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INTRODUCTION 

Abstract 
This paper conveys attitude and rate estimation without rate sensors by performing a 
critical comparison, validated by extensive simulations. The two dominant approaches to 
facilitate attitude estimation are based on stochastic and set-membership reasoning. The 
first one mostly utilizes the commonly known Gaussian-approximate filters, namely the 
EKF and UKF. Although more conservative, the latter seems to be more promising as it 
considers the inherent geometric characteristics of the underline compact state space and 
accounts—from first principles—for large model errors. The set-theoretic approach from 
a control point of view is addressed, and it is shown that it can overcome reported defi
ciencies of the Bayesian architectures related to this problem, leading to coordinate-free 
optimal filters. Lastly, as an example, a modified predictive filter is derived on the tangent 
bundle of the special orthogonal group 𝕋𝕊𝕆(3). 

Attitude and rate estimation is an important aspect of aerial 
robotics. Throughout the decades, it has proven very accu
rate and versatile in applications from the first Low Earth 
Orbit (LEO) satellites [1] to unmanned aerial vehicles (UAVs) 
[2] and from the unmanned aerial systems [3] to recent aerial 
robotic workers [4]. At the same time, technological and techni
cal advances allow for increased specifications of autonomy in 
conjunction with precise and agile manoeuvring. Consequently, 
position and orientation (attitude) control constitutes a field 
of research that is vital component of aerial robotics. In many 
cases, the model can be decoupled and attitude control can be 
implemented independently from position control [2]. Lately, 
more focus has been given to attitude controllers due to the 
increased difficulty and complexity of the specific control prob
lem [5]; the success of these controllers relies upon the accurate 
knowledge of the real orientation and the angular rate of the 
aerial robot. Thus, it is imperative to develop efficient attitude 
filters, to deal not only with the measurement noise but also with 
the model errors. 

When a-priori statistical information is available, such uncer
tainties are represented by utilisation of the stochastic frame
work. Subsequently, model errors and measurement noise are 

then expressed as stochastic inputs to provide a faithful rep
resentation of the conditions where the real system operates. 
Within this probabilistic context, the Bayesian formulation of 
estimation appears in the form of Gaussian approximate fil
ters. In particular, the extended kalman filter (EKF) [6, 7] and  
unscented kalman filter (UKF) [8] constitute traditionally used 
tools for the problem of attitude and rate estimation, as it 
appears in aerial robotics. 

From a series of novel works in the existing literature [9–13], 
it is evident how the Gaussian approximate solutions interact 
with the space of orientations through the various attitude coor
dinate systems [14–17]. A very fundamental one, being pre
sented in [18], expresses the motion using the Euler angles. 
To avoid the well-known singularity issues, a temporary shifted 
reference frame is established that estimates the orientation 
angles w.r.t. the previous angle estimates. By doing so, the 
representation remains away from singular points. Although 
the resulted state space model is highly nonlinear due to the 
involved trigonometric functions, the EKF is used for estima
tion. The EKF accounts for some drawbacks, especially for 
highly nonlinear systems. For many applications, derivation of 
the Jacobian matrices is hard or time consuming. Furthermore, 
linearization results in an unstable filter performance when the 
time step intervals for the update are not sufficiently small [19]. 
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On the contrary, small time steps increase the computational 
load, especially when the Jacobian matrices are not available in 
closed form. 

Other works address the problem differently by establish
ing a quasi-linear kinematic expression [10, 20–23]. The only 
attitude representation for this purpose is the algebra of unit 
quaternions [20], which is closed under the quaternion multi
plication. This nonsingular, four-parameter representation has 
been discussed by many authors including [21]. Nonetheless, the 
fact that the correction step of the EKF updates the predicted 
quaternion by addition results in a corrected (upper part) state 
that does not express an orientation. For this problem, three 
solutions exist. The first one proposes a Euclidean normalisa
tion after the correction step; the second one deploys a pseudo-
measurement equation; and, finally, the third one is a multiplica
tive approach proposed by [21]. The latter is based on the prod
uct of the quaternion error and the reference quaternion, both 
having unit magnitude. 

Alternatively, the UKF has the advantage of handling nonlin
earities through the unscented transform (UT) more efficiently 
compared to the EKF. This makes reasonable the choice for 
using it in conjunction with the Euler angles coordinate sys
tem and the shifted frame of reference method of [18]. An 
attempt towards this direction can be found in [24]. On the 
other hand, when the quaternion representation is used, the 
UKF in a standard format cannot be implemented straight
forwardly. The reason is again the quaternion’s unit constraint. 
There is no guarantee that the predicted quaternion mean of 
the UKF will satisfy this constraint and express an orientation. 
In [10], the authors tackle this obstacle by the use of the general
ized Rodrigues parameters (GRP) [25] to represent an attitude-
error quaternion. Lastly, a comparison between the EKF and 
the UKF under the quaternion representation can be found in 
[26]. The conclusion is that the UKF shows better performance 
compared with the EKF, when the kurtosis and the higher 
order moments in the state error distributions are significant. 
A compelling discussion on the application of the mentioned 
Kalman-based filters for gyro-less attitude and rate estimation 
can be found in [19]. The EKF and UKF are local methods and 
are characterized by relatively small computational complexity. 
However, they are strictly suboptimal and, thus, they at most 
constitute efficient heuristics, but without explicit theoretical 
guarantees [27]. 

An attempt to set the state estimation problem within the 
dual optimal control framework [28] was made in [29]. This 
method determines the corrections added to the assumed 
model, such that the model and corrections yield an accurate 
representation of the system’s behaviour. The model uncertainty 
is considered as an unknown but deterministic signal within a 
Hilbert space. The goal is to estimate the states for the resulting 
measurements to approximate the measured observations, while 
keeping the considered model as valid as possible. This is done 
by minimising the total norm of the augmented measurement-
model uncertainty vector. The optimization problem incorpo
rates a covariance constraint in order to ensure that the state 
estimates remain statistically consistent. However, the above fil
ter is based on a two-point boundary condition problem and is, 

essentially, an offline optimal state estimator. In [30], the modal 
trajectory estimator is derived. This approach is based entirely 
on the Hamiltonian formulation of optimal control and results 
in a recursive filter. 

The importance of the dual optimal control formulation for 
the problem of attitude and rate estimation stems from the 
nature of orientation itself. Euler’s theorem [31] indicates that 
the set of orientations is the special orthogonal group 𝕊𝕆(3), 
which is a compact Lie group associated with the Lie algebra 
𝔰𝔬(3) of the 3 × 3 skew symmetric matrices. A Lie group is a 
differentiable manifold equipped with the algebraic structure of 
a group  [32, 33]. Therefore, instead of relying on the prefab
ricated Bayesian architectures, the problem can be directly set 
and solved in a coordinate-free fashion as a dual optimal con
trol problem by applying tools from differential geometry. The 
approach of [30], commonly known as minimum energy filter
ing, was utilised in [34] where the second-order-optimal mini
mum energy filter on Lie groups was derived. 

Conclusively, we observe that within the—Bayesian 
framework—success of a gyroless attitude estimation scheme 
depends primarily on the chosen coordinate system. Essentially, 
there is an incompatibility between the Bayesian architectures 
and the space of orientation. This incompatibility is justified by 
the fact that the Gaussian approximate filters are primarily built 
to approximate the conditional mean, rather than comply with 
the geometric characteristics of the underlying state-space. 

Furthermore, based on stochastic modelling, the Bayesian 
strategies assume second-order statistical knowledge for both 
the measurement noise and the model’s uncertainty. Although 
aggregating second order statistics for the measurement noise 
is feasible through (offline) experimentation, for the case of 
the model error—usually referred to as “process noise”—the 
assumption that it is a symmetrically-distributed white noise 
process of known covariance has no theoretical basis. For phys
ical systems, model uncertainty represents environmental phe
nomena; therefore, it is more reasonably expressed by smooth 
functions within a Hilbert space. 

With regards to the dual optimal control formulation, deter
ministic filtering originates from set membership estimation, 
where the prior and the underlying uncertainties are expressed 
as assigned—from the modeller—sets. On the one hand, 
although intuitively the set-membership reasoning seems com
patible with the compact nature of the space of orientations, it 
does not provide any accuracy about the belief degree. On the 
other hand, dual optimal control provides the machinery to for
mulate the estimation problem as a well-defined optimization 
problem [35]. 

In this paper, we consider sensors that measure only vec
tor directions and we incorporate both the kinematic and the 
dynamic models for the attitude motion. The set of observa
tions, are made w.r.t. the inertial frame and obtained from sen
sors that measure w.r.t. the body frame. The contribution of 
this work is the critical assessment of the reasons governing the 
superiority of deterministic modelling over stochastic, for the 
problem of orientation and rate estimation from vector mea
surements. Although many works study various attitude filters’ 
performances in terms of attitude and rate error accuracy, none 
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of them is motivated by the fact that deterministic modelling 
naturally leads to a coordinate-free problem formulation. To 
this extent, the present paper is motivated by the dual optimal 
control approach, that accounts directly both for the under
lying state-space and the environmental phenomena affecting 
the existing system without ad-hoc simplification assumptions. 
To this direction, we also derive the modified predictive filter 
on 𝕋𝕊𝕆(3). Extensive simulations are used to compare the 
second-order-optimal minimum energy filter (MEF) [34] and  
predictive filter (PF) performance versus the EKF and UKF. 
Both the analysis and the simulations’ results conclusively indi
cate that coordinate-free deterministic filtering tackles the vices 
of the stochastic approach. 

The paper is structured as follows: In Section 2, the Bayesian 
formulation of attitude estimation is presented and analysed 
through the Kushner equation [36]. Thereupon, Section 3 
shows how the set-membership approach naturally leads to a 
control formulation of estimation, which is optimally imple
mented by the minimum energy filter. In the same section, 
we derive the modified predictive filter on 𝕋𝕊𝕆(3) by propos
ing a novel error function. In Section 4, we provide the algo
rithm summaries for each filter. To this direction, we utilise the 
Lie group symplectic integration. In Section 5 we present the 
results for two case studies regarding UAVs and two for satel
lite attitude filtering. In particular, we demonstrate how the fil
ters operate under the presence of process noise and significant 
deterministic model errors. The paper concludes with Section 6, 
where remarks are drawn based on the obtained results. 

Notation: The following notation is used throughout the 
paper: ℝ is the set of real numbers. With rod : q → R we 
declare the Rodrigues formula which maps the quaternion q (or 
the principal rotation vector) to the Directional Cosine Matrix 
(DCM) R ∈ 𝕊𝕆(3). The matrix expm(X) is the exponential of 
X ∈ ℝn×n. The map ( )×:ℝ3 → 𝔰𝔬(3) is an isomorphism from 
the arrays in ℝ3 to the Lie algebra of the 3 × 3 skew symmet
ric matrices 𝔰𝔬(3). The Euclidean norm is denoted by || ||. 
∇V is the gradient of the real-valued function V : ℝ → ℝ  and 
𝜕X ( f ) denotes the partial derivative of f w.r.t. X . The map ⟨X,Y ⟩ : ℝn × ℝn → ℝ  denotes the inner product ∀ X,Y ∈ ℝn . 
Lastly, the estimate of X is denoted by X̂ , while the optimal 
estimate of X by X̂ ∗ . 

2 BAYESIAN FORMULATION OF 
ATTITUDE ESTIMATION AND GAUSSIAN 
APPROXIMATE FILTERS 

Let (𝛀, F ,  ) be the filtered probability space and the filtration 
𝔽t with respect to which all processes will be adapted. After 
establishing a coordinate system map, we consider the following 
processes of interest: 

dX 1 = f 1(X 1, X 2) dt ,  
1 (1) 

X 2 = f 2(X 2, u) dt + G 2 dW , 

dY = H (X 1, t  )dt + dV , (2) 

X ⊤where the state process X = {X t = [X ⊤ ]⊤, t  ≥ 0} is1,t 2,t 
defined to be the solution of the stochastic differential equa
tion (1) and equation (2) defines the observation process Y = 
{Y t , t  ≥ 0}. Furthermore, W ∈ ℝn2 and V ∈ ℝ6 express envi
ronmental effects and the measurement noise respectively and 
are assumed to be independent Brownian motions. The coeffi
cients f = [ f ⊤ f ⊤]⊤ ∈ ℝn1+n2 and H ∈ ℝ6 are assumed to1 2 
be Lipschitz continuous mappings. Lastly, the control u ∈  ⊆ 

1 

ℝn2 is considered as known input torques and G 2 is the square 
root of G ∈ ℝn2×n2 . 

The coefficients f 1 and f 2 express the kinematics and 
the dynamics of the physical motion respectively, as indi
cated by the Euler’s equations of motion [17]. The pro
cess X comprises the orientation and angular rate respec
tively, where n1 depends on the chosen coordinate system 
map. 

𝒴We denote by ℱ the 𝜎-algebra generated by {Y 𝜏 , 0 ≤ 𝜏 ≤t 
∗ 

t }. The optimal estimate X̂ t is then given as the solution to the 
following optimization problem: 

∗ 𝒴
X̂ = arg min  (x, x̂)𝜌(x|ℱ )dx , (3)t t 

ˆ ∫x ℝn 

𝒴where 𝜌(x|ℱ ) is the conditional probability density of thet 
state, given the noisy measurements up to and including time t . 
Therefore, knowledge of the posterior density for each t , con
stitutes the complete solution of the problem (3). For C (x, ̂x) = ||x − x̂||2, the optimal mean square error (MSE) estimate is2
given by 

∗ 𝒴 𝒴
X̂ = 𝔼{X t |ℱ } ≡ ∫ x𝜌(x|ℱ )dx (4)t t t 

ℝn 

In order to derive a differential equation for the optimal MSE 
estimate, we can differentiate (4) w.r.t. time. By utilizing the gen
eralized Leibniz rule [37] we obtain: 

𝒴 
∗ 𝜕𝜌(x|ℱ )

dX̂ = ∫ x t dx (5)
𝜕tℝn 

𝒴Furthermore, the posterior density 𝜌 =  𝜌(x|ℱ ) evolvest 
according to the Kushner equation [36]: 

( { } )⊤ ( { })𝜕𝜌 𝒴 𝒴
= 𝜌 dY − 𝔼  H|ℱ dt H − 𝔼  H|ℱt t𝜕t 

n n (6)∑ ( ) ∑𝜕 1 𝜕 
− f 

k
𝜌 + (Gk,l 

𝜌). 
𝜕xk 2 𝜕xk𝜕x

lk=1 k,l =1 

Thus, the optimal nonlinear filter is given by: 

t { } t ( { } )
∗ 𝒴 ⊤ 𝒴

X̂ k,t = ∫ 
𝔼 f 

k
||ℱs ds + ∫ 

 s dY s − 𝔼  H|ℱs ds
0 0 

(7) 
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with k = 1, … , n1 + n2 and k,s satisfying the stochastic differ
ential equation: ( { } { } { })

𝒴 𝒴 𝒴dk,t = d 𝔼 Hkxk
||ℱs − 𝔼  Hk

||ℱs 𝔼 Xk
||ℱs 

(8) 

𝒴Nevertheless, actual evaluations of the terms 𝔼{ f 
k
|ℱs }, 

𝒴
𝔼{Hk|ℱs } are possible only in case where the system is linear 
and the noise distributions are Gaussian, resulting in the well 
known Kalman filter [38]. In the nonlinear case, both terms 
require knowledge of the entire posterior density, yielding an 
infinite dimensional filter [39]. The EKF and the UKF are pro
posed to tackle this issue. The EKF applies the Kalman filter 
framework to nonlinear systems, by first linearizing the sys
tem model using a first-order truncated Taylor series expan
sion around the current estimates [40]. This linearisation step 
affects the accuracy of the posterior predictions and often leads 
to divergence of the filter [40]. On the contrary, the UKF [41] 
makes explicit use of the scaled unscented transformation (UT) 
(stochastic linearization) [42] which is based on the idea that, 
it is preferable to approximate a probability distribution instead 
of an arbitrary nonlinear function. Since both filters utilize only 
the Gaussian parameters (first and second statistical moments), 
these methods belong to a broader class entitled as Gaussian 
approximate filters. 

Implementing both the EKF and UKF with the quater
nion representation yields bilinear kinematic equations. How
ever, there is no guarantee that the quaternion mean of the 
EKF and UKF will satisfy the unit-norm constraint due to the 
addition operator in the correction step of the filters. To over
come this issue, in this work we use the Euclidean normalization 
approach [43]. Although this normalization step leads to mean
ingful results, it is an external intervention on both the EKF 
and UKF algorithms and affects the unbiasedness of both the 
quaternion and rate estimates. This phenomenon is discussed 
and analysed further in the Appendix A.3. 

3 SET MEMBERSHIP STATE 
ESTIMATION AND DUAL OPTIMAL 
CONTROL FORMULATION 

Orientation belongs in a compact space, the special orthogo
nal group. An assumption that is valid in many applications is 
that the angular rate lies within a bounded space. The same can 
be inferred for both the model and measurement uncertainty. 
Thus, instead of modelling uncertainties utilizing stochastic rea
soning, we use the more elementary concept of a set [44]. This 
section shows how deterministic filtering naturally recasts as a 
control problem adopting set-theoretic reasoning. 

Consider the system described by the state-space model of 
the form: 

ẋ1 = f 1(x1, x2) 
(9) 

ẋ2 = f 2(x2, u) + G𝜹 , 

Without loss of generality, ti ∈ I , where I is a partition of time. 
Thus, the measurement equation is given by 

y = h(x1, ti ) + 𝝐  , (10) 

where the functions f 
k
, k = 1, 2, G and h are defined as in Sec

tion 2. Regarding (9), (10), the model and measurement uncer
tainties are considered as unknown and deterministic signals 
where 𝜹 ∈   and 𝝐 ∈   , with   ⊂ ℝn2 ,  ⊂ ℝ6. The system’s 
state x ∈  ×  , where S declares the space of orientation and
 ⊂ ℝn2 a properly chosen C -set [45]. Assuming complete lack 
of knowledge regarding the initial state estimate, we can write 
̂0 =  ×  . Set-membership state estimation repeats the fol
lowing two steps [46]: 

The guess ̂i regarding the state x at time ti is projected for
ward in time, resulting the set 

= {𝝈|𝝈 =  f (xi , ui ) + 𝜹 i , xi ∈ ̂i , 𝜹 i ∈ } (11)ℛ,ui 

of all reachable states at time ti+1 given ui , for all 𝜹 i ∈ . Sub
sequently, at ti+1, ℛ,ui 

is refined to 

 ,y
i 
= {x|y

i+1 = h(x1,i+1, ti+1) + 𝜺 i+1} , (12) 

which consists of all the states in  ×  compatible with the 
measurement y

i+1 for some 𝝐 i+1 ∈  . The prediction and cor
rection of the state are then given as: 

̂i+1|i = ℛ,ui
, (13) 

and 
ˆ ˆ= 

⋂ 
𝒞 ,y

i+1 
, (14)i+1|i+1 i+1|i 

respectively. Note that (13) and  (14) correspond to the predic
tion and correction step in the optimal Bayesian update [39] 
respectively. However, in this case we can go a step further 
by defining the input pair (x0, 𝜹 [0,i] ) and  write,  h(xi+1, ti+1) = 
h(𝜙(x0, u[0,i], 𝜹 [0,i] ), ti+1), where 𝜙 is the solution of (9) and  
𝜹 [0,i], u[0,i] declare the model error and input values respectively 
within [t0, ti ]. Then, the second step of the method is equiva
lently modified by defining the set 

𝒟 ,y
i+1 

= {(x0,i , 𝜹 [0,i] )|h(𝜙(x0,i , u[0,i], 𝜹 [0,i] ), ti+1) + 𝝐 i+1 = y }
i+1

(15) 

of all input pairs which produce observations compatible with 
the measurements. In other words, the goal is to actually deter
mine the set of different decisions 𝜹 [0,i] and the initial state ̂0,i 
that produce—throughout the dynamics—the received mea
surements for 𝝐 i ∈  . Lastly, it is possible to ask for the pair 
(̂0,i , 𝜹 [0,i] ) such that  

= {(̂0,i , 𝜹 [0,i] )| h(𝜙(x0,k, u[0,k], 𝜹 [0,k] ), tk+1)ℳ ,y
i+1 

⋀i 

k=1 

+ 𝝐k+1 =y
k+1, 𝝐k+1 ∈  , 𝜹 [0,k] ∈ k} (16) 
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and expect ̂0,i ↓ ̂∗, i.e. ̂0,i to be a decreasing sequence with 0 

limit the optimal estimate ̂∗. Nonetheless, the set-theoretic 0 
algorithm in its general form accounts for some difficulties: The 
performance of the above method depends on the initial guess 
̂0, as well as on our knowledge regarding the sets  and  . 
Subsequently, representing the sets 0, ,  , ℛ,ui 

and 𝒞 ,y
i+1 

(𝒟 ,y
i+1 

) in practical applications -at least approximately- by a 
finite set of parameters, is not a trivial task [47]. Finally, the 
method does not provide any accuracy about the belief degree 
regarding the state estimates. 

3.1 Minimum energy filtering 

The set-theoretic approach determines possible sequences of 
decisions. The minimum energy filter considers the sequence 
with the minimum norm which creates observations compati
ble with the obtained measurements, and constitutes one of the 
first implementations of this approach. It was first introduced 
by Mortensen [30], and consists of a method for deriving non
linear estimators, based on the value function of the optimal 
estimation problem. 

Consider the system described by (9). The signals 𝜹 (⋅), 
𝝐 (⋅) and the initial condition x0 are now modelled as arbi
trary disturbances within a Hilbert space. Thus, consider the 
cost 

1 
t 

J (𝜹 [t0,t ], 𝝐 [t0 ,t ], x0; t ) = S0(x0) + Φ(𝜹 ) + Q(𝝐 ) d𝜏 , (17)
2 ∫

t0 

where 𝜹 [t0 ,t ] and 𝝐 [t0,t ] refer to the model and measurement 
error values within the interval [t0, t  ]. Furthermore, Φ : ℝn2 → 
ℝ+ and Q : ℝ6 → ℝ+ are two quadratic forms that mea
sure the instantaneous energy of the error signals. In addition, 
S0 : ℝn1+n2 → ℝ+ is the initial cost encapsulating the a-priori 
knowledge regarding the state at time t0 and is a function with a 
global minimum [34]. Since 𝝐 is deterministic, (17) can be writ
ten as 

1 
t 

J (𝜹 [t0 ,t ], x0; t )=S0(x0) + Φ(𝜹 ) + Q(y − h(x1, 𝜏)) d𝜏 .
2 ∫

t0 
(18) 

Note that in order for the filter to track the actual measure
ments, the uncertainties 𝜹 (⋅) and  S0(x0) should be minimal; 
within the estimation context, minimising ∫ 

t 
Φ(𝜹 )d 𝜏 is essen

t0 
tial rather than an additional requirement as it is posed in clas
sic optimal control theory. The minimisation of the uncertainty 
regarding the actual system is equivalent to the information 
gain. It is impossible to track the actual system or equivalently 
estimate the system’s state without minimising the uncertainty 
for the actual system. Therefore, the goal is to minimize the 
model uncertainty, while tracking the given measurements. This 

∗∗will yield an optimal minimum energy pair (x0 , 𝜹 [t0 ,t ] ), with the 

∗ ∗∗end point of the optimal trajectory x̂[t0,t ] = 𝜙(x0 , 𝜹 [t0,t ], u[t0,t ] ) 
∗ 

being the minimum energy state estimate x̂[t0 ,t ] (t ) at time t . 
Thus, the following optimization problem 

min J (𝜹 [t0,t ], x0; t )
𝜹 [t0 ,t ] ,x0 

(19)s.t. ẋ1 = f 1(x1, x2) 

ẋ2 = f 2(x2, u) + G𝜹 , 

has to be solved for each t as new observations arrive online, 
∗ since the optimal decisions 𝜹 [t0 ,t ] are affected from the incoming 

information at each time instant t . At this point, we follow [48] 
where (19) is tackled by first assuming fixed x0 and finding the 

∗ optimal 𝜹 [t0,t ] with the Hamiltonian formulation of optimal con
∗ trol providing the necessary conditions for optimality for 𝜹 [t0 ,t ] 

[49]. The value function is defined as 

∗ 
V (x[t0,t ]; t ) = min J (𝜹 [t0 ,t ], x0; t ) . (20)

𝜹 [t0 ,t ] 

In order to completely solve the optimization problem of 
(19), the minimum of the value function w.r.t. the initial condi
tion x0 for each t must be considered. The necessary condition 
for optimality yields: 

∇V (x[t0,t ]; t )xt0 
= 0 ∀t ,  (21) 

However, (21) is equivalent with 

∇V (x[t0 ,t ]; t )x ∗ = 0 ∀t ,  (22)
t 

∗since determining the optimal end point x -and given the optit
∗ mal control decisions 𝜹 [t0,t ]- fully specifies the optimal initial 

condition x0 for each t , by running time backwards. Essentially, 
this equivalence allows us to express the value function w.r.t. 

∗ 
the optimal estimate x̂ and, therefore, to derive the minimum t 
energy filter [30]. 

3.2 Predictive filter on 𝕋𝕊𝕆(3) 

The predictive filter on 𝕋𝕊𝕆(3) is a deterministic filter that pre
dicts the model error and drives the rate and attitude estimate 
towards the real state under the presence of significant model 
errors. The filter emerges from the continuous-time nonlinear 
controller of [50] along with the covariant constraint from [51]. 
A predictive quaternion attitude filter based on the nonlinear 
controller of [52] was derived in [53]. However, our derivation 
is based on a different cost function which leads to a faster tran
sient response. Furthermore, the output Jacobians are deter
mined intrinsically, directly on the 𝕋𝕊𝕆(3) as shown in the 
Appendix A.1. 
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Consider the state space model: 

Ṙ(t ) = R(t )𝛀×(t ) (	 )
�̇�(t ) = 𝕀−1 (𝕀𝛀(t ))×𝛀(t ) + T (t ) + G𝜹 (t ) 

(23)[ ] [ ]
y (t ) R(t )⊤𝜶1(t )

y(t ) = 1 = + D𝝐 (t ) ,
y2(t ) R(t )⊤𝜶2(t )

where R ∈ 𝕊𝕆(3), 𝛀 ∈ ℝ3, 𝜶 i : ℝ+ → ℝ3. The vector 𝝐 rep
resents the unknown measurement error with D being block 
diagonal, namely [ ]

d1I3×3 0 
D = . (24)

0 d2I3×3

×
Given that the term ŷ

i y forms an error axis between the 
i 

estimated output ŷ
i and the system’s output y

i
, it is reason

able to target for the model error that minimises the predicted 
mean error axis formed by the two measurements. Based on 
this observation, the predictive filter on 𝕋𝕊𝕆(3) results from 
the following minimization problem: 

‖	 ‖2 ‖∑	 ‖1 ×	 1‖	 ‖min ŷ (t + h) + ||𝜹 (t )||2‖ (t + h)y
i ‖ Σ , 𝜹 (t ) 2 ‖ i ‖ 2

i=1,2‖	 ‖Q 

̇ × 
s.t.	 R̂(t ) = R̂(t )�̂� (t ) 

(25) 

�̇̂�(t ) = 𝕀−1((𝕀�̂�(t ))×�̂�(t ) + T (t )) + G𝜹 (t ) [ ] [ ]
ŷ (t ) R̂T (t )𝜶1(t )

ŷ(t ) = 1 = , 
ŷ2(t ) R̂T (t )𝜶2(t )

where the matrices Q ∈ ℝ3×3 and Σ ∈ ℝ3×3 penalise the pre
diction error and the correction term respectively. The value of 
the uncertainty term 𝜹 at time t influences the state (R, 𝛀) at  
a posterior instant of time t + h and, subsequently, the same is 
true for the output since the state-output relation is expressed 
via a memoryless system. The constrained optimization prob
lem of (25) recasts into an unconstrained one by using the 
expansion [54, 55]: 

ŷ (t + h) ≈ ŷ (t ) + 𝜻  
i (ˆ 𝛀, h; t ) + Λ(h)𝕎k(R,ˆ �̂�)𝜹 (t ) ,R, ˆ	 (26)

k k

where 

(ˆ	 h2 2𝜻 
k

R, �̂�, h; t ) = h1 (̂y ) + (̂y ) , (27)f k f k2! 

and 

h2 
Λ(h) = 𝕀3×3 .	 (28)

2 

Term 𝜉 (̂y ), 𝜉 =  1, 2 denotes the 𝜉-th order Lie derivative of f i 
ŷ

i w.r.t. the system. After substituting (26) in the cost, the neces
sary condition for optimality yields the optimal correction term: 

∗ 1	 
Q−1 + Q−⊤𝜹 (t ) = −  

(⊤Q−⊤ + Σ⊤
)−1 

⋅ ⊤⋅ 
( )

𝜸 (t ) ,
2

where  is a function of ˆ 𝛀, and  h, given  by:  
(29) 

R, ˆ∑ 
×(R,ˆ �̂�, h) = y Λ(h)wk(ˆ 𝛀) ,R, ˆ (30)
k 

k=1,2 

𝜸 (t ) is given  by:  ∑ ∑ 
× ×𝜸 (t ) = y y y 𝜻 

k
R, ˆ (31)ˆ (ˆ 𝛀, h; t ) ,

k k + 
k 

i=1,2 k=1,2 

and wk is given by: 

wk(ˆ 𝛀) = (ˆ	 (32)R, ˆ R⊤𝜶k )×G . 

Lastly, by substituting the Lie derivative terms (Appendix A.1), 
Equation (27) results in 

𝜻 
k
(ˆ 𝛀, h; t )= R𝜶k )×𝕀−1 𝛀𝕀)× ˆ +( ̂ )2ˆ . 

h2 { ( ) × }
R, ˆ (ˆ ( ̂ 𝛀 +  T 𝛀 R⊤𝜶k2 

(33) 

The main advantage of this method is that the correction 
is performed only through the dynamics, while the kinematic 
equation remains isolated; consequently, it can be integrated 
geometrically. This was not the case in the Gaussian approxi
mate filters, where the addition operator in the correction step 
violates the space’s geometry. Furthermore, there is no need to 
initialise the filter with prior information. 

Until now, the problem has been treated as a tracking prob
lem of optimal control. However, the estimates should be sta
tistically consistent. As can be seen from (29), by decreasing 
the model error penalty matrix Σ, the estimates are based more 
on the measurements, so the output estimates get closer to the 
noisy observations. Assuming white measurement noise, a limit 
must be set w.r.t. how much the estimated outputs should match 
the noisy observations. 

This is accomplished by choosing the model error penalty 
matrix Σ such that it approximately achieves the balance 
expressed by {	 }

𝔼 (̂y(t ) − Y t ))(̂y(t ) − Y t )
⊤ ≈ 𝜎𝜖I6×6, (34) 

referred as the covariant constraint [51]. 
For our application, we estimate the output error covariance 

by 

N∑ 
M = 

1
(̂y − y )(̂y − y )⊤ , (35)

k k k kN 
k 
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where N is the total number of samples. To examine (34), 
we utilise the L2,2 matrix norm. Since the measurement noise 
covariance matrix is of the form D = 𝜎I6×6, (34) is satisfied 
when: 

( ) 1 ∑ 2 

𝜎∗ = arg min (Mk, j − Dk,k )2 , (36)
𝜎 

k, j 

which after some calculations, yields 

trace(M )
𝜎∗ = . (37)

6 

4 ALGORITHMS AND NUMERICAL 
IMPLEMENTATION 

An extensive simulation study is carried out to compare the per
formance of the second-order-optimal MEF and PF against the 
EKF and UKF. In this section, the model that is utilised in the 
simulations and the error functions used to assess the efficiency 
of the methods are presented. Also the algorithmic summaries 
are given for each of these four filters and some aspects relating 
to the numerical implementation are presented. 

The EKF and UKF use the quaternion representation, 
whereas the MEF and PF are set directly on the special orthogo
nal group. Although many works study the performance of var
ious attitude filters in terms of attitude and rate error accuracy, 
none of them does so by considering dynamics with significant 
model errors. Attitude and rate estimation from vector mea
surements should take into account environmental phenomena 
which affect the actual system. In [56], the fourth order Runge– 
Kutta method is employed for simulation. Nevertheless, these 
methods do not preserve the continuous-time motion’s essen
tial features like kinetic energy and momentum. The main con
tributions to address these gaps are: Algorithm summaries for 
each of the aforementioned attitude filters, as well as a compre
hensive simulation study that compares the selected stochastic 
attitude filters against the deterministic ones. The comparison 
considers measurement errors, initialization errors, and model 
errors that typically appear in attitude and angular rate filtering 
for UAVs and satellite missions. 

4.1 Model and error function 

For expressing the orientation of the rigid body, we use the 
quaternion representation q ∈ 𝕊3 and the matrix representation 
R ∈ 𝕊𝕆(3). Then, the rigid body kinematics are given as: 

1 
q̇(t ) = M (𝛀(t ))q(t ) , (38)

2 

and 

Ṙ(t ) = R(t )𝛀×(t ) , (39) 

where [ ]
1 0 −𝛀⊤ 

M (𝛀) = . (40)
2 𝛀 −𝛀×

Expressed in the body-fixed frame, we denote by 𝕀 ∈ ℝ3×3 the 
inertia tensor, by 𝛀 ∈ ℝ3 the angular rate of the rigid body 
and by T ∈ ℝ3 the applied torques. The angular rate 𝛀 evolves 
according to Euler’s equation [57]: ( )

�̇�(t ) = 𝕀−1 (𝕀𝛀(t ))×𝛀(t ) + T (t ) + G𝜹 (t ) (41) 

up to model uncertainty 𝜹 (t ) ∈ ℝ3, with  G ∈ ℝ3×3. Two time 
varying directions 𝜶1(t ) and  𝜶2(t ) are measured on board, as 
y1(t ) and  y2(t ) according to: [ ] [ ]

y1(t ) r (q(t ))⊤𝜶1(t )
y(t ) = = + D𝝐 (t ) , (42)

y2(t ) r (q(t ))⊤𝜶2(t )[ ] [ ]
y1(t ) R(t )⊤𝜶1(t )

y(t ) = = + D𝝐 (t ) , (43)
y2(t ) R(t )⊤𝜶2(t )

where r ∈ 𝕊𝕆(3) is the directional cosine matrix (D.C.M.) 
parameterised w.r.t the unit quaternion q(t ), and 𝝐 (t ) is the mea
surement noise. We assume that the two sensors operate inde
pendently, so the matrix D is chosen block diagonal: [ ]

d1I3×3 0 
D = (44)

0 d2I3×3

The attitude estimation error is given by the following func
tions: ( )

tr(I − r (q(t ))⊤r (̂q(t ))) 
eq (t ) = cos−1 1 − (45)

2 

and ( )
tr(I − R⊤(t )R̂(t ))) 

eR (t ) = cos−1 1 − (46)
2 

w.r.t. the quaternion and matrix representation, respectively. The 
angular rate estimation error is calculated as e𝛀 = �̂�(t ) − 𝛀(t ) 
where both 𝛀(t ) and  �̂�(t ) are expressed w.r.t. the inertial frame. 

4.2 Numerical implementation 

In this section, discrete-time implementations of the 
continuous-time filters are presented via algorithm summaries. 
Discretisation should be addressed carefully as the Lie group 
structure of the underlying state space; the motion’s energy and 
momentum have to be preserved under any numerical calcu
lation. Proper discretization of the continues-time differential 
equations requires Lie group variational (symplectic) integration 
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Algorithm  1  EKF for attitude and rate estimation	 Algorithm  2  UKF for attitude and rate estimation 

1: x̂0|0 = [q̂0; Ω̂0], P0|0 = P0
 

2:
 

3: for k=1,2,...
 

4:
 

5: Solve for 𝛀k+1 using a Newton solver 

6: Cexp(−h𝛀k+1 )(𝕀𝛀k+1 ) = Cexp(h𝛀k )(𝕀𝛀k ) + hUk 

7: 

8: Update ̂qk using Euler’s theorem: 

9: q̂k+1 = M (𝛀k )̂qk 

10: 
⊤

⊤11: x̂k+1|k = [̂q �̂�k+1]⊤ 
k+1, 

12: 

13: Pk+1|k = F (x̂k+1|k, uk )Pk|kF T (x̂k+1|k, uk ) + W 

14: 

15: y
i,k+1|k = r (qk+1 )𝜶 i,k, i  = 1, 2 

16: 

P
y

17: 
k+1|k = H (xk+1 )Pk|k+1H (xk+1 )⊤ + Q 

18: 

P
xy

19: 
k+1|k = Pk+1|kH (xk+1 )T 

20: 

= P
xy

21: Kk+1 (P
y 

)−1 
k+1|k k+1|k 

22: 

23: x̂k+1|k+1 = x̂k+1|k + Kk+1(y − ŷ
k+1|kk+1 ) 

24:
 

25: Pk+1|k+1 = Pk+1|k − Kk+1P
k

y 
+1|k
K ⊤ 

k+1 

26: 
−1

27: x̂k+1|k+1,[1:4] = x̂k+1|k+1,[1:4] || x̂k+1|k+1,[1:4] ||2 

28: 

29: end for 

[57]. The numerical integration of the kinematic equation is 
made by assuming a short-time step h. Since the attitude motion 
is instantaneously a rotation, the discrete orientation update is 
obtained using the exponential map as: 

1 
qk+1 = exp (hM (𝛀k ))qk, (47)

2 

w.r.t. the quaternion representation, and as ( )×
Rk+1 = Rk exp h𝛀k (48) 

in terms of R ∈ 𝕊𝕆(3). The angular velocity update emerges by 
employing a Newton solver for ( )( )

Cexp −h𝛀k+1 𝕀𝛀k+1 = Cexp(h𝛀k )(𝕀𝛀k ) + hUk , (49) 

where U is the control vector and 

1 1 ( )2 
Cexp(X ) = 𝕀3×3 − X + X × . (50)

2 12 

1: x̂0|0 = [̂q0; �̂�0], P0|0 = P0
 

2:
 

3: for k=1,2,...
 

4:
 

5: Vk = Pk + R
 

6:
 

7: Calculate sigma points Sk based on (xk,C  (Vk ))
 

8:
 

9: Time update: 

10: 

11: Sk+1∣k = f (Sk, uk ) 

12: ∑2L (m)
13: ˆ =xk+1|k i=0 wi Si,k+1∣k 

14: ∑2L (c )
15: Pxk+1|k 

= 
i=0w

i (Si,k+1∣k − x̂k+1|k )(Si,k+1∣k − x̂k+1|k )
⊤ 

16: 

17: Calculate output prediction sigma points: 

18: 

19: Y 
p 

= H (Sx 
i,k+1∣k i,k+1∣k, t  ) 

20: 

21:	 Average ∑2L (m) p
22: ˆ = Yy

k+1|k i=0 wi i,k∣k−1 

23: 

24:	 Measurement update 
2L∑ (c ) p p

Pe = w (Y − ŷ )(Y − ŷ )⊤ + R
i i,k+1∣k k+1|k i,k∣k−1 k+1|k 

i=0 

2L∑ (c ) p

Pxy  i (Si,k+1∣k − ˆ 
= w xk+1|k )(Y 

i,k+1∣k − ŷ
k+1|k )

⊤ 

25: i=0 

P−1Kk = Pxy 	  e 

x̂k = x̂k+1|k + Kk (yk − ŷ
k+1|k ) 

K ⊤− KkPePxk+1|k+1 
= Pxk+1|k k 

26: 
−1

27: x̂k+1|k+1,[1:4] = x̂k+1|k+1,[1:4] || x̂k+1|k+1,[1:4] ||2 

28: 

29: end for 

In this work, the physical motion, the prediction step of the 
EKF, and state propagation of the sigma points in the UKF are 
made using the Lie group symplectic integration [58–60]. 

An important flaw related with the EKF’s and UKF’s imple
mentation is the singularity of the state estimation error covari
ance matrix, when the orientation is expressed by the unit 
quaternions. The unit norm constraint results in the singular
ity of the latter covariance matrix [21]. Three solutions to this 
problem exist [21]. In this work, regarding the UKF’s implemen
tation, we utilise the approach that deletes one of the quater
nion components in order to obtain a truncated state error 
covariance expression. Per contra, because the EKF consists of 
second order terms only, it does not compute an ill-conditioned 
covariance matrix. This claim is mathematically justified in [61]. 
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Algorithm  3  MEF for attitude and rate estimation Algorithm  4  PF for attitude and rate estimation 

ˆ ˆ ˆ1: K0 = I6×6, R0 = I3, 𝛀 =  [0 0 0]⊤ 1: x̂0 = (R̂0, 𝛀0 ) 

2: 2:
 

3: for k=1,2,... 3: for k=1,2,...
 

4: 4:
 ∑ 
5: rR = −  

i=1,2 ŷ 
× 
i y

i 5: Update R̂k 

6: 6: 
× 

7: R̂(k + 1) = R̂(k)expm(h(Ω̂k + K11(k)rR )) 7: R̂k+1 = R̂kexpm(h�̂�k )
 

8: 8:
 

9: Solve for �̂�k+1 using a Newton solver: 9: Calculate 𝜻 
i (R̂k, �̂�k, h; t ) 

10: 10: 

11: Cexp(−h�̂�k+1 )(𝕀�̂�k+1 ) = Cexp(h�̂�k+1 )(𝕀�̂�k ) + hK21(k)rR 11: Calculate wi (R̂k, �̂�k, h) 

12: 12: 

13: 13: R, ˆCalculate B(ˆ 𝛀, h) and  𝜸k 

14: A = 
⎡ ⎢⎢⎣ 

× 
−�̂� I3 

0 𝕀−1[(𝕀�̂�)× − �̂�
× 
𝕀] 

⎤ ⎥⎥⎦ 

14: 

15: Calculate 𝛿
k 
∗ 

16:15: 

16: 17: solve for �̂�k+1 using a Newton solver: [∑2 
i=1

] ∗ 18: Cexp(−h𝛀k+1 )(𝕀𝛀k+1 ) = Cexp(h𝛀k )(𝕀𝛀k ) + h(uk + 𝕀𝜹  k ) 

19: 

× ×× ×−(qi ∕d
i 
2 )(̂y + y y

i y
i i î )∕2 0 

0 03×3

17: E = 

18: 

19: BR−1B⊤ =

20: end for 

21:
[

03×3 0 

0 B2R−1B⊤ 
2

]
trace(M )

22: if < 𝜎𝜖6 
20: [

1∕2(K11rR )× 0 

0 03×3

] 23: 

21: W (K, rR ) = 24: Σ ↓  

25: 
22: trace(M )

26: else if > 𝜎𝜖 

(
6 

K (k + 1) = −𝛼K (k) + AK (k) + K (k)A⊤ 27: 
23: 

28: Σ ↑
24: −K (k)EK (k) + BR−1B⊤ 

K (k), rR

)⊤ 29:( )
−W K (k), rR K (k) − K (k)W

30: else 
25: 

31: 
26: end for 

where C (Vk ) refers to the square root of Vk resulting from 
the Cholesky factorization. The second-order-optimal mini
mum energy filter on 𝕋𝕊𝕆(3) is implemented based on the 
(0)−connection function [34]. 
where K11(k) = K[1:3,1:3](k) and  K21(k) = K[4:6,1:3](k) 

SIMULATION RESULTS 

In this section, we describe a series of simulations for two dis
tinct cases. We demonstrate attitude and rate estimation from 
vector measurements for UAVs and LEO satellites. For both 
case studies, the measurement noise and model uncertainty are 
initially modelled as white Gaussian noises. Subsequently, to 
stress the significance of the dual optimal control formulation, 
we replace the model error with an unknown deterministic dis
turbance that exerts on the existing system. 

32: keep Σ 

33: 

34: end if 

5.1 Simulation cases 

5.1.1 Case 1: Attitude and rate estimation for 
UAVs 

In this case, the measurement noise is Gaussian zero mean 
random process and it is set relatively large aiming to express 
poor sensor quality. In particular, matrix D is chosen so that 
the signals di 𝜖i (t ), i  = 1, 2 have standard deviations of 20◦ 

degrees. The initial orientation and rate deviation are kept at 
normal levels and are initialised with the unit quaternion q0 = 
(70◦ , [1 1 1]⊤ ) and the angular rate 𝛀0 = [0.3 0.2 0.1]⊤ rad/s. 
The initial orientation matrix is obtained by using the Rodrigues 

5 
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TABLE 1 UAV parameters 

Filter	 Parameters 

Time Step	 0.001(s ) 

Simulation Time	 100(s ) 

Initial orientation	 q0 = [0.8253, 0.3260, 0.3260, 0.3260]⊤ 

R0 = rod(1.2, [1, 1, 1]) 

Initial rate	 𝛀0 = [0.2, 0.4, 0.5]⊤ 

Inertia tensor	 diag(6, 7, 9) 

Reference directions	 𝜶1(t ) = [1, 0, 0], 𝜶2(t ) = [0, 1, 0] 
2𝜋 2𝜋 2𝜋

Input torque	 [sin( t ) − sin( t ) cos(  t )]⊤ 
3 1 5 

Model error (AWGN)	  (0, 0.1) 
2𝜋 2𝜋 2𝜋

Model error	 0.1 ∗ [sin( t ) − sin( t ) cos(  t )]⊤ 
5 5 5 

Measurement error	  ∼ (0, 20) 

TABLE 2 Filters’ initialisation for UAV’s attitude and rate estimation 

Filter	 Parameters 

EKF P0 = I7×7 

UKF P0 = I7×7 

MEF K0 = I6×6 

PF Q = 10−3 , Σ =  5 ⋅ 10−3 

formula R0 = rod(q0) [62]. The control torques are given by 
2𝜋 2𝜋 2𝜋

T (t ) = [sin( t ) − sin( t ) cos( t )]⊤ . Lastly, we assume 
3 1 5 

that the two reference vectors 𝜶 i (t ), i  = 1, 2 are orthogonal 
for every t . Table 1 and 2 summarise the system’s and filter’s 
parametrization, respectively. 

5.1.2 Case 2: Attitude and rate estimation for 
satellite mission 

In this case, we consider smaller measurement noise levels. The 
input torques are also assumed of lower frequency and the 
inertia tensor is increased resulting a slow satellite’s motion. The 
initial orientation deviates significantly from the identity since 
the spacecraft can be oriented arbitrarily around its centre of 
mass. The initial angular rate is set smaller compared to the 
previous experimental study declaring the much slower motion 
of the satellite. The parameters of the system and the initiali
sation parameters of the filters are summarised in Table 3 and 
Table 4, respectively. 

5.2 Results 

5.2.1 Case 1: Attitude and rate estimation for a 
UAV 

In Figure 1(a)–(c), the three components (X,Y, Z ) of the  angu
lar rate estimation error are shown for each case, respectively. In 

TABLE 3 Satellite parameters 

Filter	 Parameters 

Time Step 

Simulation Time 

Initial orientation 

Initial rate 

Inertia tensor 

Reference directions 

Input torque 

Model error (AWGN) 

Model error 

Measurement error 

0.001(s )
 

100(s )
 

q0 = [0.4085, 0.5270, 0.5270, 0.5270]⊤
 

R0 = rod(2.3, [1, 1, 1])
 

𝛀0 = [0.1, 0.3, 0.2]⊤
 

diag(102, 105, 103)
 

𝜶1(t ) = [1, 0, 0], 𝜶2(t ) = [0, 1, 0]
 
2𝜋 2𝜋 2𝜋

[sin( t ) − sin( t ) cos(  t )]⊤ 
25 13 37

 (0, 0.1) 
2𝜋 2𝜋 2𝜋

0.1 ∗ [sin( t ) − sin( t ) cos(  t )]⊤ 
13 12 17

 ∼ (0, 20) 

TABLE 4 Filters’ initialisation for satellite attitude and rate estimation 

Filter Parameters 

EKF P0 = I7×7 

UKF P0 = I7×7 

MEF K0 = I6×6 

PF Q = 10−3 , Σ =  5 ⋅ 10−3 

FIGURE  1  Angular velocity estimation error (process noise-case 1). 
X–Y–Z component (from top to bottom) 
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FIGURE  2  Attitude estimation error eq,R (t ) (process noise-case 1) 

the case of the MEF (depicted in yellow), the estimation errors 
converge after a very brief transient response providing with 
the smallest steady state error value of all filters. In the case of 
the PF (depicted in grey), Σ =  0.3 ⋅ 10−3 was selected, which 
satisfies the covariance constraint imposed by (34)–(37), with 
trace(M ) = 0.63. Note that the covariance constraint induces a 
trade-off regarding the PF’s transient response, due to the fact 
that increased measurement noise levels require larger value for 
Σ; this results in slower transient response. As in the case of the 
MEF, the PF has also a short transient response but presents an 
oscillatory behaviour in the steady state. This is attributed to the 
non-adaptive nature of the filter, and to the fact that measure

∗ ment error in the optimal correction term 𝜹 (t ) is scaled by an 
almost constant matrix, as can be seen from (29). 

Regarding the stochastic filters, the EKF (depicted in red) 
seems to outperform the UKF (depicted in blue) as the former 
has a fast convergence, while the latter presents an oscillatory 
behaviour. This is because the rate estimates depend on the ori
entation estimates, which are re-projected many times within the 
algorithm. Another reason for the UKF’s noisy asymptotic per
formance is the ad-hoc fine-tuning in our experiments. Never
theless, such an approach is necessary to balance efficiency and 
extreme computational burden. 

For the orientation error presented in Figure 2, the MEF 
again shows its superiority by having the fastest transient 
response and smallest asymptotic error, while the predictive fil
ter has a small angle bias due to the remaining angular veloc
ity error. This is because the PF’s orientation correction is 
made exclusively through the axis of rotation, and the kine
matics remain isolated for geometric integration. However, the 
PF achieves the second-lowest estimation error with the low
est computational cost. The downside of the PF is that it needs 
precise tuning and many iterations in order for the estimates to 
be statistically consistent. Thus, on the one hand, the PF archi
tecture avoids an additional re-projection step and an expen
sive implementation; on the other hand, it leads to a constant 
deviation of around 0.056◦ due to the lack of additional kine
matic correction. Worth noticing, however, is that the kine
matics express Euler’s theorem and thus cannot be considered 
uncertain. The EKF converges smoothly towards zero, whereas 
the UKF appears to have an additional peak. This is because the 
rotation axis has not been estimated well up to that time step 
(Figure 1). At the same time, the EKF outperforms the UKF 

FIGURE  3  Angular velocity estimation error (model error-case 1). 
X–Y–Z component (from top to bottom) 

during the steady-state. The reason is that the latter employs 
a stochastic linearisation including mainly addition operations 
to produce the prediction and correction state, thus requiring 
intermediate normalisation steps. Another compelling observa
tion is that for the PF, higher scaled gain can result in faster 
convergence at the cost of increasing the asymptotic estima
tion error. 

Figure 3(a)–(c) depict the angular rate estimation in the case 
where a deterministic model error acts on the system dynamics. 
Both deterministic filters perform very well since they deter
mine the necessary model error that drives the actual system 
and produces the obtained observations. In particular, by reduc
ing the measurement noise, both the MEF’s and the PF’s rate 
estimation error converge fast to zero, and the same holds for 
the attitude estimation error (Figure 4). For the PF however, the 
oscillatory behaviour that has been observed previously, appears 
only within the transient state in this case. 

On the other hand, the stochastic filters’ rate is affected sig
nificantly as the model error frequencies are transferred in the 
angular velocity error. In terms of the orientation error (Fig
ure 4), the deterministic model uncertainty influences only the 
EKF’s response, while the UKF’s remains unaffected, due to the 
stochastic linearisation process. The deterministic model error 
is cancelled out in the predicted state covariance step of the 
algorithm (proof in Appendix A.1). In particular, it is shown that 
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FIGURE  4  Attitude estimation error eq,R (t ) (model error-case 1)  

there are sigma-point distributions that block the model error 
influence in the orientation estimate; hence, the model error 
appears only in the angular velocity’s correction step. Thus, the 
UT -for particular sigma point distributions- potentially recasts 
the angle estimates uncontrollable from the model error. How
ever, this does not mean that the UKF estimates the orienta
tion correctly since the estimated rotation axis deviates signifi
cantly from its nominal trajectory; the filter remains blind w.r.t. 
model errors and trusts more its angle estimates. Additionally, 
the fact that the corrected angular velocity is a linear combi
nation of the model error and the scaled output error, pre
serves the frequencies of all three components which appear 
unaltered in the angular velocity estimation error (Figure 3). 
The exact opposite is true in the EKF; both the rate and angle 
estimates are affected by the model uncertainty, as the Jaco
bian matrix (prediction update) is a function of the predicted 
rate estimate, and its components appear to all its entries. By 
utilising the matrix inversion lemma for the output covariance 
matrix, it can be shown explicitly that the model error vector 
appears both in the upper and in the lower part of the gain 
matrix. 

5.2.2 Case 2: Attitude and rate estimation for a 
satellite 

Figure 5–8(a)–(c) show the performance of all the filters in the 
satellite study. Note that the input torques’ low frequency and 
the increased moment of inertia result in a much slower attitude 
motion. Therefore, the filters converge faster towards zero both 
in attitude and rate. The MEF, once again, outperforms the rest 
of the filters by showcasing a similar behaviour as in the UAV 
case. Furthermore, the Gaussian approximate filters can be re-
tuned to converge faster. In addition, the decreased measure
ment noise, allows us to opt Σ = 0.3 ⋅ 10−4, for the PF and thus 
achieving a fastest transient and an improved asymptotic error. 

Regarding the model error case we observe once again that 
the deterministic filters outperform the stochastic ones, since 
both the axis of rotation and angle estimates present low tran
sient and asymptotic error. The EKF as well as the UKF trans
fer the model error unhurt in the rate error as is it is imposed by 
their architecture. Once again the UKF’s orientation estimates 

FIGURE  5  Angular velocity estimation error (process noise-case 2). 
X–Y–Z component (from top to bottom) 

FIGURE  6  Attitude estimation error eq,R (t ) (process noise-case 2) 

are not affected by the model uncertainty for the same struc
tural reasons mentioned previously. 

6 CONCLUSIONS 

This work performed a critical assessment of the reasons gov
erning the superiority of deterministic modelling over stochas
tic, for the problem of orientation and rate estimation from vec
tor measurements. The distinction between the two approaches 
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FIGURE  7  Angular velocity estimation error (model error-case 2). 
X–Y–Z component (from top to bottom) 

FIGURE  8  Attitude estimation error eq,R (t ) (deterministic model error 
-case 2) 

was emphasised and investigated, with the state space’s geom
etry and characteristics being the main criterion. By the anal
ysis and the results of extensive simulations, the determinis
tic approach was shown to overcome important deficiencies 
imposed by the Bayesian architectures, and to handle large 
model errors. As an example, the second-order-optimal mini
mum energy filter (MEF) [34] was presented, and a modified 
predictive filter (PF) on the 𝕋𝕊𝕆(3) was derived. Both of these 
filters were compared versus the most commonly used repre
sentatives of the Gaussian Approximate Filters, the EKF and 
the UKF. Two different simulation cases were considered, for 

a UAV and for a satellite, respectively. The simulations revealed 
that the deterministic filters, and in particular the MEF, outper
form the Gaussian approximate solutions especially in the real
istic scenario, where a deterministic model error exerts on the 
actual plant. The reason is fundamental -from first principles-
and originates in the set-theoretic approach for estimation, 
when seen as a dual optimal control problem. The stochastic 
filters require at least one re-projection step and are affected by 
model errors. In particular, we address that quaternion normal
isation leads to unbiasedness of the orientation and rate esti
mates. In addition, for certain sigma point distributions, the 
UKF’s estimation angle is uncontrollable from model errors. 
While a more efficient implementation of the UKF for attitude 
estimation exists [63] where the stochastic linearisation is per
formed by utilising intrinsic gradient descent algorithms, it is 
not robust w.r.t. deterministic model errors and also requires 
one re-projection step. 

Another remark is that both stochastic filters require the 
initial prior information in contrast with the deterministic ones. 
In practice this information may not be available. For example, 
satellite missions are placed in environments that are not fully 
known beforehand, which makes it impossible to obtain data 
in advance. Deterministic filters do not require any prior ini
tialisation, providing exceptional flexibility for the problem at 
hand. From the deterministic filters presented in this work, the 
predictive filter has to be tuned to provide statistically consis
tent results. However, this tuning is based on the measurement 
noise statistics, which can be determined offline by experi
mentation. Having the disadvantage of an almost fixed gain, 
the predictive filter is still to be investigated as future research 
under adapted gain scaling. The EKF and UKF have roughly 
the same accuracy. Thus, due to the computational overhead 
of the UKF, the simplicity of the Jacobian matrix calculations, 
and the quasi-linear nature of the quaternion kinematics the 
EKF is considered preferable compared to the UKF for the 
task. Per contra, both deterministic filters -and especially the 
MEF- perform better as they achieve lower errors in both cases. 
Finally, a further analysis for examining the filters’ limitations 
is a potential future research objective. Such operating factors 
include eclipse conditions, event-triggered change of dynamics 
[64], co-linearity of measurements, extreme measurement noise, 
risk-averse events [65], etc. 
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APPENDIX  A  
A.1 Intrinsic lie derivatives for predictive filter 
The predictive filter on 𝕋𝕊𝕆(3) requires knowledge of the 
terms 𝜻 

k
(ˆ 𝛀, h; t ) and  wk(ˆ 𝛀, h). It is R, ˆ R, ˆ

( )× h2 2𝜻 
k

R, ˆ , h; t (̂ ) + y (A.1)ˆ 𝛀 = h1 y (̂ )f k f k2! 

By defining the inverse map ( )−× : 𝔰𝔬(3) → ℝ3, the system can 
be written as: 

Ṙ)−×(R̂⊤ˆ = �̂�
(A.2)( )

ˆ̇ 𝛀)× ˆ + G 𝜹 .𝛀 = 𝕀−1 (𝕀ˆ 𝛀 +  T 

Furthermore, by declaring [	 ]
�̂� 

f (�̂�) = ( ) , (A.3) 
𝕀−1 (𝕀ˆ 𝛀 +  T𝛀)× ˆ + G 𝜹

with �̂� ∈ ℝ3, the first term of (A.1) reads: ( ) ( )1 (̂ ) = 𝜕 ˆ f = 𝜕 R̂⊤𝜶k ff y
k (ˆ

y
k (ˆR,�̂�) R,�̂�) [	 ]

ˆ
= 

[
𝜕ˆR̂⊤𝜶k 𝜕ˆ R̂⊤𝜶k

] 
⋅ ( 𝛀 )R 𝛀 

𝛀)× ˆ + G𝜹𝕀−1 (𝕀ˆ 𝛀 +  T 
(A.4) 

In order to calculate the first term in the brackett, we consider 
× 

a deviation 𝜹R from R̂ with 𝜹R = exp( �̂� ) and  �̂� a tangent 
vector attached on the identity. Then 

⊤
 
𝜕ˆR̂⊤𝜶 i = 𝜕R̂ (R̂⊤𝜶 i )(𝜹R) = 𝜕R̂ (R̂𝜹R) 𝜶 i
R 

(A.5)( ) ( )×
−�̂�	 × 

= 𝜕ˆ e
× 

R̂⊤𝜶 i |ˆ = R̂⊤𝜶 i = ŷ𝛀 𝛀=0 i 

The latter results using the Taylor expansion of the exponen
tial matrix, and from the fact that with X = x× ∈ 𝔰𝔬(3) ( ) ( )

𝜕X X ⊤𝜶 = 𝜕x (x× )⊤𝜶( )
= 𝜕x −x×𝜶

= 𝜕x (𝜶×x) (A.6) ( )
= 𝜕x 𝜶×x

= 𝜶× ∈ 𝔰𝔬(3) 

Finally, since 𝜕ˆ (R̂⊤𝜶k ) = 0 we obtain 𝛀(	 ) ( )× × ( )1 ˆ ˆ ˆŷ = R⊤𝜶k 𝛀 = −�̂� R⊤𝜶k + 0 (A.7) f	 k

Furthermore, the second-order Lie derivative of (A.1) reads ( ×( ))2 
𝜙 (ŷi ) = 1 −�̂� R̂⊤𝜶k[ ( ×( )) ( ×( ))]

= − 𝜕ˆ �̂� R̂⊤𝜶k 𝜕ˆ �̂� R̂⊤𝜶 i ⋅R	 𝛀[	 ]
�̂� ( )

𝕀−1 (𝕀ˆ 𝛀 +  T𝛀)× ˆ + G𝜹[	
×( )× ( )×]

= − �̂� R̂⊤𝜶 i − R̂⊤𝜶k
⋅ (A.8) [	 ]

�̂� ( )
𝕀−1 (𝕀ˆ 𝛀 +  T𝛀)× ˆ + G𝜹

( ×)2( )

= �̂� R̂⊤𝜶k +
 

( )×( ( ) )
R̂⊤𝜶k 𝕀−1 (𝕀ˆ 𝛀 +  T + G𝜹𝛀)× ˆ
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× 
where the term 𝜕R̂ (�̂� (R̂⊤𝜶k )) is computed using the product 
rule: 

𝜕ˆ

(
�̂�

×(
R̂⊤ak

)) 
= �̂�

×
𝜕ˆ

(
R̂⊤𝜶 i 

)|ˆR 𝛀 𝛀=0 ( ( ) )×
−�̂�= �̂� 𝜕ˆ e

× 

R̂⊤𝜶k |ˆ (A.9)
𝛀 𝛀=0 

×( )× 
= �̂� R̂⊤𝜶k

A.2 UKF with deterministic model error 
Let us declare with u the nominal input to the filter. Then, we 
can write ũ = u + 𝕀𝜹  that is, the input torques corrupted by the 
model error 𝜹 as they applied to the model. The filter utilises 
the equations 

d x = f (x, u) = f (x, ũ) − G̃ 𝕀𝜹 (A.10) 

where the first n1 rows of G̃ refer to the kinematics and there
fore are zero. The predicted sigma-points are then calculated 
according to 

𝜹x = f (xk−1, ũk−1) − G 𝕀𝜹k−1k∣k−1 
(A.11) 

= xk∣k−1 − G 𝕀𝜹k−1 

and the predicted state according to 

2L∑
𝜹 (m) 𝜹x̂ = w xk i i,k∣k−1
 

i=0
 

2L 2L∑ ( ) ∑(m) (m)
= wi f xi,k−1, ũk−1 − wi G 𝕀𝜹k−1 (A.12) 

i=0 i=0 

2L 2L∑ ( ) ∑(m) (m)
= wi f xi,k−1, ũk−1 − G 𝕀𝜹k−1 wi 

i=0 i=0 

By utilising the scaled UT 

2L∑ (m) 2L 
w

i = (A.13) 
i=0 

2(L + 𝜆) 

where 𝜆 =  𝛼2(L + k) − L [66]. From here we observe that for 
k = 0 and  𝛼 =  1 

2L∑ ( )𝛿 (m)
x̂k = w f xi,k−1, ũk−1 − G 𝕀𝜹k−1i 

i=0 (A.14) 

= x̂k − G 𝕀𝜹k−1 

Therefore, the predicted state covariance 

2L ( )( )⊤∑ 
P𝜹 (c ) 𝜹 𝜹 𝜹 𝜹 

= w x − x̂ x − x̂xk i i,k∣k−1 k i,k∣k−1 k

i=0
 

2L∑ ( )( )⊤ (A.15)(c )
= w x − x̂k x − x̂ki i,k∣k−1 i,k∣k−1 

i=0 

= Pxk 

The same applies to the cross covariance matrix where the 
model error term is cancelled out. Thus, the adaptive gain of the 
filter is not affected by the model error. The only step where 
the error applies is the correction step through the rate-part 

∗ 
of x̂k. 

A.3 Bias due to quaternion re-projection 
The last step for both the EKF and UKF is a re-projection of 
the corrected quaternion 

q̂k|k = q̂k|k−1 + Ku𝝐k|k−1 (A.16) 

where Ku and 𝜖k|k−1 = yk|k−1 − ŷk|k−1. The nor= K[1:4,1:6] 
malised corrected quaternion is given by 

q̂k|k q̂k|k−1 + Ku𝜖k|k−1∗ q̂ = = (A.17)k|k ||̂q
k|k|| ||̂qk|k−1 + Ku (𝜖k|k−1)||

We are interested to examine the function d : ℝ4 → ℝ  with 
d (X ) = ||X ||−1 in a neighbourhood of ̂qk|k ∈ 𝕊3 ⊂ ℝ4 in the 
direction of Ku𝜖k|k−1. 

We have 

d (̂qk|k−1 + Ku𝜖k|k−1) = 

d (̂qk|k−1) + ⟨∇d (X )||X =q̂k|k−1 
, Ku𝜖k|k−1⟩+ 

(A.18) 

⟨Ku𝜖k|k−1, ℍ(d )|||q̂k|k−1 

Ku𝜖k|k−1⟩ + ⋯  

where ℍ : ℝ4 → ℝ4×4 is the Hessian of d . Given  that  ̂qk|k−1 ∈ 
𝕊3, d (̂qk|k−1) = 1. 

Furthermore, ∇d (X ) = ∇||X ||−1 
= −∇||X || = ||X ||−1X ⊤ and 

||X ||2−X 2 
i⎧ , i  = j||X ||3 

[ℍ(d )]i, j = ⎨ (A.19) ⎪ Xi Xj 

⎪ 

− ||X ||3 
, i  ≠ j⎩ 
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Thus, by ignoring the second order terms, (A.17) can be writ
ten as 

∗ q̂ = 
k|k 

(̂qk|k−1 + Ku𝜖k|k−1)− (A.20) 

⊤(̂qk|k−1 + Ku𝜖k|k−1)(̂q
k|k−1Ku𝜖k|k−1) + ⋯  

The latter equation shows the effect of the normalisation step 
on the (unbiased) corrected estimate of the EKF and UKF algo
rithm. By re-projecting the state on the unit sphere, a bias is 
induced that is propagated forward in time in the next itera
tion of the algorithm. This justifies the bias that appears in the 
figures of the orientation error for both the EKF and UKF 
filters. 
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