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Abstract 
The construction sector is the largest consumer of raw materials and accounts for 25% to 40% of the 

total CO2 emissions globally. Besides, construction activities produce the highest amount of waste 

among all other sectors. According to the waste hierarchies, reuse is preferred to recycling; 

however, most of the recovery of construction and demolition wastes happens in the form of 

recycling and not reuse. Part of the recent efforts to promote the reuse rates includes estimating the 

reusability of the load-bearing building components to assist the stakeholders in making sound 

judgements of the reuse potentials at the end-of-life of a building and alleviate the uncertainties and 

perceived risks. This study aims to develop a probabilistic model using advanced supervised machine 

learning techniques (including random forest, K-Nearest Neighbours algorithm, Gaussian process, 

and support vector machine) to predict the reuse potential of structural elements at the end-of-life 

of a building. For this purpose, using an online questionnaire, this paper seeks the expertμ͞ opinions 

with actual reuse experience in the building sector to assess the identified barriers by the authors in 

an earlier study. Furthermore, the results of the survey are used to develop an easy-to-understand 

learner for assessing the technical reusability of the structural elements at the end-of-life of a 

building. The results indicate that the most significant factors affecting the reuse of building 

structural components are design-related including, matching the design of the new building with 

the strength of the recovered element. 

Keywords 
Reuse; Building structure; Supervised machine learning; Random forest; K-Nearest Neighbors; 

Gaussian process 

1. Introduction 
The construction sector is a leading economic sector that employs around 7% of the global 

workforce [1] and accounts for 6% to 9% of the Gross Domestic Product (GDP) worldwide [2]. The 

construction industry is also a leader in the consumption of resources and the emission of 

greenhouse gases (GHG) [3,4]. According to [4], this sector is the largest consumer of raw materials, 

and the construction-related activities account for 25% to 40% of the total CO2 emissions globally. 

Besides, construction activities produce the highest waste among all other sectors [5–8]. 

According to [9], most of the embodied energy and CO2 impacts of buildings are related to the load-

bearing systems. Therefore, methods for extending the life of the structure of buildings can 

potentially improve the environmental footprint of this sector. 

According to the waste hierarchies, reuse is preferred to recycling [10,11]; however, most of the 

recovery of construction and demolition wastes (CDW) happens in the form of recycling and not 

reuse. For example, nearly 91% of the non-hazardous CDW of the UK is recovered through recycling 

[5]. While recycling can divert waste from landfills, the processes involved are energy and resource-

intensive and impose a noticeable pressure on the environment in terms of GHGs and other sorts of 

emissions [12,13]. On the other hand, reused load-bearing building elements (beams, columns, 

truss, etc.) have far lower environmental impacts when compared with recycled materials [14]. The 

above fact is primarily due to significantly lower treatment and reprocessing required for reusing 

these components than recycling them [15]. 

Although efforts have been made to increase the reuse rates of building structural elements in 

recent years, there are yet no signs of improvements. Contrarily, the reuse rates in the building 

sector have declined in the last two decades in countries like the UK, and only a fraction of load-
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bearing building components are reused [12,16]. Part of the recent efforts to promote the reuse 

rates includes estimating the reusability of the load-bearing building components to assist the 

stakeholders in making sound judgements of the reuse potentials at the end-of-life of a building and 

alleviate the uncertainties and perceived risks. However, the continuous decline in reusing the 

structural elements of buildings shows the need to develop robust interdisciplinary reusability 

evaluation tools to improve the reuse rates. 

In 2020, [17] conducted a systematic literature review to identify factors affecting the reuse of the 

structural elements of a building at the end of its lifecycle (known as the reusability factors in this 

article). The authors reviewed 76 journal papers and identified main reuse barriers and drivers. They 

classified these factors under six categories and twenty-three subcategories. They eventually studied 

the interdependencies between the reuse barriers. While the authors concluded that a holistic 

approach is required to promote the reuse of load-bearing building components, they advised 

prioritising the social, economic, and regulatory barriers. 

While the reviewed articles by Rakhshan et al. [17] show that a wide range of studies has extensively 

tried to identify the barriers ahead of the widespread reuse of building structural elements, they did 

not provide any indication of the reusability of these components based on the identified barriers. 

Some authors recognised this gap and attempted to fill it by estimating the physical properties 

(dimensional or mechanical) of the recovered building structural elements as an indication of their 

reusability and ignored the impact of other variables. 

For instance, focusing on the dimensional aspect, [18] studied the impact of accurate geometric 

characterisation of the steel structure of a building (at its end-of-life) on the decision process for 

reusing the structural components. The authors initially developed a decision-making framework to 

facilitate the stakeholders in identifying the reuse potentials for recovered building structural steel. 

They then presented an automated object recognition algorithm to identify the member cross-

sections. They eventually performed a reliability analysis to evaluate the performance of the 

proposed geometric identification method. Based on the results of the reliability analysis, the 

authors proposed a semi-automatic geometric identification method to enable designers to employ 

the reused structural elements at their maximum capacity. 

In another study focused on determining the physical properties of the structural steel, the authors 

developed a performance evaluation procedure to estimate the mechanical properties of reused 

structural elements using non-destructive testing (NDT) [19]. Fujita and Kuki [19] estimated the 

Vickers hardness using portable ultrasonic hardness testers and rebound-type portable hardness 

meters. They used the estimated values as the basis to calculate the mechanical properties of the 

reusable elements. The results of the test specimens showed good agreement with the standard 

values. 

Similarly, [20] used wireless sensors to monitor the stresses induced during the construction of a 

steel-framed building to evaluate the reusability of steel members. According to this study, the 

authors observed that the maximum measured stresses were almost half of the nominal yield 

strength, confirming that the current design practices allow the reuse of structural steel (see also 

[21] for similar studies in different systems and industries). 

In a relevant study focused on estimating the mechanical properties of timber, [22] developed linear 

regression models to predict the Modulus of Elasticity and Modulus of Rupture of in-use and 

recovered timber sections based on the NDT methods. According to this study, the developed 

models can assess the reusability of timber structures on site. Notwithstanding, the proposed linear 
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regression-based models are too simple to model the complex system described above, and the 

predicted values are not accurate. Therefore, the derived results using the linear regression models 

are not reliable, and considerable care should be taken to use the outcomes of this study. However, 

this study shows the substantial potential of the machine learning techniques in determining the 

reusability of the load-bearing building components. 

The above studies concentrate on discovering the technical reusability of the building structure by 

focusing on one aspect, like determining the mechanical properties or dimensional details of 

potential structural components for reuse. The only exception is a study performed by [23], in which 

the authors developed an indicator for estimating the technical reusability of steel-framed buildings 

considering a combination of variables. These variables include the impact of disassembly technique, 

handling, availability of the earlier design documents, potential new deployment (same purpose or 

repurposing), and the need for quality and dimensional checks. Nevertheless, this study is limited to 

steel-framed industrial buildings, the developed predictive method is not based on actual reused 

components, and the interdependencies of the affecting variables are not considered. 

This study aims to develop a model that can efficiently and accurately predict the reuse potential of 

structural elements at the end-of-life of a building based on φΆ͊ ͊ϲε͊θφμ͞ ΩεΉ΢ΉΩ΢μ using several 

advanced supervised machine learning methods. For this purpose, using an online survey, this paper 

uses the expert opinion of the professional experts in the building sector with actual reuse 

experience to assess the identified barriers by the authors in an earlier study [17]. This paper is a 

part of a series of studies that tend to provide a set of interdisciplinary predictive tools to assess the 

technical, economic, and social reusability of a building's structural components. In this study, the 

focus is on the technical reusability of these components, which is defined as the extent to which a 

reused structural element in its new life could perform similarly to its earlier life. 

The paper continues with the research method (Section 2), results and discussions (Section 3), and 

the conclusion (Section 4). 

2. Method and data collection 
This study μ͊͊Θμ φΆ͊ ͊ϲε͊θφμ͞ ΩεΉ΢ΉΩ΢s to quantify the factors affecting the reuse of building 

structural elements and intends to develop a predictive model to determine the technical reusability 

of the load-bearing components using supervised machine learning techniques. 

ΐΆ͊ ͊ϲε͊θφμ͞ ΩεΉ΢ΉΩ΢μ were elicited by developing a comprehensive online questionnaire survey 

research methodology in this field to provide a numeric description of the variables described above 

and a primary evaluation of the relationship between the variables. Using the Online Surveys [24], an 

online questionnaire survey was developed based on an earlier systematic literature review 

performed by the authors [17], and its link was shared with the potential respondents. In this study, 

the variables (reusability factors) identified in the questionnaire (both independent and dependent) 

are in the form of closed questions with the Likert-style ratings [25]. While the Likert response sets 

can include four or more points, this study uses a five-point system, which is more common [26]. A 

copy of the survey is available in Appendix A. It should be noted that some questions in the provided 

copy are removed because they target other aspects of the reusability of the structural components 

of a building, which are not covered in this study. 

In this questionnaire, Section A contains demographic questions and seeks the details of the 

respondents. Section B deals with the structural element that the respondent used in the past and 

would complete the rest of the questionnaire by referring to it. This section contains 11 questions 

and is in two parts. Questions 1 to 6 seek the details of the reused element, and 7 to 11 compare the 
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current use of the component (or use after deconstruction) with its previous deployment before it 

was removed/deconstructed from a building. Section C is concerned with the barriers to reuse, as 

identified by the authors during a systematic literature review [17]. Section D contains those factors 

that can act as either a barrier or a driver in different circumstances. And Section E inquires the 

reusability of the structural element that the respondent used before and, based on that, replied to 

the questions in Sections B, C & D. 

In total, 481 invitations were sent to the experts to complete the online questionnaire. To increase 

the response rate, the corresponding author sent out several reminders in fixed intervals to the 

potential respondents. As advised by [27], the first reminder was sent one week after sending the 

questionnaire link to the recipient. A second reminder was sent after three weeks, and a third 

follow-up email was sent after another two weeks. After all the above steps, the total number of 

received questionnaires reached 90, yielding a response rate of 18.7%. 

As shown in Table 1, 67.7% of the respondents are managers (44.6%) and top managers (23.1%), 

10.8% are architects, 7.7% are engineers, 4.6% are consultants, 4.6% are deconstruction experts, and 

others are reuse experts and construction waste prevention experts. In this study, all the experts 

ϭ͊θ͊ ΛΩ̼̮φ͊͆ ϡμΉ΢ͼ φΆ͊ ̼ΩΡε̮΢Ή͊μ͞ ϭ̻͊μΉφ͊μ ̮΢͆ ͪ Ή΢Θ͊͆͛΢΄ It should be noted that for selecting the 

potential respondents, using the provided information on their LinkedIn page or company website, 

the education and background of the reuse experts were carefully reviewed to make sure they 

match the desired profile. According to the provided details, all selected experts had more than six 

years of experience in the construction sector. Moreover, most of them were either civil/structural 

engineers by education or were closely working with civil/structural engineers. Please refer to 

another publication by the same authors focused on the economic reusability of the load-bearing 

building components for a broader explanation of the sampling technique employed in this research 

[28]. 

Table 1 Position of the respondents. 

Position of the respondent Percentage (%) 

Architect 10.8 

Consultant 4.6 

Deconstruction expert 4.6 

Designer 1.5 

Engineer (Civil/Structural) 7.7 

Manager (e.g. project managers, design managers, marketing 
manager, etc.) 

23.1 

Reuse expert 1.5 

Top manager (e.g. head managers, owner of companies, 
executive managers, managing director, CEO, etc.) 

44.6 

Waste prevention specialist 1.5 

The reliability of the responses refers to the capacity of the results to be reproduced by other 

researchers. Therefore, reliability is linked with the respondents being representative of the 

targeting population. While one of the indicators of reliability is the response rate, it is still possible 

to have a low response rate with a sample that represents a population [29]. Because this study 

targets experts with previous experience in reusing the structural elements of a building, the chance 

that the questionnaire is completed by an inexperienced respondent is low. Moreover, at the 

beginning of the online questionnaire, and after elaborating the focus of the research, the 

respondent should answer a question about his/her previous experience with reused building 
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structural elements. All the respondents confirmed that they have this experience. Hence, they are 

representative of the target population. 

Another option to check the reliability of a questionnaire is checking the internal consistency of the 

θ͊μεΩ΢μ͊μ ̻ϳ ̼̮Λ̼ϡΛ̮φΉ΢ͼ �θΩ΢̻̮̼Ά͞μ ̮ΛεΆ̮ Ϭ̮Λϡ͊ [27]. In this study, before using the collected data to 

develop the models, the authors checked the reliability of the survey by checking the internal 

̼Ω΢μΉμφ͊΢̼ϳ Ω͔ φΆ͊ θ͊μεΩ΢μ͊μ ̻ϳ ̼̮Λ̼ϡΛ̮φΉ΢ͼ φΆ͊ �θΩ΢̻̮̼Ά͞μ ̮ΛεΆ̮ Ϭ̮Λϡ͊ ϡμΉ΢ͼ Ί΃ΊΊ Ϭ͊θμΉΩ΢ 25΄ ͔͛ 
�θΩ΢̻̮̼Ά͞μ ̮ΛεΆ̮ Ϭ̮Λϡ͊ Ήμ ͊ηϡ̮Λ φΩ Ωθ ͼθ̮͊φ͊θ φΆ̮΢ 0΄7΁ φΆ͊΢ φΆ͊ ̼ΩΡ̻Ή΢̮φΉΩ΢ Ω͔ φΆ͊ ηϡ͊μtions 

measures the same thing [30]. Nevertheless, while 0.7 depicts acceptable reliability, higher values up 

to 0.9 are more desirable [31]. 

�̮μ͊͆ Ω΢ φΆ͊ θ͊ΛΉ̮̻ΉΛΉφϳ ̮΢̮ΛϳμΉμ΁ φΆ͊ Ϭ̮Λϡ͊ Ω͔ φΆ͊ �θΩ΢̻̮̼Ά͞μ ̮ΛεΆ̮ ͔Ωθ φΆΉμ μϡθϬ͊ϳ μ̮φΉμ͔Ή͊μ φΆ͊ 

minimum requirement of 0.7. In fact, in most cases, this value is above 0.9. The only exception is the 

reliability of questions B10 and B11. These questions Ά̮Ϭ͊ ̮ �θΩ΢̻̮̼Ά͞μ ̮ΛεΆ̮ Ω͔ 0΄263΁ ϭΆΉ̼Ά Ήμ 

below the minimum acceptable value of 0.7 [30]. Hence, questions B10 and B11 were not used in 

constructing the models of interest in this study. Nevertheless, checking the reliability of the 

θ͊μεΩ΢μ͊μ ϡμΉ΢ͼ �θΩ΢̻̮̼Ά͞μ ̮ΛεΆ̮ Ϭ̮Λϡ͊ θ͊Ϭ̮͊Λ͊͆ ̮ ΆΉͼΆ ̼Ω΢μΉμφ͊΢̼ϳ Ω͔ φΆ͊ θ̼͊͊ΉϬ͊͆ ηϡ͊μφΉΩ΢΢̮Ήθ͊μ΄ 
The results of the reliability analysis are available in Appendix B. 

3. Results and discussion 
The unit of analysis of this study is the structural elements of a building. Initially, the authors used a 

non-parametric test to evaluate if there are statistically significant differences between the types of 

structural elements (question B1) regarding the independent and dependent variables asked in the 

questionnaires. The null hypothesis is that there is no difference between the groups of structural 

elements. The purpose of this test is to make sure that combining the responses for all the 

components for further analysis will not affect the overall reliability of the dataset. Using SPSS 

version 25, the Kruskal-Wallis H test is performed at the 5% significance level to determine if the 

type of the element (question B1) affects the scores provided for the factors affecting the reusability 

of the structural components [30]. As presented in Appendix B, the Kruskal-Wallis H test results 

indicate that none of the p-values of the technical factors is less than 0.05 and that there is not 

enough evidence to reject the null hypothesis. Therefore, it can be concluded that the entire dataset 

can be used for further analysis regardless of the type of structural element the respondents 

considered to complete the survey. 

Based on the reliability analysis illustrated in Section 2 and the result of the Kruskal-Wallis H test (the 

above discussion), the type of the element (B1), the amount of load supported by the component 

(B10), and its life expectancy (B11) are excluded from the list of features used for developing the 

predictive models. 

3.1 Developing the best-practice predictive model 
Since this study aims to predict if a structural element at the end-of-life of a building is reusable or 

not, the outcome of the predictive models should be binary (non-reusable or reusable). Therefore, 

following the approach adopted by [32], the authors converted the response (question E1 in 

Appendix A) to a binary scale with 0, for non-reusable, and 1, for reusable. While this conversion 

simplifies the interpretation of the results by the practitioners, the proposed methodology in this 

study can be conveniently generalised to multi-classes responses variable. Instead of relying on five 

points to decide if a component is reusable or not, the stakeholders have a straightforward basis for 

deciding on the fate of a structural element. Likewise, for a supervised machine learning method to 

perform effectively with a multi-class response, a large sample size is required. However, since the 
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reuse of the load-bearing components of a building is not a widespread practice, collecting more 

data was not practical. Moreover, the uncertainties in the assessment of the reusability factors 

(features or independent variables), which is based on expert opinion, limits the effectiveness of a 

multi-scale response. Therefore, the authors categorised the dependent variables with Likert scale 

values of 1 to 3 as non-reusable (represented by 0) and the remaining responses (Likert scale values 

4 and 5) as reusable (converted to 1). Consequently, the dependent variable (E1) transforms from a 

multi-scale response to a binary response. 

3.1.1 Oversampling 
After converting the multi-scale responses to binary ones, it was observed that there was a 

considerable imbalance in the classification with 34% (non-reusable) and 66% (reusable) responses. 

While the questionnaire was distributed to a wide range of professionals in the building sector, it 

was observed that the respondents with successful reuse experience were more responsive. It can 

be argued that the initial data collection could be continued to have more balanced responses; 

however, due to the time constraints, as well as the limited number of experts in this field, this 

option was not practical. Nevertheless, even if the data collection continues, since the respondents 

are free to choose any structural component with any level of reusability to complete the 

questionnaire, it is impossible to guess the outcome of the new survey, which might end up with a 

similar imbalanced dataset. 

In this study, the oversampling technique developed by [33] is employed to pre-process the datasets 

and minimise the class imbalance impact. This technique is identified as Synthetic Minority Over­

sampling Technique (SMOTE) by the developers. Unlike other oversampling techniques that rely on 

replacement in data space [34], the SMOTE technique creates synthetic examples of the minority 

class in feature space using the K-Nearest Neighbours (KNN) algorithm (with the default value for 

k=5) [33]. 

In this study, following the approach adopted by [35–38], the SMOTE was performed on the 

imbalanced dataset discussed above, which resulted in a new dataset with 192 observations. This 

new dataset, which contains the collected data using the online survey, is used to develop the 

predictive models in this study. A comparison between the oversampled and original dataset reveals 

that the imbalance has improved from 34% (non-reusable) and 66% (reusable) to 50% (non­

reusable) and 50% (reusable). In this study, R package mlr [39] is used to perform SMOTE-NC 

(SMOTE for Nominal and Continuous) [33]. 

3.1.2 Feature selection 
Feature selection is a vital stage in supervised machine learning [40]. It includes selecting a subset of 

features (independent variables) in a dataset for efficient and optimum analysis of the problem in 

hand [40,41]. In supervised machine learning, there is always a chance that some variables are 

irrelevant to the response or redundant. In such cases, their presence negatively affects the 

performance of a predictive model. Proper feature selection results in the development of predictive 

models that perform optimally on both seen and unseen data. Therefore, feature selection focuses 

on identifying relevant features and discards irrelevant or redundant independent variables [42]. In 

this study, feature selection is performed using recursive feature elimination (RFE) methods. For this 

purpose, the authors computed RFE methods in R (version 4.0.2) using some functions embedded in 

the Caret package [43,44]. 

RFE is known as a backward variable selection wrapper technique [45]. Initially, a dedicated machine 

learning method is used to develop a model with all available independent variables and rank the 

features based on a measure of importance. Next, the least important feature is eliminated, and a 
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new model is developed based on a smaller number of variables. Then, the remaining independent 

variables are re-ranked [45]. In this method, the model identifies two parameters: the first 

parameter is the number of subsets to evaluate, and the second parameter is the number of 

features in each of the subsets. For each subset, the method continues to eliminate the least-

important features until it reaches the determined subset size. Next, it compares the performance of 

each subset and determines the best subset size with the best accuracy [45]. In this study, the 

performance of the wrappers is assessed using k-fold cross-validation (k=10), which repeats five 

times. 

Figure 1 shows the graphs representing the performance of these RFE models based on the ranks of 

the variables. In these graphs, the performances of the wrapper models are plotted based on the 

rank of the variables. For instance, in the Random Forests graph (panel A of Figure 1), the accuracy 

of the model using only C28 is around 65%. By adding variables based on their rank (Table 2), the 

accuracy of the model improves. In the case of the Random Forests graph, after adding D24, the 

accuracy increases to 71%, and so on (panel A of Figure 1). 
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Figure 1 Performance of the RFE based on the ranks of the features. Panel A: Random Forests. Panel B: Naïve Bayes. Panel 
C: Decision Trees (Bagging). Panel D: Caret Function (Random Forests). The red circle shows the maximum achieved 

accuracy. 
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The results of variable selection are presented in Table 2. According to Table 2, the complete list of 

all selected variables that were used for developing the predictive models are as follows: B3; B5; B6; 

B7; B8; B9; C1; C2; C3; C5; C6; C9; C10; C12; C15; C16; C17; C18; C19; C20; C25; C27; C28; D22; D23; 

D24. 

Table 2 Status and rank of the variables using the RFE method. 

Variable RFE 
Random 
Forests 

RFE Naïve 
Bayes 

RFE 
Decision 
Trees 
(Bagging) 

RFE Caret 
Functions 
(Random 
Forests) 

Final 
decision 

B2 38 Rejected 26 Rejected 

B3 4 8 2 2 Selected 

B4 37 38 Rejected Rejected 

B5 5 33 3 3 Selected 

B6 28 27 20 29 Selected 

B7 18 13 14 14 Selected 

B8 11 7 8 16 Selected 

B9 20 29 18 19 Selected 

C1 12 37 12 10 Selected 

C2 27 17 23 23 Selected 

C3 24 22 24 30 Selected 

C4 33 34 25 Rejected 

C5 29 26 28 28 Selected 

C6 16 14 9 13 Selected 

C7 30 11 Rejected 27 

C8 39 32 Rejected Rejected 

C9 15 25 19 15 Selected 

C10 14 15 15 17 Selected 

C11 35 24 Rejected 33 

C12 9 36 16 11 Selected 

C13 32 28 Rejected Rejected 

C14 31 16 Rejected 34 

C15 21 20 17 22 Selected 

C16 3 3 5 4 Selected 

C17 7 5 11 7 Selected 

C18 19 18 27 21 Selected 

C19 17 10 22 20 Selected 

C20 10 9 13 12 Selected 

C21 26 21 Rejected 26 

C25 6 2 6 5 Selected 

C26 25 12 Rejected 24 

C27 13 6 10 9 Selected 

C28 1 1 1 1 Selected 

D18 34 35 Rejected 31 

D19 23 23 Rejected 25 

D21 36 31 Rejected 32 

D22 22 30 21 18 Selected 

D23 8 19 7 8 Selected 

D24 2 4 4 6 Selected 
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3.1.3 Models development 
The process of selecting an appropriate method for developing a predictive model using machine 

learning techniques is of ample importance because there is not a unique best model available for all 

problems [46]. This study intends to develop a predictive model to estimate the technical reusability 

of the structural elements at the end-of-life of a building with the highest possible accuracy. While 

accuracy is a driving metric in choosing a model, the interpretability of the selected model plays an 

important role, as well [47]. It is because this study intends to provide an easy-to-understand model 

that can be used by various stakeholders in the building sector who necessarily might not be able to 

use complex predictive models [47,48]. The above property is essential for the selected predictive 

model because it encourages the stakeholders to use the model effectively. 

Based on the above discussion, it seems reasonable to choose interpretable methods such as linear 

discriminant analysis to develop the model [49]. Nevertheless, interpretable models are not always 

accurate and might have a high bias in their predictions [46]. It is because these models are mostly 

less flexible, and some of them consider a functional form for the relationship between the 

predictors and the response (parametric models) [46]. On the other hand, there are very flexible 

models such as the support vector machine (SVM) or KNN classifier (mostly nonparametric methods) 

that produce models with very accurate predictions on the training dataset [46,50–52]. However, 

this flexibility comes at the cost of losing interpretability, high variance, and sometimes overfitting, 

which results in inaccurate predictions on unseen data [46]. Therefore, in selecting the proper 

method for developing a predictive model, this trade-off between bias and variance should be 

considered [51,53,54]. 

Besides, the limited number of observations in the dataset and unawareness of the nature of the 

relationship between the predictors (independent variables) and the response brought new 

dimensions to the challenge of selecting a proper machine learning method. Therefore, it was 

decided to study a wide range of machine learning methods to develop an optimum predictive 

ΡΩ͆͊Λ΄ ΐΆ͊ ̮̻ΩϬ͊ ̼͆͊ΉμΉΩ΢ Ήμ Ή΢ ΛΉ΢͊ ϭΉφΆ φΆ͊ Ά΢Ω ͔θ͊͊-Λϡ΢̼Ά͞ φΆ͊Ωθ͊Ρμ μϡͼͼ͊μφ͊͆ ̻ϳ [55]. These 

models are listed in Table 4. Details of these models could be found in Appendix D and [51,53,56]. 

It should be noted that, as described in Appendix D and mentioned in the footnote of Table 4, K-

Nearest Neighbours (KNN), Random Forests (RF), Artificial Neural Networks (ANN), and Support 

Vector Machines (SVM) use hyperparameters, which require to be set before training\predicting the 

reusability of the structural elements using these methods. For further details about encoding the 

hyperparameters, please refer to Section 3.2.2 of [51]. 

3.1.4 Model selection 
The accuracy and interpretability of any machine learning model play an important role in choosing 

the best predictive model for the study at hand [46]. In this study, a k-fold Cross-Validation (kfCV) 

method with k=10 is employed to assess the performance of the developed models. In the kfCV 

method, the original dataset is randomly divided into k folds (k groups of observations) with 

approximately equal size [46]. Then, the first fold is used as the testing set, and the k-1 remaining 

folds are used to train a predictive model. Next, the performance of the fit is determined using the 

held-out set. The process repeats k times with all folds, and each time a different group of 

observations is considered as the validation set. Simultaneously, the performance results are 

recorded for all k folds, and eventually, the performance of the predictive model is determined using 

the mean performances of the k folds. According to James et al. [46], while k can take any number 

less than n (n is the number of observations in a dataset), values of k equal to 5 or 10 have 
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empirically shown resistance against high bias or variance. The choice of k=10 in this study enables a 

higher number of training observations at each fold, which improves the performance of the 

classifiers [46]. 

In a binary classification problem such as the ones of interest in this study, where the methods 

classify the test observations to one of the two classes as reusable (1) or non-reusable (0), the 

outcomes (predictions) fall under one of the following categories. To evaluate whether the selected 

classifier correctly predicts and classifies the reusable and non-reusable items into correct classes, 

the true negative (TN) and true positive (TP) criteria, as represented in the confusion matrix (Table 

3), were used. The confusion matrix provides additional information about the rates of the predicted 

responses that were misclassified, which is a reusable item is classified as non-reusable (false 

negative or FN) or vice-versa (false positive or FP) [46]. It should be noted that the rows and columns 

of Table 3 represent the actual and predicted values of the responses, respectively. 

Table 3 Confusion matrix 

Predicted response values 

Non-reusable (0) Reusable (1) 

True response 
values 

Non-reusable (0) 
True negative 

(TN) 
False positive 

(FP) 

Reusable (1) 
False negative 

(FN) 
True positive 

(TP) 

Based on Table 3, there are two types of misclassification. The first one, which is called Type I error, 

is when a non-reusable item is by mistake classified as reusable. Eq. 1 represents the Type-I error 

rate, which is the number of non-reusable items misclassified as reusable by a classifier divided by 

the total number of non-reusable components in the test dataset. 

𝐹𝑃 Eq. 1
𝑇𝑦𝑝𝑒 − 𝐼 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 = 

𝑇𝑁 + 𝐹𝑃 

The second type of error happens when a reusable element is misclassified as non-reusable by a 

classifier. The ratio of this type of error, which is known as the Type-II error rate, is calculated as 

follows. 

𝐹𝑁 Eq. 2
𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 = 

𝑇𝑃 + 𝐹𝑁 

Model classification error rates or Type I and Type II errors are significant indicators of the 

performance of a predictive model. According to James et al. [46], low error rates on a given dataset 

guarantees the safe use of a particular supervised learning model. While both error rates should be 

minimum, Type I error has a pronounced impact on the success of a project with recovered building 

structural elements. Type I error happens when a predictive model (Table 4) classifies a non-reusable 

component as reusable. This mistake causes several logistic, financial, and technical costs by 

providing a false indication about the reusability of an element, which could risk the entire project. 

However, the consequences of a Type II error are manageable. While reuse aims to improve the 

circularity of materials in the building sector, a Type II error only troubles the design team to focus 

on other available recovered structural components. It is because by making a Type II error, a 

reusable section is discarded, and a designer needs to look for other recovered elements or 

purchase a new component. While this is not favourable in terms of the circularity of materials, 

unlike a Type I error, it does΢͞φ Ε͊Ωε̮θ͆Ήμ͊ φΆ͊ ͊΢φΉθ͊ εθΩΕ̼͊φ΄ EΉφΆ͊θ ϭ̮ϳ΁ ̻ϳ Ή΢φ͊ͼθ̮φΉ΢ͼ εθΩε͊θ ϭ̮μφ͊ 
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management plans considering sustainability at their core, elements misclassified as non-reusable 

will still go through recycling or down-cycling processes, which are still far better solutions than 

landfilling. 

According to the above discussion, this study uses the Type-I error rate as one of the metrics to 

compare the performance of the developed models (Table 4). 

The second metric used to evaluate the performance of the developed models in this paper is the 

overall accuracy. To calculate the overall accuracy of a classifier, the total number of correct 

classifications is divided by the total number of observations in the test dataset (Eq. 3) [33,36,46]. 

𝑇𝑃 + 𝑇𝑁 Eq. 3
𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 

𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 

The third metric used to compare the performance of the developed models is the area under the 

receiver operating characteristics (ROC) curve (also known as the AUC). The ROC curve is used to 

observe the performance of a classifier with different threshold values and to decide which 

threshold value works the best for a classifier (Figure 2). The Y-axis of this graph shows the 

sensitivity or true positive rate (the number of correctly classified reusable items by a model divided 

by the total number of reusable components in the test dataset), and the X-axis shows the false 

positive or Type-I error rate. Then, for different threshold values, these two metrics are calculated, 

and a graph is drawn by connecting the identified points on the X-Y plane [46]. The area under the 

ROC curve (also known as the AUC) is a significant and helpful metric because it shows the overall 

performance of a classifier considering all possible threshold values [46]. Ideally speaking, if an AUC 

value is close to 1, it is preferred. The baseline value for the AUC is 0.5, and a classifier should always 

perform higher than this minimum value (for further details, please refer to Section 5.7.2 of [51]). 

In a binary setting such as this study, a classifier identifies the probability that a component is non-

reusable (0) or reusable (1). In this paper, the authors considered the Bayes classifier threshold value 

of 0.5. Then, for probabilities greater than 0.5, the classifier predicts the element is reusable 

(different values are shown on the ROC curve) [46]. However, as a conservative measure, a higher 

threshold value could be selected to decrease the probability of making a Type-I error [46]. The ROC 

curve in Figure 2 shows that the selected threshold value of 0.5 works fine because of the low false-

positive error rate. Moreover, this figure shows that the AUC is almost equal to 1, which is desirable. 

The summary of the Type-I error rate, overall accuracy (or predictive accuracy), and the area under 

the ROC curve (AUC) used to compare the performance of different models is provided in Table 4. 

Table 4 Mean values of the metrics used to assess the performance of the models (10-fold CV method) 

Model Parametric / Non­
parametric 

Type-I 
error 

Overall 
accuracy 

AUC 

K-Nearest Neighbours (KNN)1 Non-parametric 0.03 0.92 0.98 

Linear Discriminant Analysis 
(LDA) 

Parametric 0.18 0.81 0.90 

Quadratic Discriminant Analysis 
(LDA) 

Parametric 0.09 0.91 0.96 

Naïve Bayes (NB) Parametric 0.28 0.72 0.82 

Decision Trees (DT) Non-parametric 0.29 0.71 0.73 

Random Forests (RF)2 Non-parametric 0.01 0.96 1.00 

Adaptive Boosting (AB) Non-parametric 0.08 0.87 0.95 

BART Machine (BM) Non-parametric 0.11 0.85 0.94 
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Model Parametric / Non­
parametric 

Type-I 
error 

Overall 
accuracy 

AUC 

Artificial Neural Networks (single­
layer perceptron) (ANN)3 Parametric 0.13 0.88 0.93 

Gaussian Processes (GP) Non-parametric 0.12 0.84 0.92 

Propositional Rule Learner (PRL) Non-parametric 0.19 0.80 0.83 

Support Vector Machine (SVM)4 Non-parametric 0.07 0.93 0.98 

Hyperparameters (calculated using 70% of the dataset that was selected randomly): 
1 k = 6 
2 ntree = 500, mtry = 5, nodesize = 1 
3 Size = 9, Decay = 0.09 
4 Cost = 1.601470833, Sigma = 0.047078172 

In this study, following [57], a maximum threshold of 10% is considered acceptable for the Type-I 

error rate. Moreover, the minimum threshold values of 85% and 90% are considered acceptable for 

the models' overall accuracy and AUC, respectively. Based on Table 4, the random forests model (RF) 

has the lowest Type-I error rate (0.01), the highest overall accuracy (0.96), and the highest AUC 

(1.00) among all other models. So, the RF model is selected as the best-practice model to predict the 

technical reusability of the building structural elements. The details of the selected RF model and 

other methods used to develop the predictive models (Table 4) are provided in Appendix D of this 

paper. 
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Figure 2 ROC curve of the random forest model for the testing set (trained by 70% of the dataset that was selected 
randomly). 

3.2 Mining the selected RF model 
While the selected RF model in Section 3.1 has high overall accuracy, high AUC, and low Type-I error 

rate, it lacks transparency. It is because RF models are categorised under black-box methods, and 

they cannot be easily interpreted [58]. As discussed in Section 3.1.3, the interpretability of the 

results of the selected predictive models is essential to encourage the stakeholders to employ the 

outcome of such models for assessing the reusability of building structural elements at the end-of­

life of a building. Therefore, when such easy-to-understand models are not available, it is necessary 

to make the results of the selected models transparent. 

In this paper, two techniques are used to improve the transparency of the selected RF model. First, 

the sensitivity analysis and visualisation techniques suggested by [50] are employed to identify the 

importance of the variables and open the RF model (Section 3.2.1). Next, using the rule extraction 

method suggested by [59] and based on the results of the previous technique, a set of decision rules 

was produced to explain the ensemble of trees developed in the selected RF model (Section 3.2.2). 

While both techniques fulfil the aim of this study, the latter provides a simple and understandable 

set of rules for the stakeholders to estimate the reusability of building structural elements at the 

end-of-life of a building. 
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3.2.1 Improving the transparency of the selected RF model 
According to [50], to perform the sensitivity analysis (SA), a sensitivity method needs to be identified 

first. A sensitivity method (SM) performs by varying a given reusability factor from its minimum to 

maximum possible values while conditioning the remaining independent variables and observations. 

For the nominal features (age of the building/component (B3), and the number of existing 

connections (B5)), the SM alters the values of the variables based on the variable levels (B3 has three 

levels, and B5 has five levels, see Appendix A). For the categorical features, following Cortez and 

Embrechts [50], the SM varies the value of the predictors from one to five in seven intervals (x-axis 

of Figure 4). As recommended by Cortez and Embrechts [50], in this research, data-based SA (DSA) 

was used as the SM. The DSA method randomly selects several samples from the dataset, alters the 

values of an independent variable for all data points and records the responses while not changing 

other features. This process is performed for all reusability factors in the dataset. The sensitivity 

responses identified using the DSA method can be used to determine the feature importance using a 

sensitivity measure. This research uses the Average Absolute Deviation (AAD) from the Median as 

the sensitivity measure, as advised by [50]. According to Cortez and Embrechts [50], 

𝐿∑𝑗=1 |�̂�𝑎𝑗 
− �̃�𝑎| Eq. 4 

𝐴𝐴𝐷 = 
𝐿 

where L =7 (seven intervals between one to five), �̂�𝑎𝑗 
is the sensitivity response for 𝑥𝑎𝑗 

∈ 

{1, 1.67, 2.33, 3, 3.67, 4.33, 5} (jth level of input 𝒙𝑎: 𝑎 ∈ {1, … , 𝑝} for p features), and �̃�𝑎 is the 

median of the responses. The higher the value of the AAD for an independent variable, the more 

important is the feature. This measure is then used to develop the relative importance of the input 

variables. It is noteworthy that following Cortez and Embrechts [50], this research uses the complete 

dataset to perform the SA. 

Figure 3 shows the results of the feature importance for the RF model. In this figure, the x-axis 

shows the relative importance of the variables, and the y-axis shows the features. Based on Figure 3, 

only some of the variables are relevant, and others have negligible importance. In this study, 

features with relative importance greater than 2% are considered for developing the rules in Section 

3.2.2, and the remaining are ignored. It results in a total number of fourteen independent variables 

including, B3, B5, B7, B8, C6, C12, C15, C16, C20, C25, C27, C28, D23, and D24. 

Based on Figure 3, the most significant factor affecting the reusability of the building structural 

elements is the mechanical properties of the component (D23). This observation is in line with the 

attempts of some researchers to estimate the mechanical properties of the load-bearing 

components as an indicator of reusability [19,22,60]. 

The next important variable is the design challenges observed by the stakeholders (D24). In the 

literature, these challenges are identified as integrating reused and new components into the new 

building, the need for flexibility in the design [61], and overdesigned structures due to the available 

supply [62]. 

The third variable affecting the reusability of building structural elements is the presence of 

hazardous, banned, or contaminating coatings (C28). This variable has been reported in various 

articles in the literature as a barrier to the reuse of building structural components [63–65]. If such 

coatings are present on the structural elements, the chance for recovery and reuse decreases 

drastically. As a solution, and to overcome this barrier in new buildings, [66] proposed a reusable 

fireproofing system to promote the reusability of the building structure. 
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Figure 3 Bar plot with DSA and AAD relative feature importance based on the selected RF model. 

According to Figure 3, the fourth most important barrier is a potential problem with collateral 

warranties. Surprisingly, this barrier was not observed by other researchers. However, according to 

[12], issues related to the performance of the recovered structural element should be resolved early 

to avoid a problem with collateral warranties. 

In the next stage, and to present how different values of a feature affect the technical reusability of 

building structural elements on average, a set of Variable Effect Characteristic (VEC) curves are 

plotted for the top-four variables. A VEC curve plots the average impact of different values of a 

reusability factor (x-axis) on the probability that a structural element is reusable (y-axis). 

Figure 4 shows the sensitivity analysis of the top-four factors (D23, D24, C28, C27) based on Figure 3. 

According to Figure 4, the reusability probabilities of a building's structural elements improve when 

the values of these variables increase from one (the highest negative impact) to five (the most 

positive effect). For D23, Figure 4 reveals that if the design could be modified to match the 

remaining strength of a recovered structural element, its reusability probability would increase. In 

the case of D24, Figure 4 shows that if the challenges of designing with recovered load-bearing 

building components go beyond dimensional and strength requirements, the reusability declines 

further. Regarding C28, Figure 4 portrays that in the presence of hazardous coatings on the 

recovered structural elements, there is a lower chance of reuse. Eventually, Figure 4 shows that the 

problem with collateral warranties (C27) could negatively affect the reuse rates due to increased 

liabilities. Reusing recovered structural components in the design of new buildings might increase 
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contractual requirements to obtain collateral warranties, which could eventually discourage the 

reuse of these elements. 

Figure 4 The impact of different values of the features on the reusability probabilities of the elements (sensitivity analysis) 
for D23, D24, C28, and C27 (the top-four variables in the RF model) 

Figures 3 and 4 might imply that these features could be directly used to evaluate the reusability of 

the load-bearing building components. However, it is essential to avoid such generalisation because 

of the interdependencies of the features. This effect can be shown by drawing the VEC curves while 

showing the range of the sensitivity at each point. For this purpose, the most suitable feature (D23, 

the mechanical properties of the component) and the least significant variable (B7, the future 

deployment of the element, identified based on a minimum 2% threshold for the relative 

importance) are plotted in Figure 5. According to this figure, the average VEC curve for B7 is nearly 

flat (the diamonds on the curve). Moreover, while there is a leap from three to four for D23, the rest 

of the curve remains almost flat. However, the range of the sensitivity is high for both variables, as 

shown by the box plots in Figure 5. The above observation acknowledges that the technical 

reusability of the structural elements of a building depends on the interactions between the 

predictors, as well [50]. 
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Figure 5 The VEC curves with box plots (to show the range of sensitivity at each point) to compare the impact of different 
values of B7 (left) and D23 (right) on the reusability probabilities of the elements. 

3.2.2 Developing an easy-to-understand learner 
While the SA and visualisation techniques presented above help in opening the selected RF model, it 

still lacks the clarity level required by the stakeholders to make sound judgments about the 

reusability of the structural elements of a building at its end-of-life phase. Hence, as mentioned 

earlier, the results of the SA are used to develop a set of easy-to-understand rules that can be 

effectively used by the practitioners. 

In this section, a set of rules (presented in Table 5) are developed based on the method suggested by 

[59]. The steps followed for developing these rules are available in Figure 6. 
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Selected model 

(1) Extract rules 

(3) Remove irrelevant or 

redundant conditions from 

each rule 

(4) Select a set of relevant 

and non-redundant rules 

(5) Develop an easy-to­

understand predictive model 

(2) Measure θϡΛ͊μ͞ ηϡ̮ΛΉφϳ and 

rank them 

Figure 6 The process of developing the rules set from the selected RF model [59]. 

The first column of Table 5 contains the sequence of the rules that need to be followed strictly. It 

means that checking should start with rule number one, and if its conditions are not satisfied, the 

next rule should be checked. This sequential process continues until a rule͞μ ̼Ω΢͆ΉφΉΩ΢μ are satisfied. 

At this point, checking stops and the rule number and prediction result should be recorded against 

the observation. 

The second column shows the length of a condition, which is the count of variable-value pairs in a 

rule [59]. For example, rule number 7 has three circumstances to be satisfied; hence, the length of 

its condition is equal to 3. 

The third column is the frequency of a rule, which is defined as the proportion of the observations in 

the training dataset that satisfy the rule condition(s). For instance, the total number of observations 

in the training set is equal to 134, out of which twenty-one fall under the first rule. Therefore, the 

frequency of the first rule becomes 0.157 (the sum of frequency values is equal to one). 

The fourth column is the error rate of each set of conditions, which is equal to the number of 

misclassifications made by a rule divided by the number of observations satisfying the rule 

condition(s) in the training dataset. According to Table 5, out of 15 rules, only one (rule number 9) 

makes misclassifications on the training set. Rule number 9 covers 16 observations in the training 

set, out of which only one is wrongly classified as non-reusable, resulting in a misclassification error 

rate equal to 6.25%. 

Column five of Table 5 shows the conditions of the rules. And the last column contains the predicted 

responses by the rules, which are equal to zero (0) for non-reusable elements and to one (1) for 

reusable components. As an example, rule number one states that if C12 (damage caused by living 

organisms), C20 (lack of earlier certificates), and D23 (the process of matching the design of the new 
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building with the strength of the recovered element) are less than or equal to 3, then the 

component is not reusable. 

Table 5 The learner (rules set) developed based on the selected RF model 

Rule 
No. 

Length Frequency Error Condition Prediction 

1 3 0.157 0 C12<=3 & C20<=3 & D23<=3 0 

2 2 0.134 0 C16>4 & D24>2 1 

3 2 0.112 0 B8<=3 & C12>4 0 

4 3 0.075 0 C20<=2 & C28>3 & D24>2 1 

5 3 0.067 0 B3 = c ('4') & C27>3 & C28>2 1 

6 1 0.045 0 D24>3 1 

7 3 0.030 0 B3 = c ('1','2','3','5') & B5 = c ('3','4') & C12>4 0 

8 4 0.022 0 
B5 = c ('1','3','4','5') & C6>3 & C15<=4 & 
C28<=3 

1 

9 2 0.119 0.0625 C28<=4 & D23>2 0 

10 4 0.119 0 B5 = c ('1','2','5') & C6>3 & C20>3 & C28>2 1 

11 5 0.060 0 
B3 = c ('1','2') & B5 = c ('1','2','3','5') & C20>1 
& C28<=3 & D23<=3 

0 

12 3 0.015 0 B7>4 & C27>2 & D23>1 1 

13 3 0.022 0 B5 = c ('1','5') & C28<=4 & D24<=3 0 

14 3 0.015 0 B5 = c ('1','2','3','5') & B8>3 & C28>3 1 

15 1 0.007 0 Else 0 

Table 5 is developed based on a randomly selected training set comprising 70% of the entire dataset. 

While the above set of rules provides an easy-to-understand and implement collections of 

conditions, it is essential to make sure that the resulting predictions on the unseen data satisfy the 

minimum requirements set in Section 3.1.4. Therefore, the authors used the remaining 30% of the 

dataset (unseen observations by the learner (classifier) in Table 5) to evaluate the performance of 

the learner presented in Table 5. For this purpose, we followed the rules sequentially (from 1 to 15), 

identified the applicable set of conditions to each observation, and recorded the resulting prediction 

for each element. Next, we compared the prediction results with the correct responses and 

recorded the errors to evaluate the performance of the learner. 

As a result, the classifier misclassified two (2) non-reusable elements as reusable (Type-I errors) and 

eight (8) reusable components as non-reusable (Type-II errors), resulting in the Type-I error rate 

equal to 6.9%, and the overall accuracy equal to 85.3%. Therefore, this learner satisfies the minimum 

performance requirements defined in Section 3.1.4. Moreover, the learner in Table 5 is transparent, 

easy-to-understand, and can be easily implemented in practice. It should be noted that the Type-II 

error rate is the number of the reusable items misclassified as non-reusable by a model divided by 

the total number of reusable components in the test dataset. 

According to Table 5, C25 is not available in any of the rules. Hence, a practitioner may not need to 

collect data on this variable. Appendix C summarises the survey that the practitioners need to 

perform before being able to use the learner in Table 5. In Appendix C, the variable codes (Code) are 

kept equal to the original survey (Appendix A) to maintain uniformity. 
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4. Conclusion 
This paper has contributed to promoting the reuse of building structural elements in two ways. First, 

using advanced supervised machine learning techniques, this paper identifies and ranks the main 

reusability factors based on the experience of the stakeholders with the recovered building 

structural elements in the building sector. Second, it develops an easy-to-understand learner that 

can be used by practitioners to have an initial assessment of the technical reusability of the load-

bearing components. The developed learner can be easily used by various stakeholders and has the 

potential to promote the reuse rate of the structural elements of the existing buildings, which were 

not designed for deconstruction. This learner can also encourage more deconstruction projects since 

the developers would have a better judgment about the technical reusability of the structure of an 

existing building at its end-of-life. 

The most significant factors affecting the reuse of building structural components are design-related 

such as matching the design of the new building with the strength of the recovered element. 

Moreover, the presence of hazardous, banned, or contaminating coatings play a vital role in the 

success of projects with reuse. The fourth main barrier is a potential problem with collateral 

warranties, which has not been observed in other studies. Therefore, research should be conducted 

to explore this factor and devise solutions to overcome this barrier. 

To the knowledge of the authors, no other research has ever used advanced supervised machine 

learning methods to estimate the reusability of the structural components based on the experience 

of the stakeholders. So, it contributes to the field of reuse in the building sector by introducing the 

feasibility of using advanced AI tools to promote the circularity of components and materials. 

Moreover, unlike the other publications that focus on only a specific material (timber, concrete, or 

steel), since this is a comparative study, the results of this study can be used to assess the technical 

reusability of the building structural elements regardless of the material of construction. However, 

the use of the learner developed in Table 5 should be restricted to timber, concrete, and steel 

structures since the respondents completed the questionnaires based on these three materials. 

In contrast to the mentioned contributions, this study has some limitations. The most important 

limitation is the low rate of reuse in the building sector that restricts access to more experts with 

such experience. Moreover, while the authors tried to decrease error by considering a wide range of 

machine learning methods to develop the predictive models, there still might be some errors due to 

a missing key factor that has not been integrated into the questionnaire. Likewise, the questionnaire 

is developed based on a systematic literature review focused on the superstructure of a building. 

Therefore, the results of this study cannot be generalised to the substructures. While this paper is 

limited to the building sector, the authors strongly believe that similar studies can be performed in 

other sub-divisions of the construction industry to develop tools that can assess the reusability of 

the structures. 

This paper was focused on developing a model that can efficiently predict the reuse potential of 

structural elements at the end-of-life of a building and did not assess the causal relationship among 

the variables. Hence, as future research, methods such as Agent-Based Modelling (e.g., [67–69]) 

could be used to analyse the relationship among the reusability factors. The results of such a study 

could be used to develop a set of instructions to promote the circularity of load-bearing building 

components. 
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Appendix A. Example of the questionnaire survey 
Section A: Respondent’s details: 

Please answer the following questions by choosing the applicable boxes or filling in the blank spaces. 

1.	 Where is the geographic location of your organization (Country name)? 

΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΄ 
2.	 What is the type of organization you work in? 

☐Client	 ☐Consultancy (architectural, structural, etc.) 

☐Contractor ☐Deconstruction/Demolition☐Supplier/Stockist 

☐University/Academic institution	 ☐other (please specify): 

΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅ 

3.	 How many years of experience do you have in the construction sector? 

☐1-5 ☐6-10 ☐11-15 ☐16-20 ☐21-25 ☐26-30 

☐31-35 ☐36-40 ☐over 40 ☐other (please specify): 

΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅ 

4.	 What is your position/job title (Architect, CEO, etc.)? 

΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΄ 
5.	 Do you or your company have any experience with the reuse of the building structural 

elements? ☐Yes☐No 

Section B: Details about the reused structural element 

Based on your experience, please select only one structural element that you reused in the past and 

complete the rest of the questionnaire based on that. 

1.	 Which structural element that you reused before are you basing your answers? 

☐Beam ☐Brace ☐Column ☐Slab ☐Truss 

☐other (please specify): 

΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅ 

2.	 What is the material of construction (MoC) of the structural element that you reused? 

☐Concrete ☐Steel ☐Timber ☐Cast Iron ☐Wrought Iron 

☐Composite ☐other (please specify): 

΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅ 

3.	 What is the approximate age of the building from which the element is recovered? 

☐0 to 40 ☐41 to 60 ☐61 to 80 ☐81 to 100 ☐100 years and older 

☐other (please specify): 

΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅ 

4.	 What is the recovery technique used to recover the particular element? 

☐Demolition ☐Component-specific recovery ☐ Deconstruction 

☐other (please specify): 

΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅ 
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5.	 What is the number of existing connections fixed to the element when purchased/acquired 

(plates or angles fixed to a beam, etc.)? 

☐1 to 2 ☐3 to 4 ☐5 to 7 ☐8 to 10 ☐11 and above 

☐other (please specify): 

΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅ 

6.	 What are the types of the end connections (joints) of the element when purchased/acquired? 

☐ Reversible (bolts, screws, etc.) ☐ Permanent (welding, cast in-situ concrete, etc.) 

☐ Mixed  ☐other (please specify): 

΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅΅ 

Instructions for questions 7 to 11: 

You may ignore any question if not applicable or the details are/were not available. 

Questions 7 to 11 compare the current use (or use after deconstruction) of the structural element 

with its previous use before it was removed/deconstructed from a building. 

7.	 The structural element is serving the same purpose (i.e. as a beam, slab, column, etc.) in its new 

installation as in its previous installation. 

☐ Strongly agree ☐ Agree ☐ Neither agree nor disagree ☐ Disagree ☐ Strongly 

disagree 

8.	 The cross-section/thickness dimensions of the structural element in its new installation are 

equal or nearly equal to the cross-section/thickness dimensions of the element in its previous 

installation. 

☐ Strongly agree ☐ Agree ☐ Neither agree nor disagree ☐ Disagree ☐ Strongly 

disagree 

9.	 The length dimensions of the structural element in its new installation are equal or nearly equal 

to the length dimensions of the element in its previous installation. 

☐ Strongly agree ☐ Agree ☐ Neither agree nor disagree ☐ Disagree ☐ Strongly 

disagree 

10. The amount of load supported by the structural element in its new installation compared to the 

amount of load supported by the element in its previous installation. 

☐ Much lower ☐ Lower ☐ Equal ☐ Higher ☐ 
Much Higher 

11. The life expectancy of the structural element in its new installation compared to the life 

expectancy of the element in its previous installation. 

☐ Much lower ☐ Lower ☐ Equal ☐ Higher ☐ 
Much Higher 

Section C: Factors affecting the reusability of the structural element 

Page 28 of 47 



    
 

  

    

          

  
  

 

     

       

       

       

       

       

        

       

       

       

       

       

         

       

       

        

       

       

       

        

       

        

       

       

        

       

 

  

    

        
 

    

     

        

       

       

       

        

        

You may ignore any question if not applicable or the details are/were not available. 

Please rate the followings on the scale of 1 to 5 where: 

5 = Very low 4 = Low 3 = Moderate 2 = High 1 = Very High 

What was the negative impact of the following factors on the 
reusability of the structural element? 

Scale 

1 2 3 4 5 

C1 Damage during deconstruction/demolition 

C2 Damage due to fatigue 

C3 Damage due to fire 

C4 Damage during transportation 

C5 Damage during storage 

C6 Damage due to the type of joints 

C7 Damage due to corrosion 

C8 Damage due to frost 

C9 Damage due to water penetration/presence 

C10 Damage during refurbishment (nail removal, etc.) 

C11 Damage due to exposure to wind, acidic rain, etc. 

C12 Damage caused by living organisms (termite, bacterial attack, etc.) 

C13 Damage due to earthquake 

C14 Damage due to impact 

C15 Damage due to post-εθΩ͆ϡ̼φΉΩ΢ ΡΩ͆Ή͚̼̮φΉΩ΢μ (͊΄ͼ΄ ΆΩΛ͊μ΁ etc.) 

C16 Lack of certificates of quality for the element when acquired 

C17 Lack of standards to certify the element 

C18 Lack of the original drawings 

C19 Lack of the original design calculations 

C20 Lack of earlier certificates (inspection, material, etc.) 

C21 Lack of traceability of the element 

C25 The potential risk associated with the structural integrity 

C26 The potential risk of damage to the machinery (nails in timber, etc.) 

C27 A potential problem with collateral warranties 

C28 Presence of hazardous, banned or contaminating coatings 

Section D: Other factors affecting the reusability of the structural element 

You may ignore any question if not applicable or the details are/were not available. 

Please rate the followings on the scale of 1 to 5 where: 

1 = Very negatively 2 = Negatively 3 = No real effect 4 = Positively 5 = 
Very Positively 

How did the following factors affect the reusability of the structural element? Scale 

1 2 3 4 5 

D18 Presence of fire protection on the element 

D19 Changes in the design codes (BS codes to Eurocodes, etc.) 

D21 CE marking 

D22 Matching the original design with the dimensions of the reused element 

D23 Matching the original design with the strength of the reused element 

D24 Other design challenges with the reused element 
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Section E: The overall reusability of the structural element 

Definitions: 

Technical reusability: 

	 The extent to which the reused structural element in its new life could perform similarly to 

its earlier life. 

Please refer to the definitions section (above) for further clarity. Please rate the followings on the 
scale of 1 to 5 where: 

1 = Very low 2 = Low 3 = Moderate 4 = High 5 = Very High 

Please rate the relative level of reusability of the structural element 
by providing the actual or approximate answers. 

Scale 

1 2 3 4 5 

E1 The technical reusability 

Please feel free to write any additional comments in the space provided below. 

……………………………………………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………………………………………… 

……………………………………………………………………………… 

If you are willing to know the results of this study, please provide your contact details in the space 

provided below. Kindly note that this is totally optional. 

……………………………………………………………………………………………………………………………………………………… 

……………………………………………………………………………………………………………………………………………………… 

…………………………………………………… 

If you have an experience with another reused structural element, please feel free to fill this 

survey again based on that other structural element. 

Thank you for taking the time to complete this questionnaire. 
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Appendix B. Preliminary statistical analysis of the survey (the technical 

aspect) 
Table B.1 Preliminary statistical analysis of the survey (the technical aspect) 

Section / 
Question 

Variables 
�θΩ΢̻̮̼Ά͞μ 
alpha if item 
deleted 

Kruskal-
Wallis H test 
p-value 

Section B 

B Details about the reused structural element 

Overall Cronbach’s alpha for Section B, questions B7 to B9 = 
0.780 

B7 The structural element is serving the same purpose (i.e. as a 
beam, slab, column, etc.) in its new installation as in its 
previous installation. 

0.648 0.480 

B8 The cross-section/thickness dimensions of the structural 
element in its new installation are equal or nearly equal to the 
cross-section/thickness dimensions of the element in its 
previous installation. 

0.641 0.388 

B9 The length dimensions of the structural element in its new 
installation are equal or nearly equal to the length dimensions 
of the element in its previous installation. 

0.814 0.085 

Overall Cronbach’s alpha for Section B, questions B10 to B11 = 
0.263 

B10 The amount of load supported by the structural element in its 
new installation compared to the amount of load supported by 
the element in its previous installation. 

0.720 

B11 The life expectancy of the structural element in its new 
installation compared to the life expectancy of the element in 
its previous installation. 

0.386 

Section C 

C Factors affecting the reusability of the structural element 

Overall Cronbach’s alpha for Section C = 
0.891 

C1 Damage during deconstruction/demolition 0.887 0.364 

C2 Damage due to fatigue 0.888 0.276 

C3 Damage due to fire 0.889 0.406 

C4 Damage during transportation 0.888 0.635 

C5 Damage during storage 0.889 0.116 

C6 Damage due to the type of joints 0.885 0.185 

C7 Damage due to corrosion 0.884 0.307 

C8 Damage due to frost 0.888 0.213 

C9 Damage due to water penetration/presence 0.885 0.405 

C10 Damage during refurbishment (nail removal, etc.) 0.887 0.342 

C11 Damage due to exposure to wind, acidic rain, etc. 0.890 0.499 
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Section / 
Question 

Variables 
�θΩ΢̻̮̼Ά͞μ 
alpha if item 
deleted 

Kruskal-
Wallis H test 
p-value 

C12 Damage caused by living organisms (termite, bacterial attack, 
etc.) 

0.892 0.919 

C13 Damage due to earthquake 0.891 0.559 

C14 Damage due to impact 0.888 0.160 

C15 Damage due to post-εθΩ͆ϡ̼φΉΩ΢ ΡΩ͆Ή͚̼̮φΉΩ΢μ (͊΄ͼ΄ ΆΩΛ͊μ΁ ͊φ̼΄) 0.888 0.322 

C16 Lack of certificates of quality for the element when acquired 0.884 0.505 

C17 Lack of standards to certify the element 0.886 0.652 

C18 Lack of the original drawings 0.881 0.130 

C19 Lack of the original design calculations 0.885 0.351 

C20 Lack of earlier certificates (inspection, material, etc.) 0.883 0.273 

C21 Lack of traceability of the element 0.882 0.324 

C25 The potential risk associated with the structural integrity 0.886 0.090 

C26 The potential risk of damage to the machinery (nails in timber, 
etc.) 

0.885 0.572 

C27 A potential problem with collateral warranties 0.888 0.167 

C28 Presence of hazardous, banned or contaminating coatings 0.885 0.875 

Section D 

D Other factors affecting the reusability of the structural 
element 

Overall Cronbach’s alpha for Section D = 
0.847 

D18 Presence of fire protection on the element 0.820 0.325 

D19 Changes in the design codes (BS codes to Eurocodes, etc.) 0.843 0.552 

D21 CE marking 0.814 0.884 

D22 Matching the original design with the dimensions of the reused 
element 

0.822 0.282 

D23 Matching the original design with the strength of the reused 
element 

0.795 0.761 

D24 Other design challenges with the reused element 0.836 0.341 
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Appendix C. The required survey for assessing the technical reusability 

of a structural element using the learner in Table 5 
Table C.1 The required survey for assessing the technical reusability of a structural element using the learner in Table 5 

Seq. Code Question / Options Selected 
answer 

1 B3 

What is the approximate age of the building from which the element is 
recovered? 

1 2 3 4 5 

0 to 40 41 to 60 61 to 80 81 to 100 
Above 

100 

2 B5 

What is the number of existing connections fixed to the element when 
purchased/acquired (plates or angles fixed to a beam, etc.)? 

1 2 3 4 5 

1 to 2 3 to 4 5 to 7 8 to 10 Above 10 

3 B7 

The structural element is intended to be used for the same purpose (i.e. 
as a beam, slab, column, etc.) in its new installation. 

1 2 3 4 5 

Strongly 
disagree 

Disagree 
Neither 

agree nor 
disagree 

Agree 
Strongly 

agree 

4 B8 

The cross-section/thickness dimensions of the structural element in its 
new installation are expected to be equal or nearly equal to the cross­
section/thickness dimensions of the element in its previous installation. 

1 2 3 4 5 

Strongly 
disagree 

Disagree 
Neither 

agree nor 
disagree 

Agree 
Strongly 

agree 

5 C6 

Estimated level of damage to the element due to the type of joints. 

1 2 3 4 5 

Very high High Moderate Low Very low 

6 C12 

Estimated level of damage to the element caused by living organisms 
(termite, bacterial attack, etc.) 

1 2 3 4 5 

Very high High Moderate Low Very low 

7 C15 

Estimated level of damage to the element due to post-production 
ΡΩ͆Ή͚̼̮φΉΩ΢μ (͊΄ͼ΄ ΆΩΛ͊μ ͔Ωθ ͆ϡ̼φ ϭΩθΘ΁ ͊φ̼΄) 

1 2 3 4 5 

Very high High Moderate Low Very low 

8 C16 

Negative impact of the lack of certificates of quality for the structural 
element. 

1 2 3 4 5 

Very high High Moderate Low Very low 

9 C20 

Negative impact of the lack of earlier certificates (inspection, material, 
etc.) 

1 2 3 4 5 

Very high High Moderate Low Very low 

10 C27 

Negative impact of a potential problem with collateral warranties. 

1 2 3 4 5 

Very high High Moderate Low Very low 
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Seq. Code Question / Options Selected 
answer 

11 C28 

Negative impact of the presence of hazardous, banned or contaminating 
coatings. 

1 2 3 4 5 

Very high High Moderate Low Very low 

12 D23 

How do you expect that matching the design of the new building with 
the strength of the recovered element affects its reusability? 

1 2 3 4 5 

Very 
negatively 

Negatively 
No real 
effect 

Positively 
Very 

positively 

13 D24 

How do you expect that challenges in designing with the reused element 
affects its reusability? 

1 2 3 4 5 

Very 
negatively 

Negatively 
No real 
effect 

Positively 
Very 

positively 
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Appendix D. Details of the supervised machine learning methods used 

in this research 
Due to the binary nature of the responses (either reusable or non-reusable), the process of predicting 

the reusability of the structural elements of a building is a classification problem. In a classification 

setting, the classifier would predict if an element is reusable (1) or not (0). An optimum classifier is the 

one that can classify unseen observations with the minimum incorrect classifications [46]. In this 

study, thirteen different methods are used to develop the BSE-RPMs (Table 4). These models are fitted 

to the training sets of the dataset and then used to predict the technical reusability of the elements in 

the testing sets to evaluate the performance of the fits. In the next subsections, each of these methods 

are discussed briefly. 

It should be noted that this research adopts a probabilistic approach, meaning that a predictive model 

selects the label with maximal probability given the features. This rule, which is known as the 

conditional probability, is defined as follows. 

𝑝𝑟(𝐴 ∩ 𝐵) Eq. (D.1) 
𝑝𝑟(𝐴|𝐵) = 𝑖𝑓 𝑝𝑟(𝐵) > 0 

𝑝𝑟(𝐵) 
In Eq. (D.1), 𝑝𝑟(𝐴|𝐵) Ήμ ͡φΆ͊ ̼Ω΢͆ΉφΉΩ΢̮Λ εθΩ̻̮̻ΉΛΉφϳ Ω͔ ͊Ϭ͊΢φ 𝐴, given that event 𝐵 Ήμ φθϡ͊͢΁ 𝑝𝑟(𝐴 ∩ 𝐵) 

is the joint probability of both events, and 𝑝𝑟(𝐵) is the probability of event 𝐵 [51]. 

It should be noted that this research considers the Bayes classifier threshold value of 0.5 for the 

probability of an element to be reusable or not. It means that if the conditional probability of an 

element being reusable given the features is being calculated (i.e., 𝑝𝑟(𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1|𝑿 = 𝒙)), the 

probabilities above 0.5 conclude that the item is reusable. Otherwise, it would be classified as non-

reusable. 

D.1 K-Nearest Neighbours (KNN) 
The K-nearest neighbours (KNN) classifier is a method that attempts to estimate the Bayes classifier 

[46]. The Bayes classifier is a very simple classifier that assigns an observation to the most probable 

response class based on the values of its feature [46]. This classifier works based on the conditional 

distribution of the response given the features and results in the highest theoretical accuracy [46]. In 

this study, the conditional probability of the reusability (response) equal to one (reusable) can be 

presented as below: 

Eq. (D.2) 𝑝𝑟(𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1│𝑿 = 𝒙) 

In the conditional probability Eq. (D.2), 𝒙 = 𝑐 (𝑥1, 𝑥2, … , 𝑥𝑝) represents all applicable features in the 

dataset for every datapoint. If the value of conditional probability given in Eq. (D.2) is higher than 0.5, 

then the Bayes classifier classifies the observation as reusable, otherwise, non-reusable (‘𝑝𝑟’ means 

probability) [46]. The left-hand panel of Figure D.1 shows a simplified classification problem with two 

features (𝑥1 & 𝑥2) using the Bayes theorem [70,71]. The black dashed line is the Bayes decision 

boundary. The black circles correspond to reusable training structural elements, and the plus signs 

represent non-reusable training structural components. For each of the values of 𝑥1 and 𝑥2, the 

probability of an element to be reusable or non-reusable is different. It is imagined that the exact 

location of the Bayes decision boundary is known because it is assumed that the conditional 

distribution of the reusability of the elements is known. For an unseen observation, based on the 

values of 𝑥1 and 𝑥2, if the element falls on the left-hand side of the Bayes decision boundary, the 

component is reusable; otherwise, it is non-reusable. For those elements falling on the decision 

boundary, the component is considered non-reusable. 
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Figure D.1 The Bayes classifier (left) and K-Nearest Neighbours (KNN) classifier (right) 

However, the conditional distributions of the technical, social, and economic reusability of the 

structural elements of a building are unknown. Therefore, for an unseen data point, the KNN classifier 

looks for the K closest data points to the new observation in the training set (K is an arbitrary positive 

integer) and classifies the test observation to the class with the highest probability [46,53]. In fact, the 

KNN method assumes that the reusability of a new recovered structural element is like its nearest 

neighbours in the training dataset. This process is shown on the right-hand panel of Figure D.1. If K=3, 

then the KNN classifier classifies the new observation (shown with a cross sign) on the top-left corner 

as reusable because the three nearest neighbours in the training dataset are reusable, yielding a class 

probability of 100%. However, the new observation in the centre is adjacent to two non-reusable and 

one reusable elements in the training dataset. In this case, this new element would be classified as 

non-reusable since two-third of its nearest neighbours in the training dataset are non-reusable, and 

only one-third is reusable. 

The choice of the number of neighbours has a considerable impact on the prediction results [46,53]. 

While the number of K depends on the sample size, theoretically, it is possible to assign any positive 

integer to K [46]. However, if K is too small (for instance, equal to one), the classifier would strictly 

follow the training observations and becomes highly flexible, it might overfit, and potentially results 

in a model with high variance and low bias [46]. On the other hand, large values of K can potentially 

make the classifier less flexible, which results in a low variance model with high bias [46]. In this study, 

using standard holdout method (equal to two-third of the training observations), the value of the 

number of neighbours was estimated. Accordingly, the value of K used for modelling is equal to six. 

D.2 Logistic Regression (LR) 
Logistic regression (LR) directly models the probability that an element is reusable or not [46]. Unlike 

the KNN method, LR assumes a functional form for the relationship between the response and factors 

affecting reuse (features) in its attempt to predict the reusability; hence, it is a parametric machine 

learning approach [46,51]. So, the conditional probability Eq. (D.2) can be written in the following form 

Eq. (D.3). 

𝑝(𝑿) = pr(𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1|𝑿 = 𝒙) Eq. (D.3) 

LR uses Eq. (D.4), the logistic function, to calculate 𝑝(𝑿) and employs the Maximum Likelihood 

estimation method to fit the model based on the training observations [46,51]. 
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1 Eq. (D.4) 
𝑝(𝑿) = 

1 + 𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑝𝑥𝑝) 

It is noteworthy that the logistic function Eq. (D.4) results in values between zero and one. In Eq. (D.4), 

the 𝛽𝑝 (betas) are unknown constants that should be identified [46]. Hence, in LR, the problem of 

identifying the relationship between 𝑝(𝑿) and 𝑿 in the training set is reduced to estimating these 

coefficients [46]. In this case, the Maximum Likelihood (MLE) seeks estimates of these betas, so Eq. 

(D.4) yields a probability close to one for reusable elements, and to zero for non-reusable components 

[46]. 

After estimating the unknown constants in Eq. (D.4) using the training data, this classifier assigns a 

new observation given its feature values to one of the two classes based on the quantity of 𝑝(𝑿) and 

a threshold value [46,51]. If the Bayes classifier threshold value of 0.5 is assumed, then for 𝑝(𝑿) > 

0.5, the classifier predicts the element reusable [46]. However, a conservative designer might choose 

a higher threshold value to decrease the probability of making a false positive error [46]. 

D.3 Linear Discriminant Analysis (LDA) 
Like the KNN method, linear discriminant analysis (LDA) attempts to estimate the Bayes classifier [46]. 

The LDA method considers a functional form (the discriminant function) for the relationship between 

the response and factors affecting reuse; hence, like the logistic regression, it is a parametric machine 

learning approach [51]. However, unlike the LR, LDA does not directly estimate the conditional 

probability Eq. (D.2) [46]. 

ΔμΉ΢ͼ φΆ͊ �̮ϳ͊μ͞ φΆ͊Ωθ͊Ρ [70,71], Eq. (D.2) can be written as follows, where k corresponds to non-

reusable (0) or reusable (1) classes. 

𝑝𝑟(𝑿 = 𝒙|𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑘)𝑝𝑟(𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑘) Eq. (D.5) 
pr(𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑘|𝑿 = 𝒙) = 

𝑝𝑟(𝑿) 

In Eq. (D.5), 𝑝𝑟(𝑿|𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑘) is known as the density function of 𝑿 for a structural element 

that belongs to class 𝑘, 𝑝𝑟(𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑘) is the prior probability which is the probability that a 

given observation belongs to class 𝑘, and 𝑝𝑟(𝑿) is the overall probability of 𝑿 in the dataset [46]. In 

Eq. (D.5), the prior probability is simply the result of the number of elements in each of the training 

classes divided by the total number of components in the training dataset [46]. The conditional 

probability in Eq. (D.5) can be re-written as follows [46]: 

𝑓𝑘(𝒙)𝜋𝑘 Eq. (D.6) 
𝑝𝑘(𝑿) = 𝑘∑𝑠=1 𝜋𝑠𝑓𝑠(𝒙) 

In Eq. (D.6), 𝑝𝑘(𝑿) is the posterior probability that an observation is reusable or not, given the values 

of its features [46]. Therefore, the LDA classifier needs to estimate the value of 𝑓𝑘(𝒙) (the density 

function) and 𝜋𝑘 (the prior probability) and plug them into Eq. (D.6) to evaluate the posterior 

probability [46,53]. The LDA method assumes a one-dimensional normal distribution for each 

independent variable in Eq. (D.6) (a multivariate Gaussian distribution) and equal variance for the class 

responses [46]. The density function in Eq. (D.6) can be then converted to the following (for further 

details, refer to [46,53]): 

1 Eq. (D.7) 
𝛿𝑘(𝒙) = 𝒙𝑇∑−1𝜇𝑘 − 𝜇𝑘

𝑇∑−1𝜇𝑘 + 𝑙𝑜𝑔 𝜋𝑘2 

The above is known as the discriminant function [46,53]. The LDA method estimates ∑ (the covariance 

matrix that is common to reusable and non-reusable components), and 𝜇𝑘 (mean vector of the 

features in each class) to evaluate 𝛿𝑘(𝒙) in the training dataset [46,53]. The Bayes classifier then 
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classifies a new observation as reusable or non-reusable for which the value of the corresponding 

𝛿𝑘(𝒙) is higher [46,53]΄ ΐΆ͊ ϭΩθ͆ ΆΛΉ΢̮͊θ͞ Ή΢ φΆΉμ Ρ͊φhod stems from the fact that the discriminant 

function is a linear function of 𝒙 [46,53]. 

D.4 Quadratic Discriminant Analysis (QDA) 
Quadratic discriminant analysis (QDA) is a similar approach to the LDA with the exception that, in the 

QDA method, each class has its covariance matrix [46,53]. Moreover, in QDA, the discriminant function 

is a quadratic function of predictors 𝒙 [46,53]. The QDA method is more flexible and can handle the 

possible non-linear relationship between the features and the response in each dataset [46,53]. For 

further details, please refer to [46,53]. 

D.5 Naïve Bayes (NB) 
The Naïve Bayes (NB) classifier is a non-parametric method that attempts to estimate the conditional 

probability of the reusability of a structural element given its features by making the naïve assumption 

that these features are independent [51,53]. Considering a conditional probability where there is only 

one independent variable 𝑋, Eq. (D.2) can be written as: 

Eq. (D.8) 𝑝𝑟(𝑌 = 𝑘│𝑋 = 𝑥) 

Eq. (D.8) can be calculated by identifying the portion of the response (a common area) for which the 

independent variable 𝑋 is equal to 𝑥 using the MLE method. 

𝑌 

𝑥1 𝑥2 𝑥𝑝 

𝑝𝑟(𝑥1|𝑦) 𝑝𝑟(𝑥2|𝑦) 𝑝𝑟(𝑥𝑝|𝑦) 

Figure D.2 The independence of features assumed in the Naïve Bayes (NB) classifier 

However, considering all the applicable reusability factors in Eq. (D.2), this common area would be 

very close to zero; hence, the classifier cannot make predictions [72]. The NB method addresses this 

problem by using Eq. (D.5)΁ φΆ͊ �̮ϳ͊μ͞ φΆ͊Ωθ͊Ρ [70,71], and making the naïve assumption that all the 

features are independent, given the response [53,71]. The independence of features assumed in the 

NB classifier is illustrated in Figure D.2. Therefore, considering the above assumption, the density 

function 𝑝𝑟(𝑿 = 𝒙|𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑘) in Eq. (D.5) can be written as follows. 

𝑝 

Eq. (D.9) 𝑝𝑟(𝑿 = 𝒙|𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑘) = ∏ 𝑝𝑟( 𝑿 = 𝑥ₐ|𝑟𝑒𝑢𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑘) 

𝑎=1 

As discussed in Section D.1, the Bayes classifier then assigns an observation to the most likely response 

label (here, reusable or non-θ͊ϡμ̮̻Λ͊) ϡμΉ΢ͼ φΆ͊ �̮ϳ͊μ͞ φΆ͊Ωθ͊Ρ Eq. (D.5) [70,71]. 

D.6 Decision Trees (DT) 
Decision trees are machine learning methods that include stratifying the feature space of the training 

set into a smaller number of regions (known as terminal nodes or leaves) with similar class labels [46]. 
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The set of possible values of the ‘𝑝’ predictors (𝑥1, 𝑥2, … , 𝑥𝑝) of the structural elements in the training 

data is divided into K number of leaves (𝑅1 𝑡𝑜 𝑅𝑘), which are not overlapping [46]. Then, for an unseen 

observation that satisfies 𝑅𝑘, the DT classifier classifies a new structural element to the most 

commonly occurring class response of the training set in 𝑅𝑘 [46]. This process is shown in Figure D.3. 

The left-hand panel of Figure D.3 shows the entire dataset with the class labels and splits. In this figure, 

the training observations are marked with black circles (reusable) and black plus signs (non-reusable). 

The complete dataset is the combination of regions 𝑅1.1, 𝑅1.2, 𝑅2.1, and 𝑅2.2. Initially, the dataset was 

split into two regions or leaves, 𝑅1 and 𝑅2 [46]. Next, to increase the purity of the regions, 𝑅1 was 

divided into 𝑅1.1 and 𝑅1.2, and 𝑅2 was split into 𝑅2.1 and 𝑅2.2 [46]. The DT method then classifies a 

new observation (shown as a cross) as reusable because it is the most frequent class label in region 

𝑅1.1. The right-hand panel of Figure D.3 shows the process of classifying a new observation using the 

DT method. 

 

Figure D.3 The Decision Trees (DT) method 

The DT method attempt to create a set of leaves for which the resulting splits have the lowest class 

impurity [46]. For this purpose, the DT method employs recursive binary splitting, which is a top-down 

greedy approach [46]. At each stage, the recursive binary splitting method selects an independent 

variable 𝑥𝑗 with a cut-point value of 𝑠 (𝑠 is any value belong to 𝑥𝑗 ) and splits the feature space of an 

existing node into the new terminal nodes {𝑥 | 𝑥𝑗 < 𝑠} and {𝑥 | 𝑥𝑗 ≥ 𝑠} with the highest possible 

purity in response classification [46]. It is noteworthy that the split happens on the training 

observations available in a region and not the entire training dataset. The DT method uses the Gini 

index or the entropy impurity function measures to assess the purity of the splits at each stage [46,53]. 

After each split, if the resulting purity of the new leaves is not satisfactory, the splitting continues to 

decrease the impurity of the new terminal nodes [46]. This process continues until no further 

improvement is possible, resulting in a deep tree [46]. Alternatively, the process can be stopped by 

setting a termination condition, such as reaching a minimum number of observations in a region [46]. 

For further details on Gini and entropy impurity functions, please refer to [46,51,53]. 

D.7 Random Forests (RF) 
Decision trees (DT) explained in Section D.6 suffer from high variance, which means any change in the 

training dataset can potentially affect the resulting predictions [46]. One reason is that during the first 

split, the dataset is roughly divided into two sections [46,50]. Hence, if a predictive model is fit to each 
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of the splits, the resulting predictions are not necessarily the same [46]. One way to address this 

problem is by decreasing the depth of a DT model [46]. However, this method increases the bias in 

the model and consequently decreases its accuracy [46]. Another solution is to create an ensemble of 

decision trees using different datasets drawn from a population and averaging the results to decrease 

the variance [46]. This notion is the result of the weak law of large numbers [73]. According to this 

law, averaging various independent observations decreases variance [46]. Ideally speaking, by 

increasing the number of observations to infinity, the variance should diminish [73]. Nonetheless, this 

method is also not practical because of the limited access to many training datasets [46]. 

Random forests (Figure D.4) are machine learning methods that try to address the above issue by 

creating many trees with maximum depth (yielding in low bias but high variance) and averaging the 

resulting variance through bagging (bootstrap aggregation) [46,53]. Bagging is an ensemble method 

that draws many samples with replacement from a dataset 𝐷 = (𝐷1, 𝐷2, … , 𝐷𝑚) [51,53]. The 

replacement in this process means that one structural element in the training set can appear more 

than once in the bootstrap dataset [40]. Then, the RF method fits a decision tree with maximum 

possible depth to each of the new datasets, creating an ensemble of bagged trees [46]. Before dividing 

the feature space at every stage, a random number of 𝑚 ≈ 𝑝1/2 (𝑝 is the number of predictors in the 

dataset) independent variables are selected as eligible predictors from which one is picked by the 

method to split (without replacement) [46]. The lack of replacement in this process makes sure that 

the method does not pick a specific predictor repeatedly. This approach is highly advantageous 

because it makes sure that the bagged trees remain uncorrelated [46,51]. Whereas without this 

limitation, there is a high chance that all the developed trees become highly correlated, which results 

in a small improvement in the variance of the final model, compared to a single tree [46]. It is because, 

in the presence of an influential independent variable, there is a high chance that each tree chooses 

that strong predictor as its root node, resulting in a similar and highly correlated ensemble of trees 

[46]. 

The RF method uses the ensemble of bagged trees to make predictions [46]. While the way every 

single tree predicts the class of a new observation is like the DT method (Section D.6) [46], the RF 

method predicts if a new structural element is reusable or non-reusable based on the class label with 

the highest number of records. 
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Figure D.4 A simplified Random Forest. Top: A Decision Tree (top right) divides the feature space (top left). Bottom: A 

Random Forest which is a group of Decision Trees (bottom right) divide the feature space (bottom left). The cross is the new 

observation. 

D.8 Adaptive Boosting (AB) 
Boosting methods can be employed to improve the predictions from any machine learning method 

with high bias and high training error rate (weak learners) [46,51,53]΄ ͛΢ φΆΉμ μφϡ͆ϳ΁ φΆ͊ Ά!̮͆�ΩΩμφ͞ 
methods introduced by [74] is employed to decrease the bias in decision trees with limited number of 

nodes (resulting in low variance and high bias) and increase the accuracy of predictions on unseen 

observations. Like random forests, adaptive boosting is an ensemble technique; however, it works 

quite differently [46]. Instead of creating an ensemble of decision trees through bootstrapping, 

adaptive boosting creates 𝑀 − 1 new decision trees sequentially, resulting in 𝑀 number of ensembled 

decision trees [53]. The first classifier is a conventional decision tree, like the one explained in Section 

D.6 [53]. However, in creating the 𝑀 − 1 decision trees, the AdaBoost method alters the original 

dataset by weighting observations in the main dataset so that the misclassified observations are 

weighted higher and the correctly predicted data points are weighted lower [53]. Hence, the next 

stage decision tree focuses on those observations with wrong classification in the previous stage [53]. 

Finally, the predictions from the ensemble of the decision trees are weighted by the AdaBoost 

method, so those highly accurate decision trees on the training data are weighted higher than those 
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with the poor performance [53]. For further details on the AdaBoost method, refer to Section 16.4 of 

[51]. 

D.9 BART Machine (BM) 
BART (Bayesian additive regression trees) is an ensemble of decision trees with an arbitrary number 

of trees to be decided by the researcher [75]. Unlike random forests (Section D.7) or adaptive boosting 

(Section D.8) where a structural element is classified based on the most commonly occurring class 

response, it relies on Bayesian probability model [51,75]. Therefore, it consists of priors for the 

structure and the terminal node parameters and a likelihood for data in the leaves [75]. The priors 

considered guarantee no single decision-tree dominates the total model; hence, regularising the 

ensemble of trees [75]. It is noteworthy that according to the developers, the optimum number of 

trees is around 200 [75]. To predict an observation, BART uses the posterior average probability to 

classify a structural element as reusable or not [75,76]. For further details on the BART method, refer 

to [75]. 

D.10 Artificial Neural Networks (ANN) 
Neural networks are machine learning methods working based on the way the human brain works 

[77]. Neural networks attempt to develop new features based on linear combinations of the input 

variables (reusability factors), and then predict the probabilities of the responses (reusable or non-

reusable) using a nonlinear function of the newly extracted predictors [53]. Therefore, neural 

networks can be categorised as nonlinear parametric models [51,53]. 

In machine learning, the architecture of any neural network (Figure D.5) consists of a set of inputs 

(reusability factors), a processing unit (which includes a single or multiple hidden layers), and output(s) 

(reusable or not-reusable) [53]. There are two main groups of neural networks, feed-forward, and 

feed-backward neural networks [77]. In feed-forward neural networks, the signal can only move in 

one direction from the input layer to the hidden layer(s), and finally to the output layer. However, in 

feed-backward neural networks, before a signal reaches the next level, it can go back to the previous 

level [77]. Artificial neural networks (ANNs) fall under the former category, while recurrent neural 

networks (RNNs) fall under the latter [77]. In this study, the reusability of building structural elements 

is assessed using a special case of ANNs. 

An ANN can be a single layer perceptron (with only one hidden layer) or a multiple layer perceptron 

[53]. The architecture of a double layer perceptron is shown in Figure D.5. According to this figure, the 

units in the middle layer (hidden units) develop new features. These new features are then used to 

determine the reusability probability of a structural element at the end-of-life of a building Eq. (D.10) 

[53]. 

𝐷𝑘 = 𝜎(𝛼0𝑘 + 𝛼𝑘
𝑇𝑋) 

Eq. (D.10) 𝑇𝑙 = 𝛽0𝑙 + 𝛽𝑙
𝑇𝐷 

𝑓𝑙(𝑋) = 𝑔𝑙(𝑇) 

In Eq. (D.10), 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑝) denotes the input variables, 𝑘 = 1,2, … , 𝐾, 𝑙 = 1,2, … , 𝐿, 𝐷 = 

(𝐷1, 𝐷2, … , 𝐷𝐾) represents the derived features, 𝑇 = (𝑇1, 𝑇2, … , 𝑇𝐿) is the vector of outputs, and 𝛼0𝑘 

and 𝛽0𝑙 are the intercepts. In Eq. (D.10), the output function 𝑔𝑙(𝑇) is the softmax function, which 

transforms the vector of outputs 𝑇 and produces positive estimates that sum to one. Other than the 

three layers explained earlier (inputs layer, hidden layer(s), and output layer), an ANN consists of 

weights, biases, and an activation function, as well. In Eq. (D.10), 𝑓𝑙(𝑋) calculates the probability that 

a structural element is reusable or not, and 𝜎 is the activation function, which in the case of the this 

study (classification problem), is a Sigmoid [53]. The weights are the unknowns in Eq. (D.10) and are 
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summarised in Eq. (D.11) [53]. In Eq. (D.10) and Eq. (D.11), 𝑝 is the number of independent variables. 

The goal is to estimate these weights so that the ANN model fits the training dataset well [53]. 

Therefore, to guarantee an accurate model, a measure of fit is required to evaluate the quality of the 

model. The measure of fit is calculated using the squared error or cross-entropy [53]. For further 

details about the measure of fit please refer to [53]. 

{𝛼0𝑘 , 𝛼𝑘; 𝑘 = 1,2, … , 𝐾} 𝐾(𝑝 + 1) 𝑤𝑒𝑖𝑔ℎ𝑡𝑠, Eq. (D.11) 

{𝛽0𝑙, 𝛽𝑙; 𝑙 = 1,2, … , 𝐿} 𝐿(𝐾 + 1) 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 

 

D1 

Figure D.5 The Artificial Neural Networks (ANN) architecture (two hidden layers) 

The role of an ANN model is then reiterating two major stages until it reaches a minimum training set 

error rate. Firstly, estimating the reusability of the building structural elements based on weighted 

inputs, biases, and a specific activation function in the forward propagation stage. Next, determining 

the error rates and estimating the weights and biases using the backward propagation algorithm [77]. 

One of the most common problems that one could encounter while training an ANN is overfitting [51]. 

Because the predicted responses/trends of an overfitted model do not follow the reality present in 

the data, such a model is inaccurate. There are various techniques to prevent overfitting while training 

neural networks. One of the widely used solutions is early stopping. Early stopping is a form of 

regularisation while training a model with an iterative method, such as gradient descent. This method 

updates the model to make it better fit the training data with each iteration. Up to a point, this 

ΉΡεθΩϬ͊μ φΆ͊ ΡΩ͆͊Λ͞μ ε͊θ͔ΩθΡ̮΢̼͊ Ω΢ ̮͆φ̮ Ω΢ φΆ͊ φ͊μφ μ͊φ΄ ΃̮μφ φΆ̮φ εΩΉ΢φ, however, improving the 

ΡΩ͆͊Λ͞μ ͔Ήφ φΩ φΆ͊ φθ̮Ή΢Ή΢ͼ ͆ ̮φ̮ Λ̮͊͆μ φΩ Ή΢̼θ̮͊μ͊͆ generalisation error. Regularisation is an alternative 

method that is commonly used to overcome the overfitting problem. This method introduces a weight 

̼̮͆͊ϳ (̮ ε͊΢̮Λφϳ φ͊θΡ) φΩ φΆ͊ ΛΩμμ ͔ϡ΢̼φΉΩ΢ φΩ θ͊͆ϡ̼͊ φΆ͊ ΡΩ͆͊Λ͞μ ̼ΩΡεΛ͊ϲΉφϳ΄ 

According to Hastie et al. [53] training neural networks requires pre-processing and extra precautions. 

This can be done by determining an optimum weight decay, scaling of the inputs, and assigning the 

number of hidden layers and nodes. The neural network method employed in this study is a single 
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layer perceptron that uses Sigmoid function to activate the neurons in the network. Moreover, the 

input variables are scaled, and two hyperparameters (size of the hidden nodes, and weight decay) are 

evaluated using ten-fold cross-validation on the training set considering AUC as the determining 

metric. The estimated hyperparameters (size and decay) for the dataset in this study is as follows: 

𝑠𝑖𝑧𝑒 = 9, 𝑑𝑒𝑐𝑎𝑦 = 0.09 

D.11 Gaussian Processes (GP) 
Gaussian processes are nonparametric supervised machine learning methods that can be used for 

both regression and classification problems. In this study, Gaussian processes for classification (GPC) 

are used to predict the reusability probabilities of the recovered building structural elements. A GPC 

is a function approximation task where instead of directly estimating the class probabilities 

considering a predetermined functional form (such as LDA), the functional relationship is determined 

through a multivariate Gaussian distribution. 

We consider a data set 𝐷={(𝑥𝑖, 𝑦𝑖|𝑖 = 1,2, … , 𝑛}, consisting of 𝑛 samples, wherein 𝑥𝑖 denotes the 

vector of input data taken from the input space, and 𝑦𝑖 = 𝑓(𝑥𝑖) denotes the corresponding output 

(dependent variable) observation. Following [78], the GP prior model is given by Eq. (D.12): 

𝑓(𝒙)~𝐺𝑃(𝑚(𝒙), 𝑘(𝒙, 𝒙′)) Eq. (D.12) 

where 𝑚(𝒙) is the mean function, which is commonly and without loss of generality considered to be 

zero and the kernel function 𝑘(𝒙, 𝒙′); where 𝒙 represents the training datapoint in each dataset of 

the structural elements. We use the radial basis function (or squared exponential) as the kernel 

function, see [52,78] for the details of this kernel, including the functional form, and how the 

hyperparameters (smoothness parameters) of this kernel can be estimated in the light of the observed 

data.  

The joint prior distribution of the training outputs, 𝒇, and the predicted output 𝒇∗ (corresponding to 

the test input 𝒙∗) , according to GP definition given in Eq. Eq. (D.12) and the properties of multivariate 

normal distribution, is given by Eq. (D.13): 

𝒇 𝑇 Eq. (D.13) 𝐾 𝐾∗[ ] ~𝑁(0, [ ])
𝒇∗ 𝐾∗ 𝐾∗∗ 

Where 𝐾 = 𝑘(𝑿, 𝑿), 𝐾∗ = 𝑘(𝑿∗, 𝑿), 𝐾∗
𝑇 = 𝑘(𝑿, 𝑿∗), 𝐾∗∗ = 𝑘(𝑿∗, 𝑿∗), and 𝑿𝑛×𝑝 denotes an 𝑛 × 𝑝 

matrix of the training inputs {𝒙𝑖}𝑖
𝑛 (also known as the design matrix), 𝑝 stands for the dimension of 

input space 𝑿, and 𝑿∗ is the matrix of test inputs. We use the subscript ∗ to differentiate the 

test/predicted data from the training ones. 

The posterior distribution of 𝒇∗ can be obtained/derived by conditioning the joint prior distribution, 

given in Eq. Eq. (D.13) on the training datapoint Eq. (D.14): 

𝒇∗|𝒇, 𝑋, 𝑋∗~𝑁(𝐾∗
𝑇𝐾−1𝒇, 𝐾∗∗ − 𝐾∗𝐾−1𝐾∗

𝑇) Eq. (D.14) 

The mean and covariance of this posterior distribution can be used as an estimate of the predicted 

value of 𝒇∗ , and uncertainty/sensitivity [79]. 

The GP that is briefly explained above, can be used as an efficient classifier by computing predictions 

in from of class probabilities of 𝑦∗ = 𝑓(𝒙∗) for the new test input 𝒙∗. This can be done by squashing 

the output of a regression model through a logistic function (e.g. sigmoid function, 𝜎(. )) to transform 

it from a domain of (−∞, +∞) to [0, 1] [78]. For a new observation 𝒙∗, the distribution of the latent 

variable 𝑓∗ is calculated using Eq. (D.15): 
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Eq. (D.15) 
𝑝𝑟(𝑓∗|𝑋, 𝒚, 𝒙∗) = ∫ 𝑝𝑟(𝑓∗|𝑋, 𝒚, 𝒙∗)𝑝𝑟(𝒇|𝑋, 𝒚)𝑑𝒇 

Then, using the above distribution, the probabilistic prediction is performed using Eq. (D.16): 

Eq. (D.16) 
𝑝𝑟(𝑦∗ = 𝑟𝑒𝑢𝑠𝑎𝑏𝑙𝑒|𝑋, 𝒚, 𝒙∗) = ∫ 𝜎(𝑓∗)𝑝𝑟(𝑓∗|𝑋, 𝒚, 𝒙∗)𝑑𝑓∗ 

However, since Eq. (D.15) is non-Gaussian (response is discrete), the above integrals are approximated 

using the Laplace approximation method [78]. 

D.12 Propositional Rule Learner (PRL) 
Propositional rule learner (PRL) is a classification machine learning method that finds patterns in each 

dataset and expresses them in terms of a set of if-then rules [56]. These rules are then used to classify 

new structural elements that satisfy a rule condition. The method develops a predictive model in three 

stages. A PRL method first converts the features in the training dataset into sets of binary features 

[56]. Then it constructs the individual rules, each covering a part of the training dataset using a 

covering method [56]. At this stage, the method learns a rule that covers a part of the training 

observations. Then it removes those covered datapoints and learns a new rule based on the remaining 

observations [56]. The method recursively performs these tasks until all training observations are 

covered by a rule [56]. Finally, it combines all the learned rules and forms the predictive model [56]. 

For further details about this method please refer to [56]. 

In this study, the RIPPER (Repeated Incremental Pruning to Produce Error Reduction) method [80] is 

used to develop the predictive rule learning model [81]. 

D.13 Support Vector Machines (SVM) 
Support vector machines (SVM) are machine learning methods that convert a linear classifier (known 

as support vector classifier) in a way to produce a non-linear decision boundary between classes (two­

class responses) [46]. 

A support vector classifier is a computationally efficient method for developing linear decision 

boundaries between two-class responses [46]. The support vector classifier develops a hyperplane to 

split the observations in the training dataset into two classes (Figure D.6) [46]. This classifier depends 

only on the training observations close to the hyperplane known as the support vectors [46]. In the 

left-hand panel of Figure D.6, the left-hand side of the hyperplane represents the circle responses 

(reusable), and the right-hand side of the decision boundary corresponds to the plus class (non­

reusable). The dashed lines in this figure are margins for the hyperplane. In Figure D.6, only the 

observations on the margin or crossing the margin but on the proper side of the decision boundary 

are the support vectors [46]. Therefore, training data far from the margins (and the hyperplane) do 

not play any role in predicting the class-response for a new observation [46]. 

Page 45 of 47 



    
 

 

   

  

  

       

 

               

             

        

         

  

      

       

    

          

        

    

 

     

     

             

     

          

  

  

       

 

 

Figure D.6 The Support Vector Classifier 

The support vector classifier can be represented as follows [46]: 

𝑓(𝑥) = 𝑏0 + ∑ 𝑎𝑖 < 𝑥, 𝑥𝑖 >, 
Eq. (D.17) 

𝑖∊𝑆 

(𝑆 = 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠) 

In Eq. (D.17), < 𝑥, 𝑥𝑖 > is the inner product of the new observation 𝑥 with all support vectors, 𝑏0 is an 

intercept, and 𝑎𝑖 is a parameter required for each of the support vectors [46]. Function Eq. (D.17) is 

the solution function for an optimisation problem for the support vectors. The details of the 

optimisation problem are available in Section 9.2.2 of [46]. Moreover, the solution to the optimisation 

problem can be found in Section 12.2.1 of [53]. 

The left-hand panel of Figure D.6 represents a classification problem with separable (almost) class 

responses where the hyperplane does a reasonable job in classifying the non-reusable and reusable 

classes. However, in many instances, the relationship between the predictors and the responses are 

not linear [46]. The right-hand panel of this figure shows an example of such a problem. As can be 

observed, the separating hyperplane is useless in this situation. In this case, no linear classifier can 

effectively separate the two classes, as the relationship between the predictors and the responses are 

non-linear. 

The support vector machine method attempts to overcome the above limitation by enlarging the 

feature space using kernel functions; hence, creating non-linear decision boundaries [46]. Kernel 

functions quantify the similarity of two observations and can have various forms, including radial, 

polynomial, hyperbolic, Laplacian, etc. [46]. By replacing the inner product in Eq. (D.17) with the 

kernel, the solution function Eq. (D.17) can be re-written as Eq. (D.18), where 𝐾(𝑥, 𝑥𝑖) is the kernel 

function [46]: 

𝑓(𝑥) = 𝑏0 + ∑ 𝑎𝑖𝐾(𝑥, 𝑥𝑖), 
Eq. (D.18) 

𝑖∊𝑆 

(𝑆 = 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠) 
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In this study, a radial kernel is used to expand the feature space, and eventually develop non-linear 

decision boundaries between the classes. Therefore, Eq. (D.19) formulates the radial kernel. 

𝑝 

2 
𝐾(𝑥𝑖, 𝑥𝑖′) = exp (−𝜎 ∑(𝑥𝑖𝑗 − 𝑥𝑖′𝑗) ), Eq. (D.19) 

𝑗=1 

𝑤ℎ𝑒𝑟𝑒 𝜎 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

In Eq. (D.19), 𝑥𝑖 and 𝑥𝑖′ indicate two different observations in the training set, 𝑝 is the number of 

predictors, and 𝜎 (sigma) controls the non-linearity of the kernel function [46]. By increasing the value 

of 𝜎, the fit becomes more non-linear [46]. While this increased non-linearity can decrease the 

variance on the training dataset, it might increase the chance of overfitting [46]. Hence, care must be 

taken while choosing the correct value for 𝜎 [46]. Another hyperparameter that is required to be 

selected is known as cost (represented by C) [46]. This quantity determines the width of the margin in 

Figure D.6, and correspondingly the number of support vectors [46]. This tuning parameter is used to 

determine 𝑎𝑖 in Eq. (D.17) and Eq. (D.18) (see Section 12.2.1 of [53]). In this study, the 

hyperparameters (C and sigma) are calculated using ten-fold cross-validation on the training set [51]. 

According to this method, the estimated hyperparameters are as follows: C= 1.601470833, sigma= 

0.047078172. 

Support vector machines inherit the properties of the support vector classifier, so in predicting the 

response class of a new observation, only those training observations close to the decision boundary 

play a role [46]. 
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