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ABSTRACT
Due to the characteristics of COVID-19, the epidemic develops
rapidly and overwhelms health service systems worldwide. Many
patients suffer from life-threatening systemic problems and need
to be carefully monitored in ICUs. An intelligent prognosis can
help physicians take an early intervention, prevent adverse out-
comes, and optimize the medical resource allocation, which is ur-
gently needed, especially in this ongoing global pandemic crisis.
However, in the early stage of the epidemic outbreak, the data
available for analysis is limited due to the lack of effective diag-
nostic mechanisms, the rarity of the cases, and privacy concerns.
In this paper, we propose a distilled transfer learning framework,
DistCare, which leverages the existing publicly available online
Electronic Medical Records to enhance the prognosis for inpatients
with emerging infectious diseases. It learns to embed the COVID-19-
related medical features based on massive existing EMR data. The
transferred parameters are further trained to imitate the teacher
model’s representation based on distillation, which embeds the
health status more comprehensively on the source dataset. We con-
duct Length-of-Stay prediction experiments for patients in ICUs on
real-world COVID-19 datasets. The experiment results indicate that
our proposed model consistently outperforms competitive baseline
methods. In order to further verify the scalability of DistCare to
deal with different clinical tasks on different EMR datasets, we con-
duct an additional mortality prediction experiment on End-Stage
Renal Disease datasets. The extensive experiments demonstrate that
DistCare can benefit the prognosis for emerging pandemics and
other diseases with limited EMR.
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1 INTRODUCTION
Since January 2020, the whole world has been facing an unprece-
dented pandemic crisis brought by COVID-19. The exponential
growth of COVID-19 patients has brought massive pressure on the
health systems tragically, such as overwhelming the national health
service and exhausting the Intensive Care Units (ICUs). It is crucially
essential to personalize prognosis for the individual patient by con-
sidering her/his specific health condition to enable a timely and
early medical intervention. The accurate evaluation of inpatients’
health status is also critical for scheduling and optimizing limited
hospital resources [16].

However, it is difficult for human physicians to evaluate patients’
health comprehensively and accurately identify the key factors,
especially in the early stage of Emerging Infectious Diseases (EIDs)
when the deterioration is usually not evident [24] The precise risk
prediction requires substantial clinical expertise and possibly years
of experience [32]. For most EIDs (e.g., COVID-19, SARS), the prog-
nosis performed by human physicians may not meet huge clinical
demand, especially in developing countries, while clinical experi-
ence accumulation is time-consuming and challenging in the early
outbreak of EIDs. At the early stage of EIDs, human physicians
are lack of knowledge and experience for the diseases. So during
COVID-19 treatment, physicians may omit certain ominous signs
and miss the chance of early intervention, especially when the
clinical resources are insufficient.

As a result, intelligent prognosis is in urgent need against EID
and rare diseases. It not only assists physicians to perform early
diagnosis, selects personalized treatments and prevents adverse
outcomes, but also optimizes the allocation of medical resources
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and reduces the medical cost [43]. Recently, many deep-learning-
based models have been developed to enable intelligent prognosis
by analyzing Electronic Medical Records (EMR), including mortality
prediction [28, 29], disease diagnosis prediction [12, 26], and patient
phenotype identification [1]. To enrich the feature extraction and
health status representation, most existing research works utilize
sophisticated modules to extract health status representations that
require a large amount of labeled training data.

However, existing AI-assisted health data analytic models and
systems cannot be directly applied in the scenario of emerging
epidemics, especially in the early stage of the epidemic, when there
are only very limited medical data available for study. For exam-
ple, by Jan 2, 2020, only 41 admitted hospital patients had been
identified as having COVID-19 infection, which means that the
meaningful data for physicians to study COVID-19 are highly in-
sufficient [19]. Moreover, existing models require a large amount of
data for training, but the quantity of labeled clinical data available
for prognosis are insufficient as well in practice in the early stage
of the EID outbreak [19]. One reason is that the precise diagnostic
mechanism has not been established in the early outbreak. For ex-
ample, before introducing the nucleic acid detection mechanism, it
is difficult to confirm whether a patient is infected with COVID-19,
so that researchers cannot acquire enough labeled data [19]. The
privacy concern is another crucial reason to hinder the access of
labeled clinical data. For example, at the beginning of the COVID-19
outbreak, sharing EMR data across different countries cannot be
established timely due to the privacy and ethical consideration [20].
Thus the scarcity of labeled clinical data will decrease deep learning
performance for the EID-related applications due to the potential
over-fitting.

Recently some researchers try to make full use of the existing
time series data through transfer learning to deal with clinical data
scarcity. These transferring-based models are either focusing on
transferring pre-trained models for a specific disease, or transfer-
ring general-purpose time-series features. 1) For instance, Doctor
AI [3] and Gupta [14] train deep learning models at one hospital
and transfer them to another hospital. These methods can only be
applied to the same task with the same clinical features between
the source and target dataset, while clinical features are usually
not exactly the same in clinical practice. 2) TimeNet [14] has been
trained on different non-clinical time-series datasets via an RNN
(Recurrent Neural Network) autoencoder in an unsupervised man-
ner to extract generic features for patient phenotyping. However,
the extracted general-purpose features are also not suitable for
specific clinical tasks. In the worst case, this can lead to negative
transfer and model’s under-performance [38].

Therefore, for the prognosis of EIDs with limited data, such a
research challenge remains: How to make full use of the existing
publicly available EMR data to learn the robust health status rep-
resentation when tackling different tasks with different clinical
feature sets? In this paper, we propose a novel distilled transfer
learning framework, DistCare, to distill knowledge from exist-
ing EMR data (i.e., source dataset) to the new dataset (i.e., target
dataset). In summary, DistCare contributes to the community from
the following aspects:

• We propose a medical feature embedding approach based on dis-
tilled transfer learning, DistCare, to perform clinical prediction
for EIDs with limited data. In order to explore and leverage the
features information that is only stored in the source dataset, the
pre-trained model with all source features is treated as a teacher
network to guide shared features’ embedding behavior.

• We conduct Length-of-Stay (LOS) prediction experiments for in-
patients with COVID-19. The results show that DistCare consis-
tently outperforms the baseline approaches under all evaluation
metrics, especially when tackling insufficient data settings. Be-
yond COVID-19, in order to verify the applicability of DistCare
when distilling the knowledge to perform different clinical tasks
on different datasets, we also conduct mortality risk prediction for
outpatients with End-Stage Renal Diseases (ESRD). The extensive
experiments demonstrate that DistCare can significantly bene-
fit the prognosis for pandemics and other diseases with limited
EMR.

• As a proof-of-concept to demonstrate that DistCare can assist
the prognosis, we also build a visualization system that can reveal
the patient’s health trajectory for the prognosis. We release our
code and the system at https://github.com/Accountable-Machine-
Intelligence/DistCare.

2 RELATEDWORK
2.1 Prognosis for COVID-19
Outbreaks of the COVID-19 epidemic have been causing world-
wide health concerns and was officially declared a pandemic by the
World Health Organization (WHO) on March 11, 2020. Although the
ultimate impact of COVID-19 is uncertain, it has significantly over-
whelmed health care infrastructure. All emerging viral pandemics
can place extraordinary and sustained demands on public health
systems and essential community service providers [31]. Limited
healthcare resource availability will increase the chance of being
infected while waiting for treatment and mortality rates [22]. This
eventually leads to an increase of the severity of the pandemic. The
rapidly growing imbalance between supply and demand for med-
ical resources in many countries presents an inherent normative
question: How can we make early and accurate risk prediction to
allocate medical resources during a pandemic effectively?

Massive COVID-related research works focus on the severity
of disease rather than the clinical outcome of mortality [8, 11, 42].
These studies answer critical clinical questions on COVID-19 evo-
lution and outcomes, as well as potential risk factors leading to
hospital and ICU admission. However, they cannot make individ-
ualized risk predictions for patients. Recently, Li et.al., [44] use
machine learning-based methods such as decision trees to make
risk prediction for COVID-19 patients. Effective and reliable early
risk prediction is still a crucial and urgent problem to optimize
patient care and appropriately deploy healthcare resources during
this pandemic.

2.2 Deep-Learning-Based EMR Analysis
With the prevalence of electronic healthcare information systems in
various healthcare institutions, a large amount of Electronic Medi-
cal Records (EMR) have been accumulated over time[25, 36]. EMR is
a type of multivariate time series data that records patients’ visits in
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hospitals (e.g., diagnoses, lab tests). This provides essential health-
care information for the data-driven clinical status prediction[10].
Deep learning-based models have shown the capability to perform
mortality prediction [9, 13, 17, 28, 40], patients subtyping [1], and
diagnosis prediction [1, 5, 26, 30, 33, 35]. For most research, extract-
ing advanced clinical features and learning the sparse EMR data’s
compressed representation are fundamental procedures of clinical
healthcare prediction.

EMR is longitudinally complex [6, 45]. Extracting the advanced
clinical representation would introduce more parameters into the
model, making the model more complex and challenging to train.
For EIDs and some rare diseases, the quantity of labeled data is
insufficient, which can not support a model to be trained thoroughly.
In order to deal with this issue, some researchers try to introduce
additional information about the data.

For example, GRAM [4] and KAME [27] incorporate the exter-
nal medical information (e.g., ontologies of the medical codes),
making the model trained more sufficiently. They exploit medi-
cal knowledge in the whole prediction process by using a given
medical ontology (i.e., knowledge graph), such as the International
Classification of Diseases (ICD), to learn the representations of med-
ical codes and obtain the embeddings of medical codes’ ancestors.
MIME [6] learns the multi-level embedding of data according to the
knowledge about the inherent EMR structure (e.g., the multi-level
relationship among medical codes). However, such external struc-
tured information and the extra knowledge about the data are often
not easy to be accessed or used in the clinical practice for EIDs.
Ontology information is usually designed to handle the medical
codes. It is not suitable for dealing with numerical lab tests, which
also are essential clinical features to capture health status.

On the other hand, some researchers try to explore the existing
EMR data. Choi [3] empirically confirms that RNN models possess
great potential for transfer learning across different medical insti-
tutions. Gupta [14] trains a deep RNN to identify several patient
phenotypes on time series from MIMIC-III dataset, and then uses
the features extracted by the RNN to build classifiers for identifying
previously unseen phenotypes. However, these methods can only
be utilized for the same tasks with the same clinical feature sets
between source and target datasets. TimeNet [15] is pre-trained on
non-medical time series in an unsupervised manner and further
utilized to extract features for clinical prediction. Nevertheless, the
extracted general-purpose features may not be suitable for explor-
ing the specific clinical task, leading to negative transfer and limited
performance.

3 PROBLEM FORMULATION
Many patients suffering from COVID-19 face severe life threats and
need careful health monitoring in ICU. Besides, due to the newly
emerging pandemic characteristics, a large number of patients need
treatment during peak illness periods, which causes clinics and
hospitals to be overwhelmed. Predicting remaining time spent in
ICU (i.e., Length-of-Stay, LOS) for admission can help assess the
severity of illness and determine the value of novel treatments,
interventions, as well as health care policies [34]. Moreover, it is
also vital for scheduling and hospital resource management. Here

Table 1: Notations Used in DistCare

Notation Definition
yT ,tar Groundtruth Label of LOS prediction at T -th record on target dataset
ŷT ,tar Prediction result at T -th record on source dataset
yT ,src Groundtruth Label of prediction at T -th record on source dataset
ŷT ,src Prediction result at T -th record on source dataset
Rsrc ,Nsrc The whole source dataset with Nsrc features
Rtar ,Ntar The whole target dataset with Ntar features
R̃src , Ñsrc Source dataset (Only consists of Ñsrc features shared with the target dataset)
ri A time-series record of the i-th medical feature
fi Embedding of the i-th medical feature
f ∗i Re-encoded embedding of the i-th medical feature
s Overall representation of patient’s health status
demo The static baseline demographic information of the patient
Xtea Model/Embeddings/Parameters used in Source-Teacher model
Xstu Model/Embeddings/Parameters used in Source-Student model
Xtar Model/Embeddings/Parameters used in Target model

we formally define our research problem below and provide the list
of notations used in DistCare in Table 1.

Electronic Medical Records: EMR is routinely collected pa-
tient observations from hospitals through the clinical admissions,
including discrete time-series data (e.g., medication, diagnosis),
continuous multivariate data (e.g., vital signs, laboratory measure-
ments), and static baseline information (e.g., age, gender, primary
disease). The static feature is denoted as demo. The admissions
generating N features such as different lab test results denoted
as ri ∈ RT (i = 1, 2, · · · ,N ). Each medical feature contains T
timesteps. As a result, such a clinical sequence can be formulated as
a “longitudinal patient matrix” r , where one dimension represents
medical features, and the other denotes record timestamps [25].

Problem: Length-of-Stay prediction. The prediction prob-
lem in this paper can be formulated as follows. Given historic EMR
data of a patient, i.e., (r1, · · · , rN ,demo), the problem is to evaluate
the patient’s health status at each clinical record and predict the
remaining time spent in ICU, which is framed as a regression task.
There are significant differences in health status among patients
with the same length-of-stay but different outcomes. For instance,
for patients being discharged in a few days, their health status
should be much better than other patients, especially those who
are dying in several days unfortunately. Concretely, we take the
remaining days t in ICU as the ground truth LOS label of survived
patients’ records, and take the LIMIT − t as the label of deceased
patients’ records. According to the statistics data, most inpatients
with COVID-19 in ICU have been discharged within 35 days. As a
result, we set the LIMIT value as 2 × 35 = 70 in this work.

Specifically, the LOS to be predicted (i.e., y) for each patient’s
records is defined according to the patient’s remaining time spent
in ICU (i.e., t days) and their outcomes.

y =

{
min(35, t) , if discharged from ICU
70 −min(35, t) , if died in ICU

The predicted LOS ŷ can be supposed as a health risk score. Pa-
tients with high-risk scores are facing a high probability of adverse
outcomes and need emergency treatment. On the contrary, those
with low-risk scores are in relatively stable health conditions. The
predicted LOS health risk score indicates the remaining days to
discharge when ŷ < 35. And 70 − ŷ indicates the remaining days to
mortality when ŷ > 35.
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Figure 1: The DistCare Framework. Left: Teachermodel’s healthcare representation learning on source dataset. Mid: Imitating
teacher model’s behavior on source dataset. Right: Transfer pre-trained parameters from student model to target model.

4 METHODOLOGY
4.1 Overview
DistCare learns to effectively embed the clinical time series based
on a massive existing EMR source dataset. Such a transfer learning
mechanism reduces the demand for training data on the target. The
patient’s health status representation learning process is further
guided by distilled transfer learning between the source dataset
and target dataset. Figure 1 shows the framework of the proposed
DistCare, which contains two key steps.

• Teacher model’s healthcare representation learning: Mul-
tivariate time series with all features are fed into the healthcare
representation learning module as a teacher model to build the
health status embedding in the source dataset.

• Distilled transfer learning from student model to target
model: The student model on source dataset learns to embed
the proper health status based on features shared with the target
dataset, by imitating the teacher model’s embedding behavior.
The pre-trained parameters of feature embeddings are trans-
ferred to the healthcare representation learning model on the
target dataset, and further fine-tuned to perform the task-specific
prediction.

4.2 Healthcare Representation Learning
We employ the basic patient health context embedding module
inspired by ConCare [29]. There are three layers designed in this
module, namely, the feature extraction layer, the self-attention layer,
and the prediction layer. We utilize the multichannel GRU in the
feature extraction layer to capture each medical feature’s patterns
individually. Specifically, we apply N different GRUs to embed
the N dynamic features. Each dynamic feature i can be described
as a time series ri = (ri1, ri2, · · · , riT ), and will be fed into the

corresponding GRUi to generate feature embedding:

fi = GRUi (ri1, ri2, · · · , riT ). (1)

And the static baseline demographic feature demo is mapped to
the embedding f0 with a full connection network: f0 = demo ·

Wdemo + bdemo . The embeddings fi are stacked to generate the
feature embedding matrix F = (f0, f1, f2, · · · , fN )T.

The self-attention mechanism is utilized to obtain information
from the health context and capture correlations between medical
features. This mechanism makes each feature adaptively interact
with all other features. The re-encoded embeddings of heteroge-
neous clinical features are guaranteed to be in the same high-level
feature space by the self-attention mechanism. Mathematically, the
self-attention weight matrix of head i:

Ai = Softmax(
QiKT

i√
dk

) (2)

where Qi = F · WQ
i ,Ki = F · WK

i , and dk is the size of the row
vector of matrix Ki . And the result of feature interaction in head i
is calculated as:

headi = AiVi (3)

where Vi = F · WV
i . And finally, the embedding matrix F∗ after

feature interaction is calculated as:

F∗ = (f ∗0 , f
∗
1 , ..., f

∗
N )T = (head0 ⊕ head1 ⊕ ... ⊕ headm )WO (4)

Embedding of all features f ∗i are integrated into an overall rep-
resentation of patient s . The importance of medical features is
interpreted by attention mechanism.

s =
N∑
i=1

α i f
∗
i (5)
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where α i is the attention weight of each feature embedding f ∗i ,
generated bymean query feature embeddingqmean and key feature
embeddings ki .

α0,α1, ...,αN = Softmax(ζ 0, ζ 1, ..., ζ N ) (6)

ζ i = tanh(qmean · ki
T) (7)

qmean = (
1

N + 1

N∑
i=0

f ∗i ) ·Wq , ki = f ∗i ·Wi (8)

Eventually, in the prediction layer, we apply a full-connection layer
to predict the clinical task ŷT ∈ R.

ŷT = s ·Ws + bs (9)

and we adopt Mean Square Error (MSE) as the loss term Lpred :

Lpred = MSE(ŷT ,yT ) =
1
n

n∑
i=1

(y
(i)
T − ŷ

(i)
T )2 (10)

Alternatively for predicting a binary classification label yT , we
apply the Sigmoid activation to Eq.9, and the Cross-Entropy loss
will be applied for computing the prediction loss Lpred .

4.3 Distilled Transfer Learning
Based on the patient health status embedding module introduced
above, we conduct feature-specific transfer learning on the feature
extraction layer, since this layer mainly captures the general pattern
of medical features, which is independent of patient cohorts and
prediction tasks. Concretely, we transfer GRUs of shared features
from the source model to the target model, to make up for the
shortcomings of small data volume by obtaining knowledge from a
larger existing dataset.

However, the source dataset’s useful information has not been
sufficiently extracted, since private features in the source dataset
remain unused. They can help capture correlations between features
more sufficiently, thus generating a more comprehensive health
status representation.

Therefore, we propose a distillation mechanism to construct
a more reasonable source to transfer. Concretely, we divide the
source model into two parts, the teacher model and the student
model. The student model is trained on the source dataset with
only shared features (R̃src ) and prepared to be transferred to the
target model. While the teacher model is trained on the complete
dataset with all features (Rsrc ), and serves as an auxiliary repre-
sentation extractor. The distillation mechanism aims to distill the
teacher model’s knowledge to assist training on the student model,
guiding the student to imitate the teacher’s behavior to obtain a
more comprehensive representation of patients.

Specifically, the representation sstu generated by the student
model should be able to imitate stea generated by the teacher model
as much as possible, by using a linear layer to transform the feature
space. And the distillation loss (Ldist ) is defined as the similarity of
the two representations, which is calculated using KL-Divergence.

ŝtea = sstu ·Wstu (11)

Ldist = DKL(Softmax(ŝtea )| |Softmax(stea )) (12)

DKL(P | |Q) =
∑
i
Pi log(

Pi
Qi

) (13)

The potential mistakes learned by the teacher may negatively
affect the student. As a result, we also train the distilled student
model to produce the correct ground truth labels in addition to
the soft supervision from the teacher. Concretely, we calculate the
prediction loss Lpred between the student’s output and the ground
truth labels as the hard supervision. And the loss of the student
model (Lstu ) is precisely the sum of soft and hard supervision loss,

Lstu = Lpred + Ldist . (14)

Finally, we transfer GRUs from the student model to the target
model, and fine-tune the target model with the target dataset (Rtar )
using loss term Ltar = Lpred . The specific process of our algo-
rithm DistCare is presented in Algorithm 1.

Algorithm 1 DistCare (Rsrc ,Rtar )

1: Stage 1: Randomly initializing parameters in Teacher Model
DistCare tea

2: while not convergence do:
3: Compute ŷT ,src , stea = DistCaretea (Rsrc )

4: Compute Ltea = MSE(ŷT ,src ,yT ,src )
5: Update parameters of DistCaretea by optimizing Ltea

using back-propagation
6: end while
7: Stage 2: Randomly initializing parameters in Student Model

DistCare stu
8: while not convergence do:
9: Compute ŷT ,src , ŝtea = DistCarestu (R̃src )

10: Compute Lpred = MSE(ŷT ,src ,yT ,src )
11: Compute Ldist = DKL(Softmax(ŝtea )| |Softmax(stea ))
12: Compute Lstu = Lpred + Ldist
13: Update parameters of DistCarestu by optimizing Lstu

using back-propagation
14: end while
15: Stage 3: Transfer parameters of shared GRUs from DistCare

stu to Target Model DistCare tar , and randomly initializing
other parameters in DistCare tar

16: while not convergence do:
17: Compute ŷT ,tar = DistCarestu (Rtar )

18: Compute Ltar = MSE(ŷT ,tar ,yT ,tar )
19: Update parameters of DistCaretar by optimizing Ltar

using back-propagation
20: end while

5 EXPERIMENT
We conduct the experiments by leveraging publicly available online
PhysioNet Source Dataset [37] to enhance the LOS (Length of Stay)
prediction on COVID-19 datasets [18, 44]. To further verify the
scalability of DistCare when performing different clinical predic-
tion tasks on different EMR datasets, we also conduct an additional
mortality prediction experiment on the end-stage renal disease
(ESRD) dataset. Our code and the visualization system are available
at https://github.com/Accountable-Machine-Intelligence/DistCare.
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Figure 2: Days to outcome of COVID-19 patients’ records in
Tongji Hospital, China. All patients were discharged or died
within 35 days.
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Figure 3: Days to outcome of patients’ records in HMHospi-
tal, Spain. Most patients were discharged or died within 35
days.

5.1 Data Description
5.1.1 COVID-19 Target Dataset from Tongji Hospital (TJH), China.
We take the COVID-19 dataset [44] as the target dataset and per-
form the LOS prediction. The medical information of all patients
collected between 10 January and 18 February 2020 was used for
model training. The average age of the patients was 58.8 years
old, and 59.7% were male. Of the 375 cases included in the subse-
quent analysis, 201 recovered from COVID-19 and was discharged
from the hospital, while 174 unfortunately died. Statistics of source
dataset and target dataset are listed in table 2. Statistics of the LOS
are listed in Table 3. The distribution of days to the outcome for

Table 2: Statistics of Datasets

Dataset Source COVID-19 Target Extd. Target
PhysioNet TJH HMH ESRD

# Patients 40,336 375 1,891 656
Avg. Age 62.01 58.86 67.60 58.55
% Female 45.26% 40.27% 49.23% 48.93%

# Rec. (Records) 1,552,210 6,120 7,863 13,091
Avg. # Rec. / Patient 38.48 16.32 4.16 19.80
Max. # Rec. / Patient 336 59 19 69
Min. # Rec. / Patient 8 1 1 1
# Feat. (Features) 34 74 66 17

# Feat. shared with Src. 34 18 19 11
# Adverse Outcomes 2,932 174 333 261
% Adverse Outcomes 7.26% 46.40% 17.61% 39.78%

Table 3: Detail Statistics of COVID-19 Datasets

All Survive Death
Avg. # Records per Patient in TJH 16.32 16 16.7
Avg. # LOS per Patient in TJH 10.85 13.45 7.85
Avg. # Records per Patient in HMH 4.16 4.05 4.75
Avg. # LOS per Patient in HMH 5.54 5.66 4.91

records is shown in Figure 2. Medical features recorded in TJH
target dataset are listed in Table 4.

5.1.2 COVID-19 Target Dataset from HM Hospitals (HMH), Spain.
HMH [18] is released by HM Hospitals containing 2,310 anony-
mous patients diagnosed with COVID-19 or to be confirmed. These
data collect various interactions during the treatment of COVID-19,
including detailed information about the diagnosis, treatment, ad-
mission, steps through the ICU, and outcomes, discharge or death.
We selected the patients who have at least one record of lab tests.
After screening, there are 1,891 patients, and 303 patients died. The
distribution of length of stay in HM Hospital is shown in Figure
3. Medical features recorded in HMH target dataset are listed in
Table 5.

5.1.3 PhysioNet Source Dataset. We take the publicly available
PhysioNet Dataset [37] 1 as the source dataset and pre-train the
medical feature embedding based on the Sepsis prediction. This
dataset is sourced from ICU patients in two separate U.S. hospital
systems. These data were collected over the past decade with ap-
proval from the appropriate Institutional Review Boards, and are
labeled by Sepsis-3 clinical criteria. The cleaned dataset consists
of 40,336 patients and consists of a combination of hourly vital
sign summaries (e.g., heart rate, systolic blood pressure), laboratory
values (e.g., chloride, glucose). In particular, the data contained 34
clinical variables: 8 vital sign variables and 26 laboratory variables.
The statistics of the datasets are presented in Table 2. Medical fea-
tures recorded in the PhysioNet source dataset are listed in Table 4.

5.1.4 Additional Experiment: End-Stage Renal Disease Target Dataset.
We take the ESRD dataset as the extended target dataset and per-
form the mortality prediction. Nowadays, many people suffer from
1https://physionet.org
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Table 4: FeaturesRecorded inCOVID-19TongjiHospital Tar-
get Dataset and PhysioNet Source Dataset

Shared Features Private in PhysioNet Private in TJH
Hs-cTnI Heart rate γ -GT

Hemoglobin Pulse oximetry Procalcitonin
Serum chloride Temperature Albumin

Alkaline Phosphatase Systolic BP HBsAg
Total bilirubin MAP Globulin
Direct bilirubin Phosphate HsCRP
Hematocrit Diastolic BP Serum sodium

WBC Respiration rate RBC count
Fibrinogen EtCO2 (%)lymphocyte

Urea Excess HCO3 Monocytes
PH value FiO2 Antithrombin

Serum potassium PaCO2 Total protein
Glucose SaO2 HCV-AQ

Creatinine AST Total cholesterol
HCO−

3 Lactic acid eGFR
Calcium Magnesium HIV-AQ
aPTT Uric Acid

Platelet count ...

End-Stage Renal Disease (ESRD) in the world [21, 41]. They face se-
vere life threats and need lifelong treatments with periodic visits to
the hospitals for various tests (e.g., blood routine examination). The
whole procedure needs a dynamic patient health risk prediction
to help patients recover smoothly and prevent adverse outcomes,
based on the medical records collected along with the visits. This
task is defined as a binary classification task of predicting a patient’s
death in one year.

In this study, all ESRD patients who received therapy from Janu-
ary 1, 2006, to March 1, 2018, in a real-world hospital are included
to form this dataset. There are 1196 records with positive labels
(i.e., died within 12 months) and 10,804 records with negative labels.
The core task is to learn the patient’s health status representation
and perform the mortality prediction at each record. We drop the
patients whose all entries of one feature are missing and select the
observed features in more than 60% of patients’ records. For missing
values, we fill the missing front cells with the data backward to pre-
vent future information leakage. If the patient’s backward record is
missing, we impute it with the patient’s first front observed record.
The cleaned dataset consists of 656 patients and 13,091 visits. The
statistics of the ESRD dataset are presented in Table 2. Medical
features recorded in the ESRD target dataset are listed in Table 6.

5.2 Experimental Setup
5.2.1 Evaluation Preparation. Due to the limited amount of data,
10-fold Cross-Validation is employed on the prediction task. The
numbers in parentheses (Table 7) denote the standard deviation of
10-fold cross-validation. We assess the performance of the regres-
sion task (i.e., LOS Prediction) using Mean Square Error (MSE) and
Mean Absolute Error (MAE). Specifically,

MSE = 1
N

N∑
i=1

(yi − ŷi )
2, (15)

Table 5: FeaturesRecorded inCOVID-19HMHospital Target
Dataset and PhysioNet Source Dataset

Shared Features Private in PhysioNet Private in HMH
HCO3 WBC VCM
pH PTT HCM
BUN HR LIN

Alkalinephos O2Sat HEM
Calcium Temp CHCMdia
Chloride SBP NEU%
Creatinine MAP LEUC

BilirubinDirect DBP ADW
Glucose Resp NA
Potassium EtCO2 BAS%

BilirubinTotal BaseExcess MONO
TroponinI FiO2 EOS%

Hct PaCO2 PCR
Hgb SaO2 LDH

Fibrinogen Phosphate GPT
Platelets DD
AST INR

Lactate APTT
Magnesium ...

Table 6: Features Recorded in ESRD (Extd.) Target Dataset

Shared Features Private in ESRD (Extd.)
Systolic BP Sodium
Diastolic BP CO2CP

Urea Albumin
Calcium hs-CRP
Chloride Weight
Creatinine Amount
Glucose

Phosphate
Potassium
Hemoglobin
WBC Count

MAE = 1
N

N∑
i=1

|yi − ŷi |, (16)

Alternatively, for the binary classification task (i.e., mortality
prediction), we assess performance using the Area Under Receiver
Operating Characteristic Curve (AUROC), Area Under Precision-Recall
Curve (AUPRC), and theMinimum of Precision and Sensitivity Min(Se,
P+).

5.2.2 Baseline Approaches. We introduce several deep-learning-
based models as our baseline approaches without additional labeled
data or external ontology resources.

• GRU [7] is the basic Gated Recurrent Unit network.
• StageNet (WWW’20) [13] extracts disease stage information from
patient data and integrate it into risk prediction.
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Table 7: Length-of-Stay Prediction Performance on COVID-19 Datasets.

HM Hospital, Spain Tongji Hospital, China
Methods MSE MAE MSE MAE
GRU 332.3333(60.8454) 11.5960(1.3111) 244.1064(84.0195) 10.7240(1.8847)

StageNet 332.2513(48.2418) 11.0740(0.9672) 271.4787(96.3465) 9.7599(1.7536)
ConCare 313.1044(62.4946) 11.4348(1.3572) 211.1527(59.4638) 10.2738(1.4916)
T-LSTM 425.8102(102.9429) 13.5431(2.2985) 278.1709(49.8000) 11.6261(1.1601)
AMT 374.1242(37.6883) 12.8462(1.0047) 260.7830(71.3825) 12.2187(1.9870)

AttBiGRU 399.6771(48.0616) 13.5054(1.2092) 291.7883(65.8675) 12.4708(1.5163)
TimeNet 450.2001(53.0093) 14.6339(0.7993) 387.8733(54.7329) 16.6413(1.4747)

DistCarestu 290.9351(51.7022) 10.9894(1.3363) 200.5265(63.2458) 9.9505(1.8188)
DistCare 283.9312(50.9831) 10.7015(1.1927) 198.9287(68.9680) 9.7518(1.8645)

Table 8: Additional Experiment:Mortality PredictionPerfor-
mance on ESRD Dataset.

Methods AUPRC AUROC Min(Se,P+)
GRU 0.7142 (0.0883) 0.8094 (0.0547) 0.6668 (0.0544)

StageNet 0.7205 (0.0657) 0.8240 (0.0337) 0.6911 (0.0364)
ConCare 0.7291 (0.0827) 0.8259 (0.0456) 0.6784 (0.0573)
T-LSTM 0.7120 (0.0841) 0.8066 (0.0628) 0.6702 (0.0512)
TimeNet 0.6328 (0.0310) 0.7311 (0.0262) 0.5926 (0.0194)
AMT 0.5759 (0.0933) 0.6940 (0.0741) 0.5661 (0.0516)

AttBiGRU 0.6573 (0.0776) 0.7514 (0.0589) 0.6306 (0.0644)
DistCarestu 0.7414 (0.0692) 0.8263 (0.0427) 0.6723 (0.0523)
DistCare 0.7614 (0.0584) 0.8361 (0.0385) 0.7046 (0.0353)

• ConCare (AAAI’20) [29] embeds the feature sequences separately
and uses the self-attention to model dynamic features and static
baseline information.

• T-LSTM (SIGKDD’17) [1] handles irregular time intervals by time
decay mechanism. We modify it into a supervised learning model.

• AMT (WWW’20) [46] combines multi-task learning and transfer
learning framework to allow knowledge to be shared across
domains and tasks. 2

• AttBiGRU (BIBM’19) [39] proposes a general transfer learning
strategy which can enable models to make clinical prediction
acrossing diverse EHRs datasets. 2

• TimeNet (IJCAI-Workshop’18) [15] maps variable-length clinical
time series to fixed-dimensional feature vectors separately, and
acts as an off-the-shelf feature extractor. 3

• DistCarestu is the proposed DistCare without distillation from
the teacher model.

5.2.3 Experiment Environment. The experiment is conducted on a
machine equipped with CPU: Intel Xeon E5-2630, 256GB RAM, and
GPU: NVIDIA TitanX. The code is implemented based on Pytorch
1.5.0. To train the model, we use Adam [23] with the batch size
of 256, and the learning rate is set to 1e − 3. To fairly compare
different approaches, the hyper-parameters of the baseline models
are fine-tuned by the grid-searching strategy.

2Transfer-learning-based baseline models are pre-trained on the PhysioNet ICU source
dataset [37] https://physionet.org.
3TimeNet is pre-trained on the UCR general time-series repository [2] http://www.cs.
ucr.edu/~eamonn/time_series_data/.
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Figure 4: Prediction performance on COVID-19 Tongji Hos-
pital dataset under different training data volume.

5.3 Experiment Results
As is shown in Table 7, DistCare consistently outperforms both
transfer-based and non-transfer-based baselines, demonstrating the
ability of DistCare to learn a robust representation. Concretely,
for the COVID-19 LOS prediction task, compared to the best state-
of-the-art model ConCare, DistCare achieves 6% lower MSE, 5%
lower MAE relatively on COVID-19 TJH dataset, and achieves 9.6%
lower MSE, 6.4% MAE relatively on HMH dataset. Compared to Sta-
geNet, another best baseline method on MAE, DistCare achieves
27% lower MSE relatively on TJH dataset, and 14.8% lower MSE
relatively on HMH dataset. For the extended ESRD mortality pre-
diction task, compared to ConCare, DistCare also achieves a 4.4%
higher AUPRC, a 1.24% higher AUROC, and a 3.86% higher min(Se,
P+) relatively.

• Effectiveness of Transfer Learning: By comparing the mod-
els with and without transfer mechanism (i.e., ConCare and
DistCare), we can conclude that utilizing knowledge from ex-
isting publicly available EMR can significantly promote the pre-
diction performance of models on both tasks, indicating the ef-
fectiveness of the feature-specific transfer learning mechanism.
Moreover, DistCare also shows a better performance than other
transfer-learning-based methods. Though these models employ
the transferring mechanism, our model DistCare executes a
more adaptive and reasonable feature-specific transfer.
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Figure 5: Confusion matrices for predicting LOS by GRU (left, (a)) and DistCare (right, (b)). class Very Low corresponds to
discharge in 7 days (y < 7), class Low corresponds to discharge over 7 Days (7 ≤ y < 35), class High corresponds to death over 7
days (35 ≤ y < 63), class Critical corresponds to Death in 7 Days (y ≥ 63).

Figure 6: PCA visualization of patient health representa-
tion learned by DistCare on TJH dataset. The records of pa-
tients who eventually discharged and survived are marked
in blues, and those who unfortunately died are marked in
reds.

• Effectiveness of Distilling from Teacher: Compared to the
reduced DistCarestu model, where the knowledge is only trans-
ferred from the student model without distilling from the teacher
model, DistCare also achieves a better performance on both
tasks. This indicates that the distillation mechanism also en-
hances the performance of healthcare prediction.
The experiment results also verify the applicability of our pro-

posed framework. DistCare can not only predict LOS for new EID,
but also performmortality prediction for other diseases with limited
recorded EMR data such as ESRD.

5.4 Observation on COVID-19 TJH: Varying the
Size of Training Set

We evaluate whether DistCare can reach a robust performance
even under insufficient data volume on the COVID-19 dataset. Sev-
eral training datasets with different amounts of data (i.e., 90/80/50/20/
10% of the whole dataset) are created by adjusting cross-validation
experiments. Figure 4 shows the mean square error (MSE) for LOS
prediction on validation sets under different training data amount.

TheMSEs of all models rise as the training data volume decreases,
and DistCare consistently outperforms all baselines on all training
sets with different sizes. The performance gap between DistCare
and the baselines is more considerable in smaller datasets, which in-
dicates the capability of distilled transfer mechanism to alleviate the
data insufficiency problem. When we adopt only 10% of the whole
dataset as the training set, which is the smallest of all experiment
settings, DistCare demonstrated significantly better performance
than the best baseline ConCare. Specifically, DistCare achieves
an MSE of 336.3897, while the baseline models ConCare and AMT
achieve 491.2162 and 446.7076, showing 31.5% and 24.7% relative
improvement, respectively.

5.5 Observation on COVID-19 TJH: Patient
Health Representation Learning

In this subsection, we make observations on the COVID-19 dataset
to evaluate whether DistCare can extract a robust representation
of patient health status. We divide the regression labels y into four
classes according to the severity of patients’ health status:

• Very Low: y < 7, Discharge in 7 Days.
• Low: 7 ≤ y < 35, Discharge over 7 Days.
• High: 35 ≤ y < 63, Death over 7 Days.
• Critical: y ≥ 63, Death in 7 Days.

We plot the confusion matrix of GRU and DistCare respectively,
presented in Fig. 5. GRU seems unable to distinguish the records
with extremely high risk from other patients with death outcomes.
It can only vaguely inform doctors whether the patient is in a
dangerous state, but can not carry out different levels of warnings.

In comparison, DistCare can correctly predict more Critical
patients, demonstrating a better ability to distinguish the different
severity levels of patients’ records. This makes it possible to conduct
personalized diagnosis and treatment among different patients and
monitor every patient’s health condition dynamically.

Tomake further observations, we visualize patients’ health status
embeddings obtained from DistCare in Figure 6 . Each colored dot
in the Principal Component Analysis (PCA) plot represents a patient’s
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Figure 7: Case study: The rising LOS health risk score curve
of an anonymous case-patient. The patient’s health status
deteriorates from day-4 to day-8 (6th-20th records). The
case study is available at https://github.com/Accountable-
Machine-Intelligence/DistCare.

visit record. The dots in the blue color series denote the patients
who eventually discharge and survive, while the red ones denote
the patients who die unfortunately. The embeddings of patients
with different outcomes learned by DistCare are distinguishable
and saliently separated.

5.6 Case Study
The anonymous case-patient is a 64-year-old male. As shown in
Figure 7, the treatment procedure lasts 24 days with a total of 35
records. Finally, he died unfortunately. As shown in Fig. 7, at the
beginning of the treatment (1st-6th records), the patient’s health
status appears to be improving. However, from day-4 to day-8
(9th-25th records), the patient’s condition is predicted to be dete-
riorating rapidly. The patient’s predicted health risk leaps from
30 (5th record) to 60 (25th record). The ground truth label shows
that the patient dies unfortunately in 15 days. During this period,
Lymphocyte Count, Total Protein and Platelet Large Cell Ratio(P-LCR)
are strongly focused on by DistCare, which are plotted in Fig. 7.
All these biomarkers rise or decrease acutely during this period,
which is regarded as a strong indication of deterioration, leading
to the rapid rise of predicted health risk.

For the COVID-19 pandemic, rapid and effective triage is criti-
cal for early treatment and effective hospital resource allocation.
Through the LOS prediction, doctors can perform a more accurate
assessment of the patient’s future outcomes, giving more individu-
alized treatments for patients. This ensures that the patients can
receive targeted early treatment and remedies on deteriorating
biomarkers.

6 CONCLUSION
In this paper, we propose a distilled transfer learning framework,
DistCare, to perform the length of stay prediction for patients with
COVID-19. In order to embed the medical features robustly, the
model is trained to imitate the teacher model’s medical embedding
behavior via soft distillation supervision. The experimental results
on real-world COVID-19 datasets show that DistCare consistently
outperforms several competitive baseline methods, and may benefit
the intelligent prognosis for tackling future emerging infectious
diseases.
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