Physical fitness profile in elite beach handball players of different age categories

Original citation & hyperlink:
https://dx.doi.org/10.23736/S0022-4707.20.11104-6

DOI 10.23736/S0022-4707.20.11104-6
ISSN 0022-4707
ESSN 1827-1928

Publisher: Edizioni Minerva Medica

Copyright © and Moral Rights are retained by the author(s) and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

This document is the author's post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.
Physical fitness profile in elite beach handball players of different age categories

Luís F. Lemos ¹ *; Vinícius C. Oliveira ²; Michael J. Duncan ³; José P. Ortega ⁴; Clarice M. Martins ¹; Rodrigo R. Campillo ⁵; Javier S. Sanchez ⁶; Alan M. Nevill ⁷; Fábio Y. Nakamura ¹

¹ Associate Graduate Program in Physical Education UPE/UFPB, João Pessoa, Brazil.

² International Faculty of Paraíba, João Pessoa, Brazil.

³ Department of Applied Sciences and Health, Coventry University, Coventry, United Kingdom.

⁴ Department of Physical Activity Sciences, Universidad de Murcia, Murcia, Spain.

⁵ Department of Physical Activity Sciences, Universidad de Pontificia de Salamanca, Salamanca, Spain.

⁶ Department of Physical Activity Sciences. Universidad de Los Lagos, Osorno, Chile.

⁷ Department of Education Health & Wellbeing, University of Wolverhampton, Wolverhampton, United Kingdom.

*Corresponding author: Luis F. Lemos, PhD Candidate
Associate Graduate Program in Physical Education UPE/UFPB,
Cidade Universitária, 58051-900, João Pessoa, Paraíba, Brazil
E-mail: luis.training75@gmail.com
ABSTRACT

BACKGROUND: The aims of this study were: 1) to compare anthropometric and fitness variables of high-level beach handball players across Under-19 (U-19), Under-21 (U-21) and senior male categories, and between male and female senior players and; 2) to test the correlations among those measures.

METHODS: A total of 70 high-level players (53 male of different ages) were evaluated for 5-m acceleration, 15-m sprint, horizontal jump, handgrip strength, specific beach handball throwing velocities, and anthropometric variables. Differences between age groups were tested using ANOVA. Independent t-test was used to compare fitness variables between male and female elite athletes, and Pearson partial correlation coefficients were calculated between each of the fitness variables using BMI and age as covariates. SPSS Software was used, and the level of significance was set at 95%.

RESULTS: The U-21 athletes better performed on horizontal jump and 6-m throw than the U-19 athletes. Senior athletes showed better performance on horizontal jump than U-19 athletes (p≤.05). Positive correlation was seen for handgrip on dominant and non-dominant hands and 6-m throwing speed, and for handgrip on dominant hand and inflight velocity (p≤.05). Negative correlations were observed between horizontal jump and 5-m acceleration, and 15-m sprint (p≤.01 and p≤.05, respectively).

CONCLUSIONS: Male athletes better performed than women in all the fitness tests. The study, for the first time, showed physical fitness comparisons between beach handball elite male athletes of different ages and between genders. These are key steps for coaches and athletes and may support future beach handball studies and practice.

KEY WORDS: Beach handball, sprinting, jumping, throwing, anthropometric.
Introduction

Beach handball, a new Olympic sport in 2021 Olympic Games (Japan), is similar to court handball in the sense that it demands locomotive high-intensity activities interspersed with lower intensity efforts, besides involving specific actions such as jumps, passes, throws and blocks. While there is much less body contacts (hits and pushes) during beach handball matches compared to court handball, the players in the former are required to walk/run on the unstable sand surface, which imposes higher energetic and neuromuscular demands at the same running speeds compared to firm surfaces.

Therefore, beach handball players are expected to display high levels of physical performance in different tests, especially when completed on sand. However, to the best of our knowledge, there are no studies reporting physical performance results of high-level beach handball players of both sexes and across competitive age categories. In this aspect, court handball studies reveal that males and females differ in anthropometric characteristics and performance in maximal aerobic power, throwing, jump and sprint tests. Apart from these expected differences, there is less agreement regarding performance indices across age categories. For instance, a study involving Norwegian female U-15, U-17, U-19 and Adult National teams revealed that the latter was superior to the U-17 and U-15 teams in height, mass, countermovement jump (CMJ), medicine ball throw, hand dynamometry, 10 and 30-m sprint, Yo-Yo Intermittent Recovery Test level 2 (Yo-Yo IR2), and 7-m standing ball throwing speed. Fewer differences were evident between adults and U-19 players (mass, CMJ, medicine ball throw and Yo-Yo IR2). These results suggest that to reach the highest level in adulthood, handball players must progressively improve their physical performance over the years of training.

In males, elite adults performed better than U-18 and U-16 Spanish handball players in the 10 and 20-m sprints, CMJ, muscle power tests in the squat and bench press exercises and in the jump throw and 3-step throw. The U-18 presented higher performance than U-16 players concerning the load leading to 1 m.s$^{-1}$ movement velocity during squat exercise and in the referred ball throw techniques. Hence, it appears that the specific action related to goal scoring is enhanced across all age categories investigated. This aspect also needs to be addressed in beach handball players as the final outcome of the match is determined by the ability to achieve a high throwing speed using different techniques. Specifically in beach handball, these techniques are expressed as 6-m standing, inflight and spin throws. The throwing velocity using these sport-specific techniques has not been addressed in the scientific literature to date.
Interestingly, in court handball players, jump throw and 3-step throw speeds have been significantly correlated with sprint, vertical jump and muscle strength performances. This means that the general development of physical capacities can positively influence performance in throwing and should be constantly sought by strength and conditioning professionals and athletes. Furthermore, the sprint ability over 10 and 30-m of handball players is positively correlated with vertical jump ability. However, in beach handball the distances to be traveled while sprinting are shorter since there is up to 15-m to run between the lines demarcating the goal areas. As a consequence, the acceleration speed on sand surface needs to be addressed in beach handball players. It is not known if jump ability (particularly the horizontal jump) is associated with acceleration speed in highly trained beach handball players.

Therefore, the aims of this study were: 1) to compare anthropometric and fitness variables of high-level beach handball players across Under-19 (U-19), Under-21 (U-21) and senior male categories, and between male and female senior players and; 2) to test the correlations among those measures.

Materials and methods

Study approach and design

This cross-sectional study is part of a major project that aimed to describe physical, physiological, technical and tactical parameters of sand sports players (male and female) of different ages (Elite – more than 21 years-old [Senior]; U-21 – 19 to 20 years-old; U-19 – 17 to 18 years-old). This study was conducted during the pre-game warm-ups, in the 13rd Taça KIKA Beach Handball Tournament, held in João Pessoa/Brazil.

A total of 70 players (53 male of different ages) from different teams were evaluated for fitness parameters, including 5-m acceleration, 15-m sprint, horizontal jump, handgrip, and specific beach handball throwing velocities.

Tests were conducted at the beach court from 08:00 a.m. to 10:00 a.m. and from 16:00 p.m. to 18:00 p.m., according to games schedule, in a way that each player could be assessed before his/her first game to ensure fatigue from games did not influence values obtained during the subsequent fitness and skill based testing. The players were previously familiarized with the protocols and performed the respective tests in the following order: 1) handgrip strength on dominant and non-dominant hand; 2) acceleration/speed; 3) horizontal jump; 4) specific throwing velocities. Trained assessors, under the supervision of the senior researchers, conducted the tests while providing verbal encouragement to the players, especially in the all-out sprints.

Information about environmental conditions were registered during the 4-day tournament,
according to the Weather Forecasting and Climate Studies Center, from the Brazilian Government. Temperature ranged between 27.8 and 30.4 °C, the air humidity between 64 and 69% and the wind velocity between 2.57 and 3.08 m/s.

All the players were previously informed about the research aims, experimental protocol and procedures of the study and voluntarily gave their informed written consent to participate. The parents of players younger than 18 years old sign an informed consent document and both parents and athletes gave their assent before any of the tests were performed. The Helsinki Declarations’ ethical aspects were followed (World Medical Association, 2013), and the evaluation methods and procedures were approved by the local Ethics Committee with protocol number 02896918.1.0000.5176.

Participants

A total of 70 players participated in the study. Concerning most of the younger female athletes (U-21 and U-19) also played in senior teams, for the purpose of this study, only senior female athletes were included, in order to avoid possible bias interpretation. The participants were involved in specific beach handball training at least twice a week (on average 90 minutes per session), and 1-2 physical/strength session(s) per week involving plyometrics, injury prevention and power training. Twenty four percent of the participants also played court handball.

Anthropometric variables

The anthropometric variables of height (m) and body mass (kg) were measured in each subject. Height was measured using a stadiometer (Holtain, Ltd., Pembrokeshire, UK), and body mass was measured with a bioimpedance scale (InBody 570, Biospace Co. Ltd, Seul, Korea). The BMI was calculated from body mass and body height (kg/m²).

Fitness variables

Acceleration – 5-m and Sprint – 15-m

Participants ran two 15-m sprints on sand, separated by 5 minutes of rest. The starting position was standardized, with the lead-off foot behind the starting line, which was placed 1-m behind the first time gate. The photocell gates were placed at the start, and at 5 and 15-m. The subjects attempted to run the 15-m as fast as possible. The best time from the 2 attempts was recorded (0–5 m: acceleration; 0–15 m: sprint). Sprint times were measured using photocells (Speed Test 6.0 standard, Cefise, São Paulo, Brazil). Sand condition was standardized. After each attempt, the sand was uniformized with a squeegee, ensuring that all athletes, in all attempts were under the same conditions.
Horizontal Jump

From a parallel standing position and with arms hanging loose to the side, participants were instructed to jump as far as possible in horizontal direction and to land on both feet, with 1-min interval between three trials. The test score (best of three trials) was the distance in centimeters, measured from the starting line to the point where the most proximal heel landed on the floor. Evidence of acceptable reliability and validity of the test in athletes has been shown 10.

Handgrip Strength

Upper body extremities strength was measured using a handgrip dynamometer (TKK 5101 Grip D; Takei, Tokyo Japan). The participant squeezed gradually and continuously for at least two seconds, performing the test with dominant and non-dominant hand, with the elbow in full extension. The test was performed three times for each hand, with 1-min interval interspersing the consecutive trials, and the maximum score for each hand was recorded in kilograms force (kgf). The highest value registered per side was retained for analyses. This test is reliable to assess musculoskeletal fitness of upper extremities in athletes 11.

Specific Beach Handball Throwing

Specific explosive action production in beach handball was evaluated on a beach court by different overarm throws. The players were instructed to throw a standard beach handball size (male: 450 g; 58 cm circumference; female: 350 g; 56 cm circumference) at maximal velocity on the upper half of the goal (over 1-m of the ground), 6-m distance of the goal, using the dominant hand. Three different specific overarm throws (6-m, spin and inflight) were performed three times per throwing type, with an interval of 1-min between consecutive trials. Firstly, athletes performed the 6-m throwing, a standing throw equivalent to the 7-m throw in court handball. Then athletes performed the spin throw, a jumping throw with a 360º body rotation, and the inflight throw, in which the athletes must grasp the ball in the air and throw it before touching their feet on the sand. These last two techniques are commonly used in beach handball, as both are awarded with 2 points in the game.

When the speed of throws using the same technique differed more than 20%, a fourth trial was performed, and the maximal throwing speed registered was kept for analysis (after eliminating the most discrepant value). The speed of each throw was measured using a radar device (Stalker Sport; Applied Concepts, Inc., Plano, TX, USA). The radar unit was placed in ~2-m behind the goal and with a height ~1.5-m from the ground.

To encourage players to perform maximally, they were immediately informed of their preceding performance. Hence, they strived to overcome the previous throws’ speeds.
Statistical analysis

Descriptive procedures were performed for all variables and values are reported as mean and standard deviation (SD). The distribution of each variable was examined using the Shapiro-Wilk normality test. Homogeneity of variance was verified using Levene’s test. An intraclass correlation coefficient (ICC) with a 95% confidence interval (CI) was used to determine the between-subject reliability of tests. Within-subject variation for the tests was determined by calculating the relative coefficient of variation (CV). The statistical differences between age groups were tested using an ANOVA - analysis of variance, with Bonferroni’s post hoc comparisons. Independent t-test was used to compare fitness variables between male and female elite athletes, and the percentage difference between the two groups was calculated for each fitness variable. Finally, Pearson partial correlation coefficients were calculated between each of the fitness variables using BMI and chronological age as covariates (partial correlation).

SPSS Software – version 25.0 (Macintosh) was used, and the level of significance was 95% (p <.05).

Results

For the physical fitness outcomes, the within-subjects test-retest reliabilities, as measured by the CV and the ICCs (95% CI), ranged between 0.9% (ICC = .999) for U-21 athletes’ sprint in 15-m, to 6.4% (ICC = .689) for 5-m acceleration of U-19 athletes. For the female ones, values ranged between 1.6% (ICC=.976) when performing sprint running to 4.4% (ICC = .983) for non-dominant handgrip, and, as shown in Table 1.

Mean values, SDs and outcome comparisons between age groups (males) are shown in Table 2. The U-21 athletes had a better performance on horizontal jump and 6-m throw when compared to the U-19 athletes. Senior athletes showed significantly better performance during horizontal jump than U-19 athletes (p≤.05).

Results highlighted significant positive correlation between handgrip on dominant and non-dominant hand and 6-m throwing speed. Positive correlations were also observed between handgrip
on dominant hand and inflight velocity (p≤.05). A negative correlation was observed between horizontal jump and 5-m acceleration and 15-m sprint (p≤.01 and p≤.05, respectively) (Table 3).

***************Insert Table 3.**********************

When comparing mean values between male and female athletes, male athletes performed better in all the physical fitness tests than women (Table 4). Significant differences were seen between the genders for handgrip strength on dominant and non-dominant hand.

***************Insert Table 4.**********************

Discussion

The first aim of this study was to compare physical performance characteristics of high-level beach handball male players across different age categories, and in senior players between sexes. Although there have been studies of this type for court handball players 5, 12, to the best of our knowledge, this is the first study for beach handball. It is important to highlight that the differences in physiological and mechanical 13 aspects between beach and indoor handball are substantial. The characteristics of the environment during beach handball game and its rules create quite a very specific set of movement requirements for optimal performance, such as the specific throwing techniques.

Current results showed that senior athletes better performed in the horizontal jump when comparing U-19 and U-21 players, and U-19 and senior athletes. The unbalanced sand surface presents specific challenges to the athlete. The ability to generate ground reaction forces is disturbed by the unstable surface and may hamper the ability to use the triple extension mechanism (i.e., extension of the ankle, knee, and hip joints) to propel the body efficiently 14. Nonetheless, the current sample of highly trained players demonstrated very reproducible horizontal jump performances (CV = 1.2-2.3%, ICC = 0.968-0.989) showing that they were sufficiently familiarized with the conditions to perform on the sand surface.

U-21 and senior players were able to jump longer than U-19 players. These differences can be possibly attributed to differences in lower body muscle power among the age groups 15, which is also observed in other team sports. For instance, a study involving futsal players performing horizontal jumps on rigid court surface demonstrated that adults (20.83± 2.11 years old) performed better than younger counterparts (17.99 ± 0.91 years old) 16. Their performances (240.30 ± 11.27 and 222.85 ± 19.33 cm) were greater than the ones reported in our study (U-19 = 205.37 ± 21.93 cm; U-21 = 226.96 ± 28.94 cm; senior = 223.63 ± 17.60 cm), possibly due to differences in the testing surface and the use of sports shoes in the case of futsal players.
For the specific throwing assessments, differences were seen only for the 6-m throw between the U-19 and the senior players. Three factors are determinant with regard to the efficiency of throwing: mechanics, coordination of consecutive actions of body segments, and upper and lower extremity muscle strength and power. Considering that the spin and the inflight throw require a high coordination pattern, and the assessment protocol had a specific target in the goal, the maximal expression of strength-power is compromised by the difficulty of the movement sequences. Strength increases with age and upper-limb strength and power tests performances are related to ball velocity. Therefore, when playing at an elite level, the lower complexity of the 6-m throw allows older athletes to apply a greater speed on the ball, once maximal trunk and shoulder rotation velocity and their timing have a significant influence on throwing velocity. Moreover, the greater athlete’s performance in 6-m throw may be logical due to its lower coordinative requirement when comparing to the other throwing technics assessed. Therefore, it can be inferred that the assessment of the 6-m throw can be used as a proxy of strength-power abilities of beach handball players while the more complex shooting modes will involve high demands on coordination which can “hinder” the expression of more basic neuromuscular abilities.

It is difficult to compare current results with those from different studies that have measured throwing velocities in handball players because they differ markedly in several aspects, including methods and protocols of measurement. Nonetheless, in general, the results observed for throwing velocity in the 6-m throw for the elite beach handball players are similar to the results observed in 7-m throw in court handball players.

In team handball athletes of different ages (elite, U-18 and U-16), elite players showed greater performance in almost all sprint distances (i.e. 10 and 20-m). This evidence diverges of those from this study in which no difference was seen between age categories for 5-m acceleration and 15-m sprint. It is known that sprinting on the sand is quite different from sprinting on a hard surface. The ball of the foot slips and sinks into the sand instead of directly applying ground reaction forces to stabilize the body and provide efficient forward propulsion. This instability increases the energy cost of sprinting on sand for two reasons: a) the additional mechanical work on such surface and b) a decrease in the efficiency of positive work done by the muscles and tendons. Although the age groups do not differ in anthropometric variables, the seniors’ tendency of having heavier body mass may explain the non-observed expected better performance for them, when comparing to the younger players. Nonetheless, seniors’ higher body mass, compared to younger peers, obligates them to produce higher absolute mechanical power during sprint running to run at similar speed.

Though no difference between age categories was seen for handgrip strength, the ability to grasp the ball is essential in beach handball, considering that specific beach handball techniques, as the spin throw and the inflight naturally demand a great grasping skill. It is thus apparent that beach
handball players develop this specific strength early in their prospective careers and are able to retain it toward adulthood.

When comparing team handball athletes with different training backgrounds, Gorostiaga et al. suggested that elite handball players have been getting taller and heavier over the last two decades. We did not observe any difference in body size (height, body mass, and BMI) of male beach handball players of different ages. Considering beach handball is a faster game than court handball, and is characterized by several offensive and defensive transitions, this result might indicate that beach handball players seem to be leaner than their court peers. These differences might be explained by several reasons: a) beach handball is a non-contact sport, and greater body dimensions might not be as necessary as in court handball; b) the locomotion ability in sand surface might be impaired for those athletes with higher body mass, making it difficult for them to produce higher mechanical power during vertical jumping and sprint running, for example.

Then, this study aimed to compare physical performance characteristics between high-level male and female senior players. We observed clear sex differences in all the evaluated variables. It is well known that physiological differences exist between the sexes, since men in general are taller and heavier, with larger muscle mass, stronger, faster and have a higher VO2max than women. Nonetheless, although male athletes showed greater differences in handgrip strength, the differences between sexes were smaller when considering acceleration and sprint. This fact may be explained by the task nature, which demands body mass transportation. So, for beach handball elite athletes, the observed results are in line with previous studies in several sports.

The correlations among the fitness characteristics to determine which ones explain performance in short sand sprints and shooting techniques. Our results highlighted that horizontal jump, acceleration and speed were significantly correlated. This is not surprising since the horizontal jump distance reveals the athlete’s ability to produce horizontal (+vertical) forces against the ground. It is widely reported that the magnitude of horizontal forces produced during sprinting is one of the main determinants of acceleration and sprinting performances. Hence, although the correlations were not too high (r = -0.369 and -0.411), they highlight the necessity of developing horizontal jump ability and its underlying mechanical factors to reach high speeds on the sand surface.

The positive correlation between handgrip in dominant hand and throwing velocity in 6-meter and inflight throw may be explained by the kinetic chain of the movement, in which hand is the terminal point of contact, where generated forces and torques are transferred to the implement. Throwing velocity requires the ability to grip the ball in order to create control over it and increase the ball spin that leads to improvement in throwing velocity. Furthermore, according to McDaniel, an increment in handgrip strength not only improve the skills related to grasping the object, but can also increase the amount of force generated in the throw.
To the best of the authors’ knowledge, this study is the first to investigate the physical fitness characteristics of elite beach handball players of different ages, including 17 senior world champion athletes (7 males and 10 females), and U-19 and U-21 National team players. Beach handball is a relatively new sport and although male and female Brazilian national teams are well classified in the international rankings (5 male world championship titles and 3 female world championship titles), players are not professionals. Therefore, it is only possible for them to train 3-4 times per week, once they need to divide their daily routine between training and working. This fact may compromise their overall fitness performance, when comparing to other professional team handball and/or sand surface’s athletes. Moreover, in our sample, there were few young female athletes, and most of them played in two or three different categories, so data covering young females were not available. Nonetheless, due to a natural increase in beach handball interest, its physical demands play an important role for coaches and sports professionals, and represent an essential tool to exploit and sustain player’s technical and tactical qualities throughout an entire game.

Conclusion

The current study, for the first time, showed physical fitness comparisons between beach handball elite male athletes of different ages and female ones. U-21 athletes better performed on horizontal jump and 6-m throw when compared to U-19 ones. Senior athletes better performed horizontal jump than U-19 ones. No difference between age categories was seen for handgrip strength. This study showed men performed better in all the physical fitness tests and had better body composition profile than women. A positive correlation between handgrip on dominant and non-dominant hand and 6-m shooting speed, and between handgrip on dominant hand and infight’s speed was seen. Negative correlation was observed between horizontal jump and 5-m acceleration and 15-m sprint. These results are key steps for coaches and athletes and may support future beach handball studies and practice.

REFERENCES

NOTES

Conflicts of interest.—The authors certify that there is no conflict of interest.

Authors' contribution

Luís F. Lemos: research concept and study design, literature review, data collection, data analysis and interpretation, statistical analyses, writing of the manuscript.

Vinícius C. Oliveira: literature review, data collection.

Michael J. Duncan: writing of the manuscript, reviewing/editing a draft of the manuscript.
José P. Ortega: data collection, reviewing/editing a draft of the manuscript.
Clarice M. Martins: data analysis and interpretation, writing of the manuscript.
Rodrigo R. Campillo: data interpretation, reviewing/editing a draft of the manuscript.
Javier S. Sanchez: data interpretation, reviewing/editing a draft of the manuscript.
Alan M. Nevill: data analysis and interpretation
Fábio Y. Nakamura: research concept and study design, writing of the manuscript, reviewing/editing a draft of the manuscript.

All authors read and approved the final version of the manuscript.

TABLES

Table I. — Reliability indexes of the assessments

<table>
<thead>
<tr>
<th></th>
<th>U-19 (N=20)</th>
<th>U-21 (N=13)</th>
<th>Senior Male (N=20)</th>
<th>Senior Female (N=17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal jump (cm)</td>
<td>1.6 (.988)</td>
<td>1.2 (.994)</td>
<td>1.0 (.989)</td>
<td>2.3 (.968)</td>
</tr>
<tr>
<td>Handgrip dominant (kgf)</td>
<td>3.9 (.978)</td>
<td>3.4 (.979)</td>
<td>3.3 (.989)</td>
<td>2.6 (.983)</td>
</tr>
<tr>
<td>Handgrip non-dominant (kgf)</td>
<td>4.7 (.984)</td>
<td>4.5 (.976)</td>
<td>2.7 (.985)</td>
<td>4.4 (.983)</td>
</tr>
<tr>
<td>6-meter throw (m.s⁻¹)</td>
<td>1.6 (.974)</td>
<td>2.6 (.974)</td>
<td>2.2 (.976)</td>
<td>1.7 (.974)</td>
</tr>
<tr>
<td>Spin throw (m.s⁻¹)</td>
<td>2.4 (.980)</td>
<td>1.2 (.994)</td>
<td>2.0 (.989)</td>
<td>1.7 (.982)</td>
</tr>
<tr>
<td>Inflight throw (m.s⁻¹)</td>
<td>2.8 (.947)</td>
<td>3.1 (.962)</td>
<td>2.3 (.980)</td>
<td>3.1 (.962)</td>
</tr>
<tr>
<td>Acceleration -5m(s)</td>
<td>6.4 (.689)</td>
<td>2.5 (.885)</td>
<td>3.5 (.859)</td>
<td>3.0 (.961)</td>
</tr>
<tr>
<td>Speed – 15m (s)</td>
<td>2.2 (.932)</td>
<td>.9 (.999)</td>
<td>2.2 (.962)</td>
<td>1.6 (.976)</td>
</tr>
</tbody>
</table>

Table Note: Values are expressed as coefficient of variation (intraclass correlation coefficient).

Table II. — Descriptive values and comparisons of body composition and physical fitness outcomes between the 3 male groups.

<table>
<thead>
<tr>
<th></th>
<th>U-19 (N=20)</th>
<th>U-21 (N=13)</th>
<th>Senior (N=20)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>17.56 ± .51</td>
<td>20.05 ± .91*</td>
<td>28.70 ± 6.34 b,c</td>
<td>.000*</td>
</tr>
<tr>
<td>Body mass (kg)</td>
<td>76.46 ± 17.29</td>
<td>74.09 ± 10.28</td>
<td>82.17 ± 12.66</td>
<td>N.S.</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.81 ± .83</td>
<td>1.81 ± .71</td>
<td>1.80 ± .09</td>
<td>N.S.</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>23.03 ± 3.58</td>
<td>22.47 ± 2.50</td>
<td>25.89 ± 2.89</td>
<td>N.S.</td>
</tr>
</tbody>
</table>

PHYSICAL FITNESS OUTCOMES

<table>
<thead>
<tr>
<th></th>
<th>CV (ICC)</th>
<th>CV (ICC)</th>
<th>CV (ICC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal jump (cm)</td>
<td>205.37 ± 21.93</td>
<td>1.6 (.988)</td>
<td>226.96 ± 28.94 *</td>
</tr>
<tr>
<td>Handgrip dom (kgf)</td>
<td>54.35 ± 11.11</td>
<td>3.9 (.978)</td>
<td>56.30 ± 11.18</td>
</tr>
</tbody>
</table>
Handgrip non-dom (kgf) | 49.30 ± 11.26 | 4.7 (984) | 50.30 ± 7.76 | 4.5 (976) | 54.70 ± 9.70 | 2.7 (985) | N.S.
6-meter throw (m.s⁻¹) | 20.51 ± 1.62 | 1.6 (974) | 21.86 ± 1.4 | 2.6 (974) | 22.08 ± 2.31 b | 2.2 (976) | .026*
Spin throw (m.s⁻¹) | 20.02 ± 2.03 | 2.4 (980) | 21.13 ± 2.33 | 1.2 (994) | 21.29 ± 2.55 | 2.0 (989) | N.S.
Inflight throw (m.s⁻¹) | 20.21 ± 1.69 | 2.8 (947) | 21.06 ± 1.74 | 3.1 (962) | 21.02 ± 2.44 | 2.3 (980) | N.S.
Acceleration -5m (s) | 1.05 ± .09 | 6.4 (689) | 1.05 ± .07 | 2.5 (885) | 1.07 ± .05 | 3.5 (859) | N.S.
Sprint – 15m (s) | 2.58 ± .17 | 2.2 (932) | 2.38 ± .66 | 0.9 (999) | 2.59 ± .12 | 2.2 (962) | N.S.

Table Note: Values are expressed as mean ± standard deviation. One-way ANOVA with Bonferroni’s post-hoc; CV = coefficient of variation; ICC = intraclass correlation coefficient N.S. = non-significant; *significant differences between groups (p≤.05); a = U-19 vs. U-21; b = U-19 vs. Senior; c = U-21 vs. Senior; Handgrip dom = dominant handgrip strength; Handgrip non-dom = non-dominant handgrip strength.

Table III.— Matrix of correlation between physical fitness variables of male athletes.

<table>
<thead>
<tr>
<th>Horizontal jump</th>
<th>Handgrip dom</th>
<th>Handgrip non-dom</th>
<th>6-meter throw</th>
<th>Spin throw</th>
<th>Inflight throw</th>
<th>Acceleration</th>
<th>Sprint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal jump</td>
<td>.088</td>
<td>.072</td>
<td>.262</td>
<td>.357*</td>
<td>.389</td>
<td>-.369*</td>
<td>-.411*</td>
</tr>
<tr>
<td>Handgrip dom</td>
<td>.761**</td>
<td>.359*</td>
<td>.176</td>
<td>.294*</td>
<td>-.071</td>
<td>-.117</td>
<td></td>
</tr>
<tr>
<td>Handgrip non-dom</td>
<td>-.072</td>
<td>.761</td>
<td>.378*</td>
<td>.241</td>
<td>.259</td>
<td>-.038</td>
<td>.055</td>
</tr>
<tr>
<td>6-m throw</td>
<td>.262</td>
<td>.359*</td>
<td>.378*</td>
<td>.665**</td>
<td>.673**</td>
<td>-.079</td>
<td>-.129</td>
</tr>
<tr>
<td>Spin throw</td>
<td>.357*</td>
<td>.176</td>
<td>.241</td>
<td>.665**</td>
<td>.656**</td>
<td>-.159</td>
<td>-.163</td>
</tr>
<tr>
<td>Inflight throw</td>
<td>.389*</td>
<td>.294*</td>
<td>.259</td>
<td>.673**</td>
<td>.656**</td>
<td>-.293</td>
<td>-.094</td>
</tr>
<tr>
<td>Acceleration</td>
<td>-.369**</td>
<td>-.071</td>
<td>-.038</td>
<td>-.079</td>
<td>-.159</td>
<td>-.293</td>
<td>.495**</td>
</tr>
<tr>
<td>Sprint</td>
<td>-.411*</td>
<td>-.117</td>
<td>.055</td>
<td>-.129</td>
<td>-.163</td>
<td>-.094</td>
<td>.495**</td>
</tr>
</tbody>
</table>

Table Note: Partial correlations adjusted for BMI and age; * p≤.05; **p ≤.01

Table IV.— Comparisons between genders for all measured outcomes.

<table>
<thead>
<tr>
<th></th>
<th>Senior Male (N=20)</th>
<th>Senior Female (N=17)</th>
<th>%difference</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body mass (kg)</td>
<td>82.17 ± 12.66</td>
<td>67.51 ± 6.53</td>
<td>19.58</td>
<td>.000*</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.80 ± .09</td>
<td>1.67 ± .05</td>
<td>7.49</td>
<td>.000*</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25.89 ± 2.89</td>
<td>24.19 ± 2.22</td>
<td>6.78</td>
<td>.000*</td>
</tr>
<tr>
<td>Horizontal jump (cm)</td>
<td>223.63 ± 17.60</td>
<td>175.50 ± 24.38</td>
<td>24.11</td>
<td>.000*</td>
</tr>
<tr>
<td>Handgrip dominant (kgf)</td>
<td>59.95 ± 10.53</td>
<td>38.29 ± 5.54</td>
<td>44.09</td>
<td>.000*</td>
</tr>
<tr>
<td>Handgrip non-dominant (kgf)</td>
<td>54.70 ± 9.70</td>
<td>36.52 ± 5.78</td>
<td>39.85</td>
<td>.000*</td>
</tr>
<tr>
<td>6-meter throw (m.s⁻¹)</td>
<td>22.08 ± 2.31</td>
<td>17.58 ± 1.79</td>
<td>22.69</td>
<td>.000**</td>
</tr>
<tr>
<td>Spin throw (m.s⁻¹)</td>
<td>21.29 ± 2.55</td>
<td>16.71 ± 1.96</td>
<td>24.10</td>
<td>.000**</td>
</tr>
<tr>
<td>Inflight throw (m.s⁻¹)</td>
<td>21.02 ± 2.44</td>
<td>16.50 ± 1.76</td>
<td>24.09</td>
<td>.000**</td>
</tr>
<tr>
<td>Acceleration performance -5m (s)</td>
<td>1.07 ± .06</td>
<td>1.17 ± .01</td>
<td>8.94</td>
<td>.011*</td>
</tr>
<tr>
<td>Sprint – 15m (s)</td>
<td>2.59 ± .12</td>
<td>2.89 ± .26</td>
<td>10.92</td>
<td>.000**</td>
</tr>
</tbody>
</table>

Table Note: BMI = body mass index; Independent t-test; * p≤.05; **p ≤.01