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Abstract: Several studies have indicated a positive infuence of leucine supplementation and aerobic 
training on the aging skeletal muscle signaling pathways that control muscle protein balance and 
muscle remodeling. However, the effect of a combined intervention requires further clarifcation. 
Thirteen month old CD-1® mice were subjected to moderate aerobic exercise (45 min swimming 
per day with 3% body weight workload) and fed a chow diet with 5% leucine or 3.4% alanine for 
8 weeks. Serum and plasma were prepared for glucose, urea nitrogen, insulin and amino acid profle 
analysis. The white gastrocnemius muscles were used for determination of muscle size and signaling 
proteins involved in protein synthesis and degradation. The results show that both 8 weeks of 
leucine supplementation and aerobic training elevated the activity of mTOR (mammalian target 
of rapamycin) and its downstream target p70S6K and 4E-BP1, inhibited the ubiquitin-proteasome 
system, and increased fber cross-sectional area (CSA) in white gastrocnemius muscle. Moreover, 
leucine supplementation in combination with exercise demonstrated more signifcant effects, such as 
greater CSA, protein content and altered phosphorylation (suggestive of increased activity) of 
protein synthesis signaling proteins, in addition to lower expression of proteins involved in protein 
degradation compared to leucine or exercise alone. The current study shows moderate aerobic 
training combined with 5% leucine supplementation has the potential to increase muscle size 
in fast-twitch skeletal muscle during aging, potentially through increased protein synthesis and 
decreased protein breakdown. 

Keywords: leucine-rich diet; aerobic exercise; aging; protein metabolism 
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1. Introduction 

Aging is a physiological process characterized by progressive decrease in the capacity of organ 
systems throughout the organism [1]. Of these changes, skeletal muscle is of particular interest as it 
comprises approximately 40%–50% of human body mass and is highly adaptable [2,3]. Sarcopenia 
describes the loss of muscle mass and muscle function that occurs during the aging process. When left 
untreated, sarcopenia substantially contributes to decreased mobility/autonomy and to an increased 
risk of metabolic diseases. Thus, interventions aimed at maintaining muscle mass and function and 
attenuating the decline of muscle loss during the aging process are clinically important to sustain an 
appropriate quality of life and reduce health care costs in the elderly [4]. 

Exercise training has been considered an important non-pharmacological intervention for the 
treatment of metabolic disorders and loss of skeletal muscle mass in the elderly [5,6]. Resistance 
training has been widely recognized as a powerful intervention to maintain or increase skeletal muscle 
mass [7,8]. Although not considered the most effcient intervention to stimulate a high magnitude 
of muscle hypertrophy, moderate aerobic exercise has demonstrated anti-catabolic properties in 
several diseases, like cancer cachexia [9–11], cardiac cachexia [11], and diabetes mellitus [12,13], all of 
which are characterized by a loss of muscle mass. In addition, it has been demonstrated that aerobic 
exercise increases skeletal muscle protein synthesis (MPS) and strongly activates the mammalian 
target of rapamycin (mTOR) pathway in healthy subjects [14–16]. Therefore, modifcations in protein 
metabolism favoring increased MPS or decreased muscle protein degradation suggests that aerobic 
training may be an appropriate intervention option to attenuate the development of sarcopenia. 

Due to a higher prevalence of nutrient defciencies in the elderly, nutritional interventions are 
important and effcacious adjuncts to exercise in the promotion of healthy aging [17]. In particular, 
several studies have demonstrated higher protein needs in older adults [18–20] due to the development 
of anabolic resistance [20,21]. Of the 20 amino acids, leucine alone has been shown to initiate the 
translational stage of protein synthesis, and the magnitude of protein synthesis is often directly related 
to the leucine content of a particular protein source [20]. Moreover, the addition of leucine to a 
lower protein meal is an easy to consume and effective strategy to increase MPS [14,22]. Although 
leucine alone is capable of increasing MPS, leucine supplementation combined with resistance training 
induces a synergistic effect, resulting in increased MPS and myofbrillar muscle hypertrophy in older 
adults [23]. The predominant muscular adaptation to aerobic training is mitochondrial biogenesis [24], 
and therefore large changes in myofbrillar protein content have been thought not to occur with leucine 
consumption in conjunction with aerobic training; however, the effects of age on the interaction between 
aerobic training and leucine supplementation are not yet known. From a molecular standpoint, both 
leucine [25] and aerobic exercise [26] have been shown to activate the mTOR pathway, and evidence 
exists demonstrating that aerobic training [24] and leucine supplementation [27] decreases muscle 
protein degradation. Considering these anti-catabolic effects reported in different muscle wasting 
diseases, there is potential for leucine supplementation and aerobic exercise to act synergistically in 
aging skeletal muscle to attenuate sarcopenia in mice. 

Our objective in this study was to investigate the role of leucine supplementation and aerobic 
training in aging skeletal muscle signaling pathways, controlling muscle protein balance and 
muscle remodeling. 

2. Experimental Section 

2.1. Animals and Diets 

Forty 13-month-old CD-1® male mice (47–49 g) were obtained from the Chengdu Dashuo 
Biological Technology Company (Chengdu, China). All mice were housed in the Laboratory Animal 
Center of Chengdu Sport University (Chengdu, China). Light and darkness cycles (12–12 h) and 
temperature (22 ˘ 1.5 ˝C) were controlled. Diet and water were available ad libitum. Laboratory animal 
bedding materials were renewed 3 times a week; the drinking bottles were disinfected daily. Animal 
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welfare and experimental procedures were carried out in accordance with the national and institutional 
guidelines, and the study was reviewed and approved by the Institutional Animal Ethics Committee 
of Chengdu Sport University, number: 2015/03. 

The non-purifed diet based on maize, wheat four, wheat bran, soybean four, soya bean meal, 
rice bran, and fsh meal was purchased from the Institute of Experimental Animals, Sichuan Provincial 
Academy of Medical Sciences (Chengdu, China). 5% (w/w) L-leucine was added to the intervention diet 
by replacing equal amounts of corn four, while the isonitrogenous control diet contained an added 
3.4% (w/w) L-alanine (Table 1). The L-alanine-rich meal was used as the control diet in light of previous 
reports that this non-essential amino acid does not affect muscle protein metabolism [28–31]. 

Table 1. Diet formulation (%). 

Feed Composition Basal Diet Leucine Diet Alanine Diet 

Corn 22.8 17.8 19.4 
Wheat 34.0 34.0 34.0 

Wheat bran 10.0 10.0 10.0 
Soybean 13.0 13.0 13.0 

Soya bean meal 5.0 5.0 5.0 
Rice bran 4.0 4.0 4.0 
Fish meal 7.0 7.0 7.0 

Calcium hydrogen phosphate I 2.4 2.4 2.4 
Calcium carbonate 0.6 0.6 0.6 

Additives and Microelements 1.2 1.2 1.2 
Leucine ~ 5.0 ~ 
Alanine ~ ~ 3.4 

The supplemental dose of 5% L-leucine was used because it has been shown in previous 
research to positively regulate the protein synthesis of skeletal muscles [30,31]. Nutrient levels of 
the non-purifed meal were digestible energy (14.32 MJ/kg), protein (20.6%, w/w), Ca (1.35%, w/w), 
total P (1.20%, w/w) and available P (0.97%, w/w). The analyzed contents (%, w/w) of amino acids in the 
leucine-supplemented and alanine-supplemented meal are summarized in Table 2. 

Table 2. Analyzed contents of amino acids (g/100 g) in the alanine- and leucine-supplemented. 

Amino Acid Composition Basal Diet Leucine Diet Alanine Diet 

Aspartic acid 1.81 1.72 1.72 
Threonine 0.71 0.70 0.71 

Serine 0.97 0.94 0.94 
Glutamic acid 4.06 4.05 4.01 

Glycine 0.97 0.92 0.93 
Alanine 1.11 1.04 4.83 
Cystine 0.11 0.20 0.17 
Valine 0.78 0.79 0.82 

Methionine 0.45 0.54 0.50 
Isoleucine 0.64 0.62 0.62 
Leucine 1.45 6.51 1.42 
Tyrosine 0.39 0.47 0.46 

Phenylalanine 0.79 0.86 0.86 
Lysine 1.17 1.10 1.15 

Histidine 0.69 0.62 0.71 
Argnine 1.13 1.06 1.04 
Proline 1.39 1.30 1.38 

http:totalP(1.20
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2.2. Experimental Protocols 

Forty mice were randomly assigned to four groups with ten mice per group: animals were fed 
an alanine-supplemented non-purifed diet without exercise intervention (AlaC) or with moderate 
physical exercise (AlaE). The other two groups were fed the leucine-supplemented diet combined 
with (LeuE) or without (LeuC) exercise, respectively. Body weight and food intake were recorded 
every day. The mice were housed in individual cages throughout experimentation. When we renewed 
the bedding materials the 6th week, some mice were severely bitten on the face or limbs. Therefore, 
to avoid interference of accelerated protein synthesis during the recovery period of injury, the injured 
animals were all excluded from the experiment. Thus, only the 33 unharmed mice were included in 
the fnal statistical analysis. 

Mice in the AlaE and LeuE groups received moderate intensity swimming exercise in two glass 
tanks (100 ˆ 70 ˆ 60 cm) flled with 30 ˘ 2 ˝C water to 40–45 cm depth at once so that the mice could 
not have a rest by getting their tail on the bottom of the tank [32]. The exercise protocol consisted 
of swimming exercise (45 min/day, 6 day/week) for 8 weeks, with a 3% bodyweight workload that 
corresponds to an aerobic intensity of approximately 10%–20% below the anaerobic threshold in 
10–12 month old mice. We employed this intensity as it is more reasonable to expect elderly humans 
to work at a lower intensity and not near the anaerobic threshold. The loads were readjusted each 
day according to the bodyweight of the mice. A monitor was arranged to confrm that all mice were 
actually swimming and not engaged in behaviors that minimized the effort exerted, such as foating. 
Once the negative activities were observed, the monitor forced the animals to keep swimming with a 
glass bar. We randomly measured the blood lactate concentration from the tail vein of mice in the AlaE 
and LeuE groups during and immediately after swimming exercise by using a portable blood lactate 
analyzer (Lactate pro, Arkray, Kyoto, Japan), and all concentrations were between 2.9 and 3.7 mmol/L. 
This suggested that the exercise protocol used was typical of aerobic exercise bouts that may be 
employed in elderly humans where blood lactate values have been reported as 2.44 ˘ 1.04 mmol/L 
during aquatic aerobics [33]. 

Twenty-four hours following the fnal bout of exercise (7 h food deprivation), animals were 
euthanized with intraperitoneal injection of pentobarbital sodium (80 mg/kg), after which blood was 
collected from the aortaventralis. The blood samples were then centrifuged at 12,000 rpm for 10 min 
at 4 ˝C to obtain plasma, or placed at room temperature for 0.5 h and centrifuged at 5000 rpm for 
10 min to obtain serum. The superfcial portion (white) of gastrocnemius muscles was separated and 
washed with PBS, and then the muscle samples were dried using flter paper. After that, samples were 
weighed and frozen by liquid nitrogen for western blotting analysis. Specimens from the contralateral 
white gastrocnemius were fxed for histological examination. 

2.3. Blood Glucose, Serum Insulin, Serum Urea Nitrogen, and Plasma Free Amino Acids Measurement 

The blood glucose level was measured from the tail vein of mice using a glucometer 
(Johnson OneTouch UltraEasy, Shenzhen, China). The concentration of serum insulin was determined 
using a mouse insulin ELISA kit (Mercodia Diagnostics, Uppsala, Sweden). Serum urea nitrogen 
analysis was performed using a commercial kit (Jiancheng Bioengineering Institute, Nanjing, China). 
Free amino acids in plasma were analyzed using the Hitachi L-8800 amino acid analyzer (Hitachi, 
Tokyo, Japan) after acid hydrolysis with 6N HCl (refuxed at 110 ˝C for 24 h) [34]. 

2.4. Western Blot Analysis 

Fifty mg of frozen white gastrocnemius was powdered and homogenized for 30 s in 0.5 mL lysis 
buffer (containing protease inhibitors with or without phosphatase inhibitors, accordingly, to detect 
the expression of phosphorylated or non-phosphorylated protein). The homogenate was incubated 
on ice for 20 min and then centrifuged at 13,000ˆ g at 4 ˝C for 20 min. Supernatants were carefully 
transferred to an Eppendorf tube and stored at ´80 ˝C until used for western blots. The protein 
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concentration in muscle homogenate was determined with a BCA protein assay kit (Thermo Scientifc, 
Rockford, IL, USA). A total of 20 µg of protein was loaded per lane, separated by SDS-PAGE (8% or 
12%) and transferred to nitrocellulose flter membranes (NC, 0.45 µm). The membranes were blocked 
with 3% BSA-TBST for 30 min and incubated overnight at 4 ˝C with mammalian vacuolar protein 
sorting mutant 34 (mVPS34, 1:1000 dilution), mTOR (1:1000), phospho-mTOR (Ser2448) (1:1000), 
70kDa ribosomal protein S6 kinase (p70S6K, 1:2000), phospho-p70S6K (Thr389) (1:500), eukaryotic 
translation initiation factor 4E-binding protein 1 (4E-BP1, 1:2000), phospho-4E-BP1 (Thr37/46) (1:1000), 
fast myosin skeletal heavy chain (MHC II, 1:3000), Ubiquitin (1:1000), muscle RING-fnger protein-1 
(MuRF-1, 1:1000), and muscle atrophy F-box (MAFbx/Atrogin-1, 1:1000) antibodies (Cell Signaling 
Technology, Beverly, MA, USA or Abcam, Cambridge, UK) at different dilutions. The next day, 
the membranes were incubated at room temperature for 30 min and washed 5 times with tris-buffered 
saline with tween 20 (TBST), then incubated with secondary antibody (Jackson Immuno Research, 
Laboratories, Inc., West Grove, PA, USA) anti-rabbit (1:20,000) or anti-mice (1:10,000) for 40 min. Blots 
were serially washed six times and detected with ECL reagent kit (Merck Millipore, Billerica, MA, 
USA). The optical density blotting was analyzed using Totallab (Nonlinear Dynamics, Newcastle, 
UK) [35]. The comparisons of both protein expression and phosphorylation rate between groups were 
performed with the raw data. The differences were displayed with the relative value, which was 
normalized to a control (AlaC). 

2.5. Histological Examination 

The specimens of white gastrocnemius were fxed with 4% (v/v) paraformaldehyde in 0.01 M 
PBS (pH 7.4) for 3 h and embedded in paraffn. Five µm sections were cut and then stained using a 
standard haematoxylin and eosin staining method. The images were captured with a 40ˆ objective on 
the Olympus DP71 microscope digital camera (Olympus; Tokyo, Japan) and analyzed using Image-Pro 
Plus version 6.0 software (Media-Cybernetics, Silver Spring, MD, USA) to measure the cross-sectional 
area (CSA) and diameter of muscle fbers [36]. 

2.6. Statistical Analysis 

The normality of the data was checked and subsequently confrmed with the Shapiro–Wilk test. 
The Levene’s homogeneity of variance test was used to assess the equality of variances; when Levene’s 
test was signifcant, the Greenhouse–Geisser correction was used. Data that were not normally 
distributed were then transformed and retested. Following transformations, data that failed to meet 
the assumptions of normality and homogeneity of variances were analyzed with non-parametric tests. 
Data are expressed as means plus or minus the standard deviation. When measurements could be 
repeated over time (body weight, average daily food intake), repeated measures analysis of variance 
was performed. The data of other variables were all analyzed by univariate and two-factor analysis 
of variance. When a signifcant interaction effect was detected, the simple effect was assessed with 
the results of one-factor analysis of variance. The signifcance of the differences between groups was 
assessed by Dunnett’s correction for multiple comparisons. All tests were performed using statistical 
software SPSS version 20.0 (SPSS, Inc., Chicago, IL, USA), and all fgures were created with Sigmaplot 
11.0 (Systat, San Jose, CA, USA). Differences were considered as signifcant for p < 0.05. 

3. Results 

3.1. Body Weight 

The body weight of mice in the two sedentary groups (AlaC, LeuC) were both elevated after 
8 weeks when compared with their initial weight; however, only the AlaC group reached statistical 
signifcance (p < 0.05). In comparison, the body weight of mice in the exercise groups did not change 
signifcantly (AlaE, p = 0.132; LeuE, p = 0.136). After the 7 h food deprivation, the body weight of 
all mice except LeuE was signifcantly reduced. Repeated measures ANOVA for data in the 8 week 
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experimental period revealed that body weight did not vary with time and the effects of time (week) 
did not vary among each group. The multiple comparisons between eight time-points within each 
group also showed that the body weight of all mice were stable. A main effect of the intervention was 
found to signifcantly infuence body weight (p < 0.01) (Figure 1A). 
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intake. AlaC: alanine supplementation group; LeuC: leucine supplementation group; AlaE: alanine 
supplementation + exercise training group; LeuE: leucine supplementation + exercise training group. 

3.2. Food Intake 

A signifcant main effect was found for time (p < 0.05). There were no signifcant interactions, 
suggesting that the average daily food intake of the mice in each group was consistent between groups 
throughout the 8 week intervention period (Figure 1B). 
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3.3. Concentrations of Serum Insulin, Urea Nitrogen, and Blood Glucose 

There were no signifcant effects of the different interventions on serum insulin. The concentration 
of serum urea nitrogen was affected by both leucine supplementation and exercise training (p < 0.01); 
however, there were no signifcant interactions. Compared to AlaC, serum urea nitrogen signifcantly 
decreased in the LeuC, AlaE, and LeuE groups. Post hoc analysis revealed that LeuC and LeuE were 
both signifcantly less than AlaE. Blood glucose concentration was signifcantly greater (p < 0.01) in 
AlaC compared to AlaE, and LeuC was signifcantly greater (p < 0.01) than LeuE. Exercise signifcantly 
reduced blood glucose concentrations; however, there were no differences between AlaC and LeuC 
(Figure 2). 
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3.4. Plasma Free Amino Acids Analysis 

Regarding the main effects, the factor of amino acid supplementation only signifcantly affected 
leucine, alanine, proline, glutamic acid, glycine, and tyrosine, while exercise had more extensive effects 
on the concentrations of leucine, isoleucine, arginine, histidine, threonine, alanine, serine, glutamic 
acid, glycine, and tyrosine. A signifcant interaction between amino acids and exercise were observed 
in glutamic acid, glycine, and tyrosine. 

Plasma concentrations of all essential amino acids except leucine were not signifcantly affected by 
the different interventions. The leucine concentration in LeuC, AlaE, and LeuE was higher than AlaC, 
with the greatest values being in LeuE (132%), followed by LeuC (124%) and AlaE (116%). In regard 
to non-essential amino acids, concentrations of alanine, glutamic acid, glycine, and tyrosine were 
signifcantly different. In the LeuE group, alanine and tyrosine concentrations were higher than mice 
in AlaC (Ala 123%, Tyr 128%) and LeuC (Ala 147%, Tyr 134%), but lower than that in AlaE. Plasma 
glutamic acid and glycine were lower in LeuE than AlaC and AlaE (Table 3). 

Table 3. Mean plasma amino acids concentrations after 8 weeks of leucine supplementation 
with/without exercise training (µmol/L). 

AlaC (n = 8) LeuC (n = 7) AlaE (n = 10) LeuE (n = 8) 

Essential amino acids 

Leucine 127.3 ˘ 7.0 158.8 ˘ 5.5 b 148.0 ˘ 9.2 b,c 168.5 ˘ 11.1 b,f 

Isoleucine 74.6 ˘ 2.7 73.2 ˘ 3.2 78.7 ˘ 2.7 77.7 ˘ 6.0 
Valine 281.0 ˘ 9.2 268.2 ˘ 30.7 279.7 ˘ 2.6 269.2 ˘ 16.4 

Arginine 
Histidine 

71.5 ˘ 9.2 
125.1 ˘ 6.6 

69.9 ˘ 5.6 
126.8 ˘ 8.4 

78.1 ˘ 4.3 
132.1 ˘ 3.4 

76.5 ˘ 2.5 
132.4 ˘ 4.5 

Lysine 
Methionine 

269.2 ˘ 6.4 
50.7 ˘ 8.5 

270.6 ˘ 12.0 
54.1 ˘ 1.0 

277.1 ˘ 14.3 
56.1 ˘ 9.3 

282.5 ˘ 12.5 
59.1 ˘ 9.2 

Phenylalanine 
Threonine 

252.2 ˘ 14.8 
140.9 ˘ 7.1 

261.5 ˘ 16.1 
141.2 ˘ 12.0 

266.4 ˘ 12.8 
148.9 ˘ 11.4 

268.0 ˘ 7.0 
152.6 ˘ 4.9 

Non-essential amino 
acids 

Alanine 306.3 ˘ 33.1 256.0 ˘ 23.3 b 415.7 ˘ 31.9 b,d 378.2 ˘ 21.1 b,d,e 

Aspartic acid 
Cystine 

Glutamic acid 
Glycine 
Proline 

147.7 ˘ 13.5 
47.5 ˘ 5.3 

465.2 ˘ 28.5 
380.6 ˘ 25.4 
103.3 ˘ 3.6 

151.4 ˘ 11.8 
47.8 ˘ 9.3 

390.8 ˘ 20.2 b 

349.3 ˘ 13.8 a 

107.5 ˘ 6.1 

148.4 ˘ 6.6 
51.2 ˘ 2.4 

549.3 ˘ 38.0 b,d 

442.0 ˘ 24.5 b,d 

100.2 ˘ 4.9 

158.3 ˘ 14.3 
53.0 ˘ 5.3 

406.1 ˘ 26.4 b,f 

365.7 ˘ 15.7 f 

107.1 ˘ 8.1 
Serine 

Tyrosine 
202.2 ˘ 13.2 
94.1 ˘ 5.7 

198.9 ˘ 7.5 
89.4 ˘ 6.8 

210.6 ˘ 9.1 
148.5 ˘ 8.8 b,d 

210.4 ˘ 11.2 
120.5 ˘ 10.8 b,d,f 

Values are provided as mean ˘ standard deviation for each group (n = 7–10). AlaC: alanine supplementation 
group; LeuC: leucine supplementation group; AlaE: alanine supplementation + exercise training group; LeuE: 
leucine supplementation + exercise training group. Glutamic acid shown here includes both glutamine and 
glutamic acid. a: p < 0.05 versus the AlaC group; b: p < 0.01 versus the AlaC group; c: p < 0.05 versus the LeuC 
group; d: p < 0.01 versus the LeuC group; e: p < 0.05 versus the AlaE group; f: p < 0.01 versus the AlaE group. 

3.5. Histological Changes of Muscle Fibers 

Compared with the control group (AlaC), histological examination of haematoxylin and eosin 
stained white gastrocnemius sections showed signifcant increases (p < 0.01) in CSA (Figure 3A) 
and diameter (Figure 3C) of the muscle fbers in the LeuE group, whereas the CSA and diameter of 
these fbers were not changed in LeuC and AlaE (Figure 3E). A main effect of group was found for 
gastrocnemius weight (p < 0.05). Gastrocnemius muscle weight was signifcantly greater (p < 0.01) in 
LeuE than LeuC, AlaE, and AlaC (Figure 3B). 
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Figure 3. Effects of leucine supplementation and exercise on (A) cross-sectional area (CSA), (B) diameter, 
(C) weight, and (D) protein ratio; (E) Hematoxylin-eosin stained sections of white gastrocnemius 
muscle in mice: (a) Cross-section of alanine supplementation; (b) leucine supplementation; (c) alanine 
supplementation + exercise training; and (d) leucine supplementation + exercise training mice. 
Magnifcation 400ˆ, scale bars = 50 µm. Values are provided as mean ˘ standard deviation for 
each group (n = 7–10). AlaC: alanine supplementation group; LeuC: leucine supplementation group; 
AlaE: alanine supplementation + exercise training group; LeuE: leucine supplementation + exercise 
training group. a: p < 0.05 versus the AlaC group; b: p < 0.01 versus the AlaC group; c: p < 0.05 versus 
the LeuC group; d: p < 0.01 versus the LeuC group; e: p < 0.05 versus the AlaE group; f: p < 0.01 versus 
the AlaE group. 
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3.6. Total Protein in White Gastrocnemius Muscle 

Muscle protein content is reported as mg muscle¨g body weight ´1 [37]. When compared with 
AlaC, the content of white gastrocnemius muscle protein in LeuC, AlaE, and LeuE were all signifcantly 
greater (p < 0.01). The differences between LeuC and LeuE, and AlaE and LeuE were also signifcant 
(p < 0.01, Figure 3D). The protein content in LeuE was greater than LeuC, AlaE, and AlaC (p < 0.01). 

3.7. Protein Expression with Relation to Hypertrophy and Atrophy 

AlaE, LeuC, and LeuE all increased (p < 0.01) the protein expression of mVPS34, MHC II and the 
phosphorylation state ratio of mTOR (Ser2448), p70S6K (Thr389), and 4E-BP1 (Thr37/46) compared 
to AlaC. The main effects of both leucine supplementation and exercise were statistically signifcant 
for all proteins. A signifcant interaction between these two factors was not found. AlaE, LeuC, and 
LeuE all decreased (p < 0.05 or p < 0.01) the protein expression of Ubiquitin, MuRF-1, and Atrogin-1, 
which are involved in the ubiquitin-proteasome pathway. Both the leucine and exercise factor showed 
statistically signifcant main effects (p < 0.05); however, no signifcant interaction was found (Figure 4). 
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4. Discussion 

Aging is a multifactorial process characterized by decreased protein synthesis and increased 
protein breakdown, which, in conjunction with reduced food/protein intake and activity, contributes 
to skeletal muscle atrophy and sarcopenia [1,38]. 

The enhanced muscle CSA, protein content, and altered phosphorylation (suggestive of increased 
activity) of protein synthesis signaling proteins, and the decreased expression of proteins involved 
in protein degradation observed in LeuC, AlaE, and LeuE in the present study may have been 
due to increased plasma amino acid concentrations, as only fasting plasma free leucine differed 
between groups. In this regard, both leucine supplementation and exercise training elevated leucine 
concentrations in the fasting state. This elevation observed in the leucine group was not surprising, 
given that modifcations in muscle branched-chain amino acid (BCAA) metabolism is frequently 
reported with leucine supplementation [27]. However, exercise training also produced a similar 
effect [39,40]. This may have been due to reduced leucine uptake by skeletal muscle, as suffcient 
energy intake and available glucose leads to reduced leucine oxidation in skeletal muscle [10]. Although 
increased plasma leucine (and BCAA) levels has been associated with metabolic diseases such as obesity 
and type 2 diabetes [27,41], our data does not point to a glucose homeostasis disturbance, as presented 
in the Figure 2A, C. Although leucine supplementation and exercise training was associated with 
increased plasma concentration of several amino acids, this may have been due to the fasting process or 
as a result of leucine supplementation. We can not conclude that the protein breakdown was accelerated 
due to increased plasma alanine during the fasting state alone. Moreover, alanine concentrations were 
greater in AlaE compared to LeuE. This suggests that if the increased plasma alanine during the fasting 
period was to provide substrate for gluconeogenesis, leucine supplementation may attenuate this 
breakdown. The histological changes, protein content of muscles, and serum urea nitrogen (see below) 
further suggests that protein metabolism was positively regulated when moderate aerobic exercise 
was accompanied by leucine supplementation. 

Both leucine [14,22] and exercise [7,8] have been shown to affect the mTOR pathway in aging mice. 
mTOR integrates the input from multiple upstream signaling pathways, including mechanical and 
nutritional stimulation, to regulate several eukaryotic cellular functions, such as protein synthesis [42]. 
The up-regulation of protein synthesis after leucine supplementation and exercise training is the result 
of the activation of the mammalian target of rapamycin complex 1 (mTORC1) and its down-stream 
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targets p70S6K and 4E-BP1 [14]. Although chronic low-intensity endurance exercise generally does not 
provide enough mechanical overload to induce signifcant increases in muscle mass, higher-intensity 
aerobic exercise training was found to increase muscle protein synthesis and mTOR signaling in older 
adults [43]. Konopka and Harber suggest that the effectiveness of aerobic exercise training in inducing 
skeletal muscle hypertrophy most likely depends on obtaining a suffcient exercise intensity (70%–80% 
heart rate reserve, HRR). However, this intensity may not be appropriate for some older adults, such 
as elderly individuals with osteoarthritis, pre-existing injuries, or the frail. Considering the potential 
impact of "anabolic resistance" to protein feeding, we assume that leucine combined with lower 
intensity aerobic exercise training may confer benefts that otherwise would require higher-intensity 
aerobic exercise. Our study demonstrates that pre-senescent mice beneft from aerobic exercise, as 
evidenced by muscle remodeling evaluated through histological and biochemical methods. In the 
present study, we observed a signifcant increase in CSA and the ratio of protein to body weight 
of LeuE versus AlaC mice. Interestingly, 5% leucine supplementation without exercise also showed 
similar effects, as the protein content of white gastrocnemius was elevated by 34% in LeuC versus AlaC. 
This is consistent with the fndings of previous research that have examined the effects of a leucine-rich 
diet on protein synthesis [30,31]. 

The key upstream proteins of mTOR in the amino acid sensing pathway require further 
clarifcation. Amino acids do not appear to signal through Akt to activate mTORC1 [44]. Instead, 
these nutrients signal through other kinases to mTORC1. The Class III PI3K, mammalian vacuolar 
protein sorting mutant 34 (mVPS34) has been found to play a critical role in mTORC1 activation [45,46]. 
MacKenzie et al. [45,46] found that resistance exercise or high-resistance contractions activated mVPS34, 
but the effects of aerobic exercise on mVPS34 were not reported. In the present study, the protein 
expression of mVPS34 was up-regulated by leucine supplementation and aerobic exercise training, but 
there were no signifcant interactions between these two interventions. Moreover, the phosphorylation 
of mTOR, p70S6K, and 4E-BP1 were all increased in LeuC, AlaE, and LeuE mice compared to controls. 
These expression changes suggest that protein synthesis in white gastrocnemius is promoted by leucine 
supplementation and exercise. Additionally, leucine supplementation without exercise increased 
protein expression associated with protein synthesis similarly to those achieved with aerobic exercise. 

Skeletal muscle fber type and contractile function are determined by myosin heavy chain (MHC) 
isoforms [47,48]. Contractile phenotype in skeletal muscle fbers is primarily determined by the relative 
expression of the MHC isoforms I and II [49]. There is a decrease in the fractional content of MHC II 
protein in skeletal muscle, and a corresponding increase in the proportion of MHC I with age, and this 
change is consistent with the reduction of CSA occupied by histochemically-typed fast-twitch fbers 
in skeletal muscle [50]. We found the protein expression of MHC II, wet weight, diameter, and CSA 
of white gastrocnemius was greater for LeuE compared to LeuC, AlaE, and AlaC; however, there 
were no differences between LeuC, AlaE, or AlaC. On the other hand, protein concentrations of white 
gastrocnemius in LeuC, AlaE, and LeuE mice were signifcantly increased compared with those of the 
control group. Moreover, the CSA and total protein per muscle fber was the highest in LeuE. These 
changes may further suggest that leucine supplementation in conjunction with aerobic exercise training 
promotes protein accretion in white gastrocnemius, without affecting variations in skeletal muscle. 

The ubiquitin-proteasome system (UPS) is the primary pathway regulating proteolysis in skeletal 
muscle and plays a critical role in the control of protein degradation in muscle fbers [51,52]. 
UPS-dependent protein degradation is known to be highly regulated by exercise and nutrient 
availability [53,54]. Two muscle-specifc E3 ubiquitin ligases, Atrogin-1 and MuRF1, are considered 
to be critical components involved in these regulatory effects [55,56]. Therefore, UPS plays a major 
role in controlling skeletal muscle mass in aging [52]. The skeletal muscle atrophy through UPS 
arises in the pre-senescent state and shows progressive increases in lean body mass loss with age. 
In the present study, mice receiving leucine supplementation and exercise training showed a decrease 
in protein expression of ubiquitin, Atrogin-1, and MuRF-1, and the combination of leucine and 
exercise led to more signifcant decreases compared with exercise or leucine supplementation alone. 
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We previously demonstrated diminished gene expression of Atrogin-1 and MuRF-1 after a chronic 
program of resistance training in rats [57]. This study demonstrates for the frst time that aerobic 
training or leucine supplementation is also capable of inhibiting both atrogenes, with a more signifcant 
inhibition observed when leucine supplementation is combined with aerobic training. The inhibition 
of UPS components with leucine and exercise suggests that protein degradation in pre-senescent 
mice was decreased, and therefore may play a role in maintaining skeletal muscle mass. Additionally, 
serum urea nitrogen was also lower in the leucine and exercise group suggesting improved nitrogen 
balance. Therefore, the greater muscle mass we observed in LeuE compared to AlaC is likely most 
attributable to the potential synergistic effects of leucine supplementation and exercise on inhibiting 
muscle protein breakdown. 

5. Conclusions 

In conclusion, long-term leucine supplementation, swimming exercise training, and combined 
interventions are potential treatments to enhance white gastrocnemius mass in pre-senescent mice, 
with the combination of leucine and exercise showing the greatest effects. These results may have been 
achieved by stimulating protein synthesis, but are predominantly attributable to inhibiting muscle 
protein degradation. Interestingly, in our sample of mice, leucine supplementation alone showed 
similar effects to aerobic training; however, more human data is needed to translate these effects. From 
a molecular mechanistic standpoint, mVPS34/mTOR and UPS may be involved in these regulatory 
effects induced by leucine and/or exercise, and the leucine availability may also play a central role in 
this process. Further research is needed to investigate the use of inhibitors or blockers of these critical 
signaling proteins (i.e., mVPS34, mTOR, Atorgin-1, and MuRF-1), as they were not utilized in this 
work. Future research should also investigate the dose–effect relationship of leucine supplementation 
and exercise training (including intensity and duration) in aging populations. Finally, we acknowledge 
that this research was limited by the lack of muscle function testing, because increased muscle mass 
has not always positively correlated with muscle function. Thus, the effects of different interventions 
on measures of muscle function such as maximal force output and peak power will be potentially 
fruitful areas of future research. 
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