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a b s t r a c t 

Low nitrogen (N) use efficiency from urea fertilizers due to environmental losses results in high cost of fertilizers 

for agricultural productions. Coating of urea with biodegradable polymers makes them effective for control and 

efficient N release. In this study, starch and polyvinyl alcohol (PVA) were used in combination with acrylic acid 

(AA), citric acid (CA) and maleic acid (MA) for the coating of urea prills. Different formulations of the coating 

were prepared and applied on urea prills such as urea coated with starch (10%) and PVA (5%) with acrylic 

acid: 2, 4 and 6% (USP-A2, USP-A4, USP-A6), with citric acid: 2, 4 and 6% (USP-C2, USP-C4, USP-C6), and with 

maleic acid: 2, 4 and 6% (USP-M2, USP-M4, USP-M6). After urea coating in fluidized bed coater, all uncoated 

and coated urea samples were characterized by scanning electron spectroscopy (SEM), Fourier transform infrared 

spectroscopy (FTIR), X-ray diffraction (XRD), crushing strength and UV-Vis spectroscopy. The morphological and 

XRD analysis indicated that a new uniform coating with no new phase transformation occurred. Among all urea 

coated samples, USP-A2 and USP-C2 showed the highest crushing strengths: 12.08 and 13.67 N with nitrogen 

release efficiency of 70.10 and 50.74% respectively. All coated urea samples improved the spinach plants’ foliage 

yield, chlorophyll content, N-uptake and apparent nitrogen recovery (ANR) than uncoated urea and control plants. 

However, USP-A2 and USP-C2 provided promising results among all coated samples with dry foliage yield (2208 

± 92 and 2428 ± 83 kg/ha), chlorophyll (34 ± 0.6 and 34 ± 0.4 mg/g), N-uptake (88 ± 4 and 95 ± 6 kg/ha) and 

ANR (59 ± 4 and 67 ± 6%). Therefore, urea prills coated with a combination of biodegradable polymers can be 

a better choice for the farmers to enhance agronomical productions by controlling the fertilizer nutrient release 

rate. 
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The global food production and consumption demands are increas-

ng with increasing population. To fulfil these demands, a large variety

f synthetic fertilizers such as nitrogen (N), potassium (K) and phospho-

us (P) fertilizers have been used for the enhanced crop production .

mong all nutrients, N scarcity has remained a major issue affecting the

lants’ growth due to inability of plants to take up environment nitro-

en [1] . Owing to this reason, urea remained the most commonly used

itrogen fertilizer during the past four decades [2] . Growers are com-

elled to use high rates of urea fertilizer that results in unintentional

igh losses, consequently polluting the agro-ecosystem. About 70% of
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 is lost into the environment that occurs due to ammonia volatilization,

itrification-denitrification, nitrate leaching and runoff [3] . 

Controlled releasing urea fertilizer will increase plant N use effi-

iency, reduce nitrate leaching and ensure constant nutrient supply to

he roots relative to readily soluble fertilizer thus, improving nitrogen

ecovery [ 4 , 5 ]. Various type of controlled-releasing fertilizers have been

sed previously such as; encapsulated soluble fertilizers, inorganic salts

r decomposable organic compounds with low solubility, readily de-

omposable water soluble materials and less soluble chemical materials

io-augmented with bacteria [ 6 , 7 ]. From all those, encapsulated fertil-

zers proved best due to their slow releasing nature and less solubility

ffect. Also, urea encapsulation could be a good management strategy
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Table 1 

The treatments and chemical compositions of coating solutions for urea 

encapsulation in wt%. 

Treatment Starch PVA Acrylic Acid Citric Acid Maleic Acid 

USP-A2 10 5 2 - - 

USP-A4 10 5 4 - - 

USP-A6 10 5 6 - - 

USP-C2 10 5 - 2 - 

USP-C4 10 5 - 4 - 

USP-C6 10 5 - 6 - 

USP-M2 10 5 - - 2 

USP-M4 10 5 - - 4 

USP-M6 10 5 - - 6 

Note: USP-A2 to A6: urea coated with starch, PVA and acrylic acid (2, 4, 6 

%); USP-C2 to C6: urea coated with starch, PVA and citric acid (2,4,6%); 

USP-M2 to M6: urea coated with starch, PVA and maleic acid (2,4,6%). 
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o increase its plant fertilizer value and to solve the problem of N losses

8] . 

Polymeric substances obtained from plastic or petroleum products

ave been extensively used during the last few decades as coatings for

he formation of controlled/slow releasing fertilizer. The polystyrene,

olylactic acid [9] , polysulfone, polyurethane [10] and polyacrylamide

11] materials have been employed as coating materials for urea to make

hem slow releasing fertilizers [ 12 , 13 ]. However, these substances have

igh cost and show poor biodegradability that means they persist in the

oil for a long time and disturb the soil quality. Therefore, there is a need

o use biodegradable materials for coating urea prills that will elimi-

ate the harmful effects of conventional coating on agro-ecosystems. To

void the harmful impacts of non-biodegradable coating materials on

he environment, researchers started using bio-based coatings such as

olasses, gum, starch, polyurethane and honeybee wax [14] . Many re-

ent studies have used the coatings of natural biomasses such as rice

traw and rice husk, lignin, cellulose, chitosan either alone or mixed

ith other minerals [ 3 , 15 , 16 ]. Irfan et al, [17] evaluated the effect of

hese bio-based materials on the zinc release efficiency of urea fertiliz-

rs. 

Due to complete biodegradability, renewability and low cost, starch

roved to be a capable candidate for coating thus, producing valuable

aterials. However, due to its poor processability, dimensional stabil-

ty, mechanical properties and instability at higher temperature and pH,

t cannot be used directly. Starch blends with polyurethane and poly-

ulfone have been employed but the problem was to minimize the ratio

f synthetic polymers into natural bio-polymers to achieve the desired

iodegradability of coated urea in the soil [18] . The polyvinyl alcohol

PVA) which is a water-soluble synthetic and biodegradable polymer,

as selected to enhance the mechanical properties of starch/PVA blends

 19 , 20 ]. Strong interaction and crosslinking in PVA-starch blends not

nly increase the strength and density of films but also prevent swelling

f the starch structure by decreasing accessible regions, thus resulting

n improved resistance to dissolution [21] . 

Various methods including rotary pan coating, rotary disk atomiza-

ion, immersion technique [9] and fluidized bed coating (FBC) have

een employed for the production of coated urea fertilizers. However,

he FBC technique is considered the best among all other techniques

ue to its excellent heat and mass transfer characteristics, short pro-

essing time and single operating unit [22] . In fluidized bed coater, the

ranulation process strongly depends upon the nature and quantity of

inders/cross linkers [23] . The osmotic pressure builds inside the coat-

ng when urea coated fertilizers come in contact with water. If osmotic

ressure increases from threshold pressure, the weakly bonded coating

reaks and releases all fertilizer which is referred as ‘‘failure mecha-

ism’’ [24] . 

Wu et al, [19] suggested that the addition of some binders or cross

inkers into the PVA-starch blends provides the coating material with

ore flexibility, strength and water resistibility. Shaaban et al, [25] used

oric acid as a binder for urea encapsulation and found that the boric

cid slowed down the nitrogen release rate of urea by increasing its

rushing strength. Different biodegradable binders such as bentonite

lay for urea-zeolite fertilizer, paraffin wax into the gypsum and sulphur

oating of urea fertilizers have been used for increasing the nitrogen re-

ease efficiency [26–28] . Moreover, Sofyane et al, [18] studied the nutri-

nt release rate from PVA/starch based coated urea using glycerine as a

inder/cross linker. In few recent studies, the use of carboxylic acid such

s acrylic acid has been employed as a cross linker [ 12 , 19 , 21 , 29 ] but

here is a lack of literature regarding the real field applications of syn-

hesised encapsulated urea as well as the effect of changing the amount

f acid (plasticizer) on the nutrient release efficiency. 

To the best of our knowledge, only limited studies compared the re-

ease rate efficiency of urea fertilizers by using carboxylic acids as cross

inkers with an appropriate combination of PVA and starch and applied

hem on plants. Therefore, this study aims to develop novel coated urea

nd then to evaluate their N-releasing efficiency in real field applica-
2 
ions. For this purpose, three different carboxylic acids such as acrylic

cid, citric acid and maleic acid were selected as cross linkers to encap-

ulate urea prills. These carboxylic acids in different weight percentages

2-6%) were added to PVA and starch solutions to form novel coating

ormulations and coated on urea prills in fluidized bed coater (FBC).

he coated urea samples were also compared with uncoated urea for

 release rate and plants N uptake enhancement in field-scale exper-

mentation. The prepared samples were subjected to the SEM, FTIR,

RD, crushing strength testing and UV-visible spectroscopy for the urea

elease measurements. Moreover, the prepared coated fertilizers were

pplied to the spinach plants to evaluate their impact on plant yield,

hlorophyll content and N-uptake measurements. 

aterials and methods 

aterials 

Starch, PVA, maleic acid, citric acid, acetic acid, P-dimethyl amino

enzaldehyde and concentrated HCl were purchased from Dae Jung Co.,

orea. Distilled water was used as a solvent. Sieved urea prills of 2 mm

iameter having 46% N were obtained from a local market (Fauji fer-

ilizer bin Qasim Company, Pakistan). All chemicals were commercially

vailable in analytical grade and used without any purification. 

reparation of coated urea samples 

The coated urea samples are prepared by using the previously re-

orted method with some modifications [22] . The chemicals used along

ith their quantities to prepare coating solutions are presented in

able 1 . The coating materials, as well as their concentrations, were

elected by keeping in view the previous literature [ 12 , 20 , 29 , 30 ]. The

 tarch solution (10%) was prepared and plasticizers were added to it.

hen PVA (5%) was added to the starch solution which was prepared

n distilled water after heating at 98°C and stirring for 45 min. Here,

crylic acid, citric acid and maleic acid cross linkers are used to make

tarch and PVA better compatible with each other due to the hydroxyl

unctional group presence in both [19] . 

Then the prepared coating solution was stirred continously for

0 min at 40°C on a heating plate to homogenize coating solution. After

reparation of coating formulations, the urea prills were coated using a

ini spray granulator YC-1000 (Shanghai Instrument & Equipment Co.,

td.). For each batch/experiment, 200 gm of urea prills was fed into the

eed section of the fluidized bed coater and coating material was intro-

uced from the bottom of the fluidizer. Then the air was blown through

he heater at 80°C with 45 Hz blower frequency in constant 0.2 MPa air

ressure to fluidize the prills and coating solution was pumped into the

uidizer with 30 rpm speed. The whole procedure was followed for 30

in and prepared coated urea samples were taken out of the bed and

ried for 15 min [22] . 
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Table 2 

Physiochemical properties of soil subjected to 

plants growth. 

Soil properties Values 

Soil texture Clay loam 

pH 8.40 

EC (dS/m) 0.21 

Total organic carbon (%) 0.16 

Dissolved organic carbon (mg/kg) 3.40 

Mineral nitrogen (mg/kg) 4.60 
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haracterization of coated urea 

SEM (S-4700 Hitachi, Japan) was employed for the morphological

tudy of coated and uncoated urea prills [31] . FTIR was done with

erkin Elmer Spectrum 100 spectrometer, wavenumber ranging from

00 to 4000 cm 

− 1 to analyse the presence of bonds, functional groups

nd required crosslinking. To check the crystallinity of synthesized for-

ulations, XRD analysis of coated and uncoated urea were performed

ith STOE Germany [32] . The crushing strength of uncoated and coated

rea fertilizers was also evaluated. Crushing strength is the required

orce to crush the particle. It is the measure of the resistance of the coat-

ng to fracture during physical handling throughout the supply chain

33] . A universal testing machine (AGX Plus) is used for this purpose

hat tells about the tensile strength and compressive strength of mate-

ials. Usually, uncoated urea prills get easily break down into powder

ue to their delicate nature that further remains of no use in agriculture.

rea prills were placed under metal plunger of the machine and tested

gainst a calculated amount of stress. Stress at which urea prills cracked

as marked as the measure of their tensile strength [30] . 

etermination of urea release rate 

The urea release rate and efficiency of the release of coated/uncoated

rea prills were determined by using p-methyl amino benzaldehyde

ethod [33] . The absorption of the sample was measured with UV-Vis

pectrophotometer (GENESYS TM 20). The calibration curve was drawn

o obtain the slope values by plotting graphs between the known concen-

ration of urea versus absorbance to check the urea release rate. Stock

olution was prepared by dissolving 10 gm of urea samples into 5 L

eionized water in a beaker. At different time intervals (3-120 min), the

ample aliquots (10 mL) were taken from the stock solution, diluted to

0 mL and mixed with 1 mL HCl and 5 mL P-dimethyl amino benzalde-

yde solution in 50 mL volumetric flask. Finally, the absorbance of the

repared solution was measured at the wavelength of 418 nm to obtain

he unknown urea concentration in solution or urea release rate by using

q. (1) , and efficiency by using Eq. (2) [34] . 

rea ( ppm ) = 

Absorbance − Y intercept 
Slope f rom calibration curve 

(1)

f f iciency ( % ) = 

C u − C cu 
C u 

× 100 (2)

here, C CU and C U represent the urea concentration (ppm) in coated

nd uncoated urea sample solutions at the time interval of 9 min re-

pectively. 

ot experiment 

For pot experiment, the top soil was collected from the research field

nd sieved to pass mesh (2 mm) to remove all non-soil particles such

s debris and gravels etc. The soil was analysed before applying any

reatment and soil properties are presented in Table 2 . The soil prop-

rties such as total carbon and nitrogen contents were determined and

xcluded from the obtained values of results after urea application for

ore precision. After sieving, each earthen pot (30 cm diameter) was
3 
lled with 4 kg of soil and spinach seeds were sown in them. In total 11

reatments were randomly allocated in 44 pots with four replications in

 complete randomized design (CRD). 

The treatments were (1) control/untreated (C) plants without any

rea application, (2) uncoated urea (UC), and other 9 treatments of

oated urea as already presented in Table 1 . The urea prills were ap-

lied in four splits; before sowing seeds and after 1 st , 2 nd and 3 rd har-

esting of spinach plants. Phosphorous and potassium fertilizers (75:100

g/ha) were applied through their sources such as triple superphosphate

nd muriate of potash respectively. To provide the plants with natural

onditions, pots were placed in the open air and irrigated regularly to

aintain soil water holding capacity (60%) measured through a low-

ost moisture meter (FY-901, Hangzhou FCJ I and E Co., Ltd, China)

30] . 

lant sampling and analysis 

The foliage of spinach crop was harvested at ground level by using

 sharp knife four times at 60, 90, 150 and 180 days after sowing and

resh foliage yield was recorded for each treatment. Chlorophyll content

f fresh leaves from each pot was measured by using SPAD chlorophyll

eter. Afterwards, each treatment plant sample was dried in an oven at

0 °C for 48 hours until weight became constant to obtain dry foliage

ield. Each dried sample was ground and analysed for total N content us-

ng Kjeldahl digestion method [35] . Foliage N uptake was calculated by

sing Eq. (3) while apparent nitrogen recovery (ANR) through Eq. (4) .

NU = NC × DFY (3) 

NR ( % ) = 

(N C t reat ed × DF Y t reat ed ) − (N C control × DF Y control ) 
NA 

(4) 

here FNU, NC and DFY represent foliage N uptake (kg/ha), nitrogen

ontent (gm/100 gm dry matter) and plant dry foliage yield (kg/ha)

espectively. NA is the total nitrogen (N) application rate per treatment

kg/ha). 

tatistical analysis 

Univariate analysis was done to evaluate treatment effect with SPSS

tatistics version 20 (IBM, NY, USA). The effect of coated and uncoated

ertilizers was analysed using analysis of variance (ANOVA) at a proba-

ility level of 5%. When the effect of treatments proved significant then

ukey test was used for multiple comparisons [35] . 

esults and discussion 

icrostructure characteristics of coated urea prills 

The SEM micrographs of all uncoated and coated urea samples are

hown in Fig. 1 . The surface micrograph of uncoated urea prills in

ig. 1 (a) shows the fine pointy crystals that are tightly cemented on

o the surface. Some of the gaps and pores are also visible. Since onion

ings are illustrated to appear during urea production theoretically [36] .

nfortunately, ring formation is not clearly visible here and the surface

ooked rough with clear pointy crystals. SEM micrographs of coated urea

how layering and agglomeration that is a clear indication of the coat-

ng. In Fig. 1 (b1), SEM micrographs of USP-A2 are shown which repre-

ent that only a few slabs are present with pointy edgy particles on the

urface. 

This coating is covering the whole surface without any gaps and cav-

ties that indicate the good coverage of urea prills. Here the coating is

uite dense without the pointy exposed surface of urea through gaps

nd agglomeration occurs due to thorough contact between urea sur-

ace and coating [37] . With the increase in the percentage of AA (4 %)

n USP-A4 samples, the random bigger slabs with some eddy particles
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Fig. 1. SEM images; (a) uncoated urea, (b1, 

b2, b3) USP-A2 to USP-A6, (c1, c2, c3) USP-C2 

to USP-C6 and (d1, d2, d3) USP-M2 to USP-M6. 
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ppeared and the coating layer seem to be dense with some pores and

avities. Few areas are best covered and dense but some of the portions

re edgy which indicate the appearance of the urea surface ( Fig. 1 (b2)).

As the urea surface is visible that means coating at that region is not

ntact with the surface and urea prills were uncovered at those places

s also reported in previous literature [38] . Relative to USP-A4, USP-A6

n Fig. 1 (b3) is showing a surface with pointy edges leading to the urea

urface appearance through pores along with a small random region

f compact and intact covering. This shows that with an increase in
4 
he concentration of cross linkers (acids) in the coating formulations

rom 4 to 6%, the cracks start to propagate on to the coating surface

hat exposes urea under coating. Azeem et al, [22] also stated that an

ptimum concentration of coating materials plays a crucial role in the

utrient release rate. 

The SEM micrographs of urea coated with starch, PVA and citric

cid (USP-C) show dense, homogenous, smooth and continuous surface

ithout the appearance of any pores. The white granules are maybe the

tarch granules, and they can reduce the mechanical properties due to
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heir brittle behaviour [19] . In Fig. 1 (c1) no projections and wrinkles

re visible which is an indication of no significant phase separation be-

ween the starch and PVA in USP-C2 samples [39] . It also indicates that

itric acid acts as a bridge and enhances the binding of starch and PVA

nd helps in forming a dense and homogenous film. Lower concentra-

ions of citric acid (in USP-C2) show surface morphology of smooth and

ully dispersed coating. 

By increasing the concentration of citric acid (4%) in USP-C4 sample,

he agglomeration on the surface of the urea prill also increases ( Fig. 1

c2)). As the concentration of citric acid is increased that contribute to

he chemical networking between coating components at a higher rate,

ithout providing enough time to the coating film to spread evenly on

he urea prills’ surface. And the projections due to citric acid and pores

ue to agglomeration start appearing at this point and the gaps appeared

o expose the urea surface. However, with a further increase in the con-

entration of citric acid (6%) in USP-C6 sample, the projections become

ore prominent. And the edges appear due to the exposed surface of

rea through gaps, cavities or imperfections in the coating as shown in

ig. 1 (c3). Thus, among all the coatings including citric acid, the sample

SP-C2 has shown dense and complete coverage of urea prill. Moreover,

he absence of edgy pointy particles is the major indication of good cov-

rage [40] . 

The SEM micrographs of urea coated with starch and PVA with

aleic acid (USP-M) are shown in Fig. 1 (d1). With a lower concentra-

ion of maleic acid (2%) in USP-M2, the surface of the urea is partially

overed with coating. However, some of the regions are showing spikes

r edges on the urea surface that is the representation of incomplete cov-

rage due to pores and cavities. While an increase in the concentration

f maleic acid (4%) in USP-M4, appears to fill the gaps and crevasses

 Fig. 1 (d2)). This forms dense clusters of particles on the urea surface

ue to thorough contact with coating, surprising the appearance of urea

urface. Xiaolong et al, [24] stated that this intact coating will prevent

nd control the urea release rate better. 

With an increase in the amount of maleic acid (6%), the intact be-

aviour of coating with the urea surface reduces ( Fig. 1 (d3)). Plasti-

izer gets agglomerate creating big holes and cracks in coating causing

rea surface to appear. These cracks will show the edgy particles in-

icating the uncoated region that affects the release rate badly. More-

ver, the combinations of coating materials that caused agglomeration

nd cracks on the urea surface appeared to be more crystalline due

o the non-homogenous type of coatings. It can be observed from the

bove discussion that the coated samples USP-A2, USP-C2 and USP-

4 showed the best-covering properties. Their surface appeared to be

mooth, homogenous, continuous and dense with no visible pores. It

ndicates that carboxylic acid crosslinkers (acrylic acid, citric acid and

aleic acid) improves the binding of starch and PVA. Furthermore, the

oly-carboxylation reaction between plasticizers and hydroxyl groups

f PVA/starch provide support to the uniform nature of the coating. By

ombining the PVA and starch hydroxyl groups, plasticizers enhance

he water resistibility of starch films by suppressing their hydrophilic

ature. Thus, all the plasticizers were cross-linked with starch and PVA

nd well dispersed [19] . The rough outer layer in the coated sample also

revents the mechanical damage of coating and enhances the water re-

ention capability in the soil [12] . 

nteraction of urea with coating formulations 

FTIR spectra of uncoated and coated urea samples were recorded at

n ambient temperature of 25 °C and wavelength of 400–4000 cm 

− 1 and

hown in Fig. 2 . In the FTIR band of uncoated urea powder, the bond of

rimary amine was observed that represents the N-H stretching in urea.

his band is comprised of two peaks first is at 3442 cm 

− 1 and another at

348 cm 

− 1 . Two more bands of high intensity appear, one at 1677 cm 

− 1 

orresponds to the C = O [41] and another 1624 cm 

− 1 for vibrational

tretching of N-H bond [42] . A band of the slightly low intensity of 1468

m 

− 1 was also observed that corresponds to the vibrational stretching
5 
f the C-N bond in urea. These absorption peaks are consistent with

elatively published results [ 43 , 44 ]. 

The characteristic N-H band in urea starts disappearing in the case

f covering of urea with coating. The slight band shift in carbonyl was

lso seen which is the indication of strong interaction through hydro-

en bonding between the carboxyl group of urea and hydroxyl group of

tarch. The FTIR spectrum shows that with increasing concentration of

lasticizers by keeping polymer ratio same the coating and hence bond-

ng becomes strong, this was also visualized by greater agglomeration

n SEM analysis ( Fig. 1 ). This was verified by the absence of a primary

mine band in the spectrum and decreased intensity of C = O and C-N

ands in urea. In the fingerprint region (400-1500 cm 

− 1 ) all the usual

eaks of uncoated and coated urea samples appear very similar. 

The FTIR spectrum of urea coated with starch, PVA and acrylic acid is

hown in Fig. 2 (a). The characteristic peaks of the amine bond (-NH 2 )

hanged slightly in USP-A2, giving two bands in the regions of 3400-

300 cm 

− 1 and 3330-3250 cm 

− 1 respectively [39] . The C-N stretch at

468 cm 

− 1 for urea, is shifted due to crosslinking of urea with starch,

VA and acrylic acid. The band at 1147 cm 

− 1 is crystallinity dependent

nd is characteristic for PVA [45] . It appears in USP-A2 and is weakened

ith the increase in the concentration of acrylic acid. It might be due to

he deformation of the structure of PVA after crosslinking. 

With the addition of acrylic acid which is a carboxylic acid, it shows

 strong broadband of O-H in the region 3300-2500 cm 

− 1 [46] . How-

ver, due to crosslinking of starch and PVA with the carboxylic acid,

he amine band becomes less sharp which is indicating the homogenous

oating of urea, exposing fewer N-H groups. The decrease in sharpness

nd broadening of the band is an indication of hydrogen bonding be-

ween the carbonyl bond of starch and OH of PVA [44] . The reason

or the broad O-H stretch band is that carboxylic acids usually exist as

ydrogen-bonded dimers. Carbonyl (C = O) stretching is also seen in the

egion of 1760-1665 cm 

− 1 and in Fig. 2 ( a) it is indicated at 1677 cm 

− 1 

 47 , 48 ]. With the addition of carboxylic acid, it gets broadened which

ndicates the increasing concentration of acrylic acid. 

In Fig. 2 (b), the spectrum for uncoated urea contains primary amine

ith N-H symmetric and asymmetric stretch in the region of 3400- 3250

m 

− 1 . The decrease in intensity from 3200-3500 cm 

− 1 after cross-linking

ith citric acid is ascribed due to the hydroxyl groups. This decrease and

roadening of peaks are increasing with increasing citric acid content of

he mixture [49] . A new peak at 1619 cm 

− 1 indicates the formation of

C = C– structure in PVA chains [39] . O-H band at 1444.5 cm 

− 1 of car-

oxylic acid can be seen in USP-C6. The band appearing at 1781 cm 

− 1 

orrespond to ester carbonyl and carboxyl bands in USP-C4 [50] . The

ster carbonyl, carboxylic and C = C bond formation justify the good in-

eraction among starch, PVA and citric acid presenting it to be a suitable

oating formulation for urea. 

Fig. 2 (c) shows the spectrum of urea coated with starch, PVA and

aleic acid blend. There is no new bond appeared in the spectrum but

he bonds C = O and C-O in uncoated urea get broadened after coating.

his broadening of bonds is due to crosslinking between the carboxyl

roups of maleic acid and -OH present in starch or PVA due to hydrogen

onding which cover the existing C = O and C-O bonds in uncoated urea

UC) [39] . So the maleic acid is proved to be a good binding agent for

VA and starch on urea. In USP-M2, the peaks are almost the same as

or uncoated urea. However, due to crosslinking of starch and PVA with

he carboxylic acid, the amine band becomes less sharp. The decrease

n sharpness and broadening of a band is an indication of hydrogen

onding between the C = O bond of starch and OH bond of PVA [39] . 

rystalline behaviour of coated urea 

The crystal structures of uncoated and coated urea samples explained

y XRD analysis at a scan angle of 2 𝜃 = 20 to 60° is presented in Fig. 3 .

long with urea peaks, the effect of cross linkers on the PVA and starch

oating structure can also be investigated by XRD [12] . Uncoated urea

hows characteristic peaks at 22.5°, 24.7°, 31.9°, 37.5° and 45.6°. Starch
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Fig. 2. FTIR analysis of urea coated with starch, PVA and (a) acrylic acid: USP-A2 to USP-A6 (b) citric acid: USP-C2 to USP-C6 and (c) maleic acid: USP-M2 to 

USP-M6. 
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hows a peak at 35.7°, PVA shows a peak at 19.2°, acrylic acid at 29.5°,

aleic acid at 31.9°, citric acid at 31.7° and 44.9°. The absence of PVA

eak in XRD spectrum is an indication of the destruction of crystalline

tructure with an increase in amorphous nature. Some of the peaks re-

rient due to crosslinking, resulting in higher crystallinity [51] such as

eaks of AA and starch in the case of USP-A samples. An increase in

eaks intensity shows improved crystallinity due to increased crosslink-

ng. 

The lowest intensity of urea peaks was observed at the optimum con-

entration of cross linkers, supporting a well-homogenized coating. The

reater number of higher intensity peaks of coating components (PVA,

tarch, AA, CA or MA) appear due to an increase in the concentration of

ross linkers in USP-A and USP-C samples. Starch is a semi-crystalline

n nature and its peak also disappeared in many of the coatings due to
6 
eformation of its structure as in USP-A2 and USP-C2 ( Fig. 3 (b1), (c1)).

zeem et al, [12] proved that citric acid enhances the binding of PVA

ith starch by O-H bonding, thus reduces the crystallinity of coated urea

nd support the homogenous coating. 

USP-M2 is showing peaks of higher intensity but with an increase

n the concentration of maleic acid in USP-M4 and USP-M6 samples,

he obtained peaks are not as high, which is due to restriction of chains

ith further increase in maleic acid ( Fig. 3 (d2), (d3)). In the case of

aleic acid, the double-helical structure forms due to hydrogen bond-

ng but when OH bonds get substituted by ester bonds, the double-

elical structure changes. These changes destroy the crystalline/semi-

rystalline structure and lower the relative crystallinity [ 52 , 53 ]. As no

ew peaks or very low new peaks were seen in the coated urea prills, it

ay be said that no new phases were formed or no deformation in the
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Fig. 3. X-ray diffraction analysis; (a) uncoated 

urea and urea coated with starch, PVA and (b1- 

b3) acrylic acid 2-6% (c1-c3) citric acid 2-6% 

and (d1-d3) maleic acid 2-6%. 
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[

tructure took place during the coating process indicating the coating

ormulations to be successful for urea [ 54 , 55 ]. 

rushing strength of coated urea 

Crushing strength is determined by applying pressure to specified

ize urea prills until they fracture [56] . To find crushing strength
7 
qual size of prills must be analyzed as with the increase in size,

rushing strength also varies [33] . The crushing strength greatly de-

ends on the chemical composition of the coating. An increase in

rushing strength indicates the physical barrier that retards water.

ater absorption has a negative effect on coated prills as it disinte-

rates the prills, forming them sticky and releases the nutrient content

34] . 
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Fig 4. Crushing strength of uncoated and coated urea 

samples. Letters on the bars indicate the differences 

among treatments at 5% level probability. Error bars 

show standard error of the mean (n = 4). 
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From Fig 4 , it can be seen that all type of coated urea showed higher

rushing strengths than uncoated urea (7.01 N). In the case of acrylic

cid crosslinkers, the highest crushing strength was observed in the case

f USP-A2 (12.08 N) and with the increase in acrylic acid concentration,

he ability of USP-A4 and USP-A6 to resist against external strength de-

reased to 9.54 and 8.60 N respectively. Similarly, in the case of citric

cid crosslinker, USP-C2 showed 13.67 N crushing strength which de-

reased in USP-C4 (7.30 N) and USP-C6 (7.24 N) by increasing acid

oncentration. While in the case of maliec acid crosslinker, a slight in-

rease in crushing strength occurred from USP-M2 (8.34 N) to USP-M4

9.54 N) after which it decreased again in USP-M6 (7.04 N). 

It can be observed from Fig 4 that the minimum acid percentage in

he coating, based on acrylic acid and citric acid provided good cov-

rage leading to good crushing strength. The coverage properties of

oating materials have also been presented in SEM analysis ( Fig. 1 ) of

oated urea which is in agreement with the crushing strength of parti-

les. Higher acid concentration leads to greater cross-linking, restricting

hain mobility and hence decreasing tensile strength [57] . This can also

e due to good dispersion between polymers and plasticizers such as in

he case of maleic acid crosslinker. Although the increase in acid concen-

ration enhanced crosslinking between starch and PVA. Unfortunately,

ver-crosslinking showed agglomeration that resulted in the appearance

f cracks on the coating surface. 

Thus, an increase in the acid concentration in coating material lead

o higher stiffness, crystallinity, brittleness and immobility resulting in

he decreased flexibility which in return, made the coating prone to

amage easily [58] . It is clear from Fig 4 that increase in concentration

f plasticizers does not result in good crushing strength and compatibil-

ty. This decrease in crushing strength may be due to the restriction in

he movement of polymer chains. Mikhailova et al, [59] stated that in-

reased concentration of plasticizers restricts the movement of the poly-

eric chains. Hence, the flexibility of the coating decreases and then me-

hanical strength. Less flexibility and strength may induce cracks in the

oating during handling and transportation. Naz and Sulaiman [ 60 , 61 ]

bserved the 8% increase in crushing strength of urea after coating with

 0.7 mm thin film of modified starch polymer. 
8 
elease rate of coated urea 

When coated and uncoated urea is immersed in water it gets dis-

olve either by catastrophic or diffusion mechanism [62] . And nutrient

elease occurs from urea in three main steps: The initial stage of the lag

eriod during which negligible release is observed, second is the con-

tant release stage and the last stage during which a gradual reduction

n release rate occurs, called the mature stage [63] . The amount of urea

elease from uncoated and coated urea samples was determined as a

unction of time at 25 °C by using Eq. (1) and the results are presented

n Table 3 . The release mechanism starts when water vapours penetrate

hrough the coating and dissolve the fertilizer core due to an increase in

nternal osmotic pressure [5] . The release of nitrogen from conventional

ncoated fertilizer was very fast and all nitrogen was released from un-

oated urea within 3 min ( Table 3 ). This is an actual and usual trend of

itrogen release from nitrogenous fertilizers without any coating (un-

oated urea prills) [64] . 

As there is no physical barrier to the fertilizer water dissolves it im-

ediately. The catastrophic release can be seen at this point. No grad-

al or lag period is demonstrated by fertilizer due to the absence of any

hysical barrier [65] . All coated urea samples show a slow release of

itrogen from urea prills as compared to the uncoated urea prills. From

able 3 , it can be seen that USP-A2 sample showed urea dissolution of

3.50-15.75 ppm from 3-6 min by diffusion mechanism in a lag stage.

hen from 6 to 12 min, the gradual release mechanism was observed in

hich water penetrates through diffusion and nitrogen releases slowly

rom inside of the coating to the outer surface. From 12 min to onwards,

ature release starts in which water penetrates through fissures on coat-

ng and develops high pressure with the gradual release (80 ppm) of

itrogen through the polymeric coating. 

After 12 min total urea is dissolved (all N released) into the wa-

er and become invisible. The 80 ppm concentration of the solution is

onsidered complete urea release from all uncoated/coated urea sam-

les. While in the case of USP-A4, the urea release start from 3 min

ith a gradual release rate (21.90 ppm). However, from 12 min to on-

ards, all urea released completely (80 ppm) and dissolved in water.



N. Zafar, M.B.K. Niazi, F. Sher et al. Chemical Engineering Journal Advances 7 (2021) 100123 

Table 3 

The concentration of urea release from uncoated and coated urea prills in the water at different time intervals and 25°C. 

Time (Min) Concentration of urea sample solutions (ppm) 

UC USP-A2 USP-A4 USP-A6 USP-C2 USP-C4 USP-C6 USP-M2 USP-M4 USP-M6 

3 72.75 13.50 21.90 60.25 17.75 13.58 6.08 29.41 2.75 33.43 

6 80 15.75 44.41 68.58 28.58 32.75 36.91 49.41 52.75 51.08 

9 80 23.92 72.75 80 39.41 68.58 80 75.34 77.12 78.50 

12 80 80 80 80 61.90 80 80 80 80 80 

15 80 80 80 80 62.75 80 80 80 80 80 

30 80 80 80 80 80 80 80 80 80 80 

60 80 80 80 80 80 80 80 80 80 80 

120 80 80 80 80 80 80 80 80 80 80 

Fig. 5. Urea release efficiency of uncoated and coated 

urea samples. Letters on the bars indicate the differ- 

ences among treatments at 5% level probability. Error 

bars show standard error of the mean (n = 4). 
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c  
he urea releases at this stage with a constant diffusion rate so this

tage is called a mature stage. The USP-A6 sample showed that all urea

eleased at 9 min in the mature stage. The release concentration (60.25

pm) of USP-A6 is higher than USP-A4 (21.90 ppm) at the first 3 min

f reaction therefore, USP-A6 releases earlier before 9 min than USP-A4

ample. 

It can be deduced here that with the increase in plasticizer (AA)

oncentration, the release rate is getting higher. The reason is the re-

triction in polymeric chains with more plasticizer. This will make the

oating less flexible and fragile causing the cracking of the coating as it

as also observed through SEM analysis ( Fig. 1 ) and cracks lead to the

arly release of fertilizer [66] . According to Bilal et al, [34] the release

f urea from inside the coating depends largely upon the homogeneity

f coating over urea prills and the strength of chemical binding forces

f coating materials among themselves and with urea. 

The USP-C2 sample shows a gradual release of 17.75 to 61.90 ppm

during 3-12 min) leading to the lag stage (12-15 min) and gradual re-

ease stage of 62.75 to 80 ppm again (from 15 to 30 min). Finally, after

0 min all urea has released in the mature stage. This huge time-lapse

hows that this coating retards the release of urea from the urea sample

etter than all previous coatings. Similarly, USP-C4 showed 3 to 12 min

radual release followed by 12 to 15 min of the lag period, after which

elease rate (80 ppm) became constant for USP-C4 sample. The release

ate of USP-C6 shows catastrophic release as it releases from 3 min (6.08
9 
pm) to 6 min (36.91 ppm) and then to 9 min (80 ppm) and becomes

onstant ( Table 3 ). Giroto et al, [67] stated that the urea release rate

an be controlled by adding the plasticizer into coating material which

an enhance the binding interactions between urea and starch. 

The USP-M2 sample shows a diffusional release of urea as it releases

radually from 3 to 9 min ( Table 3 ). However, from 9 to 12 min dif-

usion increases slightly after which mature stage release has reached.

hile Table 3 indicates that the release of urea from USP-M4 starts at

 very low value (2.75 ppm) following the diffusion release at 6 min

52.75 ppm). The initial release gap is quite large than any other coated

rea. It continues to increase like this from 9 to 12 min, after which the

elease from the coating became constant. In the case of USP-M6, the

rea releases gradually with a diffusional release mechanism from 3 to

 min. Then after 12 min, the urea release rate became constant. It can

e concluded here that from all coating combinations with MA, USP-M4

howed the slowest release due to its large initial release gap. 

The efficiency of coated and uncoated urea samples was found at 9

in using Eq. (2) . The best results were provided by USP-A2 and USP-C2

s observed from Fig. 5 . 

Uncoated urea sample released after 6 min due to a quick release

f all nitrogen content. Sample USP-A2 shows the highest efficiency of

0.10% whereas USP-A4 and USP-A6 show less efficiency of 9.06% and

%. The efficiency of USP-C2 is 50.74%, which is moderate and is ac-

eptable. With the increase in the concentration of CA, efficiency starts
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Fig. 6. Effect of uncoated and coated urea samples on; (a) Dry foliage yield (b) Chlorophyll content (c) N-uptake measurements and (d) ANR of spinach plants. 

Letters on the bars indicate the differences among treatments at 5% level probability. Error bars show standard error of the mean (n = 4). 
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ecreasing in USP-C4. It decreased to 14.28% in USP-C4 and reduced to

% with a further increase of CA in USP-C6. 

All combinations of coating material with maleic acid showed very

ow efficiencies. USP-M2 shows an efficiency of 5.83% which decreases

o 3.6% in the case of USP-M4 and then to 1.88% for USP-M6. 

Fig. 5 shows that samples USP-A6 and USP-C6 has 0% efficiency

alues at 9 min due to their quick release before this time but still they

etain longer than uncoated urea. Ibrahim et al, [36] observed the re-

ease rate of urea coated with mixtures of gypsum and sulphur. They

ound that the efficiency of urea coated with gypsum-sulphur composi-

ion (20 wt%) increased to 26% than uncoated urea which supports the

oating of urea for slow release. 

iomass yield and nutrient uptake 

The influence of biodegradable coating of urea prills on the foliage

ield, chlorophyll content, nitrogen uptake and apparent nitrogen recov-

ry (ANR) is determined and presented in Fig. 6 . All coated urea sam-

les provided higher yields than uncoated urea prills and control plants

without fertilizer). In the case of dry foliage yield of spinach plants,

SP-C2 showed the highest yield (2428 ± 83 kg/ha) followed by USP-

2 (2208 ± 92 kg/ha) and the lowest yield was obtained from uncoated

rea (1168 ± 66 kg/ha) among all urea samples ( Fig. 6 (a)). While in the

ase of chlorophyll content, not appreciable differences were observed

mong all coated and uncoated samples. The highest chlorophyll con-

ent was obtained in case of USP-C2 (34 ± 0.4 mg/gm) and USP-A2 (34

 0.6 mg/gm) and USP-A4 samples (34 ± 0.6 mg/gm). 

The lowest was in case of uncoated urea (30 ± 0.8 mg/gm), USP-A6

30 ± 1.7 mg/g), USP-C6 (30 ± 0.5 mg/gm), USP-M6 (30 ± 0.8 mg/gm)
10 
hich decreased more in case of control plants (26 ± 0.6 mg/gm) ( Fig. 6

b)). The N uptake measurement results were similar to dry foliage mat-

er in trend, in which the highest N-uptake measurement was presented

y USP-C2 (95 ± 6 kg/ha) followed by USP-A2 (88 ± 4 kg/ha). While

ncoated urea showed the lowest N-uptake (54 ± 6 kg/ha) among all

ertilizers and this value decreased further in the case of control plants

28 ± 3 kg/ha) as can be seen from Fig. 6 (c). Similarly, USP-C2 (67 ±
%) showed the highest ANR measurements followed by USP-A2 (59 ±
%) and the lowest were in the case of uncoated urea prills (26 ± 3%)

pplication ( Fig. 6 (d)). It can be concluded that the highest yields, N

ptake and ANR of spinach plants are obtained in the case of USP-C2

nd USP-A2 use. 

This can be related to the delaying of urea hydrolysis from USP-

2 and USP-A2 samples. This delay in hydrolysis synchronized N re-

ease from coated urea that matched well with the N requirements of

oil [ 68 , 69 ]. The obtained results of urea application effects on spinach

lants’ growth factors are in strong agreement with the delay in the

rea release process by encapsulation as obtained from urea release

ates ( Table 3 ). Geng et al, [35] observed the effect of polymer-coated

rea (PCU) on the cotton plants and compared its effect with uncoated

rea. They observed that PCU increased the yield of lint plants by 5.54–

1.17% than uncoated urea. They also found that the nitrogen recovery

fficiency of PCU was 31.02% higher than uncoated urea in the case of

otton plants. 

onclusion 

In this work, novel encapsulated urea samples were prepared us-

ng a fluidized bed coater/granulator. The starch (10%) and PVA (5%)
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ere used in fixed concentration while AA, CA and MA were used in

ifferent concentrations (2 to 6%) for the preparation of coating formu-

ations. The prepared coated urea fertilizers were then subjected to SEM,

TIR, XRD, crushing strength and urea release measurements to check

heir surface morphology, crystallinity, physical strength and urea re-

ease rate. The best combination was selected based on the urea release

ate test. Different results verified USP-A2 and USP-C2 to be the best-

oated urea samples as they have shown the hardest physical barrier.

he urea release rate of these samples was considered best with 70.10

nd 50.74% releasing efficiency. This was also verified from crushing

trength data that showed 12.08 and 13.67 N values for USP-A2 and

SP-C2 respectively. In addition, USP-A2 and USP-C2 showed satisfac-

ory results when applied to spinach plants by providing the highest dry

oliage yield (2208 ± 92 and 2428 ± 83 kg/ha), chlorophyll (34 ± 0.6

nd 34 ± 0.4 mg/gm), N-uptake (88 ± 4 and 95 ± 6 kg/ha) and ANR

59 ± 4 and 67 ± 6%). For future perspectives, the prepared coated

ertilizers should be investigated on plants other than spinach and in

ifferent soil conditions to check their agronomic performance. 
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