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Abstract
Objective.Aproof-of-concept study to assess the potential of a deep learning (DL) based
photoplethysmography PPG (‘DLPPG’) classificationmethod to detect peripheral arterial disease
(PAD)using toe PPG signals.Approach.PPG spectrogram images derived fromour previously
publishedmulti-site PPGdatasets (214 participants; 31.3% legs with PADby ankle brachial pressure
index (ABPI))were input into a pretrained 8-layer (five convolutional layers+three fully connected
layers)AlexNet as tailored to the 2-class problemwith transfer learning tofine tune the convolutional
neural network (CNN). k-fold random cross validation (CV)was performed (for k=5 and k=10),
with each evaluated over k training/validation runs.Overall test sensitivity, specificity, accuracy, and
Cohen’s Kappa statistic with 95%confidence interval ranges were calculated and compared, as well as
sensitivities in detectingmild-moderate (0.5�ABPI<0.9) andmajor (ABPI<0.5) levels of PAD.
Main results.CVwith either k=5 or 10 folds gave similar diagnostic performances. The overall test
sensitivity was 86.6%, specificity 90.2% and accuracy 88.9% (Kappa: 0.76 [0.70–0.82]) (at k= 5). The
sensitivity tomild-moderate diseasewas 83.0% (75.5%–88.9%) and tomajor diseasewas 100.0%
(90.5%–100.0%). Significance. Substantial agreements have been demonstrated between theDL-based
PPG classification technique and the ABPI PADdiagnostic reference. This novel automatic approach,
requiringminimal pre-processing of the pulse waveforms before PPG trace classification, could offer
significant benefits for the diagnosis of PAD in a variety of clinical settings where low-cost, portable
and easy-to-use diagnostics are desirable.

1. Introduction

Peripheral arterial disease (PAD) of the lower limbs is a common formofwidespread atherosclerosis and is
associatedwith an increased risk of coronary artery disease and stroke (Abdulhannan et al 2012). PAD
prevalence increases with age, especially in smokers and diabetics. Its diagnosis can bemade on clinical grounds,
but other conditions such asmusculoskeletal, spinal disease and venous diseasemay also produce similar
exercise induced symptoms. There are a range of tests to assess patients for possible PAD and this includes the
widely used reference standard of an ankle brachial pressure index (ABPI)<0.9. The operation of ABPI
measurement, however, typically takes 10–30 min even by specialist operators,may be inaccurate with vessel
calcification and can cause discomfort and pain in some patients (Scott et al 2019).

Ideally a vascular screening technology for PAD should be low-cost, quick, reliable, repeatable, non-
invasive, portable and simple to operate. One technique that has this potential is the low-cost optical pulse wave
technology: photoplethysmography (PPG). PPG signals are derived from the changes in the blood volume in the
microvascular bed of tissue, therefore can reflect on the properties of cardiovascular system in time and
frequency domains (Allen 2007). PPG signals can bemeasured atmany different body sites (Chan et al 2019,
Perpetuini et al 2019) although the toe site has been popular for developingmethods to detect vascular disease. It
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is accepted that the peripheral PPGpulse wave usually becomes damped, delayed and diminishedwith
increasing severity of PAD,whichmakes the PPG-based detection of PADpossible (Allen andMurray 1993). In
the recent works by ourwiderNewcastle research group, the PAD-related changes in PPGwaveform
characteristics have been quantitatively investigated in subjects in different age groups and for PPG ‘AC’ aswell
as its lower frequency ‘DC’ components (Allen et al 2005, 2008, Bentham et al 2018). The results indicate the
potential value of using just bilateral great toe PPGmeasurements for low-cost and simple-to-do PADdetection.
It has been suggested that the pulsewave from the great toe padmight be a better body site than ankle in
detecting PAD, especially in ‘challenging populations’ as those exhibiting arterial calcification (Herraiz-Adillo
et al 2020).

As a promising approach towards large-scale healthcare services, the analysis of PPG signals based on deep
learning (DL)has been recently applied to cardiovascular field for the detection of heart rate (Reiss et al 2019),
hypertension (Liang et al 2018), and atrialfibrillation (Cheng et al 2020). DL can accurately detectmultiple PAD-
related cardiovascular risks (e.g. hypertension, diabetes, cerebral infarction) (Panwar et al 2020). It has been
suggested in two recent studies thatDL-based PPG analysis could be useful in the detection of diseases of the
arteries (Lee et al 2020, Panwar et al 2020). ADL-based analysis of the second derivative of thefinger PPG trace
showed a high accuracy in the prediction of theABPI class for severity of arterial disease (accuracy 98.34%, for
six ABPI classes coveringmild through to severe disease, arterial hardening, and normal) (Lee et al 2020),
although there could have been overtraining which compensated for known accuracy limitationswithABPI
reference for PAD. Since PAD symptoms canmanifest themselves early in the legs, it is considered appropriate to
study the PPGmeasurements obtainedmore directly from the lower limbs. However, as far as we know there is a
clear lack ofDL-based studies on the detection of PADusing PPG signals collected from the toes. The aimof this
proof-of-concept studywas to assess the potential of aDL-basedmethod for automatically detecting the
presence (or absence) of PAD from the toe PPGmeasurements aswell as its sensitivity in detecting higher and
lower grades of disease.

2.Methods

2.1.Measurements
The physiologicalmeasurements are described in detail in Allen et al (2005, 2008). In summary, theywere
performed in awarm temperature-controlled room (24 °C±1 °C), and at least 10 minwere given for thermal
acclimatization and relaxation.Measurements weremade by a single operator (JA)with subjects in the supine
position, firstly with theABPImeasurements for both legs as the ‘gold standard’ reference for the presence of
PAD (i.e.<0.9, using the highest of the right and left ankle systolic blood pressures), and secondly the bilateral
PPG great toe pulsemeasurements from amulti-site PPGpulsemeasurement concept prototype system. The
PPGmeasurement system simultaneously acquired bilateral toe pulses using electronicallymatched pairs of
right and left pulse amplifiers (bandwidth 0.15–20Hz, single pole high passfiltering)with data captured to
computer for subsequent pulse wave analysis for at least 2.5 min (Allen andHedley 2019). Subject age, gender
and heightwere also recorded.

2.2. Subjects
The two cohorts studied using the same protocol were combined to evaluate theDL-based PAD classifier and
these sets are summarized in our 2005 pilot evaluation paper (Allen 2002, Allen et al 2005) and our 2008
prospective study paper (Allen et al 2008). In summary, they comprised amixture of older subjects, with and
without significant lower limb occlusive PAD. Subjects were excluded if they had an obvious cardiac arrhythmia,
lower limb amputation, vasculitis, significantmovement artefact (for example due to limb tremor), skin
problems (e.g. cuts or bruising at ameasurement site or photosensitive skin) or Raynaud’s phenomenon.We did
not specifically exclude thosewith hypertension, diabetes, hypercholesterolaemia, chronic renal failure or
ischaemic heart disease as these are all relevant to the atherosclerotic phenotype. All subjects gave their written
informed consent.More recent further ethical approval was also granted for a further re-analysis of the
anonymized sets of PPGwaveforms (Newcastle University Ethics Committee, reference 7840/2020). The
combined 2 studies gave a total of 218 potential subjects although a small number of these subjects (3) had
elevatedABPIs (>1.4 in either leg)whichwere excluded owing to the risk of false negative results observedwhen
ABPI is used in calcified blood vessels. A further subject was excluded as theywere found to show a consistent
cardiac arrhythmia on their pulse traces. In total therefore, PPG toe pulses from214 subjects were available for
subsequentDL classification and study, comprising 134 subjects having normal arteries in both legs and 80
subjects having significant vascular disease in at least one leg (i.e. 37.4%of the total by subject; 31.3%of legs
having PAD) byABPI classification.
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2.3. PPGpulse analysis
2.3.1. Signal pre-processing
The rawPPG signals for right and left great toes over 2.5 minwere pre-processed using detrending by removing
theirmean levels, and then normalizing to unit variance. No pre-filtering or denoising stages were employed. A
continuouswavelet transform (CWT, ‘amor’ i.e. GaborwaveletMATLAB,MathWorks Inc., version 2020a)was
applied and a spectrogram image produced for each great toemeasurement, i.e. for both right and left legs
separately, and covering the 2.5 min period (log10 y-axis: 0.0312–8Hz to capture the dynamics of the PPG signal
over time,figure 1). The intensity for the color bar of eachCWT spectrogramwas auto scaled, the image then
saved in *.pngfile format. This gave 428files (byABPI reference standard: 292/136 legs without/with PAD, in
which 94 legs withmild-moderate disease and 40 legs withmajor disease) for subsequentDL training and cross
validation (CV) testing.

2.3.2. DL convolutional neural network (CNN) and training
CNN is a class ofDL networks that is designed to learn features from the input data using itsmultiple
Convolutional Layers. TheDL analysis was performed usingMATLABDLToolbox software (TheMathworks
Inc., Natick,Massachusetts, United States) on a standard computing platform. AlexNet (http://alexlenail.me/
NN-SVG/AlexNet.html)was usedwhich is a CNN that has been pre-trained on a database named ImageNet
consisting ofmore than 1.2million images belonging to one thousand classes (Krizhevsky et al 2012). AlexNet is
well known (Krizhevsky et al 2012, Lu et al 2019,Wang et al 2019). Briefly, its structure has eight layers: five
convolutional layers (CL1 to 5) and three fully connected layers (FCL6-8), with rectified linear unit (ReLU) as the
activation function. Thefinal FCL8 layer was tailored to the 2-class problem (figure 2) (Wang et al 2019).
Transfer learningwas applied for fine tuning of specific layers of the CNN.Treating legs separately, each great
toe PPG spectrogram imagewas rescaled to theAlexNet CNN input layer structure size of 227×227 pixels,
with 3-color channels of red, green and blue. The twoCNNoutputs gave the classification outcome of ‘noPAD’
and ‘PAD’.

With the absence offixed rules forDL parameter selection in the literature then initial experiments were
carried outwithin theMatlabDLToolbox development environment to set the key parameters for AlexNet-
based PAD/PPG application. The learning rate and themomentum termparameters were initially and briefly
explored in the ranges of 0.00001–0.01 and 0.4–0.9, respectively, with learning considered to be demonstrated
when therewas a trajectory towards an acceptable classification performance (e.g. 75%–100%) at each fold
tested (using 30 epochswithmini-batch size 20), i.e. without the algorithm getting stuck at the low starting
performance level. The choice of number of epochs depends on training and validation error. Keeping the
number of epochs small can lead to underfittingwhilemaking this number high can lead to overfitting of the
model. In our study, the validation error trajectory approached aminimumat 30 epochs and hence this number
was selected. Subsequently, a learning rate of 0.001 andmomentum termof 0.5were selected for the k-foldCV
testing as these showed learning across all folds and carried out with reasonable speed. To aid the learning and
generalization then pixel shift and image augmentationwere also incorporated into the training stage.

Figure 1.Example spectrograms comparing time-frequency characteristics over a period of 2.5 min for the rawunfiltered PPG signals
from the great toe. Clear differences can be seen between these PAD and non-PADexamples, for example in pulse harmonics,
variability over time aswell as the ‘AC’ to ‘DC’ lower frequency components.
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2.3.3. Consistency with k-fold CV
As there is no standardization in the choice of k for k-fold randomCVwe experimentedwith two different values
(k=5 and k=10), with k training/validation runs, as applied in existing studies onDL-based PPG signal
analysis (He et al 2016,Dall’Olio et al 2020). For each training run the image sets were randomly split into a
training set and a validation set, with transfer learning from the PPG spectrogram images. At each training run
the confusionmatrix was updated, and on the completion of all runs the overall test sensitivity, specificity and
accuracy (with 95% confidence interval ranges)were calculated. The process was repeated for k set to 10 enabling
a simple comparison of the classification performance obtained for a k-fold value of 5.

2.3.4. Statistical analysis and diagnostic performance assessments
Clinicalmeasurements were summarized usingmedian and inter-quartile range (IQR, 25th percentile to 75th
percentile), calculated using simpleMicrosoftOffice Excel spreadsheet functions. Cross-tabulation of PAD
status by ABPI andDL classifierwas performed fromwhich associated diagnostic test accuracy (DTA)measures
of sensitivity, specificity, and diagnostic accuracy, were determined alongside associated 95%confidence
intervals overall, as well as per severity classification. DTA statistical analyses were performed using SciStat.com
online statistical software © 2020MedCalc Software Ltd. The sensitivities in detecting overall disease
(ABPI<0.9), mild-moderate disease (0.5�ABPI<0.9) andmajor disease (ABPI<0.5)were calculated for
the PPG spectrogram image sets. Cohen’s Kappa statistic and 95%CI rangeswere also calculated for the
diagnostic performances (McHugh 2012) on SPSS (SPSS 21.0 forWindows, SPSS Inc., Chicago, IL), noting a
Kappa value between 0.41 and 0.6 representsmoderate agreement; between 0.61 and 0.8 represents substantial
agreement; and 0.81 and 1.00 represents almost perfect agreement.

3. Results

Toe PPGpulse spectrogram images from a total of 214 subjects (137males, 77 females)were classified usingDL.
Themedian [IQR] agewas 64 [52–72] years, systolic blood pressure 142 [128–160]mmHg, and height 1.69
[1.60–1.70]m.

The overall diagnostic performances withAlexNetDL classification are shown in tables 1 and 2, with all
comparisons having substantial agreement (byCohen’s Kappa statistic, i.e. for agreement beyond chance)with
ABPI. The tables also summarize the values (and 95%CI ranges) of sensitivity, specificity and accuracy for k= 5
(and 10) over the k repeat training/validation runs.

For k=5 the overall test sensitivity was 86.6 (95%CI: 80.6–91.3)%, specificity 90.2 (86.2–93.3)%, accuracy
88.9 (85.7–91.6)%, andKappa 0.76 [0.70–0.82]). The test sensitivity was clearly higher overall for the legs with
higher grade PAD,with 83.0 (75.5–88.9)%formild-moderate disease versus 100.0 (90.5–100.0)%formajor
disease, giving Cohen’s Kappa values of 0.72 (0.65–0.79) and 0.67 (0.56–0.78), respectively.

For k=10 the results were similar to the k=5 results, with overall test sensitivity 82.4 (95%CI:
74.8–88.5)%, specificity 89.0 (84.8–92.3)%and accuracy 86.9 (83.3–90.0)%, andKappa 0.70 [0.63–0.77]). As

Figure 2.Overview of structure of AlexNet and its tailoring to PPGPADclassification.
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with k=5, the test sensitivity was clearly higher overall for the legs with higher grade PAD,with 77.3
(67.7–85.2)%formild-moderate disease versus 97.1 (84.7–99.9)%formajor disease, giving Cohen’s Kappa
values of 0.64 (0.55–0.73) and 0.61 (0.50–0.73), respectively.

4.Discussion

An innovativeDL-based PPGClassifier (‘DLPPG’) approach using pre-trainedCNNAlexNet withfine tuning
by transfer learning to diagnose PAD from toe PPGmeasurements has been evaluated in this study, with
performance assessed in this proof-of-concept study to show substantial agreements overall with the ABPI
vascular reference for detecting PAD.

Currently, PADdiagnostics dependsmainly onABPImeasurement as thefirst-line test. In the 2016
AmericanHeart Association (AHA)/AmericanCollege of Cardiology (ACC)Guideline on PAD, the
technological advancement for simplified diagnosis of PAD and critical limb ischemia is listed as amajor
research direction (Gerhard-Herman et al 2017). The proposedDL-based analysis of the toe PPG signal provides
the possibility for quick assessment and follow-up over time, and low-costmanagement of PAD. The novel DL-
based approach assessed in this study has advantages over previously reported approaches (e.g. analysis
involving fiducial waveform characteristics) (Karimian et al 2017) in PPGpulse analysis, with some earlier
methods (Allen 2002, Allen et al 2005, 2008) being resource intensive in pre-processing as they required the
manual checking by an expert operator on a beat-by-beat basis tomark and exclude noisy pulses, and noting that
derived pulse timing features and normalized pulse shapes are dependent on digital filter types which can be

Table 1. (a), (b) 5-fold random cross validationwithConfusionMatrix from 5 training/validation runs andDTA
performance forDLPPG versus ABPI-determined disease (Overall,Mild-Moderate,Major) on a leg basis.
Cohen’s Kappa statistic for agreement between two raters is also given. The 95%Confidence Intervals are shown
in brackets.

(a)

DL-based PPG classification

Diagnosis byABPI NoPAD PAD

NoPAD 266 29

Mild-Moderate 23 112

Major 0 37

(b)
Sensitivity (%) Specificity (%) Accuracy (%) Cohen’s Kappa

Overall 86.6 (80.6–91.3) 88.9 (85.7–91.6) 0.76 (0.70–0.82)
Mild-Moderate 83.0 (75.5–88.9) 90.2 (86.2–93.3) 87.9 (84.5–90.8) 0.72 (0.65–0.79)
Major 100.0 (90.5–100.0) 91.3 (87.7–94.1) 0.67 (0.56–0.78)

Table 2. (a), (b) 10-fold randomcross validationwithConfusionMatrix from10 training/validation runs and
DTAperformance forDLPPG versus ABPI-determined disease (Overall,Mild-Moderate,Major) on a leg basis.
Cohen’s Kappa statistic for agreement between two raters is also given. The 95%Confidence Intervals are
shown in brackets.

(a)

DL-based PPG classification

Diagnosis by ABPI NoPAD PAD

NoPAD 258 32

Mild-Moderate 22 75

Major 1 33

(b)
Sensitivity (%) Specificity (%) Accuracy (%) Cohen’s Kappa

Overall 82.4 (74.8–88.5) 86.9 (83.3–90.0) 0.70 (0.63–0.77)
Mild-Moderate 77.3 (67.7–85.2) 89.0 (84.8–92.3) 86.1 (82.2–89.3) 0.64 (0.55–0.73)
Major 97.1 (84.7–99.9) 89.8 (86.0–92.9) 0.61 (0.50–0.73)
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difficult to replicate for devices working on-line (i.e. in real time). In contrast, this new approach based onDL
requiredminimal data pre-processing and had no denoising stage.

Themanual extraction of physiological parameters from time-frequency spectra is cumbersome, highly
parametrized, and tailored to specific scenarios, whereas theDL-based PPG analysis is appropriate for the large-
scale application on bespokemeasurement devices (Wilkes et al 2015, Reiss et al 2019) aswell as centralized
cloud-based signal diagnostics. Ultimately, such pulse assessments could improve themanagement of patients
with PADby giving accessible and timely feedback to the patient and their doctors to help them reduce their
associated risk factors for cardiovascular disease.

TheAHA/ACCGuideline also highlighted the need for the improvement of clinical classification systems
for PAD that incorporate symptoms, anatomic factors, and patient-specific risk factors and can be used to
predict clinical outcome and optimize treatment approach (Gerhard-Herman et al 2017). Our results showed
substantial accuracy, sensitivity, andCohen’s Kappa values for legs withmild-moderate PAD aswell as formajor
PAD, although the detection sensitivity was lower for lower grade disease. These classification performances
appear similar to the results of our earlier studies based on specific characteristics of the PPG toe pulse, e.g. using
carefulmanual extraction of normalized shape, risetime and amplitude features (Allen et al 2005, 2008) for
overall accuracy and differences with PAD severity in the legs. Our new approach also includes information on
the dynamics of the PPG, i.e. the ‘DC’ lower frequency components, in health and disease and this couldwell
yield additional important information that aids the diagnosis and understanding of the disease process, for
example for diabetic patients with PADwhere there is autonomic involvement and/or vascular calcification,
and this should be further explored as an exciting way forward in vascular assessment.

Other research groups have explored the use ofDL-based PPG analysis in vascular assessments, including
Lee et al (2020)whoused a convolutional long short termmemorymodel (C-LSTM:with 5 convolutional layers,
5 pooling layers and one LSTM layer) to classify the second derivative of thefinger PPG trace to predict the ABPI
class i.e. severity of arterial disease (data fromMIMIC-III database, Johnson et al 2016). Their results are
impressive and in approximately 1000 subjects attained an accuracy of greater than 98% (for six ABPI classes
coveringmild through to severe disease, arterial hardening, and normal). They did combine twoDLmodels
(CNNand LSTM)which could have improved performance, compared to the results fromour singleDLmodel.
However, theremay be an element of over-fittingwhich somehow compensates for the imperfect ABPI
reference for PAD. Such results do showwhat can be possible withDL. It will be very interesting future step for
us to look at bothfinger and toe PPG traces in ourmulti-site PPGmeasurements to see if classification
performance can be boosted significantly.

Awell-known aspect of PPGmeasurements is thatmovement artefact, e.g.movement of the limb during
ambulation or even just whilst a patient is resting but talking, and changes in body posture can sometimes render
a trace unusable (Carek et al 2020,Huthart et al 2020)—so a next step could be to test theDL-based classifier
resilience to certain types of added noise and artefacts.Wewould be optimistic that the CNNalgorithm, with a
max-pooling layer which is included in AlexNet, could enhance the algorithm robustness to noise, which has
been proven in parallel studies on theDL-based analysis of electrocardiogram (Muhammed andAravinth 2019).
The development and application of CNNand otherDL-basedmethods could be investigated so that reliable
evaluation of PAD can bemade in poor quality signals (Waugh et al 2018).

4.1. Limitations and furtherwork
A limitation of our proof-of-concept study is that the distribution of non-PAD,mild-moderate PAD, andmajor
PAD cases was unbalanced. A future study should consider assessing unselected patients fromprimary care
rather than specialist vascular centers. Due to the limitations on data, we also did not include other (patho-)
physiological factors in themodel, such as symptoms, history of heart disease, renal disease, and diabetes, etc. In
future studies, wewill recruit a new cohort of cases and controls and include a comparisonwith other PAD
measures including the EdinburghClaudicationQuestionnaire,manual leg pulse palpation, toe systolic
pressures, and/or duplex vascular ultrasound imaging (Kyle et al 2020). Diabetic patients should also be studied
further particularly the PPG ‘AC’ and ‘DC’ lower frequency components for with andwithout PAD cases
(Bentham et al 2018, Vriens et al 2018). Other CNNarchitectures such as LeNet, GoogLeNet, andResNet can
also be tested to see if they can boost the efficiency and accuracy of the classifications, particularly in earlier
milder cases of disease. Other pathophysiological parameters (e.g. symptoms, anatomic factors, and patient-
specific risk factors) can be added to achievemore accurate classification of PAD cases. Finally, based on the
Health EconomicModeling appraisal of the proposed concept technology,miniaturizedDL chips and cloud-
based computing can be applied to achieve a user-friendly, cost-effective, and real-time system to improve
healthcare services in their diagnosis,management, and treatment of PAD.
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5. Summary

Wehave demonstrated in this proof-of-concept study that, with only limited signal pre-conditioning, ourDL-
based PPGmethod can be configured reliably to detect PAD (as diagnosed byABPI) from simple toe PPG
measurements in a hospital vascular department setting. The sensitivity of the techniquewas higher formore
severe disease (i.e. anABPI<0.5). Further works are already in progress to help improve the classification
algorithm and its resilience to noise andmeasurement artefacts. Ultimately, the trajectory for the project area
will be to develop explainable AI techniques to help understand the complex changes in PPG characteristics seen
with atherosclerosis and in vascular ageing.
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