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Abstract: Lithium zirconate is a candidate material in the design of electrochemical devices and
tritium breeding blankets. Here we employ an atomistic simulation based on the classical pair-wise
potentials to examine the defect energetics, diffusion of Li-ions, and solution of dopants. The Li-
Frenkel is the lowest defect energy process. The Li-Zr anti-site defect cluster energy is slightly higher
than the Li-Frenkel. The Li-ion diffuses along the c axis with an activation energy of 0.55 eV agreeing
with experimental values. The most favorable isovalent dopants on the Li and Zr sites were Na
and Ti respectively. The formation of additional Li in this material can be processed by doping of
Ga on the Zr site. Incorporation of Li was studied using density functional theory simulation. Li
incorporation is exoergic with respect to isolated gas phase Li. Furthermore, the semiconducting
nature of LZO turns metallic upon Li incorporation.

Keywords: Li2ZrO3; defects; diffusion; dopants; DFT; classical simulation

1. Introduction

Lithium zirconate (Li2ZrO3 or LZO) is a material of interest for many applications
including electrode or electrolyte in Li-ion batteries [1–3], breeder blanket in nuclear
reactors [4–6] and sorbent capture of CO2 [7–9] due to its chemical and thermal stability.
For battery applications, Li-ion conductivity should be high as battery performance is partly
dependent on it during the charge–discharge process. Experimental work based on nuclear
magnetic resonance (NMR) spectroscopy shows that the Li-ion conductivity in this material
is high and the activation energy is calculated to be ~0.51–0.65 eV [10]. Xu et al. [11]
reported that the rate performance of LiNi0.5Co0.2Mn0.3O2 can be improved by the surface
coating of LZO. Electrochemical performance of LZO was examined experimentally and an
excellent cyclic performance and rate capability reported [1]. In a density functional theory
(DFT) simulation by Ferreira et al. [12], the relevance of vacancy-assisted Li-ion migration
has been discussed.

Defects and dopants can influence a material’s electrochemical property as diffusion of
ions is directly related to the concentration of point defects [13,14]. Particularly, introducing
dopants is a common way to form hyperstoichiometric dopant concentration of oxygen
vacancies or interstitials, which in turn can impact oxygen self-diffusion as they effectively
are the migrating defects [15]. Additionally, dopants can impact the migration energy
barriers. In recent work, Kordatos et al. [16] performed DFT simulations to show that
doping of aliovalent and isovalent cations on the Zr site is an efficient way to form oxygen
vacancies and improve the diffusion and electronic properties of LZO. In the present study,
atomistic simulations based on the classical pair-wise potentials to examine the defects,
dopants and diffusion of Li-ions in LZO. In particular, we studied isovalent dopants on

Energies 2021, 14, 3963. https://doi.org/10.3390/en14133963 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-4826-5329
https://orcid.org/0000-0002-2558-495X
https://doi.org/10.3390/en14133963
https://doi.org/10.3390/en14133963
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14133963
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14133963?type=check_update&version=1


Energies 2021, 14, 3963 2 of 11

the Li and Zr sites for stabilizing LZO and aliovalent dopants on the Zr site for creating
additional Li in LZO. In order to examine the incorporation, we used DFT simulations.

2. Computational Methods

Classical atomistic simulation was performed to calculate the defect energies, Li-ion
migration pathways and solution energies for a variety of dopants. The generalized utilized
lattice program (GULP) [17] was used. This method is based on the short-range (repulsive
Pauli and attractive van der Waals) and long range (Coulombic) ionic interactions be-
tween ions. Short range interactions were modelled using Buckingham potentials (refer to
Table 1) [18–20]. This potential method allows two unbonded atoms to interact and models
the short-range interaction as a function of the intermolecular distance between those atoms.
The Mott–Littleton method [21] was used to model point defects and migrating ions. In this
method, the crystal surrounding the defect is divided into two regions (region I and region
II). In region I, forces exerted by the defects are strong. Therefore, the ions in this region
are relaxed explicitly. As forces in region II are relatively weak, quasi-continuum methods
are used to relax the ions. Polarization of ions was modelled with the core-shell approach.
In previous work, we reported the methodology of calculating migration pathways and
activation energies of migration in detail [22–24].

Table 1. Buckingham potential parameters used [18–20].

Interaction A/eV ρ/Å C/eV·Å6 Y/e K/eV·Å–2

Li+ - O2− 632.1018 0.2906 0.00 1.00 99,999

Zr4+ - O2− 1502.11 0.3477 5.10 1.35 169.617

O2− - O2− 22,764.0 0.1490 43.0 −2.80 31.0

Two-body [Φij (rij) = Aij exp (−rij/ρij) − Cij/rij
6, where A, ρ and C are parameters. The values of Y and K represent

the shell charges and spring constants.

Incorporation of Li was studied using DFT simulation as implemented in the Vienna
ab initio simulation program (VASP) code [25]. This code is based on projected augmented
wave (PAW) potentials [26] and plane wave basis sets. We used a plane wave basis set with
a cut-off of 500 eV in all calculations. For bulk LZO, we used 4× 8× 4 Monkhorst-Pack [27]
k-points. A regular grid of k-points are distributed homogeneously in the Brillouin zone
and sampled in the Monkhorst-Pack method. Reciprocal unit cell is first converted from
the real space and the k-points are sampled based on the reciprocal basis vectors. A 2 × 2
× 2 super cell containing 192 atoms was used to model Li incorporation. For this supercell,
2 × 4 × 2 Monkhorst-Pack k-points were used. The generalized gradient approximation
(GGA) parameterized by Perdew, Burke, and Ernzerhof (PBE) [28] was used to model
exchange correlation. The conjugate gradient algorithm [29] was used to relax both atomic
positions and cell parameters. Short range temporary dispersive interactions were modelled
using zero damping DFT + D3 as parameterized by Grimme et al [30].

3. Results and Discussion
3.1. Structure of LZO

Li2ZrO3 exhibits a monoclinic crystallographic structure with space group of C2/c
(no. 15). Heiba et al. [31] reported the crystal structure of LZO with experimental values are
a = 5.4089 Å, b = 9.0309 Å, c = 5.4144 Å, α = γ = 90◦ and β = 112.50◦. The crystal structure
has ZrO6 octahedral units, which are interconnected by sharing their edges and corners
(see Figure 1). Buckingham potentials used in the classical simulation and PAW potentials
utilized in the DFT simulation were validated by performing geometry optimization
calculations and comparing the relaxed lattice parameters with corresponding experimental
values. There is a reasonable agreement between simulations and the experiment (refer to
Table 2) as explained by Oberkampf et al. [32]
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Figure 1. Monoclinic crystal structure of LZO.

Table 2. Calculated and experimental lattice parameters of monoclinic LZO.

Parameter
Calculated Experiment

[31]

|∆|(%)

Force Field DFT Force Field DFT

a (Å) 5.5912 5.3411 5.4089 3.37 1.25

b (Å) 8.8458 9.0737 9.0309 2.05 0.47

c (Å) 5.4787 5.3874 5.4144 1.19 0.50

α = γ (◦) 90.00 90.00 90.00 0.00 0.00

β (◦) 115.66 111.38 112.50 2.81 0.99

V (Å3) 244.25 243.12 244.35 0.04 0.50

3.2. Defect Energetics

In this section, we calculate the formation energies of point defects (vacancies and
interstitials) using a classical simulation. Frenkel and Schottky defect energies were then
calculated by combining point defect energies and appropriate lattice energies. Anti-site
defects were also calculated. This defect is important as it can influence the diffusion
property of a material. The following reaction equations were constructed to describe the
intrinsic defect processes using the Kröger–Vink notation [33].

Li Frenkel : LiXLi → V′Li + Li•i (1)

Zr Frenkel : ZrX
Zr → V ′′′′Zr + Zr••••i (2)

O Frenkel : OX
O → V••O + O′′i (3)

Schottky : 2 LiXLi + ZrX
Zr + 3 OX

O → 2 V ′′Li + V ′′′′Zr + 3 V••O + Li2ZrO3 (4)

Li2O Schottky : 2 LiXLi + OX
O → 2 V ′′Li + V••O + Li2O (5)

ZrO2 Schottky : ZrX
Zr + 2 OX

O → V ′′′′Zr + 2 V••O + ZrO2 (6)

Li/Zr antisite (isolated) : LiXLi + ZrX
Zr → Li′′′Zr + Zr•••Li (7)

Li/Zr antisite (cluster) : LiXLi + ZrX
Zr →

{
Li′′′Zr + Zr•••Li

}X (8)

The defect energies are tabulated in Table 3. The lowest defect formation energy is
calculated for the Li Frenkel (1.09 eV/defect) as reported in a previous DFT simulation [13].
The Li-Zr anti-site cluster defect energy is higher only by 0.37 eV compared with the Li-
Frenkel. In this defect, a small amount of Li and Zr atoms would exchange their positions
simultaneously. However, this defect process would not take place spontaneously and
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would be dependent on the temperature and synthetic conditions. The difference in energy
between the isolated and cluster forms of the anti-site defect is the binding energy. Here,
the binding energy is calculated to be –1.42 eV. The presence of the anti-site defect has
been reported in many experimental and theoretical studies [34–36]. This means isolated
defects form clusters without any energy penalty. The Li2O Schottky defect is the lowest
energy process among other Schottky processes. The formation of Li2O can destabilize
the lattice. Such a destabilization can degrade the battery performance. The Zr Frenkel is
higher in energy (by 3.59 eV) than the O Frenkel. This is due to the high formation energy
of introducing Zr vacancy with +4 charge.

Table 3. Defect formation energies of intrinsic defect process calculated in monoclinic LZO.

Defect Process Equation
Number

Defect Energy
(eV)

Defect Energy
(eV)/Defect

Li Frenkel (1) 2.18 1.09

Zr Frenkel (2) 13.64 6.82

O Frenkel (3) 6.46 3.23

Schottky (4) 14.6 2.45

Li2O Schottky (5) 6.74 2.25

ZrO2 Schottky (6) 9.97 3.32

Li-Zr anti-site (isolated) (7) 5.76 2.88

Li-Zr anti-site (cluster) (8) 2.92 1.46

3.3. Diffusion of Li-Ions

Here, we discuss the diffusion of Li-ions and their activation energies. Classical atom-
istic simulations [37] were used to examine the Li-ion diffusion pathways and migration
energies. Diffusion property of a materials is partly important in constructing a promising
Li-ion battery. The identification of the diffusion ion pathways through experimental inves-
tigation is often challenging. Computational modelling has been shown to be a powerful
tool to determine the migration pathways and activation energies [38–40]. Five different
local Li hops (A–E) were identified, as shown in Figure 2. In Table 4, we report the Li hop
distances and activation energies. Figure 3 shows the energy profile diagrams plotted for
Li hops.

Figure 2. Li-ion diffusion pathways. Green, yellow, blue, grey and pink color atoms correspond to
different Li hops.
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Table 4. Li hop distances and their activation energies as shown in Figure 2.

Diffusion Path Li-Li Separation (Å) Activation Energy (eV)

A 2.78 0.65

B 2.95 0.63

C 3.02 0.55

D 3.12 0.96

E 3.24 1.23
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The hop C exhibits the lowest activation energy. A long range diffusion pathway
(C→C→C→C) consisting of hop C was constructed. This pathway has a pattern of zig-zag
and Li-ion moves in the bc plane (see Figure 2). The difference in the activation energies
calculated for hops A (0.65 eV) and B (0.63 eV) is very small. While there is a long range
diffusion possible for hop B (B→B→B→B) in the ac plane with an overall activation energy
of 0.63 eV, the diffusion of hop A is limited along the b axis. Another possible long range
diffusion pathway (D→D→D→D) can be constructed by connecting local hops D in the bc
plane. However, its activation energy is higher by 0.41 eV than that calculated for the lowest
migration pathway (C→C→C→C). Finally, hops E were connected. In this long range
diffusion (E→E→E→E), activation energy is relatively high. In a Li-NMR study carried
out by Baklanova et al. [10], the activation energy for Li-ion migration was estimated
to be 0.50–0.65 eV. This is in good agreement with the values calculated in this study.
In a DFT simulation by Ferreira [12], a range of activation energies were reported with
respect to reactants and products. Activation energies calculated from the products and
reactants in the vacancy-assisted Li-ion diffusion are 0.651 eV and 0.749 eV respectively [12].
These values agree with those reported in this study, although DFT simulations treated Li
vacancies as neutral in contrast to the current simulation where all defects were modelled
as fully charged ions.

3.4. Solution of Dopants

Modification of material properties can be achieved through cation doping. In this
strategy, isovalent doping requires no charge-compensating defect, whereas aliovalent
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doping can introduce point defects (vacancies and interstitials) in the lattice. The degree
of disorder of a material is influenced by the concentration of point defects. Furthermore,
point defect concentration increases exponentially with an increasing temperature [41].
Here we examined a variety of dopant ions using classical simulation. Table S1 in the
Supplementary reports the Buckingham potentials used for dopants in this study (see
Table S1).

3.4.1. Isovalent Dopants

First, doping of isovalent dopants (M = Na, K and Rb) on the Li site was considered as
explained by the following reaction equation:

M2O + LiXLi → 2 MX
Li + Li2O (9)

Figure 4a reports the solution energies with respect to the radii of the dopant ions.
Exothermic solution energy of −0.10 eV is calculated for Na+. The Li+ has an ionic radius
of 0.76 Å. The favorability of Na+ can be partly due to its ionic radius (1.02 Å), closer to
that of Li+. Solution energies are positive for both K+ and Rb+. The highest solution of
energy of 4.98 eV is calculated for Rb+, meaning that this dopant is highly unlikely for the
doping process under normal temperatures.
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Next, tetravalent dopants (M = Si, Ge, Ti, Sn and Ce) were considered for doping on
the Zr site. The following reaction equation describes the doping process.

MO2 + ZrX
Zr → MX

Zr + ZrO2 (10)

Exothermic solution energies are calculated for Ge4+, Ti4+ and Sn4+. The most fa-
vorable dopant is the Ti4+ with a solution energy of −1.85 eV. Solution energy for Si4+ is
0.18 eV. The endoergic solution energy for this dopant is owing to the ionic radius of Si4+

(0.40 Å) deviating much from that of Zr4+ (0.72 Å). The Ce4+ exhibits the largest solution
energy of 1.31 eV.

3.4.2. Aliovalent Dopants

The formation of extra Li+ ions in LZO can be of interest to enhance the capacity of
LZO for both battery and nuclear applications. Doping of trivalent cations (Al, Ga, Sc, In,
Y, Gd, and La) was considered on the Zr site. This doping process will create Li interstitials
based on the following reaction equation:

M2O3 + 2 ZrX
Zr + Li2O → 2 M′Zr + 2 Li•i + 2 ZrO2 (11)

Ga is the promising dopant for this process (refer to Figure 5). Solution energies
calculated for Sc and In are higher only by 0.09 eV and 0.19 eV respectively compared
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with that calculated for Ga. The dopant Al has a solution energy of 2.09 eV. There is an
increase in the solution energy with an ionic radius from Ga to La. The highest solution
energy calculated for La indicates that this dopant is an unfavorable dopant under normal
conditions. The possible doped configuration that can be prepared by the experiments is
Li2+xGaxZr1-xO3 (x = 0.0–1.0).

Figure 5. Solution energies calculated for M2O3 (M = Al, Ga, Sc, In, Y, Gd, and La) on the Zr site with
respect to the M3+ ionic radius.

3.5. Li Incorporation in LZO

Simulations based on DFT were employed to examine the Li incorporated geometries
and their electronic structures. Calculated total density of states (DOS) plot of bulk LZO is
shown in Figure 6. Previous DFT simulation by Duan [42] shows that LZO is a wide gap
semiconductor (band gap of 3.90 eV) which is in agreement with the calculated band gap
of 3.60 eV in this study (see Figure 6). The net magnetic moment of the relaxed structure of
bulk LZO is zero, as evidenced by the total DOS plot where spin-up states are the mirror
image of spin-down states about the x-axis.

Figure 6. Total DOS plot of LZO. Vertical dot line corresponds to the Fermi energy level.
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We have subsequently incorporated four Li atoms. Relaxed structures are shown in
Figure 7. Incorporation is exoergic with respect to gas-phase Li atoms and endoergic with
respect to Li metal (see Table 5). This is because of the higher endoergic dissociation energy
to form Li atoms from bulk Li than the exoergic incorporation energy of gaseous Li atoms.
The first two Li atom incorporation is highly negative compared with that of the third and
fourth. Bader charge analysis [43] shows that Li atoms are positively charged and form
strong bonds with oxygen in the lattice. Bader charge analysis uses partitioning method to
calculate electronic charges on individual atoms in the lattice. Using Zero flux surfaces,
atoms are divided and charge density is partitioned. There is a gradual increase in volume
upon each Li incorporation.

Figure 7. Relaxed structures of (a) a single Li, (b) 2Li, (c) 3Li and (d) 4Li incorporated in LZO.

Table 5. Calculated energies to incorporate Li atoms into LZO, Bader charges on the Li atoms and
volume expansion upon successive incorporation.

Reaction Incorporation
Energy (eV)

Bader Charge
(|e|) ∆V (%)

Li + Li2ZrO3 → Li.Li2ZrO3 −1.15 eV (0.52 eV) +1.00 1.21

Li + Li.Li2ZrO3 → 2Li.Li2ZrO3 −1.12 eV (0.55 eV) +1.00 (2) 2.16

Li + 2Li.Li2ZrO3 → 3Li.Li2ZrO3 −0.60 eV (1.07 eV) +1.00 (3) 2.37

Li + 3Li.Li2ZrO3 → 4Li.Li2ZrO3 −0.85 eV (0.82 eV) +1.00 (4) 2.73

Calculated total DOS plots of Li-incorporated structures are shown in Figure 8. In-
corporation shifts the Fermi level towards the conduction band. This is because of an
additional electron created by each Li incorporation. In all cases, Fermi level is occupied by
states associated with Li and the resultant composites became metallic.
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Figure 8. Total DOS plots of (a) a single Li, (b) 2Li, (c) 3Li and (d) 4Li incorporated in Li2ZrO3. Corresponding Li atomic
DOS plots (e–h) are also shown.

4. Summary

Defect properties, diffusion of Li-ion, solution of dopants and Li incorporation were
investigated using classical and DFT simulations. Calculations find that the dominant
defect in this material is the Li-Frenkel, ensuring the formation of Li vacancies. The next
most favorable defect is the Li-Zr anti-site defect cluster. Li-ion diffusion is noted along
the c axis and its activation energy is 0.55 eV. The isovalent dopants on the Li and Zr
are calculated to be the Na and Ti respectively. The promising dopant on the Zr site
to create extra Li in the lattice is Ga. DFT simulations show that incorporation of Li is
exoergic with respect to gas phase Li. The metallic nature of the resultant composite is
confirmed by the formation of Li+ ions and electrons in the lattice. The results reported
in this study can be validated by experiments for the development of Li-ion batteries and
tritium breeding blankets.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/en14133963/s1. Table S1. Interatomic potential parameters used for dopant in the atomistic
simulations of Li2ZrO3.
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