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Abstract

Objective. A proof-of-concept study to assess the potential of a deep learning (DL) based
photoplethysmography PPG (‘DLPPG’) classification method to detect peripheral arterial disease
(PAD) using toe PPG signals. Approach. PPG spectrogram images derived from our previously
published multi-site PPG datasets (214 participants; 31.3% legs with PAD by ankle brachial pressure
index (ABPI)) were input into a pretrained 8-layer (five convolutional layers 4+ three fully connected
layers) AlexNet as tailored to the 2-class problem with transfer learning to fine tune the convolutional
neural network (CNN). k-fold random cross validation (CV) was performed (for k = 5and k = 10),
with each evaluated over k training/validation runs. Overall test sensitivity, specificity, accuracy, and
Cohen’s Kappa statistic with 95% confidence interval ranges were calculated and compared, as well as
sensitivities in detecting mild-moderate (0.5 < ABPI < 0.9) and major (ABPI < 0.5) levels of PAD.
Main results. CV with either k = 5 or 10 folds gave similar diagnostic performances. The overall test
sensitivity was 86.6%, specificity 90.2% and accuracy 88.9% (Kappa: 0.76 [0.70-0.82]) (at k= 5). The
sensitivity to mild-moderate disease was 83.0% (75.5%—-88.9%) and to major disease was 100.0%
(90.5%-100.0%). Significance. Substantial agreements have been demonstrated between the DL-based
PPG dlassification technique and the ABPI PAD diagnostic reference. This novel automatic approach,
requiring minimal pre-processing of the pulse waveforms before PPG trace classification, could offer
significant benefits for the diagnosis of PAD in a variety of clinical settings where low-cost, portable
and easy-to-use diagnostics are desirable.

1. Introduction

Peripheral arterial disease (PAD) of the lower limbs is a common form of widespread atherosclerosis and is
associated with an increased risk of coronary artery disease and stroke (Abdulhannan et al 2012). PAD
prevalence increases with age, especially in smokers and diabetics. Its diagnosis can be made on clinical grounds,
but other conditions such as musculoskeletal, spinal disease and venous disease may also produce similar
exercise induced symptoms. There are a range of tests to assess patients for possible PAD and this includes the
widely used reference standard of an ankle brachial pressure index (ABPI) <0.9. The operation of ABPI
measurement, however, typically takes 10-30 min even by specialist operators, may be inaccurate with vessel
calcification and can cause discomfort and pain in some patients (Scott et al 2019).

Ideally a vascular screening technology for PAD should be low-cost, quick, reliable, repeatable, non-
invasive, portable and simple to operate. One technique that has this potential is the low-cost optical pulse wave
technology: photoplethysmography (PPG). PPG signals are derived from the changes in the blood volume in the
microvascular bed of tissue, therefore can reflect on the properties of cardiovascular system in time and
frequency domains (Allen 2007). PPG signals can be measured at many different body sites (Chan et al 2019,
Perpetuini et al 2019) although the toe site has been popular for developing methods to detect vascular disease. It
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is accepted that the peripheral PPG pulse wave usually becomes damped, delayed and diminished with
increasing severity of PAD, which makes the PPG-based detection of PAD possible (Allen and Murray 1993). In
the recent works by our wider Newcastle research group, the PAD-related changes in PPG waveform
characteristics have been quantitatively investigated in subjects in different age groups and for PPG ‘AC’ as well
asits lower frequency ‘DC’ components (Allen et al 2005, 2008, Bentham et al 2018). The results indicate the
potential value of using just bilateral great toe PPG measurements for low-cost and simple-to-do PAD detection.
It has been suggested that the pulse wave from the great toe pad might be a better body site than ankle in
detecting PAD, especially in ‘challenging populations’ as those exhibiting arterial calcification (Herraiz-Adillo
etal 2020).

As a promising approach towards large-scale healthcare services, the analysis of PPG signals based on deep
learning (DL) has been recently applied to cardiovascular field for the detection of heart rate (Reiss et al 2019),
hypertension (Liang et al 2018), and atrial fibrillation (Cheng et al 2020). DL can accurately detect multiple PAD-
related cardiovascular risks (e.g. hypertension, diabetes, cerebral infarction) (Panwar et al 2020). It has been
suggested in two recent studies that DL-based PPG analysis could be useful in the detection of diseases of the
arteries (Lee et al 2020, Panwar et al 2020). A DL-based analysis of the second derivative of the finger PPG trace
showed a high accuracy in the prediction of the ABPI class for severity of arterial disease (accuracy 98.34%, for
six ABPI classes covering mild through to severe disease, arterial hardening, and normal) (Lee et al 2020),
although there could have been overtraining which compensated for known accuracy limitations with ABPI
reference for PAD. Since PAD symptoms can manifest themselves early in the legs, it is considered appropriate to
study the PPG measurements obtained more directly from the lower limbs. However, as far as we know there isa
clear lack of DL-based studies on the detection of PAD using PPG signals collected from the toes. The aim of this
proof-of-concept study was to assess the potential of a DL-based method for automatically detecting the
presence (or absence) of PAD from the toe PPG measurements as well as its sensitivity in detecting higher and
lower grades of disease.

2. Methods

2.1. Measurements

The physiological measurements are described in detail in Allen et al (2005, 2008). In summary, they were
performed in a warm temperature-controlled room (24 °C £ 1 °C), and at least 10 min were given for thermal
acclimatization and relaxation. Measurements were made by a single operator (JA) with subjects in the supine
position, firstly with the ABPI measurements for both legs as the ‘gold standard’ reference for the presence of
PAD (i.e. <0.9, using the highest of the right and left ankle systolic blood pressures), and secondly the bilateral
PPG great toe pulse measurements from a multi-site PPG pulse measurement concept prototype system. The
PPG measurement system simultaneously acquired bilateral toe pulses using electronically matched pairs of
right and left pulse amplifiers (bandwidth 0.15-20 Hz, single pole high pass filtering) with data captured to
computer for subsequent pulse wave analysis for atleast 2.5 min (Allen and Hedley 2019). Subject age, gender
and height were also recorded.

2.2.Subjects

The two cohorts studied using the same protocol were combined to evaluate the DL-based PAD classifier and
these sets are summarized in our 2005 pilot evaluation paper (Allen 2002, Allen et al 2005) and our 2008
prospective study paper (Allen et al 2008). In summary, they comprised a mixture of older subjects, with and
without significant lower limb occlusive PAD. Subjects were excluded if they had an obvious cardiac arrhythmia,
lower limb amputation, vasculitis, significant movement artefact (for example due to limb tremor), skin
problems (e.g. cuts or bruising at a measurement site or photosensitive skin) or Raynaud’s phenomenon. We did
not specifically exclude those with hypertension, diabetes, hypercholesterolaemia, chronic renal failure or
ischaemic heart disease as these are all relevant to the atherosclerotic phenotype. All subjects gave their written
informed consent. More recent further ethical approval was also granted for a further re-analysis of the
anonymized sets of PPG waveforms (Newcastle University Ethics Committee, reference 7840,/2020). The
combined 2 studies gave a total of 218 potential subjects although a small number of these subjects (3) had
elevated ABPIs (>1.4 in either leg) which were excluded owing to the risk of false negative results observed when
ABPI s used in calcified blood vessels. A further subject was excluded as they were found to show a consistent
cardiac arrhythmia on their pulse traces. In total therefore, PPG toe pulses from 214 subjects were available for
subsequent DL classification and study, comprising 134 subjects having normal arteries in both legs and 80
subjects having significant vascular disease in at least one leg (i.e. 37.4% of the total by subject; 31.3% of legs
having PAD) by ABPI classification.
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Example toe PPG spectrograms comparing subjects with and without significant lower limb PAD

Subject without PAD Subject with PAD - example 1 Subject with PAD - example 2

Frequency 0.03125 to 8 Hz

Time 0 to 2.5 minutes

Figure 1. Example spectrograms comparing time-frequency characteristics over a period of 2.5 min for the raw unfiltered PPG signals
from the great toe. Clear differences can be seen between these PAD and non-PAD examples, for example in pulse harmonics,
variability over time as well as the ‘AC’ to ‘DC’ lower frequency components.

2.3.PPG pulse analysis

2.3.1. Signal pre-processing

The raw PPG signals for right and left great toes over 2.5 min were pre-processed using detrending by removing
their mean levels, and then normalizing to unit variance. No pre-filtering or denoising stages were employed. A
continuous wavelet transform (CWT, ‘amor’ i.e. Gabor wavelet MATLAB, MathWorks Inc., version 2020a) was
applied and a spectrogram image produced for each great toe measurement, i.e. for both right and left legs
separately, and covering the 2.5 min period (log; o y-axis: 0.0312—8 Hz to capture the dynamics of the PPG signal
over time, figure 1). The intensity for the color bar of each CWT spectrogram was auto scaled, the image then
saved in *.png file format. This gave 428 files (by ABPI reference standard: 292/136 legs without/with PAD, in
which 94 legs with mild-moderate disease and 40 legs with major disease) for subsequent DL training and cross
validation (CV) testing.

2.3.2. DL convolutional neural network (CNN) and training

CNNis a class of DL networks that is designed to learn features from the input data using its multiple
Convolutional Layers. The DL analysis was performed using MATLAB DL Toolbox software (The Mathworks
Inc., Natick, Massachusetts, United States) on a standard computing platform. AlexNet (http://alexlenail.me/
NN-SVG/AlexNet.html) was used which is a CNN that has been pre-trained on a database named ImageNet
consisting of more than 1.2 million images belonging to one thousand classes (Krizhevsky et al 2012). AlexNet is
well known (Krizhevsky et al 2012, Lu et al 2019, Wang et al 2019). Briefly, its structure has eight layers: five
convolutional layers (CL1 to 5) and three fully connected layers (FCL6-8), with rectified linear unit (ReLU) as the
activation function. The final FCL8 layer was tailored to the 2-class problem (figure 2) (Wang et al 2019).
Transfer learning was applied for fine tuning of specific layers of the CNN. Treating legs separately, each great
toe PPG spectrogram image was rescaled to the AlexNet CNN input layer structure size of 227 x 227 pixels,
with 3-color channels of red, green and blue. The two CNN outputs gave the classification outcome of ‘no PAD’
and ‘PAD’.

With the absence of fixed rules for DL parameter selection in the literature then initial experiments were
carried out within the Matlab DL Toolbox development environment to set the key parameters for AlexNet-
based PAD/PPG application. The learning rate and the momentum term parameters were initially and briefly
explored in the ranges 0f 0.00001-0.01 and 0.4-0.9, respectively, with learning considered to be demonstrated
when there was a trajectory towards an acceptable classification performance (e.g. 75%—100%) at each fold
tested (using 30 epochs with mini-batch size 20), i.e. without the algorithm getting stuck at the low starting
performance level. The choice of number of epochs depends on training and validation error. Keeping the
number of epochs small can lead to underfitting while making this number high can lead to overfitting of the
model. In our study, the validation error trajectory approached a minimum at 30 epochs and hence this number
was selected. Subsequently, alearning rate of 0.001 and momentum term of 0.5 were selected for the k-fold CV
testing as these showed learning across all folds and carried out with reasonable speed. To aid the learning and
generalization then pixel shift and image augmentation were also incorporated into the training stage.
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5 Convolutional Layers (CL), 3 Fully Connected Layers (FCL)
Input FCL6 FCL7
c3 cLa CcLs ] [ ] Fcs
*
a8 —~ ﬂ‘
27x27x256 13x13x384 13x13x384 13x13x256 2
55x55x96 L J L
227x227x3 4096 4096
*
FCL8 Layer Original AlexNet Replaced by
23 FCL (1000), pre-trained weights & biases FCL (2 classes), random initialization
24 Softmax Layer Softmax Layer
25 Classification Layer Classification Layer
(= 1000 classes) (= 2 classes: ‘'no PAD’ and ‘PAD’)
Figure 2. Overview of structure of AlexNet and its tailoring to PPG PAD classification.

2.3.3. Consistency with k-fold CV

As there is no standardization in the choice of k for k-fold random CV we experimented with two different values
(k = 5and k = 10), with k training/validation runs, as applied in existing studies on DL-based PPG signal
analysis (He et al 2016, Dall’Olio et al 2020). For each training run the image sets were randomly splitinto a
training set and a validation set, with transfer learning from the PPG spectrogram images. At each training run
the confusion matrix was updated, and on the completion of all runs the overall test sensitivity, specificity and
accuracy (with 95% confidence interval ranges) were calculated. The process was repeated for k set to 10 enabling
asimple comparison of the classification performance obtained for a k-fold value of 5.

2.3.4. Statistical analysis and diagnostic performance assessments

Clinical measurements were summarized using median and inter-quartile range (IQR, 25th percentile to 75th
percentile), calculated using simple Microsoft Office Excel spreadsheet functions. Cross-tabulation of PAD
status by ABPIand DL classifier was performed from which associated diagnostic test accuracy (DTA) measures
of sensitivity, specificity, and diagnostic accuracy, were determined alongside associated 95% confidence
intervals overall, as well as per severity classification. DTA statistical analyses were performed using SciStat.com
online statistical software © 2020 MedCalc Software Ltd. The sensitivities in detecting overall disease

(ABPI < 0.9), mild-moderate disease (0.5 < ABPI < 0.9) and major disease (ABPI <0.5) were calculated for
the PPG spectrogram image sets. Cohen’s Kappa statistic and 95% CI ranges were also calculated for the
diagnostic performances (McHugh 2012) on SPSS (SPSS 21.0 for Windows, SPSS Inc., Chicago, IL), noting a
Kappa value between 0.41 and 0.6 represents moderate agreement; between 0.61 and 0.8 represents substantial
agreement; and 0.81 and 1.00 represents almost perfect agreement.

3. Results

Toe PPG pulse spectrogram images from a total of 214 subjects (137 males, 77 females) were classified using DL.
The median [IQR] age was 64 [52—72] years, systolic blood pressure 142 [128—160] mmHg, and height 1.69
[1.60-1.70] m.

The overall diagnostic performances with AlexNet DL classification are shown in tables 1 and 2, with all
comparisons having substantial agreement (by Cohen’s Kappa statistic, i.e. for agreement beyond chance) with
ABPI. The tables also summarize the values (and 95% CI ranges) of sensitivity, specificity and accuracy for k =5
(and 10) over the k repeat training/validation runs.

Fork = 5 the overall test sensitivity was 86.6 (95% CI: 80.6-91.3)%, specificity 90.2 (86.2-93.3)%, accuracy
88.9(85.7-91.6)%, and Kappa 0.76 [0.70-0.82]). The test sensitivity was clearly higher overall for the legs with
higher grade PAD, with 83.0 (75.5-88.9)% for mild-moderate disease versus 100.0 (90.5-100.0)% for major
disease, giving Cohen’s Kappa values 0f 0.72 (0.65-0.79) and 0.67 (0.56—0.78), respectively.

For k = 10 the results were similar to the k = 5 results, with overall test sensitivity 82.4 (95% CI:
74.8-88.5)%, specificity 89.0 (84.8-92.3)% and accuracy 86.9 (83.3-90.0)%, and Kappa 0.70 [0.63-0.77]). As
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Table 1. (a), (b) 5-fold random cross validation with Confusion Matrix from 5 training/validation runs and DTA
performance for DLPPG versus ABPI-determined disease (Overall, Mild-Moderate, Major) on a leg basis.
Cohen’s Kappa statistic for agreement between two raters is also given. The 95% Confidence Intervals are shown

in brackets.
@
DL-based PPG classification
Diagnosis by ABPI No PAD PAD
No PAD 266 29
Mild-Moderate 23 112
Major 0 37
®)
Sensitivity (%) Specificity (%) Accuracy (%) Cohen’s Kappa
Overall 86.6(80.6-91.3) 88.9(85.7-91.6) 0.76 (0.70-0.82)

Mild-Moderate
Major

83.0(75.5-88.9)

100.0 (90.5-100.0)

90.2 (86.2-93.3)

87.9 (84.5-90.8)
91.3 (87.7-94.1)

0.72 (0.65-0.79)
0.67 (0.56-0.78)

Table 2. (a), (b) 10-fold random cross validation with Confusion Matrix from 10 training/validation runs and
DTA performance for DLPPG versus ABPI-determined disease (Overall, Mild-Moderate, Major) on a leg basis.
Cohen’s Kappa statistic for agreement between two raters is also given. The 95% Confidence Intervals are

shown in brackets.

(@
DL-based PPG classification

Diagnosis by ABPI No PAD PAD
No PAD 258 32
Mild-Moderate 22 75
Major 1 33
(b)

Sensitivity (%) Specificity (%) Accuracy (%) Cohen’s Kappa
Overall 82.4(74.8-88.5) 86.9 (83.3-90.0) 0.70 (0.63-0.77)

Mild-Moderate
Major

77.3(67.7-85.2)
97.1(84.7-99.9)

89.0(84.8-92.3)

86.1(82.2-89.3)
89.8 (86.0-92.9)

0.64 (0.55-0.73)
0.61(0.50-0.73)

with k = 5, the test sensitivity was clearly higher overall for the legs with higher grade PAD, with 77.3
(67.7-85.2)% for mild-moderate disease versus 97.1 (84.7-99.9)% for major disease, giving Cohen’s Kappa
values 0f 0.64 (0.55-0.73) and 0.61 (0.50-0.73), respectively.

4. Discussion

An innovative DL-based PPG Classifier (DLPPG’) approach using pre-trained CNN AlexNet with fine tuning
by transfer learning to diagnose PAD from toe PPG measurements has been evaluated in this study, with
performance assessed in this proof-of-concept study to show substantial agreements overall with the ABPI
vascular reference for detecting PAD.

Currently, PAD diagnostics depends mainly on ABPI measurement as the first-line test. In the 2016
American Heart Association (AHA)/American College of Cardiology (ACC) Guideline on PAD, the
technological advancement for simplified diagnosis of PAD and critical limb ischemia is listed as a major
research direction (Gerhard-Herman et al 2017). The proposed DL-based analysis of the toe PPG signal provides
the possibility for quick assessment and follow-up over time, and low-cost management of PAD. The novel DL-
based approach assessed in this study has advantages over previously reported approaches (e.g. analysis
involving fiducial waveform characteristics) (Karimian et al 2017) in PPG pulse analysis, with some earlier
methods (Allen 2002, Allen et al 2005, 2008) being resource intensive in pre-processing as they required the
manual checking by an expert operator on a beat-by-beat basis to mark and exclude noisy pulses, and noting that
derived pulse timing features and normalized pulse shapes are dependent on digital filter types which can be
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difficult to replicate for devices working on-line (i.e. in real time). In contrast, this new approach based on DL
required minimal data pre-processing and had no denoising stage.

The manual extraction of physiological parameters from time-frequency spectra is cumbersome, highly
parametrized, and tailored to specific scenarios, whereas the DL-based PPG analysis is appropriate for the large-
scale application on bespoke measurement devices (Wilkes et al 2015, Reiss et al 2019) as well as centralized
cloud-based signal diagnostics. Ultimately, such pulse assessments could improve the management of patients
with PAD by giving accessible and timely feedback to the patient and their doctors to help them reduce their
associated risk factors for cardiovascular disease.

The AHA/ACC Guideline also highlighted the need for the improvement of clinical classification systems
for PAD that incorporate symptoms, anatomic factors, and patient-specific risk factors and can be used to
predict clinical outcome and optimize treatment approach (Gerhard-Herman et al2017). Our results showed
substantial accuracy, sensitivity, and Cohen’s Kappa values for legs with mild-moderate PAD as well as for major
PAD, although the detection sensitivity was lower for lower grade disease. These classification performances
appear similar to the results of our earlier studies based on specific characteristics of the PPG toe pulse, e.g. using
careful manual extraction of normalized shape, risetime and amplitude features (Allen et al 2005, 2008) for
overall accuracy and differences with PAD severity in the legs. Our new approach also includes information on
the dynamics of the PPG, i.e. the ‘DC’ lower frequency components, in health and disease and this could well
yield additional important information that aids the diagnosis and understanding of the disease process, for
example for diabetic patients with PAD where there is autonomic involvement and/or vascular calcification,
and this should be further explored as an exciting way forward in vascular assessment.

Other research groups have explored the use of DL-based PPG analysis in vascular assessments, including
Lee et al (2020) who used a convolutional long short term memory model (C-LSTM: with 5 convolutional layers,
5 pooling layers and one LSTM layer) to classify the second derivative of the finger PPG trace to predict the ABPI
classi.e. severity of arterial disease (data from MIMIC-III database, Johnson et al 2016). Their results are
impressive and in approximately 1000 subjects attained an accuracy of greater than 98% (for six ABPI classes
covering mild through to severe disease, arterial hardening, and normal). They did combine two DL models
(CNN and LSTM) which could have improved performance, compared to the results from our single DL model.
However, there may be an element of over-fitting which somehow compensates for the imperfect ABPI
reference for PAD. Such results do show what can be possible with DL. It will be very interesting future step for
us to look at both finger and toe PPG traces in our multi-site PPG measurements to see if classification
performance can be boosted significantly.

A well-known aspect of PPG measurements is that movement artefact, e.g. movement of the limb during
ambulation or even just whilst a patient is resting but talking, and changes in body posture can sometimes render
atrace unusable (Carek et al 2020, Huthart et al 2020)—so a next step could be to test the DL-based classifier
resilience to certain types of added noise and artefacts. We would be optimistic that the CNN algorithm, with a
max-pooling layer which is included in AlexNet, could enhance the algorithm robustness to noise, which has
been proven in parallel studies on the DL-based analysis of electrocardiogram (Muhammed and Aravinth 2019).
The development and application of CNN and other DL-based methods could be investigated so that reliable
evaluation of PAD can be made in poor quality signals (Waugh et al 2018).

4.1. Limitations and further work

Alimitation of our proof-of-concept study is that the distribution of non-PAD, mild-moderate PAD, and major
PAD cases was unbalanced. A future study should consider assessing unselected patients from primary care
rather than specialist vascular centers. Due to the limitations on data, we also did not include other (patho-)
physiological factors in the model, such as symptoms, history of heart disease, renal disease, and diabetes, etc. In
future studies, we will recruit a new cohort of cases and controls and include a comparison with other PAD
measures including the Edinburgh Claudication Questionnaire, manual leg pulse palpation, toe systolic
pressures, and/or duplex vascular ultrasound imaging (Kyle et al 2020). Diabetic patients should also be studied
further particularly the PPG ‘AC’ and ‘DC’ lower frequency components for with and without PAD cases
(Bentham et al 2018, Vriens et al 2018). Other CNN architectures such as LeNet, GoogLeNet, and ResNet can
also be tested to see if they can boost the efficiency and accuracy of the classifications, particularly in earlier
milder cases of disease. Other pathophysiological parameters (e.g. symptoms, anatomic factors, and patient-
specific risk factors) can be added to achieve more accurate classification of PAD cases. Finally, based on the
Health Economic Modeling appraisal of the proposed concept technology, miniaturized DL chips and cloud-
based computing can be applied to achieve a user-friendly, cost-effective, and real-time system to improve
healthcare services in their diagnosis, management, and treatment of PAD.
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5. Summary

We have demonstrated in this proof-of-concept study that, with only limited signal pre-conditioning, our DL-
based PPG method can be configured reliably to detect PAD (as diagnosed by ABPI) from simple toe PPG
measurements in a hospital vascular department setting. The sensitivity of the technique was higher for more
severe disease (i.e.an ABPI < 0.5). Further works are already in progress to help improve the classification
algorithm and its resilience to noise and measurement artefacts. Ultimately, the trajectory for the project area
will be to develop explainable Al techniques to help understand the complex changes in PPG characteristics seen
with atherosclerosis and in vascular ageing.
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