duration of 80 minutes. SD error bars are omitted for clarity. 
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Table 4. 6: Spatial working memory results (mean±SD; n=6) for strategy, test duration (min), total errors and percentage of total errors for 4, 6 and 8 boxes, for cycles 1 and 4 only, within all 
conditions (20TC, 20HC, 20NC; 40TC, 40HC, 40NC).  Main effect for cycle is annotated as **P=0.017.   
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Condition Cycle Spatial Working Memory 

    

Strategy Duration** Total Errors 
% of Total 

Errors (4 Boxes)
% of Total 

Errors (6 Boxes) 
% of Total 

Errors (8 Boxes) 

20NC 
1 27.6±6.8 4.69±0.32 6.2±13.9 0 16 84 

4 29.0±6.5 4.92±0.51 8.2±13.4 0 20 80 

20HC 
1 29.2±6.9 5.01±0.63 8.0±14.5 0 17 83 
4 29.0±7.3 4.86±0.73 5.7±9.4 0 32 68 

20TC 
1 29.8±6.6 5.15±0.63 7.2±7.4 2 16 81 
4 29.7±7.6 5.00±0.80 9.3±20.5 0 36 64 

40NC 
1 27.8±5.8 5.22±0.62 5.8±8.9 0 20 80 

4 28.5±6.0 4.87±0.41 6.8±9.2 5 12 83 

40HC 
1 28.2±6.9 5.24±0.76 7.2±16.1 0 16 84 
4 28.2±6.4 4.83±0.50 5.8±9.7 6 11 83 

40TC 
1 29.5±6.1 4.97±0.52 5.5±10.6 0 36 64 
4 28.3±5.2 4.85±0.54 4.0±7.1 0 21 79 
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4.7 CARDIOVASCULAR RESPONSE TO STANDING (BP AND HR) 

 

4.7.1 RESPONSE AT BASELINE (WITHOUT THE SUIT) 
 

At baseline (20 °C, ≈1 hour prior to trial), blood mean arterial pressure (BP; mmHg; Figure 4.10 & 

4.12) initially ranged from 87±5 to 96±4mmHg (pre-stand).  Post-stand; MAP declined to a nadir (P<0.001; 

main effect for time) ranging from 55±11 to 63±9mmHg between 3.16±1.31 and 5.64±1.21 seconds, before 

reaching a MAP response, similar to the pre-stand phase, ranging from 85±5 to 95±10 mmHg between 

15.24±2.32 and 20.85±4.35 seconds.   This was followed by recovery pressures (ranging from 80±5 to 

89±13 mmHg) at 25 seconds that ranged from 88±6 to 95±13 % of the initial pre-stand MAP.  

   

At baseline; heart rate (HR; beats·min-1; Figure 4.11 & 4.13) prior to standing (PRE) ranged from 

73±10 to 79±21 beats·min-1.  Once stood heart rate began to rise, peaking (P<0.001; main effect for time) 

from 102±9 to 111±19 beats·min-1 between 9.14±3.50 and 10.53±2.96 seconds into the post-stand recovery 

period (25 seconds) before declining to a recovery rate ranging from 85±14 to 95±21 beats·min-1 between 

6±9 and 28±18 % greater than the pre-stand rate.  There were no significant differences found for either 

MAP or HR response between conditions at baseline.    

 

4.7.2 WITHIN CYCLES (FIGURES 4.10 TO 4.13) 
 

At cycle 1, there was a significant fall in MAP (ranging from minus 29 to minus 39 %) and rise in 

HR (ranging from plus 39 to plus 59 %), from the pre-stand response within all conditions (P<0.001).  MAP 

varied between 20 °C and 40 °C, and within the 20 °C conditions only (P<0.001; main effect for condition).  

MAP was higher within 40TC when compared to 20TC (P<0.01), during the nadir (68±7 vs. 58±11 mmHg), 

peak (94±11 vs. 78±11 mmHg), and recovery phases (81±4 vs. 70±13 mmHg).  At 20°C, MAP was lower 

within 20TC (P<0.01; vs. 20NC), with peak (PK) responses of 78±11 mmHg (TC) vs.  94±11 mmHg (NC).  

MAP did not recover back to that of the pre-stand response within 20TC and 20HC (P≤0.05), with recovery 
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MAPs being only 77±5 % (TC) and 74±14 % (HC) of that found during the pre-stand phase, compared to 

87±5 % during 20NC. 

 

At cycle 4, in all conditions, a nadir in MAP (ranging from minus 7±13 to minus 20±7 %) below the 

pre-standing response (ranging from 72±8 to112±14 mmHg) and a peak in HR (ranging from plus 32±5 to 

plus 53±13 %) greater than the pre-standing rate (66±7 to 83±13 beats·min-1) was found (P<0.001; main 

effect for time).  Recovery MAPs were equivalent to the pre-stand response.  However, at 40°C, the 

recovery HR did not return to that measured during the pre-stand phase (P≤0.05; ranging from plus 22±9 to 

plus 25±8 % of the pre-stand response) remaining greatest at 112±14 beats·min-1. 

 

Within cycle 4, MAP varied between 20 °C and 40 °C, and within the 40 °C conditions only 

(P<0.001; main effect for condition).  MAP was greatest throughout within 40HC (P<0.01; vs 40NC).  

However, MAP was also lowest at cycle 4 within 40NC when compared to 20NC and 20HC (P<0.05).    

 

4.7.3 BETWEEN CYCLES (FIGURES 4.10 TO 4.13) 
 

There were no significant differences in MAP found between activity cycles at 20 °C and 40 °C.  HR 

did not vary between cycles at 20 °C within either condition (20NC, 20HC, 20TC).  At 40 °C, HR response 

throughout cycle 4 was greater than the HR response throughout baseline and cycle 1 (P<0.001), with 

similar peak HRs of 148±12 beats·min-1 (40NC), 148±8 beats·min-1 (40TC) and 140±16 beats·min-1 

(40HC). 
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Figure 4. 3: MAP response (means±SD) to the postural challenge station (kneeling to standing) at 20 °C.  PRE-STAND = mean 
of 10 seconds kneeling before stand; NADIR = lowest response (within 25 seconds) post stand; PK = highest response (within 25 
seconds) post stand; REC = response at 25 seconds post stand. 
 
 
 

 
Figure 4. 4: HR response (means±SD) to the postural challenge station (kneeling to standing) at 20 °C.  PRE-STAND = mean of 
10 seconds kneeling before stand; PK = highest response (within 25 seconds) post stand; REC = response at 25 seconds post 
stand. 
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Figure 4. 5: MAP response (means±SD) to the postural challenge station (kneeling to standing) at 40 °C.  PRE-STAND = mean 
of 10 seconds kneeling before stand; NADIR = lowest response (within 25 seconds) post stand; PK = highest response (within 25 
seconds) post stand; REC = response at 25 seconds post stand. 
 
 
 

 
Figure 4. 6: HR response (means±SD) to the postural challenge station (kneeling to standing) at 40 °C.  PRE-STAND = mean of 
10 seconds kneeling before stand; PK = highest response (within 25 seconds) post stand; REC = response at 25 seconds post 
stand. 
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4.8 RESULTS SUMMARY (TABLE 4.7) 

 

An increase in thermal strain over the 80 minute trial duration was observed in all conditions with 

the greatest increase at 40 °C vs. 20 °C.   

 

At 20 °C, baseline values for the TcP and PhSI during 20TC were preserved throughout each trial.  At 

40 °C, both 40HC and 40TC reduced the physiological strain observed in 40NC.  40TC maintained the 

lowest Tsk for upto 60 minutes of activity (3 cycles) and Tc throughout the 80 minute trial (see Table 4.7). 

 

Indicators of perceptual strain; RPE, ThS, ThC and the conseqent PeSI, also increased over the 80 

minute trial duration in all condtions.  Both cooling conditions (TC and HC) were effective at reducing the 

percieved thermal strain experienced by partciapants, when compared to NC at 20 °C and 40 °C.  The lowest 

ThS and ThC reponses to ‘head,’ were present throughout TC and HC when compared to NC, with TC 

resulting in the lowest ThS and ThC responses to ‘overall,’ ‘chest & arms,’ and ‘back,’ by the 4th cycle of 

activity at both 20 °C and 40 °C, which was, in part, reflective of the physiological responses mentioned 

above. 

 

In relation to the postural challenge station, 20TC resulted in the lowest MAP response post-stand 

(Nadir; PK; REC) throughout cycle 1 when compared to 20NC that was lower than that recorded at baseline.  

MAP did not recover back to pre-stand response in either cooling condition (20HC and 20TC).  HR did not 

recover back to the pre-stand response during cycle 4 at 40 °C in either of the three conditions, although 

MAP did, emphasising further that the greatest cardiovascular strain was present within 40 °C vs. 20 °C.  
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Table 4. 7:  Rankings (scale from 1 = least strain; to 6 = greatest strain) for condition (20NC, 20HC, 20TC, 40NC, 40HC, 40TC) in relation to physiological and perceptual responses at 80 
minutes of explosive ordnance disposal (EOD) activity.  The greatest response at 80 minutes indicates the greatest strain (6). 
 

Strain  Rank  Physiological Variables Perceptual Variables Overall 
     HR  TcP PhSI Tsk Tf Tc  HS PeSI ThC ThS RPE Outcome 

Lowest 
 
 
 
 

Greatest 

1   20TC 20TC 20TC 20TC 20HC 20TC  20TC 20TC 20TC 20TC 20NC=20HC 20TC 
2  20NC 20NC 20HC 20NC 20TC 20NC  20NC 20HC 20HC 20HC 20NC=20HC 20HC=20NC 
3  20HC 20HC 20NC 20HC 20NC 20HC  20HC 20NC 20NC 20NC 20TC 20HC=20NC 
4  40HC 40TC 40TC 40TC 40HC 40TC  40TC 40TC 40TC 40TC 40TC=40HC 40TC 
5  40TC 40HC 40HC 40HC 40TC 40HC  40HC 40HC 40NC 40NC 40TC=40HC 40HC 
6   40NC 40NC 40NC 40NC 40NC 40NC  40NC 40NC 40HC 40HC 40NC 40NC 
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5. DISCUSSION 

 
5.1 PHYSIOLOGICAL STRAIN 

 

All participants (n=6) completed all trials (n=6) in 20 °C and 40 °C.  

Physiological strain as indicated by the PhSI calculation and as hypothesised (section 

1.3) was greater in 40 °C when compared to 20 °C, (Figure 4.9).  This was as a 

consequence of the greater core temperatures (TcP; Figure 4.1) and heart rates (HR; 

Figure 4.8) measured at 40 °C, and relates to findings by Thake et al. (2009c) 

whereby despite the PhSI calculation using a different core temperature site (TcP vs. 

Tre) the PhSI of participants whilst in the 3010 light-weight suit after 66 minutes of 

EOD related activity was more than twice as great at 40 °C when compared to the 

PhSI calculated at 20 °C. 

 

At 20 °C, when considering PhSI it is evident that the physiological response 

to working in the EOD suit was not a cause for concern, which is in agreement with 

findings from the aforementioned study (Thake et al. 2009c).  At this temperature, 

without applied cooling there was only a slight rise in HR (Figure 4.8) and TcP did not 

significantly change over the 80 minutes of activity in either cooling, (TC, HC) or no 

cooling (NC) trials.  TcP during 20TC was significantly lower than within either of the 

HC or NC conditions (Figure 4.1).  This could be related to measurement site 

whereby localised cooling of the torso may have influenced the gastro-intestinal tract 

temperature or simply due to a greater rate of heat removal when the PCM vest was 

worn.  The greater surface area being cooled during TC vs. HC is also likely to result 

in these responses which can be supported by previous research (Nunneley and 

Maldonado 1983) whereby the overall effect of hood and suit cooling combined was 
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the finding of the greatest magnitude of reduction in physiological strain compared to 

hood and suit cooling separately when worn by aircrew members within a simulated 

cockpit heat stress environment. 

 

At 40 °C, there was a significant rise in HR (Figure 4.8) and TcP (Figure 4.1) 

by the end of the each trial (40NC, 40HC, 40TC).  Cooling of the head and torso 

produced the lowest HR and TcP responses when compared to no cooling.  This is in 

contrast to previous research (Carter, et al. 2007), as when cooling was applied with a 

PCM vest (set to melt at 28 °C) under fire-fighter PPC in moderate and hot 

environments, no differences were found in Tsk, and final Tre, vs. a control trial (when 

no cooling vest was worn).  The cooling vest increased the total load by ≈ 3 kg vs. the 

control trial and the duration of the trials in the moderate environment were 

73.17±26.6 min and 88.77±16.7 min for the cooling vest and control trial, 

respectively.  It is possible the extra 3 kg may have caused an increase in the 

metabolic rate and heat production and this could have outweighed any potential 

benefit of the cooling upon reducing core temperature.  In addition, research by House 

et al. (2009) state that higher PCM temperatures can reduce the efficiency of the 

cooling garment and the rate of heat removal and so may explain why no differences 

were found.   

 

Other research supports the findings of the current study and have found HRs 

to be reduced with head cooling and then again with torso cooling vs. a control trial 

when worn during simulated cockpit heat stress. Although this difference was found 

with liquid-conditioned garments and not PCM (Nunneley and Maldonado 1983) and 
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to the authors knowledge the current study is the first study to find a reduction in TcP 

during exercise in response to PCM cooling when worn beneath PPC in the heat. 

 

Thus, cooling with PCM at 40 °C using either cooling garment would be 

physiologically beneficial to operatives working at similar work rates for up to 80 

minutes in a hot environment, although the majority of benefit was observed within 

the first hour.  This can be attributed to the majority of cooling benefit being present 

at the point at which the PCM changes phase and begins to melt (House et al. 2009).  

Thus, after 60 minutes, the slower rate of heat removal at this stage would have 

resulted in the greater rise in TcP (Figure 4.2) found during the final cycle.  Thus, 

cooling the torso during the first 60 minutes of activity can be perceived as beneficial 

to the operative with regard to delaying the potential rise in core temperature, within 

both moderate and hot environments.     

 

5.1.1 PHYSIOLOGICAL RESPONSES AT 20 °C AND 40 °C WITHOUT PCM 

 

The physiological differences found between 20NC and 40NC can be partly 

attributed to the direction of heat transfer (between the skin and ambient air) with the 

contribution of air flow from the internal fan either hindering (at 40 °C) or enhancing 

(at 20 °C) the cooling down process depending upon the environmental temperature.   

High ambient temperatures (40 °C; greater than skin temperature) will have been 

detected by thermal receptors in the skin (Arens and Zhang, 2006), and will have 

reacted accordingly by increasing vasodilatation (by neural release of sympathetic 

cutaneous vasoconstrictor tone) and blood flow to the periphery, initiating localised 
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sweating.  This would have allowed for better heat exchange throughout the body by 

convective and conductive pathways, which in turn will have become 

counterproductive at 40 °C due to the increased blood flow increasing the rate of heat 

gained by the body (Passlick-Deetjen and Bedenbender-Stoll 2005; Arens and Zhang, 

2006).   

 

The magnitude of rise in HR was greatest in the hotter environment (20 °C vs. 

40 °C; Figure 4.8), which would have occurred in order to meet the greater demand 

for skin blood flow (SkBF) required for cooling, (Gonzalez-Alonso et al. 1998).  HR 

(station 1, cycle 1 vs. station 1, cycle 4) increased by ≈3 beats·min-1 at 20 °C and by 

≈22 beats·min-1 at 40 °C.  The difference in the magnitude of rise in HR between 

moderate and hot environments has been demonstrated in other studies by Faerevik 

and Reinertsen 2004 (23°C vs. 40°C) and Thake, et al. 2009b (20°C vs. 40°C), in 

response to exercise in PPC, and together serve to emphasise the effects of ambient 

temperature on physiological and cardiovascular strain.   

 

However, HR in relation to the other stations at 20 °C and 40 °C, peaked per 

cycle; at station 1 (treadmill) and station 5 (arm ergometry) and was lowest at station 

6 (SWM test and physical seated rest) regardless of environmental temperature.  The 

work rate was standardised for each station and thus this highlights that the 1st, and 5th 

stations were the most physically demanding.  This trend is very similar to that found 

within the study by Thake and Price (2007) whereby work rates were not standardised 

yet HR still peaked during the walking, crawl and search and arm ergometry stations 

and was lowest during the seated psychological testing which places further emphasis 



98 
 

that stations 1 and station 5 were the most physically demanding, and a greater blood 

flow was required in order to meet the demand for oxygen supply to the muscles. 

 

The rate of sweat lost at 40 °C (≈4l·hr-1) was more than double that compared 

to 20 °C (≈1.5l·hr-1; Figure 4.6).  The stated differences were most likely due to the 

earlier initiation of an increased SkBF and localised sweating, as a result of greater 

skin and core temperatures found at 40 °C (Arens and Zhang 2006).  The increased 

sweat that will have accumulated in the microenvironment will have increased the 

humidity leading to a reduced evaporative capacity and an increase in skin wettedness 

which would consequently result in a reduced evaporative efficiency (McLellan, et al. 

1996).  In support of the latter, the t-shirt worn beneath the EOD suit became 

saturated in sweat, and was stuck to the skin, which will have limited the convective 

air flow beneath the t-shirt.  The saturated t-shirt was evident at the end of each trial 

once the vest and suit were removed, particularly within the 40 °C trials. 

 

There was a greater rate of increase in Tsk present during the 40NC condition 

when compared to the 20NC condition.  Reasons for this are related to there being 

fewer avenues for heat loss at 40 °C vs. 20 °C.  At 20 °C, the main source of heat gain 

was through metabolic heat production, with heat loss (by convection and 

evaporation) aided by the ambient air flow in to the suit, (Benzinger 1959).  At 40 °C, 

in addition to the metabolic heat production, the suit that was worn would have also 

heated up over time, and the air temperature between the suit and the clothing layer 

will have been greater than that at 20 °C, due to the fan blowing ambient air into the 

suit, leading to heat gain by convective and conductive pathways.  These differences 

help to explain why Tsk and heat storage were greatest at 40 °C vs. 20 °C. 
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Gastrointestinal pill temperature (TcP; °C) declined from the initiation of 

exercise to the end of the first cycle at both 20 °C and 40 °C (Figure 4.1).  This 

reduction was expected due to the mixing of blood from the cooler periphery with 

blood from the core, combined with a redistribution of flow to the working muscles at 

the onset of exercise (Ho, Beard, Farrell, et al. 1997).  It is likely however that the 

measured decrease (minus 0.02 °C to minus 0.09 °C) could be due to error as the 

accuracy of the instrument was stated to be ± 0.1 °C (HQ, Inc., n. d.).  After 40 

minutes the rate of increase was much greater within 40 °C than 20 °C, as a 

consequence of a hotter skin surface temperature and a reduced thermal gradient 

between the skin and core.   

 

In summary, and in relation to the previously stated hypothesis (section 1.3) 

the data support the hypothesis in that it was expected that conducting such physical 

work within a light-weight EOD suit would produce greater physiological strain at 40 

°C when compared to 20 °C.  Core temperatures remained well within the safety cut 

off limits (section 3.8) and there was a greater strain present within a hotter working 

environment (40 °C).  The greater heat stress, such as, the higher ambient temperature 

of 40 °C, lead to a greater strain on the cardiovascular system represented by an 

increase in HR which resulted in an increase in Tsk and heat storage, consequently 

leading to an increase in TcP over time. 

 

 

 

 



100 
 

5.1.2 PHYSIOLOGICAL RESPONSES TO 20HC AND 20TC 

 

Torso cooling resulted in a lower HR than head cooling (Figure 4.8).  The HR 

peaks were ‘dampened,’ by ≈10 beats·min-1 as a result of TC when comparing the 1st 

station (treadmill) of each cycle to that during 20HC.  Considering the relationship 

between HR and Tre is shown to be linear (Gonzalex-Alonso, et al. 1999), a lower TcP 

during TC when compared to HC may be the reason for the ‘dampened,’ HR peaks, 

reflecting how cooling the torso meant there was less of a demand for SkBF, resulting 

in a lower HR required to maintain Q when compared to work done during the HC 

trials.  

 

Cabanac and Capatua (1979b) stated the idea that brain temperature is 

reflected by tympanic (Tty) temperature, and that the HR response is altered by 

changes in brain temperature (by central control of blood flow through the 

hypothalamus).  Therefore, if this was the case it would help to further explain the 

greater HRs found with HC when compared to TC, as Tau was greater with HC 

(P<0.001; Table 4.1), which could imply there was greater brain temperature that 

initiated an increase in HR through central control.  In support of this, TcP was also 

greater with HC (P<0.001; Figure 4.1), which further supports the idea of a linear 

relationship between Tre and HR (Gonzalex-Alonso, et al. 1999).   

 

In addition, the greater proportion of body surface area (BSA) cooled during 

TC vs. HC could have meant mixing of a greater volume of cooled blood from the 

chest and back, than from the head, which would have resulted in a relative increase 
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in the core to skin thermal gradient, aiding conductive and convective heat loss, 

increasing the heat storage capacity, and reducing the rate of heat stored (Figure 4.5). 

 

Cooling of the torso resulted in a lower Tsk throughout the 80 minute trial 

duration, when compared to the 20HC and 20NC trials (section 4: Figure 4.2).   

Within the 20 °C trials the fan blew 20 °C air onto the participants’ back of which 

depending on vest fit to the participant would have aided evaporative cooling of sweat 

and maintained the PCM charge, especially during crawling, as participants were able 

to arch their backs more so during this station.  This leads to the conclusion that TC 

was better than HC, however, the chest of the torso was involved in the Tsk 

calculation and the forehead temperature was not, therefore it is possible the method 

used in the current study to calculate Tsk may have been more focused towards the 

changes in temperature during TC than HC. 

 

The weighting (an approximation of the regional area distribution) given to the 

forehead in a formula used by Godek, Godek, and Bartolozzi (2004), (equation 5.1) 

was 0.058 vs. 0.335 for the chest, they also incorporated back temperature with a 

weighting of 0.335.  Thus, if equation 5.1 was used in the current study along with the 

corresponding measurements, Tsk would have still been lower during 20TC and 

20HC, than 20NC, yet with the addition of back temperature (not measured in this 

study), the difference between conditions would have been greater still at 20 °C and 

less than that at 40 °C.  This is due to the back and chest temperature weighting 

combined in equation 5.1 being greater than the weighting given for forehead 

temperature.  Therefore, you could conclude that with either calculation, TC was the 



102 
 

better of the two cooling methods at reducing overall Tsk and consequent heat storage 

within 20 °C. 

Equation 5.1:   

(Tsk; ºC) = 0.058 Tf + 0.335 Tc + 0.335 Tb + 0.136 Tarm + 0.136 Tcalf  
(Godek, Godek and Bartolozzi 2004) 

 
Equation 5.2: 
  
(Tsk; ºC) = 0.30 (Chest + Arm) + 0.20 (Thigh + Calf)  

(Ramanathan 1964) 
 

No significant differences were found with regard to sweat rate ( RS  ) between 

conditions (TC vs. HC) which in part contradicts the initial hypothesis (section 1.3; 

point 3.) that torso cooling would produce the greatest reduction in physiological 

strain experienced when compared to head cooling and no cooling.  Due to the same 

findings being present at 40 °C, the differences between sweat rate responses for 20 

°C and 40 °C environments are discussed further within the 40 degree section (5.1.3) 

of this discussion.  

 

In summary, at 20 °C, TC resulted in the lowest TcP at the end of the trial, 

maintaining a lower TcP overall when compared to HC.  Thus, cooling the torso with a 

PCM vest whilst wearing protective clothing, within a 20 °C ambient environment, 

resulted in the dissipation of enough heat to maintain thermal balance whilst wearing 

EOD protective clothing.  This is a key finding, as previous research relating to the 

use of PCM vests (melting temperature of 25 °C) under fire fighter protective clothing 

within cool ambient temperatures (16.5±1.8 °C; 44±3 % RH) found them ineffective, 

with no differences in HR or Tre vs. a control (Carter, et al. 2007).  The lack of benefit 

found in the aforementioned study when compared to the findings of the current 

study, may have been due to a greater metabolic rate present in the fire fighter 
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workers vs. the EOD workers as a result of a greater load, (≈35 kg fire fighter suit > 

≈18 kg EOD suit), that the work done was continuous vs. intermittent.  In addition to 

this, it is probable that within the current study, the internal fan contributed to 

maintaining charge in the PCM vest and aided skin cooling by convective air flow (20 

°C) over the back.  Therefore, when considering these factors, the use of a PCM vest, 

during intermittent low intensity exercise, within a moderate environment whilst 

wearing a light-weight EOD suit, was able to reduce TcP below baseline temperature. 

 

5.1.3 PHYSIOLOGICAL RESPONSES TO 40HC AND 40TC 

 

HR remained lowest with cooling (40HC and 40TC) than with no cooling 

(40NC), throughout the entire 80 minute trial (P<0.001; Figure 4.8).  HR had a 

tendency to be lowest within 40HC than 40TC up to about 60 minutes of activity, 

although from then onwards the peaks in HR remained lowest within the 40TC trials.  

Core temperature (TcP; Tau; Table 4.1) were also lowest up to approximately 60 

minutes of activity with HC vs. TC.  Thus, it is likely that temperature of the blood 

flowing through the hypothalamus will have been lower, contributing to the lower HR 

findings (Cabanac and Capatua 1979b).  Interestingly, HC caused a greater decrease 

in TcP during the 1st cycle compared to the 40TC trials, which would have lead to a 

greater heat storage capacity from the beginning of the trial.  This is due to the 

difference in the response of the vasculature surrounding the head and torso.  There is 

evidence that the vessels in the head are less likely to vasoconstrict in response to cold 

whereas the vessels in the torso have a much stronger vasoconstrictor response (Fox, 

Goldsmith and Kidd 1961).  Thus, with head cooling it is likely that there was more 
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blood flow present close to the periphery of the head when compared to the blood 

flow present at the periphery of the torso during the first cycle of activity. 

 

As previously stated, despite the difference in BSA coverage between the 

torso and head (not estimated in this study) (Arens and Zhang 2006) findings have 

shown that HC can be more efficient at heat removal and physiological strain 

reduction when compared to torso cooling in hot environments.  Nunneley and 

Maldonado (1983), showed that cooling 1 % BSA of the head vs. the torso resulted in 

a decrease of 3.7 vs. 1.1 beats·min-1 in HR and a decrease of 0.10 vs. 0.03°C in Tre, 

stating that head cooling was 2 to 3 times more effective than torso cooling.  

Therefore, the greater reductions in TcP and HR at the beginning of the current study 

with HC may be due to a greater rate of heat removal from the head vs. the torso per 

unit area.  

  

In support of the aforementioned, PCM temperature increased by 9.5 °C in the 

scrum cap vs. 8 °C in the vest over the entire trial, although the size of the vest and 

cap need to be considered this may still provide an indication of a greater heat 

removal at the head per unit area.  Shvartz (1976) also found that a liquid conditioned 

hood covering 12 % BSA was more efficient at reducing thermal strain vs. a liquid 

conditioned suit (60 % BSA).  When cooling the head a smaller surface area (0.6 %) 

was required to reduce HR by 1 beat·min-1 compared to the rest of the body (2.6 %).  

However, the temperature used in the hood was 13 °C lower than that of the suit, and 

House, et al. (2009) have shown that when using cooler PCM vests there was an 

increase in the heat removed by conduction.  Thus, the lower temperature in the hood 

may be the cause of a more effective heat removal.    
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There are many possibilities for the reduced physiological strain and greater 

rate of heat removal at the head.  1) the forehead and face convey little evidence of 

vasoconstriction during cooling (Fox, Goldsmith and Kidd 1961; Arens and Zhang 

2006; Flouris and Cheung 2006), 2) it is possible that localised vasoconstriction of the 

vessels at the chest may have reduced the cooling efficiency at the torso, (Flouris and 

Cheung 2006; Wilson et al. 2007), however in contrast to this a study by House et al. 

(2009) concluded that there was no localised vasoconstriction present when exercising 

participants in fire-fighter clothing wore a PCM vest with a phase change temperature 

as low as 0 °C, 3) it may also be possible that as previously predicted face cooling or 

in this case cooling of the forehead may reduce brain temperature, by counter-current 

exchange in the neck as indicated by Tau (Cabanac and Capatua 1979b; Nunneley and 

Maldonado 1983; Arens and Zhang 2006).  Thus, a lower temperature detected by the 

hypothalamus would lead to a reduction in HR by central control.  In support of this, 

cooling the forehead and face has shown to reduce HRs (Allen, Shelley, Boquet 

1992). 

 

 Tsk and heat storage were lowest throughout the 80 minute activity trial within 

the 40TC trials when compared to 40HC trials, despite findings that localised skin 

temperatures during HC (upper arm, thigh and calf) were significantly lower than TC, 

(P<0.001).  Thus, the 1 °C reduction in chest temperature with TC must have 

influenced the overall Tsk, and as previously stated, the calculation to determine Tsk 

did not include the back or forehead temperatures resulting in a heat storage response 

that may be bias towards TC.  This may also help to explain why heat storage was 

shown to be greatest during the 40HC trials.  However it is unlikely as the rate of rise 
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in TcP was greatest during the final cycle of activity with HC when compared to TC 

which suggests the participants’ periphery was also hotter at this time. 

 

The manufacturer of the PCM garments estimated a total usage time of 

approximately 75 minutes for the scrum cap and the participants wore the PCM 

garment 15 minutes before starting each trial.  Thus, it is possible therefore that the 

HC scrum cap may have lost the majority of it’s ‘charge,’ by 60 minutes of activity 

(cycle 3; 34.60 °C), affecting the rate of heat removed.  This loss of charge could be 

due to a greater initial rate of heat removed.  After the treadmill station of the first 

cycle the PCM within the scrum cap was already 1.49 °C greater than the PCM within 

the vest which was reflected in the greater inital drop in TcP during this time within 

40HC (0.14 %) vs. 40TC (0.07 %). 

 

Unexpectedly at both 20 °C and 40 °C sweating rates were found to be no 

different between conditions.  There was also no difference in sweat rate with either 

cooling condition (HC and TC) vs. the no cooling condition (NC), despite the 

differences found between conditions with TcP and  temperature.  This is surprising as 

there have been many findings of a reduced sweat rate with cooling of the skin within 

warm ambient climates (McLellan 2007).  Hayashi and Tokura (1996) found that 

whilst exercising in protective clothing the forearm sweat rate of participants was 

significantly lower with head cooling than without.   

 

Reasons for this indifference may be due methodological factors.  The 

participants were not instructed as to when they should use the lavatory prior to 

recording body mass, which may have had an influence over the pre and post 
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differences, for example, if the participant was to use the lavatory after the trial, 

before weighing themselves, the loss in body mass would have been greater than the 

loss in body mass caused by sweating alone.  It is also difficult to gauge the changes 

in sweat rate over time using the method of calculating sweat rate by recording body 

mass; as it only provides an average sweat rate per hour and therefore it is difficult to 

determine the points within the 80 minutes that sweat rate was greatest.  Thus, the 

lack of significant difference between conditions may have been due to the method 

used, and that this method was not accurate enough to detect differences. 

 

The great inter-individual variation with regard to RS  (Figure 4.7) during TC 

may have been due to the fit of the PCM vest to the participant.  During certain 

stations of activity, such as the searching and crawling station it was possible for the 

participant to allow more air flow under the PCM vest and onto their back due to the 

arched position of their back whilst crawling.  This will have increased the convective 

air flow under the PCM vest and over the participants back, (40 °C; ≈ 200 ml·min-1) 

consequently affecting skin wettedness surrounding the back and chest of the 

participant and thus influencing RS  (McLellan, et al. 1996).  Thus, how tightly the 

vest fit to the participant due to the size of each participant, will have affected the 

volume of air that could have passed under the PCM vest during the searching and 

crawling station. 

 

In summary, with the physiological responses at 40 °C, it is clear that both 

cooling methods (HC and TC) were beneficial at reducing physiological strain when 

compared to a control trial (without cooling – 40NC) for up to one hour of 

intermittent exercise within a light-weight EOD suit.  When looking at the results 
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summary (Table 4.7; section 4.8) TC appeared to provide the most benefit within 40 

°C by the end of 80 minutes of activity, when compared to HC with both cooling 

methods providing benefit when compared to NC.  

 

 

5.2 PERCEPTUAL RESPONSES AT 20 °C AND 40 °C: 

 

Perceptual responses were used as a subjective measure of physiological strain 

within each condition.  Thus, the responses have been compared between conditions 

and to the physiological responses within those conditions. 

 

5.2.1 PERCEIVED EXERTION 

 

The increase in RPE over time was greatest at 40 °C vs. 20 °C for all body 

segments.  Cooling appeared to attenuate the rise in RPE at 40 °C as the end values 

for ‘overall’ were lowest with cooling than without, with no difference between 

conditions at 20 °C.  It is interesting to note that as no differences in RPE responses 

were found within the 20 °C conditions or within the 40 °C conditions that the RPE 

responses contradict slightly with the HR and TcP findings.  It is likely therefore that a 

greater difference in the HR and TcP responses between conditions was required in 

order to initiate a greater and significant difference in RPE between conditions.  

Generally the upper back & shoulders tended to have greater RPE responses by the 

end of the trial when compared to the lower back and legs, which most likely will 
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have been related directly to the distribution of the external load of the EOD suit over 

the body. 

 

5.2.2 THERMAL SENSATION 

 

The greatest differences in ThS over time were present at 40 °C vs. 20 °C.  

Cooling of the head resulted in the lowest initial baseline sensation response for 

‘head,’ and as expected cooling the torso resulted in the lowest initial baseline 

sensation response for ‘chest’ and ‘back’ when compared to NC.  This is reflected by 

the ‘forehead’ and ‘chest’ having the lowest measured skin temperatures during these 

conditions (HC and TC).   

 

ThS in response to ‘head’ was lowest at 20 °C and 40 °C with both HC and TC 

(vs. NC), suggesting that torso cooling influenced the perception of cooling among 

other regions of the body other than the region being cooled.  This also coincides with 

the measured skin temperature of the forehead being lower with both types of cooling 

than NC at the end of exercise (Tf; Figure 4.3).  ThS has been previously shown to be 

an inaccurate estimate of skin temperature (Patterson, et al. 2007), which could 

mislead participants with regard to their thermal state.  ThS seemed to correspond with 

skin temperature when comparing relative sites (‘head’ vs. Tf; ‘chest’ vs. Tc), however 

when comparing the final measurements (TcP vs. ThS ‘overall’) made at the end of the 

80 minutes, using Table 4.7, it is clear that there is a slight discrepancy between the 

perceptual data and physiological data when the head is being cooled.  TcP and PhSI at 

20 °C were greatest with HC but the overall ThS indicated that the perceived hottest 

condition was NC.  At 40 °C, it was different still with TcP and PhSI being greatest 
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during NC and the overall ThS responses indicating that the perceived hottest 

condition was HC.  This indicates that the temperature of the head can influence the 

overall ThS that is experienced which can be potentially dangerous to operatives.  

 

By the end of the 80 minute trial at 40 °C, it appears that torso cooling 

maintained the lowest ThS responses compared to HC, and NC which relates to the 

physiological data as shown in Table 4.7.  This is likely due to the PCM scrum cap 

losing most if not all of its cooling capacity vs. the vest and because the torso vest 

would have had a greater cooling capacity due to the greater volume of coolant 

available within the vest vs. the scrum cap (Table 4.2). 

 

5.2.3 THERMAL COMFORT 

 

ThC was lowest at 20 °C vs. 40 °C.  At the end of the 80 minute trial, both 

cooling of the torso and head resulted in lower ThC responses to all body segments vs. 

NC, however, TC especially at 20 °C, produced the lowest responses of all conditions, 

which were closer to the comfortable range (4 to 5) than uncomfortably hot (7). 

For 20NC, the ‘groin’ was perceived as the most uncomfortably hot area of the 

body, whereas for 40NC, the ‘chest and arms,’ were perceived as being the most 

uncomfortably hot area of the body.  This was most likely due to many of the 

activities involving movement of the arms and so the muscles would have been 

working harder around that area of the body, this would have lead to greater heat 

production and possibly sweat production in that area vs. the other areas of the body 

and in addition to this the fan at 20 °C could have aided cooling of the chest to a 

greater extent than the air flow present at 40 °C.  When looking at Table 4.4, 4.5, and 
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4.7 it is clear that the ThS and ThC responses coincided reflecting a directly 

proportional relationship. 

 

5.2.4 PERCEPTION OF STRAIN 

 

At 20 °C perceptual strain was lowest with TC vs. NC.   At 40 °C both TC and 

HC for the 2nd and 3rd cycles of activity resulted in the lowest PeSI values when 

compared to the NC condition.  At 40 °C, HC resulted in a lower initial PeSI vs. TC 

and NC, which would be related to the lower TcP and HRs observed and a greater heat 

storage capacity with HC vs. TC at the onset of exercise.  The PhSI was much lower 

than the PeSI and shows that these two indexes do not completely relate and that the 

participants’ perception of the physiological strain was worse than the physiological 

measurements (TcP and HR) implied.  It should be noted that as PhSI increased there 

was an increase in PeSI and so the PeSI does provide some indication of the 

physiological strain experienced by participants.  The PeSI is also useful when 

attempting to predict when a participant is likely to discontinue with a trial or with 

exercise. 

 

Thus, in summary for the perceptual responses, cooling of the torso at 20 °C 

and cooling of both the head and torso at 40 °C, has shown to provide benefit to the 

individual, by reducing the perceived physiological strain experienced whilst 

performing EOD related activities in a light-weight suit. 
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5.3 COGNITIVE RESPONSES AT 20 °C AND 40 °C: 

 

A key finding from the cognition test was that there was a reduction in the 

duration taken to complete the SWM test over time (Figure 4.6).  Thus, completion of 

the test was faster at cycle 4 than cycle 1 (P=0.017), with a tendency to be faster at 40 

°C vs. 20 °C.  Cooling had no effect on total errors or duration, however, when TcP 

remained at baseline temperature (within 20TC) the time taken to complete the test 

was longest. Highlighting the relationship present between TcP and reaction time.  

Thake and Simons (2009) found a decrease with duration over time when using the 

same SWM test, which may have been related to an improved reaction time with an 

increase in body temperature (Tsk and Tre).   

 

Faster reaction times (Simmons, et al. 2008), and greater alertness and mental 

performance have been correlated with increases in Tsk and Tre, (Wright, Hull and 

Czeisler 2002), which help to support the findings in this study that the greatest 

duration of time taken to complete the test was during the 20TC trials with the 

tendency for the test to be completed at a faster rate in 40 °C.  However, findings by 

Thake and Simons (2009) showed it took longer to complete the test after 3 hours in 

40 °C than 20 °C.  Thus, these findings lead to the idea of the existence of a critical 

turning point, or optimal body temperature for mental performance.  Previous 

research has shown that addition performance improved with an initial rise in core 

temperature but decreased when temperatures rose to as great at 38.5 °C and it was 

suggested that different areas of the brain may differ in thermal sensitivity and thus 

affect the cognitive performance of those areas, (Wright, Hull and Czeisler 2002). 
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In addition, cognitive performance has been found to be negatively affected 

with increases in Tre of >1°C above baseline, (Faerevik and Reinertsen 2004).  In 

support of the latter and a critical turning point, Thake and Simons (2009) found there 

was an increase in the total number of errors made during 2 hours of activity at 40 °C 

(P<0.05), that was not present at 20 °C.  Tre was greater than 1 °C above baseline at 

this point and may have had an impact on the spatial working memory of participants.  

It is possible then that because TcP did not increase beyond 1 °C above baseline, the 

temperature of the brain was not great enough to negatively impact upon the spatial 

working memory and may help to explain the lack of difference observed between 

conditions, with regard to errors.   

 

With passive heating (50 °C 50 % RH) an increase of greater than 1.5 °C in 

Tre, impaired working memory capacity and visual memory (Racinais, Gaoua, and 

Grantham 2008).  However, when Tre only rose by 1 °C with the application of head 

and neck cooling, the working memory capacity was preserved but the visual memory 

was not.  Which as previously stated could relate to different areas of the brain having 

different levels of thermal sensitivity and/or to a transition period in frontal lobe 

activity that is triggered by the changes in core temperature.  In addition, when high 

skin temperatures were combined with low core temperatures accuracy was 

preserved, supporting suggestions that core temperature is an influential factor in 

cognitive performance (Simmons, et al. 2008). 

 

The findings above lead to suggestions of an optimal body temperature for 

mental performance (greater reaction times and accuracy), with a greater weighting on 

core temperature rather than Tsk.  Cheung and Sleivert (2004) suggest that very high 
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core temperatures reduce arousal.  It is likely therefore that this reduction in arousal 

would impair spatial working memory and reaction speed, increasing the chances of 

error.  Thus, there is a stressed importance of maintaining low core temperatures 

during EOD work in the heat, and that cooling may help to increase the heat storage 

capacity and as noted earlier in this section with regard to head and neck cooling, 

consequently reduce the rate of rise in core temperature, limiting errors in cognitive 

(working memory) performance of which is an essential part of explosives ordnance 

disposal.  Further work would be required using the spatial working memory (SWM) 

test to support this. 

 

5.4 CARDIOVASCULAR RESPONSE TO STANDING (WITHOUT THE 

SUIT) 

 

The cardiovascular response after the sit to stand manoeuvre recorded at 

baseline, (section 4.7, Figure 4.10), resulted in a decline in MAP (3 to 5 seconds) 

followed by a transient increase in HR, peaking at approximately 9 to 10 seconds, 

leading to a consequential peak in MAP between 15 to 20 seconds.  At 25 seconds 

both HR and BP appeared stable and similar to pre-standing values (despite the 

different positions from which they were measured; kneeling then standing; Figure 

3.1). Previous research (Borst, et al. 1982; Rossberg and Penaz 1988) reports a similar 

BP response to active standing from squatting, with a fall in BP at between 7 and 9 

seconds, and a rise within 15 seconds thereafter, with more often than not biphasic 

response in HR, peaking at ≈2 seconds and 12 seconds post-stand. 

 



115 
 

The reasons behind this cardiovascular pattern of response to standing are 

complex.  An exercise-reflex response due to the contraction of muscle is thought to 

be the cause of an initial HR increase between <1 to 2 seconds post-stand. This 

increase in HR is likely to be detected by the baroreceptors of the aorta or 

endocardium, leading to increased vascular compliance and a fall in BP, of which 

could lead to greater withdrawal of parasympathetic vagal tone and a compensatory 

rise in HR.  From then on it may be a combination of plasma catecholamines and 

baroreceptor activity that result in the recovery of both HR and BP, (Borst, et al. 

1982; Rossberg and Penaz 1988).  In support of this, findings have shown significant 

decreases (58 %) in total peripheral resistance (measured using a Finapres) upon 

standing, which can be explained by systemic vasodilation initiated by the 

baroreceptor response in response to an initial increase in BP upon standing with the 

contraction of calf and abdominal muscle, (Tanaka, Sjoberg, and Thulesius 1996).   

 

In the current study, we did not observe a biphasic HR response as the 

measurements were only taken from >2 seconds after the initiation of standing, in an 

attempt to reduce the impact of any movement artefact.  HR peaked earlier (9 to 10 

seconds) than has been previously observed (11 to 12 seconds), which may be due to 

the initial drop in BP (between 3 to 5 seconds) also occurring earlier than previously 

observed (7 and 9 seconds).  Prolonged rest in a supine position prior to standing has 

been suggested to account for a delayed HR peak (Borst, et al. 1982), and as there 

was minimal rest in a kneeling position prior to the postural challenge manoeuvre it is 

possible that this may have been the cause of a faster response.  Reasons for the faster 

initial drop in BP in the current study may be due to the characteristics of the postural 

challenge vs. the previous squat-stand protocols used in other research such as Borst, 
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et al. (1982), but this cannot be accounted for and more research would be needed to 

explore this further.   

 

5.4.1 CARDIOVASCULAR RESPONSE TO STANDING AT 20 °C AND 40 °C: 

 

Within cycle 1 and cycle 4 at 20 °C and 40 °C, as found at baseline, a 

significant fall in MAP and rise in HR was found in all conditions (section 4.7, 

Figures 4.10 to 4.13).   However, when cooling (HC and TC) was applied at cycle 1 at 

20 °C, it appeared to hinder the recovery of MAP, as demonstrated by MAP not 

returning to the pre-stand response when compared to the 20NC condition.  It is 

interesting however that this was not an issue at cycle 4 within 20 °C or 40 °C, and 

that during cycle 4, MAP recovered to that measured prior to standing.  This could be 

because during cycle 4 prior to the standing manoeuvre, HRs were greater than that 

recorded during cycle 1, and so cardiac output was sustained, aiding the recovery of 

MAP. 

 

Within 20TC, Tsk was lowest when compared to 20NC (greatest), thus, 

vasoconstriction of the vessels local to the chest and torso may have been already 

present to an extent whereby any additional vasoconstriction would not have aided the 

maintenance of MAP.  Skin-surface cooling (water perfused tubes; 15 °C to 18 °C) 

has been found when applied to supine individuals within a 21 °C to 23 °C 

environment to elict an increase in vasoconstriction of the peripheral and visceral 

arteries (Wilson, et al. 2007), reduce skin blood flow and maintain central venous 

pressure (Cui, et al. 2005) therefore in support of the aforementioned, this mechanism 
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must have already occurred by the time the manoeuvre took place.  Furthermore, any 

rise in HR that occurred must not have been sufficient enough to return the MAP back 

to that measured during the pre-stand phase.  In support of this, HR during 20TC, 

although not significantly so, appears to be generally lower than the other conditions 

at recovery during cycle 1. 

 

At cycle 4, at 20 °C the HR and MAP responses between conditions did not 

differ, possibly due to the PCM heating up to a point whereby there was less of a 

cooling induced vasoconstriction present when compared to cycle 1.  At cycle 4 at 40 

°C, HR did not return to that measured during the pre-stand phase in either condition, 

indicating a greater degree of cardiovascular strain was imposed on the worker in 

order to maintain MAP after an hour of activity in the heat in response to standing vs. 

the response to standing in a moderate climate.  There was a slight tendency for peak 

HRs to be lowest within the 40HC condition, but overall cooling did not appear to 

benefit the wearer when compared to the no cooling condition at either 20 °C or 40 

°C.   

 

The increase in core temperature at 40 °C and the degree of cardiovascular 

stress prior to standing did not appear to compromise the recovery of MAP in 

response to standing during the no cooling trial.  Previous research highlights that 

during heating of the body and forced lower body negative pressure, the vascular 

system partially retains the vasoconstriction mechanism, (Johnson, et al. 1973).  

Therefore, reasons for this recovery in MAP are that it is likely the participants’ 

average heart rate reserve was still great enough (60 %) and the participants’ were 
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‘warm,’ so that an increase in heart rate and peripheral vasoconstriction were able to 

occur to an extent sufficient enough to counteract the drop in MAP.  Findings may 

have been different if the participants’ core temperatures had been greater during the 

no cooling trial, offering a greater comparison to the cooling conditions. 

 

It should be mentioned that the peak HRs measured during the postural 

challenge during the 4th cycle at 40 °C were the greatest of all cycles (within the 

postural challenge) and stations (throughout the trial) by ≈10 beats·min-1 with and 

without cooling. Emphasising the degree of cardiovascular stress brought about 

through changes in posture as an individual goes from kneeling to standing compared 

to the other exercises involved; (walking on a treadmill, crawling and arm 

ergomentry), reinforcing the usefulness of this challenge to exert acute cardiovascular 

stress upon an individual within protective clothing in the heat. 

 

Thus, in summary at 20 °C it appears there is no need for applied cooling to be 

worn within the 3010 EOD suit and that it may hinder rather than benefit the wearer 

with regard to maintaining suitable cardiovascular function.  At 40 °C, there was a 

tendency for lower HRs when cooling was applied, and so although there was no 

difference found between the cooling or no cooling trials with regard to MAP, 

wearing either the vest or scrum cap did not hinder cardiovascular function and as 

cooling has shown in other studies to maintain central venous pressure and reduce the 

demand for skin blood flow (Cui et. al., 2005) it could potentially be useful if worn 

within high ambient temperatures. 
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5.5 RECOMMENDATIONS FOR COMMERCIAL USE 

 

The results from this study provide many reasons for workers to incorporate 

the use of PCM cooling within the light-weight EOD suit and so for maximum benefit 

the following recommendations apply: 

 

 For this particular type of PCM cooling garment (melting temperature 25 °C), 

it should be worn for 60 minutes at a time (after 30 minutes stored in a freezer, 

ice bucket or fridge) to gain full benefit as it is likely that after 60 minutes the 

rate of heat removal is greatly reduced.  The PCM temperatures recorded at 80 

minutes were only just less than the relative skin temperatures recorded at that 

time. 

 The fan in the EOD light-weight 3010 suit should be turned off throughout 

any duration of work completed at 40 °C, to prevent the cooling garment from 

losing charge and to reduce sweating rate and consequent fluid loss. 

 For work completed in a moderate environment this fan should be kept on, as 

the cooler air appears to aid cooling and maintain the charge of the PCM 

(provided air temperature is lower than the melting temperature of the 

garment). 

 For work completed in moderate environments, the PCM vest would be the 

better garment to use as it stated to be the most comfortable garment when 

worn by the participants, and was found to reduce cardiovascular, 

physiological, and the general perception of strain more so than when the 

scrum cap was worn. 
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 For work completed in hot environments both cooling garments could be 

worn, however this could add more mass and increase the metabolic rate, and 

possibly decrease comfort, but on the other hand it could potentially reduce 

the rise in core temperature to a greater extent than when wearing only one 

garment due to the greater surface area being cooled. 

 

 

5.6 FUTURE RESEARCH 

 

From completing the current study many questions have been answered 

alongside many others that have arisen with regard to requirements for further work.  

It is clear that within the aspect of physiological responses more work could be done 

to investigate various continuous and intermittent exercise protocols (with prolonged 

rest/work cycles) to find out how they affect the efficiency of the PCM cooling 

garment and consequent physiological strain whilst wearing protective clothing.  A 

number of different ensembles; such as; fie-fighter clothing, various EOD suit 

models, nuclear biological and chemical, and bio-chemical ensembles could be 

compared to discover if the benefit observed in the current study would be present 

under heavier, and thicker, more restrictive suits.  It would also be useful to 

investigate whether turning the fan off at 40 °C would improve the efficiency of the 

torso cooling garment by preventing additional heat gain. 

 

In this study core temperature did not reach greater than 38 °C and so 

cognitive spatial working memory appeared to remain unaffected by the physiological 

strain experienced when wearing the light-weight EOD suit.  Thus, questions arose 
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regarding a transition period in cognitive performance with increasing core 

temperature, specifically regarding working and visual memory.   Research could be 

carried out to investigate this further, such as; gradually increasing the participants 

core temperature and monitoring their cognitive function (errors and reaction time) 

using the spatial working memory test, and/or when their core temperature is kept 

constant at various degree levels (0.5 °C, 1 °C, 1.5 °C, 2 °C) above normerthermia.  

This could help to determine the risk of errors that could potentially arise as an 

operative comes under greater thermal physiological strain, the reason behind them 

and further reinforce the need for cooling. 

 

Further work that would be required is to measure skin and core temperatures 

and the perception of strain of operatives while they work within a ‘test’ environment, 

such as outside or inside within their training environment.  This would allow 

comparisons to be made to results that have been obtained from within the laboratory 

environment and also help to determine more accurately when cooling may be 

required. 

 

6. CONCLUSIONS 
 

When exercising within the 3010 EOD suit at 40 °C, as expected, the physiological 

and perceptual responses were greater when compared to 20 °C, reflected in the 

greater PhSI and PeSI values found at 40 °C. 

Cardiovascular strain in relation to the HR response to standing (from kneeling) had a 

tendency to be greatest within 40 °C vs. 20 °C in all conditions during the final cycle 
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of activity.  However as BP was not affected by the difference in environmental 

temperature this leads to refuting the second hypothesis as stated in section 1.3. 

At the end of the 80 minute trial TC produced the greatest reduction in physiological 

and perceptual strain when compared to HC, at both 20 °C and 40 °C, as highlighted 

in Table 4.7. 

It is evident that the cooling garments did not seem to be required whilst wearing the 

3010 EOD suit at 20 °C.  However, at 40 °C for the first 60 minutes of activity, TC 

and HC reduced the extent of physiological and perceptual strain experienced when 

compared to NC.  When comparing cooling conditions; TC provided greater benefit 

than HC. 
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8. APPENDICIES 

APPENDIX A 

Table 8. 1:  Ambient temperature (ºC) and relative humidity (%) (mean ± SD) experienced by all 
participants (n = 6), during the 1st station (Treadmill) of each cycle (1-4) within each experimental 
condition (20NC, 20HC, 20TC, 40NC, 40HC,40TC). 

Condition Cycle Ambient Temperature (°C) Relative Humidity (RH;%) 

20NC 

1 22.2±0.4 34±4 

2 22.4±0.3 35±4 

3 22.4±0.4 34±4 

4 22.4±0.3 34±4 

20HC 

1 22.3±0.6 35±4 

2 22.2±0.5 35±3 

3 22.3±0.3 35±4 

4 22.3±0.3 35±4 

20TC 

1 22.0±0.4 35±6 

2 22.4±0.5 34±5 

3 22.5±0.5 34±4 

4 22.5±0.3 34±4 

40NC 

1 40.3±0.3 10±1 

2 40.3±0.3 12±2 

3 40.3±0.3 13±2 

4 40.2±0.4 13±2 

40HC 

1 40.2±0.6 11±2 

2 40.5±0.2 11±1 

3 40.2±0.3 12±1 

4 40.1±0.3 12±1 

40TC 

1 40.5±0.4 9±1 

2 40.2±0.3 10±1 

3 40.4±0.3 11±1 

4 40.4±0.2 11±1 
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APPENDIX C 

 
0.0 VERY UNCOMFORTABLY COLD  
 
1.0 UNCOMFORTABLY COLD  
 
2.0 SLIGHTY UNCOMFORTABLY COLD  
 
3.0  
 
4.0 COMFORTABLE  
 
5.0  
 
6.0 SLIGHTLY UNCOMFORTABLY HOT 
  
7.0 UNCOMFORTABLY HOT  
 
8.0 VERY UNCOMFORTABLY HOT  
 
 

Figure 8. 3 Thermal Comfort (ThC) Scale (modified from Epstein and Moran 2006)  
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APPENDIX E 

 

INFORMED CONSENT FORM 
 
FACULTY OF HEALTH AND LIFE SCIENCES 
Department of Biomolecular and Sports Sciences 
 

THE INFLUENCE OF HEAD VS. CHEST COOLING ON 
PHYSIOLOGICAL AND COGNITIVE RESPONSES TO EXPLOSIVES 

ORDNANCE DISPOSAL (EOD) TYPE ACTIVITY IN MODERATE 
AND HOT ENVIRONMENTS 

 
Principal Investigator:  Fiona Brown 
Principal Supervisor:  Dr Doug Thake 
 
Thank you for showing interest in participating in this study.  It is important that before 
you volunteer to participate you are absolutely clear on the intentions of the study and 
the protocol involved. All the relevant information is provided below and within the 
participant information sheet (see attached) and requires your close attention prior to 
your participation. Do not hesitate to ask any questions that you may have regarding 
information provided here or other queries you may have. 
 
PURPOSE OF THE RESEARCH 
 
The main purpose of the current research is to investigate the use of cooling worn within 
personal protective clothing (EOD suits) that will potentially benefit explosives ordnance 
disposal (EOD) personnel through maintenance of physical and cognitive working 
performance in the heat.  The aims of the current study are to investigate the impact of 
cooling (with PCM) on physiological and psychological responses to EOD type activity in 
both 20°C and 40°C environments.  Predominantly the studies will investigate the 
impact of head and chest cooling, on blood pressure, cognitive performance and body 
temperature.  Both head and chest cooling will be investigated, with the use of a phase 
change material 'scrum-cap', and vest (worn under the EOD suit, over the skin).   
 
PARTICIPATION IN THIS RESEARCH WILL INVOLVE 
 
Study Outline:  Two studies will be conducted, one with the ‘heavy weight’ EOD suit 
and one with the ‘light weight’ EOD suit.  There will be a total of 6 participants per study.  
You (the participant) will only be required for one of these studies (see participant 
information sheet).  Each study will require a total of 18 hours commitment, split into 
seven sessions, with each session lasting 2 ½ hours.  There will be one 
habituation/familiarisation session followed by six experimental sessions.  Each session 
will be separated by one week, and include an 80 minute experimental trial, plus 70 
minutes of preparation and cool down/showering time.  The protocol will involve two 
control trials (CON; at 20°C and 40°C), two head cooling trials (HC; at 20°C and 40°C) 
and two chest cooling trials (CC; at 20°C and 40°C), conducted in a randomised order.  
 
Participant Requirements:   Participants will need to be non-smokers, with no 
reported illness or injury, non-heat acclimated and physically active (more than 120 
minutes of physical exercise per week).  Participants will need to be available for a 
period of seven weeks during mid-February to the End of March (1st Study) and Mid-April 
to the first week in June (2nd Study).  They will need to ensure they; avoid consuming 
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alcohol or undertaking vigorous exercise at least 24 hours before each test day.  They 
will be asked to follow their usual sleep routine combined with their usual dietary habits 
ensuring they are adequately hydrated, the night before and the morning prior to each 
test day.  Due to the daily fluctuations in body temperature, heart rate, and sweat rate 
for example (as a result of our internal circadian bio-rhythm), participants will be 
required and asked to ensure they are available at the same time period on each test 
day, i.e. if the first session is conducted at 2pm all remaining sessions will be conducted 
at 2pm. 
Measurements: A combination of physiological, subjective, and cognitive measures will 
be  monitored and recorded during the current study (Old/New).  Baseline measures of 
heart rate, body temperature (core and skin), blood pressure, with local and whole body 
perceived thermal comfort (PTC), and perceived thermal sensation (PTS), with and 
without the suit (and/or cooling) will be made.  Throughout the trial measurements of 
these variables at regular intervals with the addition of breath by breath analysis and 
rate of perceived exertion (RPE) will also be made.  N.B. For a full explanation of 
measurements see the attached participant information sheet.   
 
FORESEEABLE RISKS OR DISCOMFORTS 
You may experience discomfort from performing EOD type activities in both the 
moderate (20°C) and hot (40°C) conditions, due to the nature of the suit and the 
duration of activity.  You may also feel a little discomfort from the rectal thermistor 
probe but this should be less noticeable as the trial progresses.  There is a possibility of 
fainting occurring during the postural challenge and/or at any point due to the onset of 
sweating, and subsequent dehydration. However, in all cases there will be regular 
monitoring of physical and subjective responses throughout each trial.  If deemed 
necessary by the investigator or if requested to by the participant the trial will be 
terminated, (see trial discontinuation criteria on the participant information sheet). 
 
DATA PROTECTION  
Any information provided in response to questionnaires, along with all your data, will be 
kept strictly anonymous. Your name will never be used in conjunction with your data 
instead each participant will be assigned a code recognisable by the principal 
investigators only.  Paperwork will be stored in a locked filing cabinet and data will be 
kept on a password-secured computer only accessible to the principal investigators, 
Fiona Brown or Dr. Doug Thake.  Data may also be published in scientific works, but 
your name or identity will not be revealed.  Your data may be made available to the 
participant(s) coaches if required and with prior consent by you the participant. 
 
If you have any further questions regarding your participation in this study 
please do not hesitate to ask Fiona Brown – brownf8@coventry.ac.uk or Dr. 
Doug Thake 
 
If you have any questions about your rights as a participant or feel you have been 
placed at risk you can contact Dr Doug Thake. 
 
I confirm that I have read the above information. The nature, demands and risks of the 
project have been explained to me.  
 
I have been informed that there will be no benefits / payments to me for participation 
 
I knowingly assume the risks involved and understand that I may withdraw my consent 
and discontinue participation at any time without penalty and without having to give any 
reason. 
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Subject’s signature ____________________________________Date _____________ 
 
Investigator’s signature ____________________________________Date 
_____________ 
 
 
The signed copy of this form is retained by the student, and at the end of the 
project passed on to the supervisor. 
A second copy of the consent form should be given to the subject for them to keep for 
their own reference.  
 

PARTICIPANT INFORMATION SHEET 
 

FACULTY OF HEALTH AND LIFE SCIENCES 
Department of Biomolecular and Sports Sciences 

 

THE INFLUENCE OF HEAD VS. CHEST COOLING ON 
PHYSIOLOGICAL AND COGNITIVE RESPONSES TO EXPLOSIVES 

ORDNANCE DISPOSAL (EOD) TYPE ACTIVITY IN MODERATE 
AND HOT ENVIRONMENTS 

 
Investigator:   Fiona Brown 
Principal Supervisor:   Dr Doug Thake 
 
Thank you for showing interest in participating in this study.  It is important that before 
you volunteer to participate you are absolutely clear on the intentions of the study and 
the protocol involved. All the relevant information is provided below and requires your 
close attention prior to your participation. Do not hesitate to ask any questions that you 
may have regarding information provided here or other queries you may have. 
 
BY ANSWERING OUR QUESTIONS AND SIGNING THE CONSENT FORM, YOU ARE 
CONSENTING TO YOUR DATA BEING USED IN THIS STUDY. NO RECORD WILL 
BE MADE OF YOUR NAME SO INFORMATION IS STRICTLY ANONYMOUS. 
 
What is the purpose of the study? 
 
The main purpose of the current studies are to investigate the use of cooling worn within 
personal protective clothing (EOD suits) that will potentially benefit explosives ordnance 
disposal (EOD) personnel through maintenance of physical and cognitive working 
performance in the heat.  For the protective EOD clothing to serve its purpose it is 
required to be impermeable, strong (made from Aramid), and thus very heavy.  Heat 
loss is very limited when wearing the EOD suit and can lead to conditions known as 
uncompensable heat stress.  Heat stress leads to serious medical problems, such as, 
heat illness, loss of consciousness and cases of death.  Thus, the introduction of cooling 
material in to the EOD suit should result in reduced heat stress and subsequent 
improvements in personnel performance, (duration and efficiency). 
 
These studies aim to investigate the impact of cooling (with PCM) on physiological and 
psychological responses to EOD type activity in both 20°C and 40°C environments.  
Predominantly the studies will be investigating the effect  of head and chest cooling, on 
blood pressure, cognitive performance and body temperature. Both head and chest 
cooling will be investigated, with the use of a phase change material 'scrum-cap', and 
vest (worn under the EOD suit, over the skin).   
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What does it involve? 
 
Study Outline: Each participant will undergo one study (heavy/light weight EOD suit) 
involving  seven sessions (one 2 ½ hour session; made up of 70 minutes preparation 
and cool down/shower time and 80 minutes EOD activity).  The seven sessions are 
inclusive of one habituation/familiarization session followed by six experimental trials 
(inclusive of two control, two with head cooling, and two with chest cooling). NB: the 
order of  expected participation in the six experimental trials will be different to 
that written below:  
 

OVERVIEW OF SESSIONS  
 
1. Habituation/Familiarization Session as 30ºC without cooling (FAM) 
2. 20ºC without cooling (20CON) 
3. 40ºC without cooling (40CON)  
4. 20ºC with head cooling (20H) 
5. 40ºC with head cooling (40H) 
6. 20ºC with chest cooling (20C) 
7. 40ºC with chest cooling (40C) 
  
Each trial will last 80 minutes in total, and will involve six activity stations, repeated four 
times (4 cycles).  The stations are as follows: 
 

TRIAL ACTIVITIES (Representative of 1 Cycle) 
 
1. Treadmill walking (4 km.hr-1; 3min:30sec), 
2. Manual activity (standardised movement of 1kg weights; (2min:30sec), 
3. Crawling and Searching (2min),  
4. Postural Challenge (standardised kneeling to standing; (2min:30sec),  
5. Arm Ergometry (3min:30sec)  
6. Spatial Working Memory (SWM) test whilst undertaking physical seated rest (6min)  
 
Inclusive of 30 seconds transfer time between activity stations.   
 
Familiarization Session:   
Participants will undergo an initial familiarisation session (FAM) related to the Old 
'heavy-weight' or New 'light-weight' suit dependent upon which study they are involved 
with (1st or 2nd respectively).  This session will be conducted in the same laboratory used 
to conduct experimental trials (JS309).  Participants will wear shorts while the following 
anthropometric data are measured and recorded; height (cm), body mass (kg), skin 
folds and limb girths from which fat-mass and muscle-mass will be estimated and 
estimated body surface area (%).   
 
During the familiarisation session participants will take part in one full trial, with either 
the, Old 'heavy-weight' or New 'light-weight' suit dependent upon which study they are 
involved with (1st and 2nd respectively).  To account for the initial anxiety that may come 
with first exposure to the laboratory and 'hot' ambient temperatures (40ºC), an ambient 
temperature of 30ºC will be used.  The familiarisation trial will also enable the participant 
and the investigator to practice and run through the activities and measurements, 
respectively.  
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Experimental Protocol: 
Each trial will involve arriving at the required test time (e.g. 2pm), the ingestible pill will 
have been given to the participant during the familiarisation session and/or previous 
session, and  should be taken 2 hours before test time (e.g. 12pm), while at home or at 
university or at work for example.  Upon arrival the participant will be given a standard 
PAR-Q Health Screen Questionnaire to assess general well-being and fitness.  One 
practice of the cognitive spatial working memory (SWM) test will be carried out (6min).  
The participant will then retire to a private lavatory to insert the rectal thermistor probe, 
take nude body weight, a mid-stream urine sample, and change into the required 
(supplied) combat trousers and t-shirt.  Once returning to the laboratory (JS309), the 
participant will need to give the urine sample to the investigator along with the recorded 
nude body mass (kg).  The participant will remove the t-shirt, and skin thermistors will 
be placed on the calf, thigh, chest and upper arm with self-adhesive tape, followed by 
the aural thermistor, inserted like an ear plug into the ear and secured with cotton wool 
and self-adhesive tape.  A heart rate monitor will be placed around the chest with a 
strap.  The participant may put the t-shirt back on and baseline measurements (without 
the suit) will be recorded.  The suit (old or new) will then be applied (in trials with 
cooling, either the head or chest cooling material will be applied over the t-shirt before 
donning the suit).  The gas analyser breathing mask will be applied over the mouth 
(lips), and secured with a strap over the head under the helmet, the participant will be 
able to  breathe freely in and out.  The boots and helmet will then be donned and made 
comfortable and secure.  A second baseline measurement will be made (whilst wearing 
the suit) and body mass will also be recorded.  The participant will then make their way 
into the experimental chamber tent (set to either 20ºC or 40ºC).  The trial will 
commence when instructed to do so by the investigator and will begin with treadmill 
walking activity (4km.h-1).   
 
Measurements:  
Physiological, cognitive and subjective measurements will be recorded at regular 
intervals during each trial.  Physiological measurements include; Heart rate, skin and 
core temperature, oxygen consumption, and non-invasive digital arterial blood pressure 
(from the finger during the postural challenge).  Subjective measurements will be based 
on number scales whereby higher numbers represent higher intensity of response and 
include; Perceived thermal comfort (PTC: 0-8), perceived thermal sensation (PTS: 0-8), 
perceived exertion (RPE: 6-20) and a general symptoms questionnaire (GSQ: 0-3).  
These scales and questionnaires will be explained prior to testing and made visible to the 
participant during each trial.  The cognitive measurement includes a spatial working 
memory (SWM) test (this will be practised during the FAM session), completed with the 
use of a touch screen computer and will last 6 minutes (times may vary). 
 
Trial Discontinuation Criteria:  
For the participants safety, an experimental trial will be terminated if; participants heart 
rate exceeds 95% of maximum (220-AGE) for 3 minutes, gastrointestinal, rectal, or 
aural temperature reach 39.5ºC or 2ºC greater than initial baseline temperature.  If 
perceptual scores reach maximum on either the RPE (19/20), PTC (8), PTS (8), and/or 
GSQ (2/3) scales, physiological data will be considered and the trial may be terminated.  
A participant may also elect to withdraw at any point throughout the trial/study. 
 
What do I have to do? 
 
Time:  You will be required to commit a total of 18 hours of your time, spread out over a 
number of weeks (one session a week is ideal).  There are seven trials in total, and you 
will be required to attend each trial lasting between 2 hours and 2 hours 30mins each.  
The actual EOD type activity will last 80 minutes, and the rest of the time will be for 
preparation prior to beginning the trial (getting dressed, weighed, and the application of 
equipment such as, the thermistors, heart rate monitor, phase change material and 
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cooling down/showering etc. at the end of the trial.  The participant should let the 
investigator know if there are any problems with attending a scheduled session well in 
advance (if possible) of the testing session. 
 
Health and Fitness:  You will need to be a non-smoker, currently participating in > 120 
minutes of aerobic exercise per week (2 hours).  Free from any injuries, or illness, such 
as, cardiovascular disease.  Core temperature capsules slightly larger than paracetamol 
capsules will be used for assessment of gastrointestinal temperature, and therefore the 
participant will need to be able to swallow them comfortably.  Feel free to ask questions 
if you are not sure about whether you are eligible to participate.  
 
Diet:  Before every trial it is important to ensure that you are hydrated efficiently, and 
that you adhere to your usual eating and drinking habits.  It is important that you try to 
keep a regular pattern of eating and drinking on the day of the trial and that this pattern 
is the same each week.  No alcohol should be consumed at least 24 hours before testing 
time, and no vigorous exercise should be undertaken at least 24 hours before testing 
time.  Aim to maintain a similar sleeping duration (i.e. 8 hours) the night before test 
days.  
 
Do I have to take part? 
 
No, participation is on a voluntary basis.  However, once committed to the study it is 
greatly appreciated if you could attend all requested testing days at the stated time, and 
adhere to the required guidelines concerning potential confounding variables (alcohol 
use, hydration status etc.) and participant behaviour prior to and during testing (as 
above).  You may withdraw yourself from the study at any time. 

What are the possible disadvantages or risks in taking part? 
There is a possible risk of fainting (syncope), due to working in the heat, during the 
postural challenge in particular.  There is also a risk of heat illness, however, appropriate 
safety measures (see: Trial Discontinuation Criteria) are in place to ensure minimal risk.  
Heart rate and Core temperature will be continuously monitored.  The subjective 
questionnaires (mentioned above) are there to ensure the investigator (myself) and the 
participant (you) are aware of the level of comfort, and physical exertion, experienced 
throughout each trial.  If the participant (you) are unable to continue with a  trial 
for any reason let the investigator know as soon as possible and the trial will be 
stopped.  General well-being will also be monitored as described previously using the 
GSQ. 
 

What will I get out of the study? 
 

You will gain an insight into the investigative methods used in the laboratory, along with 
possible improvements in general fitness.  Furthermore, you may ask questions about 
the scientific aspects of the study and you may find it interesting to know what we are 
trying to achieve or how various measurements are recorded. 
 
Who has reviewed the study? 

 
Coventry University Ethics Committee 
 
If you have any further questions regarding your participation in this study 
please do not hesitate to ask (e-mail) FIONA BROWN (Investigator) – 
brownf8@coventry.ac.uk or DR. DOUG THAKE (Principal Supervisor) 
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