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Abstract. The Particle Swarm Optimisation (PSO) algorithm has un­
dergone countless modifications and adaptations since its original formu­
lation in 1995. Some of these have become mainstream whereas others 
have faded away. A myriad of alternative formulations have been pro­
posed raising the question of what the basic features of an algorithm must 
be to belong in the PSO family. The aim of this paper is to establish what 
defines a PSO algorithm and to attempt to formulate it in such a way 
that it encompasses many existing variants. Therefore, different versions 
of the method may be posed as settings within the proposed unified 
framework. In addition, the proposed formulation generalises, decouples 
and incorporates features to the method providing more flexibility to the 
behaviour of each particle. The closed forms of the trajectory difference 
equation are obtained, different types of behaviour are identified, stochas­
ticity is decoupled, and traditionally global features such as sociometries 
and constraint-handling are re-defined as particle’s attributes. 

Keywords: particle swarm optimisation · coefficients’ settings · types of 
behaviour · trajectory · learning strategy · unstructured neighbourhood. 

1 Introduction 

Proposed in 1995 [20], the Particle Swarm Optimisation (PSO) method is a 
global optimiser in the sense that it is able to escape poor suboptimal attrac­
tors by means of a parallel collaborative search. The overall system behaviour 
emerges from a combination of each particle’s individual and social behaviours. 
The former is manifested by the trajectory of a particle pulled by its attractors, 
governed by a second order difference equation with three control coefficients. 
In the classical (and in most) versions of the algorithm, there is one individual 
attractor given by the particle’s best experience, and one social attractor given 
by the best experience in its neighbourhood. The social behaviour is governed 
by the way the individually acquired information is shared among particles and 
therefore propagated throughout the swarm, which is controlled by the neigh­
bourhood topology. The individual and social behaviours interact through the 
update of the social attractor. Thus, the two main features of the algorithm are 
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the trajectory difference equation (and the setting of its coefficients) and the 
neighbourhood topology (a.k.a. sociometry). 

In the early days, numerous empirical studies were carried out to investigate 
the influence of the coefficients in the trajectory difference equation on the overall 
performance of the method, and to provide guidelines for their settings [28, 21]. 
Early theoretical work [25, 5, 30] provided insight into how the method works and 
interesting findings of practical use such as constriction factor(s) [5] to ensure 
convergence. These pioneering studies were a source of inspiration and set the 
foundations for an explosion of theoretical work [17, 22, 27, 9, 3, 14, 10, 4, 2]. 

1.1 Trajectory Difference Equation 

In classical PSO (CPSO), three forces govern a particle’s trajectory: the iner­
tia from its previous displacement, the attraction to its own best experience, 
and the attraction to the best experience in its neighbourhood. The importance 
awarded to each of them is controlled by three coefficients: the inertia (ω), the 
individuality (iw), and the sociality (sw) weights. Stochasticity is introduced to 
enhance exploration via random weights applied to iw and sw. The behaviour of 
a particle, and by extension of the PSO algorithm as a whole, is very sensitive to 
the settings of these control coefficients. The system of two 1st-order difference 
equations for position and velocity updates in the CPSO algorithm proposed in 
[29] is rearranged in (1) as a single 2nd-order Trajectory Difference Equation: 

  
(t+1) (t) (t) (t) (t−1)

x = x + ω x − xij ij ij ij ij    (1)
(t) (t) (t) (t) (t) (t)

+ iw U(0,1) xb − x + sw U(0,1) xb − xij ij ij ij kj ij

(t) (t)
where x is the coordinate j of the position of particle i at time-step t; xb isij ij 
the coordinate j of the best experience of particle i by time-step t; k is the index 
identifying the particle with the best experience in the neighbourhood of particle 
i at time-step t; ω, iw and sw are the inertia, individuality, and sociality weights, 
respectively (which may depend on i, j, t); and U(0,1) is a random number from 
a uniform distribution within [0,1] resampled anew every time it is referenced. 

In the original formulation [20], ω = 1 and iw = sw = 2. This leads to an 
unstable system, as particles tend to diverge. The first strategy to prevent this 
was to bound the size of each component of a particle’s displacement, which helps 
prevent the so-called explosion but does not ensure convergence or a fine-grain 
search. Instead, the coefficients in (1) can be set to ensure that. 

1.2 Neighbourhood Topology 

The original PSO algorithm [20] presented a global topology in which every 
particle has access to the memory of every other particle in the swarm. Local 
topologies were proposed soon thereafter [8]. Since then, a plethora of sociome­
tries have been proposed [23, 24, 1]. Three classical ones are shown in Fig. 1. 
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Fig. 1. Three classical neighbourhood topologies in PSO. 

The global topology tends to lead to a rapid loss of diversity, which may 
lead to premature convergence to a poor suboptimal solution. Whilst this can 
be controlled to some extent by the settings of the coefficients in the trajectory 
equation, numerous neighbourhood topologies have been proposed reducing con­
nectivity to delay the propagation of information throughout the swarm. 

1.3 Other Features 

Other important features of the PSO algorithm are the initialisation of the par­
ticles [11, 19, 18], the synchrony of the memory updates, the size of the swarm 
[7, 26], and the handling of constraints [16]. 

The PSO algorithm is an unconstrained search method, therefore requiring an 
external constraint-handling technique (CHT) to be integrated to handle these 
types of problems. A straightforward CHT is the Preserving Feasibility Method 
[12], in which infeasible experiences are banned from memory. Another one is 
the Penalty Method, in which infeasible solutions are penalised by augmenting 
the objective function and treating the problem as unconstrained. Some authors 
propose adaptive penalties by using adaptive coefficients in the penalty function 
[6] or by adapting the tolerance relaxation [15]. Innocente et al. [13] propose 
using a Preserving Feasibility with Priority Rules Method, in which the objective 
function values and the constraint violations are treated separately. 

Since its original formulation in 1995, countless PSO variants have been pro­
posed. Some of them have become mainstream whereas many others have faded 
away. Thus, a myriad of alternative formulations have been proposed raising the 
question of what the basic features of an algorithm must be to belong in the 
PSO family. The aim of this paper is to establish what defines a PSO algorithm, 
and to attempt to formulate it in such a way that it encompasses many existing 
variants so that different versions may be posed as settings within the proposed 
unified framework. In addition, the proposed formulation generalises, decouples 
and incorporates new features providing more flexibility to the behaviour of each 
particle. The remainder of this paper is organised as follows: the overall proposed 
Reformulated PSO is introduced in Section 2, with the Global Features, the Indi­
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vidual Behaviour Features and the Social Behaviour Features discussed in more 
details in Sections 3, 4 and 5, respectively. Conclusions are provided in Section 6. 

2 Reformulated Particle Swarm Optimisation 

The proposed Reformulated Particle Swarm Optimisation (RePSO) method is 
structured in three sets of features: 1) Global Features (GFs), 2) Individual Be­
haviour Features (IBFs), and 3) Social Behaviour Features (SBFs). Fig. 2 shows 
a high-level description of RePSO, where IBFs and SBFs are both viewed as 
individual attributes of a particle (Particle Attributes). 

Optimiser Features

Global Features Social Behaviour FeaturesIndividual Behaviour Features

 Global Settings  Deterministic Features  Local Sociometry

 Initialisation

Termination Conditions

 Trajectory Equation

 Reference Trajectory
 Coefficients Settings

 Max Search Length (tmax)

 Swarm Size (m)

 No. of Individual Behaviours

 Stochastic Features

 Stochastic Scaling

 Stochastic Sampling

 Trajectory Coefficients
 Sampling Settings

 Sampling Method

 Initial Conditions

 Initialised Variables Relation

 Based on Search Length

 Based on Clustering

 Based on Convergence

 Current Inform. Update

 Memorised Inform. Update

 Neighbourhood Topology

 Neighbourhood Extent

Information Gathering

 Attractor Generation

Type Information Memorised

Synchrony

Particle Attributes

Constraint-Handling Method

 No. of Social Behaviours

Fig. 2. High-level description of the proposed Reformulated PSO (RePSO). 

3 Global Features 

Despite being a swarm-intelligent method, some characteristics must still be 
defined at the swarm level. We define here three main subsets of global features: 
1) Global Settings, 2) Initialisation, and 3) Termination Conditions. The first 
one consists of scalar settings like maximum search length (tmax) and swarm 
size (m), whereas the other two involve methods. 
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3.1 Initialisation 

It is important to identify two aspects of the initialisation in PSO: 1) the sampling 
method to place m points over the search-space, and 2) what variables are to 
be initialised. Note that the particle’s position update in RePSO is a 2nd order 
difference equation as opposed to the classical system of two 1st order difference 
equations (position and velocity). Therefore, the variables potentially involved 
in the initialisation are the initial, the previous, and the memorised positions 

(1) (0)	 (1) (1) (1)).(x , x , xm(1)) instead of two positions and one velocity (x , xm , v

Sampling Method. Originally, initialisation was purely random from uniform 
distributions: x(1) 

= xmin ij + U(0,1) (xmax ij − xmin ij ). Random Sampling isij 
easy to implement but does not usually result in good coverage of the search-
space. More advanced sampling methods may be used, such as Latin Hypercube 
Sampling, Orthogonal Sampling or a range of different Tesselations. 

Initial Conditions. Four types are proposed here: 

(1) (0) (1)1.	 Stagnation: x = x = xm
This requires the sampling of each particle’s position at the initial time-step 
(x(1)). Stagnation implies that the previous position x(0) = x(1), and that 
the particle has converged to its attractor: xm(1) = x(1). Thus, movement 
starts purely due to cooperation (no inertia, no individual attractor). 

(1)	 (1) (1) (1) (0)2.	 Two Positions: x  (0) and either xm or xm = x= x = x
Two positions per particle are sampled and compared, with the better one 
becoming x(1), the other becoming x(0), and xm(1) = x(1). Thus, movement 
starts both due to cooperation and to inertia (no individual attractor). 

(1) (0) (1)3.	 One Position and One Memory : x = x = xm
Two positions per particle are sampled and compared, with the better one 

(1) (0)becoming xm(1) and the other x = x . Movement starts due to both 
cooperation and acceleration towards its individual attractor (no inertia). 

(1) (0) (1) (1)4.	 Two Positions and One Memory x    = x = xm = x
Three positions per particle are sampled and compared, with the best one 
becoming xm(1). Thus, movement starts both due to all three sources: co­
operation, inertia, and acceleration towards its individual attractor. 

Initialised Variables Relation. For all initial conditions other than stagna­
tion, more than one position is to be sampled per particle. The question is then 
whether these should be somehow related. Three alternatives are proposed here: 

1.	 Perturbation: x(0) is generated from controlled perturbations on x(1). If ap­
plicable, xm(1) is also generated from perturbations on x(1). 

2.	 Independent : Each population of positions is sampled independently. 
3.	 Simultaneous: All populations of positions are sampled at once. For instance, 

if using the Latin Hypercube Sampling, there would be one single sampling 
with as many points as twice or three times the swarm size, as applicable. 
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3.2 Termination Conditions 

The population-based nature of the method enables termination conditions dif­
ferent from the classical ones in numerical optimisation: 1) maximum number 
of iterations, and 2) convergence. Three types of conditions are identified here: 
1) based on search length (or maximum number of iterations), 2) based on clus­
tering measures (diversity loss), and 3) based on measures of convergence. 

4 Individual Behaviour Features 

These are the features of the algorithm which control the individual behaviour 
of a particle. Each particle has its own set of IBFs, which are viewed as particle 
attributes. The individual behaviour of a particle is materialised by its trajectory 
as it is pulled by its attractor. This is governed by a second order difference 
equation and the setting of its coefficients. The IBFs are grouped here in two 
main families, namely Deterministic Features and Stochastic Features. 

4.1 Deterministic Features 

Instead of viewing PSO as a guided random search method, it is viewed as a 
randomly-weighted deterministic search method. Thus, its desired deterministic 
behaviour is defined, adding only as much stochasticity as deemed beneficial. 

By formulating the position update as in (5), it is clear that any given particle 
at any given time is pulled by a single attractor which results from a randomly 
weighted average of the components of the individual and social attractors. Thus, 
the Trajectory Difference Equation in (1) may be expressed as in (5). 

(t) (t) (t) (t) (t) (t) (t) (t) (t)
iw U(0,1) xb − x + sw U(0,1) xb − x = φ p − x (2)ij ij ij ij kj ij ij ij ij 

(t) (t) (t) (t) (t)
φ = ι + σ = iw U(0,1) + sw U(0,1) (3)ij ij ij ij ij 

(t) (t) (t) (t)
ι xb + σ xb(t) ij ij ij kj 

p = (4)ij (t)
φij 

(t+1) (t) (t) (t) (t−1) (t) (t) (t)
x = x + ω x − x + φ p − x (5)ij ij ij ij ij ij ij ij 

Trajectory Equation. Since we are dealing with a single particle, sub-index i 
is dropped. For simplicity, let us assume (ω, φ) constant in every dimension and 
∀t, dropping sub-index j and super-index (t). If stochasticity is removed, the de­
terministic coefficients (ω̂, φ̂) are referred to as Reference Trajectory Coefficients. 

CPSO Recurrence Formulation. The CPSO Recurrence Formulation is as in (6), 
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which is the deterministic version of (5). The generation of the overall attractor 
(t)

p is now decoupled, comprising a Social Behaviour Feature (SBF).i 

(t+1) (t) (t) (t−1) (t) (t)
x = x + ω̂ x − x + φ̂ p − x (6)ij ij ij ij ij ij 

CPSO Closed-Form Formulation. This is obtained by solving the difference equa­
tion in (6). The roots of the characteristic polynomial are as in (7) and (8). The 
solution is per dimension and per particle (therefore dropping indices i and j), 
and the attractor p is stationary. 

1 + ω̂ − φ̂ γ 1 + ω̂ − φ̂ γ 
r1 = + ; r2 = − (7)

2 2 2 2 

2ˆγ = φ2 − (2ω̂ + 2) φ̂+ (ω̂ − 1) (8) 

Case 1 (γ2 > 0). The two roots of the characteristic polynomial are real-valued 
and different (r1 = r2). Therefore the closed-form for Case 1 is as in (9). 

(0) (1) (0) (1)r2 p − x − p − x −r1 p − x + p − x(t) t t x = p + r1 + r2 (9)
γ γ 

Case 2 (γ2 = 0). The two roots of the characteristic polynomial are the same 
(r1 = r2), as shown in (10). Therefore the closed-form for Case 2 is as in (11). 

1 + ω̂ − φ̂
r = r1 = r2 = (10)

2 

x(t) = p+  _ _    t
(1) (11)2 p − x 1 + ω̂ − φ̂(0) (0)− p − x + p − x − t

1 + ω̂ − φ̂ 2

Case 3 (γ2 < 0). The two roots are complex conjugates. 

1 + ω̂ − φ̂ γ 1 + ω̂ − φ̂ γ 
r1 = + i ; r2 = − i (12)

2 2 2 2  
2

γ = −γ2 = −φ̂2 + (2ω̂ + 2) φ̂− (ω̂ − 1) (13) 
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Using polar coordinates (ρ, θ), the closed-form for Case 3 is as in (16). 

√ ω − ˆ1 + ˆ φ 
ρ = ω̂ ; θ = acos √ (14) 

2 ω̂

1 1 + ω̂ − φ̂ 1 γ 
cos (θ) = √ ; sin (θ) = √ (15) 

ω̂ 2 ω̂ 2 

√ t(t) (0)x = p − ω̂ p − x cos (θt)+ ⎛ _ _ _ _⎞ 
(0) (1) (16)√ 1 + ω̂ − φ̂ p − x − 2 p − xt ⎝ω̂ ⎠ sin (θt)

γ 

Thus, the chosen trajectory equation in RePSO may be given by the Recur­
rence Formulation in (6) or by the Closed-Form Formulations in (9), (11) and 
(16). Other recurrence formulations as well as some considerantions to be taken 
into account for the closed-form formulation are left for future work. 

Reference Trajectory Coefficients Settings. An analysis of the trajectory 
closed-forms shows that the magnitude of the dominant root r = max (Ir1I , Ir2I) 
controls convergence. Fastest convergence occurs for ( ̂ ω) = (1, 0), where r = 0 φ, ˆ
(see Fig. 3 (a)). The resulting convergence conditions are shown in (17), which 
define the area inside the convergence triangle (r < 1) shown in Fig. 3. 

φ̂ 
1 > ˆ − 1ω > (17)2 
φ̂ > 0 

Whilst the magnitude of the dominant root controls the speed of convergence, 
the existence and sign of the dominant root controls the Type of Behaviour : 

1. Oscillatory : Roots are complex conjugates (no dominant root). 
2. Monotonic: Dominant root is real-valued and positive. 
3. Zigzagging : Dominant root is real-valued and negative. 

These Types of Behaviour are bounded within specific Sectors in the (ω̂, φ̂) 
plane, each associated with one edge of triangular isolines (same r). These three 
Sectors are shown in Fig. 3 (b), where the white triangle separates the Conver­
gence (inside) and Divergence regions. The settings of (ω̂, φ̂) can be chosen so 
as to achieve the desired behaviour and convergence speed. For example: 

1. Choose Type of Behaviour : e.g. Oscillatory.√ √ 
2. Set Convergence Speed : ω̂ ∈ [0, 1], with fastest convergence for ω̂ = 0. 

√ 2 √ 2 
3. Set Reference Acceleration Coefficient : φ̂ ∈ ω̂ − 1 , ω̂ + 1 . 
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Fig. 3. On the left, magnitude of the dominant root. Settings inside red triangle ensure 
convergence (r < 1). On the right, Sectors for three Types of Behaviour in CPSO: black 
region is Oscillatory, dark grey region is Monotonic, and light grey region is Zigzagging. 

4.2 Stochastic Features 

The random weights in (1) affect the trajectory of a particle towards the overall 
attractor whilst also affecting its generation as a stochastic convex combination 
of the individual and the social attractors, as shown in (4). These two features 
are decoupled here. The Stochastic Features are concerned only with the former. 

Stochastic Scaling. This refers to whether the stochastic variables in (5) are 
sampled once per particle position update (vector scaling) or resampled anew 
per dimension as well (component scaling). The former is often used by mistake. 

Stochastic Sampling. In classical PSO, ω = ω̂ (deterministic) whereas the 
probability distribution of φ results from the sum of two stochastic terms sampled 
from uniform distributions: φ = ι+σ as in (3). If they are sampled from the same 
interval, the resulting distribution of φ is triangular. Otherwise, it is trapezoidal. 
In RePSO, the user is allowed to choose any distribution for (ω, φ). 

Trajectory Coefficients Sampling Settings. Once the distributions have 
been chosen, the parameters defining them must be set. For example, (φmin, φmax) 
for a uniform distribution, or the standard deviation for a normal distribution. 

5 Social Behaviour Features 

These are the features of the algorithm which control the social behaviour of a 
particle. Despite being SBFs, they are defined as Particle Attributes in RePSO. A 
particle’s social behaviour is governed by its access to other particles’ memories 
(Local Sociometry) and by how it handles this information (social influence). 
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5.1 Local Sociometry 

In classical PSO, the sociometry is a global feature. It can be defined as a regular 
graph, or irregulary by defining one connection at a time. In the latter case, the 
structure cannot be automatically generated nor is it scalable. In RePSO, a Local 
Sociometry is defined for each particle, with the Global Sociometry resulting from 
their assembly. This has the advantange that sociometry is a particle attribute, 
facilitating object-oriented implementation. Also that different social behaviours 
can be exhibited by different particles, and that irregular global sociometries are 
possible without renouncing automation or scalability. 

The Local Sociometry is generated by defining the Neighbourhood Topology 
and the Neighbourhood Extent. Examples of the former are the Global, Ring, 
Forward and Wheel topologies. The Topology defines a methodology to generate 
connections from the particle informed to its informers. The Extent defines the 
neighbourhood size (number of neighbours, distance of influence). An example 
of an emergent unstructured neighbourhood is shown in Fig. 4, where the Local 
Sociometry of particle 1 is the Global topology whilst that of particle 2 is the 
Ring topology. Other aspects may be considered, such as whether a particle’s 
memory is part of its neighbourhood (X in the connectivity matrix in Fig. 4). 

8

6 4

7

5

1

3

2

(a) Sociometry (b) Connectivity Matrix 

Fig. 4. Unstructured sociometry emerging from local sociometries. 

5.2 Current Information Update 

Any particle holds two types of information: current and memorised. The up­
date of the former takes place by gathering information, generating an overall 
attractor using the information gathered, and applying the trajectory equation. 
A particle may access the information currently held, the one memorised, or both 
from its neighbours (Information Gathering). This is an extension to classical 
formulations, where a particle can only access their memorised information. 

5.3 Memorised Information Update 

This controls the update of a particle’s memory when it accesses new informa­
tion. This is performed directly rather than through a trajectory equation. The 
question is what Type of Information is accessible to a particle’s memory. 
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Another feature affecting this update is the Synchrony, which defines whether 
a particle’s memory is updated immediately after its currently held information 
is updated (asynchronous) or only after the currently held information of every 
particle is updated (synchronous). Typically, the update is synchronous. 

RePSO also proposes to include the CHTs here. Thus, different particles may 
have different CHTs, and therefore may value a given location differently. 

6 Conclusions 

A general framework has been proposed aiming to encompass many variants of 
the PSO algorithm under one umbrella so that different versions may be posed 
as settings within the proposed unified framework. In addition, some extensions 
to the classical PSO method have been made such as the decoupling of the 
stochasticity that affects both the acceleration coefficient (φ) and the generation 
of the overall attractor; an extended treatment of the swarm initialisation; the 
particle trajectory closed forms; the identification of three types of deterministic 
behaviour to inform the setting of the control coefficients; and the global sociom­
etry resulting from assembling local sociometries defined as particle attributes. 
Due to space constraints, most of these features are discussed only superficially. 

References 

1.	 Blackwell, T., Kennedy, J.: Impact of communication topology in particle swarm 
optimization. IEEE Trans. on Evolutionary Computation 23(4), 689–702 (2019) 

2.	 Bonyadi, M., Michalewicz, Z.: Impacts of coefficients on movement patterns in 
the particle swarm optimization algorithm. IEEE Transactions on Evolutionary 
Computation (2017) 

3.	 Campana, E.F., Fasano, G., Pinto, A.: Dynamic analysis for the selection of pa­
rameters and initial population, in particle swarm optimization. Journal of Global 
Optimization 48, 347–397 (2010) 

4.	 Cleghorn, C.W., Engelbrecht, A.P.: Particle swarm variants: standardized conver­
gence analysis. Swarm Intelligence 9(2-3), 177–203 (2015) 

5.	 Clerc, M., Kennedy, J.: The particle swarm – explosion, stability, and convergence 
in a multidimensional complex space. IEEE Transactions on Evolutionary Com­
putation 6(1), 58–73 (2002) 

6.	 Coello Coello, C.A.: Use of a self-adaptive penalty approach for engineering opti­
mization problems. Computers in Industry 41(2), 113–127 (2000) 

7.	 Dhal, K.G., Das, A., Sahoo, S., Das, R., Das, S.: Measuring the curse of population 
size over swarm intelligence based algorithms. Evolving Systems (2019) 

8.	 Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Micro 
Machine and Human Science, 1995. MHS ’95., Proceedings of the Sixth Interna­
tional Symposium on. pp. 39–43 (1995) 
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