
 Coventry University

DOCTOR OF PHILOSOPHY

The Impact of Modes of Mediation on the Web Retrieval Process

Pannu, Mandeep Kaur

Award date:
2011

Awarding institution:
Coventry University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of this thesis for personal non-commercial research or study
 • This thesis cannot be reproduced or quoted extensively from without first obtaining permission from the copyright holder(s)
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 04. Jul. 2025

https://pureportal.coventry.ac.uk/en/studentthesis/the-impact-of-modes-of-mediation-on-the-web-retrieval-process(8f7aa0cd-97a9-4f5b-8ff8-e8af6b77dfa9).html

 1

The Impact of Modes of

Mediation on the Web Retrieval

Process

Mandeep Pannu

A thesis submitted in partial fulfilment of the University’s

requirements for the Degree of Doctor of Philosophy

August 2011

Faculty of Engineering and Computing

COVENTRY UNIVERSITY

aa0682
Typewritten Text

aa0682
Typewritten Text

 2

Abstract

This research is an integral part of the effort aimed at overcoming the

limitations of the classic search engines. This thesis is concerned with the

investigation of the impact of different modes of mediation on the web search

process. Conceptually, it is divided into three main parts. The first part

details the investigation of methods and mechanisms in user profile

generation and in filtering search results. The second part deals with the

presentation of an approach and its application in the development of a

mediation framework between the user and the classic Web Search engines.

This involved the integration of the explicit, implicit and hybrid modes of

mediation within a content-based method, and was facilitated by the

adoption of the Vector Space Model. The third part presents an extensive

comparative evaluation of the impact of the different types of mediation

systems on web search, in terms of precision, recall and F-measure. The

thesis concludes by identifying the contribution of the research programme

and the satisfaction of the stated objectives.

 3

Acknowledgement

I would like to take the opportunity to express my gratitude to everyone who

supported me in completing this research.

First I would like to acknowledge the enormous support and guidance

offered by my Director of Studies Dr. Rachid Anane. His advice, constant

support and encouragement were invaluable and have helped me acquire

new research skills and have also shaped my research ideas.

I am also thankful to my Supervisors Dr. Michael Odetayo and Prof. Anne

James for their support and feedback.

I would like to express my sincere appreciation to my colleagues at the DSM

group for creating a great atmosphere to work in. Thanks to them the time

spent on my research was not only fruitful but also a pleasant experience.

Finally I would like to dedicate this achievement to my family and friends.

Special thanks to my Dad Prof. Kartar Singh Pannu and to my husband Mr.

Harroop Singh Pannu. My Dad has always had faith in me, a priceless

motivation which I truly appreciate. My husband’s care and love made it

possible for me to complete this work.

 4

Table of Contents

Chapter 1: Introduction ..12

1.1 Introduction ...12

1.2 Web search ..13

1.3 Personalisation ..13

1.4 Document filtering ...14

1.5 Research aims and objectives ...15

1.6 Research programme..16

1.6.1 Web and personalisation ...16

1.6.2 Design and implementation of a mediation framework16

1.6.3 Evaluation ..17

1.7 Contribution ..17

Chapter 2: The Web and Search Engines ..18

2.1 Introduction ...18

2.2 World Wide Web ...19

2.3 Search Engines ..20

2.3.1 Popular search engines ..22

2.3.1.1 Google ...22

2.3.1.2 Yahoo! ...24

2.3.2 Search engines issues ...26

2.3.2.1 Keywords are expressed in Natural Language26

2.3.2.2 Search engines retrieval results are based on link popularity27

2.3.2.3 Search engines are vulnerable to spamming28

2.4 Search engine performance ..28

2.4.1 Precision and Recall ..29

2.4.2 Information retrieval system evaluation..32

2.5 Summary ...33

Chapter 3: Web Personalisation ..34

3.1 Introduction ...34

3.2 User Profiling ...34

3.2.1 Explicit Profile ...35

3.2.2 Implicit Profile ...36

3.3 Personalised Systems ...37

3.3.1 Content-based filtering system...38

3.3.2 Collaborative filtering system ...40

3.3.3 Hybrid systems ...43

3.3.4 Limitations of web personalisation ...44

 5

3.4 Summary ...46

Chapter 4: Information Retrieval Models ..47

4.1 Introduction ...47

4.2 Retrieval Models ...48

4.3 Document representation and processing ...48

4.4 Boolean Information Retrieval (BIR) ..50

4.4.1 Document representation in BIR ..50

4.4.2 Query representation in BIR ..51

4.4.3 Determination of document relevance in BIR ..52

4.4.4 Advantages and drawbacks of Boolean Retrieval Model.........................53

4.5 Vector Space Model (VSM) ..54

4.5.1 Document Indexing ...54

4.5.2 Determination of document relevance in VSM56

4.5.2.1 Example of VSM application ...57

4.5.3 Advantages and Drawbacks of Vector Space Model61

4.6 Probabilistic Information Retrieval (PIR) ..62

4.6.1 Probabilistic Information Retrieval principles62

4.6.2 Probabilistic Retrieval Example ..65

4.7 Advantages and Drawbacks of Probabilistic Retrieval Model66

4.8 Alternative retrieval models ..67

4.9 Summary ...68

Chapter 5: A Mediation Framework ..69

5.1 Introduction ...69

5.2 Rationale and context ...70

5.3 Design requirements and issues ...71

5.4 Overall Architecture of the mediation framework ...72

5.4.1 User profile generation ..75

5.4.1.1 Explicit profile..75

5.4.1.2 Implicit profile..75

5.4.1.3 Hybrid profile ...76

5.4.2 Document representation ..76

5.4.3 Document filtering ...76

5.4.4 Implementation ...77

5.4.4.1 Web search ..78

5.4.4.2 Keywords extraction ...80

5.4.4.3 Documents filtering ..83

5.5 Mediation systems ...88

5.5.1 Explicit mediation system ..88

 6

5.5.1.1 Implementation of the explicit system ...89

5.5.1.2 Explicit profile system database ...91

5.5.1.3 Creating explicit profile – pseudo code ..91

5.5.2 Implicit mediation system ..93

5.5.2.1 Implementation of the implicit system ..95

5.5.2.2 Implicit profile system database ...96

5.5.2.3 Creating implicit profile – pseudo code ..97

5.5.2.4 Implicit program code ..98

5.5.2.5 Code for creating the implicit user profile ...99

5.5.2.6 Retrieving search results for the implicit system 100

5.5.3 Hybrid system ... 101

5.5.3.1 Implementation of the hybrid system .. 102

5.6 System interaction ... 106

5.6.1 Explicit system Interface .. 106

5.6.2 Implicit System Interface ... 107

5.6.3 Hybrid System Interface .. 109

5.7 Summary ... 110

Chapter 6: Evaluation .. 111

6.1 Introduction ... 111

6.2 Evaluation methodology ... 111

6.2.1 Experiment setup .. 112

6.2.1.1 Experiment phase 1 ... 112

6.2.1.2 Experiment phase 2 ... 113

6.2.2 Documents rating .. 113

6.2.3 Measures of effectiveness ... 116

6.2.3.1 Precision .. 116

6.2.3.2 Recall .. 116

6.2.3.3 F-measure ... 117

6.2.4 Statistical significance of the results .. 118

6.3 Experiment phase 1 results .. 119

6.3.1 Precision and relative recall with Google and Yahoo! APIs 120

6.3.1.1 Precision of base Google and Yahoo! APIs 120

6.3.1.2 Relative recall of base Google and Yahoo! APIs 121

6.3.1.3 Overall precision and relative recall of base Google and Yahoo 122

6.3.2 Precision and relative recall for the explicit system 123

6.3.2.1 Precision of the explicit system using Google and Yahoo 123

6.3.2.2 Relative recall of explicit system ... 124

6.3.2.3 Overall precision and relative recall of the explicit system 124

 7

6.3.3 Precision and relative recall with the implicit system 125

6.3.3.1 Precision of the implicit system using Google and Yahoo 126

6.3.3.2 Relative recall of the implicit system ... 127

6.3.3.3 Overall precision and relative recall of implicit system 127

6.3.4 Precision and relative recall with the hybrid system 128

6.3.4.1 Precision of hybrid system using Google and Yahoo 128

6.3.4.2 Relative recall of the hybrid system .. 129

6.3.4.3 Overall precision and relative recall of hybrid system 129

6.4 Analysis of phase 1 results ... 130

6.4.1 Precision results for all systems ... 130

6.4.2 Recall results for all systems.. 132

6.4.3 F-measure results for different systems ... 134

6.5 Experiment phase 2 results .. 135

6.5.1 Precision and relative recall with the implicit system 135

6.5.1.1 Precision of Implicit system using Google and Yahoo APIs 135

6.5.1.2 Relative recall of the implicit system ... 136

6.5.1.3 Overall precision and relative recall of implicit system 136

6.5.2 Precision and relative recall with hybrid system 137

6.5.2.1 Precision of the hybrid system using Google and Yahoo 137

6.5.2.2 Relative recall of the hybrid system .. 138

6.5.2.3 Overall precision and relative recall of hybrid system 139

6.6 Comparison of the results from both phases of the experiment 140

6.6.1 Precision ... 140

6.6.2 Statistical significance of comparison of the systems precision 141

6.6.2.1 Comparison of the precision for hybrid system and the base APIs ... 142

6.6.2.2 Comparison of the precision for hybrid system and the explicit

 system ... 143

6.6.2.3 Comparison of the precision for hybrid system and the implicit

 system ... 144

6.6.3 Recal ... 145

6.6.4 Statistical significance of comparison of the systems recall 146

6.6.4.1 Comparison of the recall for hybrid system and the base APIs 147

6.6.4.2 Comparison of the recall for hybrid system and the explicit system . 148

6.6.4.3 Comparison of the recall for hybrid system and the implicit system . 148

6.6.5 F-measure ... 149

6.6.6 Statistical significance of comparison of the systems F-measure 151

6.6.6.1 Comparison of the F-measure for hybrid system and the base APIs . 152

 8

6.6.6.2 Comparison of the F-measure for hybrid system and the explicit

system .. 152

6.6.6.3 Comparison of the F-measure for hybrid system and the implicit

system .. 153

6.6.7 Summary of quantitative evaluation ... 155

6.7 Qualitative evaluation .. 156

6.8 Summary ... 158

Chapter 7: Conclusions and Further Work ... 160

7.1 Introduction ... 160

7.2 Research contribution and conclusions ... 161

7.3 Limitations of the research ... 163

7.4 Further Work ... 164

7.5 Summary ... 165

References.. 166

Appendix …………………………………………………………………………………………..178

 9

Figures

Figure 2.1: Web Structure ... 19

Figure 2.2: General web search engine architecture .. 20

Figure 2.3: Example of PageRank algorithm (Yip and Quiroga 2008) 23

Figure 2.4 Relevant and retrieved documents sets .. 29

Figure 3.1 PRES Architecture (Meteren and Someren 2000) 40

Figure 3.2 User based Collaborative filtering (Kamishima and Akaho 2006) 41

Figure 3.3 Overview of the Fab System (Balabanovic and Shoham 1997) 43

Figure 4.1: Information retrieval processes (Hiemstra 2009) 48

Figure 4.2: Example of documents representation for BRI 51

Figure 4.3: Example of documents representation for BIR 52

Figure 4.4: An example of two normalised vectors .. 57

Figure 4.5: Example of VSM documents ... 57

Figure 4.6: Example of VSM query ... 58

Figure 4.7: Example of retrieved results with term frequency 58

Figure 4.8: Terms ratings in documents after applying the IDF 59

Figure 4.9: After vectors normalisation... 59

Figure 4.10: Example of normalised query vector ... 60

Figure 4.11: Similarity between the document and the query 60

Figure 4.12: Example of documents ... 65

Figure 4.13: calculating the term weight ... 65

Figure 4.14: Calculating the relevance values ... 66

Figure 5.1: Overall Mediation framework .. 74

Figure 5.2: The sequence diagram for the findKeywords method 82

Figure 5.3: The sequence diagram for the buildVectorFromString method 83

Figure 5.4: The sequence diagram for calculating the similarity between

 Vectors .. 87

Figure 5.5: Explicit system .. 89

Figure 5.6: Simplified class diagram for the explicit system 90

Figure 5.7: Explicit profile table ... 91

Figure 5.8: Implicit system ... 93

Figure 5.9: Simplified class diagram for the implicit system 95

Figure 5.10: Implicit profile table ... 96

Figure 5.11: Hybrid system .. 101

Figure 5.12: Simplified class diagram for the hybrid system 103

 10

Figure 5.13: Explicit system interface ... 107

Figure 5.14: Implicit system interface ... 108

Figure 5.15: Hybrid system interface ... 109

Figure 6.1: Rating instruction provided to each user .. 114

Figure 6.2: Evaluation system during documents rating 115

Figure 6.3 Evaluation system showing documents scores 115

Figure 6.4: Precision of Google API ... 121

Figure 6.5: Precision of Yahoo! API ... 121

Figure 6.6: Relative recall of base Google and Yahoo! APIs 122

Figure 6.7: Precision and relative recall results for Google and Yahoo! APIs 122

Figure 6.8: Precision of Explicit system using Google.. 123

Figure 6.9: Precision of Explicit system using Yahoo .. 124

Figure 6.10: Relative recall of explicit system ... 124

Figure 6.11: Precision and relative recall results for the explicit system 125

Figure 6.12: Precision of implicit system using Google .. 126

Figure 6.13: Precision of Implicit system using Yahoo API 126

Figure 6.14: Recall of explicit system ... 127

Figure 6.15: Precision and relative recall results for implicit system 127

Figure 6.16: Precision of hybrid system using Google ... 128

Figure 6.17: Precision of hybrid system using Yahoo! API 129

Figure 6.18: Relative recall of hybrid system .. 129

Figure 6.19: Precision and relative recall results for hybrid system 130

Figure 6.20: Precision results for all systems.. 131

Figure 6.21: Average precision ... 132

Figure 6.22: Relative recall results for all the systems .. 133

Figure 6.23: Average relative recall... 133

Figure 6.24: F-measure ... 134

Figure 6.25: Precision of the implicit system using Google 135

Figure 6.26: Precision of implicit system using Yahoo ... 136

Figure 6.27: Recall of the implicit system ... 136

Figure 6.28: Precision and relative recall results for the implicit system 137

Figure 6.29: Precision of hybrid system using Google ... 138

Figure 6.30: Precision of hybrid system using Yahoo! API 138

Figure 6.31: Recall of the hybrid system... 139

Figure 6.32: Precision and relative recall results for the hybrid system 139

Figure 6.33: Overall precision .. 140

Figure 6.34: Distribution results .. 141

 11

Figure 6.35: Parameters for the precision comparison for hybrid system and

 the base APIs .. 142

Figure 6.36: Parameters for the precision comparison for hybrid system and

 the explicit system .. 143

Figure 6.37: Parameters for the precision comparison for hybrid system and

 the implicit system ... 144

Figure 6.38: Overall recall .. 145

Figure 6.39: Results distribution ... 146

Figure 6.40: Parameters for the recall comparison for hybrid system and

 the base APIs .. 147

Figure 6.41: Parameters for the recall comparison for hybrid system and

 the explicit system .. 148

Figure 6.42: Parameters for the recall comparison for hybrid system and

 the implicit system .. 149

Figure 6.43: F-measure ... 150

Figure 6.44: Distribution results .. 151

Figure 6.45: Parameters for the F-measure comparison for hybrid system and

 the base APIs .. 152

Figure 6.46: Parameters for the F-measure comparison for hybrid system and

 the explicit system .. 153

Figure 6.47: Parameters for the F-measure comparison for hybrid system and

 the implicit system ... 154

Figure 6.48 Summary of the evaluation results .. 155

Chapter 1: Introduction

 12

Introduction

1.1 Introduction

The Web has become an integral part of many social, business and scientific

activities. Its ability to act a repository for a vast amount of information and

as a medium for a variety of transactions, have contributed significantly to

its phenomenal growth. Some of the key factors that underline its ubiquity

as a foundational system include availability from anywhere and anytime,

simultaneous access to up to date information, and support for dynamic and

interactive modes of operation as well as access through familiar interfaces.

The reliance of the interactions on widely accepted protocols is a further

enhancement to the transparent identification and retrieval of resources.

The ad hoc and arbitrary nature of user intervention promotes a dual role for

users as both consumers and producers of information. These two

perspectives have a direct impact of the interaction with Web content. The

background, the context and the aims of the producers or authors lead, in

particular, to the creation and publication of documents of varied content,

description and quality. As consumers, users are potentially exposed to a

large number of documents whose relevance is now considered an important

criterion in assessing the usefulness of the Web.

C
h
a
p
te
r

1

Chapter 1: Introduction

 13

1.2 Web search

As a hypermedia system, the Web links billions of web pages and the role of

the search engines is to harness and marshal these resources and mediate

between the Web and the users. The mapping of a large portion of the Web

into the indexes of the search engine is designed to capture as much of the

web as possible. The narrowing and formulation of the search information is

achieved mainly through keyword specification.

Finding the required information on the Web can be difficult and time

consuming, and the results are often described by users as less accurate

than desired. Users may spend a lot of time and effort scanning through a

large amount of documents in order to find the relevant information. The

reliance mostly on keywords and its linguistic implications is one of the

major reasons for the low accuracy in information retrieval (Brusilovsky and

Tasso 2004). The retrieval process of most search engines is also influenced

by link popularity and page ranking algorithm. Web search engines are

designed to serve a generic user irrespective of individual needs and

interests. This raises the fundamental issue of how to identify and select the

information that is relevant to a specific user. This concern over the lack of

differentiation and precision has provided the foundation for the research

into Web Search personalisation. The current consensus is that the retrieval

process can be improved through the personalisation of the search process

and the filtering of documents according to specific needs and interests.

1.3 Personalisation

In personalisation the focus is on the needs of the individual users and their

queries. Personalisation can be automatic or customised (Pazzani and

Billsus 2007). With personalised systems the results become useful when

the user provides sufficient feedback on previously received results or

relevant profile information. The personalised filtering process starts with

individual users, their preferences and the generation of their profiles.

Chapter 1: Introduction

 14

A user profile is not confined to a list of keywords only; it may contain

information regarding user behaviour, context and other preferences (Ghosh

and Dekhil 2009). Gils et al. (2003) have defined a user profile as a whole set

of preferences that can affect the behaviour of a search engine, including

constraints put on the search results. Two approaches can be used for user

profiling: implicitly generated and explicitly generated. In implicit user

profiling, the behaviour of the users and their activities are observed from

different perspectives and the information is collected as the user interacts

with the system. Explicit profile generation, on the other hand, requires the

users to directly provide specific information in order to create an individual

user profile.

These two approaches raise some important issues. In many cases in the

explicit approach the users may not be fully aware of their current and

future needs. This approach may require pre-defined categorization of user

interests. Furthermore, it is intrusive and can be time consuming and

awkward for the user. However it affords the user with some direct control

over the search process. The other approach - the implicit profile generation

is transparent from the user point of view, but it is not trivial for an

automated system to determine the relevance of a page that the user is

viewing. The underlying assumption is that a user is expected to spend more

time on relevant pages, and may wish to print or save them instead of merely

reading them on-line. It entails that sole reliance on the gathering of

behavioural data during a browsing session may not be adequate and may

be open to interpretation. This method may not reflect accurately the current

interests of the user or their changes. Its main advantage however is that it

is not intrusive.

1.4 Document filtering

The personalisation process can either be focused on individuals and their

interaction with documents, or on the identification of shared patterns of

behaviour and the segmentation of the user population into groups of

common interests. In the first case, the content-based approach, the

coupling between user and content is an important part of the filtering

Chapter 1: Introduction

 15

process. In the second case, it is the nature of the generic behaviour of a

group that is the focal point of activity. Recommendation systems represent

one form of implicit collaboration between users and rely on historical

behaviour.

One issue in the personalisation and the filtering processes is the selection

of an appropriate model for the efficient representation and manipulation of

user profiles and documents. It should be capable of facilitating the

determination of relevant documents in terms of similarity between users

and documents.

1.5 Research aims and objectives

The primary goal of this research is to introduce a novel method of user

profiling that combines explicit and implicit profiles, and to investigate if and

how this integration can enhance the effectiveness of the retrieval process in

comparison with traditional search engines (Google and Yahoo!), in terms of

recall and precision. The following tasks have been identified as necessary to

achieve the objectives of this research:

� To identify and investigate issues related to the web and search

engines.

� To investigate the role of different personalisation techniques and

retrieval models in the enhancement of the quality of retrieval

process.

� To propose a novel approach for enhancing the filtering of search

results by combining selectively different methods.

� To design and implement a mediation framework that enables the

deployment of three different user profiling methods.

� To perform a quantitative evaluation of the mediation framework in

terms of precision, recall and F-measure as well as a qualitative

evaluation.

Chapter 1: Introduction

 16

1.6 Research programme

This research is concerned with the investigation of personalisation in Web

search and the presentation of a searching approach based on user profiling.

The approach is applied in the design and implementation of a mediation

framework, which incorporates variants of explicit and implicit user profile

generation. The research work is supported by an evaluation of the proposed

approach.

This thesis details the different stages of the research work in conformance

with the stated aims and objectives. Conceptually, the thesis is divided into

three main parts: Web and personalisation, design and implementation of a

mediation framework and evaluation.

1.6.1 Web and personalisation

This part defines the context of the research programme, and identifies

issues related to the Web and the search engines and their limitations. It

provides the rationale for the investigation of the role of personalisation and

relevant techniques in the enhancement of the quality of the retrieval

process. Approaches to user profile generation and models for information

representation and filtering are investigated and detailed.

1.6.2 Design and implementation of a mediation

framework

The proposed approach is aimed at investigating the impact of different

modes of mediation on the Web search process within a content-based

framework. Three types of mediation are considered; they all involve profile

generation, document representation and information filtering. In the first

type of mediation the users are required to explicitly specify their interests.

In the second type the system plays an active role in generating a profile for

the user implicitly, through the monitoring and the recording of specific

features of the interaction of the user with documents. In the third type of

mediation, the explicit and implicit methods are combined into a hybrid

Chapter 1: Introduction

 17

system to improve the filtering process. The three types of user profiling are

incorporated into the design and implementation of a mediation framework.

1.6.3 Evaluation

An extensive quantitative and qualitative evaluation of the framework is

presented. In the quantitative evaluation the performance of the three

mediation systems is measured in terms of two metrics: precision and recall.

Experimental results are presented and analysed as part of a comparative

evaluation with Google and Yahoo. The mediation framework is also put into

a wider research context through a qualitative evaluation against other

systems.

1.7 Contribution

The main contributions of this research are detailed as follows:

• The proposal of a novel approach which seamlessly combines explicit

and implicit user profiling.

• The design and implementation of a mediation framework that follows

the proposed approach.

• The implementation of three different mediation systems, explicit,

implicit and hybrid.

• The experimental evaluation of the three systems in terms of precision

and recall, and the statistical validation of the results.

• The validation of the view that personalisation can offer an effective

way of dealing with information overload.

Chapter 2: The Web and search Engines

 18

The Web and Search
Engines

2.1 Introduction

The growth of the Web and the increase in the number of users owe much to

the important part that search engines have played in facilitating access to a

vast repository of information (Lawrence 2000). The increasing amount of

information and services available on the Web has a significant impact on

users. Finding the relevant information on the Web can be incrementally

difficult, time consuming, confusing and frustrating for most web users. The

quality of the Web Search is often due to the fact that the design of Web

Searching systems lacks any awareness of the needs of users (Bernard and

Spink 2006). Search methods and algorithms need to be adapted to help find

relevant results faster by improving recall and precision. In order to retrieve

and provide the information a user is searching for there is a critical need to

understand how people use the Web, how they search for information and

what tools and techniques they use to find documents that are relevant to

them. This chapter is concerned with the presentation of the salient features

of the Web and the search engines, and ways of evaluating their

performance.

C
h
a
p
te
r

2

Chapter 2: The Web and search Engines

 19

2.2 World Wide Web

The Web is a collection of interlinked documents accessible via the Internet.

Initially, the Web was designed to help a changing society with

communicating and sharing ideas (Hendler and Berners-Lee 2010). In

general, users try to acquire information by entering keywords or known

URLs. However, the way to express requests in terms of keywords remains

a significant challenge.

Conceptually, the Web is divided into two parts, the visible web and the

invisible web. The visible web allows crawling and indexing of information

by search engines; as every page within it can be reached from other pages

through hyperlinks (Berners-Lee et al. 1994).

Figure 2.1: Web Structure

Figure 2.1 describes the structure of the Web. In the visible web, documents

are linked to each other either directly or indirectly. Documents which are

part of the visible Web can be indexed and retrieved by general search

engines like Yahoo!, Google, or AltaVista. In the invisible web, however, the

pages are disconnected from the visible graph and thus they cannot be

reached by any indexer. Once a page from a disconnected cluster becomes

visible, either by being linked from a visible page or being added directly to a

crawler database, the web crawlers will be able to index that page. However,

even if a page is connected to the visible web, it may not be useful to the

Visible web

Invisible web

Web

Web

Chapter 2: The Web and search Engines

 20

search engine if the information on the page requires user authentication.

Although search engines allow users to perform quick search on millions of

web pages, they are still unable retrieve information from the invisible Web

due to limited access.

2.3 Search Engines

A search engine is a tool for retrieving information from the Web (Bernard

and Spink 2006). The term search engine is often defined for both directories

manually created by humans as well as crawler-based search engines

(Holmes, 2006). Some search engines such as Yahoo! and Google also

include ‘’Yellow pages’’ – directories that a user can browse to find the web

pages offering a variety of content. Search engines retrieve results based on

similarity of documents to a user query, and retrieve everything that has

high similarity, irrespective of whether it is relevant or not. Most of the

documents returned by the search engines contain or are related to the

keywords entered by users during query formation. Very often the results do

not match the interests or preferences of users. Search engines that rely on

keywords only return many low quality search results (Brin and Page 1998).

This issue can be better explored by considering the structure and behaviour

of a search engine.

Figure 2.2: General web search engine architecture

Query
Matche
r

Result

Quer

Feedback

User interface
Index

Document

Retrieve

Analyse
r

Collection

Indexer

Chapter 2: The Web and search Engines

 21

Figure 2.2 presents the overall architecture of a search engine. In general a

search engine includes two main parts. The first part is concerned with the

creation of a repository of documents, and the second part with query

processing. In document gathering, the document manager collects the

documents, analyses them and sends them to the indexer. The Indexer

creates a large database containing information about the content of web

pages without actually storing the entire pages. The stored information is

updated on a regular basis to keep the current versions of frequently

changing pages and to discover new documents.

In the part responsible for the query processing the query is received from

the user through the search engine interface. The interface usually allows

users to express their information needs in keywords. The query processor

analyses the tokenized terms, deletes stop words, applies word stemming,

creates a query representation and computes the weight by matching the

similarity the query and the content of individual documents in the

database. The returned results are ordered and presented to the user based

on a ranking algorithm specific to each search engine. Google makes use of

the PageRank algorithm for ordering the web pages based on their

popularity, a feature which is different from the factors that underpin the

main retrieval models; the Boolean model, the vector space model and the

probabilistic model (Yip and Quiroga 2008). Other search engines such as

Yahoo! and AltaVista utilize similar algorithms. A search engine scoring

algorithm can be based on Boolean logic (present or absent query terms),

term frequency, and query term weight (Liddy, 2005).

When a user enters the keywords of interest into the search engine, the

engine scans its own database for the web pages with contents that match

the entered query and returns their URLs (Busby, 2003). The results

retrieved by the search engines may not satisfy the needs of the users,

especially when the documents are long (Li and He 2010).

Chapter 2: The Web and search Engines

 22

2.3.1 Popular search engines

This section presents a review of two popular search engines, Google and

Yahoo!. Some of the techniques and searching algorithms used by search

engines to retrieve documents from the Web are also described.

2.3.1.1 Google

Google was founded by Stanford university students Larry Page and Sergey

Brin in 1998. Google uses the automatic Boolean operations between the

terms in a query – users can specify which keywords have to be present in

the retrieved documents, which are wanted but not required and which

should not be present in retrieved documents (Burright 2006). A spell

checking mechanism is built into the search engine which can positively

increase the experience of the user by displaying suggestions as to how an

entered query can be rewritten. One of the most important factors in the

success of Google is that the relevance ranking is based not only on indexed

page content but also on hyperlinks analysis.

The Google search engine uses its own algorithm for ordering the search

results (Brin and Page 1998). The PageRank algorithm is used to estimate

the quality of a document; it calculates the score depending on how many

other documents are referring to it (the more the higher the rank), on how

the referring pages are rated themselves (a higher ranked page has higher

influence), and on how many pages the evaluated document has links to -

the more outgoing links the worse the value for that page will be (Grossman

and Frieder 2004). These criteria tend to increase the calculated ranking for

popular documents (presumably better quality documents); these documents

will be retrieved more often even if their similarity to the entered query is not

very high.

Chapter 2: The Web and search Engines

 23

Figure 2.3: Example of PageRank algorithm (Yip and Quiroga 2008)

Figure 2.3 presents a simplified idea of how a PageRank value can be

calculated for a website. Each rectangle represents a web document, and the

number inside represents the PageRank value of that document. The value

assigned to each document depends on the value for each of the pages that

reference that document, and on the number of web pages that are

referenced by that document. Each web page is assigned a score that

represents how important this page is for other documents. In the example

document A is referencing two documents, its score is 0.4 and therefore the

score for each of the referenced documents is increased by 0.2; documents B

and C both have 0.2 sore. Document B is referencing the document C;

therefore the score of document C is increased by a further 0.2. Finally,

document C is referencing document A which raises its score to 0.4 (Yip and

Quiroga 2008).

Another design feature of Google aimed at improving the search result is the

indexing method. In a basic indexing scheme the importance of a keyword

for a document depends on how many times it appears in the document. In

the Google indexing mechanism the keywords are considered more

important if they appear in the headings or at the top of the document. The

PageRank algorithm and the indexing method are the key to the success of

Google over other search engines (Brin and Page 1998). The PageRank

aa0682
Typewritten Text

aa0682
Typewritten Text
Fig 2.3 has been removed due to third party copyright. The uabridged version of the thesis can be viewed at the Lanchester Library, Coventry University

aa0682
Typewritten Text

Chapter 2: The Web and search Engines

 24

algorithm represents one method of improving the quality of search results

in terms of precision rather than recall (Yip and Quiroga 2008).

In order to manage the extremely large data sets generated by the indexer

Google introduced the MapReduce framework in 2004. A map function is

executed on distributed machines in clusters to generate a list of key/value

pairs from each machine; the lists are later merged by the reduce function to

create the final result. For example, when a search query is being executed,

for every machine in a cluster the map function could analyse the

documents stored on that machine to produce a list of documents relevant

to the query. This smaller set of data produced by each host in the cluster

can then be further condensed by combining lists from each host into one

final list. This approach allows the scaling up of the system by adding more

machines to a cluster or by connecting distributed clusters (Dean and

Ghemawat 2008). To further improve scalability, clusters can be duplicated.

When a user submits a query, the system balances the load by forwarding

the query to a cluster with a low load. The query is then processed by the

search engine with the use of the copy of the database that is available in

that cluster.

 According to Google over one hundred factors such as popularity of the page

(PageRank), the position of keywords in a page (e.g. whether they are in the

header or not), and the distance between the keywords are considered when

generating the list of documents that match the query. The detailed

algorithm used by Google is protected in order to minimise the possibility of

creating spamming pages designed especially to be ranked highly by the

search engine without having any useful content (Blachman and Peek 2007).

2.3.1.2 Yahoo!

Yahoo! was developed by David Filo and Jerry Yang in 1994. Yahoo! has a

large search engine database that also includes the Yahoo! directory. It

supports full Boolean search features like AND, OR and NOT. Search terms

are connected by AND operator by default (Notess 2008). Besides the Web

Chapter 2: The Web and search Engines

 25

Search the MyYahoo! portal has customised features like stock prices,

weather, news and sports and the portal interface can be personalised by the

users (My Yahoo! 2011).

Similarly to the Google Search the Yahoo! search process involves two steps.

The first step involves building and maintaining the database, and the

second one is concerned with finding a list of documents in response to a

query entered by a user.

In the first phase, Yahoo! uses a web crawler that follows all static links

(with exception if a link leads to a directory or file that is marked as

excluded). Dynamic pages are not indexed and Yahoo! recommendation to

developers is not to use dynamic links for pages that should be indexed. Not

all hyperlinks retrieved from the indexed document are valid. For some of

the links a server can return HTTP error 404 stating that the document with

the URL stored in that link is invalid. The crawler would normally ignore

such URLs, however some servers instead of returning the error present a

custom document that informs a user about the error. To avoid indexing

such error information documents as standard content, the Yahoo! crawler

tries to create URLs that will be invalid, by appending several random

strings to the URL of one of the documents from the domain that is being

indexed.

A phrase-based indexing is used to represent each visited document. The

importance of each term depends on the number of occurrences and on the

position of the terms within the document (Slawski 2008). The Yahoo!

search engine also analyzes document attributes such as title, meta-tags

and associated links (Yahoo! Advertising Blog 2010).

The second part of searching is information retrieval – documents in the

database are compared to the query, and the most similar documents are

returned. The search results are sorted based on the similarity of the query

to the document (Notess 2008). In addition the ranking algorithm makes use

of Click Popularity – a value describing how often a link is chosen by the

Chapter 2: The Web and search Engines

 26

users from the search results. If more people click the URL of web site, then

it is considered important and is ranked higher (My Yahoo! 2011).

It is expected that from early 2012 Yahoo! will stop using its own search

engine and will provide results from Microsoft Bing. In the United States this

transition has already occurred in 2010 (Yahoo! Advertising Blog 2010).

2.3.2 Search engines issues

This section is concerned with the identification of the major limitations of

search engines.

2.3.2.1 Keywords are expressed in Natural Language

One of the main issues in Web Information Retrieval is that the domain of

discourse of humans is often not taken into account by the search systems.

The natural languages used by humans are not being interpreted

appropriately by machines. Instead, keywords are being simply compared

with words in documents without analyzing their meaning. If any keyword is

missing in the text or if it is spelt incorrectly or a different variant of the

same word is used its interpretation by the search engine may be incorrect

and may yield inconsistent or irrelevant results. This potential mismatch

between the search engine and the interests of the user may have an adverse

effect on the user experience. This reliance on keywords only can result in

low quality of matches (Brin and Page 1998), and is a major reason for the

low retrieval accuracy (Brusilovsky and Tasso 2004). One keyword can have

different meanings. For example, two different users enter a query for

“Orange” as the search query, motivated by different needs. If the first user

is interested in Orange – as a mobile phone company, and the second user is

interested in a kind of fruit, then irrespective of the meaning of the keyword

the query is same for the search engine.

Sometimes users are unsure about the terms or keywords that they have

typed in the search text box, and even when a query is very specific, the user

may still not be able to find desired documents. Search engines have a very

Chapter 2: The Web and search Engines

 27

limited mechanism for expressing the information according to the needs of

the users (Brusilovsky and Tasso 2004).

Search engines like Google deal with this problem by providing spellchecking

and generating suggestions of different keywords that are often used in

conjunction with keywords entered by the user (Google Help 2011). Search

engines are programmed to produce results based on what most users are

looking for when using particular keywords. For example, sometimes one

word may refer to multiple items, such as ‘science’ may refer to computer

Science, science games or science museum. Search engines results are

based on average trends rather than the needs of a single user as they are

often not able to track the behaviour of individual users.

2.3.2.2 Search engines retrieval results are based on link popularity

In the link popularity scheme, popular pages become more popular and new

pages or unlinked pages are extremely hard to find. Sometimes it is

impossible to access high quality information through search engines

(Lawrence, 2000). For example, Google search technology ranks the pages

according to link popularity rather than users interest (Busby, 2003); it does

not consider the intentions of the user in ranking relevant pages to the user

(Grimmelmann, 2007). If two different users - with different interests -

submit the same query with different intentions the same result can be

returned (Sugiyama, Hatano and Yoshikawa 2004). Many results do not

reflect the intention of the user (liu, Yu and Meng 2006). Almost half of the

documents returned may not be relevant to the user because the search

engines do not often filter the pages to satisfy the preferences of the user

(Tanudjala and Mui 2002).

Google addresses the problem of low rank for new pages by continuously

updating its index. How often a web portal is revisited depends on how high

is its rank and how often it has changed in the past. With its algorithm the

Google search engine allows access to pages updated on a daily basis, like

documents published on news portals (Google Webmaster Tools Help 2011).

Chapter 2: The Web and search Engines

 28

2.3.2.3 Search engines are vulnerable to spamming

Another problem that search engines have to face is that web developers who

are aware of the algorithms used by search engines can design web pages

that appear higher in search results – without increasing the quality of

documents content. Yahoo! defines spam as pages that have been created

using these techniques to promote results that are inappropriate, redundant

or poor-quality. These techniques includes inserting keywords that are

unrelated to site (often by inserting text that is invisible to the user or

presenting different versions of a page to the search engine). It can also be

done by creating farms of websites designed only to increase rankings of

other pages (Hunt, 2005) by e.g. providing links to these pages, surrounded

with keywords that are not related to the page, but are often used in search

queries.

2.4 Search engine performance

Web search results depend on three important aspects: the size of the Web,

how frequently the information is updated and the ranking algorithm used

by search engines. These factors and the arbitrariness of some results have

called into question the usefulness of search engines, and led to the

introduction of ways of evaluating the quality of the retrieval process.

To achieve a high quality of search results the system needs to match the

results with the queries of the users and their information needs. In a

perfect situation the information retrieval system retrieves only relevant

documents and all relevant documents are retrieved. However, in many

situations users will very often be presented with relevant and non-relevant

documents in response to a query, and some relevant documents will not be

included in the results.

Chapter 2: The Web and search Engines

 29

Figure 2.4 Relevant and retrieved documents sets

Precision and recall are widely used in information retrieval as a measure of

the effectiveness of a system. Figure 2.4 gives a graphical representation of

the documents space and documents classification.

2.4.1 Precision and Recall

Precision and recall were introduced as measures for evaluating the

effectiveness of search engines (Mowshowitz and Kawaguchi 2005). In

information retrieval they are expressed in terms of retrieved documents,

those returned by a search engine in response to a query, and relevant

documents, those related to the search topic.

Precision is the percentage of relevant documents within the list of retrieved

documents, while recall is the percentage of relevant retrieved documents

within the list of the all relevant documents. The need to measure the

effectiveness of the system is to determine whether it provides a better

ranking of results compared to traditional searching methods. Both

precision and recall values are considered crucial for measuring the

effectiveness of the system. It is worth noting in particular that precision is

not binary but continuous.

Precision is the proportion of the number of relevant documents retrieved to

the total number of retrieved documents.

��������� 	 ��
��� �� �������� ����
���� ���������
����� ��������� ����
���� [Equation 2.1]

Relevant Retrieved

Relevant Retrieved

Chapter 2: The Web and search Engines

 30

Precision measures the correctness or exactness of the results – in the

perfect situation when all relevant documents are returned, the precision

value would be one. When users are searching the Web via search engines,

they only interact with the top N of the retrieved results. The top N results

are considered the most important (Polyvyanyy and Kuropka 2007, Beza-

Yates and Ribeiro-Neto 1999).

A system could have a good precision record when retrieving 15 documents

but only 13 of them are relevant to the needs of the user. There are

situations however where many documents – that also would be found

relevant by the user – are not retrieved by search engines; this results in low

recall.

Recall is a measure of the completeness or sensitivity of the retrieval

process. Recall is the proportion of the number of relevant documents

retrieved to the total number of relevant documents based on user query

(Polyvyanyy and Kuropka 2007).

������ 	 ��
��� �� �������� ����
���� ���������
 ����� ��
��� �� �������� ����
���� [Equation 2.2]

Recall measures the comprehensiveness of the result and consequently high

values are desired. The problem at this point is that estimating the number

of relevant documents is a non-trivial task (Grossman and Frieder 2004).

Precision and recall are often combined with equal weight into a single

measure, Fβ, for positive real values of β. This measure was derived by van

Rijsbergen and has the additional advantage of assigning different weights to

precision and to recall (Van Rijsbergen, 1979).

�� 	 1 " #$%. '��������·������
)* ·'��������+������ [Equation 2.3]

By setting β to a value bigger than 1, more weight is given to recall, whereas

a value lower than 1 means that precision is weighted higher than recall

(Van Rijsbergen 1979 and (Manning, Raghavan and Schutze 2008).

Chapter 2: The Web and search Engines

 31

The most common value for β is 1 which yields the harmonic mean of

precision and recall (Beza-Yates and Ribeiro-Neto 1999, (Manning, Raghavan

and Schutze 2008). The F-measure or balanced F-score is represented by the

following formula:

� 	 2 -��������·.�����
-��������+.����� [Equation 2.4]

The F-measure is a measure of the accuracy of the retrieval process, and has

the advantages of generating a single value for comparative evaluations.

The determination of precision and recall and the combination of their

relative values yields four possible cases (Mowshowitz and Kawaguchi 2005):

� Case 1: recall is high and precision low – when most of relevant

documents have been retrieved, but the number of irrelevant retrieved

documents is very high.

� Case 2: recall is low and precision is high – when most of the relevant

documents are not retrieved, but the number of irrelevant documents

is lower – Kumar and Prakash (2009) point out that in their study

this case applies to simple one word queries in Yahoo!.

� Case 3: recall is low and precision is low – when retrieved documents

are mostly irrelevant and majority of relevant documents is not

retrieved.

� Case 4: both precision and recall are high – when most retrieved

documents are relevant and only some irrelevant are included.

In the extreme cases, a value 1 for the precision indicates that all the

returned documents were relevant, but offers no suggestion on whether all

the relevant documents were retrieved. A value of for the recall is a clears

statement that all relevant documents were retrieved, but is silent on the

number of irrelevant documents. It is generally agreed that in the retrieval

process, most search engines display an inverse relationship between

precision and recall. The recall can be improved by retrieved more

Chapter 2: The Web and search Engines

 32

documents at the cost of precision by also retrieving more irrelevant

documents (Kumar and Prakash 2009).

2.4.2 Information retrieval system evaluation

A framework for the evaluation of an information retrieval system includes

the following:

1. A document test collection.

2. A set of information needs expressed as queries often in terms of

keywords.

3. A set of relevance judgements for the documents retrieved. The

documents are manually assessed as relevant or irrelevant on the

basis of individual query-document pair.

Many document collections that can be used for information retrieval

systems exist. GOV and REUTERS RCV1 are good examples. Traditionally

the TREC (Text Retrieval Conference) collection has been used for testing the

performance of various retrieval systems (Voorhees and Harnam 2005).

TREC and GOV2 are collections maintained by the US National Institute of

Standards and Technology (NIST).

As the processing and judgment of the whole web is infeasible, competing

retrieval systems are evaluated by applying them to one or more of the

documents collections. A pool of documents can be created as the union of

several collections, where duplicates are removed. The pool represents all the

documents, and all relevant documents are assumed to be in the resulting

pool.

As the collection in the database of most search engines holds millions of

documents, the pooling approach pioneered in TREC was applied

successfully to the search engines by various researchers (Clarke and Willett

1997, Kumar and Prakash 2009, Shafi and Rather 2005). The use of many

search engines is motivated by the need to access a larger pool of documents

Chapter 2: The Web and search Engines

 33

and to overcome the inherent bias of the search engines (Mowshowitz and

Kawaguchi 2005, Mowshowitz and Kawaguchi 2002).

The precision and recall can now defined in terms of the pool of documents

retrieved by all the systems:

��������� 	 ��
��� �� �������� ����
���� ��������� �/ �/���

��
��� �� ����
���� ��������� �/ �/���
 [Equation 2.5]

The recall is relative and is defined as:

����0�1� ������ 	 ��
��� �� �������� ����
���� ��������� �/ �/���

����� ��
��� �� �������� ����
���� �� �2� '��� [Equation 2.6]

The definition of these measures will be further refined in the evaluation in

Chapter 6 in order to take into account the manual judgment of the

documents by using a fixed scale.

2.5 Summary

In the search for relevant documents through search engines, users have to

go through several queries in order to find the results that match their

interests. A query may be interpreted as encapsulating all the interests of a

user, which may produce irrelevant documents. One of the reasons for the

lack of precision is the fact that users enter short and specific queries.

Search engines retrieve all the results based on a single user query and often

do not take into account the information needs of the users. This concern

over the lack of differentiation and precision has provided the focus for the

research into personalisation systems, where search results are filtered

according to the profiles of users. The aim of these systems is to improve the

precision and the recall of the retrieval system, by adapting the web search

process to specific information needs.

Chapter 3: Web Personalisation

 34

 Web Personalisation

3.1 Introduction

This chapter is concerned with web search personalisation. Web search

personalisation involves creating systems that can take into account the

preferences of users to filter the search results according to their information

needs. As the sources of information on the web and the number of web

users are increasing every day, it is crucial to improve the quality of search

results. The techniques used by search engines and personalised systems

tend to retrieve both relevant and irrelevant information. This demands

advanced solutions for acquiring the information that meets the needs for

users (Klusch 2001). This chapter involves the examination of the

techniques used for filtering web documents. The focus of this chapter is on

explicit and implicit user profiling. It also reviews some content-based and

collaborative filtering systems as well as hybrid systems.

3.2 User Profiling

User profiles can contain a set of preferences regarding system behaviour

and constraints on the search results (Gils et al. 2003). In general, user

profiles are not defined by a simple list of keywords which represents the

user interests; they may contain user information regarding behaviour and

C
h
a
p
te
r

3

Chapter 3: Web Personalisation

 35

context (Ghosh and Dekhil 2009). A system can collect information for the

user profile from the browsing history and documents ratings (provided by

users) to improve the search results (Gasparetti and Micarelli 2007). Users

can mark the information on different pages as interesting and choose the

most relevant according to their interests (Grcar, Mladenic and Grobelnik

2005). Previous queries can also be recorded and reused to improve the

search effectiveness.

In user profile creation two kinds of approach are considered particularly

useful for information retrieval: explicit user profiling and implicit user

profiling. In the explicit profile a user creates the profile or provides feedback

on the basis of their needs, while in implicit approach the system creates

profiles based on search histories and browsing behaviour.

3.2.1 Explicit Profile

Explicit profile creation involves asking users for specific information in

order to create an individual user profile. To learn about specific users

needs, a large amount of information is required from users. The information

regarding the interests of the user is usually gathered by specifying

keywords or giving feedback on visited documents (Salton et al. 1997).

Salton et al. (1997) have considered user involvement as a powerful way of

improving the relevance of the search results, and new system based on the

information explicitly provided by users are constantly being developed

(Rastegari and Shamsuddin 2010). Relevance feedback relies on explicit

assessments provided by users.

Stegmann (2005) presented an approach to explicit user profiling that

compiles personal interests by means of an adaptive natural language

dialogue. The system captures the information provided by users during a

dialogue session and stores it in an explicit user profile.

The explicit profile creation can help specify the result and user preferences

over time (Smyth and Wilson 2003). However, the lack of user understanding

in terms of keyword search can complicate the process of finding relevant

Chapter 3: Web Personalisation

 36

results. When users get search results prepared for an average user, they

have to go through many returned documents to find the relevant ones. In

the explicit user profile generation users can build their own profile

according to their specific interest and needs. However to reduce the

cognitive burden on the user, implicit feedback can be used with the same

effectiveness as the explicit feedback (Hopfgarter et. al 2008).

3.2.2 Implicit Profile

The process of creating explicit profile increases the cognitive burden on the

users. In general, users are very reluctant to provide feedback (White, Jose

and Ruthven 2003) and for that reason different techniques are proposed to

implicitly estimate the feedback that would be given by a user (Hussein and

Elsayed 2008).

A number of methods have been used for implicit profile generation to

improve the search results on the web. Implicit generation requires

observing user behaviour and capturing their search histories (Shen, Tan

and Zhai 2006, Gasparetti and Micarelli 2007). User actions that needs to be

observed includes time spent on reading a web page, saving, printing,

clicking, selecting, and bookmarking (Claypool, Waseda and Brown 2001).

Aoidh, Bertolotto and Wilson (2007) proposed an implicit profiling that

involves capturing user mouse movements as well – e.g. by storing text

under the mouse pointer, as user may be using the mouse pointer for

reading. A more recent approach used by Hussein and Elsayed (2008) has

involved capturing users’ facial expression to implicitly estimate the users’

interest in a document being displayed.

Gasparetti and Micarelli (2007) proposed a technique for building implicit

user profiles with the help of browsing history. The algorithm relies heavily

on the textual context of the links followed by users during browsing. The

disadvantage of this or similar algorithms is that these algorithms rely only

on a positive feedback (Gemechu, Yu and Ting 2010). One advantage of this

technique is that it does not require user involvement. Changes in the

Chapter 3: Web Personalisation

 37

interests or search area of the users may not be reflected immediately in the

results returned by the search engines.

3.3 Personalised Systems

The relation between a user query and web pages is problematical and is

driving the research in the field of information retrieval. Users have a variety

of needs and the retrieval systems are often unable to offer the solution to

fulfil individual user requirements (Zigoris and Zhang 2006). The retrieval

system or search engines retain large, fast growing indexes can cause the

performance of searching techniques to decrease, which is one of the main

causes for the low quality of search results (Sankaradass and Arputharaj

2011). Researchers have classified and introduced various schemes for web

personalisation (Pazzani and Billsus 2007). Personalised systems help users

overcome the limitations of web search by extracting keywords based on

individual preferences (Rastegari and Shamsuddin 2010). Personalisation

can be automatic (implicitly) or customised (explicitly). The customisation

may be able to help filter out the irrelevant document according to an

individual user preference (Gauch, Chaffee and Alaxander 2003, Sieg,

Mobasher and Burke 2004). However, the personalised search engines

results focus on the users rather than only on their submitted queries

(Ferragina and Gulli 2005). Instead of focusing on the query alone, a

personalised system can use the information stored in a user profile, created

either implicitly or explicitly, to present more relevant documents in search

results by filtering and reordering the results of a query (Rastegari and

Shamsuddin 2010).

There are three main kinds of personalised systems that are considered

effective for filtering and retrieving the information on the web: content-

based filtering, collaborative filtering and the combination of both called

hybrid filtering.

Chapter 3: Web Personalisation

 38

3.3.1 Content-based filtering system

A content-based system makes recommendations based on a description of

a web page (or an item in a shop inventory) that has been created during

indexing, and on the interests of the users. The system first collects the

explicit preferences of the user and then evaluates the relevance of web

pages in terms of its content and similarity to user preferences. It scrutinises

the description of the items to identify items that are of interest to a

particular user (Pazzani and Billsus 2007). The information about the

preferences of the users is gathered from requested web pages (or items

descriptions) in the form of feedback. For that reason, the system can only

suggest items in the same category of items that have been previously

explored by the user.

According to Ichikawa et al. (2008), a content-based system makes the

recommendation of items that are similar to items used previously in

conjunction with currently visited items, or the item with the highest

similarity to the ones preferred in the past by the user. The system will add

suggestions which the user might find interesting or useful based on

previous history of the user and contents similarity.

Syskill & Webert (Pazzani, Muramatsu and Billsus 1996) is a content-based

system that makes recommendations of web pages based on explicit user

feedback. A user can rate a page on a three points scale. If the user rates

some links in a web page, the system recommends to users other related

pages that might be of interest. Once a page is ranked as high, the system

analyses the page content to learn about the information the user is

interested in. The system can be used to make an item recommendation that

is based either on the user interest profile or the user’s query (Garden and

Dudek 2006). This method is based on accurate item data and

neighbourhood structure. Naming the current browsing subject to create

a separate profile depending on what the user is searching for. The system

does not help the user to explore new topics because it can only make the

recommendations based on similarity to previously visited pages. If the user

Chapter 3: Web Personalisation

 39

wants to change the area of interest then a new profile has to be created for

the new area (Pazzani and Billsus 2007).

Letizia (Lieberman 1995) was a content-based system that was designed to

help explore the web by implicitly learning user interest by analysing the

individual user browsing behaviour. It was assuming that the user is

interested in a document if the document was saved or bookmarked, and

that user was not interested if the document was left without following links

inside it. The system then analysed the documents linked to currently

displayed web page and suggested linked documents that the user was likely

to find interesting or useful according to the system. WebWatcher was

a similar system that was designed to discretely retrieve information from

the web pages available through the links from a visited web page (Mladenic

1996). Both systems were learning without interacting with the users, and

did not ask users for keywords or rankings. The WebWatcher system was

also suggesting links to the users based on their similarity to individual

user’s choice of web pages (Mladenic 1996). Although the focus of many

researchers has been on the methods of implicit learning, the reliability of

these methods is still an issue (Jung, Herlocker and Webster 2007).

Budzik and Hammond (1999) proposed a similar method that automatically

retrieves documents from links on the currently opened web page and

proposes the URLs that lead to documents that conform to the previous

behaviour of the user. The main advantage of this technique is that it does

not require specific feedback. The data can be gathered at no extra cost from

the user perspective (Kelly and Belkin 2001). However, as the user profile is

created in an implicit way, the observed information does not necessarily

reflect the user’s intention.

Personalized Recommended System (PRES) makes recommendations based

on the comparison of the user profile with each document in the collection of

indexed documents (Meteren and Someren 2000). PRES collects articles

about home improvements and creates dynamic hyperlinks to make

searching easier (Meteren and Someren 2000). First, the system removes all

Chapter 3: Web Personalisation

 40

HTML tags and stop words and then removes the prefixes and suffixes. For

example, the word “Computer” and “Computing” is reduced to “Comput”.

The users explicitly set their preferences to improve the effectiveness of the

search result (Swapna and Ravindran 2008).

Figure 3.1 PRES Architecture (Meteren and Someren 2000)

Figure 3.1 shows the PRES architecture. In this system, the user requests

web pages and provides the feedback to the user profile. The system learns

the user profile from the user’s feedback. It compares the user profile with

the documents of collection in the basis of relevance and similarity (Meteren

and Someren 2000). To improve the performance a user can provide

feedback based on received content (Swapna and Ravindran 2008).

3.3.2 Collaborative filtering system

Two approaches to collaborative filtering are considered: user based and

item based. A collaborative filtering system can recommend content to a user

by learning from similar users, or by detecting groups of similar items

(Khribi, Jemni and Nasraoui 2009).

Profile

aa0682
Typewritten Text
Fig 3.1 has been removed due to third party copyright. The unabridged version of the thesis can be viewed at the Lanchester Library, Coventry University

aa0682
Typewritten Text

Chapter 3: Web Personalisation

 41

In a user based collaborative system, the method assumes that similar users

prefer similar things. The system compares a user rating with the ratings

given by other users to find similar users (Rashid et al. 2002). A

collaborative system can make recommendations to a user based on the

items that were chosen by similar users. The system uses the feedback from

a set of people concerning a set of items for recommendation but ignores the

content of the items. It does not make any recommendation for new users

until it finds a group of similar users (Klusch 2001).

Figure 3.2 User based Collaborative filtering (Kamishima and Akaho 2006)

Figure 3.2 illustrates the idea of the user-based Collaborative filtering. The

recommendation is based on items selected by other users grouped together

with the targeted user. The content of each item is ignored – the

recommendation is only based on users’ recommendations.

The system scans set of items to find items that are similar to the items

bought or visited before by the targeted user (Sarwar, Konstan and Riedl

2005). The system takes items that were, for example, bought by different

users together with the visited item. The similarity between the users (e.g.

similarity resulting from the previous buying history) is ignored. The system

compares items based on the shared appreciation of users, in order to create

neighbourhoods of similar items (Sarwar, Konstan and Riedl 2005).

aa0682
Typewritten Text

aa0682
Typewritten Text
Fig 3.2 has been removed due to third party copyright. The unabridged version of the thesis can be viewed at the Lanchester Library, Coventry University

aa0682
Typewritten Text

Chapter 3: Web Personalisation

 42

Siteseer was one of the first collaborative web page recommendation systems

targeted for scientific and academic papers. It was based on bookmarks

created by users to identify papers of interest. The system was comparing

the sets of bookmarks generated by individual users to make

recommendations for them (Rucker and Polanco 1997).

Lemire has proposed an algorithm based on predicting the rating for an

investigated item based on the difference between the ratings provided by

a user to a set of items and the rating provided for the investigated item by

another user. Both users are assumed to have also ranked the same items

(Lemire and Maclachlan 2005).

Different algorithms can be used for collaborative filtering, but the common

part is finding the similarity between two users either directly (in user-based

version) or by looking at the items bought/ranked by users (in item-based

version). The advantage of the collaborative model is that it can provide

recommendation based on multiple users to provide accurate results.

However new items will not be recommended until some a user takes an

interest in them (Kagie, Loos and Wezel 2009). An additional method has to

be used for introducing new items into the recommendations.

Kamishima has proposed an extension of Collaborative filtering system

called Nantonac. This system measures preferences of the user by a ranking

method. The preference patterns of the users are represented by orders and

are sorted according to the degree of user’s preferences (Kamishima and

Akaho 2006).

The recommendation made by ordering similar items by user preferences,

without giving exact values to rate each item. The system first collects the

information about user preferences by asking the users to decide which of

the displayed items is preferred. After receiving feedback for a series of e.g.

pairs of items the system can search for users with similar preferences.

Finally, the system recommends the items based on the preferences entered

by the similar users (Kamishima and Akaho 2006).

Chapter 3: Web Personalisation

 43

3.3.3 Hybrid systems

In hybrid systems, content-based and collaborative filtering are used

together to recommend pages to the users. Different kinds of approaches

such as RAAP (Delgado, Ishii and Ura 1998) and Fab (Balabanovic and

Shoham 1997) and P-Tango (Claypool et al. 1999) were considered as hybrid

systems. Today Amazon Webstore and eBay are among the best examples of

users of a hybrid system for generating suggestions (Parkes and Seuken

2011).

The Fab system uses content-based techniques for collaborative

recommendation (Balabanovic and Shoham 1997). The system gathers user

profiles based on visited pages content, and then compares profiles of other

users to create clusters of similar users.

Figure 3.3 Overview of the Fab System (Balabanovic and Shoham 1997)

Figure 3.3 describes the Fab system architecture overview. The system

includes two kinds of agents called selection agent and collection agent. The

collection agents collect the recommended pages from the web and the

selection agents redirect those pages to the users according to individual

interests (Balabanovic and Shoham 1997).

aa0682
Typewritten Text
Fig 3.3 has been removed due to third party copyright. The unabridged version of the thesis can be viewed at the Lanchester Library, Coventry University

aa0682
Typewritten Text

Chapter 3: Web Personalisation

 44

P-Tango is a hybrid system used for online newspaper domain. In this

system the user rates the items explicitly. The system calculates predicted

ratings for items based on content similarity to already ranked items and

based on sets of items ranked highly by other users that are similar (in

terms of preferences) to the targeted user. The system combines the two

predictions using an adaptive weighted average. It is not apparent however

how the weights of content-based and collaborative predictions are decided

(Claypool et al. 1999).

Amazon uses a hybrid system for generating suggestions (Parkes and

Seuken 2011). The users explicitly provide the items ratings to the system

and its purchase history is kept for future use. The algorithm used – named

Item-to-Item Collaborative Filtering is designed to return as accurate results

as possible in a short time, even if the recommendation is based on short

shopping history (e.g. for new users). When a user views an item, the system

suggest other items that are often bought together with the selected one,

rather than clustering customers according to demographic or shopping

history. If this extra data is available then the system can favour items that

were bought together with the viewed item by users with similar interests to

the targeted users.

3.3.4 Limitations of web personalisation

A content-based recommendation system calculates the similarity between

the content of items while collaborative filtering determines information

relevance based on the similarity between users or items.

A content-based system addresses the issue of how to construct a profile

that accurately represents user interests. It is however hard to determine

what information is more or less interesting to a user (Claypool et al. 1999).

For example, if the user is interested in one category then the content based

system will add the category to the list of preferences. As the number of

categories increases, the system starts to lose its effectiveness. The system

does not help to discover new items because it only recommends the items

Chapter 3: Web Personalisation

 45

that are similar to already visited items; it can only recommend items from a

narrow topic range. If a user wants to change his area of interest then the

system is not useful at all (Paulson and Tzanavari 2003). Some systems

request explicitly the input of the preferences of the user such as ratings.

The lack of feedback can also affect the performance quality as the systems

that learn from user feedback and rating of items (Swapna and Ravindran

2008).

Collaborative filtering overcomes some of the limitations of content-based

approach. A collaborative system can suggest some items based on rating

given by other users, instead of the contents of the items (Li and Kim 2003).

However, the system also raises some issues. First, the lack of available

ratings (e.g. for new items) can affect the results. A collaborative system

cannot suggest the items that do not have any user’s recommendations. In

addition the system is unable to recommend items of interest to new users

because of the lack of the information about them. If the targeted users have

different preferences from the group they may be assigned to, because of

their short history, the system will provide recommendations of poor quality

(Huang, Chen and Zeng 2004). In a collaborative system, the past shopping

history of a user is considered in order to make recommendations. When a

new item is added it will not be recommended until a significant number of

users have rated it.

The system can provide incorrect recommendation in situation of limited

user’s feedback and with no similarity between users’ interest (Huang, Chen

and Zeng 2004). Kamishima system, Nantonac, is based on a ranking that

asks users to sort many items (based on users preferences) before it could

provide valid recommendations. Many users unfortunately tended to give up

before completing the learning process (Kamishima and Akaho 2006).

There are different limitations for all types of web personalisation. The

content-based methods are over specialised – only items similar to already

known by the user are presented, it is also unable to provide

recommendation to new users. In the user-based collaborative filtering the

Chapter 3: Web Personalisation

 46

scalability becomes a problem. With very large number of users finding

groups of similar users is demanding long computation time. In addition, as

typical user is only rating a small subset of items available, finding a group

is not always possible for all users. The hybrid approach is trying to address

these limitations (Parkes and Seuken 2011).

3.4 Summary

Profile generation can be performed explicitly or implicitly. The explicit

approach requires the active participation of the user and the implicit

approach attempts to gather information in the background. While the

collaborative approach appear to have more affinity with the implicit method,

in particular in determining user and item similarity, the content-based

method tends to be accurate, does not suffer from the cold start and

provides more focus.

Chapter 4: Information Retrieval Models

 47

Information Retrieval
Models

4.1 Introduction

The aim of this chapter is to introduce three models for representing

documents and profiles in the search process, and to examine their

computational processes. The volume of document databases, the large

number of users and their different interests creates the need for precise and

efficient filtering techniques (Grossman and Frieder 2004). This chapter

investigates different information retrieval models, which can be used to

determine the similarity between documents and user profiles. It will focus

on three models: the Boolean Model, the Vector Space Model, and the

Probabilistic Model. These models are significant because they are

representative of three different mathematical models, with their own

methods for representing documents and calculating similarity between

documents and users’ profiles.

An overview of some alternative retrieval models will also be presented.

C
h
a
p
te
r

4

Chapter 4: Information Retrieval Models

 48

4.2 Retrieval Models

The first of the information retrieval models presented in this chapter, the

Boolean Model, is an example of the set-theoretic models, where documents

are represented as sets of words, on which operations are performed in order

to determine similarities. The Vector Space Model is an algebraic model in

which documents and users’ profiles are represented as vectors, and

operations, such as the dot product of two vectors, are used to determine

similarities as a scalar values. Finally, in the Probabilistic Model the

probabilistic inference is used to determinate which documents best suits

the information needs of a user. This model relies on probabilistic theorems,

such as Bayes’ theorem, to compute similarities as probabilities of relevance.

4.3 Document representation and processing

The filtering or retrieval process requires a specific representation of web

documents and user profiles. There are three main process of information

retrieval system; representation of the content of the documents,

representation of the information needs of the users and finally comparison

between both representations to retrieve documents so that the returned

documents reflects the users’ needs (Hiemstra 2009).

Information Document

Query Indexing

Query Indexed

Matching

Retrieved Feedback

Chapter 4: Information Retrieval Models

 49

Figure 4.1: Information retrieval processes (Hiemstra 2009)

Figure 4.1 illustrates the basics of an information retrieval process. The

matching of the documents and users’ needs is based on simplified

representation of documents, which were prepared during the indexing

process, and on the representation of the targeted user profile. The process

of formatting a query can be manual (user enter keywords) or automated

(query is generated based on an existing user profile). The representation of

document and user profiles can have different forms; for example a list of

keywords. The representation depends on the techniques used for matching,

e.g. for the Boolean information retrieval both documents and query are

represented as simple sets of keywords, while for probabilistic information

retrieval and vector space model, the representation includes weights that

are assigned to each of the keywords. The analysis algorithm calculates the

similarity based on these representations and determines how well each of

the documents satisfies the user information requirements (how similar it is

to the user profile). As a simplified representation can be less precise and

more ambiguous that the original document (or profile), the search results

can be less accurate than if a full original document had been compared

with full profile, however the computational and storage requirements for

such comparison would be higher.

As a web document can be complex, it is required that its content is

represented in a form that can be analysed efficiently. The exact

representation of the same document can vary from system to system,

however in general there is an indexing process that actually converts

documents into a simplified form. The basic simplified form of a document

can be, for example, a list containing all the distinct keywords used within

the document. In a more advanced system, it can be a vector containing

keywords-value pairs, where the value can be for instance the number of

times a word occurs in the document or the distance between the first

occurrence of that word and the start of the document. If the document

representation contains some additional rating values (like number of

occurrences or position in the document), then a system that is analysing

the similarity can be more advanced and has the possibility to provide more

accurate results. The indexer used by Google is storing the information

Chapter 4: Information Retrieval Models

 50

about the position of keywords and the distance between them as well as the

kind of HTML tag that is used to enclose it; for example, whether it is H1 tag,

which is used for titles or section names or H2 tag which is rather used for

subsections and therefore can be considered as less important (Google, Help

2011). In theory a system could use more than one technique for storing the

representation of documents, one basic representation for easily filtering out

most of the documents and a detailed one, for predicting the relevance of the

remaining documents with a higher accuracy.

4.4 Boolean Information Retrieval (BIR)

The Boolean Information Retrieval model is based on classical set theory.

Documents are represented as a set of terms it contains (not all words have

to be used), while queries are represented as logical expressions. The

keywords in the query can be linked together with Boolean operators AND,

OR and NOT (Manning, Raghavan and Schutze 2008). Each term can have

one of two logic states – it can be either present (logical 1) or absent (logical

0) (Manning, Raghavan and Schutze 2008).

The relevance of a document to the query of a user is calculated by

evaluating the logical value of the query as either 1 or 0. A value of 1 is

given to every term in the query that exists in the set representing

document, and 0 for every term that does not exist in the representation of

the document.

4.4.1 Document representation in BIR

For the purpose of Boolean Information Retrieval each document in the

database has to be presented as set of terms. In order to limit the size of

each representation, not all words have to be stored. Instead a dictionary

(set) of interesting words is created. Depending on the purpose of the

database the dictionary can be small and contains only words for one

specific domain or large, containing e.g. all nouns. During the indexing

process, each document is compared to the set of interesting terms to create

the vector representation. If the terms dictionary is created as a vector

containing words, then each document can be represented by a vector of

Chapter 4: Information Retrieval Models

 51

ones and zeros. The vector size should be the same as the size of the

dictionary vector and for every word in the dictionary; if it is relevant to the

document then the document representation vector will contain 1 on the

same position as the word otherwise it will contain 0 for that position.

Figure 4.2: Example of documents representation for BRI

In the example in Figure 4.2 the first document can be related to a library in

Coventry but it is most likely not the university library because the term

‘university’ does not occur in it. Document 2 can be related to Coventry

University but not to the library while the third document is related to

‘Coventry’, ‘University’ and ‘Library’.

The exact method of storing the documents representations can vary from

system to system, but Boolean Information Retrieval requires a method to

verify whether a term is relevant to a document or not (e.g. whether it

occurs in the document or – for possible implementation – whether a

synonym of the word occurs in the document).

4.4.2 Query representation in BIR

The user query is a logical statement whose value has to be evaluated for

each of the documents in the database in order to filter the relevant

documents. Each keyword in the query is a single word or conjunctions of

words.

Queries are specified as Boolean expressions and terms combined with

operators. For example, a query that should return all documents that

 Term 1 Term 2 Term 3 … Term M

Dictionary Coventry University Course … Library

Document 1 1 0 0 … 1

Document 2 1 1 0 … 0

Document 3 1 1 0 … 1

… … … … … …

Document N 0 0 0 … 1

Chapter 4: Information Retrieval Models

 52

contains Term1 and documents that contain Term2 but not Term3 can be

expressed as follows:

Query1 = Term1 OR (Term2 AND NOT Term3)

4.4.3 Determination of document relevance in BIR

In order to determinate the relevance of a document to the query, the logical

value of the query has to be evaluated. Each term in the query has a logical

value 1 if the word exists in the document (or its representation) and logical

value 0 if it does not. After all terms in the query are replaced by logical

values, the query can be evaluated as any logic sentence. If the sentence is

true then the document is considered relevant.

In the example the dictionary has five terms: ‘Coventry’, ‘University’,

‘Course’, ‘Cost’, and ‘Library’. If a user wants to find the cost of the course

and information about the university library, the following query can be

used:

Dictionary Coventry University Course Cost Library

Document 1 1 0 0 0 1

Document 2 1 1 1 1 0

Document 3 1 1 0 0 1

Document 4 1 0 0 1 0

Document 5 0 1 1 0 1

Figure 4.3: Example of documents representation for BIR

Query = Coventry AND University AND ((Course AND Cost) OR Library)

This, after replacing words with values from the terms in each document will

produce following sentences:

- Document 1 = 1 AND 0 AND ((0 AND 0) OR 1) = 0

- Document 2 = 1 AND 1 AND ((1 AND 1) OR 0) = 1

- Document 3 = 1 AND 1 AND ((0 AND 0) OR 1) = 1

- Document 4 = 1 AND 0 AND ((0 AND 1) OR 0) = 0

- Document 5 = 0 AND 1 AND ((1 AND 0) OR 1) = 0

Chapter 4: Information Retrieval Models

 53

The logical value of query is 1 for Document 2 and Document 3 therefore

these two documents would be returned.

4.4.4 Advantages and drawbacks of Boolean Retrieval

Model

The Boolean retrieval model enables users to formulate complex logical

statements. However, the construction of Boolean queries can be difficult for

an average user, and all the terms entered in a query are considered equally

important. Due to the binary nature of the results the model does not

provide a ranking of retrieved documents, only a set of retrieved document –

without any particular order. Also, because an exact matching criterion is

used the returned set of documents will be either almost empty (which is a

low recall as many relevant document would not be retrieved) or will include

many documents (therefore precision would be low as irrelevant document

would be also in the set). An example of exact match query is science AND

computer. In Boolean terms, the document has to contain both ‘science’ and

‘computer’ to satisfy the query. It means if one term is `missing, it will not be

considered relevant at all, while if it contains both terms it will be considered

fully relevant (Shah 2009). This model has some important limitations. As all

terms are equally weighted, this model is more useful for data retrieval than

information retrieval (Salton, Fox and Wu 1983). Also, it is often hard to

translate an information need into Boolean expression. Finally because of

the binary match documents are classified either as relevant or irrelevant,

without any intermediate states. As a result the method often returns either

very little or too many documents that are not ordered in any particular way

(Naik and Rao 2011).

To eliminate the problem with different variants of the same words, each

word in both dictionary and document can be represented without suffix.

Also process of dictionary creation can be altered by representing

synonymous as a single word in order to decrease the size of the database,

and to eliminate the problem of exact words matching. During the dictionary

creation, if a word has already a synonym in the dictionary then it does not

have to be added to it. This requires that when a document is being indexed

Chapter 4: Information Retrieval Models

 54

and a new word is detected in it, then any synonym of that word existing in

the dictionary will be considered as existing in the document. This approach

can decrease the database size and eliminate the problem with checking for

exact match only. However the precision of retrieval can decrease with these

optimisations.

4.5 Vector Space Model (VSM)

The Vector Space Model (VSM) is an algebraic model used for information

filtering, information retrieval, indexing and relevance ranking (Berry, Drmac

and Elizabeth 1999, Polyvyanyy and Kuropka 2007). The Vector Space Model

is a way of representing and comparing documents and queries based on

words (keywords) with values (Berry, Drmac and Elizabeth 1999). This model

can be used to rank the similarity between documents – not just to answer

whether document contains required words or not. Each component of a

vector represents one term/keyword, and has a value. The value is a real

number that indicates how relevant a term is to the document or query

being described (Berry, Drmac and Elizabeth 1999). VSM processing can be

divided into two stages: Document Indexing with Term Weighting and

Documents Relevancy Ranking.

4.5.1 Document Indexing

The first stage of information retrieval is document indexing. Each indexed

document is represented as a vector of terms contained by the document

and weights of each term. Weight of a term describes how important that

term is to the document, e.g. terms from the documents’ title will be more

important than terms from the footer. The process of creating the vector

includes stop words removal and stemming. Stop words like ‘of’, ‘an’, ‘the’,

and etc are removed as there are not relevant to the document abstract

(Singhal and Salton 1995). Words suffixes – like ‘ed’, ‘ion’, ‘ing’, ‘ions’ can be

removed to avoid recording different variants of a single word.

The indexing process can cover an entire document or only part of a

document. Some systems for example only index words from the document

title and the abstract, while others index the entire document and then

Chapter 4: Information Retrieval Models

 55

modify the relevance value of each term depending on the term position in

the document.

Every term has to be evaluated to estimate its importance in the document.

In the basic implementation the rating can be set according to the number of

times that a term occurs in a document. In general, VSM relies on two main

factors for term weighting: Term Frequency vector (TF), and Inverse

Document Frequency vector (IDF) (Abual-Rub, Abdullah and Rashid 2007).

In a term frequency vector created for a document, the rating of a term

depends on the number of occurrences of that term in the document.

However, some words are very common (e.g. ‘a’, ‘the’, ‘in’) and therefore the

rating for these terms would be very high – even if they are not important to

the content of the document. To overcome this problem, an Inverse

Document Frequency vector (IDF) is created. This vector stores the general

importance of every term, in respect to all documents. It is generated by

calculating the number of documents that contains each term. The weight

for each term in the IDF vector is higher if the term is less popular and lower

if it is more popular. The weight value for each term is calculated as the

logarithm from the quotient of the total number of indexed documents

divided by the number of documents in which the term appears. Once the

term frequency vector for each document is created, and one inverse

document frequency vector for all documents is ready, then the final

document representation is created. The weight for each term in the vector

representing each document is calculated by multiplying the weight from the

term frequency vector for that document, with the rating of the term in the

inverse document frequency vector. If that value would be used to calculate

the relevance to a query then long documents would usually be considered

more relevant, because each term can occur more times in a longer

document. To resolve this issue, the generated is normalised, by dividing

weight of each term in the vector by the vector length. The length of a vector

is calculated as the square root from sum of squares of all weights in the

vector. As the result of normalisation, the length of vectors for all documents

is equal to one, and the length of each document does not affect the retrieval

process (Singhal and Salton 1995).

Chapter 4: Information Retrieval Models

 56

4.5.2 Determination of document relevance in VSM

Once the documents are indexed, a search system can rank and order the

documents according to the calculated similarity to a query. The query is

represented in the same fashion as the documents – by term vector with

ratings for each stored term – except that the normalisation of the vector is

not essential.

The similarity between a single document and the query is calculated as a

cosine similarity between two vectors. If the two vectors are displayed in the

N dimensional Cartesian coordinate system (where N is the total number of

terms in both vector, and each axis is representing the value of one term)

then the cosine similarity would be equal to the cosine of the angle between

the two vectors.

To calculate the cosine similarity, the weight of each term from one of the

vectors is multiplied with the weight of the same term from other vector (zero

weight is assumed if term does not exists), and then all values have to be

summarised. Finally that value should be divided by the length of the first

vector and by the length of the second vector.

3�4 5, �% 	 7·-
878 8-8 = ∑ �:;:<= ':

>∑ �:* ;:<= >∑ ':*;:<=
 [Equation 4.1]

In the equation 4.1, D is the term vector for document, P is the term vector

for the query, di and pi are components of corresponding vectors.

As term vector for documents is normalised during the indexing, its length

can be omitted as it is equal to 1 for all documents. The same applies to the

query term vector – it can be normalised once.

Chapter 4: Information Retrieval Models

 57

Figure 4.4: An example of two normalised vectors

The figure 4.4 shows an example of two normalised vectors and the cosine

similarity between vectors V1 and V2 is calculated below.

V1 = [0.53, 0.85]

V2 = [0.92, 0.39]

3�4 ?@, ?$% 	 cos D?@?$% 	 ?@ · ?$ 	 E0.53, 0.85J K0.92
0.39M 	 E0.53 · 0.92 " 0.85 · 0.39J 	

0.4876 " 0.3315 	 0.8191

The similarity calculated for the two vectors is 0.8191. This value is neither

high nor low as the documents are simply sorted by the similarity. A system

can present all documents to the user in that order, and the user can decide

at which point documents are no longer relevant.

4.5.2.1 Example of VSM application

The example will consider four documents, and one query.

Document Content

Document 1 Coventry university engineering
Document 2 Warwick university arts department
Document 3 Coventry university Computer Science department
Document 4 Coventry arts department

Figure 4.5: Example of VSM documents

0.8

0.3

1

1 0.92 0.53

Term 2

Term 1

V1

V2

Chapter 4: Information Retrieval Models

 58

Term: Coventry University Computer Science

Importance: 1 1 0.5 0.3

Figure 4.6: Example of VSM query

During the indexing, all the terms were extracted from the documents to

create representation of each of the document. In the process an Inverse

Document Frequency vector has to be generated. To generate IDF vector the

indexer first has to create Document Frequency vector (DF) that for every

term counts the number of documents that contains the term.

Subsequently, the total number of documents is divided by the number of

document that contains a specific term, and the logarithm of that value is

stored in the Inverse Document Frequency vector (IDF) for that term.

The table in Figure 4.7 presents the importance of each term for each

document (D1-D4), general importance of a term to all documents

(Document Frequency vector DF), and the inverse document frequency

vector (IDF). D/DFi holds the total number document divided by the number

of documents that contains the term.

Terms Query D1 D2 D3 D4 DF D/DF IDF

Coventry 1 1 0 1 1 3 1.33 0.12

University 1 1 1 1 0 3 1.33 0.12

Science 1 0 0 1 0 1 4.00 0.60

Engineering 0 1 0 0 0 1 4.00 0.60

Warwick 0 0 1 0 0 1 4.00 0.60

Arts 0 0 1 0 1 2 2.00 0.30

Department 0 0 1 1 1 3 1.33 0.12

Computer 1 0 0 1 0 1 4.00 0.60

Figure 4.7: Example of retrieved results with term frequency

After creating IDF vector, weights for each term in the Document Frequency

vector should be multiplied the value for that term stored in the Inverse

Document Frequency Vector.

Chapter 4: Information Retrieval Models

 59

The table in Figure 4.8 presents the values that result from the

multiplication of each term frequency with its importance from the IDF

vector.

Terms Query D1 D2 D3 D4

Coventry 0.12 0.12 0.00 0.12 0.12

University 0.12 0.12 0.12 0.12 0.00

Science 0.60 0.00 0.00 0.60 0.00

Engineering 0.00 0.60 0.00 0.00 0.00

Warwick 0.00 0.00 0.60 0.00 0.00

Arts 0.00 0.00 0.30 0.00 0.30

Department 0.00 0.00 0.12 0.12 0.12

Computer 0.60 0.00 0.00 0.60 0.00

Vector length 0.87 0.63 0.70 0.88 0.35

Figure 4.8: Terms ratings in documents after applying the IDF

All generated vectors should be normalised to eliminate the advantage given

to the longer documents, as even if a term is repeated multiple times in

longer documents, it should not be considered relevant to that document if it

is flooded by other terms. The normalisation of a vector is simply a process

of dividing weights of each term stored in that vector by the length of that

vector. Vectors after the normalisation are presented on the figure 4.9 below.

Figure 4.9: After vectors normalisation

Terms Query D1 D2 D3 D4

Coventry 0.14 0.20 0.00 0.14 0.36

University 0.14 0.20 0.18 0.14 0.00

Science 0.69 0.00 0.00 0.69 0.00

Engineering 0.00 0.96 0.00 0.00 0.00

Warwick 0.00 0.00 0.87 0.00 0.00

Arts 0.00 0.00 0.43 0.00 0.86

Department 0.00 0.00 0.18 0.14 0.36

Computer 0.69 0.00 0.00 0.69 0.00

Vector
length

1.00 1.00 1.00 1.00 1.00

Chapter 4: Information Retrieval Models

 60

After the indexing process is completed the system is ready to generate

responses to queries. In order to retrieve the search results for a specific

query, a similarity between the user query and each of the documents has to

be calculated.

3�4 5, �% 	 7·-
878 8-8 = ∑ �:;:<= ':

>∑ �:* ;:<= >∑ ':*;:<=
 [Equation 4.2]

As the document frequency vectors are normalised, its length ||D|| is equal

to 1 and can be skipped from the formula. The query can also be normalised

once to simplify the similarity computations for each document.

Term: Coventry University Computer Science

Importance: 1 1 0.5 0.3

Figure 4.10: Example of normalised query vector

The table below presents the normalised query vector (with zeroes for terms

that do not exist in the query) and the document vectors representing the

documents (D1 to D4). The values in columns Dn*Q for each term are

calculated by, multiplying the weight of that term in the document

representation with the term weight in the query.

Query
Terms

Query D1 D1*Q D2 D2*Q D3 D3*Q D4 D4*Q

Coventry 0.43 0.32 0.14 0.26 0.11 0.16 0.07 0.00 0.00

University 0.43 0.00 0.00 0.00 0.00 0.78 0.34 0.00 0.00

Science 0.13 1.53 0.20 0.00 0.00 0.00 0.00 0.00 0.00

Engineering 0.00 0.00 0.00 1.24 0.00 0.00 0.00 0.00 0.00

Warwick 0.00 0.00 0.00 0.62 0.00 0.00 0.00 2.47 0.00

Arts 0.00 0.00 0.00 0.26 0.00 0.16 0.00 1.03 0.00

Department 0.00 0.00 0.00 0.00 0.00 0.78 0.00 0.00 0.00

Computing 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Similarity 0.34 0.11 0.40 0.00

Figure 4.11: Similarity between the document and the query

Chapter 4: Information Retrieval Models

 61

The similarity is calculated individually for each term and then summarised

for the entire document. As both query and document frequency vectors are

normalised, there is no need for dividing the calculated similarity by the

vectors length. The system will return documents with similarity bigger that

some threshold value and sorted by the similarity in descending order.

4.5.3 Advantages and Drawbacks of Vector Space

Model

In contrast with the Boolean Retrieval Model, in the VSM a range of values

can be applied to each term – both in documents representations and in the

user query. Additionally, because of the normalisation of the vectors, long

documents are not favoured over short ones and, because of the use of

inverse document frequency vector, popular terms are not considered

important while rare terms are promoted. In the Boolean Model a page

containing a full dictionary would be considered relevant to most of the

queries, unless they contain the NOT operator; in the VSM model each term

on such page would be considered very irrelevant to the document and as

such the document would not be considered highly similar to any short

query. That apparent advantage can however be considered a drawback

since long document that can contain terms specified in query only in the

title and the abstract and yet be still very relevant to the query. The

importance of these terms will be low in comparison to a short document

that contains the same terms in the footer. More advanced application can

calculate the importance of terms differently, for example by preferring terms

that appear at the beginning of the document.

Another drawback of the VSM document representation is that the order of

the terms is lost and it is not possible to prefer documents that contain

query terms that are close to each other, over documents that contain terms

separated in different parts of the document.

The VSM is also affected by problem of exact mach and synonymous,

however effects of this problem are not as important as in the Boolean

model, as the document will not be classified fully irrelevant if one of the

words is missing. Also similar techniques that are used to reduce this

Chapter 4: Information Retrieval Models

 62

problem in the Boolean model can be used in the VSM (e.g. accepting not

only extract matching but also synonyms when vectors are being compared).

The user can also choose the minimum similarity of retrieved documents to

increase the retrieval precision (Kulkarni, Srinivasan and Ramakrishna

1999) however increasing the threshold will also decrease the recall.

4.6 Probabilistic Information Retrieval (PIR)

Both Boolean Model and Vector Space Model provide similarity ratings

without considering a level of certainty for the output relevance. There are

several models based on probability theory that aim to determine the

probability of a document being relevant to a query. (Manning, Raghavan

and Schutze 2008).

The Probabilistic retrieval was first proposed by Manor and Kuhns in 1960,

(Singhal 2001) and many variants of the Probabilistic Model have been

proposed since. Amati et al. (1997) proposed a prototype information system

called Profile, in which the user information is represents by a set of,

possibly weighted, keywords given by the users or induced by the system.

Manavoglu, Pavlov and Giles (2003) describe the behaviour model as a

Probabilistic Model that tries to estimate the future actions of users.

4.6.1 Probabilistic Information Retrieval principles

The results retrieved by probabilistic information retrieval systems depend

on estimations and probabilities. The first assumption is that terms are

dispersed differently between relevant and non-relevant documents (Fuhr

1992). A PIR system ranks documents and sorts them in decreasing order of

probability of relevance to the information need once the probability is

calculated (Fuhr 1992). The results are as accurate as the calculated

probability (Robertson, Rijsbergen and Porter 1981).

The classical probabilistic model returns documents in decreasing order of

calculated probability of relevance to the information requirement. After the

indexing process every term can have assigned a value that indicates the

probability that a document containing this term is relevant to the concept

Chapter 4: Information Retrieval Models

 63

described by the term. In the retrieval phase the documents have calculated

a value which is the sum of probabilities from terms that exists in both a

document and in the query. The documents are then retrieved in order

according to this value (descending). The document representation for this

version of Probabilistic Information Retrieval could be the same as in the

Boolean model as it only needs to store information if either document

contains a term or not (Robertson, Rijsbergen and Porter 1981).

Similarly to the Inverse Document Vector in the VSM model, a vector has to

be created that stores information about how important each term is. If p is

the probability that a document which contains a term and it is relevant to

the query and q is probability that the document contains the term but it is

not relevant, then the weight of the term i is calculated as:

Q� 	 ��R ': @ST:%
T: @S':% [Equation 4.3]

Where:

U� 	 ��
��� �� �������� ����
���� ���������V ���

����� ��
��� �������� �� ����
���� [Equation 4.4]

W� 	 ��
��� �� ���������� ����
���� ���������V ���

����� ��
��� �� ��� �������� ����
���� [Equation 4.5]

If

- ni = Number of documents containing term i

- ri = Number of relevant documents containing term i

- N = Total number of documents

- R = Number of relevant document

Then U� and W� can be expressed as

U� 	 �:
. [Equation 4.6]

W� 	 �:S�:
XS. [Equation 4.7]

Chapter 4: Information Retrieval Models

 64

 And wi can be expressed as

Q� 	 ��R ': @ST: %
T: @S':% = ��R �: XS.S�:+�:%

 �:S�:% .S�:% [Equation 4.8]

As the number of relevant documents is unknown, some assumptions have

to be made. Usually it is assumed that the probability p is constant (e.g.

equal to 0.5), and that q can be estimated by the values from Inverse

Document Frequency vector, created as in the Vector Space Model (Manning,

Raghavan and Schutze 2008).

With the assumption that 50% of the documents containing a term are

relevant, the number of relevant document containing the term and the

number of irrelevant document containing the term will be equal and their

sum will be zero in the denominator. To avoid division by zero when R-r = 0

or n-r=0, a 0.5 can be added to each component of the equation, as follows:

Q� 	 ��R �:+Y.Z% XS.S�:+�:+Y.Z%
 .S�:+Y.Z% �:S�:+Y.Z% [Equation 4.9]

The equation indicates how to calculate the probability that a document

containing a specific term is relevant to a query with that term. It also

considered as the weight of the term (Robertson 2004).

This model is based on uncertain guess of whether a document has relevant

content to match the query and the document representation. The

Probabilistic Retrieval Model uses the estimation method to retrieve the

results based on assumptions that are made explicitly. Relevance feedback

can improve the ranking by providing better assumptions.

Chapter 4: Information Retrieval Models

 65

4.6.2 Probabilistic Retrieval Example

The documents set contain four documents with following contents:

Document Content

Document 1 Coventry university engineering
Document 2 Warwick university arts department
Document 3 Coventry university Computer Science department
Document 4 Coventry arts department

Figure 4.12: Example of documents

And the user query is: ‘Coventry university computing science’.

The indexed documents have been presented in the Figure 4.13. The terms

are extracted from the documents. Term weight is applied to each term. The

weight of each term is calculated and it can be used in the same way as the

IDF vector in the Vector Space Model.

Figure 4.13: calculating the term weight

Terms D1 D2 D3 D4
W(term
weight)

Coventry 1 0 1 1 -1.322

University 1 1 1 0 0.26

Science 0 0 1 0 -0.26

Engineering 1 0 0 0 -0.26

Warwick 0 1 0 0 1.32

Arts 0 1 0 1 0.48

Department 0 1 1 1 0.26

Computing 0 0 1 0 -0.26

Chapter 4: Information Retrieval Models

 66

Figure 4.14: Calculating the relevance values

After term weights are calculated, the relevance values can be calculated for

each of the documents.

The system returns documents with descending order of calculated

relevance.

4.7 Advantages and Drawbacks of Probabilistic

Retrieval Model

The Probabilistic retrieval Model is based on assumptions of the number of

documents that are relevant and the number of documents that are non-

relevant. (Naik and Rao 2011). These assumptions are made explicitly – like

assuming that 50% of document containing a term are relevant to that term

– however not all assumptions fit the reality which affect retrieval precision

and recall (Fuhr, 1992). The total number of relevant documents has to be

guessed and p is a constant which is not always true (Jones, Walker and

Robertson 2000). To achieve precise results the probabilistic retrieval model

requires that terms are independent. The weight calculation ignores the term

frequency and position within documents, and therefore longer documents

are promoted.

Terms Query D1*W D2*W D3*W D4*W

Coventry 1 -1.322 0 -1.322 -1.322

University 1 0.26 0.26 0.26 0

Science 1 0 0 -0.26 0

Engineering 0 0 0 0 0

Warwick 0 0 0 0 0

Arts 0 0 0 0 0

Department 0 0 0 0 0

Computing 1 0 0 -0.26 0

Total -1.062 0.26 -1.582 -1.322

Chapter 4: Information Retrieval Models

 67

4.8 Alternative retrieval models

In their basic form the three types of retrieval model are still being used

extensively thanks to the simplicity of the underlying formalism (Manning,

Raghavan and Schutze 2008). Many researchers have however proposed

variant models as part of an effort to overcome the limitations of the original

proposals and to extend their range of application. For example the

Extended Boolean Model is a combination of some of the features of the

Vector Space Model with Boolean algebra. This enhancement of the Boolean

model allows for the return of results based on the ranking of similarity and

on the partial matching of terms in query and document (Skorkovská and

Ircing 2009).

Latent Semantic Indexing (LSI) is based on the VSM and was introduced as a

method for reducing the negative impact of synonymy and polysemy on the

retrieval process (Deerwester et al. 1990). It consists in applying a

mathematical technique, the Singular Value Decomposition (SVD) to terms

and term frequency in order to identify patterns of relationships. This

method can be fully automated, is independent of language and leads to

shorter vector representation. Empirical studies have confirmed the viability

of the method and its applicability to different contexts (Bradford 2008).

A statistical language model falls within the probabilistic category. In

information retrieval, language modelling consists in estimating the

likelihood that a common language can generate the query and the

document under consideration. The corresponding probability distribution is

the language model. Evidence indicates that language models can be

applied to a variety of retrieval problems and that they can produce better

performance than traditional methods (ChengXiang 2008).

Feature-based retrieval models represent a significant departure from the

three classical models presented earlier. In these models a document is seen

as a vector of values of feature functions and the aim is to generate a single

relevance score by manipulating and combining these features. It is claimed

that with the right selection of features feature-based models can outperform

most existing retrieval models (Metzler and Croft 2007).

Chapter 4: Information Retrieval Models

 68

4.9 Summary

Three models supporting information retrieval were covered, with a

particular emphasis on their mode of representation of the documents and

their processing algorithms. As the oldest model the Boolean Retrieval model

has the advantage of simplicity and convenience. It is however restrictive in

the formulation of similarities. Similarity can be in two states only: true or

false. At the other extreme, the probabilistic approach is an attempt to

model the subjective features of the information retrieval process over a

range of probabilities. The calculation of probabilities requires the

specification of assumptions that can be highly biased and inconsistent. The

document representation in the probabilistic model is very simple and

ignores terms frequency or position. The Vector Space Model on the other

hand combines clarity with flexibility. The underlying algebraic model is well

specified and well understood, and the documents are represented with

more details. The VSM offers a viable compromise in information retrieval

processing.

Chapter 5: A Mediation Framework

 69

A Mediation Framework

5.1 Introduction

The aim of this chapter is to present an approach to personalisation in Web

Search and its application in the design and implementation of a mediation

framework. The rationale and the context of the approach are presented

first. The approach is motivated by the need to investigate the impact of

personalisation and different modes of profile generation on the retrieval

process, in order to enhance its effectiveness in terms of precision and recall.

In the approach, specific user profile formulation and document content are

given equal consideration, a characteristic that favours the adoption of a

content-based method.

The framework has been designed and implemented in a way that allows the

evaluation of different information retrieval techniques without implementing

a full search engine. This framework will be the foundation for the evaluation

and comparison of explicit, implicit and hybrid user profiling. The same

framework can be used by other researchers or students to evaluate their

ideas, by simply replacing the subsystem responsible for filtering document.

C
h
a
p
te
r

5

Chapter 5: A Mediation Framework

 70

5.2 Rationale and context

The research on user profiles has identified two extremes of profile

generation, explicit and implicit (Frias-martinez et al. 2009).

Their characteristics are often compared and contrasted in terms of the level

of user intervention and in terms of system support and interpretation.

Some studies have highlighted the fact that users prefer transparency and

control in the systems they use. These studies also indicate that too much

flexibility in the customisation process, such as editing profiles, can have an

adverse effect on personalisation (Ahn et al. 2007).

One of the key issues in the personalisation process is how to address ‘the

cold start problem’. The assumption that a significant amount of explicit

feedback is required in order to build a profile has led to more emphasis on

implicit feedback and on the synergy of user communities, rather than rely

on explicitly formulated profiles (Zigoris and Zhang 2006).

Besides the dismissal of what is considered the ‘brittle models’ of the explicit

profiles and their lack of relevance, many of the systems on user

personalisation are increasingly relying on social networks to provide

additional implicit information on user behaviour, and by implication pave

the way for recommendation procedures (Cayzer and Michlmayr 2008).

Although this approach has the advantage of creating a richer context of

interaction, it has the drawback of postulating the existence of a social

network, an assumption that may affect its operational dependence. Another

disadvantage of this approach is the undue weight it gives to the implicitly

generated user information. A fact that many controlled studies have

reported is the correlation between the usefulness of documents to users

and many of their interactive activities such as time spent viewing a

document and other operations such as saving and printing them (Fox et al.

2005).

Chapter 5: A Mediation Framework

 71

It was however reported that the information that a user is searching for has

a significant impact on the usefulness of the implicit feedback (Kelly and

Belkin 2004).

Despite the strong contrast between implicit profile and explicit profiles that

seem to drive some studies, many researchers have however pointed out that

the implicit and the explicit positive feedback are complementary (Jawaheer,

Szomszor and Kostkova 2010).

An approach is proposed that seeks to overcome the limitations identified

earlier and to capitalise on the complementary nature of explicit and implicit

profiles. It also marks a departure from the ‘feedback’ related to explicit

profiles, in order to minimise user intrusion and inconvenience. In contrast

the focus is on the profile formulation by the user. This shift of emphasis

means that the user has some control over the personalisation, while the

concurrent implicit profile generation maintains the currency of the user

interests. In the proposed approach, prominence is given to the user, the

document and their interaction. This perspective is well served by a content-

based approach rather than a collaborative approach. It provides focus,

control and wider application. The content based approach allows the

system to harvest relevant user information without the need of a

community of users.

The novelty of the work lies in the seamless and balanced combination of

discrete intervention and transparent implicit profile generation. No explicit

feedback is required during the interaction with the documents such as for

example rating the relevance of each document. Instead the user is allowed

to state relevant interests in terms keywords. A number of key factors form

the basis of the implicit feedback mechanism.

5.3 Design requirements and issues

There are a number issues related to the evaluation of any information

retrieval system designed for the web. The major issue is the amount of

Chapter 5: A Mediation Framework

 72

documents available. Implementing and running a full web search engine is

usually unfeasible. However for some techniques, instead of developing the

search engine, an information retrieval technique can be evaluated by

filtering only a subset of web documents, where this subset would be

retrieved from a classic web search engine API.

For the framework to be useful, it has to meet several objectives. First it has

to allow a programmer to implement custom methods for learning. The

framework should provide an interface that allows tracking all actions

detected in a web browser, like navigating or clicking. A second important

requirement is that the framework should support transparency for

retrieving search results from a base web search engine. A person modifying

the framework in order to evaluate different filtering techniques should be

able to evaluate different filtering techniques by modifying only the filtering

method, and by handling events from the browser if needed. The framework

should provide a way of entering user’s explicit profile, however only a basic

method of explicit profile generation needs to be supported in the framework,

and for more advanced methods some changes in the user interface may be

required. By default users provide explicit information only by entering

keywords of interest; however a programmer should be allowed to extend the

user interface if more explicit information is required.

5.4 Overall Architecture of the mediation

framework

The framework should provide a platform for addressing a number of issues.

The ability to accommodate different modes of mediation, the prominence of

content and of patterns of behaviour as well as efficient representation

should be the guiding factors in the design of the framework. The refined

requirements for the mediation framework are expressed as follows:

� Three forms of user profile generation will be provided: explicit,

implicit and hybrid. This will enhance the flexibility of the system and

Chapter 5: A Mediation Framework

 73

will offer a wider scope for the investigation of the impact of

personalisation on Web search.

� A content-based approach will be adopted for the mediation

framework because of its focus on the interaction between the

specification of the profile of a single user and the content of

documents. It will allow direct evaluation of different modes of profile

generation. It has also the benefit of a clear identification of the

factors that affect the search process.

� The Vector Space Model will be used for the determination of the

similarity between users and documents and hence for the filtering

process. The VSM combines clarity with simplicity and offers an

efficient method for document representation. It also allows for the

consistent use of weights for the terms in the query representations

for the three modes of profile generation.

These design decisions have been translated into the architecture for the

framework as shown in Figure 5.1. It presents a diagram of the mediation

framework which is made up of three fundamental components: user profile

generation and representation, document keyword extraction and

representation, and document filtering.

Chapter 5: A Mediation Framework

 74

Figure 5.1: Overall Mediation framework

In the framework, a user is interacting with the web through a provided web

browser. A user profile can be generated from data provided explicitly by the

user or from events generated by the web browser. Once the search has to

be performed, a group of documents returned by base search API is indexed

and filtered with use of the created previously user profile.

Web Documents

User profile Generation

Document representation

Web

One of the profile’s

Indexing

Interface

Extract Keywords

Build document

vectors

Build profile vector

Implicit

profile
Explicit

profile
Hybrid

profile

Result Presentation

Filtering process

Calculating the similarity

for each pair

Sorting documents the

similarity

Search API

Chapter 5: A Mediation Framework

 75

5.4.1 User profile generation

Three different methods of profile generation have been investigated –

explicit, implicit, and hybrid. In each case a user profile is represented in the

VSM by a list of keywords with weights stored as a term vector:

P = (<p1, w1>,…, <pi, wi>…, <pn, wn>) [Equation 5.1]

In equation 5.1 the keyword is presented by pi and its weight by wi. The

vector representation of the profiles is the same is in all the three mediation

systems; however the way in which weights for each term are determined

may vary.

5.4.1.1 Explicit profile

An explicit user profile is an instantiation preferences and interests provided

explicitly by the users in terms of keywords. The keywords are stored as a

term vector where all the weights are equal. Single user profile can be

composed of several keywords groups, which are stored separately in a

database and retrieved by name. A user can build several profiles for finer

customisation. In a most simple form, the explicit user profiling can take a

form, in which a user is entering a new profile as a list of keywords before

every search.

5.4.1.2 Implicit profile

An implicit profile is based on observation of user behaviour and browsing

history. A system monitors the user’s browsing activities by checking the

history of visited pages, the time spent on each page and the document print

and save actions. The time spent on each page is assumed to be a good way

of estimating the user interest in that web page. The total time spent on each

page is determined by the time when the user starts reading a page and the

time the user moves away from the page. Saving a web page, or printing it,

also indicates higher user interest towards that particular page. The system

is tracking this browsing behaviour, and stores it together with a keyword

Chapter 5: A Mediation Framework

 76

vector created for each of the documents. Based on the collected

information, the system selects the keywords from documents that are

considered relevant documents, and builds the implicit profile of the user

from these keywords, by adding the vectors together. Before adding, each

vector can be scaled to reflect different estimated importance of each of the

documents, e.g. weights for every keyword in a vector representing a printed

document can be multiplied by some arbitrary value to reflect that these

keywords are more likely to describe relevant documents.

5.4.1.3 Hybrid profile

In the hybrid profile the explicit and implicit profiles are generated

independently and combined into a single term vector. The weights of the

keyword are adjusted according to the mode of mediation.

5.4.2 Document representation

In the VSM a document is represented by a term vector. Each word in a

document is represented by a separate dimension of the vector. The

keywords are extracted during web documents analysis from the title and

meta-data to build the term vector.

D = (<d1, w1>, <di, wi>…, <dn, wn>) [Equation 5.2]

For the implicit and hybrid system the frequency vectors generated for each

document may be ranked according to importance depending on the user

activities such as time spent reading the document and browsing, printing

and saving.

5.4.3 Document filtering

The VSM model can be applied to filter the results by determining the degree

of similarity between individual user profiles and documents content. Each

dimension of a vector represents a word (keyword) and a weight value in that

dimension determines the importance of that word. Based on the weights of

Chapter 5: A Mediation Framework

 77

the corresponding matching terms the similarity between a document and a

query can be measured. The cosine measure is used for this purpose. The

cosine similarity function is determined by the following formula:

3�4 5, �% 	 7·-
878 8-8 = ∑ �:':;:<=

>∑ �:* ;:<= >∑ ':*;:<=
 [Equation 5.3]

Equation 3 defines the similarity function where, D is a document vector (D

= ([�…..[
)) and P is a user profile vector (P = U�…..U
)).

If vectors D and P are normalised then ||D|| = ||P|| = 1 and the formula

can be simplified to:

3�4 5, �% 	 ∑ [�U�
�\@ [Equation 5.4]

The keywords that appear only in one of the two vectors are ignored (as if

weight value for not existing keywords is equal to zero). The determination of

the similarity is illustrated by an example. For example, if the user profile P

= (<science, 0.74>, <museum, 0.55>) – term “science” has a weight 0.74 and

term “museum” has a weight 0.55, and all others terms weight will be

consider as 0. For the document frequency vector D = (<museum, 0.82>,

<history, 0.51>, <nature, 0.31>,) the similarity is equal to 0.55*0.82 (word

'museum') + Pi *0 (other words from vector P not existing in vector D) + 0*Wi

(other words from vector D, not existing in vector P) which gives the

similarity value 0.451.

5.4.4 Implementation

The system has been implemented in Java. Java supports heterogeneous

programming and provides an easy way for interacting with web search

engines APIs. The system utilizes several components to perform a web

search based on explicit profiling of user, implicit profiling of user and

combination of both profiles. As the system is operating on vectors, the

IGLU-Java package has been used in the implementation. This package

offers facilities for creating and manipulating various types of vectors,

Chapter 5: A Mediation Framework

 78

including vectors capable of assigning values to words. The current

implementation of the prototype relies on the TermVector class from the

IGLU package. The same package is providing methods for calculating the

cosine similarity between vectors. The implemented code and UML diagrams

are provided in Appendix A.

All the systems use the same techniques for interacting with a classic web

search API (both Google and Yahoo have been used) and for extracting the

keywords. This section describes the methods and techniques that are

common to the three systems. The main classes and the methods which are

particular to each system will be presented later.

5.4.4.1 Web search

The web search component provides the facilities for interacting with a

traditional web search engine API. The interaction is made by sending

standard HTTP request with parameters appended to URLs, and the

response is usually returned in XML (Extensible Markup Language) or JSON

(JavaScript Object Notation) format – depending on the API used. JSON is a

text-based open standard designed for human-readable data interchange.

 To get the basic search engine API result the following method is called:

 /**
 * Main method for searching in Google on Yahoo API.
 * Maximum 'NrOfResultsFormBaseAPI' results will be returned.
 */
 public static List<String> searchForUrl(String[] keywords, API_TYPE api)
 {
 if(api == API_TYPE.API_GOOGLE)
 {
 // Google API only allows 8 results per page, therefore
 // request has to be send N/8 times to get N results – once for each page
 int noOfPages = NrOfResultsFormBaseAPI/8;
 List<String> results = new LinkedList<String>();

 for(int i=0; i <= noOfPages; i++)
 {
 String json = search_Google(keywords, i);
 List<String> pageResults = parseResultsFromGoogleJSON(json);

 for(String url:pageResults)
 if(results.contains(url)) continue;
 else results.add(url);
 }
 return results;

Chapter 5: A Mediation Framework

 79

Parameter ‘api’ defines which search API should be used and the parameter

‘keywords’ is an array of keywords. The code for making request to Yahoo!

Web search API is shown below:

In the response for the Yahoo API the following XML script is used:

<Result>
 <Title>[…]</Title>
 <Summary>[…]</Summary>

 <Url>http://www.neopets.com/userinfo.phtml</Url>
 […]
 </Result>
[…]

The response is parsed in the findURLfromYahooResponse method just like

any other XML file. Values inside <Url></Url> tags are returned as a list of

the search API result. The procedure for Google API is very similar:

 }
 else
 if(api == API_TYPE.API_YAHOO)
 {

 // In Yahoo API all results can be received in one step
 String searchResult = search_Yahoo(keywords, NrOfResultsFormBaseAPI);
 return findURLsFromYahooResponse(searchResult);
 }

 return null;
 }

 private static String search_Google(String[] keywords, int pageNumber)
 {
 // Encode keywords array to URL compatible string
 String encodedKeywords = [...];

 String request = "http://api.search.yahoo.com/WebSearchService/V1/webSearch?”
 +”appid=YahooDemo&results=" + nrOfYahooResults
 + "&query=" + encodedKeywords;

 // use HTTP client to send the request
 HttpClient client = new HttpClient();
 GetMethod method = new GetMethod(request);

 // read HTTP response from the API
 String result = [...];

 return result;
 }

Chapter 5: A Mediation Framework

 80

 private static String search_Google(String[] keywords, int pageNumber)
 {
 // Encode keywords array to URL compatible string

 String encodedKeywords = [...];

 String request = "https://ajax.googleapis.com/ajax/services/search/web"
 +
"?v=1.0&key=AIzaSyBk2lMNQ2RfKR3l5TirizdIb2KdByrVySI&userip=194.66.32.16&rsz=8&q="
 + encodedKeywords + "&start=" + pageNumber;

 // use HTTP client to send the request
 HttpClient client = new HttpClient();
 GetMethod method = new GetMethod(request);

 // read HTTP response from the API
 String result = [...];

 return result;

 }

As Google API is limited to return only 8 responses per request, the request

has to be made multiple times with different values for ‘pageNumber’. The

responses from each request are joined together.

To get the list of ULRs from the Google search API the following JSON

(JavaScript Object Notation) document has to be processed.

"responseData":
{
 "results":
 [
 {
 "GsearchResultClass":"GwebSearch",
 "unescapedUrl":"http://en.wikipedia.org/",
 "url":"http://en.wikipedia.org/",
 […]
 },

 […]
]
}

5.4.4.2 Keywords extraction

Once the list of URLs from the base search API has been obtained, the

system extracts the keywords from the documents in the list of returned

URLs. Three frequency vectors are built individually from the title, the meta-

tag keywords and the meta-tag description. The three vectors are then scaled

by different weights and combined into a single vector. The final vector is

created by selecting the top 5 keywords from the combined vector and then

normalised as shown in the code fragment below:

Chapter 5: A Mediation Framework

 81

public static TermVector findKeywords(String url) {
 [...]

 String document = MyUtils.UtilsWeb.getURL(url);

 String title = [read title tag];
 String metakeywords = [read meta tag with keywords];
 String metadescription = [read meta tag with description];

 // build vetors
 FrequencyVectorCreator fvc = new FrequencyVectorCreator();

 TermVector vectTitle = buildVectorFromString(title);
 TermVector vectKeyw = buildVectorFromString(metakeywords);
 TermVector vectDesc = buildVectorFromString(metadescription);

 // scale vectors
 vectTitle.scaleBy(0.3);
 vectKeyw.scaleBy(0.5);

 vectDesc.scaleBy(0.2);

 // combine three vectors into one
 HashFigure<String, Double> pairs = new HashFigure<String, Double>();
 addVector(pairs, vectTitle);
 addVector(pairs, vectKeyw);
 addVector(pairs, vectDesc);

 TermVector combinedVector = new TermVector();
 Iterator<Entry<String, Double>> it = pairs.entrySet().iterator();

 while(it.hasNext())
 {
 Entry<String, Double> entry = it.next();
 combinedVector.put(entry.getKey(), entry.getValue());
 }

 // take top N keywords and normalize

 combinedVector.truncateTo(5);
 combinedVector.normalize();

 return combinedVector;
 [...]
}

The sequence diagram for the findKeywords method is presented in Figure

5.2. That method is creating a vector containing all term from the given

string, with weight for each term equal to the number of its occurrences in

the string.

Chapter 5: A Mediation Framework

 82

Figure 5.2: The sequence diagram for the findKeywords method

Chapter 5: A Mediation Framework

 83

The diagram for the referenced ‘buildVectorFromString’ method is presented

in Figure 5.3). Indexable words from a given document are counted and

returned as a vector, with weight for each term equal to the number of its

occurrences.

Figure 5.3: The sequence diagram for the buildVectorFromString method

The same process of extracting the keywords is repeated for every URL in the

search results - one vector is created for each page. If a document cannot be

accessed then a null value is returned. The exception handling code has

been removed from the fragments for simplicity.

5.4.4.3 Documents filtering

The vectors are created for both selected user profile and the documents

found by the base web search API. The term vector (user profile) and

Chapter 5: A Mediation Framework

 84

frequency vector (document) are normalised before the similarity for each

document is calculated. Once all the vectors are generated, the VSM model

can be applied to filter the results by determining the degree of similarity

between term vector and documents vectors. Each dimension of the VSM

vector represents a single word (keyword) and its weight determines how

important that word is in that vector. If a keyword in the document vector

exists also in the user profile vector then its importance weight is dependent

on the keyword weight in both vectors, otherwise its importance is zero. If a

word exists in both vectors then the corresponding values in each vector are

multiplied otherwise the word is ignored. The total similarity is the sum of

the values calculated for each word separately.

After applying the VSM similarity calculation the system filters the

documents by removing all but top M with the highest similarity. The

following code is used to determine the similarity between two vectors:

public double getSimilarityScore (TermVector profileVector,
 TermVector docFreqVector)
{
 // normalize both vectors
 profileVector.normalize ();

 docFreqVector.normalize ();

 // calculate cosine similarity
 double result = 0;
 Iterator it = profileVector.termIterator ();
 while (it.hasNext ())
 {
 // for each term in first vector multiply its value with its value in another vector
 // if a term only exists in one vector, its value in other is zero therefore
 // the term is ignored
 String thisTerm = (String) it.next ();
 result += profileVector.get (thisTerm) * docFreqVector.get (thisTerm);
 }

 return result;
}

The filtering of the web documents relies on the similarity between profile

vector and document vector. The higher is the value of the similarity, the

higher will be the position of the document in the results.

The documents sorting and filtering algorithm is represented by the following

pseudo code:

Chapter 5: A Mediation Framework

 85

The algorithm is implemented with the following java code:

private List<String> sortDocumentBySimilarity(List<String> webSearchAPIResult,
 TermVector preferences)
{
 // create search engine for similarity comparison
 RAMSearchEngine rse = new RAMSearchEngine(); // parseXML(yahooAPISearchResult);

 // find keywords for every document
 HashMap<String, TermVector> documents = findKeywords(webSearchAPIResult);

 //-- add results to rse
 for(String url:webSearchAPIResult)
 rse.addDocument(url, "", documentKeywords);

 // get document sorted by similarity to preference vector
 iglu.util.ValueSortedMap vsm = rse.retrieveDocuments(preferences, 20);

 // return vsm as a list
 List<String> results = new LinkedList<String>();
 java.util.Iterator itr = vsm.keyIterator();
 while (itr.hasNext())
 results.add(itr.next().toString());

 return results;
}

// from RAMSearchEngine.java

public ValueSortedMap retrieveDocuments(TermVector vector, int numSimilar)
{
 ValueSortedMap results = new ValueSortedMap();

 // for each doc
 Iterator docIt = idVectorMap.keySet().iterator();
 while(docIt.hasNext())
 {
 // get similarity to vector
 Object thisItem = docIt.next();
 TermVector thisVec = (TermVector)idVectorMap.get(thisItem);
 double similarity = getSimilarityScore(vector, thisVec);

 // create term vector for stored user preferences
 TermVector profileVector = [get user profile created by one of the methods]

 // list to store documents in descending similarity order
 ValueSortedMap results = new ValueSortedMap();

 Foreach retrieved 'document':

 {
 // get frequency vector for the document
 TermVector docFreqVector = (TermVector)idVectorMap.get(document);

 // measure the similarity
 double similarity = getSimilarityScore(profileVector, docFreqVector);

 // only include documents with positive similarity
 if(similarity > 0) results.put(document, similarity);
 }

 // results list is automatically sorter. To return top-N results:
 result.truncateTo(N);

Chapter 5: A Mediation Framework

 86

 if(similarity > 0)
 results.put(thisItem, similarity);
 }

 if(numSimilar > 0)
 results.truncateTo(numSimilar);

 return results;
}

// from RAMSearchEngine.java
public double getSimilarityScore(TermVector vector1, TermVector vector2)
{
 double result = 0;

 Iterator it = vector1.termIterator();
 while(it.hasNext())
 {
 String thisTerm = (String)it.next();
 result = result + vector1.get(thisTerm) * vector2.get(thisTerm);
 }

 return result;
}

A simplified sequence diagram for this code is presented on the figure 5.4

Chapter 5: A Mediation Framework

 87

Figure 5.4: The sequence diagram for calculating the similarity between

vectors

Chapter 5: A Mediation Framework

 88

The code is calculating the similarity between vectors representing each of

the documents and the profile vector individually (getSimilarityScore), and

afterwards, it sorts the documents according to the calculated similarity (by

Using ValueSortedMap).

5.5 Mediation systems

This section is concerned with the description of the three different

mediation systems which were designed and implemented. The prototypes

were implemented in JAVA in the NetBeans IDE.

5.5.1 Explicit mediation system

The explicit mediation system requires the user to provide a list of keywords

in order to generate the explicit profile vector. All keywords are assumed to

be equally important and have the same weight in the vector. A user can

have more than one vector. The user profile can be modified later, at any

time by adding, deleting or modifying existing vectors. After creating the

profile the system stores it in the database.

Figure 5.5 presents the overall architecture of the explicit mediation system.

The explicit user profile vector which can be used to retrieve a list of

documents URLs by using a web search engine API (Yahoo and Google APIs

are available in the implemented prototype). The system creates a frequency

vector for each document. After building the vectors for the user profile and

for each document, the system applies the VSM to calculate the cosine

similarity between the profile vector and each of the document vectors. The

documents are sorted in descending order of similarity and the system

presents the top 20 of the documents to the users.

Chapter 5: A Mediation Framework

 89

Figure 5.5: Explicit system

5.5.1.1 Implementation of the explicit system

The class diagram of the explicit system provides the better understanding of

the system behaviour. The current prototype consists of two main classes

shown below:

Web

Retrieve web

documents from API

Extract keywords

from documents

Build document

representations vectors

Creation of user profile

through a user Interface

Storing the profile

 in a database

Build the explicit user

profile vector

Result Presentation

Filtering process

Calculating the similarity

for each pair

Sorting documents the

similarity

 Retrieved

 documents

Documents vectors User profile vector

Keywords for

documents

Query

Explicit information

(e.g. keywords)

Explicit information

(e.g. keywords)

Query Profile

Chapter 5: A Mediation Framework

 90

Figure 5.6: Simplified class diagram for the explicit system

Figure 5.6 presents the explicit system class diagram. The ‘UserInterface’

class is the main interface class for the use of the system explicitly.

‘UserInterface’ class provides the GUI (Graphic User Interface) and use the

‘SearchSystem class for the searching functionality. The ‘Searching’ class

provides static methods for calling Yahoo or Google web search API as well

as methods for retrieving keywords for a web document. The explicit search

is performed by the ‘doExplicitSearch’ method, which builds the explicit user

profile (a) from keywords provided as a string, performs search in the base

search API (b), and sorts the retrieved URLs by the similarity to the user

profile (c).

Additional classes – TermVector, RAMSearchEngine, ValueSortedMap are

used (in order) for storing frequency and term vectors, calculating

documents similarities, and storing a list of documents in order of similarity

to a user profile.

Chapter 5: A Mediation Framework

 91

5.5.1.2 Explicit profile system database

Explicit user profiles are stored in a single database table.

Figure 5.7: Explicit profile table

The ‘ID’ column values are generated as auto increment numbers. The

’userName’ column value is the text used to distinguish different user

profiles. Finally, the ‘keywords’ column holds the list of keywords separated

with spaces.

5.5.1.3 Creating explicit profile – pseudo code

The detailed description of the main system function – explicit search - is

provided in the following pseudo code:

1. Allow user to choose explicit profile from one of the profiles the database

2. Retrieve list of URLs suggested by a classic web search API (either Google or

Yahoo) for the keywords in the profile term vector

3. Normalise the profile term vector

4. For each of the suggested document URL

a. Calculate the keywords freq. vector for the document

i. Read the title, keywords and description from the document

metadata

ii. Create frequency vector for title, keywords and description

iii. Scale each of the vectors by its importance

1. Scale the vector made from the title by 0.3

2. Scale the vector made from the description 0.5

3. Scale the vector made from the meta-keywords 0.2

iv. Add terms from all vectors into one combined document

keywords vector - if a keyword exists in more than one vector,

then its value in new vector is a sum of the value from each

Chapter 5: A Mediation Framework

 92

vectors

v. Remove all but top N raked keywords

b. Normalise the document keywords vector

i. length = 0

ii. For each keywords length += keyword_rating2

iii. scale the vector by [1/square_root(length)]

c. Similarity = 0

d. For each keyword in either vectors

i. Get keyword rating from the term vector

ii. Get keyword rating from the freq. vector

iii. Add the result of multiplication to the similarity

iv. Store document similarity

5. Sort the documents by similarity

6. Return top N documents with highest similarity

Chapter 5: A Mediation Framework

 93

5.5.2 Implicit mediation system

The implicit system architecture is shown in Figure 5.8. Following is a

description of the implicit system components.

Figure 5.8: Implicit system

Browsing behaviour

Saving Printing

Time spend on each page

Extracting the keywords

Build implicit vector

Storing in database

 Learning

Creating profile

Web

Retrieve web

documents from API

Extract keywords

from documents

Build document

representations vectors

 Retrieved

 documents

Keywords for

documents

Result Presentation

Filtering process

Calculating the similarity

for each pair

Sorting documents the

similarity

Query

Chapter 5: A Mediation Framework

 94

Figure 5.8 depicts the architecture of the implicit system. The system

provides a web browser and monitors the user actions within the browser by

tracking the events sent by the browser. It extracts keywords from each

visited document. The keywords are extracted from the documents title and

metadata (keywords and description). The system treats keywords with

different importance depending on the source – for instance keywords

extracted from a document title are more important that these extracted

from the description. The keywords with higher importance and keywords

that are repeated in different section have higher weights in the frequency.

The vector is stored in the database.

In addition to the vector containing the keywords that describe the

document content, the system also stores the activity type (whether the

document was viewed, printed or saved). Information about the time of the

event is also stored – for activities such as printing or saving only the start

time is provided, while for viewing both the start and end time are saved to

allow for the calculation of the time spent on each document. This time

together with other activities (printing and saving) will be then used to

calculate importance of that document when the implicit vector is generated.

After collecting the information regarding user browsing behaviour, the

system is able to generate the implicit user profile in the form of keywords

and weights for each document. Keywords from documents that were opened

for only a short time are ignored, while keywords from documents that were

saved or printed are considered especially important. The implicit profile

vector is created for every included document after scaling it by the

importance calculated for that document. After creating the summarised

vector the 5 keywords with highest weights are used and returned as the

implicit profile vector. The number of keywords is restricted as too many

keywords would result in limiting the number of results retrieved from the

base API, rendering sorting document by similarity to the implicit profile

vector unfeasible.

Chapter 5: A Mediation

The implicit user profile

Search APIs. The APIs

documents by similarity

vector extracted for each

before filtering to simpli

5.5.2.1 Implementat

Figure 5.9 describes

prototype contains five

instance class. ‘Searchin

search API, and creates

class tracks user activi

‘MyActivityLogger’ class

Figure 5.9: Sim

The implicit system is l

‘documentCompleted’ ev

 Framework

file vector can now be used to call one of t

PIs results can be filtered by sorting

rity between the implicit profile vector and

ach document. The implicit profile vector i

plify the calculation of the cosine similarity

tation of the implicit system

s the implicit system class diagram.

ve main classes. ‘UserInterface’ class is th

ching’ class provides facilities for searching

tes the implicit user profile. The ‘WebBro

tivities and redirect events to ‘MyActivityL

ss stores the user activities in the database

Simplified class diagram for the implicit sys

is learning by tracking browser events, pa

’ event, and by storing information when ‘s

95

of the base Web

g the returned

 the keywords

or is normalised

rity.

 The current

s the main user

ing in base web

rowserListener’

ityLogger’ class.

ase.

system

 particularly the

n ‘save’ or ‘print’

Chapter 5: A Mediation Framework

 96

buttons are clicked. The information is stored by the ‘UserActivityLogger’

class, by calling the ‘log’ method. The search is performed by calling the ‘do

ImplicitSearch’ method. The method creates the implicit vector (a), searches

for URLs in the base web search API (b), and filters the results (c).

5.5.2.2 Implicit profile system database

User browsing behaviour is stored in a database, as shown in Figure 5.10.

The table ‘ActivityType’ is a dictionary of activity types that can be inserted

in the ‘SessionActivity’. Each ‘SessionActivity’ entry has an ID which is an

auto incremented number, a sessionID text which is a name of the session

(as entered by the user). Each action has the startTime, but the finishTime is

only set for the browsing action (printing and saving actions are considered

instantaneous and therefore have only startTime set).

Figure 5.10: Implicit profile table

Chapter 5: A Mediation Framework

 97

5.5.2.3 Creating implicit profile – pseudo code

The detailed description about system learning behaviour is provided in the

following pseudo code:

1. For each visited ‘document’:
2. When user is opening a page

a. calculate the keywords freq. vector
i. Read the title, keywords and description from the document
metadata
ii. Create frequency vector for title, keywords and description
iii. Scale each of the vectors by its importance

a) Scale the vector made from the title by 0.3
b) Scale the vector made from the description 0.5
c) Scale the vector made from the meta-keywords
0.2

iv. Add terms from all these vectors to create one vector
v. Remove keywords with lowest ranking
vi. Normalise the vector

a) length = 0
b) For each keywords length += keyword_rating2

c) scale the vector by [1/square_root(length)]
i. Store the keywords in the database

3. When user is leaving a page
a.i. Store time of the visit in the database

4. When user is printing or saving
a.i. Store that event the database

The formula for creating the term vector for implicit user profile:

1. For each document stored in the database
a. Get the average time the user spent on each page from the database
b. Get keywords (with ratings) for all pages that have been visited for
longer than average

i. Retrieve the browsing history from the database
a.a) each action contains action id, start time, and end time
a.b) only select records where end time – start time > average

time
a.i. For every action id
a.ii. retrieve keywords associated with this action, each

keyword has a rating
b. Get keywords (with ratings) from pages that were printed or saved

 a Retrieve the browsing history from the database
i. each action contains action id, action time, and action type
ii. only select records with activity type ‘saving’ or ‘printing’

b For every action id
b.i. retrieve keywords associated with this action, each

keyword has a rating
b.ii. multiply the rating by 10 to consider printed/saved pages

Chapter 5: A Mediation Framework

 98

more important
c. Combine both keywords vectors from step 2 and 3

i. If a keyword exist in both vectors, then its new rating is a
sum of rating from both vectors

d. Normalise the vector
i. length = 0
ii. For each keywords length += keyword_rating2

iii. scale the vector by [1/square_root(length)]
2. Return the vector as it can now be used for searching

The implicit profile is generated once each time when the system has to

perform a search.

5.5.2.4 Implicit program code

The system interaction with the search API and keywords extraction from

the metadata and title is described in section 5.2.4.2. This section describes

how to store user activities. For saving and printing the ‘logCurrentActivity’

method is called.

// from MyWebBrowserListener
private String ignoreLastURL = "";

// called when a document has been opened
public void documentCompleted(WebBrowserEvent event)
{
 String url = this.myWebBrowser.getURL().toString();

 if(url == null || url.equalsIgnoreCase(ignoreLastURL))
 return;

// check if the main part of the url is the same and ignore change
// if the main part has not changed
 if(ignoreLastURL != null && url.contains("#"))
 {
 if(ignoreLastURL.startsWith(url.substring(0, url.indexOf("#"))))
 return;
 }
 ignoreLastURL = url;
 this.mySimpleBrowser.logCurrentActivity("Browsing", "Some URL BROWSING");
}

[…]

// from UserJnterface.java

public void logCurrentActivity(String activityType, String description)
{
 // find keywords

 TermVector keywords = Searching.findKeywords(webBrowser.getURL().toString());

 // save to the database

 ActivitiLogger.log(getSessionID(), activityType, description,
 webBrowser.getURL().toString(), keywords);
}

Chapter 5: A Mediation Framework

 99

The ‘documentCompleted’ method is called as an event from the browser,

each time after the browser has finished loading a web page.

5.5.2.5 Code for creating the implicit user profile

Creating implicit user profile - error handling code has been removed for

simplicity.

public static TermVector createVector(Connection conn, int sessionId)
{
 Statement stmt = conn.createStatement();

 String sql = "select max(DateDiff('s', starttime, finishtime)) as maxTime, "
 + " avg(DateDiff('s', starttime, finishtime)) as avgTime"
 + " from SessionActivity where sessionid = " + sessionId
 + " and activitytypeId='Browsing' and finishtime is not null "
 + " and starttime is not null ";

 ResultSet rs = stmt.executeQuery(sql);
 rs.next();
 double maxTime = rs.getDouble(1);
 double avgTime = rs.getDouble(2);

 //-- build the vector

 HashMap<String, Double> keywords = new HashMap<String, Double>();

 // get keywords from the database – browsed pages

 sql = "select t2.kText, t2.rating from SessionActivity as t1 "
 + " INNER join keyword as t2 on t1.sessionactivityid = t2.sessionactivityid"
 + " where t1.sessionid = " + sessionId
 + " and t1.starttime is not null and t1.finishtime is not null "
 + " and DateDiff('s', starttime, finishtime) >= " + avgTime + " ";

 rs = stmt.executeQuery(sql);
 while(rs.next())
 addKeyword(keywords, rs.getString(1), rs.getDouble(2));

 // get keywords from printed and saved pages

 sql = "select t2.kText, t2.rating*" + modForStoredPages
 + " from SessionActivity as t1 "
 + " INNER join keyword as t2 on t1.sessionactivityid = t2.sessionactivityid "
 + " where t1.sessionid = " + sessionId
 + " and (activitytypeId ='Printing' or activitytypeId='Saving')";

 rs = stmt.executeQuery(sql);
 while(rs.next())
 addKeyword(keywords, rs.getString(1), rs.getDouble(2));

 // make a vector from N most popular keywords

 TermVector vector = new TermVector();
 for(String s:keywords.keySet())
 vector.put(s, keywords.get(s));

 return vector.topN(maxKeywordsUsed);
}

Chapter 5: A Mediation Framework

 100

The returned TermVector object contains the generated implicit profile

information.

5.5.2.6 Retrieving search results for the implicit system

Retrieving search results for the implicit user profile is presented in the next fragment

of code.

public void doSearch()
{
 TermVector vector = Searching.createVector(ActivitiLogger.getConnection(),
 getSessionID());

 […]

 //-- search for documents in base web search API

 // create simple list of keywords ordered by values
 String[] list = new String[vector.size()];
 Iterator it = vector.termIterator();
 int idx = 0;
 while(it.hasNext())
 list[idx++] = it.next().toString();

 // find urls for the keywords by using base api

 java.util.List<String> urls = Searching.searchForUrl(list, ChoosedSearchAPI);

 //-- sort documents by similarity to the implicit vector

 RAMSearchEngine rse = new RAMSearchEngine();

 for(String url:urls)
 {
 HTMLDocument objDoc = new HTMLDocument("<html></html>");
 TermVector documentKeywords = Searching.findKeywords(url);
 // add document with keywords
 rse.addDocument(url, objDoc.getFullContent(), documentKeywords);
 }

 // retrieve documents with highest similarity to the fiven vector
 ValueSortedMap map = rse.retrieveDocuments(vector, 20);

 // display result
 setText_Result(map);
}

For each of the URLs returned by the base search API, the system retrieves

the web document in order to parse it to create a keywords vector. The same

process is repeated for all the documents returned in the base search API

results and a vector is created for every page so it can be compared to the

user profile vector.

Chapter 5: A Mediation Framework

 101

5.5.3 Hybrid system

The hybrid system is shown in Figure 5.11. Following is a description of the

components used in the architecture of the hybrid system, which utilizes a

combination of explicit and implicit user profiles.

5.6

5.7

Figure 5.11: Hybrid system

Explicit keywords

Build hybrid profile vector

Build explicit profile vector

Retrieve web

documents from API

Extract keywords

from documents

Build document

representations vectors

 Retrieved

 documents

Keywords for

documents

Result Presentation

Calculating the similarity

for each pair

Sorting documents the

similarity

Extracting the keywords

Build implicit vector

Storing in database

Creating profile

Browsing behaviour

Saving Printing

Time spend on each page

Web

Explicit keywords

Filtering process

Query

Profile

Chapter 5: A Mediation Framework

 102

In the hybrid mediation system the explicit profile and implicit profile are

generated separately and combined into a single term vector. For the explicit

user profile the system asks the users to add their preferences to the profile

in terms of keywords. The explicit profile is stored in a term vector.

The implicit user profile monitors the user’s search activities by checking the

history, the time spend on the each page, the printing and saving etc. The

system analyse the collected information to generate a list of keywords (with

weights) for the implicit profile.

After building the vectors for both profiles individually, the system combines

both vectors. The system gets the highest keyword weight from implicit user

profile and gives the same weight to every keyword in the explicit user profile

vector. Both vectors are then added – if a keyword appears in both vectors,

the system sets its new weight to the sum of weights from the both vectors.

After that the system normalise the combined vector and returns it.

5.7.1.1 Implementation of the hybrid system

The prototype for the hybrid system has been implemented in JAVA

programming language using NetBeans IDE. The class diagram of the hybrid

system provides the better understanding of the system architecture. The

prototype has five main classes:

Chapter 5: A Mediation Framework

 103

Figure 5.12: Simplified class diagram for the hybrid system

Figure 5.12 presents the hybrid system class diagram. ‘UserInterface’ class

creates the ‘WebBrowserListener’ to track user activities inside the browser.

Browsing, printing and saving activates are stored by calling the ‘log’ method

of the SearchSystem object, which calls the appropriate method from the

‘UserActivityLogger’ object. The hybrid searching is performed in four steps.

Firstly, the system creates the explicit and implicit profiles (a, b), which are

then merged into a hybrid profile (c), the hybrid profile is then used to

retrieve results from the base web search API (d) and to filter these results

(e).

The prototype incorporates the three modes of mediation and is capable of

performing all three types of searches – for the implicit vector, for the explicit

vector and for a combined vector. In the hybrid search the initial list of

documents is retrieved from the base web search API in the same way as in

the explicit system – by using the terms from the explicit vector.

Chapter 5: A Mediation Framework

 104

The detailed description of the searching algorithm used by the hybrid

system is outlined in the following pseudo code:

The new part that identifies the hybrid system is how the explicit and

implicit vectors are combined before the similarity for each document is

calculated. The system gets the highest keyword value from implicit user

profile and scale the explicit user profile by that value.

The code used to combine explicit and implicit user profiles:

private TermVector createCombinedVector(
 TermVector explicitUserPreferences,
 TermVector implicitUserPreferences)
{
 // if implicit vector is empty, then return the explicit vector
 if(implicitUserPreferences.size() == 0)
 return explicitUserPreferences.topN(explicitUserPreferences.size());

 // find the maximum keyword rating from implicit vector (top keyword)
 // - use the fact that the term vector is always ordered descending by rating
 String bestImplicitKeyword =
 (String)implicitUserPreferences.termIterator().next();
 double bestImplicitValue = implicitUserPreferences.get(bestImplicitKeyword);

 // create a combined vector
 TermVector result = new TermVector();

 // add all keywords from explicit results
 // the rating will be changed if this keywords exists in the
 // impicit vector as well
 result.putAll(explicitUserPreferences);
 // explicitly entered keywords ratings are scaled to be as hight as higher implicit rating
 result.scaleBy(bestImplicitValue);

1. Get explicit keywords from the user
2. Get implicit user profile vector from the browsing history
3. Create combined vector

a. Get the highest keyword rating from the implicit vector
b. Scale the explicit vector by the highest implicit rating

(calculated in point a.)
c. Add explicit and implicit vectors

If a keyword exist in both vectors, then its new rating is
a sum of rating from both vectors

4. Trim the combined vector to 5 keywords with the highest rating as too
many could prevent from getting any results from base web search
API

i. Normalise the vector
a. length = 0
b. For each keywords length += keyword_rating2

c. scale the vector by [1/square_root(length)]
ii. Return the normalised vector

Chapter 5: A Mediation Framework

 105

 // add all keywords from implicit preferences to keywords
 // from explicit preferences
 Iterator it = implicitUserPreferences.termIterator();
 while(it.hasNext())
 {
 String key = (String)it.next();
 double rating = (explicitUserPreferences.get(key) * bestImplicitValue)
 + implicitUserPreferences.get(key);
 // if already added from the explicit vector, the keyword will be replaced
 /// with the new value which includes implicit and explicit rating
 result.put(key, rating);
 }
 return result;
}

The code for doing hybrid search is as follows:

public List<String> doHybridSearch(String strKeywords)
 {
 // replace '=', ',', ' ' to '+'
 strKeywords = strKeywords.replace('=', '+').replace(',', '+').replace(' ', '+');

 // create explicit vector from the string containing keywords
 TermVector explicitUserPreferences = createUserPreferenceVector(strKeywords);
 // create implicit term vector from the browsing history (as in implicit prototype)
 TermVector implicitUserPreferences =
 Searching.createVector(userActivityLogger.getConnection(), 1);

 if(explicitUserPreferences == null)
 {
 List<String> result = new LinkedList<String>();
 result.add("[error in getting explicit keywords]");
 return result;
 }

 if(implicitUserPreferences == null)
 {
 List<String> result = new LinkedList<String>();
 result.add("[cannot get implicit keyword from the database]");
 return result;
 }

 //--
 // create hybrid vector (as presented in the beginning of this section)
 TermVector combinedPreferences = createCombinedVector(explicitUserPreferences,
 implicitUserPreferences);
 //--

 // search in base web search API - Yahoo or Google
 String[] keywords = strKeywords.split("\\+"); // only use explicit keywords
 List<String> APISearchResult = Searching.search(keywords, chosenAPI);

 // order results by similarity to the combined (hybrid) vector
 List<String> results = sortDocumentBySimilarity(APISearchResult,
 combinedPreferences);

 return results;
 }

The method returns the list of strings, each of them representing one URL.

Chapter 5: A Mediation Framework

 106

5.8 System interaction

Three different system interfaces were designed, one for each of the system

prototypes. The browser component is based on Internet Explorer that is

installed on the user computer. In the explicit system, user can enter the

keywords to create profiles which can be modified at a later stage if required.

In the implicit and hybrid systems, users can browse the Web using a build-

in web browser. After the search the system displays the most relevant

search results as a list of URLs. User can enter URLs directly, or follow

hyper-links on any page. All information about the browsing history

(including the time spent on a page) is stored in the database. The system

learns from users searching behaviour in the background and improves the

search according to individual interest. The hybrid system prototype's user

interface enables users to perform an explicit or implicit only search as well

as a hybrid search.

5.8.1 Explicit system Interface

The interface of the explicit profiles is shown in Figure 5.13. The interface

enables users to enter their preferences and to view the search results at

different stages of the filtering process.

The user can to enter name to save/load the profile (a new user profile is

created if the entered user name did not existed in the database). One user

is allowed to create any number of vectors by choosing ‘<new>’ from the

‘Stored keywords’ list and entering the list in to the ‘keywords’ text box.

Chapter 5: A Mediation Framework

 107

The system allows users to add, update, save, and remove vectors based on

their changing interests. To make change to a vector, user has to select it

from the list and either click ‘delete’ to remove it or change the list of

keywords and pres ‘save’ to update the vector.

Figure 5.13: Explicit system interface

To perform a search, a user has to select the vector from the list, choose one

of the base web search APIs and press the search button. The output

information consists of the list of the URL returned by the base web search

API, frequency vectors created for each of the documents returned, and the

list of URLs after the VSM filtering is applied.

5.8.2 Implicit System Interface

The interface of implicit system is shown in figure 5.14. The main

component of the implicit system prototype is the web browser which is

capable of tracking the user actions and learning from it. All the learning

Chapter 5: A Mediation Framework

 108

actions are performed in the background without additional interaction with

the user.

Figure 5.14: Implicit system interface

The user can provide a name for a session which allows creating different

profiles depending on the current user interest. The application can be

closed without losing any acquired knowledge, but the user is able to clear

session data by clicking on the ‘clear’ button next to the textbox with the

session name.

After browsing if the user wants to perform a search operation the base web

search API has to be selected and the ‘do search’ button clicked. After the

search the implicit profile vector is displayed together with frequency vector

generated for each of the document returned by the base search API. Finally

the list of suggested URLs is displayed in the bottom right text area.

Chapter 5: A Mediation Framework

 109

5.8.3 Hybrid System Interface

The hybrid system prototype caters for both explicit and implicit search. It

allows tracking the user actions and learning the user preferences to create

an implicit user profile vector whenever the user wants to start search

operation. The user can provide a name for the implicit profile session which

allows storing multiple implicit profiles for the user depending on the

current interest. The keywords for the explicit profile vector have to be

provided in a text box. The system supports the three kinds of search:

explicit, implicit and hybrid.

Figure 5.15: Hybrid system interface

Chapter 5: A Mediation Framework

 110

5.9 Summary

As an integral part of the endeavour to address the limitations of the base

search engines a mediation framework was proposed and implemented. The

provision of three mediation systems with their own distinctive profile

generation ensures that the framework offers quality of service in document

filtering. These requirements are well served by the adoption of the content-

based method and the VSM model. The overall flexibility of the framework is

supported by appropriate user interfaces.

Chapter 6: Evaluation

 111

Evaluation

6.1 Introduction

The aim of this chapter is to present a comparative evaluation of the

proposed framework. It involves a quantitative evaluation to determine the

effectiveness of the three mediation systems and a qualitative evaluation of

the framework to demonstrate the contribution of this research. The

measure of effectiveness of the systems will be in terms of precision and

recall, and will be with respect to the base Google and Yahoo search engines.

In addition the three modes of profile generation will be compared to each

other.

6.2 Evaluation methodology

The experiment was conducted to measure the effectiveness of the explicit,

implicit, and hybrid systems in terms of recall, precision and F-measure.

The experiments have been divided into two stages. The first phase

concerns the evaluation of the three mediation systems and the base API

used, and the second phase deals with the impact of additional learning time

C
h
a
p
te
r

6

Chapter 6: Evaluation

 112

of the implicit and the hybrid systems on the retrieval precision and recall.

The systems are tested with Google and Yahoo! Web Search APIs as base

search engines.

6.2.1 Experiment setup

The experiment was performed with 30 real users with their own choice of

keywords. Each user has provided one set of keywords for the first phase

which gives a total number of 30 queries. To measure the system

effectiveness the evaluation was conducted on the following retrieval systems

during January 2011 to May 2011:

• Google Web Search API (base Google)

• Yahoo Web Search API (base Yahoo)

• Explicit system using Yahoo (explicit with Google)

• Explicit system using Google (explicit with Yahoo)

• Implicit system using Yahoo (implicit with Google)

• Implicit system using Google (implicit with Yahoo)

• hybrid system using Yahoo (hybrid with Google)

• hybrid system using Google (hybrid with Yahoo)

The experiment was conducted in two phases. In the first phase only short

time was given to build implicit profiles, while in the second phase this time

was extended.

6.2.1.1 Experiment phase 1

In the first phase the users were instructed to use a provided web browser

for 15 minutes so that the browsing behaviour could be recorded in the

database and be available to the implicit and hybrid system. The browser

recorded the time spent on each page and activities such as printing and

saving a document. After the browsing session users proceeded to enter the

keywords for the explicit profile. After the explicit keywords were provided all

the search systems have been started. The documents retrieved by each of

Chapter 6: Evaluation

 113

the implemented systems from the base Web Search APIs were combined

into one list, sorted randomly and pre-opened in a web browser to avoid the

situation where the ratings given by the users are affected by their opinions

of the retrieval systems. It was decided to select first 20 web sites returned

from each system for evaluation: 160 documents were opened – 80 through

Google API and 80 through Yahoo API as the basis for mediation systems.

The documents were presented to the users who were asked to give to each

document a score that will indicate how relevant it is to the entered query.

The full test usually took from one to one and a half hour per user.

6.2.1.2 Experiment phase 2

The second phase of the experiment was performed with the same 30 users;

all of them had already taken part in the first phase. The experiment has

been performed to check how the retrieval effectiveness changes when

a system has additional time to learn from the user behaviour. Each user

has used the same user name as in the previous part of the experiment so

that new information was added to already stored browsing history captured

during the first phase of the experiment. The additional learning time was

set to 15 minutes per user, so that the total time allowed for system learning

was 30 minutes. The users have rated search results in the same way as in

the first phase of the experiment. Only the implicit and hybrid systems were

retested in the second phase as only these systems are using the stored

browsing information.

6.2.2 Documents rating

To ensure that all users are using the same scale of scores, the users were

presented with an indication on how to assess a page depending on whether

it was relevant or not. Five categories were created to assess search results,

these are “relevant”, “less relevant”, “irrelevant”, “links” and “no access”

(Kumar and Prakash 2009, Shafi and Rather 2005). This scale represents

the main characteristic of relevance as continuous rather than binary. Based

Chapter 6: Evaluation

 114

on the Kumar and Prakash (2009) research, the following rating instruction

was created and provided to the user:

Figure 6.1: Rating instruction provided to each user

This information was used by users to assess the relevance of documents

retrieved by the base search engines and the retrieval systems. Users were

giving scores to documents on the basis of relevance to the query. These

score allows us to determine the effectiveness of the retrieval systems and

the search engines in terms of both precision and recall.

The relevance scores given by users to a document could be influenced by

the awareness of the system or search engine that returned the document.

As mentioned in the first phase of the experiment, to ensure that the result

are only based on relevance rather than users expectations or opinions

about the retrieval method, a small evaluation application was introduced

that displayed a series of documents in random order and enabled users to

assign scores to documents without knowing which system has returned

them. If a document was retrieved by more than one search engine then it

was displayed only once. This process makes the scoring fairer and also

easier for users. After one page was rated the testing system was

automatically switching to the next document.

Category Description Score

Relevant Related Conference paper, journal paper
or web document fully related to the query

2

Less relevant Document not fully concerned on to the query
topic, but having the required information as
part of its contents

1

URLs/Links Page that provides a list of URLs where at
least two URLs are redirecting to a page with
the relevant information

0.5

Irrelevant Documents totally irrelevant to the user
intentions

0

No access Web pages that for any reason cannot be
accessed (e.g. ‘page not found error’).

Error (0)

Chapter 6: Evaluation

 115

Figure 6.2 shows the evaluation system with documents opened. Each

document is displayed in a separate tab.

Figure 6.2: Evaluation system during documents rating

Once a user clicks on one of the rating buttons placed under the document,

the rating for the displayed document is saved, and the next tab is brought

forward. Once all documents are rated they are closed and the results are

displayed in a spreadsheet as shown in Figure 6.3.

Figure 6.3 Evaluation system showing documents scores

Chapter 6: Evaluation

 116

Each user had to rate up to 20 web pages from each system, and altogether

they had to rate up to 160 web pages.

6.2.3 Measures of effectiveness

This section describes the measures used to assess the performance of each

of the systems. All the systems are based on the same base Web Search APIs

and are using the same keywords extraction method to eliminate any

spurious factors. The performance of the retrieval process of the three

systems will be determined in terms of precision, recall and F-measure.

6.2.3.1 Precision

The precision of a retrieval system for a given query is the number of

relevant documents retrieved over the total number of documents retrieved

for that query. As a document can be classified as relevant, partially relevant

or irrelevant instead of using number of documents, a value (score) will be

assigned to each document as a reflection of the degree of its relevance. The

precision is calculated as the total score assigned for retrieved documents

divided by the maximum score that would be given if all documents were

relevant (Kumar and Prakash 2009).

Precision 	 ����� ������ ���
 �������� ����
��� ���������

�b�
�
 ����� �� ��������� ����
���� [Equation 6.1]

If more documents are deemed irrelevant then the precision is low, but if

more documents match the expectations of the users then the precision is

high (for that particular query).

6.2.3.2 Recall

Recall is the total score of all relevant documents retrieved by a search

engine over the total score for all relevant documents held in the database.

������ 	 ����� ����� ���
 �������� ��������� ����
����
����� ����� �� ��� �������� ����
���� [Equation 6.2]

Chapter 6: Evaluation

 117

Users should be able to view all relevant documents that may meet their

information requirements. If the relevance scores from retrieved documents

is close to the total score of all documents in the database, then the recall

will be high, otherwise it will be low.

Recall is often nontrivial to measure because usually it is difficult to

determine the number of relevant documents in the whole database. The

issue is how to identify an acceptable pool of relevant documents. One

approach is to combine all the relevant documents returned by more than

one search engine (Kumar and Prakash 2009, Shafi and Rather 2005). The

score for each search system is calculated using the following equation:

������ 	 ����� �� ����
���� ��������� �/ ��������� �����2 �/���

�b�
�� ����� ��� ����
���� ��������� �/ ���2 �����2 �/���
 [Equation 6.3]

As this measure provides only an approximation to the true value of recall, it

is often referred to as relative recall. For example if two systems have to be

compared, Google and Yahoo! Web search APIs, then the Google API relative

recall can be measured by dividing the total score for document retrieved by

Google API by the maximum score for documents retrieved by either Yahoo!

or Google API. If the same document is returned by both search engines its

score is counted only once.

6.2.3.3 F-measure

The F-measure can be used to combine precision and recall to obtain

a single efficiency measure. F-measure score is defined as the harmonic

mean of precision and recall.

�– 4���d�� 	 2 -��������·.�����
-��������+.����� [Equation 6.4]

This is also known as F1 measure as precision and recall are weighted

equally.

Chapter 6: Evaluation

 118

6.2.4 Statistical significance of the results

As the number of users taking part in the experiment is limited to 30,

a statistical analysis is required to asses if the results are significant. The

goal is to determinate whether the hybrid system performs better than the

base APIs. As the number of samples is not very high, the ’Student`s’ T-test

is applicable. This test allows for testing a hypothesis on the basis of

a difference between two sample means. The underlying statistical

theoretical background is presented below.

A group of user have generated one series of samples for each of the

systems. Each user have provided two samples for each of the series, one

sample was provided by rating documents returned with use of the Google

API and other provided by rating the results from a system based on Yahoo

API.

The following parameters have to be defined before calculating the

significance level:

- n1 – size of the first sample

- n2 – size of the second sample

- e@fff– average value from the first sample

- e$fff – average value from the second sample

- g1 – standard deviation in the first sample

- g2 – standard deviation in the second sample

In the next step, two hypotheses have to be defined. The first hypothesis

states that the increase (or decrease) of the value (e.g. precision or recall) is

not significant, and the alternative hypothesis stating that this difference is

significant. If the first hypothesis (also called null hypothesis) is rejected

after the test, then the second hypothesis is accepted.

- H0 – The average value in the first sample is lower or equal to the

average value in the second sample

Chapter 6: Evaluation

 119

- H1 – The average value in the first sample is higher than the average

value in the second sample

The test statistic can be expressed as:

0 	 h=ffffSh*ffff
>i=

j=+i*
j*

 [Equation 6.5]

Finally the critical value (tc) of the test has to be specified. This value can be

read from tables, for a given value of required significance level (α) and

degree of freedom (df). The degree of freedom for two samples, each

containing 60 elements, is 118 (total number of samples, minus the number

of series). The significance level can be arbitrarily chosen. The value 0.01

would mean that if the null hypothesis is accepted, then there is 99%

confidence that the difference stated by that hypothesis have occurred by

chance.

Once all these steps are completed, the decision has to be made either the

null hypothesis should be accepted or rejected. The null hypothesis cannot

be rejected if the calculated value of t is lower than the critical value tc.

Otherwise the null hypothesis is rejected, and the alternative hypothesis can

be accepted instead.

�k 0 l 0�% 0m�� do not reject HY �0m��Q��� ��r��0 HY and accept hypothesis H@

The significance of the results will be calculated for the comparison of the

hybrid system with the base search APIs, the explicit system and with the

implicit system.

6.3 Experiment phase 1 results

The experiments results are collected from Google, Yahoo, explicit system

using Yahoo, explicit system using Google, implicit system using Yahoo,

Implicit system using Google, hybrid system using Yahoo and hybrid system

using Google. The retrieval effectiveness has been measured with 30 real

Chapter 6: Evaluation

 120

users with their own choice of queries. A spreadsheet was prepared to

calculate the precision for each search, based on the collected data. Detailed

description regarding collected data, users and calculations are provided in

Appendix B.

There is no absolute measurement of recall as it is not feasible to assess and

rate all the documents in the Google or Yahoo databases. Instead a method

of calculating the relative recall, which has already been adopted by Kumar

and Prakash (2009) and Shafi and Rather (2005), will be used in the

measurement of recall. The total of the relevant documents is created by the

combination of the relevant documents returned by the base Google and the

base Yahoo search engines. Duplicates, i.e. the documents returned by both

search engines are counted once only. This method was used in the

evaluation of the recall of the three mediation systems. The spreadsheet

used in the recall calculation is provided in the Appendix B.

6.3.1 Precision and relative recall with Google and

Yahoo! APIs

After the submission of the keywords to search engine API the first 20

returned documents are retrieved for the determination of the precision and

relevance score.

6.3.1.1 Precision of base Google and Yahoo! APIs

Figure 6.4 shows the scores for the documents returned by the Google Web

Search API for user queries.

Chapter 6: Evaluation

 121

Figure 6.4: Precision of Google API

To obtain the overall Google precision the total score for all documents was

divided by the maximum score that could be assigned if all documents were

fully relevant. As 20 documents were rated by each of 30 users, and the

maximum score given for each document is 2, the maximum possible score

is 1200. Figure 6.5 displays the search results with Yahoo search engine.

Figure 6.5: Precision of Yahoo! API

The results indicate that the base Google has returned slightly higher

number of irrelevant documents, while Yahoo returns a higher combination

of relevant and less relevant documents.

6.3.1.2 Relative recall of base Google and Yahoo! APIs

The recall was calculated with the same data used to calculate the precision.

As stated earlier, to the recall for Google or Yahoo! APIs, the total relevance

Description

Relevant

Less
relevant

URLs Irrelevant Page
cannot be
accessed

Total

Number of
document

214 122 58 198 8 600

%

35.7% 20.3% 9.7% 33.0% 1.3%

Total score

428 122 29 0 0 579

Overall
precision

0.48

Description

Relevant

Less
relevant

URLs Irrelevant Page
cannot be
accessed

Total

Number of
document

239 90 73 186 12 600

%

39.8% 15.0% 12.2% 31.0% 2.0%

Total score

478 90 36.5 0 0 604.5

Overall
precision

0.50

Chapter 6: Evaluation

score for the document

document score retrieve

Figure 6.6: Re

Figure 6.6 presents th

calculations are provid

Yahoo API performs slig

6.3.1.3 Overall precis

Figure 6.7 presents a g

search APIs used in th

Yahoo! API returns more

Figure 6.7: Precision a

Precision

Recall

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Description

Documents

Documents Sc

Recall

ents retrieved by Google or Yahoo, divided

eved from both Yahoo and Google.

 Relative recall of base Google and Yahoo! A

 the recall for Google and Yahoo. The d

vided in Appendix B. In terms of the re

lightly better than Google API.

ecision and relative recall of base Google

a graph for the precision and relative reca

 the mediation systems. The graphs indica

ore relevant documents than base Google A

n and relative recall results for Google and

Google Yahoo!

0.48 0.50

0.57 0.60

Base search engines

ion Google Yahoo Dupli

nts 600 600 13

 Score 579 604.5 174

0.57 0.60

122

ded by the total

! APIs

 detailed recall

recall the base

gle and Yahoo

ecall of the base

dicate that base

le API.

nd Yahoo! APIs

plicated

139

174.5

Chapter 6: Evaluation

 123

It can be seen, that for both APIs the relative recall is higher than the

precision, and that about half of the returned document were relevant to the

queries.

6.3.2 Precision and relative recall for the explicit

system

The explicit mediation system is based on the keywords provided by users

directly to specify their profile. Each user submits the keywords to the

system to retrieve the search results.

6.3.2.1 Precision of the explicit system using Google and Yahoo

The approach used to calculate the precision of the explicit system using

Yahoo is the same as used for the base APIs. The system has produced 20

ranked web documents from explicit system based on Yahoo, and 20

documents from explicit system based on Google API in as returns to each

query.

Figure 6.8: Precision of Explicit system using Google

The results of the explicit system using Google API are presented on Figure

6.8. The results show that there is slight improvement in precision in the

explicit system using Google over base Google API.

Description

Relevant

Less
relevant

URLs Irrelevant

Page
cannot be
accessed

Total

Number of
document

220 124 70 184 2 600

%

36.7% 20.7% 11.7% 30.7% 0.3%

Total score

440 124 35 0 0 599

Overall
precision

0.50

Chapter 6: Evaluation

 124

Figure 6.9: Precision of Explicit system using Yahoo

Figure 6.9 presents the search results with explicit system using Yahoo. The

table indicates that that the explicit Yahoo performs better than the base

Yahoo! API and better than explicit system using Google API.

6.3.2.2 Relative recall of explicit system

To measure the relative recall, the documents from the explicit Google and

the explicit Yahoo have been combined into one set.

Figure 6.10: Relative recall of explicit system

Figure 6.10 provides the results of Google and Yahoo relative recall

calculations.

6.3.2.3 Overall precision and relative recall of the explicit system

Figure 6.11 presents the precision and relative recall of the explicit

mediation system. The system retrieves more accurate results compared to

base search engines, however users had to provide their preferences

explicitly. The precision and relative recall is higher in the explicit system

Description

Relevant

Less
relevant

URLs Irrelevant

Page
cannot be
accessed

Total

Number of
document

268 113 67 151 1 600

%

44.7% 18.8% 11.2% 25.2% 0.2%

Total score

536 113 33.5 0 0 682.5

Overall
precision

0.57

Description Google Yahoo Duplicated

Documents 600 600 99

Documents Score 599 682.5 137

Recall 0.52 0.60

Chapter 6: Evaluation

 125

using Yahoo! API than the explicit system using Google API. The explicit

Yahoo performs better than base Yahoo API, but that the recall for the

explicit system based on Google API has decreased when compared to base

Google API.

Figure 6.11: Precision and relative recall results for the explicit system

The explicit system performs better with the Yahoo search engine API than

with Google API, however comparison between the base APIs is not the aim

of this experiment. Instead the average precision and recall of each kind of

mediation system will be provided in section 6.4.1.

6.3.3 Precision and relative recall with the implicit

system

The implicit system is based only on the observed user browsing behaviour.

In particular it is based on the recording of the time spent on each

document, printing or saving documents, and the content of these

documents.

Google Yahoo!

Precision 0.50 0.57

Recall 0.52 0.60

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Explicit System

Chapter 6: Evaluation

 126

6.3.3.1 Precision of the implicit system using Google and Yahoo

Figure 6.12 presents the precision of implicit system search results. The

precision is the same as of base Google API but much lower than the

precision of the explicit system using Google API.

Figure 6.12: Precision of implicit system using Google

The next figure (Figure 6.13) presents the precision for the implicit system

with Yahoo API.

Figure 6.13: Precision of Implicit system using Yahoo API

The precision is lower than precision of the base Yahoo! API and much lower

than precision of the explicit system Yahoo! API. The implicit system based

on Yahoo! API returns has larger proportion of irrelevant documents to

relevant documents. This indicates that at this stage the keywords extracted

form the documents do not reflect accurately the interest of the user.

Description

Relevant

Less
relevant

URLs Irrelevant

Page
cannot be
accessed

Total

Number of
document

228 93 65 210 4 600

%

38.0% 15.5% 10.8% 35.0% 0.7%

Total score

456 93 32.5 0 0 581.5

Overall
precision

0.48

Description

Relevant

Less
relevant

URLs Irrelevant

Page
cannot be
accessed

Total

Number of
document

188 101 83 225 3 600

%

31.3% 16.8% 13.8% 37.5% 0.5%

Total score

376 101 41.5 0 0 518.5

Overall
precision

0.43

Chapter 6: Evaluation

6.3.3.2 Relative reca

For the implicit system,

relative recall as was us

Figu

Figure 6.14 shows the o

higher with for the versi

6.3.3.3 Overall precis

Figure 6.15 shows the p

Figure 6.15: Precis

The results give an init

performs better than th

Precision

Recall

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Description

Documents

Documents Sc

Recall

ecall of the implicit system

em, the same approach has been used to

 used for base APIs and for the explicit syst

igure 6.14: Recall of explicit system

e overall recall of implicit system. The rec

rsion based on Google API.

ecision and relative recall of implicit sys

e precision and relative recall for the implic

cision and relative recall results for implici

initial indication that the Google-based im

 the Yahoo-based system. Its performanc

Google Yahoo!

0.48 0.43

0.56 0.50

Implicit system

ion Google Yahoo Dupli

nts 600 600 99

 Score 581.5 518.5 13

0.56 0.50

127

to calculate the

ystem.

recall is slightly

system

plicit system.

licit system

 implicit system

ance is however

plicated

99

137

Chapter 6: Evaluation

 128

very close to the base Google search API, an indication that the mediation is

not very effective.

6.3.4 Precision and relative recall with the hybrid

system

The hybrid system combines both kinds of user profiles – explicit and

implicit. In this system the user provides the keywords explicitly, but the

information about the users browsing history is also used to build a

combined vector. The system retrieved the search results by using the

combined profile vector.

6.3.4.1 Precision of hybrid system using Google and Yahoo

Figure 6.16 shows the hybrid system precision. The precision is close to

that of the explicit system based on Google API. The percentage of irrelevant

documents is still high.

Figure 6.16: Precision of hybrid system using Google

The precision of the hybrid system using Yahoo! API is presented on Figure

6.17.

Description

Relevant

Less
relevant

URLs Irrelevant

Page
cannot be
accessed

Total

Number of
document

233 118 66 180 3 600

%

38.8% 19.7% 11.0% 30.0% 0.5%

Total score

466 118 33 0 0 617

Overall
precision

0.51

Chapter 6: Evaluation

 129

Figure 6.17: Precision of hybrid system using Yahoo! API

The results indicate that the hybrid system with Yahoo! API returns the

largest percentage of relevant documents so far. Its precision is even higher

than the precision measured for the explicit system Yahoo! API. The

combination of the two types of profile has enhanced the effectiveness of the

system.

6.3.4.2 Relative recall of the hybrid system

Figure 6.18: Relative recall of hybrid system

Figure 6.18 describes the overall recall of hybrid system. The recall for

system based on Yahoo! is the highest so far. This reflects an overall

improvement in the retrieval of relevant documents.

6.3.4.3 Overall precision and relative recall of hybrid system

Figure 6.19 illustrates the results of the precision and recall measured for

the hybrid system. The system combines both implicit and explicit

approaches to improve search results.

Description

Relevant

Less
relevant

URLs Irrelevant

Page
cannot be
accessed

Total

Number of
document

287 100 71 140 2 600

%

47.8% 16.7% 11.8% 23.3% 0.3%

Total score

574 100 35.5 0 0 709.5

Overall
precision

0.59

Description Google Yahoo Duplicated

Documents 600 600 111

Documents Score 617 709.5 157

Recall 0.53 0.61

Chapter 6: Evaluation

 Figure 6.19: Precis

The hybrid system bas

percent better precision

Generally, the hybrid s

mediation systems. Retr

the users. The precisio

the explicit system, the

6.4 Analysis of

This section presents a

collating and comparing

6.4.1 Precision r

Figure 6.20 shows the p

for the base search e

precision than the c

experiments the users

initial browsing.

Precision

Recall

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

cision and relative recall results for hybrid

ased on Yahoo! API has retrieved results

ion and recall than hybrid system using

 system performs well compared to the o

etrieved documents are mostly relevant to

sion is high for the hybrid system in com

he implicit system, and the base API used.

 of phase 1 results

s an analysis of the results of experiment

ing the results of the three mediation syste

n results for all systems

e precision results for all the implemented

 engines. The explicit system has a sl

 corresponding base search engines.

 had limited time and spent about 15 mi

Google Yahoo!

0.51 0.59

0.53 0.61

Hybrid system

130

rid system

lts with several

ing Google API.

e other kinds of

t to the query of

omparison with

ent phase 1, by

stems.

ted systems and

 slightly higher

. In the first

 minutes on the

Chapter 6: Evaluation

Figure 6

The hybrid system impr

time. The system appe

difference with the expli

overall the hybrid syste

API.

The precision results of

were combined in orde

mediation systems, as s

either calculated from a

average of the precisio

Google or Yahoo APIs. A

of system is in every ca

the same irrespective of

Base

Google

Precision 0.48

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

re 6.20: Precision results for all systems

proves the search results even after the s

ppears to be effective in terms of precis

plicit system or base system is minimal. It

em performs better with Yahoo API than

 of the each system based on Yahoo! and

rder to obtain an average precision for

s shown in Figure 6.21. The combined sim

 all the documents retrieved by each syst

ision calculated individually for the syste

. As the number of documents retrieved by

 case the same, for all of the systems the r

 of the calculation method.

Base

Yahoo

Explicit

Google

Explicit

Yahoo

Implicit

Google

Implicit

Yahoo

Hybrid

Google

0.50 0.50 0.57 0.58 0.52 0.64

Precision

131

e short learning

cision, but the

. It appears that

an with Google

nd Google APIs

or each kind of

imilarity can be

ystem or as the

stem based on

 by each version

e results will be

rid

gle

Hybrid

Yahoo

0.68

Chapter 6: Evaluation

This confirms that th

systems. In the first pha

system were creating th

over 15 minutes and

second phase of the exp

the systems.

The experiment results

better that the base Goo

Also the hybrid profile

The ability of the custo

clearly an advantage. Th

profile has slightly enha

6.4.2 Recall resu

Figure 6.22 shows the

base engines. Although

consistently applied to

effectiveness comparison

Base

Precision 0.4

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Figure 6.21: Average precision

the hybrid system performs better tha

phase of the experiment, the implicit system

g the implicit vector based on the behavi

d the measured precision may be differ

experiments where more learning time wa

lts indicate that the explicit system perfor

Google and Yahoo search engines in terms

ile provides better precision than the imp

stomers to customise explicitly the retriev

. The combination of the explicit profile an

hanced the overall profile.

esults for all systems

he relative recall results for all systems,

gh the calculated recall is the relative recal

to all the systems and thus it is a useful

ison.

ase APIs Explicit Implicit Hybr

0.49 0.53 0.46 0.5

Average Precision

132

than the other

stem and hybrid

aviour collected

ferent after the

was available to

rforms generally

ms of precision.

implicit system.

rieval process is

and the implicit

s, with the two

call, it has been

ful indicator for

ybrid

0.55

Chapter 6: Evaluation

Figure 6.22

The relative recall is hig

relevant documents (wh

recall). It can be seen

achieved by hybrid, exp

lowest values were me

Google API. The average

and the results displaye

Fig

Base

Google Ya

Recall 0.57

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Base

Recall 0.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

2: Relative recall results for all the system

high if both versions of each system retrie

(while irrelevant documents do not affec

n in Figure 6.22 that the highest values

xplicit and base system using Yahoo! API,

measured for the implicit and explicit sy

age relative recall for all the systems was al

ayed in Figure 6.23.

Figure 6.23: Average relative recall

Base

Yahoo

Explicit

Google

Explicit

Yahoo

Implicit

Google

Implicit

Yahoo

Hybrid

Google

0.60 0.52 0.60 0.56 0.50 0.53

Relative recall

Base APIs Explicit Implicit Hybrid

0.59 0.56 0.54 0.57

Average Recall

133

ems

rieved the same

fect the relative

s for recall is

, and that the

systems using

s also calculated

Hybrid

Yahoo

0.61

rid

Chapter 6: Evaluation

 134

In contrast with precision, the base APIs perform best in terms of the recall.

The recall of the hybrid system is lower than the recall for the base APIs by

0.02, however it is higher than the recall of the implicit systems by 0.04.

6.4.3 F-measure results for different systems

The F-measure combines precision and recall into a single measure of

effectiveness and it was calculated for all the systems.

Figure 6.24: F-measure

The Figure 6.24 shows that there is little variation between the F-measure

values for any of the systems in phase 1, except for the implicit system

which has lower F-measure after the short learning session.

If the user decides to change its interest the hybrid system performance may

be affected. To avoid this problem, a user is able to change the session name

to create a new separate profile, and can switch between profiles at any time.

Base APIs Explicit Implicit Hybrid

F-measure 0.54 0.55 0.49 0.56

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F-measure

Chapter 6: Evaluation

 135

6.5 Experiment phase 2 results

The second phase of the experiment includes only the implicit and the

hybrid systems as the results will only change for the systems that can learn

from the users browsing behaviour. The users who have taken part in the

first phase of the experiment were invited for the second phase.

6.5.1 Precision and relative recall with the implicit

system

The procedures used to measure the precision and recall of the systems is

the same as in the first phase of the experiment. Every user has been using

the provided web browser by another15 minutes, which gives total time of

learning 30 minutes.

6.5.1.1 Precision of Implicit system using Google and Yahoo APIs

Figure 6.25 shows the precision of implicit system using Google API. The

precision is significantly higher than the precession calculated after the first

phase of the experiment.

Figure 6.25: Precision of the implicit system using Google

Figure 6.26 shows the precision of implicit system based on the Yahoo! API.

The precision is much lower than for implicit Google above, but it is

Description

Relevant

Less
relevant

URLs Irrelevant

Page
cannot be
accessed

Total

Number of
document

260 148 61 128 3 600

%

44.7 26.3 11.8 17.7 0.3

Total score

520 148 30.5 0 0 698.5

Overall
precision

0.58

Chapter 6: Evaluation

 136

significant improvement compared to the same system results in the first

phase.

Figure 6.26: Precision of implicit system using Yahoo

6.5.1.2 Relative recall of the implicit system

Figure 6.27 illustrates the relative recall of implicit system. The recall for

implicit system is similar to the results obtained in phase 1.

 Figure 6.27: Recall of the implicit system

6.5.1.3 Overall precision and relative recall of implicit system

Figure 6.28 shows the overall retrieval effectiveness results with the implicit

system. The results indicate that there is a significant improvement in

precision after additional learning but the recall values are similar to those

obtained in phase 1. The implicit system performs better with Google API

than with Yahoo! API.

Description

Relevant

Less
relevant

URLs Irrelevant

Page
cannot be
accessed

Total

Number of
document

218 139 100 141 2 600

%

37.0 26.0 17.8 19.3 0

Total score

436 139 50 0 0 625

Overall
precision

0.52

Description Google Yahoo Duplicated

Documents 600 600 70

Documents Score 698.5 625 97.5

Recall 0.57 0.51

Chapter 6: Evaluation

Figure 6.28: Precisio

Both versions of the sy

were relevant to queries

6.5.2 Precision a

The hybrid system com

achieve better results in

6.5.2.1 Precision of t

The results presented in

system based on Google

and that the percentage

Precision

Recall

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
S

co
re

sion and relative recall results for the impli

 system have returned document from wh

ies.

n and relative recall with hybrid

combines the explicit and implicit modes

 in terms of precision and relative recall.

of the hybrid system using Google and Y

 in Figure 6.29 indicate that the precision

gle API is very high compared to the first p

ge of relevant documents is high.

Google Yahoo!

0.58 0.52

0.57 0.51

Implicit system

137

plicit system

which over half

rid system

des in order to

 Yahoo

ion of the hybrid

t phase results,

Chapter 6: Evaluation

 138

Figure 6.29: Precision of hybrid system using Google

Figure 6.30 shows the overall precision of the hybrid system based on

Yahoo! API. The value is also very high and close to that of the hybrid system

using Google API.

The results indicate that the hybrid system is maintaining a more accurate

profile and that more relevant documents are retrieved.

Figure 6.30: Precision of hybrid system using Yahoo! API

6.5.2.2 Relative recall of the hybrid system

Figure 6.31 shows the relative recall for the hybrid system. The recall values

for both versions of hybrid are close.

Description

Relevant

Less
relevant

URLs Irrelevant

Page
cannot be
accessed

Total

Number of
document

305 123 69 103 0 600

% relevant

50.8 20.5 11.5 17.2 0

Total score

610 123 34.5 0 0 767.5

Overall
precision

0.64

Description

Relevant

Less
relevant

URLs Irrelevant

Page
cannot be
accessed

Total

Number of
document

331 116 62 89 2 600

%

55.2 19.4 10.4 14.9 < 0.1

Total score

662 116 31 0 0 809

Overall
precision

0.67

Chapter 6: Evaluation

Figur

6.5.2.3 Overall precis

The results for hybrid sy

and Yahoo API, as show

Figure 6.32: Precisio

In both versions of the

precision is higher that

to the queries, but the

been retrieved (systems

Google API based ver

compared to the results

the precision but not th

Precision

Recall

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Measuremen

Documents

Documents Sc

Recall

gure 6.31: Recall of the hybrid system

ecision and relative recall of hybrid syste

 system are similar for both versions – bas

own in Figure 6.32.

ision and relative recall results for the hybr

the hybrid system – using Google and Ya

at recall. The retrieved documents are mo

there are still some relevant documents t

ems are retrieving different relevant docu

version has improved in both precision

ults of phase 1, while the Yahoo version h

 the recall.

Google Yahoo!

0.64 0.67

0.57 0.60

Hybrid system

ent Google Yahoo Dupli

nts 600 600 14

 Score 767.5 809 22

0.57 0.60

139

stem

based on Google

ybrid system

 Yahoo API, the

 mostly relevant

s that have not

ocuments). The

ion and recall,

n has improved

plicated

142

228

Chapter 6: Evaluation

 140

6.6 Comparison of the results from both phases

of the experiment

This section presents the effect of the learning process on the precision and

the recall of the implicit and the hybrid systems.

6.6.1 Precision

The overall precision of all the systems, measured in phase 1 and 2 is

presented in Figure 6.33.

Figure 6.33: Overall precision

It can be seen from the graphs that the precision for both the implicit and

the hybrid systems have improved after the additional learning opportunity.

The improvement of the implicit system is 19.6% (from 0.46 in the first

phase to 0.55 in the second phase) while in the hybrid system the precision

have improved by 20% (from 0.55 to 0.66).

The precision of the hybrid system is not worse than the precision of any

other systems even after a short learning.

Base APIs Explicit Implicit Hybrid

Phase I 0.49 0.53 0.46 0.55

Phase II 0.55 0.66

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Precision

Chapter 6: Evaluation

 141

If a user changes the interest, the effectiveness of the hybrid and the implicit

system may decrease. Depending on the change, the implicit and hybrid

systems could still be useful. The user is allowed to create a new profile

without deleting the old one – the system allows creating any numbers of

profiles so the user can go back to previously created one.

6.6.2 Statistical significance of comparison of the

systems precision

As described in the methodology, the T-test was used to analyse the

statistical importance of the experiment results. The statistic has been

calculated for the following comparison:

- Hybrid system precision with base APIs precision

- Hybrid system precision with explicit system precision

- Hybrid system precision with implicit system precision

The t-test could be misleading if the distribution of the variable (measured

precision for one user) is very different from the normal distribution.

Figure 6.34: Distribution results

0

500

1000

1500

2000

2500

3000

0

5

10

15

20

25

30

Data distribution

Normal distribution

Chapter 6: Evaluation

 142

The figure 6.34 is presenting the distribution of the precision measured for

different users for all systems to show that it is in fact close to the normal

distribution, and therefore a t-test can be been applied correctly.

6.6.2.1 Comparison of the precision for hybrid system and the base

APIs

The calculated precision for the base API is 0.49, while the precision for the

hybrid system is 0.66. The T-test can be used to estimate the degree of trust

in the calculated values. For that purpose the null hypothesis is defined as

“The increase of precision in the hybrid system over the base API is not

significant” and the alternative hypothesis is stating that this increase is

significant.

Hybrid Base API

Average value wx 0.657 0.493

Standard

deviation
g 0.029 0.039

Sample size n 60 60

Figure 6.35: Parameters for the precision comparison for hybrid system and

the base APIs

The t statistics is calculated below:

0 	 b=ffff+b*ffff
>i=

j=+i*
j*

	 4.86 [Equation 6.6]

The null hypothesis can be rejected if the calculated value for t is higher

than the critical t-value (tc), which can be read from tables for given samples

size and significance level. The critical t-value for importance level 0.01 is

equal to 3.1607.

For significance level α = 0.01 the tc value is 3.1607.

Chapter 6: Evaluation

 143

4.86 is higher than 3.1607, therefore t is larger than tc and the null

hypothesis has to be rejected. Therefore the alternative hypothesis, stating

that the increase of precision in the hybrid system over the base API is

significant, can be accepted with 0.01 significance level (99% confidence).

6.6.2.2 Comparison of the precision for hybrid system and the

explicit system

The calculated precision for the explicit system is 0.53, while the precision

for the hybrid system is 0.66. The null hypothesis in the T-test is defined as

“The increase of precision in the hybrid system over the explicit system is

not significant” and the alternative hypothesis is stating that this increase is

significant.

Hybrid Base API

Average value wx 0.657 0.533

Standard

deviation
g 0.029 0.032

Sample size n 60 60

Figure 6.36: Parameters for the precision comparison for hybrid system and

the explicit system

The t statistics is calculated below:

0 	 b=ffff+b*ffff
>i=

j=+i*
j*

	 3.872 [Equation 6.7]

The null hypothesis can be rejected if the calculated value for t is higher

than the critical t-value (tc) The critical t-value for importance level 0.01 can

be read from tables as 3.1607.

For significance level α = 0.01 the tc value is 3.1607.

4.86 is higher than 3.1607, therefore t is larger than tc and the null

hypothesis has to be rejected. Therefore the alternative hypothesis, stating

Chapter 6: Evaluation

 144

that the increase of precision in the hybrid system over the explicit system is

significant, and can be accepted with 0.01 significance level.

6.6.2.3 Comparison of the precision for hybrid system and the

implicit system

The calculated precision for the implicit system is 0.55, while the precision

for the hybrid system is 0.66. The null hypothesis is defined as “The increase

of precision in the hybrid system over the implicit system is not significant”

and the alternative hypothesis is stating that this increase is significant.

Hybrid Base API

Average value wx 0.657 0.549

Standard

deviation
g 0.029 0.026

Sample size n 60 60

Figure 6.37: Parameters for the precision comparison for hybrid system and

the implicit system

The t statistics is calculated below:

0 	 b=ffff+b*ffff
>i=

j=+i*
j*

	 3.562 [Equation 6.8]

The null hypothesis can be rejected if the calculated value for t is higher

than the critical t-value (tc), which can be read from tables for given samples

size and significance level. The critical t-value for importance level 0.01 is

equal to 3.1607.

For significance level α = 0.01 the tc value is 3.1607.

3.562 is higher than 3.1607, therefore t is larger than tc and the null

hypothesis has to be rejected, and instead the alternative hypothesis, stating

Chapter 6: Evaluation

 145

that the increase of precision in the hybrid system over the base API is

significant, can be accepted with 0.01 significance level (99% confidence).

6.6.3 Recall

Recall is a measure of the completeness of the retrieval process. The higher

the recall value, the lower will be the number of relevant documents not

retrieved. The overall recall of all the systems, measured in phase 1 and 2 is

presented on Figure 6.38. Although the determination of recall may be

approximate because of the small pool of relevant documents, it has been

consistently applied in the experiments with all the systems to allow

comparison.

Figure 6.38: Overall recall

It can be seen from the graph that all systems have similar recall.

The hybrid system recall has improved, but the improvement is only 3.5%

(0.59 versus 0.57 measured in the first phase). The effectiveness of all the

systems is similar in terms of recall, and there is no visible recall advantage

Base APIs Explicit Implicit Hybrid

Phase I 0.59 0.56 0.53 0.57

Phase II 0.54 0.59

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Recall

Chapter 6: Evaluation

 146

in using any of them. The highest value achieved by the hybrid system is

equal to that achieved by the base search engines.

6.6.4 Statistical significance of comparison of the

systems recall

As described in the methodology, the T-test was used to analyse the

statistical importance of the experiment results. The statistic has been

calculated for the following comparison:

- Hybrid system recall with base APIs recall

- Hybrid system recall with explicit system recall

- Hybrid system recall with implicit system recall

Figure 6.39: Distribution results

The figure 6.39 is presenting the distribution of the recall measured for

different users for all systems to show that it is in fact close to the normal

distribution, and therefore t-test can be been applied correctly.

0

500

1000

1500

2000

2500

3000

3500

4000

0

10

20

30

40

50

60

70

80

0.29

to

0.34

0.34

to

0.40

0.40

to

0.45

0.45

to

0.51

0.51

to

0.56

0.56

to

0.62

0.62

to

0.68

0.68

to

0.73

0.73

to

0.79

0.79

to

0.84

0.84

to

0.90

0.90

to

1.00

Data distribution

Normal distribution

Chapter 6: Evaluation

 147

6.6.4.1 Comparison of the recall for hybrid system and the base APIs

The calculated recall for the base API is 0.592, while the recall for the hybrid

system is 0.594. The T-test can be used to estimate the degree of trust in the

calculated values. For that purpose the null hypothesis is defined as “The

increase of recall in the hybrid system over the base API is not significant”

and the alternative hypothesis is stating that this increase is significant.

Hybrid Base API

Average value wx 0.592 0.594

Standard

deviation
g 0.012 0.013

Sample size n 60 60

Figure 6.40: Parameters for the recall comparison for hybrid system and the

base APIs

The t statistics is calculated below:

0 	 b=ffff+b*ffff
>i=

j=+i*
j*

	 0.085 [Equation 6.9]

The null hypothesis can be rejected if the calculated value for t is higher

than the critical t-value (tc), which can be read from tables for given samples

size and significance level.

For significance level α = 0.01 the tc value is 2.3583.

The value 0.085 is lower than 2.3583, therefore t is lower than tc and the

null hypothesis cannot be rejected. Therefore the null hypothesis, stating

that the increase of recall in the hybrid system over the base API is not

significant, cannot be rejected (with 99% confidence).

Chapter 6: Evaluation

 148

6.6.4.2 Comparison of the recall for hybrid system and the explicit

system

The calculated recall for the explicit system is 0.56. The recall for the hybrid

system is 0.592. The null hypothesis in the T-test is defined as “The increase

of recall in the hybrid system over the average recall for the explicit system is

not significant” and the alternative hypothesis is stating that this increase is

significant.

Hybrid Base API

Average value wx 0.592 0.579

Standard

deviation
g 0.0122 0.0241

Sample size n 60 60

Figure 6.41: Parameters for the recall comparison for hybrid system and the

explicit system

The t statistics is calculated below:

0 	 b=ffff+b*ffff
>i=

j=+i*
j*

	 1.307 [Equation 6.10]

For significance level α = 0.01 the tc value is 2.3583, therefore the null

hypothesis cannot be rejected, as the t value is lower – the hypothesis that

the recall of the hybrid system has not improved over the recall for the

explicit system cannot be rejected (with 99% confidence).

6.6.4.3 Comparison of the recall for hybrid system and the implicit

system

The calculated recall for the implicit system is 0.54, while the recall for the

hybrid system is 0.59. The null hypothesis is defined as “The increase of

recall in the hybrid system over the implicit system is not significant” and

the alternative hypothesis is stating that this increase is significant.

Chapter 6: Evaluation

 149

Hybrid Base API

Average value wx 0.592 0.542

Standard

deviation
g 0.012 0.011

Sample size n 60 60

Figure 6.42: Parameters for the recall comparison for hybrid system and the

implicit system

The t statistics is calculated below:

0 	 b=ffff+b*ffff
>i=

j=+i*
j*

	 2.550 [Equation 6.11]

The null hypothesis can be rejected if the calculated value for t is higher

than the critical t-value (tc), which can be read from tables for given samples

size and significance level. The critical t-value for importance level 0.01 is

equal to 2.3583.

2.250 is lower than 2.3583, therefore t is lower than tc and the null

hypothesis cannot be rejected with 99% confidence.

The statistical analysis indicates that there is no significant improvement in

recall with the hybrid system.

6.6.5 F-measure

The F-measure combines precision and recall into a single measure of

effectiveness and it was calculated for all the systems.

Chapter 6: Evaluation

 150

Figure 6.43: F-measure

The Figure 6.43 shows that there is little variation between the F-measure

values for any of the systems in phase 1, except for the implicit system

which needs additional learning to achieve similar results to the other

systems.

It can be clearly seen that the performance of the hybrid system has

improved after the additional learning (by 10.7% - the new value is 0.62

while before it was 0.56). Even without the extra learning its performance

was no worse than the performance of any of the other systems. The users

can benefit from the hybrid system even after short learning (15 minutes).

If the user decides to change its interest the hybrid system performance may

be affected. A user is able to change session name to create a new separate

profile, and can switch between profiles at any time.

Base APIs Explicit Implicit Hybrid

Phase I 0.53 0.55 0.49 0.56

Phase II 0.54 0.62

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

F-measure

Chapter 6: Evaluation

 151

6.6.6 Statistical significance of comparison of the

systems F-measure

As described in the methodology, the T-test was used to analyse the

statistical importance of the experiment results. The statistic has been

calculated for the following comparison:

- Hybrid system F-measure with base APIs F-measure

- Hybrid system F-measure with explicit system F-measure

- Hybrid system F-measure with implicit system F-measure

Figure 6.44: Distribution results

The figure 6.44 is presenting the distribution of the precision measured for

different users for all systems to show that it is in fact close to the normal

distribution, and therefore t-test can be been applied correctly.

0

500

1000

1500

2000

2500

3000

3500

0

5

10

15

20

25

30

35

Data distribution

Normal distribution

Chapter 6: Evaluation

 152

6.6.6.1 Comparison of the F-measure for hybrid system and the base

APIs

The F-measure parameters calculated for the base APIs and the hybrid

systems are presented in table 6.45.

Hybrid Base API

Average value wx 0.560 0.536

Standard

deviation
g 0.0144 0.0260

Sample size n 60 60

Figure 6.45: Parameters for the F-measure comparison for hybrid system

and the base APIs

The null hypothesis is defined as “The increase of F-measure in the hybrid

system over the base API is not significant” and the alternative hypothesis is

stating that this increase is significant.

The t statistics is calculated below:

0 	 b=ffff+b*ffff
>i=

j=+i*
j*

	 0.927 [Equation 6.12]

The null hypothesis can be rejected if the calculated value for t is higher

than the critical t-value (tc), which for importance level 0.01 is equal to

2.3583, therefore the null hypothesis cannot be rejected with 99%

confidence.

6.6.6.2 Comparison of the F-measure for hybrid system and the

explicit system

The F-measure parameters calculated for the explicit system and the hybrid

systems are presented in table 6.46.

Chapter 6: Evaluation

 153

Hybrid Base API

Average value wx 0.560 0.519

Standard

deviation
g 0.0144 0.0240

Sample size n 60 60

Figure 6.46: Parameters for the F-measure comparison for hybrid system

and the explicit system

The null hypothesis is defined as “The increase of F-measure in the hybrid

system over the base API is not significant” and the alternative hypothesis is

stating that this increase is significant.

The t statistics is calculated below:

0 	 b=ffff+b*ffff
>i=

j=+i*
j*

	 1.593 [Equation 6.13]

The null hypothesis can be rejected if the calculated value for t is higher

than the critical t-value (tc) The critical t-value for importance level 0.01 can

be read from tables as 2.3583.

The null hypothesis can be rejected if the calculated value for t is higher

than the critical t-value (tc), therefore in this case the null hypothesis cannot

be rejected with 99% confidence – the difference is not significant enough.

6.6.6.3 Comparison of the F-measure for hybrid system and the

implicit system

The F-measure parameters calculated for the implicit system and the hybrid

systems are presented in table 6.47.

Chapter 6: Evaluation

 154

Hybrid Base API

Average value wx 0.560 0.534

Standard

deviation
g 0.0144 0.0133

Sample size n 60 60

Figure 6.47: Parameters for the F-measure comparison for hybrid system

and the implicit system

The null hypothesis is defined as “The increase of F-measure in the hybrid

system over the base API is not significant” and the alternative hypothesis is

stating that this increase is significant.

The t statistics is calculated below:

0 	 b=ffff+b*ffff
>i=

j=+i*
j*

	 1.198 [Equation 6.14]

The critical t-value for importance level 0.01 can be read from tables as

2.3583, therefore the null hypothesis cannot be rejected with 99%

confidence.

Chapter 6: Evaluation

 155

6.6.7 Summary of quantitative evaluation

The summary of the evaluation (after the second phase of the experiment) is

presented in the table below.

Parameter System Value Relation to the Hybrid system

Precision

Base API 0.49 Significantly lower (99% confidence)

Explicit 0.53 Significantly lower (99% confidence)

Implicit 0.55 Significantly lower (99% confidence)

Hybrid 0.66 N/A

Recall

Base API 0.59 Not significant (or less than 99% confidence)

Explicit 0.56 Not significant (or less than 99% confidence)

Implicit 0.54 Not significant (or less than 99% confidence)

Hybrid 0.59 N/A

F-measure

Base API 0.54 Not significant (or less than 99% confidence)

Explicit 0.55 Not significant (or less than 99% confidence)

Implicit 0.55 Not significant (or less than 99% confidence)

Hybrid 0.62 N/A

Figure 6.48 Summary of the evaluation results

It can be seen from figure 6.48 that the after the learning phase, the hybrid

system outperforms all other kinds of mediation systems in terms of

precision. The ability of the users to formulate their profile explicitly is

enhanced by the implicit analysis of previously visited documents - both

modes of profile generation reinforce each other; while the implicit profile

narrows the scope of the search, the explicit profile ensures that there is

clear focus on user interest during the profile generation. The evidence

indicates that the hybrid mediation system highly enhances the documents

retrieval precision.

The recall and the F-measure (which is partially delivered from the recall)

have not improved significantly. The difference in the values of recall and F-

measure calculated for each of the systems is visible, however high deviation

of the data samples does not allow telling whether this difference is

Chapter 6: Evaluation

 156

significant. The lack of improvement in recall may be due mainly to the

difficulty of measuring recall. The use of relative recall, based on two search

engines only where almost all the documents are similar is essentially

equivalent to the use of one search engine.

Given the fact that precision and recall are equally weighted, despite some

increase in precision the lack of improvement in recall has had a dampening

effect on the calculation of the F-measure.

6.7 Qualitative evaluation

In this section a number of personalised systems are presented in order to

identify the contribution of the proposed hybrid mediation framework.

Recommender systems are designed to recommend content based on

learning algorithms. In general in a content–based filtering system items are

selected according to an explicit or implicit profile and the content of

document visited or ranked.

Syskill & Webert is a content-based filtering system based only on explicit

profile generated when the user provides a feedback for visited items. It is

designed to improve the item recommendations by selecting items that are

matched either on the basis of the generated explicit user profile or the

query of the user (Garden and Dudek 2006). The user has to rate a number

of web pages for the system to be able to analyse the page content and

deduce the interest of the user interest (Pazzani, Muramatsu and Billsus

1996). The main shortcoming of this system is that the user has to rank

explicitly visited pages. The system relies on this explicit feedback to

generate a profile. In contrast the hybrid system can benefit from all visited

documents by analysing in the background parameters such as time spent

on the page without any additional intervention from the user. The Syskill &

Webert system is ineffective if the domain of search changes because a new

profile has to be generated (Pazzani, Muramatsu and Billsus 1996).

Chapter 6: Evaluation

 157

Lieberman (1995) have developed a system called Letizia which creates

implicit users profiles from the analysis of the individual browsing

behaviour. It assumes that the user is interested in a document if the

documents is saved or bookmarked and weak interest if the document is left

without following links inside the document. The system gives weight to

documents that are linked to the documents that the user is currently

viewing and suggests similar documents that match the implicit profile. The

system does not make use of any explicit data for the recommendations. The

proposed hybrid system on the other hand incorporates both an implicit

user profile as well as an explicit profile.

The WebWatcher system monitors the choice of links by the user for the

future recommendation of links. The system does not require the

submission of keywords or explicit ratings. It considers the documents that

were retrieved through a link as examples of documents of interest to the

user, and the documents that were available through links but not visited as

examples of documents not relevant. These documents are also included into

the building of the implicit profile as negative examples (Mladenic 1996). If

a document is considered as a negative example the system will not suggest

similar documents in the future. There may be however many reasons for

not visiting a links, e.g. user have already found relevant information or

there is more than one link of interest to the user and only one of them was

followed. The negative factor may influence a system to ignore interesting

documents. The proposed system does not consider links as one of the

criteria in the document analysis and is relatively open on the content of

documents – documents are never considered as negative (irrelevant)

examples.

Stegmann (2005) presented an approach to explicit user profiling that

complies with personal interests by means of an adaptive natural language

dialogue. The system captures the information provided by users during a

dialogue session and stores it in an explicit user profile. This kind of

interaction requires however very high attention from the user.

Chapter 6: Evaluation

 158

Although this brief review has only covered a subset of filtering systems it

has highlighted the advantages and shortcomings of the proposed

framework. Its ability to incorporate different modes of profile generation and

to accommodate some learning is one of its most attractive features. It

creates a context where user and system can collaborate in retrieving

relevant documents. In contrast most systems tend to focus on one aspect of

profiling. The proposed hybrid mediation system combines the explicit and

implicit profiles to create a more effective mediation system.

6.8 Summary

The experimental results have indicated that the combination of different

modes of mediation is a viable option in filtering documents in Web search.

The experiment has shown that the explicit system performs well compared

to the base API used. It allows the users to formulate their search interests

with immediate effect. Although the implicit system alone does not perform

as well, its combination with the explicit features into a hybrid system

appears to be the best of the investigated modes of mediation, especially

after the system had more time for learning. This system performs

consistently better in terms of precision than other systems, without

decreasing the recall and F-measure performance.

Compared to some content-based systems the mediation framework is able

to combine different modes of mediation to provide more relevant irrespective

of the base search engine.

The performance of the hybrid system could improve further over the

performance of the base APIs, if the methods of gathering implicit and

explicit information are improved. Jung, Herlocker and Webster (2007) has

developed a system that besides of gathering the basic browsing information

was also analysing the clicking, and claimed that the clicking is the most

accurate indicator for predicting the user’s behaviour (Jung, Herlocker and

Webster 2007). Rastegari and Shamsuddin (2010) have also agreed that the

clicking can be the most accurate indicator. Therefore adding the support of

Chapter 6: Evaluation

 159

recording clicking can be a way of further improving the implicit profile

generation (Rastegari and Shamsuddin 2010). The explicit profile generation

can also be improved with features like the explicit rating of documents, as it

was done by Claypool, Waseda and Brown (2001) who has also added the

possibility of implicitly predicting the explicit rating for documents that were

not rated by the user.

Chapter 7: Conclusions and Further work

 160

Conclusions and Further
Work

7.1 Introduction

The main objective of this research was to investigate the impact of different

modes of mediation on the Web Search process. It involved three main tasks.

First, the investigation of methods and mechanisms in user profile

generation and in filtering search results. Second task was focused on the

design and implementation of a mediation framework as a layer between a

user and classic Web Search engines. Finally the third task was to provide

the comparative evaluation of the impact of the different types of mediation

systems on web search results in terms of precision and recall.

The aim of this chapter is to provide concise conclusions of the research

presented in this thesis and to determine to what extent the research

objectives were met. An assessment of the current status of the mediation

framework will also help to identify the contribution of this work and it will

offer pointers for further work.

C
h
a
p
te
r

7

Chapter 7: Conclusions and Further work

 161

7.2 Research contribution and conclusions

The main objectives of this research as were identified in section 1.5. They

were stated as follows:

� To identify and investigate issues related to the web and search

engines.

� To investigate the role of different personalisation techniques and

retrieval models in the enhancement of the quality of retrieval

process.

� To propose a novel approach for enhancing the filtering of search

results by combining selectively different methods.

� To design and implement a mediation framework that enables the

deployment of three different user profiling methods.

� To perform a quantitative evaluation of the mediation framework in

terms of precision recall and F-measure as well as a qualitative

evaluation.

This research is an integral part of the effort aimed at overcoming the

limitations of the classic search engines. In addressing this issue a critical

evaluation of various profiling techniques and of retrieval models was

carried. The investigation has led to the proposal of a mediation approach

which was applied in the development of a mediation framework. It involved

the integration of three modes of user profiling within a content-based

information retrieval method, and it was facilitated by the adoption of the

Vector Space Model.

The developed framework acted as a vehicle for the investigation of the

impact of the modes of user profiling mediation on Web Search results.

Explicit, implicit and hybrid profile generation were incorporated into three

mediation systems to represent prevailing forms of user profiling. The

combination of explicit and implicit methods into the hybrid method has

ensured that document filtering was performed according to context and

without incurring the shortcomings of cold start. The performance of the

Chapter 7: Conclusions and Further work

 162

systems was evaluated with the help of a large number of users in terms of

precision and recall.

The explicit mediation system enables users to formulate and change easily

their search interests. It has also the advantage that it does not suffer from

the cold start. Its evaluation shows that the precision of this system is only

slightly better than the precision calculated for base Google APIs, while the

recall is slightly lower. It can be stated that there is no visible improvement

in using the explicit user profile alone, with Google API. Its performance is

however much better with the Yahoo! API for both precision and recall.

The implicit mediation system was designed with the assumption that users

browsing activities can indicate whether a currently opened document is of

interest to the user; observed activities include the time spent reading a

page, printing a page or saving it. The system learns from the browsing

behaviour, and can filter search results to find documents that are similar to

documents that were of interest to the user in previous browsing sessions.

The use of the implicit mediation system yields less accurate results than

the base Web search APIs, in terms of both precision and recall. However

after the learning time was doubled the precision improved and was higher

than precision of the base APIs and of the explicit system.

The hybrid mediation system combines the explicitly stated interests with

the observation of user behaviour. The experimental results indicate that the

hybrid system yields better and more accurate results than the other two

mediation systems or the base APIs. In addition, after the learning time was

doubled the precision of the system increased in relation to its previous

precision and in relation to the base APIs. This system appears to be the

best of the compared approaches of enhancing the retrieval effectiveness.

While the precision improved, the recall and F-measure have not been

significantly affected. These results indicate clearly that a hybrid system can

enhance the quality of the search results. The hybrid system has managed

to retrieve documents from which a large proportion was relevant to user

intentions.

Chapter 7: Conclusions and Further work

 163

The framework was carefully evaluated with real users using the three

systems with the Google and the Yahoo! APIs. The results expressed in terms

of precision and recall and were validated by a statistical analysis. The

significance tests confirm that the mediation framework enhances the

quality of the retrieval process, and that it performs better than the basic

APIs.

The investigation into mediation systems and related techniques, and the

development of the mediation framework, as well as its evaluation can help

form an objective assessment on the main contribution of this research. The

contribution lies essentially in the provision of three different mediation

systems and the evaluation of their impact on the web search process. More

specifically, the combination of different modes of mediation within a

content-based method represents one of the distinctive features of this work.

This research contributes to the validation of the view that personalisation

can offer an effective way of dealing with information overload. This view is

supported by significance tests.

From this review of the work that was carried out and the identification of

the contribution of this research it can be stated that all the objectives of the

research were met.

7.3 Limitations of the research

Although the aims and objectives of this research were met, a number of

limitations have been identified in the resulting system and the process.

These are detailed below:

� The implicit profiling makes use of three variables only to help

generate a profile. This restriction can have an adverse effect on

the accuracy of the profile.

� The calculation of the similarity is performed by exact match only.

Useful documents can be ignored by this linguistic constraint.

� The number of keywords is limited to 5. An imbalance may result

from the competition for space by the explicit and implicit profiles.

Chapter 7: Conclusions and Further work

 164

� Use of relative recall as an approximation performed with two

search engines only. The pool of documents is very small and

many documents are not accessed.

� Although the number of users is statically significant, 30 users

only were involved in the testing. The sample may not give a true

reflection of the performance of the system.

� Efficiency issues are important but were not addressed, especially

in the hybrid system. The overheads of the framework and its

systems were not investigated.

� The learning process has been investigated properly. It is difficult

to assess precisely at what time the learning takes place and is

most effective.

7.4 Further Work

Although the proposed framework appears to be a viable mediator between

users and the Web, there is still scope for enhancing its effectiveness. Some

of the issues that are considered for further work include:

� The criteria used for implicit generation are limited to time spent,

printing and saving. Further work will seek to generate implicitly

more accurate profiles, e.g. by widening the criteria of observation to

include bookmarking and link selection.

� The proposed framework is based on using the exact match for the

keywords. Instead of using an exact match for keywords, their

synonyms could be considered as well. Using ontology offers a way of

expanding the scope of the proposed system. It would help identify

the terms that are related to those stored in a user profile.

� The three systems operate as mediators between two search engines

APIs and the users. The framework can incorporate more search

engines, including domain specific search engines to provide better

access to sources. This will also provide a larger pool of documents

and improve the calculation of recall.

� The proposed framework relies on a content-based approach. The

scope of the framework can be expanded by including collaborative

Chapter 7: Conclusions and Further work

 165

features such as the clustering of users according to common

interests.

7.5 Summary

This research has provided the opportunity to gain a deeper insight into

mediation systems. An assessment of the contribution of this work indicates

that the research programme has met successfully all its objectives. The

research has confirmed that mediation frameworks can improve the quality

of the web search results and that the choice of the mode of mediation,

whether explicit, implicit or hybrid is an important factor in enhancing

precision and recall.

References

 166

 References

Abual-Rub, M. S., Abdullah, R., and Rashid, N. A. (2007) 'A Modified Vector

Space Model for Protein Retrieval'. Journal of Computer Science and Network

Security 7 (9), 85-89

Ahn, J. W., Brusilovsky, P., Grady, j., He, D., and Syn, S. Y. (2007) ‘’Open

User Profiles for Adaptive News Systems: Help or Harm?’’ ‘Proceedings of the

Sixteenth International World Wide Web Conference’. held at Alberta,

Canada

Amati, G., Crestani, F., Ubaldini, F., and Nardis, S. D. (1997) Probabilistic

Learning for Information Filtering. ‘RIAO, 5th International Conference’. held

at McGill University, Montreal. Canada

Aoidh, E. M., Bertolotto, M., and Wilson, D. C. (2007) Implicit Profiling for

Contextual Reasoning about Users. ‘7th International Conference on Case

Based Reasoning (ICCBR)’. held at Belfast, Northern, Ireland

Balabanovic, M., and Shoham, Y. (1997) 'Fab: Content-Based, Collaborative

Recommendation’. Journal on Communications of the ACM 40 (3), 66-72

Bernard, J. J., and Spink, A. (2006) 'How are we Searching the World Wide

Web? A Comparison of Nine Search Engine Transaction Logs'. Journal on

Information Processing and Management 42 (1), 248-163

Berners-Lee, T., Cailliau, R., Nielsen, H. F., and Secret, A. (1994) 'The World-

Wide Web'. Journal on Communication of the ACM 37 (8), 76-82

Berry, M. W., Drmac, Z., and Elizabeth, J. R. (1999) 'Matrices, Vector

Spaces, and Information Retrieval'. Journal on SIAM Review 41 (2), 335-362

Beza-Yates, R., and Ribeiro-Neto, B. (1999) Modern Information Retrieval.

ACM Press: USA

References

 167

Blachman, N., and Peek, J. (2007) How Google Works [online] available from

<http://comptechnoportal.files.wordpress.com/2009/11/how-google-works-

google-guide.pdf> [Dec. 2007]

Bradford, R. (2008) An Empirical Study of Required Dimensionality for Large-

scale Latent Semantic Indexing Applications. ‘Proceedings of the 17th ACM

Conference on Information and Knowledge Management’. held at Napa

Valley, California, USA. 153–162

Brin, S., and Page, L. (1998) 'The Anatomy of a Large-Scale Hypertextual

Web Search Engine'. Journal on Computer Networks 30 (1-7), 107-117

Brusilovsky, P. and Tasso, C. (2004) ‘Preface to Special Issue on User Modeling

for Web Information Retrieval’. Journal on User Modeling for Web Information

Retrieval 14 (2-3), 147-157

Budzik, J., and Hammond, K. (1999) Watson: Anticipating and

Contextualizing Information Needs. ‘Proceedings of the Sixty-Second Annual

Meeting of the American Society for Information Science’. held at Medford,

NJ, 727-740

Burright, M. (2006) Database Reviews and Reports Google Scholar Science &

Technology. [online] available from

http://www.library.ucsb.edu/istl/06-winter/databases2.html

Busby, M. (2003) Learn Google. Plano, Texas: Wordware Publishing, Inc.

Cayzer, S., and Michlmayr, E. (2008) Adaptive User Profiles. HP

Laboratories. [online] available from

<http://www.hpl.hp.com/techreports/2008/HPL-2008-201.pdf> [2008]

Clarke, S., and Willett, P. (1997) Estimating the recall performance of search

engines. Association of Special Libraries (ASLIB) Proceedings 49 (7), 184-

189.

Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., and Sartin,

M. (1999) Combining Content-Based and Collaborative Filters in an Online

References

 168

Newspaper. ‘Proceedings of ACM SIGIR Workshop on Recommender Systems’.

held at Berkeley, California

Claypool, M., Le, P., Waseda, P., and Brown, D. (2001) Implicit Interest

Indicators. ‘Proceeding of the 6th international conference on intelligent user

interface’. held at Santa Fe, New Mexico, United States. 33-40

Dean, J., and Ghemawat, S. (2008) 'MapReduce: Simplified Data Processing

on Large Clusters'. Journal on Communication of the ACM 6 (1), 107-113

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and

Harshman, R. (1990) ‘Indexing by Latent Semantic Indexing’. Journal of the

American Society for Information Science. 41(6), 321-407

Delgado, J., Ishii, N., and Ura, T. (1998) Content-Based Collaborative

Information Filtering: Actively Learning to Classify and Recommend

Documents. ‘Proceedings of the Second International Workshop on Cooperative

Information Agents II, Learning, Mobility and Electronic Commerce for

Information Discovery on the Internet’. held at London, UK

Ferragina, P., and Gulli, A. (2005) A Personalized Search Engine Based on

Web-Snippet Hierarchical Clustering. ‘Conference on International World

Wide Web’. held at Chiba, Japan

Frias-Martinez, E., Cebrian, M., Moises, J.P., and Oliver, N. (2009) Explicit

vs. Implicit Tagging for User Modeling. ‘Proceedings of the Workshop on

Personalization in Mobile and Pervasive Computing’. held at Rento, Italy

Fox, S., Karnawat, K., Mydland, M., Dumais, S., and White, T. (2005)

‘Evaluating implicit measures to improve web search’. Journal of ACM

Transactions on Information Systems 23(2), 147–168

Fuhr, N. (1992) 'Probabilistic Models in Information Retrieval'. Journal on

Computer 35 (3), 243-255

References

 169

Garden, M., and Dudek, G. (2006) 'Mixed Collaborative and Content-Based

Filtering with User-Contributed Semantic Features'. (ed.) Proceedings of the

21st National Conference on Artificial Intelligence. held at Boston,

Massachusetts: AAAI Press, 1307-1312

Gasparetti, F., and Micarelli, A. (2007) Exploiting Web Browsing Histories to

Identify User Needs. ‘Proceedings of the 12th International Conference on

Intelligent User Interfaces’. held at Honolulu, Hawaii: ACM, 325-328

Gauch, S., Chaffee, J., and Pretschner, A. (2003) 'Ontology-Based

Personalized Search and Browsing'. Journal on Web Intelligence and Agent

Systems 1 (3-4), 219-234

Gemechu, F., Yu, Z., and Ting, Y. (2010) A Framework for Personalized

Information Retrieval Model. Computer and Network Technology (ICCNT), 500

– 505

Ghosh, R., and Dekhil, M. (2009) Discovering User Profiles. Proceedings of

the 18th International Conference on World Wide Web. held at Madrid,

Spain.

Gils, B.V., Proper, H. A., Bommel, P. V., and Schabell, E. D. (2003) ‘Profile-

based retrieval on the World Wide Web’. Bra, P. D (ed.) Proceedings of the

Ninth Interdisciplinary Conference on Information Science. held at Eindhoven

University of Technology, 91-98

Google (2011) Google Help [online] available from

<http://www.google.com/support/websearch/bin/static.py?hl=en&page=gu

ide.cs&guide=1186810&answer=106230&rd=1> [June 2011]

Google (2011) Webmaster Tools Help [online] available from

<http://www.google.com/support/webmasters/bin/answer.py?answer=344

39> [May 2011]

References

 170

Grcar, M., Mladenic, D., and Grobelnik, M. (2005) 'User Profiling for Interest-

Focused Browsing History'. Proceeding of the Workshop on End User Aspects

of the Semantic Web, ‘Conjunction with the 2nd European Semantic Web

Conference’. held at Heraklion, Greece

Grimmelmann, J. (2007) 'The Structure of Search Engine Law'. IOWA LAW

REVIEW 93(1), 1-64 [online] available from

http://www.nyu.edu/projects/nissenbaum/papers/Grimmelmann_Structur

eOfSearchEngineLaw.pdf [2007]

Grossman, D. A., and Frieder, O. (2004) Information Retrieval-Algorithms

and Heuristics. 2nd Edition edn. Netherlands: Springer

Hendler, J., and Berners-Lee, T. (2010) 'From the Semantic Web to Social

Machines: A Research Challenge for AI on the World Wide Web'. Journal on

Artificial Intelligence 174 (2), 156-161

Hiemstra, D. (2009) ‘information Retrieval Models’. Goker, A., and Davies, J.

(ed.) Information Retrieval: Searching in the 21st Century. Publisher: John

Wiley and Sons

Holmes, E. G. (2006) 'Google and Beyond: Finding Information using Search

Engines, and Evaluating Your Results'. Journal on Technical Services Law

Librarian 31 (2), 8-9

Hopfgartner, F., Hannah, D., Gildea, N., and Jose, J.M. (2008) Capturing

Multiple Interests in News Video Retrieval by Incorporating the Ostensive

Model. ‘Proceeding of the Second International Workshop on Personalized

Access, Profile Management, and Context Awareness in Databases’. held at

Auckland, New Zealand, 48–55

Huang, Z., Chen, H., and Zeng, D. D. (2004) 'Applying Associative Retrieval

Techniques to Alleviate the Sparsity Problem in Collaborative Filtering'.

Journal of ACM Transactions of Information Systems. 22, 116-142

References

 171

Hunt, B. (2005) Search Engine Watch-what Exactly, is Search Engine Spam?

[online] available from

<http://searchenginewatch.com/article/2067496/What-Exactly-is-Search-

Engine-Spam> [Feb. 2005]

Hussein, M., and Elsayed, T. (2008) Studying Facial Expressions as an

Implicit Feedback in Information Retrieval Systems.

Ichikawa, Y., Nakamura, M., Hata, K., and Nakagawa, T. (2008) ‘Provision of

Services According to Individual User Preferences Over a Cross-Section of

Sites Implemented with Personalized-Service Platform’. NTT Information

Sharing Platform Laboratories. Musashino-shi, Japan

Jawaheer, G., Szomszor, M., Kostkova, P. (2010) Comparison of Implicit and

Explicit Feedback from an Online Music Recommendation Service.

‘Proceedings of the 1st International Workshop on Information Heterogeneity

and Fusion in Recommender Systems’. held at New York, USA

Jones, K. S., Walker, S., and Robertson, S. E. (2000) 'A Probabilistic Model of

Information Retrieval: Development and Comparative Experiments'. Journal

on Information Processing and Management 36 (6), 779-808

Jung, S., Herlocker, J.L., and Webster, J. (2007) ‘Click data as implicit

relevance feedback in web search’. Journal of Information Processing and

Management 43 (3), 791–807

Kagie, M., Loos, M. V. D., and Wezel, M. V. (2009) 'Including Item

Characteristics in the Probabilistic Latent Semantic Analysis Model for

Collaborative Filtering'. Journal of AI Communications 22 (4), 249-265

Kamishima, T., and Akaho, S. (2006) Nantonac Collaborative Filtering

Methods- Recommendation Based on Order Responses. ‘Proceedings of the

National Institute of Advanced Industrial Science and Technology (AIST)’.

International workshop on data-mining and Statistical Science (DMSS2006).

held at Sapporo, Japan.

References

 172

Kelly, D., and Belkin, N. J. (2001) Reading Time, Scrolling and Interaction:

Exploring Implicit Sources of User Preferences for Relevance Feedback during

Interactive Information Retrieval. ‘Conference on SIGIR’. held at New Orleans,

USA

Kelly, D., and Belkin N. J. (2004) Display time as implicit feedback:

understanding task effects. ‘Proceedings of the 27th annual international

ACM SIGIR conference on Research and development in information

retrieval’. held at New York, USA, 377–384

Khribi, M. K., Jemni, M., and Nasraoui, O. (2009) Automatic

Recommendations for E-Learning Personalization Based on Web Usage Mining

Techniques and Information Retrieval. ‘Proceedings of the Eighth IEEE

International Conference on Advanced Learning Technologies’. held at

Santander, Cantabria. 2, 30-42

Klusch, M. (2001) 'Information Agent Technology for the Internet: A Survey'.

Journal on Data & Knowledge Engineering 36 (3), 337-372

Kumar, B. T. S., and Prakash, J. N. (2009) 'Precision and Relative Recall of

Search Engines: A Comparative Study of Google and Yahoo'. Journal of

Library & Information Management 38, 124-137

Lawrence, S. (2000) 'Context in Web Search'. IEEE Data Engineering Bulletin

23 (3), 25-32

Lemire, D., and Maclachlan, A. (2005) 'Slope One Predictors for Online

Rating-Based Collaborative Filtering'. Proceedings of the Fifth SIAM

International Conference on Data Mining. ed. by Anon, 471-480

Li, Q., and He, D. (2010) Searching for Entities: When Retrieval Meets

Extraction. ‘The Nineteenth Text Retrieval Conference’ (TREC). held at

Gaithersburg, MD: NIST

Li, Q., and Kim, B. M. (2003) An Approach for Combining Content-Based and

Collaborative Filters. ‘Proceedings of the Sixth International Workshop on

References

 173

Information Retrieval with Asian Languages’. held at Sapporo, Japan

ACM,17-24

Liu, F., Yu, F., and Meng, W. (2006) Effective keyword search in relational

databases. ‘Proceedings of the ACM SIGMOD international conference on

Management of data’. held at Chicago, IL, USA

Liddy, E. D. (2005) Document Retrieval, Automatic [online] available from

http://www.cnlp.org/publications/Document.Retrieval.Liz.pdf.edn:

Published in the Encyclopedia of Language & Linguistics, Elsevier Limited

Lieberman, H. (1995) 'Letizia: An Agent that Assists Web Browsing'. ed.

Mellish, C. San Mateo, CA: Morgan Kaufmann publishers Inc. 924-929

Manavoglu, E., Pavlov, D., and Giles, C. L. (2003) 'Probabilistic User

Behavior Models'. Proceedings of Third IEEE International Conference on Data

Mining (ICDM 2003). ed. by Anon, 203-210

Manning, C. D., Raghavan, P., and Schütze, H. (2008) Introduction to

Information Retrieval. United States: Cambridge University Press

Maron, M. E., and Kuhns, J. L. (1960). ‘On relevance, probabilistic indexing

and information retrieval’. Journal of the ACM. 7, 216-244.

Meteren, R. V., and Someren, M. V. (2000) ‘Using Content-Based Filtering for

Recommendation’. Proceedings of MLnet/ECML2000 Workshop. held in

Barcelona. Spain

Metzler, D., and Croft, W.B. (2007) ‘Linear feature-based models for

information retrieval’. Journal of Information Retrieval, 10(3), 257-274

Mladenic, D. (1996) Personal Webwatcher: Design and Implementation.

[online] available from

[http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.2143]

Mowshowitz, A., and Kawaguchi, A. (2002) ‘Bias on the Web’. Journal of

communication of the ACM 45 (9), 56-60

References

 174

Mowshowitz, A., and Kawaguchi, A. (2005) 'Measuring Search Engine Bias'.

Journal on Information Processing and Management 41 (5), 1193-1205

Naik, N.P., and Rao, A.M. (2011) Information Search and Retrieval System in

Libraries. ‘Proceedings of the 8th International Caliber. held at Goa

University, Goa.

Notess, G. R. (2008) Review of Yahoo! Search [online] available from

<http://www.searchengineshowdown.com/features/yahoo/review.html>

[Jan. 2009]

Parkes, D.C., and Seuken, S. (2011) [online lecture] CS 186 Lecture 17-

Recommender Systems. Available from

http://www.seas.harvard.edu/courses/cs186/doc/17-rec-sys.pdf

Paulson, P., and Tzanavari, A. (2003) 'Combining Collaborative and Content

Based Filtering using Conceptual Graphs'. Lectures Notes in Computer

Science, 168-185

Pazzani, M. J., Muramatsu, J., and Billsus, D. (1996) 'Syskill & Webert:

Identifying Interesting Web Sites'. in Proceedings of the Thirteenth National

Conference on Artificial Intelligence. ed. by Anon, Portland, US: AAAI Press,

54-61

Pazzani, M. J., and Billsus, D. (2007) ‘Content-based recommendation systems’. in

Lecture Notes on the Adaptive Web: Methods and Strategies of Web

Personalization. ed. by Springer-Verlag, 325-341

Polyvyanyy, A., and Kuropka, D. (2007) ‘A Quantitative Evaluation of the

Enhanced Topic-Based Vector Space Model’: A Technical Report of the Hasso-

Plattner-Institute, 19

Rashid, A., Mamunur., Albert, I., Cosley, D., Lam, S. K., McNee, S. M.,

Konstan, J. A., and Riedl, J. (2002) Getting to Know You: Learning New User

Preferences in Recommender Systems. ‘Proceedings of the 7th International

Conference on Intelligent User Interfaces’. held at San Francisco, California,

USA: ACM Press

References

 175

Rastegari, H., and Shamsuddin, S.M. (2010) ‘Web Search Personalization

Based on Browsing History by Artificial Immune System’. Journal of

Advances in Soft Computing and Its Applications 3 (2), 282-301

Robertson, S. E., van Rijsbergen, C. J., and Porter, M. F. (1981) Probabilistic

Models of Indexing and Searching. ‘Proceedings of the 3rd Annual ACM

Conference on Research and Development in Information Retrieval’. held at

Kent, UK: Butterworth

Robertson, S. (2004) 'Understanding Inverse Document Frequency: On

Theoretical Arguments for IDF'. Journal of Documentation 60 (5), 503-523

Rucker, J., and Polanco, M. J. (1997) 'Siteseer: Personalized Navigation for

the Web'. Journal on Communications of the ACM 40 (3), 73-76

Salton, G., Fox, E. A., and Wu, H. (1983) 'Extended Boolean Information

Retrieval'. Journal of Communication of the ACM 26 (11), 1022-1036

Salton, G., Singhal, A., Mitra, M., and Buckley, C. (1997) 'Automatic Text

Structuring and Summarization'. Journal of Information Processing and

Management 33 (2), 193-207

Sankaradass, V., and Arputharaj, K. (2011) 'An Intelligent Recommendation

System for Web User Personalization with Fuzzy Temporal Association

Rules'. Journal of European Scientific Research 51 (1), 88-96

Sarwar, B. M., Konstan, J. A., and Riedl, J. (2005) 'Distributed

Recommender Systems for Internet Commerce'. Encyclopedia of Information

Science and Technology, 907-911

Shah, C. (2009) Retrieval Models-1. USA

Shafi, S. M., and Rather, R. A. (2005) Precision and Recall of Five Search

Engines for Retrieval of Scholarly Information in the Field of Biotechnology.

Webology, 2 (2), Article 12. [online] available from

<http://www.webology.org/2005/v2n2/a12.html> [Aug. 2005]

References

 176

Shen, X., Tan, B., and Zhai, C. (2006) 'Exploiting Personal Search History to

Improve Search Accuracy'. (ed.) Proceedings of 2006 ACM Conference on

Research and Development on Information Retrieval, ‘Personal Information

Management Workshop’. SIGIR

Sieg, A., Mobasher, B., and Burke, R. (2004) 'Inferring User’s Information

Context: Integrating User Profiles and Concept Hierarchies'. Proceedings of

the 2004 Meeting of the International Federation of Classification Societies,

IFCS 2004. ed. by AnonChicago, 563-574

Singhal, A., and Salton, G. (1995) 'Automatic Text Browsing using Vector

Space Model'. Proceedings of the Dual-use Technologies and Applications

Conference. 318- 324

Singhal, A. (2001) 'Modern Information Retrieval: A Brief Overview'. Bulletin

of the IEEE Computer Society Technical Committee on Data, 24

Skorkovská, L., and Pavel I. (2009) ‘Experiments with Automatic Query

Formulation in the Extended Boolean Model’. Lecture Notes in Computer

Science. Publisher: Springer. 5729, 371-378

Slawski, B. (2008) Yahoo Phrase Based Indexing in a Nutshell [online]

available from

<http://www.seobythesea.com/2008/02/yahoo-phrase-based-indexing-in-

a-nutshell/> [July 2011]

Smyth, B., and Wilson, D. (2003) ‘Explicit vs. implicit profiling – a case-study

in electronic programme guides’. Proceedings of the 18th International Joint

Conference on Artificial Intelligence. held at Acapulco, Mexico

Stegmann, R. (2005) 'Improving Explicit Profile Acquisition by Means of

Adaptive Natural Language Dialog'. in Lecture Notes in Computer Science.

ed. by Anon, 518-520

Sugiyama, K., Hatano, K., and Yoshikawa, M. (2004) Adaptive Web Search

Based on User Profile Constructed without any Effort from Users. ‘Proceedings

References

 177

of the 13th International Conference on World Wide Web’. held at New York,

USA: ACM Press

Swapna, P., and Ravindran, R. B. (2008) 'Personalized Web-Page Rendering

System'. Das, G., Sarda, N. L., and Reddy, K.P. (ed.) Proceedings of COMAD

held in India: Computer Society of India, 30-39

Tanudjaja, F., and Mui, L. (2002) Persona: A Contextualized and Personalized

Web Search. ‘Proceedings of the 35th Annual Hawaii International

Conference on System Science’. held at Island, Hawaii

Van Rijsbergen, C.J., (1979) Information Retrieval. London; Boston.

Butterworth, 2nd Edition

Voorhees, M., and Harnam, D. K. (2005) TREC Experiment and Evaluation in

Information Retrieval. Cambridge, Massachusetts: MIT Press

White, R. W., Jose, J. M., and Ruthven, I. (2003) An Approach for Implicitly

Detecting Information Needs. ‘Proceedings of the Twelfth International

Conference on Information and Knowledge Management’. held at New York,

USA: ACM Press

Yahoo (2011) My Yahoo! [online] available from <http://my.yahoo.com>

[2011]

 Yahoo (2010) Yahoo! Advertising Blog. [online] available from

<http://www.yadvertisingblog.com/blog/2010/08/31/advertisers-begin-

your-account-transitions/> [Dec.2010]

Yip, William., and Quiroga, L. (2008) Google Page Rank Algorithm, LIS 678

Personalized Information [online] available from

<http://willwork.org/lis678/Special%20Topics/Report.pdf> [Oct.2008]

Zigoris, P., and Zhang, Y. (2006) Bayesian Adaptive User Profiling with

Explicit \& Implicit Feedback. ‘Proceedings of the 15th ACM International

Conference on Information and Knowledge Management’. held at Arlington,

Virginia, USA: ACM Press

� ����

�

�����������	�
��
��������
������������	�
	����
����
�	���	��	��������	������������������������������
��������
���

��	���������
�	������
���������������

�

��������	
��
�������������
����

��
��	�����������������

�

�

�

// List of base search APIs avaliable�

public enum API_TYPE

{

 API_GOOGLE,

 API_YAHOO

}

�

�

 // Number of results from Yahoo or Google.

 private final static int NrOfResultsFormBaseAPI = 100;

�

�

�

�

�

� ����

�

searchForUrl

 // Main method for searching in Google on Yahoo API.

 public static List<String> searchForUrl(String[] keywords, API_TYPE api)

 {

 if (api == API_TYPE.API_GOOGLE)

 {

 int noOfPages = NrOfResultsFormBaseAPI / 8;

 List<String> results = new LinkedList<String>();

 for (int i = 0; i <= noOfPages; i++)

 {

 String json = search_Google(keywords, i);

 List<String> pageResults = parseResultsFromGoogleJSON(json);

 for (String url : pageResults)

 if (!results.contains(url)

 && results.length < NrOfResultsFormBaseAPI) results.add(url);

 }

 return results;

 }

 else if (api == API_TYPE.API_YAHOO)

 {

 String searchResult = search_Yahoo(keywords,NrOfResultsFormBaseAPI);

 return findURLsFromYahooResponse(searchResult);

 }

 }

�

findURLsFromYahooResponse�

 // Extract the URLs from the Search Results from Yahoo

 private static List<String> findURLsFromYahooResponse(String strXML)

 {

 LinkedList<String> results = new LinkedList<String>();

 DocumentBuilder builder

 = DocumentBuilderFactory.newInstance().newDocumentBuilder();

 org.w3c.dom.Document doc

 = builder.parse(InputSource(new java.io.StringReader(strXML)));

 doc.getDocumentElement().normalize();

 org.w3c.dom.NodeList nodeLst = doc.getElementsByTagName("Result");

 for (int s = 0; s < nodeLst.getLength(); s++) // iterate results

 {

 org.w3c.dom.Node fstNode = nodeLst.item(s);

 if (fstNode.getNodeType() == org.w3c.dom.Node.ELEMENT_NODE)

 {

 org.w3c.dom.NodeList clickUrlsNodes

 = ((Element)fstNode).getElementsByTagName("ClickUrl");

 if (clickUrlsNodes.getLength() > 0)

 {

 // there should be only one ClickUrl per result

 Element clickUrlElement = (Element)clickUrlsNodes.item(0);

 // get Text from that element

 org.w3c.dom.NodeList text = clickUrlElement.getChildNodes();

� ����

�

 // get text value

 String clickUrl

 = ((org.w3c.dom.Node) text.item(0)).getNodeValue();

 // add text to the list

 results.add(clickUrl);

 }

 }

 }

 return results;

 }

�

search_Yahoo�

 // get response from Yahoo! API

 private static String search_Yahoo(String[] keywords, int nrOfYahooResults)

 {

 String encodedKeywords = "";

 for (String s : keywords)

 encodedKeywords += (encodedKeywords.length() > 0 ? "+" : "")

 + URLEncoder.encode(s, "UTF-8");

 String request = "http://api.search.yahoo.com/WebSearchService/V1/"

 + "webSearch?appid=YahooDemo&results="

 + nrOfYahooResults

 + "&query=" + encodedKeywords;

 // Send GET request

 GetMethod method = new client.GetMethod(request);

 if(new HttpClient().executeMethod(method) != HttpStatus.SC_OK)return null;

 // Get the response body

 InputStream rstream = method.getResponseBodyAsStream();

 // Process the response from Yahoo! Web Services

 BufferedReader br = new BufferedReader(new InputStreamReader(rstream));

 String result = […]; // read stream line by line

 return result;

 }

�

�

String search_Google�

 private static String search_Google(String[] keywords, int pageNumber)

 {

 String encodedKeywords = […];

 String request = "https://ajax.googleapis.com/ajax/services/search/web"

 + "?v=1.0&key=AIzaSyBk2lMNQ2RfKR3l5TirizdIb2KdByrVySI"

 + "&userip=194.66.32.16&rsz=8&q="

 + encodedKeywords

 + "&start=" + pageNumber;

 org.apache.commons.httpclient.HttpClient client

 = new org.apache.commons.httpclient.HttpClient();

 GetMethod method = new GetMethod(request);

� ����

�

 // Send GET request

 GetMethod method = new client.GetMethod(request);

 if(new HttpClient().executeMethod(method) != HttpStatus.SC_OK)return null;

 // Get the response body

 InputStream rstream = method.getResponseBodyAsStream();

 String result = […]; // read stream line by line

 return result;

 }

�

�

parseResultsFromGoogleJSON�

 // parse JSON returned by Google API to get list of URLs

 private static List<String> parseResultsFromGoogleJSON(String strXML)

 {

 // { "responseData":

 // {"results": [{"unescapedUrl":"[…]", […]}, {[…]}] }, […] }

 JSONObject obj = (JSONObject) JSONValue.parse(strXML);

 obj = (JSONObject) obj.get("responseData");

 JSONArray results = (JSONArray) obj.get("results");

 List<String> urls = new LinkedList<String>();

 for (Object o : results)

 urls.add((String)(((JSONObject)o).get("unescapedUrl")));

 return urls;

 }

findKeywords�

 public static TermVector findKeywords(String url)

 {

 //=== open the document and read keywords from metadata

 String document = MyUtils.UtilsWeb.getURL(url);

 document = document.toLowerCase();

 int end = document.indexOf("</head");

 document = document.substring(0, end).replace("'", "\"");

 String title = ""; String metakeywords = ""; String metadescription = "";

 // extract the metadata 'keywords', 'description' and title

 // documents can be not vell-formated xml […]

 int start = document.indexOf("<title");

 if (start != -1)

 {

 start = document.indexOf(">", start);

 end = document.indexOf("</title", start);

 title = document.substring(start + 1, end);

 }

 int offset = document.indexOf("<meta");

 while (offset >= 0)

 {

 end = document.indexOf(">", offset);

 if (document.substring(offset, end).contains("keywords"))

 {

 start = document.indexOf("content", offset);

 start = document.indexOf("\"", start + 1);

 end = document.indexOf("\"", start + 1);

� ����

�

 metakeywords = document.substring(start + 1, end);

 }

 if (document.substring(offset, end).contains("description"))

 { […]

 metadescription = document.substring(start + 1, end);

 }

 offset = document.indexOf("<meta", offset + 1);

 }

 // build vetors

 FrequencyVectorCreator fvc = new FrequencyVectorCreator();

 TermVector vectTitle = buildVectorFromString(title);

 TermVector vectKeyw = buildVectorFromString(metakeywords);

 TermVector vectDesc = buildVectorFromString(metadescription);

 // scale vectors

 vectTitle.scaleBy(0.3);

 vectKeyw.scaleBy(0.5);

 vectDesc.scaleBy(0.2);

 // combine three vectors into one

 Hashtable<String, Double> pairs = new Hashtable<String, Double>();

 addVector(pairs, vectTitle);

 addVector(pairs, vectKeyw);

 addVector(pairs, vectDesc);

 TermVector combinedVector = new TermVector();

 Iterator<Entry<String, Double>> it = pairs.entrySet().iterator();

 while (it.hasNext())

 {

 Entry<String, Double> entry = it.next();

 combinedVector.put(entry.getKey(), entry.getValue());

 }

 TermVector result = combinedVector.topN(5);

 result.normalize();

 return result; // take top N keywords

 }

�

�

� ����

�

addVector�

 private static void addVector(Hashtable<String, Double> target,

 TermVector vector)

 {

 Iterator it = vector.termIterator();

 while (it.hasNext())

 {

 String key = (String) it.next();

 double value = vector.get(key);

 if (target.containsKey(key))

 {

 value = (Double) target.get(key) + value;

 target.remove(key);

 }

 target.put(key, value);

 }

 }

buildVectorFromString�

 private static TermVector buildVectorFromString(String terms)

 {

 FrequencyVectorCreator fvc = new FrequencyVectorCreator();

 return fvc.getVector(new ASCIIDocument(terms));

 }�

�

�

�

�

�

�

�

�

�

� ��	�

�

��
��	���������������������

�

�

� ��
�

�

���
���

�

 private void search()

 {

 this.jtaResults.setText("Searching...");

 this.jtaResultsVSM.setText("");

 this.jtaVSMAppliedResults.setText("");

 //-- prepare keywords

 String strKeyword = "";

 strKeyword = this.KeywordsEditTextbox.getText()

 .replace('=', '+').replace(',', '+').replace(' ', '+');

 //-- find urls in yahoo or google

 List<String> urls = Searching.searchForUrl(

 strKeyword.split("\\+"),

 (rb_Yahoo.isSelected()

 ? Searching.API_TYPE.API_YAHOO

 : Searching.API_TYPE.API_GOOGLE));

 // display list of documents from API

 this.jtaResults.setText([…]);

 // get keywords for documents

 // and sort by similarity to the explicit vector

 RAMSearchEngine rse = new RAMSearchEngine();

 for(String url:urls)

 {

 HTMLDocument objDoc = new HTMLDocument("<html></html>");

 // findKeywords returns a normalised vector

 TermVector documentKeywords = Searching.findKeywords(url);

 rse.addDocument(url, objDoc.getFullContent(),

 documentKeywords);

 }

 // create user preference vector

 TermVector userPref = getUserPreferenceVector(strKeyword);

 userPref.normalize();

 jtaUserPreferenceVector.setText(userPref.toString());

 // retrieve

 ValueSortedMap vsm = rse.retrieveDocuments(userPref, 20);

 Iterator itr = vsm.keyIterator();

 fullText = "";

 while(itr.hasNext()) fullText += itr.next().toString()+"\n";

 jtaVSMAppliedResults.setText(fullText);

 }

�

� ����

�

��������	���
�������������
����

�

��
��	���� !��∀���#���������������

�

�

documentCompleted�

 private String ignoreLastURL = "";

 // called when document has been loaded into the browser

 public void documentCompleted(WebBrowserEvent event)

 {

 String url = this.myWebBrowser.getURL().toString();

 if(url == null || url.equalsIgnoreCase(ignoreLastURL)) return;

 // check if the main part of the url is the same

 if(ignoreLastURL != null && url.contains("#"))

 {

 if(ignoreLastURL

 .startsWith(url.substring(0, url.indexOf("#"))))

 return;

 ignoreLastURL = url;

 this.mySimpleBrowser.logCurrentActivity("Browsing",

 "Some URL BROWSING");

 }

}

�

�

�

�

�

� ����

�

��
��	�����������������

�

�

�

 /**

 * How keyword rating is affected in a page was printed or saved

 */

 private static final double modForStoredPages = 10.0;

 private static final int maxKeywordsUsed = 10;

 /**

 * Number of results from Yahoo or Google.

 * In Google number of results retrieved will be

 * Math.ceil(NrOfResultsFormBaseAPI/8)*8

 */

 private final static int NrOfResultsFormBaseAPI = 100;

 public static List<String> searchForUrl(

 String[] keywords, API_TYPE api)

 […] // same as in the implementation of the explicit system

 }

 public static TermVector findKeywords(String url)

 {

 […] // same as in the implementation of the explicit system

 }

�

�

� ����

�

createVector�

public static TermVector createVector(Connection conn, String sessionId)

{

 Statement stmt = conn.createStatement();

 // find the biggest time span

 String sql = "select max(DateDiff('s', starttime, finishtime))"

 + " as maxTime, "

 + " avg(DateDiff('s', starttime, finishtime)) as avgTime "

 + " from SessionActivity "

 + " where sessionid = '" + sessionId.replace("'", "''") + "' "

 + " and activitytypeId='Browsing' and finishtime is not null"

 + " and starttime is not null ";

 // (if we only want to get newest keywords) + "

 //and DateDiff('h', starttime, now()) < " + notOlderThanHours;

 System.out.println(sql);

 ResultSet rs = stmt.executeQuery(sql);

 rs.next();

 double maxTime = rs.getDouble(1);

 double avgTime = rs.getDouble(2);

 // now get keywords

 sql = "select t2.kText, t2.rating from SessionActivity as t1 "

 + " INNER join keyword as t2 on t1.sessionactivityid "

 + "= t2.sessionactivityid "

 + " where t1.sessionid = '"

 + sessionId.replace("'", "''")

 + "' and t1.starttime is not null "

 + "and t1.finishtime is not null "

 + " and DateDiff('s', starttime, finishtime) >= "

 + avgTime + " ";

 rs = stmt.executeQuery(sql);

 HashMap<String, Double> keywords = new HashMap<String, Double>();

 while(rs.next())

 (keywords, rs.getString(1), rs.getDouble(2));

 // printed and saved pages

 sql = "select t2.kText, t2.rating*"+modForStoredPages+" "

 + "from SessionActivity as t1 "

 + " INNER join keyword as t2 on t1.sessionactivityid = t2"

 + ".sessionactivityid "

 + " where t1.sessionid = '"

 + sessionId.replace("'", "''") + "' and (activitytypeId "

 + "='Printing' or activitytypeId='Saving')";

 rs = stmt.executeQuery(sql);

 while(rs.next())

 addKeyword(keywords, rs.getString(1), rs.getDouble(2));

 // make a vector from n most popular keywords

 TermVector vector = new TermVector();

 for(String s:keywords.keySet())

 vector.put(s, keywords.get(s));

 return vector.topN(maxKeywordsUsed);

}

� ����

�

��
��	����∃�������#������������

�

UserInterface mainInstance;

Connection conn;

Statement stat;

public UserActivityLogger(UserInterface MainInstance)

{

 mainInstance = MainInstance;

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 // set this to a MS Access DB you have on your machine

 String filename = "C:/Test/implicit_user_profile.mdb";

 String database = "jdbc:odbc:Driver={Microsoft Access Driver "

 + "(*.mdb)};DBQ=";

 database += filename.trim()

 + ";DriverID=22;READONLY=true}"; // add on to the end

 // now we can get the connection from the DriverManager

 conn = DriverManager.getConnection(database, "", "");

}

�

� ����

�

logLastActionEnds

// Only used to save time when action was ended

private int LastActionId = -1;

private void logLastActionEnds()

{

 // save

 if(LastActionId != -1)

 {

 SimpleDateFormat sdf

 = new SimpleDateFormat("yyyy-MM-dd hh:mm:ss");

 String sql = "update SessionActivity set finishtime = '"

 + sdf.format(new java.util.Date()) + "' "

 + "where sessionid = '"

 + mainInstance.getSessionID().replace("'", "''")

 +"' and sessionactivityid = " + LastActionId+"";

 try {

 stat = conn.createStatement();

 stat.execute(sql);

 } catch (Exception ex) {

 System.out.println(ex.toString());

 ex.printStackTrace(System.err);

 }

 finally

 { try {stat.close(); } catch(SQLException e){} }

 }

 LastActionId = -1;

}

log�

public void log(String sessionid, String ativityType, String desc,

 String url, TermVector keywords) {

 SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd hh:mm:ss");

 String sql = "insert into SessionActivity(sessionid,activitytypeId,"

 + "starttime,finishtime,parameter) "

 + "values('" + sessionid.replace("'", "''")

 + "','" + ativityType + "','"

 + sdf.format(new java.util.Date())

 + "',NULL,'" + url + "')";

 stat = conn.createStatement();

 // Insert session activiti

 stat.execute(sql); //, Statement.RETURN_GENERATED_KEYS);

 // rs = stat.getGeneratedKeys(); // not suported in this DB

 ResultSet rs = stat.executeQuery("select max(sessionactivityid)"

 + " from SessionActivity");

 rs.next();

 int sessionactivityid = rs.getInt(1);

 rs.close();

� ����

�

 // remember the action ID

 if(ativityType.equals("Browsing"))

 {

 logLastActionEnds(); // save end time for previous document

 this.LastActionId = sessionactivityid;

 }

 // Insert keywords

 java.util.Iterator it = keywords.termIterator();

 while (it.hasNext())

 {

 String word = (String) it.next();

 double rating = keywords.get(word);

 sql = "insert into keyword(sessionactivityid,"

 + "kText,rating) values(" + sessionactivityid + ",'"

 + word.replace("'", "\'") + "', " + rating + ")";

 stat.execute(sql);

 }

}

����

clearSessionData

public void clearSessionData(String sessionId)

{

 stat.execute("delete from keyword where sessionactivityid in "

 + "(select ID from SessionActivity where sessionid='"

 + sessionId.replace("'", "''") + "')");

 stat.execute("delete from SessionActivity where sessionid='"

 + sessionId.replace("'", "''") + "'");

}

�

� ����

�

��
��	���������������������

�

�

actionPerformed�

 public void actionPerformed(java.awt.event.ActionEvent evt)

 {

 if(evt.getSource() == sessionClearButton)

 {

 clearSession();

 }

 if(evt.getSource() == searchButton)

 {

 doSearch();

 }

 }

�

�

� ����

�

��
��
���

public void doSearch()

{

 TermVector vector = Searching.createVector(

 ActivitiLogger.getConnection(), getSessionID());

 if(vector == null)

 {

 setText_Keywords("No data (datatabase error)");

 return;

 }

 // display vector

 setText_Keywords(vector.toString());

 if(vector.size() == 0)

 {

 setText_Keywords("No keywords for that id.");

 return;

 }

 // search for keywords in yahoo API

 String[] list = new String[vector.size()];

 Iterator it = vector.termIterator();

 int idx = 0;

 while(it.hasNext()) list[idx++] = it.next().toString();

 // find urls for keywords

 Searching.API_TYPE api = rb_Google.isSelected()

 ? Searching.API_TYPE.API_GOOGLE :

 Searching.API_TYPE.API_YAHOO;

 java.util.List<String> urls = Searching.searchForUrl(list, api);

 // sort by similarity to the implicit vector

 RAMSearchEngine rse = new RAMSearchEngine();

 for(String url:urls)

 {

 HTMLDocument objDoc = new HTMLDocument("<html></html>");

 TermVector documentKeywords = Searching.findKeywords(url);

 documentKeywords.normalize();

 rse.addDocument(url, objDoc.getFullContent(), documentKeywords);

 }

 vector.normalize();

 ValueSortedMap map = rse.retrieveDocuments(vector, 20);

 urls.clear();

 Iterator keyIterator = map.keyIterator();

 while(keyIterator.hasNext())

 {

 Object key = keyIterator.next();

 urls.add((String)key);

 }

 // display result

 setText_Result(urls);

}

�

� ��	�

�

�
logCurrentActivity�

 public void logCurrentActivity(String activityType,

 String description)

 {

 // find keywords

 TermVector keywords = Searching.findKeywords(webBrowser

 .getURL().toString());

 // save to the database

 ActivitiLogger.log(getSessionID(), activityType, description,

 webBrowser.getURL().toString(), keywords);

 }

�

�
clearSession�

 private void clearSession()

 {

 ActivitiLogger.clearSessionData(sessionTextBox.getText());

 }

� ��
�

�

��������	%� ��&���������
����

�

�

��
��	��������������������

�

�

�

 UserActivityLogger userActivityLogger;

 public enum UserActivityType

 {

 Browsing,

 Printing,

 Saving,

 SearchinExplicitly,

 Exit // when the window is closed

 }

 public SearchSystem()

 {

 userActivityLogger = new UserActivityLogger();

 }

logUserActivity�

 public void logUserActivity(String sessionId,

 UserActivityType type, String url)

 {

 logUserActivity(sessionId, type, url, null);

 }

� ����

�

clearSessionData

 public void clearSessionData(String sessionId)

 {

 userActivityLogger.clearSessionData(sessionId);

 }

logUserActivity�

public void logUserActivity(String sessionId,

 UserActivityType type, String url,

 TermVector keywords)

{

 // find keywords if not given

 if(keywords == null) keywords = Searching.findKeywords(url);

 switch(type)

 {

 case Browsing:

 userActivityLogger.log(sessionId, "Browsing", "",

 url, keywords);

 break;

 case Saving:

 userActivityLogger.log(sessionId, "Saving", "",

 url, keywords);

 break;

 case Printing:

 userActivityLogger.log(sessionId, "Printing", "",

 url, keywords);

 break;

 case SearchinExplicitly:

 userActivityLogger.log(sessionId, "ExplicitSearch", "",

 url, keywords);

 break;

 case Exit:

 userActivityLogger.logOnExit();

 break;

 }

 }

�

� �

� ����

�

doExplicitSearch

public List<String> doExplicitSearch(String sessionId,

 Searching.API_TYPE apiType, String strKeywords)

{

 // replace '=', ',', ' ' to '+'

 strKeywords = strKeywords.replace('=', '+')

 .replace(',', '+').replace(' ', '+');

 TermVector tvUserPref = createUserPreferenceVector(strKeywords);

 if(tvUserPref == null)

 {

 List<String> result = new LinkedList<String>();

 result.add("[error in keywords formating]");

 return result;

 }

 System.out.println(" User Preference Vector : "

 + tvUserPref.toString());

 // search in yahoo

 String[] keywords = strKeywords.split("\\+");

 List<String> webSearchApiResult = Searching

 .searchForUrl(keywords, apiType);

 // order results by similarity

 List<String> results = sortDocumentBySimilarity

 (webSearchApiResult, tvUserPref);

 return results;

}

createUserPreferenceVector

private TermVector createUserPreferenceVector(String strPreferences)

{

 try

 {

 return new TermVector(strPreferences);

 }

 catch(Exception e) {System.out.println(e.toString());}

 return null;

}

� �

� ����

�

doImplicitSearch�

public List<String> doImplicitSearch(String sessionId,

 Searching.API_TYPE apiType)

{

 TermVector vector = Searching.createVector(

 userActivityLogger.getConnection(), sessionId);

 if(vector == null)

 {

 List<String> result = new LinkedList<String>();

 result.add("[cannot get implicit keyword from the database]");

 return result;

 }

 // search for keywords in yahoo API

 String[] list = new String[vector.size()];

 Iterator it = vector.termIterator();

 int idx = 0;

 while(it.hasNext())

 list[idx++] = it.next().toString();

 // find urls for keywords

 java.util.List<String> urls = Searching.searchForUrl(list, apiType);

 // sort and limit the number of results to top maxNumberOfResults

 List<String> results = sortDocumentBySimilarity(urls, vector);

 // display result

 return results;

}

�

�

� ����

�

doHybridSearch

public List<String> doHybridSearch(String sessionId,

 Searching.API_TYPE apiType, String strKeywords)

{

 // replace '=', ',', ' ' to '+'

 strKeywords = strKeywords.replace('=', '+')

 .replace(',', '+').replace(' ', '+');

 TermVector explicitUserPreferences

 = createUserPreferenceVector(strKeywords);

 TermVector implicitUserPreferences

 = Searching.createVector(

 userActivityLogger.getConnection(),

 sessionId);

 if(explicitUserPreferences == null)

 {

 List<String> result = new LinkedList<String>();

 result.add("[error in getting explicit keywords]");

 return result;

 }

 if(implicitUserPreferences == null)

 {

 List<String> result = new LinkedList<String>();

 result.add("[cannot get implicit keyword from the database]");

 return result;

 }

 // create hybrid vector

 TermVector combinedPreferences = createHybridVector

 (explicitUserPreferences, implicitUserPreferences);

 // search in base API - only use explicit keywords

 String[] keywords = strKeywords.split("\\+");

 List<String> webSearchApiResult

 = Searching.searchForUrl(keywords, apiType);

 // order results by similarity to the combined vector

 List<String> results = sortDocumentBySimilarity(webSearchApiResult,

 combinedPreferences);

 return results;

}

�

� �

� ����

�

createHybridVector�

private TermVector createHybridVector(

 TermVector explicitUserPreferences,

 TermVector implicitUserPreferences)

{

 // if implicit vector is empty, then return the explicit vector

 if(implicitUserPreferences.size() == 0)

 return explicitUserPreferences // use topN to create a copy

 .topN(explicitUserPreferences.size());

 // find the maximum weight from the implicit vector (always first)

 String bestImplicitKeyword = (String)implicitUserPreferences

 .termIterator().next();

 double bestImplicitValue = implicitUserPreferences

 .get(bestImplicitKeyword);

 // create a combined vector

 TermVector result = new TermVector();

 // add all keywords from explicit results

 // - the rating will be changed if this keywords exists in the

 // impicit vector

 result.putAll(explicitUserPreferences);

 result.scaleBy(bestImplicitValue);

 // add all keywords from implicit preferences to keywords

 //from explicit preferences

 Iterator it = implicitUserPreferences.termIterator();

 while(it.hasNext())

 {

 String key = (String)it.next();

 double rating = (explicitUserPreferences.get(key)

 * bestImplicitValue)

 + implicitUserPreferences.get(key);

 result.put(key, rating);

 }

 return result;

}

�

� �

� ����

�

sortDocumentBySimilarity�

private List<String> sortDocumentBySimilarity(List<String>

 webSearchAPIResult, TermVector preferences)

{

 // find keywords for each of the documents

 HashMap<String, TermVector> documents

 = findKeywords(webSearchAPIResult);

 // create internal search engine for similarity comparison

 RAMSearchEngine rse = new RAMSearchEngine();

 for(String url:webSearchAPIResult)

 {

 TermVector documentKeywords = documents.get(url);

 // Searching.findKeywords(url);

 if(documentKeywords != null)

 {

 rse.addDocument(url, "", documentKeywords);

 }

 }

 List<String> results = new LinkedList<String>();

 // get document sorted by similarity to preference vector

 ValueSortedMap vsm = rse.retrieveDocuments(preferences, 20);

 java.util.Iterator itr = vsm.keyIterator();

 while (itr.hasNext()) // add next url

 results.add(itr.next().toString());

 return results;

}

� ����

�

retrieveDocuments – from RAMSearchEngine.jave (IGLU library)�
�

public ValueSortedMap retrieveDocuments(TermVector vector, int numSimilar)

{

 ValueSortedMap results = new ValueSortedMap();

 // for each doc

 Iterator docIt = idVectorMap.keySet().iterator();

 while(docIt.hasNext())

 {

 // get similarity to vector

 Object thisItem = docIt.next();

 TermVector thisVec = (TermVector)idVectorMap.get(thisItem);

 double similarity = getSimilarityScore(vector, thisVec);

 if(similarity > 0)

 results.put(thisItem, similarity);

 }

 if(numSimilar > 0)

 results.truncateTo(numSimilar);

 return results;

}

// from RAMSearchEngine.java

public double getSimilarityScore(TermVector vector1, TermVector vector2)

{

 double result = 0;

 Iterator it = vector1.termIterator();

 while(it.hasNext())

 {

 String thisTerm = (String)it.next();

 result = result + vector1.get(thisTerm) * vector2.get(thisTerm);

 }

 return result;

}

� ����

�

findKeywords �

private HashMap<String, TermVector> tmpDocumentKeywords;

private int tmpCompletedThreads = 0;

// multithreaded approach to finding keywords in many documents

private HashMap<String, TermVector> findKeywords(List<String> documents)

{

 // prepare table for the results

 tmpDocumentKeywords = new HashMap<String, TermVector>();

 for(String url:documents) tmpDocumentKeywords.put(url, null);

 tmpCompletedThreads = 0;

 for(int i=0; i<documents.size(); i++)

 {

 // start one thread per document

 KeywordsThread t = new KeywordsThread();

 t.url = documents.get(i);

 t.start();

 }

 // wait till all threads are completed

 while(tmpCompletedThreads < documents.size())

 try { Thread.sleep(100); } catch(Exception e){}

 return tmpDocumentKeywords;

}

KeywordsThread�

public class KeywordsThread extends Thread

{

 public String url;

 @Override

 public void run()

 {

 TermVector tv = null;

 try

 {

 tv = Searching.findKeywords(url);

 }

 catch(Exception e) { }

 finally

 {

 synchronized (tmpDocumentKeywords)

 {

 tmpDocumentKeywords.remove(url);

 tmpDocumentKeywords.put(url, vec);

 tmpCompletedThreads++;

 }

 }

 }

}

�

�

� ��	�

�

∋�∋�∋�∋ ��
��	���������������������

�

�

private WebBrowser webBrowser;

private SearchSystem searchSystem;

public static void main(String[] args)

{

 SearchSystem system = new SearchSystem();

 UserInterface ui = new UserInterface(system);

 ui.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 ui.pack();

 ui.setVisible(true);

}

�

� ��
�

�

DoImplicitSearchActionPerformed�

private void jbtn_DoImplicitSearchActionPerformed(ActionEvent evt)

{

 // search

 List<String> result = this.searchSystem.doImplicitSearch(

 sessionTextBox.getText(),

 rb_Yahoo.isSelected()

 ? Searching.API_TYPE.API_YAHOO

 : Searching.API_TYPE.API_GOOGLE);

 […]

}

�

�

jbtn_DoHybridSearchActionPerformed� �

private void jbtn_DoHybridSearchActionPerformed(ActionEvent evt)

{

 // remove old result

 this.jta_Results.setText("");

 // search

 String keywords = this.jtaExplicitKeywords.getText();

 List<String> result = this.searchSystem.doHybridSearch

 (sessionTextBox.getText(),rb_Yahoo.isSelected()?

 Searching.API_TYPE.API_YAHOO:Searching.API_TYPE

 .API_GOOGLE, keywords);

 // display the result

 […]

 //-- store search history in the database

 this.searchSystem.logUserActivity(sessionTextBox.getText(),

 SearchSystem.UserActivityType.SearchinExplicitly, "",

 Searching.buildVectorFromString(keywords));

 }

}

�

� ����

�

��
��	�����������������

����
��
�����������������
��������������������
�����
��������
��������
���

���������������������������
���������������
�������������������

�

∋�∋�∋�(��
��	����∃�������#�������������

�������
�������������
������������
��������������������
�����
��������
�����

���
������������������������������
���������������
�������������������

�

�

�

� ����

�

���������	��

�

����
������
������
��

������ ����
����
�

�������� ����	
��
�
��
������
������������	����	������
�
������� ���
�������
�
��
����
���������
����
�����
�
��
��������
���
������� �	����������
���
������� �
�
��	�
!�����
������� �
������	����
���∀���
���
������� #��
�
�
�	�∃
���	��
������
����� �
�������
����
����	����
�����!� ����		
	�������
��������
���
!��
��������
���
�����∀� !������
���
�����������
�	������
���
��� �
������#� ����
��
��
���∃�����	� ������
�%���
��
���
�������� 	
��������
�
����
�����	���� �
�������� &�
��������
���
�������� ��!�����
�����������
�������� �����
�
������
�
���
�������� ����!��
��
�
��� �
�������� ∋��
�
����������
���
������ � 	
����(�
���� �
������!� �����
����������!
	
��
������∀� ����	�����
������
�����
��� �
������#� �����
�������
�����
�������� ������
���
���
��
�

�
��� �
�������� ����	
��
������
�
���
��������)�
���
�������
�� �
�������� ��		�!����
�
�������
���
�������� ∗��	�!���������
��� �
�������� �
�����
�!��
���

����+,��
������ � ������
������
�
����
� �
������!� −������������
�����������
��
������∀� +�	�
���!��
�
������!	
��� �
������#� �
�
�
��
��
�

�
���

�

� ��.�

�

�

�������������∃�%��&���
������∋���

(

�∋��%��&���
���

������)�∋��∗���
����
��∋��∗���

�)
�� +���∋��∗��� %∗���
&∗�,�����
∗&&������

−
.�
��
������

��∗∋�∗����

%��&���
��

�� /� 0� 0� /0� �� ��� �1/2�

�� 3� �� /� /4� �� ��� �1�/�

�� �� 5� �� �� �� ��� �12��

�� /3� 0� /� �� �� ��� �1�5�

�� /�� �� �� 2� �� ��� �14.�

�� �� 2� �� 3� /� ��� �140�

 � 3� 4� /� /�� �� ��� �103�

!� //� 5� �� �� �� ��� �1�.�

∀� /3� 3� /� �� /� ��� �1./�

�#� .� 3� 0� 4� �� ��� �143�

��� .� .� 0� /� �� ��� �123�

��� /�� 4� �� 4� �� ��� �120�

��� .� 0� /� .� �� ��� �135�

��� 2� 3� �� .� �� ��� �130�

��� //� 0� 3� �� �� ��� �12.�

��� 3� �� /� //� �� ��� �1�2�

� � /�� 3� �� 3� �� ��� �1���

�!� /� /� �� /.� �� ��� �1�.�

�∀� .� 2� �� 2� �� ��� �144�

�#� �� 0� /� 5� �� ��� �133�

��� �� 3� 0� /0� �� ��� �1/3�

��� 2� �� 3� .� �� ��� �13��

��� 4� 4� �� .� �� ��� �13��

��� 2� �� 0� 2� 0� ��� �105�

��� 5� /� �� .� �� ��� �14��

��� /�� 2� /� �� /� ��� �1�2�

� � 0� 0� .� 2� �� ��� �100�

�!� 4� 0� /� //� �� ��� �103�

�∀� 2� 2� �� 2� �� ��� �13.�

�#� �� 2� 3� 0� �� ��� �144�

/
�∗∋� ���� ����
�

�!� �∀!� !� �##� #.�!�

�

�

� ��5�

�

0∗1

�%��&���
���

������)�∋��∗���
����
��∋��∗���

�)
�� +���∋��∗��� %∗���
&∗�,�����
∗&&������

−
.�
��
������

��∗∋�∗����

%��&���
��

�� /� 3� 4� /�� �� ��� �1�/�

�� �� �� �� /2� �� ��� �1/0�

�� 4� 4� 4� 4� �� ��� �133�

�� 2� 3� 4� 4� �� ��� �132�

�� /�� 3� /� 4� �� ��� �12/�

�� /�� 4� 0� �� �� ��� �1�2�

 � 3� 4� 0� .� �� ��� �102�

!� /3� 2� �� �� �� ��� �1.4�

∀� .� �� 4� 3� /� ��� �14/�

�#� 5� �� 0� 4� /� ��� �143�

��� //� /� 3� 3� �� ��� �120�

��� /�� 2� �� 3� �� ��� �124�

��� /2� �� /� �� /� ��� �1.2�

��� �� 0� /� .� /� ��� �133�

��� //� 3� /� 0� /� ��� �122�

��� 2� �� �� 5� /� ��� �10.�

� � .� 3� �� .� �� ��� �14��

�!� �� �� �� /2� �� ��� �1/4�

�∀� 2� �� �� //� /� ��� �104�

�#� //� 0� 3� �� �� ��� �12.�

��� 0� �� �� /0� �� ��� �1�0�

��� /�� �� �� 2� �� ��� �14.�

��� 5� 0� 4� 0� �� ��� �145�

��� 2� �� /� .� 0� ��� �102�

��� .� �� 0� 2� /� ��� �135�

��� /0� �� �� 3� /� ��� �1���

� � 2� �� �� �� �� ��� �105�

�!� /�� 0� �� 0� �� ��� �1���

�∀� �� 0� /� 5� �� ��� �133�

�#� 2� 4� 4� 3� �� ��� �135�

/
�∗∋� ��∀� ∀#� �� �!�� ��� �##� #.�#�

�

�

�

�

�

�

� �/��

�

���∋�&���2������%��&���
�����1�(

�∋���

������)�∋��∗���
����
��∋��∗���

�)
�� +���∋��∗��� %∗���
&∗�,�����
∗&&������

−
.�
��
������

��∗∋�∗����

%��&���
��

�� �� 0� 4� /�� /� ��� �1/5�

�� � �� �� //� �� ��� �10.�

�� �� �� 3� 3� �� ��� �13.�

�� ��� 3� /� �� �� ��� �1�2�

�� !� /� 0� .� �� ��� �132�

�� ��� 4� 0� /� �� ��� �1�/�

 � �� 4� /� /�� �� ��� �103�

!� ∀� //� �� �� �� ��� �1�0�

∀� /3� 0� 0� �� �� ��� �1./�

�#� .� 5� �� /� �� ��� �124�

��� 5� .� /� �� �� ��� �122�

��� .� 3� 0� 3� /� ��� �143�

��� 2� 2� �� 2� �� ��� �13.�

��� �� 4� 0� 4� �� ��� �14/�

��� /�� 3� �� 3� �� ��� �120�

��� 4� /� �� /3� �� ��� �1�.�

� � /�� /� �� �� �� ��� �120�

�!� /� �� �� /5� �� ��� �1�4�

�∀� //� 3� �� 4� �� ��� �124�

�#� //� 3� �� 4� �� ��� �124�

��� 0� 4� 4� �� �� ��� �103�

��� 3� 0� �� //� �� ��� �10��

��� �� 2� 3� .� �� ��� �10��

��� 2� 4� 0� 2� �� ��� �132�

��� �� 3� �� �� �� ��� �13.�

��� /3� �� �� 3� �� ��� �1�4�

� � �� /� �� /�� �� ��� �1�/�

�!� �� �� 0� .� �� ��� �133�

�∀� 5� �� �� �� �� ��� �124�

�#� 2� 3� �� 0� �� ��� �135�

/
�∗∋� ��#� ���� #� �!�� �� �##� #.�#�

�

�

�

� �//�

�

���∋�&���2������%��&���
�����1�0∗1

�

������)�∋��∗���
����
��∋��∗���

�)
�� +���∋��∗��� %∗���
&∗�,�����
∗&&������

−
.�
��
������

��∗∋�∗����

%��&���
��

�� 0� �� 0� /�� �� ��� �1�5�

�� �� �� /� /2� �� ��� �1/3�

�� 5� �� 3� 4� �� ��� �144�

�� �� � �� 0� /� ��� �144�

�� 5� � �� 3� �� ��� �120�

�� /�� �� �� �� �� ��� �1�0�

 � 4� ��� �� 3� �� ��� �140�

!� 5� � 3� �� �� ��� �12.�

∀� .� 3� 3� 3� �� ��� �144�

�#� 5� 3� �� 4� �� ��� �14.�

��� 5� .� �� /� �� ��� �12.�

��� /�� 4� �� 0� �� ��� �124�

��� /.� �� �� �� �� ��� �15��

��� �� 3� 2� 0� �� ��� �140�

��� /�� �� 0� 0� �� ��� �125�

��� 5� 2� 0� �� �� ��� �123�

� � //� 3� �� 4� �� ��� �124�

�!� /� �� �� /5� �� ��� �1�4�

�∀� 5� 3� �� �� �� ��� �144�

�#� /�� �� 3� 3� �� ��� �124�

��� 2� 4� /� .� �� ��� �133�

��� /3� /� 3� /� �� ��� �1�.�

��� /�� 0� 0� 3� �� ��� �12/�

��� .� /� 0� .� �� ��� �132�

��� //� 2� �� /� �� ��� �1�0�

��� /0� �� �� 4� �� ��� �1���

� � 2� 3� 2� 3� �� ��� �13.�

�!� /3� �� /� 4� �� ��� �1�/�

�∀� 2� 0� /� /�� �� ��� �105�

�#� 5� 3� 3� 0� �� ��� �12��

/
�∗∋� ��!� ���� � � ���� �� �##� #.� �

�

�

�

�

�

�

� �/��

�

�

+��∋�&���2������%��&���
�����1�(

�∋���

������)�∋��∗���
����
��∋��∗���

�)
�� +���∋��∗��� %∗���
&∗�,�����
∗&&������

−
.�
��
������

��∗∋�∗����

%��&���
��

�� �� �� �� /0� /� ��� �1/.�

�� 0� �� 0� /3� �� ��� �1/5�

�� 5� /� 0� �� �� ��� �14/�

�� 3� 2� 0� �� �� ��� �105�

�� 3� 3� �� /�� �� ��� �100�

�� �� 2� 3� 0� �� ��� �144�

 � /�� 3� �� 3� �� ��� �1���

!� /�� �� �� �� /� ��� �1���

∀� 5� �� 0� 2� �� ��� �143�

�#� /0� 0� �� �� �� ��� �1�4�

��� /�� /� �� 5� �� ��� �140�

��� /4� 3� �� /� �� ��� �1.4�

��� 2� 0� /� 5� /� ��� �105�

��� .� �� �� /�� �� ��� �13��

��� 5� 0� 0� 4� �� ��� �142�

��� �� �� /� /3� /� ��� �1/2�

� � /0� 4� �� �� �� ��� �1�.�

�!� /3� /� 3� /� �� ��� �1�.�

�∀� /4� �� /� �� �� ��� �1./�

�#� 5� 0� /� �� �� ��� �143�

��� 5� 0� 0� 4� �� ��� �142�

��� 5� �� �� �� �� ��� �140�

��� 0� 0� �� /3� �� ��� �1�0�

��� 2� �� 0� //� �� ��� �103�

��� 2� 2� 3� 3� �� ��� �14��

��� 2� �� /� //� �� ��� �102�

� � �� �� /�� .� �� ��� �1/.�

�!� 5� 3� /� 2� �� ��� �142�

�∀� /� �� �� /�� �� ��� �1�0�

�#� 4� 4� 2� 3� �� ��� �134�

/
�∗∋� ��!� ∀�� ��� ��#� �� �##� #.�!�

�

�

�

� �/0�

�

+��∋�&���2������%��&���
�����1�0∗1

�

������)�∋��∗���
����
��∋��∗���

�)
�� +���∋��∗��� %∗���
&∗�,�����
∗&&������

−
.�
��
������

��∗∋�∗����

%��&���
��

�� �� �� 3� /�� �� ��� �1���

�� �� /� /� /2� �� ��� �1/3�

�� 5� 2� 0� �� �� ��� �123�

�� /�� /� �� 4� �� ��� �124�

�� 2� �� �� 4� �� ��� �14��

�� /�� �� 3� 3� �� ��� �12��

 � //� 3� 3� /� �� ��� �1���

!� /� /�� 4� �� �� ��� �13/�

∀� 5� 4� /� 4� �� ��� �145�

�#� //� 0� �� 3� �� ��� �124�

��� �� 2� �� �� �� ��� �14��

��� /0� 4� �� �� �� ��� �1.��

��� 2� �� /� /�� /� ��� �10/�

��� 2� /� 0� /�� �� ��� �102�

��� �� �� �� /4� /� ��� �1/0�

��� /� /� 3� /3� �� ��� �1/0�

� � 5� 4� 0� 0� �� ��� �12/�

�!� /�� �� �� 3� �� ��� �12.�

�∀� 5� 3� �� 4� �� ��� �14.�

�#� �� 0� �� .� �� ��� �134�

��� �� /� 3� /4� �� ��� �1�.�

��� 5� 3� 3� 0� �� ��� �12��

��� /�� /� 3� 4� �� ��� �14.�

��� 3� /� 2� 5� �� ��� �10��

��� 0� 4� �� 4� �� ��� �102�

��� /� 4� �� /3� �� ��� �1/.�

� � /� �� �� /�� �� ��� �1/3�

�!� 5� /� �� 5� /� ��� �13.�

�∀� �� .� �� /�� �� ��� �10��

�#� 3� 4� �� 5� �� ��� �104�

6���	� �!!� �#�� !�� ���� �� �##� #.���

�

�

�

�

�

�

� �/3�

�

3������2������%��&���
�����1�(

�∋���

�

������)�∋��∗���
����
��∋��∗���

�)
�� +���∋��∗��� %∗���
&∗�,�����
∗&&������

−
.�
��
������

��∗∋�∗����

%��&���
��

�� /� 0� 4� /�� /� ��� �1/5�

�� 4� /� �� /�� �� ��� �10��

�� �� 2� 3� 0� �� ��� �144�

�� /3� 0� /� �� �� ��� �1�5�

�� 5� 2� �� 4� �� ��� �12��

�� //� 4� 0� /� �� ��� �1�/�

 � 3� 4� /� /�� �� ��� �103�

!� .� //� �� �� /� ��� �12.�

∀� /0� �� 3� �� /� ��� �1�4�

�#� .� 4� 3� 0� �� ��� �14.�

��� 5� �� /� 0� �� ��� �123�

��� .� 4� �� 4� �� ��� �144�

��� �� 3� �� �� �� ��� �13.�

��� �� 4� �� 2� �� ��� �14��

��� /�� 3� �� 3� �� ��� �120�

��� 3� /� �� /4� �� ��� �1�0�

� � /4� /� �� 3� �� ��� �1�.�

�!� 0� �� �� /�� �� ��� �1/4�

�∀� /0� 3� �� 0� �� ��� �1�4�

�#� //� 3� �� 4� �� ��� �124�

��� �� 4� 3� 5� �� ��� �1�.�

��� 2� �� /� //� �� ��� �102�

��� �� 2� 3� .� �� ��� �10��

��� �� 3� 0� 2� �� ��� �135�

��� �� 3� �� �� �� ��� �13.�

��� /4� �� �� 0� �� ��� �1.��

� � �� /� .� 5� �� ��� �1�0�

�!� 2� 0� 0� .� �� ��� �13/�

�∀� /�� 4� �� /� �� ��� �1�4�

�#� �� 3� 2� 0� �� ��� �140�

/
�∗∋� ���� ��!� ��� �!#� �� �##� #.���

�

�

� �/4�

�

3������2������%��&���
�����1�0∗1

�

������)�∋��∗���
����
��∋��∗���

�)
�� +���∋��∗��� %∗���
&∗�,�����
∗&&������

−
.�
��
������

��∗∋�∗����

%��&���
��

�� 0� 4� 4� �� �� ��� �103�

�� �� /� /� /2� �� ��� �1/3�

�� /�� 0� 0� 3� �� ��� �12/�

�� �� 2� �� 3� /� ��� �140�

�� .� /� 0� .� �� ��� �132�

�� /3� 3� /� /� �� ��� �1./�

 � .� /�� �� �� �� ��� �124�

!� /�� 4� 3� �� /� ��� �12.�

∀� .� 3� 2� �� �� ��� �14.�

�#� /�� 3� �� 3� �� ��� �120�

��� //� 2� /� �� �� ��� �1�/�

��� //� 4� �� �� �� ��� �1���

��� /2� �� /� 0� �� ��� �1./�

��� .� 0� 2� 0� �� ��� �144�

��� /3� /� �� 0� �� ��� �1�4�

��� 5� 2� 0� �� �� ��� �123�

� � /4� �� �� 0� �� ��� �1�.�

�!� �� �� �� /.� �� ��� �1/��

�∀� 5� 3� �� �� �� ��� �144�

�#� /�� �� 3� 3� �� ��� �124�

��� 2� 2� /� �� �� ��� �132�

��� /4� /� 0� /� �� ��� �1./�

��� /�� 0� 0� 3� �� ��� �12/�

��� .� /� 0� .� �� ��� �132�

��� //� 2� �� /� �� ��� �1�0�

��� /4� �� �� 0� �� ��� �1.��

� � 2� 3� 2� 3� �� ��� �13.�

�!� /0� /� /� 4� �� ��� �125�

�∀� 4� 3� �� //� �� ��� �104�

�#� //� 3� 3� /� �� ��� �1���

/
�∗∋� �! � �##� �� ��#� �� �##� #.�∀�

�

�

�

�

�

�

� �/2�

�

�������������∃)�&∗∋∋�����∋���

(

�∋��∗���0∗1

�)�&∗∋∋�

����� (

�∋��
2&
���

0∗1

�
2&
���

4��∋�&∗����
4
&������
2&
���

(

�∋��
��&∗∋∋�

0∗1

�)�&∗∋∋�

�� 214� .14� 3� �145� �1���

�� .14� 4� �� �1�3� �130�

�� �3� /�14� �14� �1�/� �14/�

�� 0/14� /.14� /� �123� �10.�

�� �0� �314� 514� �12/� �123�

�� �/� 0�14� 4� �134� �122�

 � /014� /314� 0� �143� �14.�

!� 0/� 03� �� �135� �143�

∀� 0�14� ��14� 3� �122� �13��

�#� �/14� �/14� 3� �144� �144�

��� �414� �4� .� �12�� �145�

��� �4� �2� /2� �1�/� �1�3�

��� /514� 0314� 3� �105� �125�

��� /�� /�14� 314� �14�� �14.�

��� ��� �214� /4� �1��� �125�

��� /�14� /4� �� �134� �123�

� � �.� ��� /�� �1�.� �142�

�!� 0� 2� 0� �14�� /1���

�∀� ��� /3� 2� �1�0� �13��

�#� /�14� ��� �14� �13�� �1�0�

��� 414� 5� �14� �105� �123�

��� /2� �0� 214� �135� �1�/�

��� /2� �014� �14� �14�� �1�0�

��� /414� /314� /14� �143� �14/�

��� ��� /514� �� �12�� �12��

��� 0�14� �.� /4� �1��� �123�

� � /0� /414� �� �135� �14.�

�!� /014� �.� 0� �104� �1�0�

�∀� /5� /�14� 314� �145� �144�

�#� ��� /514� �� �123� �14��

/
�∗∋� � ∀�
�

�#�.�� � �.�� #.� � #.�#�

�

�

�

� �/��

�

���∋�&����������)�&∗∋∋�

����� (

�∋��
2&
���

0∗1

�
2&
���

4��∋�&∗����
4
&������
2&
���

(

�∋��
��&∗∋∋�

0∗1

�)�&∗∋∋�

�� �14� //14� 2� �14.� �1..�

�� /4� 414� 3� �15/� �100�

�� /5� ��� 0� �14�� �14.�

�� 0�14� ��� 2� �122� �13��

�� /.14� �4� 2� �135� �12��

�� �.14� �5� 214� �142� �14��

 � /014� �/� /� �13�� �120�

!� �5� ��� 4� �14�� �140�

∀� 0�14� ��� .14� �1�/� �13.�

�#� �2� �0� �� �140� �13��

��� �214� ��� �� �14�� �14��

��� �/14� �2� /�� �14�� �125�

��� /5� 02� 3� �10�� �1�/�

��� ��14� �/� /� �14/� �14��

��� �4� ��14� /�� �145� �124�

��� //� �414� 3� �103� �1�.�

� � �4� �2� /�� �12/� �120�

�!� �� �� �� /1��� /1���

�∀� �2� ��� /� �144� �13��

�#� �2� �2� 2� �14�� �14��

��� /014� /�14� �� �133� �142�

��� /�� 0/� 4� �10�� �1.��

��� /�� �314� 014� �102� �1�3�

��� /.14� /.14� 3� �142� �142�

��� /5� �5� 4� �133� �12��

��� 0�� �.� /3� �12.� �123�

� � .14� /5� 0� �104� �1�.�

�!� /�14� �.14� 3� �13�� �12.�

�∀� �2� /414� 3� �125� �13/�

�#� /514� �3� �14� �134� �142�

/
�∗∋� �∀∀� �!�.�� �� � #.��� #.�#�

�

�

� �/.�

�

+��∋�&����������)�&∗∋∋�

����� (

�∋��
2&
���

0∗1

�
2&
���

4��∋�&∗����
4
&������
2&
���

(

�∋��
��&∗∋∋�

0∗1

�)�&∗∋∋�

�� �� .� 0� �14.� �12��

�� �14� 414� �14� �1�/� �14��

�� ��14� �414� �� �13�� �14.�

�� /414� �2� �� �105� �122�

�� /0� ��� �� �13�� �124�

�� ��� �3� �� �13.� �14��

 � �.� �.� �� �14�� �14��

!� �.� /214� �� �120� �10��

∀� �/14� �014� �� �14�� �144�

�#� 0�� �2� �� �143� �132�

��� �/� ��� �� �14/� �135�

��� 03� 0�� 2� �14�� �140�

��� /414� /�14� /14� �14.� �13��

��� /2� /314� �� �14�� �13.�

��� ��14� 4� �� �1.�� �1/.�

��� 214� 4� �� �12.� �140�

� � 0/� �314� �� �123� �14/�

�!� 0/� ��� 4� �14.� �14/�

�∀� 0�14� �0� �� �12/� �130�

�#� �/14� /.� 3� �12/� �14/�

��� ��14� 0� �� �1..� �1/��

��� �/� �3� �� �135� �142�

��� 5� �0� �� �10�� �1���

��� /014� /�� �� �140� �13��

��� ��� /314� �� �12�� �134�

��� /314� �� �� �12�� �100�

� � �� 414� �14� �14.� �132�

�!� ��14� /5� /� �142� �13��

�∀� 5� /�� /� �134� �12��

�#� /.� /3� 2� �125� �143�

/
�∗∋� �!�.�� ��!.�� ��.�� #.��� #.�#�

�

�

� �/5�

�

3�������������)�&∗∋∋�

����� (

�∋��
2&
���

0∗1

�
2&
���

4��∋�&∗����
4
&������
2&
���

(

�∋��
��&∗∋∋�

0∗1

�)�&∗∋∋�

�� �14� /014� 2� �14�� �15��

�� /�� 414� /� �1�0� �100�

�� ��� �314� �� �135� �144�

�� 0/14� �/� 2� �12.� �134�

�� �3� /.14� .� �1��� �143�

�� �.14� 0�14� .14� �143� �12��

 � /014� �2� 0� �10�� �1�/�

!� ��� ��� 0� �140� �140�

∀� 0�� �0� 214� �124� �135�

�#� �0� �4� 0� �14/� �142�

��� �414� �.14� �� �13�� �140�

��� ��� �.� /�� �14.� �1�3�

��� /5� 0�14� 3� �13�� �12.�

��� ��� ��� /� �135� �143�

��� �4� 0�� /�� �14.� �1���

��� 5� �414� 3� �10�� �1.3�

� � 0/� 0/� /3� �124� �124�

�!� 2� 3� 3� /1��� �12��

�∀� 0�� ��� /� �145� �130�

�#� �2� �2� 2� �14�� �14��

��� //� /.14� �� �10�� �120�

��� /314� 0�14� 5� �10.� �1.2�

��� /�� �314� 014� �102� �1�3�

��� /514� /.14� 3� �14�� �143�

��� /5� �5� 4� �133� �12��

��� 0�� 0�� /3� �123� �123�

� � 5� /5� 0� �102� �1�2�

�!� /214� ��14� 4� �13�� �1�/�

�∀� 0�� /3� 3� �1�4� �104�

�#� �/� �.� 314� �13�� �120�

/
�∗∋� �� � #∀.�� �� � #.��� #.���

�

�

� ����

�

�������������∃�%��&���
������∋���

+��∋�&���2������%��&���
�����1�(

�∋��

�

������)�∋��∗���

����

��∋��∗���
�)
�� +���∋��∗���

%∗���
&∗�,�����
∗&&������

−
.�
��
������

��∗∋�∗����
%��&���
��

�� 5� �� �� �� �� ��� �����

�� /3� �� /� 0� �� ��� �����

�� 2� 0� 4� 2� �� ��� �����

�� /�� 0� /� 3� �� ��� �����

�� /�� 2� �� �� �� ��� ���	�

�� //� �� /� /� �� ��� �����

 � 4� �� 3� 3� �� ��� ���	�

!� 3� 3� 2� 2� �� ��� ���	�

∀� 0� 5� /� �� �� ��� �����

�#� /�� �� 4� /� �� ��� ���
�

��� 4� �� 0� 4� �� ��� �����

��� .� �� 3� /� �� ��� �����

��� �� .� �� 4� �� ��� �����

��� /�� 4� �� �� /� ��� �����

��� /3� 0� /� �� �� ��� �����

��� /�� 4� 0� �� �� ��� �����

� � /�� 2� �� �� �� ��� ���	�

�!� /�� 0� �� 4� �� ��� ���	�

�∀� //� 0� �� 3� �� ��� �����

�#� 3� .� �� 2� �� ��� �����

��� /�� /� /� �� /� ��� �����

��� 3� 4� /� 5� /� ��� �����

��� /3� 4� �� /� �� ��� ��	��

��� /4� �� �� /� �� ��� ��	��

��� 5� 3� 0� 3� �� ��� �����

��� 5� 0� �� 2� �� ��� �����

� � 0� 4� �� /�� �� ��� ���	�

�!� �� 4� 3� 3� �� ��� �����

�∀� 5� 2� /� 3� �� ��� ���
�

�#� /� �� �� /�� �� ��� �����

/
�∗∋� ��#� ��!� ��� ��!� �� �##� #.�!�

�

� ��/�

�

�

+��∋�&���2������%��&���
�����1�0∗1

�

������)�∋��∗���

����

��∋��∗���
�)
�� +���∋��∗���

%∗���
&∗�,�����
∗&&������

−
.�
��
������

��∗∋�∗����
%��&���
��

�� �� �� ��
� �� ��� �����

��
�� �� �� �� �� ��� ����

��
�� �� ��
� �� ��� ����	�

��

� ��
� �� �� ��� ������

��
�� �� �� �� �� ��� ��	��

�� �� �� �� 	� �� ��� ����

 � ��
� 	� �� �� ��� ������

!� �� �� �� �� �� ��� ������

∀� �� 	� �� �� �� ��� ���
��

�#� �� �� �� �� �� ��� �����

��� �� �� �� �� �� ��� �����

���
�� �� �� �� �� ��� ��	��

��� �� �� �� �� �� ��� ����

��� �� 	� ��
� �� ��� ����

���

� ��
� �� �� ��� ������

��� �� �� �� 	� �� ��� �����

� �
� �� �� �� �� ��� ���
��

�!�
� �� ��

� �� ��� ������

�∀� �� �� �� �� �� ��� ������

�#� �� �� �� 	� �� ��� ������

��� ��
�
� 	�
� ��� ���		�

��� ��
� ��
�� �� ��� ������

���

� �� �� �� �� ��� ������

���
�� �� �� �� �� ��� ������

���
� �� ��
�� �� ��� ��
���

��� �� �� �� �� �� ��� ������

� �
��
� �� �� �� ��� ������

�!� �� �� �� �� �� ��� ���		�

�∀� �� �� �� ��
� ��� ������

�#� ��
�� �� 	� �� ��� �����

/
�∗∋� ��!� ��∀� �##� ���� �� �##� #.���

�

�

�

�

� ����

�

�

3������2������%��&���
�����1�(

�∋��

������)�∋��∗���

����

��∋��∗���
�)
�� +���∋��∗���

%∗���
&∗�,�����
∗&&������

−
.�
��
������

��∗∋�∗����
%��&���
��

�� 	� �� �� �� �� ��� �����

�� �� �� �� �� �� ��� �����

��

� �� �� �� �� ��� ���	�

��
�� ��
� �� �� ��� ��	��

��
�� �� ��
� �� ��� �����

�� ��

� �� �� �� ��� �����

 �
��
� �� �� �� ��� ���	�

!�
��
� �� �� �� ��� �����

∀�
	� �� �� �� �� ��� �����

�#�
�� �� �� �� �� ��� �����

���
�� 	�
�
� �� ��� ���
�

��� �� �� �� �� �� ��� ���
�

��� �� �� �� �� �� ��� ���
�

���
�� �� �� �� �� ��� �����

���
�� ��
� �� �� ��� ��	��

���
�� ��
� �� �� ��� ��	��

� �
�� �� �� �� �� ��� �����

�!�
�� ��
� �� �� ��� �����

�∀�

� �� �� �� �� ��� �����

�#�
�� �� �� �� �� ��� �����

��� �� �� �� �� �� ��� �����

��� �� �� ��

� �� ��� �����

���
�� �� �� �� �� ��� ��	��

��� �� �� ��

� ��
�� �����

��� �� �� �� �� �� ��� �����

��� �� ��
� �� �� ��� �����

� � �� �� �� �� �� ��� �����

�!� �� �� �� �� �� ��� �����

�∀� �� �� �� �� �� ��� �����

�#�
�� �� �� �� �� ��� ���	�

/
�∗∋� �#�� ���� �∀� �#�� �� �##� #.���

�

�

�

�

� ��0�

�

3������2������%��&���
�����1�0∗1

�

�

������)�∋��∗���

����

��∋��∗���
�)
�� +���∋��∗���

%∗���
&∗�,�����
∗&&������

−
.�
��
������

��∗∋�∗����
%��&���
��

��

� �� �� �� �� ��� ���	�

�� �� ��
� �� �� ��� ���
�

�� �� �� ��
�
� ��� ���
�

�� 	� �� �� ��
� ��� ���	�

��
�� �� ��
� �� ��� ��	��

��
�� �� �� �� �� ��� ��	��

 �

� ��
� �� �� ��� �����

!�
�� �� �� �� �� ��� ���
�

∀�
�� �� ��
� �� ��� ��		�

�#� �� �� �� �� �� ��� �����

��� 	� �� �� �� �� ��� �����

��� �� �� �� �� �� ��� ���
�

��� �� �� �� �� �� ��� �����

��� 	� �� ��
� �� ��� �����

���

� �� �� �� �� ��� �����

���

� �� �� �� �� ��� �����

� �
�� �� �� �� �� ��� ���
�

�!�
	� ��
�
� �� ��� ���
�

�∀�
	�
�
� �� �� ��� �����

�#�
��
� �� �� �� ��� ��	��

���
��
�
� �� �� ��� ��	��

���
�� �� �� �� �� ��� �����

���
�� �� ��
� �� ��� ��	��

��� �� �� ��
�� �� ��� �����

��� �� ��
� �� �� ��� �����

���
�� �� �� �� �� ��� ��	��

� �

� �� �� �� �� ��� �����

�!�
�� �� ��
� ��
�� �����

�∀�
�� ��
� �� �� ��� ���
�

�#� �� ��
� �� �� ��� �����

/
�∗∋� ���� ���� ��� !!� �� �##� #.� �

�

�

�

� ��3�

�

�������������∃�)�&∗∋∋�����∋���

+��∋�&���2������)�&∗∋∋��

�����
(

�∋��
2&
���

0∗1

�
2&
���

4��∋�&∗����
4
&������
2&
���

(

�∋��
��&∗∋∋�

0∗1

�)�&∗∋∋�

�� ��� ����� 	� ����� �����

�� ����� ��� ���� ����� �����

��
���� �����
�� ����� ��	��

�� ����� ����� �� ����� ���
�

�� �
� ��� ���� ����� �����

�� �����
�� �� ����� ���	�

 �
��
�� �� ���
� ���	�

!�
��
��
��� ����� �����

∀�
���� ����� �� ����� �����

�#� �	��� ��� �� ����� �����

���
	��� ���
�� ����� �����

��� ��� ��� �� ����� �����

��� ��� ��� �� ����� �����

��� ��� ��� �� ����� �����

��� �
��� ����� �� ����� �����

��� �����
	� �� ����� �����

� � ���
���� �� ����� �����

�!� ��� �� �� ��	�� �����

�∀� ��� ����� �� ����� �����

�#�
��
��
� ����� �����

��� �
���
���� �� ����� ���	�

���
���� �� �� ����� �����

��� ��� ����� 	� ����� ���
�

��� ��� ��� �� ���	� ���
�

��� ����� �� �� ����� �����

��� ��� ��� �� ����� �����

� �

� ��� �� ����� �����

�!� �
�
���� �� ����� �����

�∀� ����� �
�
� ����� �����

�#� ��
�� �� ����� ���
�

/
�∗∋� �∀!.�� ���� ∀ .�� #.� � #.���

�

�

� ��������	�
����
�������

�

� ����

�

3������2������)�&∗∋∋��

�

�����
(

�∋��
2&
���

0∗1

�
2&
���

4��∋�&∗����
4
&������
2&
���

(

�∋��
��&∗∋∋�

0∗1

�)�&∗∋∋�

�� �	� ��� ���� ����� ���	�

�� 	���� 	���� �� ����� �����

�� ��� ����� 	�� ����� �����

�� ����� ��� �� ����� �����

�� �	��� ��� 	�� ���	� ���
�

�� ��� ��� 	�� ���	� �����

 � ��� ����� �� ����� �����

!� �	��� ����� ���� ���
� �����

∀� ��� ��� 		� ���
� �����

�#� ����� ��� �� ����� �����

��� ����� ��� �� ����� �����

��� ����� ����� 	���� ����� �����

��� ����� ��� 	�� ����� �����

��� �	��� ����� 	���� ��	�� ���
�

��� ����� ��� 	� ����� �����

��� ����� ��� 	�� ����� �����

� � ��� ����� 	�� ����� �����

�!� ����� ����� 	���� ����� �����

�∀� ����� ����� �� ����� ���	�

�#� ��� ��� �� ����� �����

��� ��� ����� �� ����� �����

��� 	�� ����� �� ����� �����

��� ��� ��� 	�� ����� �����

��� 	�� �� �� ��	
� �����

��� 	�� �	��� �� ���	� �����

��� 	���� ����� 	�� ����� ��	��

� � 	�� ����� ���� ����� �����

�!� ��� ��� �� ����� �����

�∀� 	���� ����� �� ����� �����

�#� �	� 	���� �� ����� �����

/
�∗∋� � .�� !#∀� ��!� #.� � #.�#�

�

�

�

	Pannucover
	Pannu

