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Abstract 

 

The trend in production of furniture, flooring, housing parts and similar is to repair and 

upgrade defective feedstock rather than scrap it. The corresponding task of rectification is 

mainly based on manual labour with a clearly visible need for automation to reduce costs. 

This thesis shows that it is possible to automatically carry out defect rectification on 

softwood panels by first detecting unwanted defects of various kinds, second assessing them 

correctly also by pre-determined aesthetic aspects and thirdly generating instructions for 

correspondingly an aesthetically acceptable repair. 

A novel approach based on pixel-wise registered multi-dimensional images, cascaded 

unsupervised and supervised learning and an expert system based on a fuzzy knowledge 

base has been tested. It is shown that automated patching under aesthetic aspects can be 

achieved by modelling the human wood worker’s implicit and explicit knowledge. Support 

Vector Machines (SVMs) are able to deal with the high dimensional registered image data 

and the associated non-linear classification problem that addresses the local aesthetics 

without the need for feature engineering. An expert system generates rectification 

instructions for the detected defects with respect to the final panel appearance and acts as a 

user interface to adjust the process. Satisfactory results in terms of aesthetically acceptable 

panels of Nordic Spruce patched with different types of solid and liquid fillers have been 

achieved. 

The feasibility of machines being able to assess, preserve, modify or create aesthetics is 

demonstrated for the first time on wooden panels. The application in a productive, industrial 

environment has successfully been shown, therefore filling a gap in the automation of 

wooden panel production. 

 

Keywords:  automated patching, intelligent automation, wooden panels, putty, dowels 

Nordic Spruce, Pine Radiata, patching rules, aesthetic appearance, defect 

detection, image sensor fusion, Deep Learning, SVM, SOM, Expert System, 

knowledge base,  
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Terminology 

 

∆E Colour distance metric used in CIE-Lab colour space. 

1K putty One-component putty, usually water-based. 

2K putty Two-component putty, usually Polyurethane (PU) or Polyester Isophytal (PI). 

Accuracy Proximity of measurement results to the true value, offset or bias. 

CIE L*a*b* Perceptionally uniform colour space (also CIE-Lab). 

Classification In this context: the task of determination between several possible classes a 
segmented object can belong to with the aim to assign a specific label. 

Colorimetry Science and technology to characterize physically the human perception of 
colour. 

Detection In this context: the task of finding and segmenting an object from image 
data. 

Evaluation In this context: the task of applying measures to a detected object, e.g. 
diameter, depth, mean colour, etc. 

Feature 
engineering 

Area of engineering and research dealing with finding and extraction of 
explicit features for classification from the raw data. This involves filter 
operations and dimensionality reduction, e.g. by de-correlating the features 
using PCA. 

Kansei 
Engineering 

Product development and design incorporating the customers’ 
psychological aspects and needs. 

Lamella Thin (1-10mm) sawn but long piece of wood used to build face veneer of 
solid wood panels by butt-jointing. 

Patch Material applied to a defective area, eventually after removal of defective 
material. 

Patching Application of a patch with the aim to remove the disadvantageous 
defective area (physical patching) and/or to hide it respectively to make it 
less visible (aesthetic Patching). 

Pixel Single element of a spatially resolved digital image. 

Plywood 
panel 

Wooden panel made from rotary sliced veneers glued in a sandwich 
construction. 

Portal A section in the automated production line where a type of certain tools is applied. 

Precision Reproducibility of the measurement, random error. 

Putty Liquid or low-viscosity material used for Patching. 

Radial 
Projection 

Clockwise accumulation of pixel values along a scanline (watch hand) to gain 
a two-dimensional diagram indicating the presence of an object and its 
position in terms of 0°-360° to the centre of projection. 
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Raw features Uncondensed sensor data, e.g. image (contrary to handcrafted features 
derived explicitly from the image). 

Registration Task of aligning images from different perspectives, of different spatial 
resolutions and of different type in a way that pixels belonging to the same 
physical coordinate in the scene are related to each other. 

Segmentation Task of separating pixels in an image belonging to an object from those 
belonging to background. 

Solid wood 
panel 

Wooden panel made from lengthwise sawn lamellas glued on both sides of 
an edge-glued solid wood core. 

Stitching Task of joining images that together form a panoramic view of a scene. 

Thresholding Image data manipulation, for example a pixel having an intensity value 
above the threshold is set to white; an intensity value below the threshold is 
set to black. 

Undistortion Process in image processing removing distortion, e.g. from lens aberration 
or illumination variance. 

Veneer Very thin sheet of wood peeled from stem rotationally. 
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1 Introduction 

 

Wood is an important resource for a large variety of goods like furniture, flooring, timber 

components, housing parts, etc. Like other natural materials wood products show 

imperfections of various kinds. Automated inspection systems exist that can grade the 

feedstock according to these imperfections. It is economically and ecologically beneficial to 

rectify a workpiece showing imperfections instead of discarding it. Benefit could be gained 

with a system automating such procedures beyond the task of grading, be it for the purpose 

of reducing human labour and therefore reduction of costs or the purpose of reproducibility 

and more reliable results. No such system is currently available to the industry. 

In highly automated plants for furniture (decorated particle boards) and laminate flooring, 

automated visual inspection is frequently used for grading the final product under 

appearance aspects. As these systems inspect well-defined synthetic printed decors, the 

algorithms for both physical and aesthetical flaws can use a considerable amount of a priori 

knowledge. This facilitates the task of detecting surface defects like scratches, dents and 

blisters and aesthetic defects like colour contaminations, colour instabilities and 

irregularities in texture. These algorithms are of little use when analyzing random 

multicoloured patterns such as from real wood. The necessity for algorithms that do not 

draw on the a priori knowledge about the exact appearance of the device under test but give 

reliable detection results also for unseen surfaces is therefore clearly evident. Furthermore, 

with a model of human visual perception in mind that always combines several sensations in 

the sense of features [Gregory 2001], it is necessary to promote the combination of different 

signals from different sensors to create a more complete image of the inspected surface. The 

principles of sensor fusion play a major role in the design of a system addressing this 

requirement but are under-developed for the specific task. Investigations into new sensor 

fusion techniques and their corresponding algorithms which are expected to be custom-

tailored for the purpose of defect detection on natural surfaces are necessary to close this 

gap. 
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1.1 Background of the problem 

Machine vision is an engineering branch that incorporates the science of computer vision in 

the context of manufacturing [Steger, Ulrich and Wiedemann 2008] with computer vision as 

the science and the set of technologies that enable machines to retrieve information from 

images [Graves and Bachelor 2003] which is necessary to solve specific tasks. Therefore "a 

generally accepted definition of machine vision is (...) the analysis of images to extract data 

for controlling a process or activity” [Relf 2004]. The automated visual inspection of surfaces 

as a branch of machine vision is well-developed for a large number of inspection tasks in the 

production line. Replacing the human eye for quality control and process monitoring on a 

huge variety of products is state-of-the art for both the scientific basis and industrial 

production processes. Based on information gained from these automated tasks, the 

automatic control of handling tools and production tools is simple to apply. Machine Vision 

does therefore further mean “(...) recognizing the actual objects in an image and assigning 

properties to those objects - understanding what they mean” [Hapgood 2007]. The 

automated visual inspection in the production of panels based on natural materials such as 

wood, stone etc. is specially challenging due to the natural variety of the appearance of 

these materials and the further added complexity of the perceived visual quality of their 

surfaces. 

1.2 Statement of the problem 

The first and main task of any automatic surface inspection is the robust and precise 

detection and localisation of all kinds of surface flaws and their separation into physical 

defects and aesthetic defects. Physical defects reduce the functionality and aesthetic defects 

offend human perception: “Product material integrity and surface appearance are important 

attributes that will affect product operation, reliability and customer confidence” [Smith 

2001]. While simple manual sorting-out has largely been used to guarantee the required 

overall quality of a production charge, from the ecological perspective additional processes 

that target the repair and upgrade of a product whenever applicable are desirable. However, 

with today’s ever faster operating production plants this currently mostly manual labour 

process is not an economical option. For example, the common manual repair of wooden 

panels, generally called patching, may improve the exploitation of wood, but it is tending to 

become uneconomical due to the huge amount of human labour which is required. 
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Sustainable recovery of wood resources is furthermore an ecologically sensible approach. 

The limited availability of stock and the need to improve its value creates demand for 

automated patching technologies to resolve the lack of automation in this field. 

1.3 Aim and objectives 

The aim of this research is to find a solution for the automated generation of instructions for 

defect rectification on natural surfaces and to show that this task can satisfactorily be 

automated. 

An automated rectification process in principle includes the proper detection of defects as 

well as the decision of what and how to repair. In the application on wooden panels, 

detection techniques furthermore need to be evaluated for their applicability in terms of 

decision making also on the aesthetics of the defects. Suitable existing detection techniques 

together with newly developed detection techniques can then be integrated into a working 

prototype system. 

 The first objective is to identify defect detection techniques and to assess their 

adaptability for the specified task of automated repair on wooden panels. 

 The second objective is then to establish research methods for the purpose of defect 

detection on wooden panels including the requirement of aesthetic assessment of 

the defects by adapting the identified existing detection techniques or newly develop 

detection techniques. 

Different aspects of automated repair need to be investigated for rectification. The common 

patching techniques used to repair wooden panels and the possibilities of an automated 

generation of the associated patching instructions also from an aesthetic point of view 

should to be evaluated. 

 The third objective is to identify suitable common patching techniques used to repair 

different types of wooden panels 

 The fourth objective is to develop a concept to generate patching data in an 

automated manner for the incorporated patching techniques, to implement it and 

integrate it into the prototype systems. 
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For a system suitable for industrial applications, capable of carrying out automated 

rectification and therefore substantially influencing the overall production process, user 

control on the panels’ quality is required. 

 The fifth objective is therefore to devise possibilities for adjusting quality also in 

terms of the final appearance of the panels incorporating wood working expert 

knowledge. 

The focus of this study is on knowledge driven technologies for both detection and 

rectification of defects on surfaces of wooden panels. The results of an integrated system for 

automated rectification are compared to manually carried-out repair and are assessed with 

respect to the possibilities of a machine to control the product’s final appearance in terms of 

customer satisfaction. 

1.4 Research questions 

The statement made in this thesis concerns the feasibility of an industrial-suited machine 

vision system that can be built to satisfy the requirements stated by the superimposed tasks 

of automated inspection and automated repair of natural surfaces. Two major topics are 

thereby addressed: (a) the model of visual perception of defects on natural surfaces 

including aesthetic issues, applicable for the defect detection. (b) The accomplishment of 

automated patching with regard to the final overall appearance of a panel. The following 

research questions were therefore identified: 

 Is it possible to automatically discriminate defects on wood surfaces by physical and 

aesthetic properties? 

 How can human expert knowledge be modelled to be used by a system for 

automated patching of wood surfaces? 

 Is it possible to achieve aesthetically satisfying results with automated patching in 

relation to the capabilities of humans? 

 Is it possible to apply aesthetic patching by retouching a defect in an automatic 

manner such that it is no longer visually perceptible? 

A quite comprehensive set of research aspects is spanned by these four research questions 

as each of them has its own large set of second level aspects. Hence it becomes clear, that it 
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is not reasonable to address all initial research questions and therefore it is not reasonable 

to cover all topics in the scope of this research project. Following the logical order of the 

issues addressed by each of the initial questions, it was decided to focus on the first three 

questions which deal with the perception and appearance properties of defects and the 

knowledge involved with mainly physical patching under aesthetic aspects. The main reason 

for this decision is the industry-driven nature of this applied research project and the fact 

that the research is initiated by a company working on automated inspection and patching 

systems. Therefore an action oriented approach as covered by the first and second question 

is necessary. Further it is important to recognize the importance of the third initial research 

question for the company Baumer Inspection GmbH whose inspection and repair systems 

are studied. The fourth research question implies the development of new technologies, e.g. 

printing technologies that raise many questions by themselves, e.g. colour calibration and 

automated generation of patterns, which might be worth a separate research project and 

which are not in the scope of this study. The main research question addressed by this thesis 

is therefore given the following formulation: 

How is it possible to detect and repair surface and aesthetic defects on natural surfaces 

like wooden panels in an automated manner such that it can replace human labour? 

1.5 Scope of the study  

The underlying research project has a strong interdisciplinary character. Besides a clearly 

dominating engineering domain the project spans over parts of the fields of physiology and 

arts as well.  

The engineering domain consists of two branches: Information engineering with its 

specialization into machine vision on the one hand and wood engineering from the primary 

and secondary wood industry on the other. The primary wood manufacturing industry is the 

sector consisting of organisations that are involved in the development and production of 

wooden feedstock like timber, plywood, panels, structural composite lumber, and glued 

laminated timber and similar. The secondary wood manufacturing sector represents the 

manufacture of this feedstock into finished goods, such as furniture, toys, containers, or 

construction components like house frames [Maryland’s SFLA 2003]. 
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Questions concerning appearance of natural surfaces range more into the field of 

psychology when it comes to analyze and explain certain perception-related phenomena and 

range more into the field of philosophy and arts when it comes to characterize and (re-) 

produce aesthetics. 

1.5.1 Delimitations and limitations  

This study deals with the detection and rectification of defects on panels. Non-flat surfaces 

of objects define their own requirements which may be similar to those of flat ones but 

show additional complexity in all stages of the targeted process and are therefore excluded 

from this research. Due to the industrial context defined by the core competency of 

company Baumer Inspection GmbH, the main focus is on wood-based panels but the 

outcome of the research may be generalisable to natural surfaces in common, for instance 

stone panels. The common characterization of the appearance of these surfaces is therefore 

multicoloured and visually textured which includes the subset of naturally looking surfaces 

having synthetic surface decors as well. These surfaces are highly common in the production 

of furniture for example. 

While for the rectification step an approach as generic and adaptive as possible is targeted, 

which seems to be feasible at least for a large variety of different kinds of wood, the 

detection and decision making steps are restricted to softwoods due to the limitations of the 

underlying industrial project. Therefore hardwoods are excluded from the investigations 

regarding the detection techniques and decision making for the generation of patching data. 

Nevertheless the principles of both detection and patching data generation are the same for 

hardwoods and might likely be adapted to natural surfaces in common. The main focus 

concerning softwoods is on the European/Nordic Spruce (picea abies) which is the main raw 

material for the production of multilayered panels and edge-glued panels in Europe and 

Radiata/Monterey Pine (pinus radiata) which is the major raw material for the production of 

plywood worldwide [Woodexplorer 2014]. 

The sense-perception plays an important role for the appearance of a surface. This fact 

involves aesthetics: “Aesthetics (...) is a branch of philosophy dealing with the nature of 

beauty, art and taste and with the creation and appreciation of beauty” [Merriam Webster 

Dictionary 2015]. To investigate into the meaning of art from the philosophic point of view is 

out of the scope of this research. The first and third initial research question is therefore not 
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meant to answer the philosophic question of “what is aesthetics?” rather than “what is a 

good practice?” derived from applied arts to ensure an aesthetic pleasing result. Sense-

perception on surfaces in this context is limited to visual perception and excludes the 

additional information like odours, acoustics or haptics a person may retrieve from such an 

object. 

As aesthetics is also a reflection of culture [Riedel and Stahl 1999] the scope of this research 

has to be limited to the European culture due to the fact that the prototype systems are 

developed for the European market. Even the European cultural sphere shows regionally 

substantial differences, but in the underlying context this generalisation seems to be 

tolerable. 

1.6  Structure of the thesis 

To further outline the issues addressed in the underlying research a Contextual Background 

is presented which covers background knowledge from the production of wooden panels 

including a defect catalogue and a comprehensive overview on patching to understand the 

motivation and needs of the wood working industry and to derive the requirements stated 

for automated repair. A Literature Review and survey on existing inspection systems 

identifies the state-of-the-art in automated inspection of wooden panels explaining the 

existing detection principles and their limitations. For the application of such systems to 

automated patching also under aesthetic aspects, defect classification based on feature 

extraction seems to be inappropriate and the need for sensor data fusion and knowledge 

based approaches is explained. Research Methods chapter 4 will introduce the methods and 

technologies available to create and deal with high-dimensional registered image data of 

wooden panels and to model human expert knowledge by incorporating machine learning 

and expert systems. The combination of these methods leads to a System Design introduced 

in chapter 5 covering the overall processing chain from proper acquisition techniques to 

defect segmentation, defect evaluation and classification to the decision making for patching 

and the generation of patching instructions. In the System Development and Performance 

chapter experiments are carried out to test the performance of the chosen methods and of 

the overall system compared also to manual repair. A critically carried out analysis of the 

capabilities and possibilities of the developed technology is followed in the final chapters for 

Discussion and Conclusions including suggestions for further research work. 
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2 Contextual background 

 

This chapter addresses the initial statements from the introduction chapter concerning 

economical, ecological and technical needs for intelligent automation and more specifically 

for intelligent, automated rectification processes in the wood-working industry. The 

importance of this industry sector is explained as well as the fundamental technical 

comprehension of the production of wood-based panels on which this research is focused. 

The contextual background chapter is therefore the separation of background knowledge 

from the introduction chapter and a comprehensive collection of important additional 

information necessary to understand the assumptions, references and findings in the 

following chapters. 

2.1 Industry significance 

The European wood-working industry provides more than 2.7 million jobs [CEI-Bois 2011]. 

Besides playing the role of a major employing industry in many member states, the wood-

working industry is among the top three industries in Austria, Finland, Portugal and Sweden 

[CEI-Bois 2011]. Being a diversified industry, the covering activities range from sawmilling to 

the production of wood-based panels like plywood, multi-layered wooden panels or parquet 

veneers, from construction components like structural composite lumber and house frames 

to packaging with pallets and boxes, from joinery to all kinds of furniture. With only a few 

large groups, mostly in the sawmill sector and the panel sector, this industry is mainly 

formed by approximately 131.000 Small and Medium Sized Enterprises (SMEs) having a total 

production value of €165.000 million [CEI-Bois 2011]. 



 

9 
 

 
Figure 2-1: Wood working industry sectors. (Data: [CEI-Bois2011]). 

As can be seen from Figure 2-1, the biggest sector inside the wood working industry is clearly 

the furniture sector. The furniture sector in turn is a major consumer of wood-based panels 

and sawn wood, therefore the whole wood-working industry is closely linked to the furniture 

sector as illustrated in Figure 2-2: 
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Figure 2-2: Links between the different sectors in the wood-working industry in terms 
of production and material flow. The furniture sector plays an important and central 
role among the different sectors and as it consumes several of the other sectors’ 
outputs. 
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2.1.1 Wood-based panels 

A closer look into the industry producing wood-based panels shows the importance of this 

sub-sector: this sector has been accounting for 9% respectively €13 billion of total industry 

production in 2011 [CEI-Bois 2011]. Wood-based panels are a starting product for a huge 

amount of applications, ranging from the furniture industry to the building industry to the 

packaging industry. All kinds of wood-based panels, particleboards (Oriented Strand Board, 

OSB), fibreboards (Medium-Density Fibreboard, MDF) or plywood-/multi-layered wooden 

panels are used in the production of kitchens and cabinets. The construction and building 

industry show a massive need of panels, e.g. plywood panels or OSB boards used for the 

concrete formwork or used to construct complete house frames. The production of flooring, 

which is commonly attributed to the building industry, incorporates all kinds of panels and 

veneers for the production of multiply parquet slabs too, while the production of laminate 

flooring is a big market for MDF boards as they are used as carrier plates. 

 
Figure 2-3: Sub-sectors within the wood-based panels sector. (Data: [CEI-Bois 2011]). 

 
Figure 2-4: Plywood panels and blockboards end user markets (data: [CEI-Bois 2011]). 
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2.1.2 Economical aspects - market development 

The wood working industries in Western Europe experience high feedstock and labour costs, 

forcing them to adopt leading edge technologies to remain competitive and profitable. 

Technical development has been led mainly by the major exporters like Finland and Sweden, 

and is now widely spread within the wood-working industry, driving cost efficiency and 

development of more value-added products. Industry consolidation from numerous smaller 

businesses to large-scale companies is leading to higher production from fewer units, as well 

as to greater specialization. 

In the MDF, OSB and particleboard industries for example, the most important technical 

development over the last decades has been the continuous pressing technology 

(Siempelkamp1) that has dramatically reduced production costs through economies of scale 

and better process control. In the production of multi-layered wooden panels the 

development of band saws being able to cut veneer with a thickness of only 1.8mm and 

minimum loss due to ultra-thin saw blades and computer controlled feeding (Fill GmbH2) in 

combination with high efficient automated sorting of the cut-out veneer led to an increase 

of the added value. 

As labour is a major cost element for the European furniture businesses for example, 

European companies had to adopt leading edge technologies like computer aided processes 

to remain competitive and profitable. This resulted in shifting the emphasis from the primary 

processing of wood to the finishing and assembly of products. The increasing possibilities of 

intelligent automation in the other sectors of the wood-working industry are furthermore 

still enormous and their implementations become more and more viable with the 

consolidation of the plywood and multi-layered wooden panel businesses into fewer but 

bigger companies while facing an ever-increasing competition especially from Asia. To 

illustrate this fact, Figure 2-5 shows exemplarily the production rates of European plywood 

panels in the last twenty years compared with the production rates of China. 

                                                        
1 http://www.siempelkamp.com 
2
 http://www.fill.co.at/ 

http://www.siempelkamp.com/fileadmin/media/Englisch/MaschinenundAnlagen/prospekte/Siempelkamp_ContiRoll_forming_and_press_lines-eng.pdf
http://www.fill.co.at/en/wood-&-building/wood/1210.html
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Figure 2-5: Plywood production rates EU & China (data: [FAOSTAT 2014]). 

Figure 2-6 shows the European import quantities of plywood panels compared with the 

Chinese export quantities of plywood panels. The finding from these figures is the fact that 

while the demand for plywood panels grew by factor 2-3 from approximately 6 to more than 

16 million square meters in the last ten years in Europe, the European production stagnated 

while the demand has been mainly satisfied with Chinese imports. 

 
Figure 2-6: Plywood: import quantities EU, export quantities China (data: [FAOSTAT 2014]). 

Besides the clearly visible impact of the economic crisis on the European production and 

import of plywood panels in the years 2008 & 2009 one can see that in the years before 

substantial market shares were lost to China. 
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The development of the price for Finish plywood is exemplary for this development on the 

plywood market. Figure 2-7 displays the situation of rising production quantities (except 

during the economic crisis in 2008/2009) while the value per unit is continuously decreasing 

over more than the last ten years. 

The decreasing prices for plywood panels due to the steadily increasing production output 

especially of the Chinese facilities, make it necessary not only for European but also for 

Scandinavian and (Southern) American producers to constantly improve the production 

processes by developing and investing into latest technology and equipment. This has 

already been realized in the mid eighties, for example Baldwin [Baldwin 1981] stated that 

“..the key to escape the profitability crisis is high yield management, a management concept 

that seeks the most veneer from the log and the optimum result from the workers and their 

equipment”. From an economical point of view the main goals are to reduce the amount of 

waste, maximize the yield of the natural resources and therefore increase the added-value 

and profit. 

2.2 Defects on wooden panels 

This subchapter gives an overview over the different types of defects in terms of areas on 

wooden panels with unwanted characteristics. “Unwanted” in this sense refers to a 

degraded quality depending on more or less standardised quality definitions depending on 

the intended use of the wooden product. For example on formwork panels no indentations 

are tolerated while on load-bearing parts no structural defects and only a certain amount of 

knots are allowed. These rules from the area of constructional timber differ greatly from 
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those applied to flooring and furniture parts, where appearance characteristics are to the 

fore. There exists a variety of norms, from single countries (German industrial norms DIN), 

economic zones (North America Lumber Standard, European Norm EN) as well as proprietary 

norms issued by the major companies. The latter are normally a refinement to the 

superordinated national or regional definitions with respect to the particularities of the used 

raw materials (for example special cultivation of Pine Radiata in big South American 

plantations). The study of the most important norms and the experience from the industrial 

projects led to a superior categorization of defects which is presented in the following 

paragraphs. This categorization is then also the basis for the identification of a suitable set of 

modular detection techniques in the following chapter, as the physical and optical 

characteristics of the defects are also investigated. Therefore this categorization 

corresponds to the view of an automated inspection system while intuitively often a defect 

categorization based on the cause is applied by human wood workers. Nevertheless in the 

following description of the defects their cause is explained too, as this creates a better 

understanding. 

2.2.1 Physical defects 

Physical defects in this context are those defects that can be separated from a sound 

surrounding by a simple method of metrology and where a common measurement unit (e.g. 

millimetres) can be applied. It is important to distinguish between a measurement the 

separation from the surrounding (segmentation) is based on and a measurement which is 

used in the second-level characterization of an otherwise segmented area. Once segmented, 

any defect is normally characterized by measurements like width, length and diameter, but 

only the physical defects can be identified as such by a simple measurement like depth. 

2.2.1.1 Three-dimensional defects 

The simplest measurement of defects on panels is the measurement of either depth or 

height. It is also the most intuitive measurement as the first and most important quality 

requirement in the production of panels is a planar surface. The discrimination between 

depth and height is thereby very important, as elevations often result from loose particles 

especially on the top side of panels that result from the handling in the production process 

and which are not necessarily to be repaired. Therefore the indentation is of greater 

interest, examples are presented in the following. 
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2.2.1.1.1 Knothole 

Knotholes result from fallen-out (dry) knots. As the wood of knots contains much more lignin 

[Richter 2014] it is therefore much harder but also shows a different shrinkage during drying 

as the grain direction in knots is not parallel to the grain direction in the wood of the trunk. 

Together, this can result in a detachment of the knot [Peck 1957] which will then simply drop 

out from the veneer or lamella at all stages of the production process where mechanical 

influence is given, or will be pulled out in the sawing (refer to Figure 2-8). 

 
Figure 2-8: Knothole (showing some bark on the right side) in pine plywood top layer 
veneer (4mm). The application of glue in fine lengthwise lanes with the use of spray 
nozzles is visible as brown vertical lines on the core layer at the bottom of the hole. 

 
Figure 2-9: Knothole (showing some bark on the right side) in top layer lamella (5mm) 
of solid wood spruce panel. The application of glue by extensive coating of the core 
layer is visible as a white bottom of the hole. 

 
Figure 2-10: Knothole in top layer lamella (5mm) of solid wood spruce panel. The 
application of glue by extensive coating of the core layer is visible as a white bottom. 
Knothole is located at lamella’s border, therefore showing a sharp edge. 
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Other factors for the occurrence of knotholes are the type of wood (fir shows higher, pine 

shows lower occurrence) and the age and condition of the branch. Dead branches almost 

always produce loose knots, often with bark as a result of the trunk isolating the remains as 

can be seen in Figure 2-8 and Figure 2-9, refer also to 2.2.1.2.1 Dark knot, dry not & loose 

knot. Typical diameters differ with the type of wood. E.g. lamellas and veneer from spruce 

show knotholes ranging from 5-25mm while those on fast growing Monterey Pine (Pine 

Radiata) typically show diameters from 30-90mm. 

2.2.1.1.2 Glue-filled knothole 

 

Figure 2-11: Glue-filled knothole on three-layer solid wood panel (spruce). 

A special variant of the knothole can be found on solid wood panels. During pressing the 

excessive glue (often white appearing Kauramin, refer to Figure 2-11) is pressed through the 

openings of the face veneer resulting in glue-filled holes. 

2.2.1.1.3 Cracks 

 

Figure 2-12: Crack in top layer veneer (pine) of plywood panel, 700mm of length. 

Cracks are an immediate result of the drying process as the amount of shrinkage is much 

higher in radial direction than in longitudinal direction. This effect is intensified by short 

drying times and extreme moisture differences respectively wrong moisture content during 

storage and handling. It only leads to cracks on the single lamella or veneer sheet, never on a 

glued and pressed panel which will rather bend and warp under these forces. The rate of 
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crosswise cracks orthogonal to the grain direction (longitudinal shrinkage) is much lower 

than the rate of cracks in grain direction (radial shrinkage) but its presence is much more 

critical to the load capacity which is important in the production of lumber. Typical 

lengthwise cracks range from 50mm to several hundred millimetres in length and up to 

20mm in width; crosswise cracks are typically below 100mm in length. 

2.2.1.1.4 Pinhole/wormhole 

The term pinhole or often also wormhole is commonly used for holes in wood with a 

diameter typically below 5mm (small diameter and very circular shape are the only 

discriminative characteristics). In most cases these holes are caused by insects of different 

types, not necessarily worms, depending on the geographic origin of the wood. 

2.2.1.1.5 Roughness 

During the seasons, the tree forms more or less dense wood, called earlywood and 

latewood. Earlywood referring to the wood cells grown first in the season shows thin cell 

walls and large cell cavities. Contrary the latewood, which is much denser due to thick-

walled cells with very small cavities, is created to the end of the season. As the strength of 

the wood is defined more by the cell walls and less by the cavities, stiffness and strength are 

defined by the amount of latewood. The much softer earlywood can be torn out, especially 

by a blunt knife or saw blade. This effect on veneer on spruce is shown in Figure 2-13 at the 

much brighter part of the annual ring containing the softwood. With a typical mean depth of 

0.2 - 0.3mm this effect is usually called Roughness. 

 
Figure 2-13: Rough surface of plywood veneer from Nordic Spruce due to very soft 
earlywood torn out in the peeling process. 
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2.2.1.1.6 Shells 

 
Figure 2-14: Shells on plywood panel (Pine Radiata) – torn loose earlywood. 

Analogous to the Roughness on spruce (refer to previous section), in the peeling of stems 

from Pine it may happen that the earlywood gets torn loose, leaving large areas of slight 

indentation as well as large loose areas as shown in Figure 2-14 which are called Shells. 

2.2.1.1.7 Resin pocket 

 
Figure 2-15: Resin pocket on peeled veneer of spruce. Thin wood often covers parts of the resin 
pocket (left side). 

The resin pocket is cut horizontally or vertically in the production process (depending on 

whether the trunk has been peeled for plywood or sawn for lumber) and therefore either is 

forming a flat but wide indentation, refer to Figure 2-15 or a narrow but deep crack, refer to 

Figure 2-16. 
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Figure 2-16: Resin pocket on sawn lamella of spruce, only partially opened and with lake from 
flew-out resin. 

When being hot pressed, the resin becomes fluid and might form a resin lake around the 

opening (e.g. on the bottom side of the panel). The resin pocket’s true size normally cannot 

be determined correctly from the view on the surface, often the pocket is still covered with 

some thin wood like shown for peeled plywood in Figure 2-15, left side or is cut at the 

border leaving the longer part of the pocket beneath, refer to Figure 2-16 on sawn lumber 

2.2.1.1.8 Cracked Knots 

Sound knots that are principally connected to the surrounding wood but show cracks are 

called Cracked Knots. The cracks occur during drying of the peeled veneer and due to the 

fact that the grain direction in the knot is different to the grain direction of the surrounding 

wood resulting in divergently oriented forces in the shrinking. This may lead to a 

fragmentation of the knot as can be partially seen in Figure 2-17, resulting in a bigger hole in 

the worst case. 

 

Figure 2-17: Cracked Knot on plywood panel of spruce.  

Cracked knots may be tolerated for some purposes of plywood panels. The cracks are 

nevertheless problematic due to penetration by moisture and water in outdoor applications. 

They are intolerable with panels that are coated with foils as they normally shine through 

the coating. 
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2.2.1.2 Structural defects 

The class of structural defects generally is formed by any defect interrupting the sound wood 

and its normal grain structure, which would include as well the knotholes and cracks, etc. In 

this context the structural defects exclude the previously introduced physical defects and 

limit the class to defects that result from abnormal or destroyed fibres in the wood either 

from biological processes of the plant or by external influence. 

2.2.1.2.1 Dark knot, dry not & loose knot 

 
Figure 2-18:  Dark knot on sawn lamella from spruce, still quite attached to the 
surrounding sound wood.  

 
Figure 2-19:  Dry knot on peeled veneer from spruce showing partial detachment. The 
surrounding wood already formed some bark to isolate the knot. 
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Figure 2-20: Fallen out loose knot (showing the dark brown homogenous applied glue 
on the underlying veneer sheet. 

As already described in 2.2.1.1.1 Knothole, the higher amount of lignin and the different 

grain orientation of the knot’s influence the amount of shrinkage in that way that the knot 

can detach from its surrounding. Often the living tree attempts to isolate an already dead 

knot resulting from a dead branch with the creation of bark which is shown in Figure 2-23. 

2.2.1.2.2 Bark, Knot with bark, Ringed Knot 

 
Figure 2-21: Ingrown bark on plywood of pine, most likely due to former damage. 

 

Figure 2-22: Ingrown bark at fold on plywood of spruce.  
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Figure 2-23: Bark around dead knot on plywood of spruce. 

Bark may become ingrown when either folds on the stem coalesce or due to a mechanically 

caused damage at the outside of the trunk during lifetime, this is shown in Figure 2-21 and 

Figure 2-22. As already mentioned in 2.2.1.1.1 Knothole and 2.2.1.2.1 Dark knot & loose 

knot, the tree grows bark around dead knots to isolate them from the sound wood of the 

trunk which is shown in Figure 2-23. 

2.2.1.2.3 Rot 

 
Figure 2-24:  Soft rot (darker area) on veneer from spruce. 

Fungal infestation is the reason for a brownish/reddish decolouration which is quite 

common in softwoods. Two kinds of fungi are mainly causal, brown rot fungi and soft rot 

fungi, both breaking down the cellulose in the wood [Ritschkoff 1996]. Besides the influence 

on the optical appearance the structure of the wood is weakened which degrades the wood 

for technical purposes like for lumber, but not necessarily for the production of flooring, 

furniture or cladding purposes. 
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2.2.1.2.4 Reaction wood (compression wood) 

 
Figure 2-25: Compression wood on plywood panel of Pine Radiata. Abnormal growth 
of the wood fibres due to presence of tensile respectively compression on the tree 
(wind, grown crooked, grown on a slope, etc.). 

When mechanical stress caused by wind, soil movement and alike is acting upon a tree 

continuously, the plant reacts by forming reaction wood to support its optimal alignment. 

The different tree species thereby incorporate different strategies. While angiosperms form 

so-called tension wood on the affected side of the trunk which pulls it contrary to the 

affecting force, the conifers form so-called compression wood supporting the side opposite 

to where the force applies to the trunk. The tension wood is almost completely consisting of 

cellulose while compression wood is rich of lignin [Richter 2014]. Visually noticeable often by 

a stronger reddish colour in the case of compression wood, the influence of both types of 

reaction wood is much more important as it concerns the mechanical properties of the wood 

and as it responds differently to changes in moisture and therefore its tendency to bend. As 

can also be seen from Figure 2-25 the cell structure of compression wood and therefore the 

surface itself appears much more roughly structured than normal wood. 

2.2.1.2.5 Pressed-in particle 

Besides the indentation, usually in form of knot holes, three-dimensional measurable defects 

occur when particles get pressed into the top layer veneer. Besides the appearance criteria 

of such an irregularity the problem is the possibility that the particle detaches again during 

the further processing of the panel, for example during sanding, leaving an indentation in 

the range of several tenths of a millimetre. The sanding normally does not take away enough 

overall material to compensate this slight indentation which results in a problem when foil-

coating the panels for example. 
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Figure 2-26: Particle pressed into the surface of a 
spruce plywood panel. 

 
Figure 2-27: Pressed-in particle, when removed by 
sanding, the indentation will remain. 

2.2.2 Pure aesthetic defects 

In contrast to the physical defect definition from the previous paragraph, aesthetic defects in 

this context are defects that cannot be discriminated from their surroundings by simple 

natural measurements as it is their appearance to the human visual system that makes them 

“looking defective” or “undesirable”. Therefore instead of applying common measurement 

units, verbal descriptions with the intense use of adjectives are incorporated to distinguish 

between sound and defective/undesirable. This introduces vagueness leading to 

interpretation problems when mapping the defect description to logical decisions of a 

computer-driven automated inspection system. 

2.2.2.1 Discoloration 

 

Figure 2-28: Discoloration (red) of plywood veneer from Pine Radiata (close-up view). 
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Figure 2-29: Discoloration (red) of plywood veneer panel from Pine Radiata (panel 
view). Although defect-free in terms of knots and similar, the unusual appearance may 
be a severe issue in industrial production. 

Wood decolourization may have a severe impact on the appreciation of a customer although 

it is mainly a cosmetic issue and seldom is due to a structural issue with the wood. Individual 

manufactured products might exploit the special appearance, but with the rising demand of 

added-value wood products in industrial production and thereto adapted product quality 

specifications, discolorations have become an important, economic problem being less 

tolerable. 

2.2.2.2 Grain structure 

  

 

 

 

 

 

The grain structure, together with the colour shade of a wooden surface plays the major role 

in the appearance and perception. In fact the texture generated by the grain structure 

influences the perception of the colour in that way that the mean percept colour is a product 

of background colour and texture [Massen 2009]. The grain structure around knots is 

significantly percept showing that detection of knots as well as their repair must incorporate 

the neighbourhood. 

Figure 2-30: Examples of different grain structures. Grain structure influences the 
perception of the wood colour. 
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2.2.2.3 Blue stain 

Blue stain is caused by a fungal infestation which causes a bluish to greyish discolouration, 

refer to Figure 2-31. The blue stain fungi only infects the sapwood as it consumes the lignin 

with is present in high concentration in the sapwood [Forest Products Laboratory 2010]. 

 

 
Figure 2-31: Blue stain on sawn lamella of spruce, the crosswise cut shows the infestation 
of the outer sapwood. 

 

 

Figure 2-32: Blue stain on plywood panel of Pine Radiata. 

Blue stain does not cause decay and therefore does not have influence on the strength of 

the wood, although some lumber rules limit the amount of blue stain on lumber for 

structural purposes. Under decorative aspects the appearance of blue stain is sometimes 

welcomed to a certain amount, but is most often perceived as a disturbance which makes it 

belong to the class of aesthetic defects. 
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2.2.2.4 Needleflex / Needleinfusion 

 

Figure 2-33: Needleflex on Pine Radiata. 

The wood working industry makes huge efforts to produce high-quality plywood boards by 

using knot-free veneers. These can be obtained from trees that have regularly cut off their 

branches so that the outer tree-rings are knot-free and give the best quality wood under 

appearance criteria. But trees treated like this start to grow their cones directly at the stem 

near to the cut off branch which results in irregularities similar to dark knots. Further, the 

tree without branches starts to grow its needles directly at the stem. When not removed in 

the silvicultural process, the needle roots disrupt the structure of the wood in the outer tree 

rings giving the resulting veneer a spotted texture (refer to Figure 2-33) called Needleflex or 

Needleinfusion which may be desired or undesired. 
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2.2.2.5 Knots 

2.2.2.5.1 Sound knots 

 
Figure 2-34: Sound grown knot on panel of Pine Radiata, fully bonded to the fibres of 
the surrounding wood, showing a reddish colour. 

 
Figure 2-35: Sound grown knots on panel of Pine Radiata, tightly bonded to the 
surrounding wood, showing brownish colour. 

Knots, although sound grown are not tolerated in principle by the various quality 

specifications for wooden panels. Besides the structural issues when clusters of sound knots 

appear, the top-quality plywood panels do not show any knots at all. Other quality 

definitions allow knots up to a certain diameter and/or a certain amount of knots per panel. 

Appearance of sound knots is also mainly influenced by their colour, refer to Figure 2-34 and 

Figure 2-35. 
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2.2.2.6 Clusters of knots 

 

Figure 2-36: Knot-free surface preferred by South-American market. 

 
Figure 2-37: Regular sound knots preferred in Scandinavian and Austrian market. 

 
Figure 2-38: Clusters of sound knots, aesthetically undesired, being also a structural issue. 

In top quality plywood panels, typically quality ‘A’, the most obvious quality criteria is the 

amount of (sound) knots. While South American plywood of pine demands no knots at all for 
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quality-‘A’-surfaces (Figure 2-36), Scandinavian and Austrian plywood of spruce allows 

regular, sound knots also in the highest quality grade (Figure 2-37). Knot-free veneer can 

solely be gained by using top layer veneer from the lower part of the tree (for example lower 

7-8 meters of Pine Radiata) which is free from branches or by using the veneer gained from 

the inner parts of the trunk. Clusters of knots as shown in extreme in Figure 2-38 are 

nevertheless undesired. 

2.2.3 Quality standards 

A variety of standards and norms for the production and assessment under various aspects 

for wood-based panels exists. These norms are issued either by national or international 

standardization organizations or by the major panel manufactures. 

2.2.3.1 Standards and norms 

Besides the norms related to strength, bending capability, moisture resistance and other 

structural parameters (e.g. International Standards Organisation (ISO) norm 18775 [ISO 

18775:2008]) the ISO norm 2426 addresses also the appearance of plywood panels [ISO 

2426-1:2000] made from hardwoods [ISO 2426-2:2000] and softwoods [ISO 2426-3:2000]. 

Several appearance categories exist that specify the allowed number of certain defects but 

also of sound knots and further address discoloration for example. Table 2-1 shows an 

excerpt of the ISO norm for appearance of plywood panels made from softwood. 

  



 

31 
 

Category of 
characteristics 

Appearance class 

E I II 

    

Pin knots 

Practically 
absent 

3/m
2
 permitted permitted 

Sound integration knots Permitted up to an individual diameter of: 

15mm provided their 
cumulative diameter does 
not exceed 30mm/m2. 

50mm 

Such knots may have splits, provided they are: 

Very slight Slight 

Unsound or non-adhering 
knots and knot holes 

Permitted up to an individual diameter of: 

6mm if filled and up to a 
number of 2/m

2
. 

5mm if unrepaired. 

25mm if filled and up to a number 
of 6/m

2
. 

Splits open Permitted if less than: 

1/10 1/3 

of panel length up to an individual with of: 

3mm 10mm 

and up to a number of: 

3/m 3/m 

of panel width 

If properly filled All splits greater than 2mm in 
width to be filled. 

Splits closed Permitted 

Abnormalities due to 
insects, marine borers and 
parasitic plants 

Not permitted Not permitted Marks of parasitic plants not 
permitted. 

Insects and marine borer holes 
permitted up to a diameter of 
3mm vertically to the plane of the 
panel. 

Up to a number of 10/m2. 

Resin packets and Inbark Not permitted Not permitted Permitted up to a width of 6mm if 
properly filled. 

Resin Streaks Not permitted Not permitted Permited if slight 

Irregularities in the 
structure of the wood  Practically 

absent 

Permitted if very slight Permitted if slight 

Discoloration which is not 
wood-destroying 

Permitted if low contrast 

Fungal decay, wood 
destroying 

Not permitted 

 

 
Table 2-1: Excerpt from norm ISO 2426-3:2000  defining three appearance classes (E, I, 
II)  for plywood from softwood by limiting amount of defects, knots and other common 
defects [ISO 2426-3:2000]. 
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Company specific standards 

The following description of surface appearance related to appearance norm EN 13017-1 can 

be found in the product sheet of a three-layer solid wood panel (refer to Figure 2-39) from 

Tilly GmbH, an Austrian panel manufacturer which cooperated in the setup of the first 

prototype system for automated patching of wooden panels: 

 “ (…) For exterior applications (e.g. facades, 

roof undersides) the one-side visual grade 

AB/C is recommended. The AB grade class 

combines a lower susceptibility to cracking, 

finer wood structure and an attractive visual 

appearance.” 

 

Further the company specific quality classes 

are defined also in terms of appearance. This 

description is also used by the wood workers 

at the manual patching lines: 

“Front side: AB (corresponds to appearance 

Class A under EN 13017-1) Joint-tight surface, 

plain to slightly coarsely ringed wood, healthy 

firmly intergrown knots, individual black 

point knots permitted, individual slight 

compression wood occurring, slight pith 

portions possible, slight colour deviations permissible, natural knot plugs, resin pockets and 

resin pocket repairs to a large extent permissible, small knot eruptions and star shakes 

permissible, no fillings, individual sapwood permissible (for larch, Douglas fir), general 

homogeneous wood pattern. 

Reverse side: C (corresponds to appearance Class C under EN 13017-1) No particular quality 

standards, discolorations, bark pockets, pith, compression wood, knots, resin pockets and 

cracks to a large extent possible, generally without special requirements in respect of the 

surface, without repairs. The C side can on request be closed with wood putty. (C+) ” 

 
Figure 2-39: Company specific (related to 
European Norm EN 12017-1) definition of 
appearance characteristics for multi-layered solid 
wood panel [Tilly Naturholzplatten GmbH n.d.] 
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2.2.4 Summary 

The top-level classification of defects into physical defects and aesthetic defects is an 

appropriate method in the process of identifying suitable detection methods. The physical 

defects are characterized by standardised measurements while the characterization of 

aesthetic defects must be based on the output of more complex computations. Chapter 5, 

which deals with the robust defect detection, will benefit from the explanations given 

towards physical and optical characterization of the defects. The discrimination of physical 

and aesthetic defects also might point out if a low level sensorial setup like 3D-measurement 

can solve the specific detection task or if high-level logical operations on the sensor data 

have to be incorporated, for example to adapt the perception of the human visual system. 

Beyond proprietary, company-specific standards addressing the structural characteristics of 

wood panels but also addressing their appearance, national and international accepted 

norms exist for plywood and solid wood panels made from either hardwood or softwood. 

These norms are used by the wood-workers to generate rules in either the grading or when 

patching is applied. 

2.3 Methods of patching wooden panels 

This subchapter outlines today’s most commonly used types of patching wooden panels and 

introduces a differentiation based on the used materials. By the observations made at 

different panel production plants the manually carried out processes are analysed. The 

results are used in chapter 5 for a proper setup of the automated counterpart, also under 

the aspects of different optimization approaches including aesthetic aspects. 

2.3.1 Types of patching on wooden panels 

 
Figure 2-40: Box/finger joint of sound areas after cutting out crosswise the defective 
area on a lamella. 
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Patching wooden panels is a well known task in carpentry. The complete crosswise removal 

of a defective area together with its sound surrounding on lamellas or veneer sheets and 

subsequently applying stitching techniques is a common task, refer to Figure 2-40. The 

replacement of a defective area with appropriate fillers has also been practised already for a 

long time. The advantage over extensive removal, which is not applicable to all products and 

only at early stages of the whole production process, is the minimized amount of wasted 

material. For example the jointing of sound parts, after removing the defective parts, is 

applicable to sawn lamellas before being combined and glued or to single veneer sheets, but 

not to complete panels. Moreover, the jointing techniques, for example box/finger joints 

and dovetailing, produce clearly visible transitions as can be seen from Figure 2-40. 

The scope of this research is limited to the patching by replacing the defective area locally 

which gives great opportunities in terms of cost-savings as well as the appearance of the 

final product. 

To locally repair defective areas, turned off slices from branches with characteristic age rings 

are inserted into holes from fallen branches. Simple round pieces of solid wood with either 

no or an appropriate texture are inserted elsewhere. Therefore aspects of appearance and 

aesthetics are involved. Also common is the use of different types of pastes mixed with 

sawdust of different granularity for the purpose to fill cracks, to smoothen rough areas or to 

repair edges. With the industrial production of wooden panels also chemical fillers were 

introduced. The first differentiation therefore is between solid and liquid fillers. 

 
Figure 2-41: Types of patching on wooden panels: a first distinction is made between 
patching based on the generous removal vs. local replacement of defective areas with 
different types of fillers. Camouflaging is an imaginable alternative/extension. 
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2.3.1.1 Solid fillers 

Depending on the type and composition of the wooden panel to be patched, the solid filler is 

manufactured from slices of branches refer to Figure 2-42 or pieces sawn from solid wood by 

using a holesaw like shown in Figure 2-43. Normally these patches, referred to as dowels, are 

applied to panels manufactured from sawn wood (multi-layered solid wood panels). Circular 

and elliptic dowels (Figure 2-44) in different sizes therefore exist. Plywood panels however 

are patched differently in the single production stages: defects on the veneer sheets are 

replaced before gluing by inserting inlays like shown in Figure 2-45 with the help of a punch 

press. The patching of the glued and pressed sandwich however is usually performed using 

liquid fillers. 

 
Figure 2-42: Circular dowels (spruce) made from 
branches to reproduce the characteristic age-ring 
appearance and therefore the best choice for 
insertion into knotholes. 

 

 
Figure 2-43: Circular dowels (spruce) made from 
solid sound wood. Various appearances can be 
produced which favours them for defective areas 
besides knotholes, depending on the grain 
structure. 

 

 
Figure 2-44: Elliptic/elongated dowels (spruce) made 
from solid/sound wood for elongated defect areas 
like cracks. 

 
Figure 2-45: Inlay (pine) produced and inserted 
with a punch press. 
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2.3.1.2 Liquid fillers 

Wood putty or plastic wood has been long used to fill imperfections on the surface of wood 

products. While often saw dust or finer sanding dust in combination with wood glue is used 

in the hobby area and seldom for professional purposes, industrial putty incorporates 

saw/sanding dust with binders and diluting agents. With one-component (1K) putty the 

mixture is ready-to-use while with two-component (2K) putty the binder and diluents need 

to be mixed in advance to the application of the putty. This is of advantage in industrial 

applications because the lower viscous components can be pumped more easily when 

mixing takes place at the nozzle compared to the 1K-putty’s high viscosity. Hotmelts are 

often used alternatively to liquidly applied putty. 

 
Figure 2-46: One-component (1K), water based putty 
without colorant used to fill area of fallen-out bark on 
spruce plywood. Result after sanding. 

 
Figure 2-47: One-component (1K), water based putty with 
beige/light brown colouring used to fill pre-processed 
(routed) defective area on spruce plywood. Result after 
sanding. 

 
Figure 2-48: Two-component (2K) polyurethane filler 
with beige/light brown pigmentation used to fill 
knotholes on plywood panel of spruce, applied with a 
nozzle. Image shows result before sanding; no 
shrinking is recognizable but the effect of an air bubble 
in the low viscous filler can be seen. 

 
Figure 2-49: Polyurethane-Reactive (PUR) transparent 
Hotmelt used to patch cracked knot in parquet slab of oak. 
The application is normally carried out using a solid metal 
punch to ensure backfill and fast cooling down by 
evacuation of heat. Image shows result before sanding. 
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2.3.1.2.1 One-component putty 

One-component (1K) putty is a paste made up of various materials such as Calcium 

Carbonate, Barium Hydroxide, Barite, and Silica and, in the case of coloured paste fillers, 

added colorants. This filler principally consists of three basic components: a binder, a bulking 

agent and a solvent. There exist two different types of one-component paste fillers: Oil-

based and water-based fillers. In the first case the binder is typically varnish blended with oil. 

In the case of water-based fillers, the binder is urethane or acrylic. The type of binder 

determines the type of solvent used: oil-based fillers usually use naphtha, while water-based 

fillers use water. Both types of filler incorporate silica as a bulking agent as it resists shrinking 

and stretching of the wood in response to changed temperature and changed humidity. Oil 

pastes have an alkyd added to the filler while water based fillers include a glycol. In industrial 

processes the water-based putty is preferred as it can be diluted and cleaned up with water 

and takes less time to dry than oil-based fillers which can only be cleaned up using naphtha. 

The disadvantages of using one-component putty is its own shrinking during drying which 

leads to crack formations, underfilling of the defect and less adhesion to the wood compared 

to other liquid fillers. The application of one-component putty has to be carried out using a 

scraper or trowel due to its consistency. Therefore the one-component putty is best suitable 

for smaller defects like small holes and cracks but is incorporated to a wide range of defects 

when sanding can compensate the shrinkage. 

2.3.1.2.2 Two-component putty 

To overcome the disadvantages of filling larger defective areas with 1K-putty, two-

component (2K) fillers can be used. All 2K systems show little to no shrinkage and no 

formation of cracks even when applied to larger areas. They stick well while being easy to 

sand and post-process and can also be colourised by adding pigments. The use of polyester 

resin based systems is decreasing due to their emission of deleterious styrene. The 

preference of inexpensive epoxy based systems over polyurethane based systems is a matter 

of the superordinated process and the product itself: Epoxy based fillers show good 

mechanical properties in terms of adhesion and strength but need much more time to 

harden compared to fast-drying polyurethane based fillers. The processing of both epoxy 

and polyurethane based fillers is dependent on their viscosity which can be controlled during 

the mixing. The usage as cast-resin with low viscosity to fill defective areas is the most 
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common practice in the industrial production of wooden panels as tools like scrapers or 

trowels become unnecessary. 

2.3.1.3 Hotmelts 

Hotmelts or hot glues are thermoplastic fillers that do not contain solvents. Besides very fast 

hardening in the range of only several minutes this is their greatest advantage over other 

fillers. At room temperature the thermoplastic filler is solid, by supplying heat its viscosity is 

lowered to a liquid state in which the filler can be applied before curing due to cooling down 

again. Stored in form of pellets, powder or sticks a huge variety of thermoplastic materials is 

available. Thereof polyurethane (PU) hotmelts are of greatest interest for the patching of 

wooden panels: while most hotmelts are processed at temperatures between 180°C and 

200°C, the polyurethane bonding temperature can be as low as 50°C to 70°C which is in 

great favour for heat sensitive substrates like wood. Polyurethane Reactive (PUR) hotmelts 

represent advancement to the PU hotmelts as their solidification takes place even faster due 

to the curing incorporating moisture from the substrate or from ambient air resulting in 

greater mechanical strength due to stronger, cross-linked polymers. 

2.3.2 Investigation into manual processes 

For the development of the prototype systems for automated patching in cooperation with 

leading companies in the production of wooden panels in Europe, Scandinavia and in South 

America, comprehensive requirement analysis has been carried out. This has been done to 

understand the necessities and demands of the patching processes and to extract and collect 

the implicit knowledge of the workers who carry out the manual patching. Therefore the 

manual working steps were analysed and all actions and decisions during the manual 

patching were identified and questioned. 

2.3.2.1 Patching with dowels 

Patching with dowels is mainly used on solid wood panels as these panels are most valuable 

which justifies the high amount of manual labour. Dowels with different shapes and sizes are 

typically used. From a set of circular and elliptic dowels the worker chooses the appropriate 

dowel from two points of view: 

a) appropriate shape and size to fit the defective area whereby some dowels are 

allowed to be combined with each other to achieve maximum coverage, 
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b) the appearance of the dowel in terms of colour and texture (refer to 2.3.1.1 Solid 

fillers) to achieve a homogenous integration into the surrounding of the defective 

area. 

 
Figure 2-50: Manual patching of solid wood panels of spruce with dowels by four workers 
in two teams. Picture taken in a production facility for multi-layered solid wood panels in 
Austria. 

Figure 2-50 shows the manual patching at a panel production facility in Austria. Panels of 

size 2000mm in width and 5000mm in length are processed counter clockwise by two teams: 

Each team consists of two workers. In every team one worker decides which defect to repair 

and which type, amount and combination of dowels is therefore used and carries out the 

pre-processing with the appropriate router(s). The second worker in each team follows with 

a box from where the dowels are selected according to the previously made routing. The 

second worker makes the decision between several dowels. With the type and size defined 

by the pre-processing, the decision is made only concerning the best possible appearance 

and normally in not more than two iterations to limit the processing time. That means the 

first dowel taken from the box is held on the routed defect area and if not matching 

satisfyingly to the surrounding another one is taken. The glue is inserted into the routed hole 

and the dowel is tapped in with the use of a hammer. 

Figure 2-51 illustrates this highly optimized process with parallelized work steps that give 

specific competence to each worker. That is the decision of how it is physically patched and 
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how it is aesthetically patched. Of course variations can exist where one single worker 

carries out all steps sequentially. 
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Figure 2-51: Sequence of actions and decisions when patching manually with dowels. 
Parallelisation of tasks at Austrian panel production facility using teams consisting of two 
workers responsible for routing respectively filling. 

During observation one could see that there is a huge variance in these decisions: sometimes 

the (first) worker decided not to patch certain smaller defects to avoid concentration of 

dowels. Some (second) workers tried to find a good matching dowel in terms of appearance 

already with the first dowel taken from the box or took the chance of the second iteration to 

improve the result quite often while others did not care about the possible optimization. 

Productivity issues of course influence this behaviour, in times where high throughput in the 

production line is needed the aesthetic quality seems to be lower prioritized. Chapter 2.3.3 

Aesthetic aspects in physical patching will address these observations in more detail. 

2.3.2.2 Patching with putty  

Patching with putty is most common on plywood panels although solid wood panels graded 

into lower categories are sometimes also patched with putty. In the context of a project with 
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a Chilean plywood panel producer a prototype system has been developed which replaces 

the massive manual labour illustrated below. The sequential manual process is carried out 

by six workers at three stations per production line. At the first station two workers from 

opposite side do the routing and marking. At the second station the filling of the routed 

areas with two-component polyurethane putty is done. At the third station the remaining 

defects are filled, these are mostly cracks and 1K water-based putty is used. Analogous to 

the previously described patching with dowels, the first worker in the process chain is 

responsible for the detection of the defective areas and defines how to repair them. Knot 

holes, bark, dark knots and resin pockets are routed. Cracks are routed only when exceeding 

a certain width. Otherwise cracks are marked with a pencil for repair with one-component 

putty for which no routing is necessary. For repairs with the 2K filler it is important to carry 

out the pre-processing with the router when not only defective material like bark has to be 

removed but also because the adhesion can be improved significantly when the bottom 

surface of a hole is free from glue. The same applies to the resin in large resin pockets. 

Therefore every defect except the cracks below a certain width where one-component putty 

is the better choice, are routed, this work step is shown in Figure 2-52. 

 
Figure 2-52: Patching plywood panels of pine with two-component putty in a Chilean 
plywood production facility. Pre-processing: every defect area is routed to remove any 
glue on the underlying veneer to ensure optimal adhesion of the filler. 

For the application of 2K PU putty the two components resin and hardener are transported 

with high pressure to a mixing device that is directly attached to the nozzle with which the 

filler is applied to the panel like shown in Figure 2-53. The mixing of the components at the 
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latest possible point of the conveyor system is necessary to reduce waste and the risk of 

blocked hoses due to the fast hardening of the material. The nozzle tube therefore is a 

wearing part. Nevertheless, while waiting for the next panel, the operator is periodically 

squirting to a waste bin, which makes up more than 50 percent of the overall used material. 

This has been identified as a subject to potential economic and ecologic optimization in an 

automated process. 

 
Figure 2-53: Patching plywood panels of pine with two-component putty in a Chilean 
plywood production facility. Using a nozzle, the filler is applied to the previously routed 
defect area and if necessary smoothened with the use of a scraper. To prevent blockage of 
the nozzle lots of putty is wasted by flushing in idle times. 

The main reason for the strict sequential execution of the pre-processing and filling in 

separated stations is the working safety as the two-component filler is a potential health risk 

especially when being squirted under high pressure. In principle parallel processing would be 

possible. The reason why the previously in station one marked defects are patched with one-

component putty in a separate third station is to ensure that no two-component filler can be 

applied upon the one-component putty as this results in poor adhesion. If the proper order 

of applying the one-component putty after the two-component putty can always be ensured 

in an automated process than theses steps would not necessarily have to be separated and 

the third station could be economized. 
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Figure 2-54: Patching plywood panels of pine with one-component, water-based putty 
using simple scraper for application. This is the third and final step in the process, carried 
out after patching with the two-component filler and related routing in a Chilean 
plywood production. 

Defects left when entering station three are therefore usually cracks and rough areas where 

the shrinkage of the water-based material has only a minor impact. The observations 

nevertheless showed that defects predestined for the repair with two-component filler, but 

being close to the panel border, were left open in the second stage due to the risk of leaking 

out and then were filled in the third stage with the higher viscous one-component putty. 

Figure 2-54 shows the most common repair with one-component putty: smaller cracks at the 

front and trailing edge of the face veneer where all large defects have already been repaired 

as can be seen in the upper right corner of the image. The previously described process is 

illustrated in Figure 2-55 showing the three stages of the processing chain. 
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Figure 2-55: Sequence of actions and decisions for patching with different types of putty 
and appropriate pre-processing in a Chilean plywood production facility. The process is 
completely serialized for one board to avoid mixture of different putty types in wrong 
order. 

2.3.3 Aesthetic aspects when patching 

The patching with dowels is mostly for the purpose to close the surface and to ensure 

integrity of the material for structural reasons. Nevertheless it can be seen that at least with 

the choice between several dowels of the same type and size an aesthetic decision towards 

the final appearance of the patched panel is made by criteria like colour and texture. Also 

the relations of the defects with each other are incorporated by the workers, for example 

when deciding not to patch a less recognizable defect for the purpose of avoiding clusters of 

dowels. In the production of plywood there are fewer options in the choice of the filler and 

aesthetic aspects are addressed mainly by selecting which defect to repair and especially by 

the way these defects are routed when 2K-PU putty needs to be applied. The routing 

therefore is sometimes related to art handicraft. 
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2.4 Technology demands 

From the industry point of view the lack of automation in the production process of panels in 

principle and especially in the sub-process of patching/finishing is seen most crucial. This is 

related to the huge amount of human labour involved. The improvements of automation 

are: 

 Higher throughput in terms of produced panels 

 Lower costs per panel 

 Steady, reliable and transferable results  

 Optimization capabilities 

 Data collection and process monitoring capabilities 

Mechanical automation offers the possibility to drive the overall production line at much 

faster speeds than it is possible with the patching/finishing sub-process being based on 

human labour. The typical transportation speed in the manual process varies around 5 meter 

per minute while in an automated process transportation of panels up to 30 meter per 

minute could be possible with patching on the move, depending on the amount of defects 

per panel and available tools. Higher production speed lowers the costs per panel 

additionally to the dropped labour costs. Besides cost effectiveness the possibility to 

generate repeatable, steady results over a long time period and among different production 

lines and even among different production facilities when using automation is important. 

This is due to the fact that human labour is typically influenced by physical and psychological 

condition and by adaption, for example are better quality panels inspected more strictly 

(and therefore are patched more) over time, lower quality panels are patched less over time. 

Optimization capabilities of an automated process can be identified under different aspects, 

besides aesthetic considerations (refer to 2.3 Methods of patching wooden panels) 

ecological optimization (wasting wood resources and usage of materials for patching, refer 

to section 2.3.2.2) economic aspects (refer section to 2.1.2 Economical aspects - market 

development) and aspects related to cost effectiveness apply as well. In modern production 

processes several database systems are further used to monitor, control and predict the 

production, therefore an automated patching system is seen as a valuable data source in the 

superordinated system and needs to report data continuously. 
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3 Literature Review 

 

Chapter 2 built the basis to understand the economical, ecological and technical needs for 

intelligent automation in the wood working industry, specifically in the production of wood-

based panels. This chapter gives an overview of the research work that has been carried out 

related to the task of automated visual inspection of wood products. A line of development 

is identified starting from early approaches in the 1990s incorporating single greyscale 

imaging sensors and limited processing capabilities to modern multi-sensor technologies 

incorporating state-of-the-art data mining technologies. Literature is further reviewed for 

research on wood appearance and aesthetics as well as concerning approaches for 

automating rectification tasks on wooden panels. 

3.1 Machine Vision and wood based products  

Machine Vision embraces all the technologies required for visual, non-contact 

measurements used for process monitoring, quality assurance, grading & sorting and 

material handling in terms of robot guidance for example. Machine vision in the wood 

processing industry is largely applied to the early production stages such as the grading in 

the saw mill and in the veneer, board and wood-based panel production. Currently an 

important task is the automatic, camera-based grading of wood based products into 

different qualities according to some standard or norm (e.g. Nordic, British, European 

grading rules) by classifying defects like knotholes, different kinds of knots, cracks, regions 

with blue stain and others. Another important task, for example, is the automated definition 

of cut-out regions for a subsequent sawing including the optimal use of the resources. 

In the following sections the most important techniques of image data acquisition and image 

data processing used by machine vision systems on wood and the related research are 

reviewed. 

3.1.1 Imaging techniques 

First attempts to utilize greyscale image sensors together with segmentation techniques like 

simple thresholding [Cho et al. 1990], multi-thresholding and adaptive thresholding [Pham 

and Alcock 1992], and edge detection [Silven et al. 1986], [Ojala et al. 1992] showed limited 

industrial applicability. This is due to high false-positive rates, for example in the detection of 
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knots, on the one hand and high false-negative rates on the other hand. It has been realized 

earlier that feature-based classification incorporating texture and shape is necessary 

[Szymani and McDonald 1981] to improve the results in automated visual inspection but 

real-time application could not be achieved. Furthermore the detection of defects like rot 

and stain showed to be nearly impossible at all due to the missing informational content of 

the monochrome image data [Kim and Koivo 1994]. 

Alapuranen and Westman [Alapuranen and Westman 1992] therefore proposed the 

application of colour imaging and the use of Hierarchical Vector Connected Components 

Segmentation (HVCCS), a method sensitive to local variations on wood surfaces but 

insensitive to global variations. With this multi-stage region-growing segmentation 

technique they claimed to have developed the first approach being capable of achieving 

better quality grading results on (softwood) plywood than human inspectors in real-time. 

Further work on the use of colour machine vision has been carried out [Brunner et al. 1992], 

[Silven and Kauppinen 1994], [Lu et al. 1997], [Kauppinen 1999], [Kauppinen 2000], [Silven et 

al. 2003]. In his dissertation work, Kauppinen [Kauppinen 1999] presented a system that 

uses previous findings and colour cameras together with techniques of unsupervised 

learning. A test installation in a parquet slab grading line showed promising results in 

comparison to an already established grey level based machine vision system. 

All mentioned colour-based approaches have in common the sensitivity for variations in 

colour which can be diverse depending on the colour space incorporated [Brunner et al. 

1992], [Kauppinen and Silven 1996]. Variations in colour are introduced by all involved 

components of an imaging system as well as from the object which is imaged itself: 

illumination variations and inhomogeneities due to changing temperature and due to the 

divergence of the light beam are common [Kauppinen and Silven 1996]. This is depending on 

the device type (fluorescent lamp, light emitting diode, etc.) and its specific characteristics 

[Brunner et al. 1992]. The image acquisition device is under great influence of the used 

optics. Its lenses introduce inhomogeneity in terms of non-uniformity for the intensity and, 

due different influence on different spectral ranges, introduce aberrations of the colour 

[Meza et al. 2010a] and [Meza et al. 2010b]. Finally the imaging of natural products is 

subjected to the natural variance of the material itself, mainly in terms of colour. While the 

imaging device can be calibrated and corrected and the measurement values can be 

normalized, the natural colour variations of the wooden surface can be problematic for 
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algorithms, resulting in ambiguity errors, and have great impact on the classification results. 

Kauppinen and Silven [Kauppinen and Silven 1996] who already proposed various methods 

for machine vision on wood realized early the importance of these influences on the 

classification accuracy. Brunner [Brunner et al. 1992] further studied the influence of 

illumination variations on the overall system performance using different colour spaces and 

colour space transformations. 

 

Critical analysis of the previously mentioned approaches shows that one single grey level 

imaging channel seems not to be sufficient for robust automatic grading. Texture and shape 

analysis on grey levels alone are inadequate to produce reliable, stable segmentation and 

classification results. Incorporation of colour cameras significantly improves the results due 

to higher information content. Nevertheless, certain physical properties of wood (e.g. wood 

density) do not show up in image data that rely only on light reflectance and some defect 

types such as holes may be hard to differentiate from sound knots as their colour or 

greyscale information may not be discriminative enough. Astrand [Astrand 1996] addressed 

this problem by adding measurements of the wood density and fibre orientation gained 

from a laser line and related scatter imaging incorporating the “Tracheid Effect”. 

Many different arrangements of directed or diffuse illumination and cameras capturing the 

diffuse or specular reflection can be used for automated visual inspection of the surface 

properties of wood. It would be very interesting to have an imaging device able to sense the 

physical properties beneath the surface such as wood density, wood grain orientation etc. 

Such a principle was first described by Mathews [Mathews et al. 1976] and is based on the 

optical properties of the tracheids (fibrous cell channels) of wood which spread light 

impinging on the surface laterally within the body of wood, an effect called the Tracheid 

Effect: 

Trees from both the group angiosperms and gymnosperms are vascular plants having 

lignified tissues to conduct water, minerals and the photosynthetic products through the 

plant [Roth-Nebelsick 2006]. This tissue is divided in two major types, xylem and phloem. 

While the phloem is responsible for carrying organic nutrients, mainly sugar (sucrose), from 

the photosynthesis, the xylem is responsible for the transport of water and mineral nutrients 

from the roots throughout the plant. In trees the phloem is the innermost layer of the bark 

while the xylem forms most of the inner part of the tree. The major cell type in the xylem is 
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the Tracheid, an elongated cell type. Like most plant cell types the tracheids have a primary 

and a secondary cell wall, the primary cell wall formed during the cell is growing and the 

secondary cell wall formed inside the primary cell wall after the cell is fully grown. The 

secondary cell type is regularly disrupted with so-called dapples, areas where only the 

primary cell wall exists and where the transportation of water from cell to cell takes place 

[Roth-Nebelsick 2006]. While tracheids are the only way to transport water in gymnosperms, 

angiosperms additionally have vessels with larger diameter what makes the structure of 

their so-called hardwood much more complex. When the Tracheid cell is matured and dies, 

the primary cell wall is strongly thickened and lignified (by embedded lignin) which gives 

softwood, where tracheids are the major cell type, its strength [Wilson and White 1986]. 

The Tracheid Effect mentioned by Matthews [Matthews 1976] describes the spatial diffuse 

transmission of light through wood, whereby the light partially penetrates through the wood 

surface and is partially emitted at another location after having channelled through the 

tracheids. High lateral light propagation can be expected in structures with anisotropic, 

elongated fibres and hollow cells; the propagation of light in longitudinal direction (along the 

wood grain) is many times higher than in cross direction [Fischer and Wendland 1999]. As 

the direction of highest light propagation direction is identical to the cell/fibre orientation, 

thicker cell walls (heartwood) show higher absorption than thinner cell walls with less 

embedded lignin (sapwood); destructed cells (from fungal infestation) show abnormal low 

transmission compared to areas with normal fibre cell orientation. Resin pockets show very 

important light transmission along the pocket. These optical properties which are modulated 

by the inner structure of wood are therefore very useful in detecting defects that are poorly 

visible by their surface reflectance such as bad knots, cracks, resin pockets, marrow tubes 

etc. When spatially-resolved this scatter imaging therefore can provide valuable information 

for the inspections of wood surfaces. 

The Tracheid Effect is highly dependent on the impinging angle of the projected light spot or 

line; it is lower when the light is perpendicular to the surface and maximal when directed 

with a razing angle along the direction of wood grain [Fischer and Wendland 1999]. The best 

imaging of the Tracheid Effect is achieved by projecting a sharp light stimulus and by 

observing the light exiting the wood after having propagated along the tracheids. Usually a 

laser is employed as a stimulus. With the use of dot lasers the effect can be measured in 360 

degrees around the laser spot, with a matrix of fine lasers dots a scatter image with low 
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spatial resolution can be obtained which is suitable for the prediction of grain angle 

distribution [Petersson 2010]. When the dominant grain orientation of a wood piece is 

known and when it is aligned to the direction of transportation, the simplest stimulus is a 

sharp line of laser light projected across the wood allowing higher spatial resolution only in 

the preferred direction. 

Measuring the Tracheid Effect puts high demands on the focus and depth of field of the laser 

light source on the one hand and on the clock frequency and processing abilities of the 

camera imaging the wood surface beyond and beneath the projected laser line. This is 

especially true when the wood has high density, has a structure not only consisting of 

Tracheid cells (hardwood), and/or shows high absorption (dark colour) as then the spatial 

distance between stimulus and measurement area reduces. In these cases the 

measurements can perform with such a low signal-to-noise ratio that no additional 

information can be obtained compared to a normal greyscale image. As a conclusion, bright 

softwoods are reported to give best results in the measurement of light scattering based on 

the Tracheid Effect. 

Building upon the results from Astrand’s and Astrom’s [Astrand and Astrom 1994] approach, 

Nestler and Franke [Nestler and Franke 2000] added a 3D laser triangulation sensor and 

diffuse white light as the sources of light to their optical inspection system of lumber. They 

investigated into the spectra of different regions on spruce softwood showing blue stain, 

resin, rot, etc. They showed that the data from the green channel of the RGB image carries 

no information and therefore can be neglected. By replacing the green channel bandpass 

filter in the colour camera with a visible light (VIS) blocking near infrared (NIR) bandpass 

filter, a new image channel is created for measuring the Tracheid Effect decoupled from the 

gloss effects in the remission of the white light at the surface. The visualization of the 

segmented and classified defects based on colour and scatter analysis is then done by 

matching the colour image on the reconstructed surface and highlighting areas of interest. 

 

In addition to meanwhile well-established 3D laser triangulation and scatter image sensors 

further imaging sensors operating beyond the classical surface reflectance model were 

developed and are in use nowadays. Although the inspection tasks on wooden panels mostly 

address the wood surface characteristics, information about the inner or near-surface 

structure of the wood is worth evaluating as it gives valuable information to identify and 

classify surface defects. X-ray imaging is therefore an important technology to gain 
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information across a piece of wood. Scanning with X-rays gives an averaged image of the 

wood density throughout the objects thickness [Fischer and Wendland 1999]. This average 

density allows good discrimination between areas of high density like knots and bark and 

areas of low density like rot, decay and voids compared to areas with normal wood. It is very 

well suited to hardwood inspection where the scatter image acquisition is not applicable due 

to the low signal-to-noise ratio of the Tracheid Effect [Fischer and Wendland 1999]. Xiao 

[Xiao 1998] was the first to present a system for defect recognition on red oak hardwood 

lumber combining colour imaging, laser profiling and X-ray imaging. In his design for a sensor 

fusion system the 3D laser sensor plays the role of a detector just for global board variations 

like twist and thickness variations. Smaller, local, three-dimensional defects are assumed to 

be detected in the X-ray image data. Another working prototype based on the same design 

concept as the system from Xiao has been reported by Kline, Surak and Araman [Kline et al. 

2003]. 

 

A newly but increasingly popular imaging technique providing information about the inner 

structure of a wood object is Infrared Thermography which images heat radiation from the 

object. Three principles of thermographic measurements are common: 

Passive Thermography incorporates infrared camera measures of the heat distribution at 

the surface of an object that is warm or has been heated up in the production process. A 

defect will act as a thermal insulator blocking the heat from the hot core, resulting in so-

called cold spots in the thermographic image [Maldague 2001]. 

In contrast Active Thermography requires the use of a heating technique that is able to heat 

the object’s surface quickly and evenly, for example by moving the object beneath a heat 

radiator. The infrared camera then measures the heat front dissipation that depends on 

thermal properties like density, heat capacity, thermal conductivity of the piece of wood and 

which is influenced by the local internal wood structure [Maldague 2001]. A defect in the 

inner structure creates a barrier to the heat dissipation process and therefore generates a 

so-called hot spot in the thermographic image as the temperature above the defect will 

decrease more slowly. 

With the use of fast-reacting spotlights or flashbulbs the object’s surface can be warmed up 

quickly and for a short time (pulsed). With no defects in the structure beneath the surface, 

the heat penetrates the material evenly and the surface cools down homogeneously. 
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Analogous to the Active Thermography a defect acts as a barrier for the heat dissipation 

resulting in hot-spots in the thermographic image, but Pulse Thermography requires the 

object to be stationary. 

The use of Pulse Thermography can be problematic, as one single heat pulse generates high 

temperatures at the object’s surface. To ensure a non-destructive measurement the thermal 

load can be reduced by intensity modulation that allows distribution of the energy over a 

longer period of time. The infrared camera then monitors the temporal oscillating 

temperature field with contiguous images and pixel-wise Fourier analysis delivers local 

amplitude and moved phase information [Maldague 2001], [Ibarra-Castanedo 2011]. This 

principle is commonly known as Lock-in Thermography. The amplitude of the temperature 

field delivers information on the presence of a defect, analogous to the previous principles, 

while the phase allows conclusions about the depth position of the defect inside the object 

[Dillenz and Busse 1999]. 

These four principles of Thermographic Imaging can be classified into two groups concerning 

their applicability: Passive and Active Thermography are well-suited for online inspection as 

they allow or require the object to be moved. Pulse and Lock-in Thermography require the 

object under test to be stationary and therefore are of limited use in the production line.  

The application of Active Thermography for automated visual inspection of wooden panels 

has been successfully demonstrated by Meinlschmidt [Meinlschmidt 2005]. Commonly 

detectable defects on wooden panels using Thermographic Imaging are bad bonding in 

multilayer boards and laminates, fallen out knots in plywood, faulty glued veneer joints, 

compression wood and splitting. Hardly visible (based on the light reflection model) defects 

beyond the surface of plywood veneer like fallen out knots in the core veneer can easily be 

identified in the thermographic image. Thermographic imaging can support the visual 

inspection by means of a better discrimination between real wood defects (e.g. dry knot) 

and similar looking sound knots and is applicable in common to suppress false defect 

detection caused by contamination. 

Active Thermography and Lock-in Thermography on wooden panels have been shown to 

work with a replacement of the (modulated) heat source by a high power ultrasonic source 

as well [Tarin and Rotolante 2011]. The vibration of the material yields to local heating by 

friction when certain defects like loose knots, black knots or cracks are present 

[Meinlschmidt 2005]. Problematic here in terms of practicability in a production 
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environment is the need of the ultrasonic stimulus having direct contact with the panel as 

the air is a poor wave coupling medium. 

3.1.2 Multi-channel image processing 

Nowadays all high-performance industrial machine vision systems for surface inspection are 

using multi-channel imaging, continuously rising processor performance in combination with 

dropping costs for acquisition and processing hardware make this practicable. Advanced 

wood inspection systems, e.g. from WoodEye3, LuxScan4 or Raute5
 are therefore mostly 

multi-sensorial systems which combine several camera and illumination modules. The 

combination of different imaging channels demands the fusion of the data from the different 

imaging sensors which is a complex task as the sensor data fusion can be done on several 

levels [Liggins et al. 2008], for example on signal level (pixel fusion), on feature level 

(information fusion) or on decision level (symbol/object fusion). The information fusion 

based on corresponding features on a later stage in the processing chain is often preferred 

instead of geometric and photometric alignment via pixel-wise registration at an early stage 

which demands for proper and often complex calibrations [Haghighat et al. 2011], [Chen 

2012] and image transformations [Schmitt 2006]. Astrand and Astrom [Astrand and Astrom 

1994] identified and addressed this problem early and introduced the first integrated 

industrial multi-sensor approach for softwood inspection. Integrated in a single imaging 

sensor they combined greyscale reflectance measurement, three-dimensional 

measurements gained from laser line triangulation and information about the wood density 

respectively about the fibre orientation by imaging the Tracheid Effect registered pixel-wise 

directly on the sensor due to a proprietary sensor design. Another concept combining colour 

and 3D-profiling in one single camera device on pixel level using a semi-permeable mirror 

has been presented by Massen [Massen 1997]. Based on the results from Astrand’s [Astrand 

Astrom 1994] approach, Nestler and his colleague [Nestler and Franke 2000] matched image 

channels (colour image, 3D profile and scatter image) using a 3D laser triangulation sensor 

and diffuse white light as the source of light by modifying the colour filter of an three-colour 

imaging sensor. Their approach used sharp-focused white light for a two-colour model as 

well as for 3D-profiling and the near-infrared for the scatter measurements. 

                                                        
3 http://www.woodey.se/ 
4 http://www.luxscan.lu 
5
 http://www.raute.com 

http://www.woodey.se/
file:///D:/PHD/Thesis/weinig.com/
http://www.raute.com/
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Although the software approach to register image data pixel-wise became realizable due to 

the rising computing power, the registration of multi-channel image data is mostly still done 

by proprietary, integrated sensor designs. 

 

Independent from the type of sensor data fusion there exist a variety of methods for the 

evaluation of the image data. All evaluation methods have in common to extract information 

that can be used for some decision making in respect of the superior task. The task of defect 

detection for example involves the decision if a defect is present and which image elements 

(pixels) belong to the defect. Evaluation methods and decision making are nowadays mostly 

implemented in software. Information extraction incorporates operations of image and 

signal processing, for example filter or morphological operations. The extracted information 

is commonly a set of numeric features that are combined logically, either using rudimentary 

conditional computing or incorporating high-level classification or clustering techniques. 

3.1.3 Classification techniques in defect detection 

Using (numerical) features for the description of objects implies the creation of a model by 

algorithms either using patterns or finding patterns in the data (feature) set. Predictive 

modelling is used in classification “… which takes a set of data already divided into 

predefined groups and searches for patterns in the data that differentiate those groups” 

[Encyclopaedia Britannica]. “Descriptive modelling, or clustering, also divides data into 

groups. With clustering, however, the proper groups are not known in advance; the patterns 

discovered by analyzing the data are used to determine the groups” [Encyclopaedia 

Britannica]. 

Clustering is often related to unsupervised learning [Hinton et al. 1999], accordingly 

supervised learning is the machine learning task of inferring a function from labelled training 

data [Mohri et al. 2012]. Usually the training data are split to a training set a testing set. The 

inferred function derived by the supervised learning algorithm from the training set is rated 

mainly by its capability to generalize [Mohri et al. 2012], that means mapping unseen 

examples from the testing set. 

The following section addresses approaches found in literature, which incorporate 

classification techniques and involves machine learning in combination with machine vision. 
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Many applications of machine vision in industrial wood processing exist but not all of them 

show the need for classification using supervised or unsupervised learning. For simple tasks 

of grading or defect detection focused only on a specific characteristic of the wood surface 

an appropriate acquisition with subsequent filtering might be sufficient. Most of the 

applications nevertheless have to deal with several complex defects making conservative 

conditional programming based on filter operation outputs inefficient, confusing and 

inextensible. Therefore the application of classification techniques in combination with 

machine learning was introduced and grew in importance when appropriate computing 

hardware became available. 

First attempts were made by [Koivo and Kim 1989] who constructed hierarchical tree 

classifiers and several linked Causal Auto-Regressive (CAR) models. Bustler, Funck and 

Brunner [Bustler et al. 1993] incorporated a modified Schreier-Sims algorithm to separate 

clear regions on wood from defects on Douglas-fir veneer. Hierarchical classifiers were 

applied to red oak boards by Kim and Koivo [Kim and Koivo 1994]. Further work on 

classification techniques in colour wood image processing has been carried out by Silven and 

Kauppinen [Silven and Kauppinen 1994] using K-Nearest Neighbour (K-NN) classification, a 

representative of supervised learning. Iivarinen and Visa [Iivarinen and Visa 1998] classified 

wood defects using a Self Organizing Map (SOM) which is based on unsupervised learning. 

Heikkonen and Lampinen [Heikkonen and Lampinen 1999] experimented with a classification 

approach on lumber based on supervised Artificial Neural Networks (ANN). Neural networks 

have been incorporated in grading lumber by [Gonzaga et al. 1999] and also by Franca 

[França 1996] who used a neuro-fuzzy approach. Other classifying techniques were Learning 

Vector Quantization (LVQ) applied to cherry and maple hardwood by Ziadi [Ziadi et al. 2007]. 

Ziadi experimented with feature vectors formed by image tiles directly but faced severe 

problems with non-converging LVQ-ANNs. A Fuzzy Inference System (FIS) has been applied 

and studied in the grading of hardwood lumber by Kline [Kline et al. 2003] and Xaio [Xaio 

1998]. The classification of knots on spruce plywood by colour images using a neuro-fuzzy 

approach based on automatic adaption incorporating backpropagation has been 

implemented and studied by the researcher itself [Kuehn 2014]. The most modern 

classification technique of Support Vector Machines (SVM) for the application in wood 

processing has been studied and compared to K-NN by Mahram [Mahram et al. 2012]. 
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3.1.4 Features for wood defect classification 

Besides favour for a specific classification technique, previously reviewed research on 

classification techniques and own experience show the crucial point of the classification in 

wood processing applications. This is the preparation and selection of the features, the 

feature engineering. Early approaches in the 1980s and 1990s (summarized by [Szymani and 

McDonald 1981]) were limited in computation capacity and lacked appropriate colour 

imaging devices. Later, shape features and texture features dominated the approaches 

trying to gain improvements through the proper selection of the features. [Koivo and Kim 

1989] extracted features using CAR random field models focusing on real visual texture to 

classify defects on boards of red oak. Koivo [Kim and Koivo 1994] focused on rudimentary 

shapes like circles and lines represented by Freeman’s chain code. Iivarinen and Visa 

[Iivarinen and Visa 1998] combined rotation invariant shape descriptors, descriptors of 

internal structure from the grey level histogram and the co-occurrence matrix (energy, 

contrast, entropy) of previously segmented image regions to a feature set. [Gonzaga et al. 

1999] incorporated only two features from first and second order grey-level statistics due to 

processing-time and -capacity. Smolander, Lampinen and Kohonen [Smolander et al. 1995] 

experimented with a generic feature construction put on top of clustering using SOMs. 

[França 1996] used features derived from histograms of the difference of second order 

statistics. In a recent texture-based approach [Mahram et al. 2012] incorporated Grey Level 

Co-occurrence Matrix (GLCM) measures and LBPs for texture as well as statistical moments 

for shape features. 

Colour features have been studied since mid/end of the 1990s: [Alapuranen and Westman 

1992] used colour and shape features on plywood. [Heikkonen and Lampinen 1999] 

experimented with colour features from colour histogram percentiles and the colour 

histogram shape combined with shape features derived from the responses of a Gabor filter. 

Silven and Kauppinen [Silven and Kauppinen 1994] showed with the help of spectral analysis 

of wood defects on spruce lumber that colour features classified by a K-Nearest Neighbour 

(K-NN) classifier outperform both texture and shape features. Kauppinen [Kauppinen 2000] 

later refined the concept retaining the K-NN classifier but identified improving features from 

the colour image. Kauppinen, Rautio and Silven [Kauppinen et al. 1999] as well as Silven, 

Niskanen and Kauppinen [Silven et al. 2003] achieved good defect classification by 

incorporating colour features in combination with texture measures derived from LBPs. 
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From then the insight has been spread that colour and texture has to be incorporated for 

satisfactory classification results in wood processing applications. 

Recent approaches are multi-sensorial and therefore mostly incorporate several additional 

features derived from special imaging techniques as outlined in 3.1.1 and in 3.1.2. [Xaio 

1998] and [Kline et al. 2003] were among the first to incorporate range data, RGB colour and 

X-ray information in feature based classification. 

Principally all (excluding Support Vector Machines) classifiers show performance impacts 

correlated to rising dimensionality of the feature space. Therefore the selection of the 

features must be carried out properly, not only in terms of significance and in terms of 

information content which is contributed by the selected features, but also in terms of a 

compromise between waiving further information in favour of less complexity and better 

performance. Ziadi, Ntawiniga and Maldague [Ziadi et al. 2007] for example tried to 

incorporate the pixels from 5x5 three-channel colour image tiles directly as a 75 element 

sized feature vector. This exceeded the practical limit due to a very long duration of the 

training of the ANN and therefore he switched to features (peak positions) derived from the 

colour histogram. When [Mahram et al. 2012] incorporated the K-NN with a huge feature 

space consisting of texture and shape features, they were forced to incorporate Principal 

Component Analysis (PCA) to transform and reduce the feature space due to the 

dependency of computation time and feature space dimensionality of this classifier in the 

training as well as in the classification phase. He found that the same problems apply to 

neural network approaches (Multi-Layer Perceptron, MLP) which converged very slowly in 

the training. Recently Mäenpää, Viertola and Pietikäinen [Mäenpää et al. 2003] investigated 

methods for the optimization of combined colour and texture features on beech wood 

parquet slabs with the aim of feature vector length reduction to keep the computational 

complexity of the K-NN classifier down. Beam search and genetic algorithms were 

incorporated to jointly test all features against each other in terms of the resulting 

classification performance. 

3.2 Wood appearance and aesthetics 

The research and the industrial systems dealing with automated inspection of wood which 

were summarized in the previous subchapters address mainly the physical surface defects 

on wood. This originates from the main concerns of quality assurance at the subsequent 
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stages of wood processing, e.g. cutting, sawing, and slicing etc. which primarily address the 

physical stability of the wood product and only to a smaller degree the visual appearance of 

the wood product. Although wooden panels graded into a high physical quality often show a 

more pleasant appearance, this is a non-deterministic result of the grading systems which 

are tuned for the detection of physical defects. Therefore the appearance of panels inside a 

certain class of physical quality fluctuates strongly. This is problematic when it comes up to 

produce wooden panels for the production of furniture which should have a consisting good 

physical and aesthetical quality as well. 

From a present-day perspective there exist no known automatic grading systems or 

prototypes that deal specifically with the aesthetic appearance of wood products. Horrer 

[Horrer 2005] presented an inspection system for the automated visual inspection of the 

overall aesthetic appearance of natural looking surfaces on laminate flooring, carpet and 

similar, therefore with known, predictable patterns which he called “random and pseudo-

random surfaces”. Schmitt [Schmitt 2006] addressed the automated inspection problem of 

local aesthetic defects on ceramic tiles having a random, non-predictable texture. Only little 

work can be found in the literature that addresses the aesthetic and appearance issues of 

wood at all. The related research work is reviewed in the following paragraph. 

 

Typical characteristics which are assigned to the wooden material by consumers have been 

studied by Broman [Broman 2000], Pakarinen and Asikainen [Pakarinen and Asikainen 2001], 

Bow and Bumgardner [Bowe and Bumgardner 2004] as wells by Scholz and Decker [Scholz 

and Decker 2007] with the aim to support the designing of wood furniture that meets 

consumer expectations. The dissertation of Broman [Broman2000] addresses the 

fundamental question if and how it is possible to detect aesthetic defects in an automated 

manner. Broman introduces the need for a better definition of customer preferences in the 

whole chain of wood processing from the feedstock to the final product. As an example, in 

sawmills well established grading rules guarantee a certain level of quality in the sense of 

minimum and maximum specifications but these do not necessarily meet with certain 

quality expectations of the customer. Broman’s thesis states, that it must be possible to 

describe, measure and communicate the inherent aesthetic features of wood. Therefore the 

objective of his work is to understand the preferences of customers to different wood 

appearances, with the limitation on knotty wood surfaces. Based on questions from a former 
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qualitative study, interviews incorporating a questionnaire on the presentation of different 

wooden panels made from Pine were applied in Broman’s research. The questionnaire asked 

for the relevance of a set of attributes like fresh, gaudy, beautiful, etc. With Principle 

Component Analysis (PCA) loading plots the most important and uncorrelated attributes 

were isolated by interpreting the impact of the first two principle components. The findings 

are that there is a clear separation between groups of attributes describing low and high 

visual “activity” of the surface and between groups standing for harmony and disharmony. 

Further investigation shows, that activity and harmony together can define the appreciation: 

for the involved interviewees high activity combined with disharmony resulted in bad 

acceptance while both high activity and harmony gave the best results in terms of 

acceptance. The author concludes that it is possible to identify measurable aesthetic 

features that describe preferences. A similar study has been carried out by Jansson [Jonsson 

2008] investigating how wood as a material is perceived and characterized in relation to 

alternative wood-based materials such as panels and wood-based composites. Nordvik, 

Schütte and Broman [Nordvik et al. 2009] examined the relationship between visualization 

of appearance properties of wood flooring and people’s impressions of this flooring for the 

reason to understand how computer visualization in the process of product design can be 

efficiently used. 

Rice [Rice et al. 2006] tried to determine the types of environments appearance wood 

products can create and to gauge whether or not these types could have positive impacts on 

people’s emotional states. 

To clarify the level and variation of selected properties influencing the visual impression of 

Scots pine wood Riekkinen [Riekkinen 2004] investigated trees from 60 stands and from 

different ages generating statistics on colour variations, stem defects, knot types and knot 

count and generated suggestions for the best use of the specific raw wood material. 

Other studies mainly dealt with colour as the most important feature for the perception of 

wood. Nakamura, Masuda and Inagaki [Nakamura et al. 1993] found that colour variations 

and pattern anisotropy are the most important visual factors that create the typical visual 

impressions of wood, but focused on the colour (variations) that influence the appearance in 

terms of warm and cold. Vetter, Coradin, Martino and Camargos [Vetter et al. 1990] studied 

the possibility to use a numerical colour description to compare the appearance of wood 

products and investigated the practicability of different colour systems based on comparison 
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samples (e.g. Munsell colour system) and colorimeters (DIN6 colour system). His conclusions 

are that the measure is simply not precise enough and the large amount of variables 

(illumination type, angle of view, surface gloss) does not allow for objective comparison. In a 

newer attempt to use colorimetry Janin [Janin et al. 2001] characterized several different 

wood types with the CIE-Lab colour system but did not gain new insight compared to Vetter. 

 

Not directly linked to the inspection of appearance properties of wood but in principle on 

appearance characteristics influenced by external parameters, Grekin and his colleagues 

[Grekin et al. 2005] investigated the change of perceived colour on Nordic pine in terms of 

colour distance metrics7 measured in a perceptionally uniform colour space8. For wood from 

Nordic pine a remarkable increase in redness and yellowness was found when exposed to 

ultra-violet (UV) radiation on long-term, dependent on the origin of the wood in terms of 

latitude as well as height of the tree. His findings are aimed to control the homogeneity of 

floorings, panelling, and pieces of furniture. The effect of UV radiation on the visual colour 

properties of Nordic pine wood has also been investigated by Hautamäki [Hautamäki et al. 

2010] for the reason to identify the time period of irradiation needed until no further colour 

change occurs and the product is “visually stable”. 

Kansai Engineering and Affective Engineering [Nagamachi 2010] aim at translating the 

customer’s feelings and attitude towards a product’s appearance into parameters in the 

product domain. Adopting these new disciplines [Yali and Kui 2008] calculated colour and 

texture features from wood images that can be mapped to an emotional feature space by 

using senses like gorgeous, luxury, simple and beautiful. 

It can be summarized that since the 1980s the problem of how to describe the wood’s 

appearance incorporating colour is not solved satisfactorily as all attempts mentioned above 

restrict to the extraction of one global colour from something that is a mixture of colour 

variations and structural elements (in terms of image processing a “colour texture”). An 

average colour can therefore only be viewed as a very rough estimate for perceived 

appearance. Other research, e.g. by Massen, Eberhardt and Asal [Massen et al. 2008] 

showed that the human visual system perceives “colour of wood” as a combination of colour 

                                                        
6 Deutsche Industrie Norm (German Industry Norm) 
7   * 
8
 CIE-L*a*b* 
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statistics (3D colour histogram) and spatial frequencies of the imaged wood with a surprising 

coupling of both parameters. 

3.3 Automated physical rectification of wood based products 

The wood processing industry is familiar with a number of different techniques to cope with 

defective regions in the feedstock of primary wood processing. It is common, for example, to 

define cross cut sections in the production of lamellas or veneer to remove the defective 

area and incorporate jointing techniques (e.g. Dovetail Joint, Scarf Joint or Finger Joint) to 

combine the non-defective parts again. Other common techniques have been summarized in 

chapter 2.3 Methods of patching wooden panels and include dowel insertion after drilling 

out defective knots, cracks and resin pockets in the wooden panel production and filling 

holes and cracks with putty9. The decisions which defect to cut out or to repair, which repair 

method to use and finally the execution of the repair work are nowadays mostly manual 

labour. 

Automated visual inspection used for grading of raw wood lamellas is able to automatically 

define cross cut sections, often in conjunction with length optimization to maximize profit. 

This has first been proposed and been demonstrated by Rönnqvist and Astrand [Rönnqvist 

and Astrand 1998] in the production of lumber. In the meanwhile it is state of the art to have 

chop saws controlled by machine vision systems in real-time as offered automation solutions 

show, for example by ATB-Technology10, Weinig11, Luxscan12 for lumber and automation 

solutions offered for veneer, for example by Mecano13. 

Instead of removing defective areas, which always results in a loss due to waste, the 

patching of defects with dowels or putty is practicable with several wood products, for 

instance with plywood panels, multilayer panels and solid wood boards. There exist machine 

vision controlled systems from Argus14 and Mecano that automatically fill cracks, holes and 

manually drilled-out defective regions on plywood panels with putty or poly patch. For thin 

plywood veneer a solution is offered by Raute15 and Mecano that inserts plywood patches in 

a single-step process by stamping-out and stamping-in. As most of the automatic visual 

                                                        
9 Filler used by carpenter (wood putty, paste wood filler) 
10

 atb-technology.de 
11

 weinig.com 
12

 luxscan.lu 
13 mecanogroup.com 
14 argossolutions.no 
15

 raute.com 

http://www.atb-technology.de/
http://www.weinig.com/
http://www.luxscan.lu/
http://www.mecanogroup.com/
http://www.argossolutions.no/
http://www.raute.com/
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inspection systems are developed by industry in terms of products the number of 

publications with focus on the methods and algorithms used is highly limited due to 

confidentiality purposes. A generic interface for the transfer of patching data able to address 

the patching with putty including pre-processing with routing tools has been studied and 

developed by Michael Göttlicher [Göttlicher 2011] in his diploma thesis under the author’s 

supervision. The author, respectively the employing company [Massen, Kuehn and Eberhardt 

2010] were the first who presented the concept and preliminary results of automated 

patching. No system with automated dowel insertion based on automated visual inspection 

has been known so far. 

3.4 Automated aesthetical rectification of wood based products 

From a present-day perspective there exist no comprehensive automatic patching systems 

or prototypes that deal with the aesthetic appearance of wood products and the aesthetic 

properties of a possible (physical) patching solution on wood products. Kurdthongmee 

[Kurdthongmee 2008] proposed matching techniques to automatically group high-quality 

rubberwood boards of comparable colour and shade for homogenous looking finger joints.   

Seidel [Seidel 2010] investigated the possibilities of synthetic patch generation for the 

application via ink-jet printing on physically rectified defects of wood surfaces by 

incorporating image processing techniques to generate colour and texture patterns from the 

surrounding sound wood with the aim to camouflage the repaired area. The author of this 

thesis, respectively the employing company [Massen, Kuehn and Eberhardt 2009], 

[Eberhardt, Massen and Kuehn 2011] were the first who presented a concept for automated 

physical and aesthetic patching using liquid and solid fillers to the wood-working industry. 

 

3.5 Summary of review 

In this chapter it is shown that many approaches to apply machine vision systems to the 

inspection of wood have been proposed by researchers in the past 25 years. Most of them 

utilize a single sensor setup and the related research focused on the extraction of 

information in terms of colour, shape and texture features for the further processing. A line 

of development from single sensor greyscale imaging to colour imaging to multi-channel 

imaging can be identified and with rising processing capabilities classification methods 

become real-time capable and therefore become interesting for industrial wood-processing 
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application. Nevertheless in the task of automated inspection of wood there is obviously still 

unused potential with respect to the incorporation of multiple imaging sensors and in terms 

of the improvement of the related sensor data fusion. It has further been shown, that the 

most crucial part of setting up a classification system is the proper selection of the features 

to be used, demanding a high level of expert knowledge as well as a high level of experience 

with classification while finding a suitable classifier configuration through trial and error, 

especially when incorporating neural networks. 

It can be concluded from present research and knowledge that it is advantageous to 

incorporate as much information from visual sensors as possible to establish a profound 

data basis for the subsequent processing in defect detection and evaluation. This raises 

demands not only to the selection of features but also to their processing as the underlying 

classification problems are non-linear by a majority, limiting the number of usable 

algorithms. Besides algorithmic aspects the controllability of an automated system for 

detection and further for rectification is seen to be crucial, especially when vague, 

ambiguous expectations, as with aesthetic issues for example, need to be fulfilled. 

 

In the following chapters the methods and the overall concept for an automated defect 

detection and rectification system for wooden panels are presented bearing in mind the 

findings from previous research. The focus is hereby on the learning from examples and the 

decision-making by incorporating rules formulated preferably in human language to address 

the stated expectations. Having covered the overall system design, the development and the 

outcome of testing the overall interaction of the components is summarized and the 

performance of the scanner system for automated defect detection and defect rectification 

is analyzed. 
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4 Research Methods 

 

This chapter presents the methods incorporated in the design experiments towards the 

optimal solution for a scanner system usable for automated patching. Design drivers are the 

objectives: 

a) to achieve defect detection incorporating the aesthetic appearance and perception 

of defects (local aesthetics) as well as 

b) to satisfy the identified necessity to model human wood-working expert knowledge 

for the generation of patching instructions also under aesthetic aspects. 

Therefore two major components are addressed by the research methods. That is: 

A) the classification of the defects being able to incorporate aesthetic judgements in the 

classification process and 

B) an expert system that is able to generate patching instructions incorporating rules 

derived from wood-working practice which can be easily adapted under various 

aspects including economic, ecologic and aesthetics criteria. 

Due to the industry-driven nature of the research project not all possible alternatives can be 

evaluated and compared. Nevertheless, in the following sections a profound assessment 

based on theoretical background knowledge is used in the argumentation for the choice of 

methods. 

4.1 Classification of defects under local aesthetic aspects 

The classification of defects is a demanding task as has already been shown in chapter 2 by 

summarizing possible defects on wooden panels and in chapter 3 by summarizing the 

research related to automated detection of defects on wooden panels. The huge variety of 

the defects on natural surfaces requires a good generalisation capability to solve the task of 

discrimination between different defect types, e.g. dark knots, ringed knots and knots with 

bark (refer to Table 4-1 and also to chapter 2 Defect types on wooden panels) that are often 

hard to separate even for human experts. 
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Cracked Knot Dark Knot Ringed Knot Knot with bark 

    

    

    

    

    

Cracked Knot Dark Knot Ringed Knot Knot with bark 

Table 4-1: Examples of four different defective knot types from plywood of spruce. 

Table 4-1 gives examples for four common defect knot types on spruce plywood panels 

showing the quite huge variance of defects in one class (columns) on the one hand and the 

similarity of some of the different knot defect types on the other hand (e.g. Ringed Knot and 

knot with bark). Using examples of Dark Knot, Ringed Knot and knot with bark, from Figure 

4-1 to Figure 4-3 one can see the complexity in discrimination between these knot defect 

types. 
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Figure 4-1: Dark knot. 

 
Figure 4-2: Ringed knot. 

 
Figure 4-3: Knot with bark. 

The Dark Knot (Figure 4-1) and the Ringed Knot (Figure 4-2) both show a ring-shaped 

boundary but the dark knot is more irregular and slightly darker in the overall area of the 

circular object. The intensity distribution between the object’s edge and its inner area is 

therefore a potential characteristic (feature) for discrimination between these two defect 

types besides the presence of the typical ring. The ring itself is ambiguous for knots with 

bark (Figure 4-3) only when the amount of bark extends as can be seen from Figure 4-3. 

A typical formulation of a guideline for explicit feature-based discrimination of the four knot 

defect types from Table 4-1 is given in Table 4-2. 

Cracked Knot Dark Knot Ringed Knot Knot with bark 

1. accumulation of dark 
fragments is possible 
with radial projection 

2. minor amount of dark 
fragments is given 
(cumulative, by 
histogram) 

3. dark fragments are 
elongated and star-like 

4. gradient image of outer 
contour is evenly 
distributed 

5. outer contour is 
compact and elliptical 

6. minimal diameter can 
be applied 

1. homogeneously dark 
2. gradient image of outer 

contour is evenly 
distributed 

3. dark fragments are 
rounded, ring-shaped and 
located at the transition to 
sound wood 

4. minimal diameter can be 
applied 

1. inwards and outwards 
gradients can be found 

2. dark fragments are 
rounded, ring-shaped and 
located at the transition 
of sound-wood to knot 

3. gradient image of outer 
contour is evenly 
distributed 

4. outer contour is compact 
and elliptical 

5. minimal diameter can be 
applied 

1. gradient image is not 
evenly distributed 

2. dark fragments spread 
over complete area of 
interest 

3. dark fragments are not 
rounded or elliptical 

Table 4-2: Example of typical feature-based discrimination between different knot defect types. 

Features like  

 Colour 

 Elongated shape 

 Soft/sharp gradient  

 Compact / elliptical 

 Ring-shaped …. 
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can be identified which need to be substituted with a numerical representation and linked 

by logic operations in an automated process. This is where complexity is raised, first by 

calculating these numerical representations involving several sets of parameters for each 

algorithm and second by managing them, e.g. in terms of upper and lower limits in 

conditional programming (if … else … then). 

Incorporating the need to additionally judge on the basis of appearance characteristics, e.g. 

“acceptable looking dark knot” vs. “unattractive looking dark knot”, as exemplarily shown in 

Figure 4-4 and Figure 4-5, finally requires an alternative approach. This is due to the fact that 

the aesthetic characteristics are hard to describe by numerical features in an approach 

based on selected features which need to be explicitly derived from image data. 

 
Figure 4-4: Acceptable looking dark knot. 

 
Figure 4-5: Unattractive looking dark knot. 

In the image examples shown above (Figure 4-4 & Figure 4-5) symmetry seems to play an 

important role but the onion-shaped, darkened grain in Figure 4-5 may also contribute to 

rejection. The contributing characteristics must be carefully identified by questioning but 

often they are very specific to a certain example. Many other examples involving different 

characteristics therefore can be found so that the possible bandwidth of characteristics is 

evidently high and their logical combination is complex. Further the maintenance of the 

resulting parameter sets involved in an approach explicitly identifying and calculating these 

characteristics becomes nearly unmanageable. 

As (colour) images of defects are sufficient for humans to make judgements concerning the 

aesthetics, the information content of the images is assumed to be principally sufficient16. 

Modelling the human perception as well as the (personal) aesthetic preference by an 

                                                        
16 Human perception of images may additionally rely on previous experience with real wood as well as on 
haptics which are linked to the visual perceived information of the images. 



 

68 
 

algorithm therefore implies to find a principle for evaluating this information. If an 

algorithm/principle can be identified that is computationally efficient, the unreduced image 

data itself and therefore all available information could be used for learning from examples 

instead of first abstracting the information by calculating and selecting a limited set of 

features. The following requirements can therefore be defined for such a classification 

principle: 

 Ability to generalize from learning examples, ideally from images 

 Ability to extract relevant information (features) by itself 

 Ability to deal with huge information content (feature space dimensionality) needed 

for aesthetic evaluation 

 Ability to deal with huge sets of training samples to cover the full bandwidth of 

defects on natural surfaces 

 Ability to handle noise in the training data 

 Ability to deal with non-linear classification/separation problems 

 Computational efficiency despite high feature space dimensionality and huge training 

sets 

 

The use of various classification methods in defect detection on wood has already been 

summarized in chapter 3. Popular methods like K-Nearest Neighbour (K-NN) and Artificial 

Neural Networks (ANN) are not able to fulfil the above stated requirements: K-NN 

classification for example is a representative of lazy learning due the absence of abstraction 

(e.g. calculation of class centres) and does not rely on a model of the underlying data 

[Dasarathy 1991]. ANNs are able to deal with non-linear classification problems and are able 

to generalize by abstracting the input data but suffer from possible overfitting and 

ambiguous solutions in the training stage due to several possible local minima of the error 

function [Smith 1997]. In the training stage of ANNs the computation of the partial 

differentiations is a drawback with huge training data sets. In the online application 

nevertheless, the simple nature of the backpropagation algorithm, incorporating only 

connections to the neighboured nodes predestine ANNs for the implementation on parallel 

computing architectures [Friedman et al. 2003]. The popular Self Organizing Maps (SOM) 

used in several applications of wood defect detection (summarized in chapter 3) are able to 
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generalize, are very noise tolerant and allow very good user interaction due to the reduction 

of the problem dimensionality but are computational inefficient with high-dimensional 

feature spaces and huge training sets. Furthermore SOMs do not create class boundaries but 

just group samples by similarity. Support Vector Machines (SVM) overcome the mentioned 

disadvantages of K-NN, ANN and SOM, but leave the issues with creation and handling 

(labelling) of the training data set unaddressed. A comparison of methods according to the 

initially stated requirements for the classification of defects on wooden panels incorporating 

aesthetics aspects is given in Table 4-3: 
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K-NN 
 

none 
 

bad 
good (large 
values of K) 

bad (memory) yes 

proportionally 
decreasing with 

amount of 
training samples 

easy 
implementation 

ANN 
 

high 
 

problematic problematic 
bad 

(convergence) 
yes problematic 

local minima lead to 
ambiguity 

SOM 
 

good 
 

problematic good bad yes good 

mapping of 
complex problems 

to planar 
representation 

SVM 
 

high 
 

very good good good yes good 

convex optimization 
problem with 

single, optimum 
solution 

Table 4-3: Summary and comparison of potential classification methods according to 
requirements stated for defect detection on wooden panels including aesthetic aspects. 

Combining methods to complement each other is a logical conclusion and will be subject of 

the proposed cascaded classificatory system training presented in the following sections. 

4.1.1 Combined unsupervised and supervised learning 

Classification and clustering, respectively supervised and unsupervised learning have already 

been addressed in the review of classification techniques for defect detection in chapter 3. 

The major difference of the two machine learning models is once more illustrated in Figure 

4-6 and Figure 4-7, highlighting the fact that the number as well as the prototypes of the 

Colour coding for principle performance evaluation of classification methods: 

 good  problematic  bad  neutral/comment 
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classes (defect types) involved are already known in supervised learning and are estimated 

by the algorithm itself in unsupervised learning. 

 
Figure 4-6: Unsupervised learning model. 

 
Figure 4-7: Supervised learning model. 

A combination of unsupervised (e.g. SOM) and supervised learning (e.g. SVM) is proposed in 

a cascaded approach: The unsupervised learning is then a promising attempt to support the 

expert in sorting and labelling the gathered training data (images of defect types, e.g. 

different knots) by identifying clusters, thereby preparing the input for the supervised 

learning. This approach to cascaded classificatory system training will be addressed in detail 

when the classification system of the scanner for an automated rectification system is 

presented in chapter 5. In this chapter the most promising representatives from each 

learning principle are identified and reviewed in detail to support their choice in a cascaded 

training for the application on multi-dimensional image data of wood defects, based on the 

initially stated requirements. 

4.1.2 SOM – Self Organizing Map 

A representative of unsupervised learning is the Self-Organizing Map (SOM). Also called 

Kohohen-Map referring to its Finnish inventor Teuvo Kohohen [Kohonen 2000], this 

algorithm has been used and studied extensively in the area of machine vision for wood 

processing. This is most likely because of the relationship of the strong Finnish research 

group in that field at the Universities of Oulu and Turku [Iivarinen and Visa 1998], 

[Kauppinen et al. 1999], [Silven et al. 2003] but also due to its great capability of visualizing 

complex classification problems. 

In contrast to the K-Nearest Neighbour algorithm [Dasarathy 1991] for example, the SOM 

incorporates abstraction capability in the training phase. The goal of learning is to create a 

map that responds with similar outputs to similar inputs. Kohonen’s intention was to model 
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the processing of (visual) sensory data in the cerebral cortex of the human brain [Kohonen 

1989]. The output of a SOM is a mapping of complex multi-dimensional data to a low-

dimensional (usually two dimensions) representation with similar samples grouped together. 

The strength of the SOM is therefore its visualization capability of class distributions with 

underlying high-dimensional feature spaces. It is important to understand that therefore a 

SOM does not produce automatically a trained classifier with self-identified clusters but that 

user input is necessary after the adaption to define the boundaries and allocate class labels 

in the adapted (grouped) low-dimensional representation of the data. The grouping by 

similarity in a plane is very well suited to machine vision applications, as the images (tiles) 

from which the feature vectors have been extracted can be directly related to each other. 

Figure 4-8 gives an example of a trained SOM on images of knots from softwood lumber 

using colour and texture features including boundaries for several classes: 

 
Figure 4-8: SOM clustering of image tiles. The map organizes the samples in terms of 
similarity. Blue lines indicate class boundaries in terms of similarity to cluster centres. 
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The example uses image tiles from a segmenting approach17 and feature sets containing 

colour and texture features. The result is a sorted representation of the corresponding 

image tiles with dark knots at the top (1), knots with bark (2), ringed knots (3), bark (4), 

sound knots (5) and resin pockets (6) at the bottom of the map. 

The function principle of the SOM is reviewed in detail in Appendix A.1. By weighting a 

neutral initialized map of nodes representing samples from the training, a Best Matching 

Unit (BMU) is found for each of the estimated classes and iteratively refined by bending the 

mesh, therefore achieving the grouping by similarity. 

4.1.2.1 Discussion of SOM 

Feature selection and reduction of feature space dimensionality are key points when 

incorporating this classification algorithm. Finding appropriate feature sets improves the 

result of the mapping to a representation with lower dimensionality. In contrary, when 

inappropriate data is presented in the training stage, similar prototypes might be placed in 

different regions of the map. Therefore the feature selection has to be carried out carefully 

and techniques like Singular Value Decomposition (SVD) and Principle Component Analyis 

(PCA) should be incorporated to evaluate and prepare the feature space. SOMs 

incorporating adequate neighbourhoods are very noise-tolerant as the neighbourhood 

function acts as a model for the noise distribution [Yin 2008] with the SOM itself modelling 

the distribution of the (noisy) samples. Unfortunately every SOM is different and finds 

different similarities in the data. Therefore several maps have to be trained, compared and 

evaluated by an expert in order to get one good final map. The good visualization capabilities 

of the SOM incorporating Unified Distance Matrices (U-Matrices) showing the distances of 

the weight vectors of adjacent nodes make it easy to identify distorted maps. Kohonen 

[Kohonen 1989] proposed the utilization of error metrics like the Quantization Error 

computing the average distance of input feature vectors to the BMU’s vector or the 

Topographic Error checking for all input vectors if the BMU and second BMU are adjacent in 

the lattice. Computational complexity is a drawback since as the dimension of the data 

increases the processing time increases (refer to Formula A-1). The more neighbours are 

used, the better is the similarity of the resulting map to the input data, but the number of 

distances to be calculated increases exponentially (refer to Formula A-2). Nevertheless real-

                                                        
17 Segmenting approach: The input image is not equally subdivided into tiles (possibly fragmenting objects) but 
areas of interest are defined around objects 
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time capability has been proven by Kauppinen [Kauppinen 1999] and Niskanen [Niskanen et 

al. 2002]. 

The necessity to use selected, limited feature sets does not allow to satisfactorily model local 

aesthetics incorporated in wood defect detection when using SOMs. This is on the one hand 

due to the difficulty of extracting aesthetics to single numerical values and on the other 

hand due to the limited computational performance with higher dimensional feature spaces 

containing sufficient information to model local aesthetics. But self-organizing maps have 

been found to be very effective in the learning stage of a superimposed supervised 

classification task where the accuracy requirement is lower than in the actual defect 

detection and computational performance is not constrained to online-requirements. In the 

offline pre-sorting of huge amounts of sample image tiles needing assignment of class labels 

(e.g. knot types) by a wood processing expert, the SOM is perfectly suited to generate a two-

dimensional sorted representation of the image tiles. This leaves only the definition of class 

labels and the (graphical) correction of outliers (adjustment of blue line in Figure 4-8) for the 

expert. 

4.1.3 SVM- Support Vector Machine 

Support Vector Machines define systems for training linear learning machines on non-linear 

classification problems, incorporating kernel-induced feature spaces and generalisation 

theory as well as optimisation theory. The derived algorithms as well as their possible 

implementations are extremely efficient and with some restrictions the underlying 

optimization problem on the error function is convex, thus having no local minima which 

means that the best solution is guaranteed to be found. This is promising for the complex 

task of wood defect classification under aesthetic aspects as no restrictions in terms of 

dimensionality-limited feature spaces are imposed, neither from the computational 

performance point of view nor from the learning convergence point of view. 

A SVM is actually a linear classification algorithm constructing a line between two sets of 

points for the separation of these two sets. In 1995 Cortes and Vapnik [Cortes and Vapnik 

1995] presented an extended algorithm incorporating non-linear functions (so-called 

kernels) for mapping all the (linearly not separable) points from the input space into a 

transformed space where the SVM can then be applied (Figure 4-9). This is based on Cover’s 

theorem [Cover 1965] which states that the probability of a classification problem to be 
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linearly solvable raises with the dimensionality of the underlying feature space and that it is 

therefore possible to find a mapping function that produces a higher-dimensional (even 

infinite dimensional) linearly separable, transformed feature space. The aim of the SVM 

classification is therefore to develop a computationally efficient and performant learning 

which allows separating a very high dimensional feature space with the use of hyperplanes 

providing the capability to generalise from the learning data and additionally being able to 

deal with training sets in the range of several hundred thousand samples. This is where 

advanced optimization theory and generalisation theory has successfully been incorporated. 

 
Figure 4-9: Principle of SVM-training in analogy to two-layer perceptron: Transformation of 
input vector (symbolized by character ‘A’) to a higher dimensional feature space via 
nonlinear function, construction of optimal hyperplane by finding support vectors, 
classification according to position relative to hyperplane. 

Therefore the most obvious difference to other classification algorithms is the intended 

increase of the feature space’s dimensionality in contrast to the reduction of the feature 

space used to control computational complexity in classical approaches. In combination with 

the mathematically proven existence of a single solution due to convex optimization, the 

need to focus the selection and reduction of features has been eliminated principally. Of 

course a good set of features containing all relevant information and no redundant 

information is still the best basis for classification and may accelerate the learning process. 

But as will be proposed in the following chapter, the image data itself can be sequentially 

seen as a feature vector in a high-dimensional feature space (rows * columns * layers) and 

therefore can be used for classification directly containing the maximum information 
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content. With SVMs this becomes practical due to their computational efficiency using the 

so-called Kernel-Trick [Cristianini and Taylor 2004]. Besides being able to deal with high-

dimensional feature spaces, SVMs are optimized to handle huge sets of training data as well. 

By identifying and using only the strongest learning examples in the feature set, the so-called 

Support Vectors, the actual online computation is kept manageable. 

Based on the maximum margin strategy applied on a linear learning machine the theoretical 

background of SVM classification is briefly reviewed in Appendix A.2. The advantageous 

characteristics of SVMs (good computational performance, capability of handling high-

dimensional feature sets and large training sets, guaranteed unambiguous convergence) are 

used to supplement the decision towards this classification technique among others (K-NN18, 

ANN19, etc) in wood defect classification. For the correct parameterization of the classifier in 

its application in wood defect detection on wooden panels it is further important to 

appreciate the underlying principles and therefore the influences of the parameters. 

4.1.3.1 A geometrical interpretation of SVM margins 

Having the simplified definition of convexity given in Appendix A.2.1 in mind, this paragraph 

uses a geometrical interpretation of SVMs to support the understanding of the intention to 

incorporate mathematics drawn from various areas such as (mathematical) optimization 

theory and generalisation theory. The geometrical interpretation is advantageous over 

sound theory at this point as only the principle understanding of SVMs for the 

argumentation as the most appropriate classification algorithm being able to handle the 

complexity of an aesthetic judgement on wood defect types is necessary. Profound insight 

into the involved theories itself and into the SVM implementation principles including 

convex optimization based on convex problems, derivation of the Support Vectors and 

application of noise-tolerance using soft-margins, is given in Appendices A.2.1 – A.2.3. 

A geometric interpretation of a convex problem is a set where every point in the set can be 

seen by every other point from the set, that is a virtual line exists between these points fully 

lying in the set which is given for the points on the convex hull. 

  

                                                        
18 K-Nearest Neighbour algorithm 
19

 Artificial Neural Network 
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The convex hull for a given set   in l-dimensional space 

                    
   

is defined as: 

       

 
  
 

  
              

 

   

   

 

   

         

          
  
 

  
 

 

 

Formula 4-1: Definition of convex hull on set of points (e.g. training data set). 

having therefore as elements all the convex combinations of the elements in X. 

Assuming a two-class, linearly separable distribution in X, consisting of the classes   and    

and corresponding subsets   and   , the (training) set X is the union        . The 

following optimization problem can be formulated on the basis that a point in the convex 

hull of a subset is a convex combination of all the points in the subset and therefore the 

closest point/distance between the two convex hulls        and        has to be found: 

minimiseλ              

 

      

 

 

     

 

 

 objective function 

subject to 
   

 

   

      

 

    

        

          

constraints for convexity 

Formula 4-2: Geometrical interpretation of margin optimization problem based on convex 
hulls of two data sets. 

By reshaping [Theodoridis and Mavroforakis 2007] Formula 4-2 and the associated 

constraints, one can achieve the following equivalent formulation of the optimization 

problem stated: 
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minimise            
    

 

   

 objective function 

subject to 
     

  

   

      

  

    

        

            

constraints 

Formula 4-3: Formulation of margin optimization problem based on convex hulls of two 
data sets. 

A solution to this problem (Formula 4-3) is equivalent to finding the nearest points between 

the convex hulls of two data sets. The formulation given by Formula 4-3 is identical to the 

formulation derived by pure optimization theory (refer to Appendix A.1) and serves at this 

point as a mathematical formulation of the geometrical interpretation of the SVM-

hyperplane which is illustrated in graphical illustration in Figure 4-10: 

 
Figure 4-10: Geometrical interpretation of SVM classifier. Example of training set with 
linear separable classes    and   . For each class the convex hull is shown. The 
hyperplane classifier is perpendicular to the line between the closest points of the two 
convex hulls. 

Interpreting Figure 4-10 and having in mind that a point on the convex hull of a (training) set 

is a convex combination of all the points in the set, it can be understood that is necessary to 

only incorporate the points lying on the convex hull, which are the so-called Support Vectors. 

Using this principle allows to deal with huge (training) data sets as the amount of training 

samples does not explicitly influence the computational complexity of classification with only 

the Support Vectors. 
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The concept of a kernel induced feature space to address non-linear classification problems 

and the concept of soft margins to achieve generalisation and tolerance of outliers in 

training are discussed in detail in the appendices 1.1A.2.2 and 1.1A.2.3. 

4.1.3.2 Discussion of Support Vector Machines 

Support Vector Machines overcome most of the problems identified with other classification 

techniques and theoretically fulfil the requirements stated initially in this chapter for the 

intended application to defect classification on wooden panels including judgement on local 

aesthetics. The development of SVMs has been opposite to their most interesting 

counterpart, the Artificial Neural Network (ANN) (comparing only model-based supervised 

learning techniques so far). While the ANN has been developed by implementation and 

experimentation over quite a long time and theoretical studying has guided this work, the 

SVM evolved from sound theories and has then been brought to practical implementation. 

Unlike the other classification techniques the usage of SVMs is not required to control the 

model complexity via keeping the feature space dimensionality low. This eliminates the 

needs for feature selection and feature space transformation aiming at redundancy 

elimination and dimension reduction which is seen to be crucial for the needed information 

content in the judgement on local aesthetics of wood defects. As the kernel induced feature 

space can theoretically (due to implicit mapping) get infinite in dimension, no restriction on 

the number of features exist, therefore eliminating the process of feature extraction, which 

is fundamental in all conventional approaches, allowing theoretically the input of raw pixel 

data as input itself instead of deriving features from it. The parameterisation of SVMs, 

compared to ANNs is much simplified as no network architecture (number of hidden layers, 

number of neurons in the hidden layer(s)) has to be evaluated due to the fact, that the SVM 

selects its model size automatically in terms of the support vectors. 

The soft-margin extension introduces a regularization parameter C (toleration of noise, 

generalisation capability) that has to be found empirically. The capability to tolerate noisy 

samples due to wrong labelling and due to the involved uncertainty is seen very valuable as 

faultless labelling cannot be guaranteed. Often finding the boundaries between the classes is 

challenging for the human expert as well, refer to examples initially given with the different 

knot defect types in Table 4-1 as well as to the pre-sorted planar representation of knot 

images in Figure 4-8. Finding the best value for C via testing and cross validation is a straight 

forward task not necessarily asking for expert knowledge and being automatable, also in 
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terms of future extension and adaption of the classifying system (e.g. adaption to other 

wood types, additional defect types, etc.). Finally the limitation of the hyperplane-based 

classifier to be able to separate only two classes can be efficiently solved by incorporating an 

appropriate number of SVMs in hierarchical order. Multiclass classification with SVMs has 

been outlined by Mayoraz and Alpaydin [Mayoraz and Alpaydin 1999] and Patt [Platt et al. 

2000] for example. Standard kernels are based on either polynomial or radial basis (Gaussian 

kernel) functions. The use of more sophisticated kernels tailored to the structure of the 

underlying (training) data is largely unexplored and likely to deliver further improved results. 

The design of such kernels opens another field of research by itself. 

4.2 Decision making for patching under appearance aspects 

Based on the results of defect detection and defect classification, systems automating the 

rectification of panels respectively their defects must be able to generate instructions for the 

tools carrying out the actual patching. Generating these instruction must be done according 

to the patching rules incorporated within either the company (refer to chapter 2.2.3 Quality 

standards) or with the product (refer to chapter 2.3.2 Investigation into manual processes) 

The patching instructions therefore are depending on  

 A certain proprietary interface to available machinery and tools for certain patching 

technologies 

 The guidelines, norms and instructions valid in a wood working facility 

 The implicit knowledge of a wood worker carrying out the repair in a manual process 

Therefore a decision-making process can be identified which requires reasoning and 

knowledge. This is per se the definition of an Expert System [Jackson 1998]. 

The incorporated rules may rely on findings summarized in chapter 3.1 Wood appearance 

and aesthetics when aesthetic aspects are involved. With reference to Table 2-1 a 

formulation of the rules addressing the aesthetics of the overall panel can be exemplarily 

stated according to norm ISO 2426-3-2000 defining the appearance classes E, I & II for 

plywood made from softwood by using if…then…else formulations (conditional language): 
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Exemplary formulation of rule for ISO appearance class E: 

IF amount of pin knots20 AND amount of sound knots AND amount of unsound knots 

AND amount of loose knots AND amount of knot holes AND amount of cracks (open & 

closed) is near to zero AND there exist no resin pockets AND there exists no bark AND 

there is very little irregularity in wood structure AND there is very little discoloration AND 

there is no fungal decoy THEN the appearance class of the panel is E. 

 
Figure 4-11: Example of plywood panel (spruce) satisfying ISO 
2426-3-2000 appearance class E. (image represents approx. 
1m

2
). 

 

Pin Knots 0 

Sound knots 0 

Unsound knots 0 

Loose knots / 
knotholes 

0 

Cracks 0 

Resin pockets 0 

Irregular wood  
structure 

none 

Discoloration none 

Fungal decay none 

 

Exemplary formulation of rule for ISO appearance class I: 

IF amount of pin knots is below 3/m2 AND there are no sound knots with diameter 

exceeding 15mm OR 30mm/m2 cumulated AND amount of loose knots, unsound knots or 

knot holes with 6mm in diameter maximum is not exceeding 2/m2 AND amount of cracks 

(open & closed) having up to 3mm length maximum is not exceeding 3 per meter AND 

there exist no resin pockets AND there exists no bark AND there is very slight irregularity 

in wood structure AND there is only low-contrast discoloration AND there is no fungal 

decoy THEN the appearance class of the panel is I. 

                                                        
20

 Knot holes with diameter < 5mm 
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Figure 4-12: Example of plywood panel (spruce) satisfying ISO 
2426-3-2000 appearance class I. (image represents approx. 1m2). 

 

Pin Knots 0 

Sound knots 0 

Unsound knots 2 

Loose knots / 
knotholes 

0 

Cracks 0 

Resin pockets 0 

Irregular wood  
structure 

none 

Discoloration Low 
contrast 

Fungal decay none 

 

Exemplary formulation of rule for ISO appearance class II: 

IF there are no sound knots with diameter exceeding 50mm AND amount of loose knots, 

unsound knots or knot holes with 25mm in diameter maximum is not exceeding 6/m2 

AND amount of cracks (open & closed) having up to 10mm length maximum is not 

exceeding 3 per meter AND there exist less than 6 resin pockets or bark AND there is 

only slight irregularity in wood structure AND there is only low-contrast discoloration 

AND there is no fungal decay THEN the appearance class of the panel is II. 

 
Figure 4-13: Example of plywood panel (spruce) satisfying ISO 
2426-3-2000 appearance class II. Class II due to unsound knots 
(image represents approx. 1m2). 

 

Pin Knots 3 

Sound knots 1 (<50mm) 

Unsound knots 8 

Loose knots / 
knotholes 

3 

Cracks 0 

Resin pockets 0 

Irregular wood  
structure 

none 

Discoloration none 

Fungal decay none 
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Figure 4-14: Example of plywood panel (spruce) satisfying ISO 
2426-3-2000 appearance class II. Class II due to huge amount of 
knots (image represents approx. 1m2). 

 

Pin Knots 20 

Sound knots 0 

Unsound knots 27 
(<15mm) 

Loose knots / 
knotholes 

6(<6mm) 

Cracks 0 

Resin pockets 0 

Irregular wood  
structure 

none 

Discoloration none 

Fungal decay none 

 
Figure 4-15: Example of plywood panel (spruce) satisfying ISO 
2426-3-2000 appearance class II. Class II due to size of sound 
knots (image represents approx. 1m2). 

 

Pin Knots 5 

Sound knots 21 (<50mm) 

Unsound knots 8 

Loose knots / 
knotholes 

2 

Cracks 0 

Resin pockets 0 

Irregular wood  
structure 

none 

Discoloration none 

Fungal decay none 

From Figure 4-13, Figure 4-15, Figure 4-14 it can be seen that the lowest quality appearance 

class II spans over a quite huge bandwidth of appearance. This might be different with other 

(company proprietary) guidelines. 

One can easily understand that long conditional sentences transformed to conditional 

programming result in confusing structures21 which are error–prone and hard to maintain as 

the numbers (main knowledge) and their logical linking are not separated. Additionally the 

use of adjectives like “little”, “slight”, “near to zero” introduce uncertainty as they can hardly 

be represented by crisp numerical limits. 

                                                        
21

 Textual programming as well as graphical (data flow) programming 
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4.2.1 Expert Systems 

In parallel to the identification of certain appropriate techniques for classification in the first 

half of this chapter, the second half first identifies some important requirements linked to 

the specific application of an automated system for rectification of wooden panels before (a 

specific) expert system technology is introduced and its choice is supported by reviewing the 

related theory. 

From the viewpoint of systems design and with the complexity of patching wooden panels as 

well as the need for easy adaption to different products and processes in mind, the following 

requirements can be identified: 

 Separation of knowledge from application/execution of rules (explicit knowledge) 

 Best possible adaption and maintenance of the knowledge 

 Incorporation of domain-experts (wood working experts) rather than computer 

experts for adaption and maintenance of the knowledge 

 Ability to model vague formulated knowledge related with the aesthetic aspects that 

lack a distinct numerical representation 

The stated requirements support the insight that an expert system, typically consisting of an 

inference engine and a knowledge base [Jackson 1998] for separating logic from knowledge, 

needs to be incorporated. In contrast to the classification methods, an assessment of 

different expert systems and the related optimal choice cannot be based on previous 

applications in wood-working processes as no such application is known to exist nor could 

be found in literature.  

Due to the industry-driven nature of the research project not all variants of Expert Systems 

and possible alternatives can be evaluated. The own experience from research work [Kuehn 

2014] with Fuzzy Inference Systems (FIS, a special type of Expert Systems incorporating 

Fuzzy Logic) in applications on wood leads to the decision to incorporate this specific 

technology. A strong argument for Fuzzy Inference Systems is the fact that they have been 

designed to model vagueness and uncertainty as is the task of generating patching 

instructions, especially under aesthetic aspects. This capability of fuzzy inference has been 

utilized in recent Kansei Engineering approaches [Hotta and Hagiwara 2007], [Li and Zhu 

2010] for the same reason. While multivariate analysis has been the conventional technique 

for the analysis of human feelings towards product design and setting up Kansei models, 
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FISs seem to be predestined and work well in the mapping of features from the product 

domain into the customer’s emotional feature space and vice-versa. This is seen as a strong 

argument in the decision for this specific Expert System technology. 

4.2.2 FIS – Fuzzy Inference System 

Fuzzy inference is actually the process of formulating the mapping from a given input space 

to an output using Fuzzy Logic [Arshdeep et al. 2012]. The process involves: membership 

functions (reviewed in detail in Appendix A.3.1) for fuzzification as well as for 

defuzzification, fuzzy logic operators (reviewed in detail in Appendix A.3.2) and if-then rules 

(reviewed in detail in Appendix A.3.3): 

 

Figure 4-16: Schematic diagram of Fuzzy Inference System (FIS). 

Figure 4-16 illustrates this context; the execution of the fuzzy inference system involves 

three main procedures in sequential order: 

1. Fuzzification: transform a crisp input value to a degree of membership in terms of a 

fuzzy set using the assigned membership function. 

2. Aggregation of the fuzzy sets with the help of fuzzy operators to an output fuzzy set 

or variable according to the rules from the knowledge base. 

3. Defuzzification: transform the fuzzy output to a crisp output 

The rule engine is the central element of the fuzzy inference system with fuzzy sets for the 

inputs and outputs as well. It carries out all the tests that are done incorporating the rules in 

parallel, including the application of the fuzzy operators that are used to apply the logical 

connectives in the rules ( {if ... AND ...} OR {if ... AND...} then ... ), refer to Appendix A.3 for a 

detailed description. 

inference 

engine

membership functions

knowledge base with rules

fuzzification defuzzification
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4.2.3 Discussion of FIS 

Incorporating Fuzzy Logic and a Fuzzy Inference System for the purpose to setup an expert 

system to model human expert knowledge in the area of wood working where vagueness 

and uncertainty is involved seems to be the most elegant and most promising approach. 

Especially for the intended purpose of generating patching data instruction derived from 

explicit but also from implicit rules, the modifiability of the rules formulated using adjectives 

in human readable sentences by graphical adjustments of the membership functions seems 

to be sensible. This allows adaption, modification and maintenance of the system by domain 

experts rather than computer science experts as initially stated in the requirements. 

4.3 Summary of research methods 

In this chapter the methods were introduced to be used for modelling human expert 

knowledge in the area of wood-working. Focus has been given on the abilities to imitate 

capabilities related to human perception (high amount of involved features, planar 

representation of complex problems like in the cortex) and way of thinking (modelling noise 

and incorporating uncertainty). A machine learning algorithm which can handle the 

elaborate and complex task of defect detection incorporating aesthetic aspects is identified 

and its choice is supported by theoretical background knowledge. This theoretical 

background proofs the principal capability of Support Vector Machines (SVMs) among other 

techniques to handle huge data sets. This is related to feature space dimensionality, the 

amount of samples, non-linear classification problems and noisy training sets. Introduction 

to a cascaded training approach for the simplification of the training data selection carried 

out by a human expert by mapping and grouping image tiles in a planar representation using 

the advantages of SOMs has further been given. The cascaded classificatory system training 

including the user interaction is detailed in the following chapter. Besides the wood working 

expert knowledge involved in defect detection, respectively defect classification, which will 

be covered by an approach of learning from examples in the detection part of the next 

chapter, an Expert System concept based on Fuzzy Logic (FIS) has been introduced. This 

Expert System satisfies principally the stated requirements and is seen to be the most 

promising approach to model wood-working expert knowledge for the generation of 

patching data. Generation of patching data is subject of the second part of the following 

chapter. 
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5 System Design 

 

In the previous chapter the research methods related to the aesthetic aspects in detection 

and the knowledge-based patching data generation have been introduced. In the context of 

a scanner system for the automated rectification of defects on wooden panels and the 

related design experiments, this chapter introduces the framework in which the proposed 

methods are used. The developed scanner system (Baumer ColourBrain® for patching) is 

shown in Figure 5-1 as part of the first prototype system for patching plywood panels using 

liquid fillers and in Figure 5-5 as part of the first prototype system for patching solid wood 

panels with dowels. The patching machinery has been built by collaborating Austrian partner 

company Fill. The corresponding tools are shown in Figure 5-2 - Figure 5-4 and Figure 5-6. 

 
Figure 5-1: Backward view along automated patching line for plywood panels. From rear to 
front: Scanner system, routing tool portal, 2K-putty tool portal and 1K-putty tool portal in 
the foreground. Each portal consists of x/y axes with two tools of same type (left/right). 
Maximum panel size is 2.5m x 5m. 

 
Figure 5-2: Routing tools and suction for 
pre-processing in automated patching 
using putty. 

 
Figure 5-3: 1K putty insertion 
tool: stamp with nozzle. 

 
Figure 5-4: 2K putty insertion tool 
with nozzle and waste bin for 
flushing. 
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The ColourBrain® for patching scanner system used for automated patching of solid wood 

panels with dowels is shown in Figure 5-5. One of the four aggregates with the dowel 

insertion tools is shown in Figure 5-6. 

  
Figure 5-5: View on automated patching line for solid wood panels. 
In the foreground the portal with four aggregates with tools for 
different sized and shaped dowels can be seen. The panel is 
scanned forward (from rear to front in image) and is then turned to 
scan the backside in backward movement. Then the panel is moved 
to left onto the transportation through the portals. 

Figure 5-6: Aggregate with tools for insertion 
of circular dowels. The view from below 
shows router (left) and punch (centre), both 
using a stencil mounted on a slide. The 
transparent hose on the right side is used to 
feed the dowel. 

A framework has been chosen based on the scanner system ColourBrain® for grading used in 

furniture and flooring inspection. The monolithic design of these systems and their data 

processing linked to proprietary grading and inspection does not address the requirements 

of automated patching. Scanner housing, cooling, standard illumination and acquisition 

hardware as well as software modules for basic calibration, standard image acquisition and 

common Graphical User Interfaces (GUI) could be re-used. The new scanner needs to be 

enhanced by tailored imaging techniques, related image sensor data fusion as well as 

specific image data processing in the defect detection prior to the new methods for defect 

classification and decision making related to patching as proposed in chapter 4.  

Therefore the overall system architecture of the scanner is developed first. This is followed 

by a refined investigation of the main components and modules added. Focus is thereby on 

the optimized detection techniques as sources of data for the new, patching-specific 

components segmentation, classification, decision making and subsequent patching data 

generation. Only the principles of the chosen sensor data fusion are explained in the 

following. 
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5.1 A dedicated cluster architecture for automated patching 

The system architecture for an image processing system tailored to the requirements for a 

scanner used in an automated patching line is presented in this subchapter. Research and 

development done with respect to the prototype development of such a scanner result in a 

unique system which combines state-of-the-art techniques and components to a new 

concept of sensor fusion and multichannel image processing for the use in automated visual 

defect detection on wooden panels. 

Common non-integrated image processing systems used for the inspection of wooden 

panels (excluding smart cameras, proprietary integrated sensors and similar) have to deal 

which huge amounts of image data and are usually based on personal computer (PC) 

technology like the systems from Baumer Inspection22, Argos23, Mecano24, Raute25, Luxscan26 

or Weinig27. A common system layout is shown in Figure 5-7. This type of setup is a 

hierarchical organisation of one master computer connected to several slave devices 

whereby each slave consists of an imaging device, a frame grabber device and a data 

processing unit that is usually also an industrial computer. The relationship between imaging 

device and processing unit is historically usually 1:1 as relationships including several 

imaging devices to one processing unit are limited by the data transfer from the frame 

grabber device and by the processing capacity of the processing device. The most common 

setup furthermore is to have the image processing done on the same computer to which the 

imaging devices are connected and to do the transformation from the image level to an 

abstracted level using a symbolic description of the image content as soon as possible for the 

purpose of data reduction. In PC based solutions there is usually (Baumer Inspection, Argos, 

Luxscan) one instance of signal processing software for evaluation associated to each 

camera, following the 1:1 relationship already mentioned. With increasing processing 

capacity of modern hardware, the relationship of one imaging device attached to one 

computer and the need to condense the information contained in the image data to a 

symbolic representation as soon as possible in the processing chain is no longer necessary. 

This is valid although the imaging device evolution itself also led to higher amounts of data 

                                                        
22

 baumerinspection.com 
23

 argossolutions.no 
24

 mecanogroup.com 
25 raute.fi 
26 luxscan.lu 
27

 weinig.com 

http://http/www.baumerinspection.com
http://www.argossolutions.no/
http://www.mecanogroup.com/
file:///D:/PHD/Thesis/raute.fi
file:///D:/PHD/Thesis/luxscan.lu
file:///D:/PHD/Thesis/weinig.com
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due to higher data rates, more pixels, greater bit depth, etc. [Tomoyuki 2010]. Modern 

multi-core processors allow the execution of several instances of software as separate tasks 

with adequate performance which already led to setups with up to four imaging devices 

connected to one processing unit (Baumer Inspection, Raute, and Mecano). Most system 

designs nevertheless still follow the philosophy of early image processing for the reasons of 

data reduction but with significant loss of information at an early stage. 

 

 

Figure 5-7: Block diagram of conventional system architecture for image processing 

The conventional design dictates the execution of image processing on the different images 

from the different imaging devices separately and needs to combine the derived information 

on a higher level by a superordinated instance (master computer, refer to Figure 5-7). This 

might be an advantage in terms of the amount of data that has to be processed by the 

master computer, but the disadvantage is clearly the loss of information that is valuable in 

combination with the data from other imaging devices and sensors. For instance, there is no 

direct possibility to further evaluate image data from a specific channel if it should be 

necessary for the decision making. The decision making has therefore to get along with the 

abstracted information (contour information, symbolic representation) on the single 

channel’s object level. Another example is object segmentation: usually the area of interest 
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(knot, possible defect) is not fully visible in just one channel but has to be combined from 

different channels. As already outlined in chapter 3.1.2 Multi-channel image processing, 

[Nestler and Franke 2000] for example addressed this disadvantage and proposed the pixel-

wise combination of the radiometric data from a modified colour (Red, IR, Blue) camera and 

the range data from a triangulation sensor in advance of the execution of the detection 

algorithms. Their proposed concept incorporated only a limited number of cameras allowing 

only two sensors with altogether three channels (red and blue (RB)-colour, Scatter, 3D) to be 

attached to a single processing unit not to exceeding data rate and processing capacity of 

the sole computer used. Being faced with the problems of high amount of data, Xiao [Xiao 

1998] realized a multi-sensorial image processing system with the help of dedicated, but 

proprietary hardware (Field Programmable Gate Array, FPGA) to integrate the different 

image channels and to overcome the limitations of software based approaches. The 

disadvantages of this concept are the missing scalability and extendibility of this hardware.  

A more scalable and more flexible approach needs to be used in the scanner system for 

automated repair to be able to adapt the system to varying requirements (e.g. different or 

additional sensors for different types of wood, additional sensors for enhanced spatial 

resolution, etc.). Such an approach is shown in Figure 5-8. When comparing the system 

diagram of the two cluster architectures from Figure 5-7 and Figure 5-8 one can see a newly 

introduced layer for processing in the proposed cluster architecture shown in Figure 5-8. The 

acquisition layer therefore does not contain the image processing and evaluation anymore 

as it is the case in the conventional cluster architecture. Rather, the acquisition layer is 

optimized for high speed acquisition from all imaging devices involved and is equipped with 

dedicated hardware that is able to do coordinate system transformations and radiometric 

transformations on pixel level which requires fast memory and high computation capacity. 

That means the images are combined to one global image with as much image channels as 

there are different types of imaging sensors (e.g. Colour, Scatter, 3D, UV fluorescence, UV 

remission, UV absorption, IR, etc.) in advance of the evaluation and detection. The image 

acquisition layer therefore executes the low level tasks of sensor data fusion to provide a 

calibrated and registered overall image data basis. With the possibility to be easily extended 

with additional sensors, this approach is based on a clear structure of data processing 

responsibility. Additional sensors may be added either for the reason to increase resolution 

(adding camera of same type to existing channel) or for the reason to introduce another 
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imaging technique (spectral adjusted sensor addressing special physical/optical phenomena) 

to address special defect types. With a strict separation of the tasks data fusion, data 

evaluation and decision making by the different layers, a consequent increase of abstraction 

from bottom to top is achieved (Figure 5-8). With abstraction to a symbolic representation 

only after classification, the information content is preserved to the latest possible stage 

compared to the classical approach. 

 

.  

Figure 5-8: Block diagram of new system architecture for image processing 

Table 5-1 lists a typical setup for a multi-sensorial scanner identifying the data rates based 

on spatial resolution and bit depth of the sensors. Resolutions vary greatly due to different 

pixel sizes and different technologies incorporated. Low-intensity, long-integrating sensors 

as used in UV-detection for example cannot achieve the same resolutions as high-speed 

colour cameras. This issue in multi-channel imaging will be covered with the sensor data 

fusion in the next section. 
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Channel 

Number 
of 

cameras 

Pixels in 
virtual 

scanline 

Resolution 
(horizontal), 
pixels/mm 

Resolution 
(vertical), 

pixels/mm 

Bit depth 
per pixel 

Data rate in 
acquisition 

MB/s 

Data rate in 
evaluation 

MB/s 

Colour 4 16384 7.4 10 24 273 273 

3D 4 9408 4.3 5 16 52 105 

Scatter 4 9408 4.3 5 16 52 105 

IR 4 9408 4.3 5 16 52 105 

UV  
Remission 

2 4096 1.9 3 8 7 23 

UV 
fluorescence 

2 4096 1.9 3 8 7 23 

     
total: 444 633 

 Table 5-1: Image resolutions of the different sensors used in a dedicated scanner for 
automated repair and resulting data rates to be handled (acquisition) and processed (after 
registration). Values at production speed of 35m/min. 

The incorporated imaging techniques to fully cover the detection of possible defects are 

described in 5.2 Defect detection techniques and are briefly illustrated in Figure 5-9. The 

multi-sensorial approach covers the human visible part of the light spectrum (wavelengths 

from 380 to 780nm) as well as the invisible parts beyond (UV, wavelengths smaller than 

380nm) and above (Near Infra-Red (NIR), wavelengths bigger than 780nm). The cluster 

architecture is illustrated from the view of processing responsibility and processing capacity 

as well as of data transfer bandwidth. An image manager instance is responsible to provide 

the overall image and is therefore in the role of a proxy abstracting the specific composition 

of the acquisition layer to the detection & evaluation layer. The instances in the detection & 

evaluation layer communicate directly with the master instance after registration of their 

service. The image manager can then subdivide the global image accordingly to the overall 

processing capacity which provides the necessary flexibility in terms of scalability. 
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Figure 5-9: Schematic diagram of the new scanner’s modular processing cluster. 

The approach described has several advantages (e.g. scalability, balancing computing power, 

etc.) over conventional and commonly used monolithic cluster architectures. The following 

sections briefly cover the technologies and techniques involved for the purpose to create an 

overview and ensure the further understanding of the chosen concept. 

5.1.1 Layer 1: Sensor data fusion - creating the global image 

The task of combining image data from different sensors is known as sensor fusion. Murphy 

[Murphy 1996] derived principle methods from biological and cognitive sciences and defined 

sensor fusion as the conversion of sensor-specific senses to common representation, also 

filtering noise. Nakamura [Nakamura et al. 1998] adapted these findings and introduced 

statistical fusion methods for cybernetics. While sensor fusion in principle is not limited to 

combine image sensors, several principal techniques have been developed to fuse spatially-

resolved sensor data. Crowly [Crowly et al. 1993] identified two principles of sensor data 

fusion, the Common Coordinate System and the Common Vocabulary. Pohl and colleagues 
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[Pohl et al. 1998] extended this partitioning to fusion of image sensors on symbol/decision 

level, feature level and pixel level.  

 

 

 

Figure 5-10 adopts this breakdown and illustrates the implications on the processing. 

Referring to the conventional system design, the fusion on symbolic level (left principle in 

Figure 5-10) with much of the processing (e.g. for defect detection) on the single images is 

contrary to the proposed sensor fusion of registered images on pixel level (right principle in 

Figure 5-10). Registration on pixel level is incorporated in the new system architecture 

(Figure 5-8 and Figure 5-9). 

A variety of solutions to fusion on pixel level exists, e.g. Li and colleagues [Li et al. 1995] used 

Wavelet transformation with composition coefficients, Burt and colleagues [Burt et al. 1993] 

used the pyramid transform domain for the fusion of images. While most applications are in 

the field of satellite images, remote sensing data and medical imaging, little work can be 

found for the purpose of machine vision in industrial wood working applications. In the 

following sections the approach for image sensor fusion for the scanner for automated 

rectification of wooden panels is introduced. This approach differs from the approaches 

found in literature in that not a single transformation equation is developed but well-known 

image processing techniques are combined and applied as illustrated in Figure 5-11. The 

incorporated image processing algorithms and calibrations for image sensor data fusion are 

reviewed in detail in Appendix A.4 

Figure 5-10: Partitioning of image sensor fusion principles into fusion on pixel level, feature 
level or symbol level. 
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The basic principle is therefore to completely 

integrate all the image data which is done first on 

camera level (stitching per channel) and then on 

channel level (registration of channels). In fact 

there are many similarities between the processes 

of image stitching and image registration. In the 

context of this research project and its application, 

the stitching is a special case of registration as only 

the overlap regions of the adjacent images are 

used. The images from one channel are always of 

the same type and, due to identical hardware, are 

of nearly the same resolution. As the field of view 

and working distance are similar to a high degree 

only translation, shearing correction and rotation 

need to be applied in stitching. The registration of 

(stitched) images from the different channels then 

only needs to incorporate scaling but additionally 

interpolation has to be applied. The prerequisite is 

therefore that previously executed image calibration routines remove radial distortion as 

well as shading effects (vignetting) introduced by the lenses. Radiometric calibrations28 are 

needed as well as colour calibrations as proposed by Kuehn [Kuehn 2004] for harmonized 

colour values between the colour imaging devices. 

With respect to unwanted influences from the industrial environment (vibration and similar) 

and from challenging properties of the wooden panels (warping, bending) several additional 

pre-processing routines and arrangements need to be incorporated to guarantee the best 

possible undistortion of the image sensor data in advance to stitching and registration. 

Warping, bending and similar cannot always be compensated by a mechanical or 

constructional solution. The descriptions of appropriate methods addressing distortion from 

the industrial environment (external influences) can be found in detail in Appendix A.5.1 and 

methods to eliminate disturbing effects of the panels itself (internal influences) can be found 

in Appendix  A.5.2. A summary of the incorporated calibrations is given in Appendix A.4.1. 

                                                        
28
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Figure 5-11: Basic image data processing 
chain in proposed image sensor data fusion. 
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5.1.2 Layer 2: Detection & evaluation 

Having created the overall multi-channel image, the image manager can supply the single 

instances in the processing & evaluation layer with tiles of this global image, refer to Figure 

5-9. One of the first tasks to be accomplished then in terms of detection is the segmentation 

of areas of interest (AOI) before the segmented defect candidates can be evaluated by the 

defect classification system. 

5.1.2.1 Segmentation 

The aim of the segmentation is therefore to decide which pixels in the registered multi-

channel image belong to sound wood (which can be seen as background in the scene 

analysis) and which pixels are potential defects (defect candidates). 

Analysing typical image processing chains in machine vision applications, two common 

concepts can be identified. While the image acquisition is usually always followed by some 

pre-processing the subsequent steps differ significantly in terms of the process for 

separating objects (foreground) from the background. Pre-processing incorporates filter 

operations and tailored image processing algorithms for image enhancement, noise 

reduction or calibration. The common approach is the non-segmenting approach which does 

not incorporate image processing algorithms for (pre-) segmentation but simply subdivides 

the complete image to tiles. These tiles are fed directly to the classifier which therefore has 

to be trained additionally with the background class, refer to Figure 5-12. As the size of the 

tiles is usually small and fixed, it becomes clear that the portion of the image representing 

the object, e.g. a defect, is spread over several tiles. Therefore tiles which are holding only 

pixels of the defect and tiles holding background pixels as well as pixels belonging to the 

defect exist. The alternative approach is to classify previously and completely segmented 

objects, respectively the pixels in the segmented area, and only then to assign labels either 

for different types of defects or false alarms. This is called the segmenting approach whose 

output is illustrated in Figure 5-13 exemplarily. 
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Figure 5-12: Non-segmenting approach based on 
classification of image tiles from the uniformly sub-
divided overall image including background (sound 
wood). 

Figure 5-13: Segmenting approach generating image tiles 
of different size only for defect candidates that are then 
classified.  

Advantage of the non-segmenting approach is that there is no necessity for special 

segmentation algorithms usually from the area of thresholding, region growing or 

morphological operations. Those algorithms are error-prone as they rely highly on the 

underlying (single channel) image data quality and information content. Also most types of 

algorithms (especially morphology) consume significant amounts of time in the Central 

Processing Unit (CPU). Depending on the classification technique, a simpler and faster 

approach can therefore be realized with the non-segmenting approach. Problems caused are 

the already mentioned fact that tiles classified as belonging to a defect eventually must be 

(re)connected to complete defragmented object regions, refer to Figure 5-14. Further, the 

resulting defect region is then a multitude of a single tile area surrounding the defect 

unnecessarily with sound wood. Further the defect regions often get connected to each 

other as can also be seen in Figure 5-14 which requires a separation by segmentation at a 

later stage anyway. 
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Figure 5-14: Connection of tiles/object fragments is necessary to complete defect regions 
in the non-segmenting approach. Problems arise with thereby connected defects for the 
further processing for patching. 

In contrast, the advantage of the segmenting approach is a better separation from the 

background, ideally in terms of a pixel-wise border or a tight bounding rectangle which is a 

requirement anyway for the calculation of the patching instructions as will be shown later. 

The output of the segmentation is the so-called Defect Candidate Map (DCM). It is on the 

one hand advantageous in terms of CPU time consumption that only a limited number of 

segmented objects needs to be classified. On the other hand the segmentation might 

produce non-deterministic huge lists of objects if misconfigured or if the image data is not 

stable (e.g. shading effects when using simple thresholding techniques, noisy data, etc.). 

Calibration and undistortion techniques as previously mentioned in section 5.1.1 

nevertheless can compensate this. 

The mentioned advantages lead to the decision to use the segmenting approach in the 

scanner for automated patching of wooden panels. This is also because the detection 

process incorporating segmentation pretty much follows the approach of the Human Visual 

System29 (HVS): Being able to identify objects in terms of contrasting areas even on 

previously unseen surfaces is a fundamental property of human visual perception. Closer 

examination and analysis show that the identification of the object is only done in a second 

step in the HVS and identification of objects in terms of irregularities (areas of interest) in a 

scene are a fundamental capability of the HVS [Thorpe et al. 1996]. The chosen image 

segmentation approach on a data basis built from various sensors (addressed in detail in the 

following section 5.2 Defect detection techniques) together with the subsequent defect 

classification addressed in section 5.3 Defect classification system is therefore seen as a 

                                                        
29

 HVS including eyes, pathway to/through visual cortex and other areas of the brain 
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computational model of the HVS. The fundamental idea hereby is to define sensors that 

easily allow the segmentation of areas of interest by exploiting the physical properties of the 

defects on wooden panels for the creation of the DCM. 

5.1.2.2 Classification 

Based on the DCM defining the areas of interest in the registered multi-channel image data, 

the detection & evaluation slaves execute classification procedures for groups of pixels to 

further decide between several possible classes like different knot types, resin pocket, crack, 

etc. (refer to section 2.2), but also to suppress false alarms from the segmentation caused 

for example by contaminations. The classification of defects is carried out by a SVM 

operating on the multi-dimensional image data directly. Section 5.3 Defect classification 

system approaches the defect classification in detail. The abstraction of the defects for the 

subsequent patching data generation is finally carried out by completing each defect’s 

description, including shape descriptors, intensity, colour and texture information as well as 

depth information and spatial measurements which are absolutely needed for the patching 

data generation. 

5.1.3 Layer 3: Decision making & patching data generation 

With the abstracted information from image data in the form of defect descriptions gained 

from the segmentation (e.g. defect contours, mean colour, etc.) associated to the class 

labels gained from the defect classification, the master instance of the computing cluster 

finally gets involved. Incorporating the knowledge base for patching wooden panels, which is 

discussed in detail in section 5.4 Decision making, rules are applied that define if and how to 

repair a certain defect to achieve the best possible overall repair result in terms of 

aesthetics, ecological sensibility and cost effectiveness as defined in 2.4 Technology 

demands. Having applied these rules, the patching of the single defects is achieved by 

calculating repair instructions for the patching tool and related machinery. These 

instructions include the tool type for pre-processing (routing for example, if necessary), type 

of repair (liquid or solid fillers), volume or size information, colour and appearance 

characteristics and positional information for the tools. The instruction generation is 

discussed in detail in section 5.5 Patching data generation. Optionally the processing 

strategy of all defects on a panel can be calculated and optimized. The patching itself in 

terms of detailed descriptions and discussion of the tools and related aspects is out of the 
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scope of this thesis; however the final results based on photography for example are 

presented and discussed in chapter 6. 

5.1.3.1 User interface and interface to machinery 

To complete the system description based on Figure 5-9, a scanner system must 

communicate with its environment, which is first of all the machinery carrying out the actual 

repair process. As the proposed scanner for an automated repair system is based on expert 

knowledge (refer to section 5.4 Decision making) and user interaction for the supervised 

machine learning (refer to section 5.3 Defect classification system), the user interface of the 

scanner system is equally important, which will be addressed in the upcoming sections. The 

third interface such a system needs to provide to its highly automated environment is a data 

interface for the access to an Enterprise Resource Planning system (ERP), Production 

Planning System (PPS) and similar database systems (refer to 2.4 Technology demands) 

which is also provided by the top layer of the scanner cluster’s architecture. 

Except for the user interface, these interfaces will not be further addressed in the scope of 

this thesis. References are made at this point to the work in the scope of a diploma thesis 

carried out by Göttlicher [Göttlicher 2011] to extend the prototype development with a 

generic data exchange interface to the tools and which has been supervised by the author as 

part of the underlying research project. 

5.1.4 Summary 

The system design of the scanner has been introduced. Serving as a framework for the 

research methods introduced in chapter 4 with focus on defect detection under aesthetic 

aspects, automated patching data generation and incorporation of a knowledge driven 

approach based on expert system technology, the hierarchical structure of the cluster 

architecture consisting of acquisition layer, detection & evaluation layer and decision making 

layer has been introduced. This approach is seen to optimally address the issues of 

complexity in the information flow and information processing. The overall processing chain 

has been explained highlighting the sensor data fusion to registered multi-channel images 

and the computational model of the Human Visual System using a segmenting approach. 

Based on this general understanding the following sub-chapters will address in detail the 

approaches to defect detection/segmentation, defect evaluation/classification, decision 

making and finally the patching data generation. 
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5.2 Defect detection techniques 

This chapter identifies techniques for the detection of defects on wooden panels. Defect 

detection hereby addresses the capability to define areas of interest in image data by a 

segmentation algorithm (refer to 5.1.2.1) which can then be input to the evaluation by a 

classification algorithm (refer to 5.1.2.2). In the context of the design of the scanner system 

applied to wooden panels, the defect detection techniques focus on appropriate imaging 

techniques giving adequate contrasts gained from the properties of the defects. The aim is 

to reduce algorithmic and computational complexity in the segmentation (e.g. using simple 

thresholding and adaptive contour algorithms, refer to 5.1.2.1). Besides standard techniques 

newly defined, specifically tailored techniques are identified. 

5.2.1 Standard detection techniques 

In section 3.1.1 common imaging/detection techniques used in established systems for 

machine vision on wood have been summarized. Besides colour imaging and simple 

greyscale imaging where appropriate (only limited and less complex sets of defects), 

triangulation and scatter measurements using projected laser lines are standard. Table 5-2 

and Table 5-3 summarize the possibilities to detect (segment) and evaluate (classify) typical 

defects on solid wood panels respectively on plywood panels by these standard 

imaging/detection techniques (colour coding and legend given in Table 5-4 and Table 5-5). 
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Sound knot ++ + - 

Cracked Knot ++ + + 

Dark Knot ++ ++ - 

Loose Knot + + - 

Ringed Knot +++ ++ - 

Knot with bark ++ ++ - 

Knothole - - +++ 

Knothole with glue 
(Kauramin) 

+ - - 

Crack ++ + + 

Resin Pocket + - - 

Pressed-in particles - - - 

Discoloration ++ - - 

Fungal decay + + - 

Glue (Kauramin) + - - 

Table 5-2: Verification matrix for a typical detection of defects on 
solid wood panels using colour, 3D and scatter imaging. 
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Sound knot ++ + - 

Cracked Knot ++ + + 

Dark Knot ++ ++ - 

Loose Knot + + - 

Ringed Knot +++ ++ - 

Knot with bark ++ ++ - 

Knothole - - +++ 

Crack ++ + + 

Resin Pocket + - - 

Roughness - - + 

Shells - - - 

Pressed-in particles - - - 

Discoloration ++ - - 

Fungal decay + + - 

Glue (urea-formaldehyde) + - - 

Table 5-3: Verification matrix for a typical detection of 
defects on plywood panels using colour, 3D and scatter 
imaging. 

 

 

Contribution to segmentation 

 no detection if used alone 

 unstable detection if used alone 

 stable detection if used alone 

 

Contribution to evaluation 

- little to none 

+ some 

++ good 

+++ very good 

 Table 5-4: Colour coding for verification matrix of 
standard defect detection techniques. 

Table 5-5: Legend tor verification matrix of 
standard defect detection techniques. 
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It can be summarized that only a few obvious defect types can be detected reliably by colour 

imaging techniques (cracks in knots, ringed knot, cracks) respectively by spatially resolved 

triangulation measurements (knothole, cracks, roughness). As already stated in section 3.1.2 

it can be further summarized that a combination of channels is the key to improve unstable 

detections based on only a single channel by supporting the information content in the data 

base. For example the detection of sound knots is not reliable when based on colour imaging 

alone due to the variance in the colour of the knots, especially when contaminations are 

present or when the knots appear very bright. By additionally incorporating scatter 

measurements, indicating the structure and direction of the grain, the detection can be 

stabilized. Depth information from triangulation can further strengthen the decision towards 

a sound knot instead towards a perfectly fallen out knot on although triangulation not being 

able to identify sound knots by itself. 

In Table 5-2 the defect types knothole with glue, resin pocket and pressed-in particle can be 

identified to be critical in detection on solid wood panels. Fungal decay is statistically rare 

and should not occur at this stage of panel processing (inspection of veneers should have 

sorted out this defect as it is commonly hard to repair due to its large area). In principle 

these defects are also critical to detect with standard techniques on plywood panels (Table 

5-3), although resin pockets are slightly more cooperative due to their large-area appearance 

on peeled veneer in contrast to sawn veneer (refer to 5.2.2.2). Before the development of 

optimized detection techniques is carried out, these demanding defect types are 

investigated in more detail for a better understanding. 

5.2.2 Demanding defect types 

5.2.2.1 Glue-filled knothole 

Referring to section 2.2.1.1.2, in the production of solid wood panels a common defect type 

is the glued-filled knothole which is a hole in the veneer or lamella filled by glue that leaked 

through this hole during pressing, refer to Figure 5-15. It is obvious that this kind of defect 

cannot be detected reliably with a triangulation measurement as is the case with the unfilled 

knothole. 
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Urea-based adhesives like Kauramin® and Kaurit® are mainly used in the production of multi-

layered solid wood panels and edge-glued solid wood panels. Due to different shades of 

colour of the glue caused by contamination with saw dust for example, the contrasts and 

signal stability for a colour-based detection are insufficient. Although having a crystalline 

structure no light conductivity can be determined in these types of glue, which means that 

also the scatter signal evaluation is inappropriate for detection. 

5.2.2.2 Resin pocket 

Another typical surface defect on wooden panels is the resin pocket, refer to section 

2.2.1.1.8, either forming a flat but wide indentation, refer to Figure 5-17, or a narrow but 

deep crack, refer to Figure 5-16. Depending on the top or bottom side of the panel the liquid 

resin (liquified by the heat in pressing) from the vertically cut resin pocket may flow out 

(bottom side) and forms so-called resin lakes around the resin pockets as shown in Figure 

5-16. 

Horizontally cut (peeled) resin pockets often show a more crystalline structure (Figure 5-17) 

of the resin due to greater thickness of the resin. This is because the indention preserves 

contact with the hot surface of the press. The detection of both the leaked (bottom side of 

 

Figure 5-15: Glue-filled knothole on three-layered solid wood panel of spruce. 

 
Figure 5-16: Resin pocket on solid wood panel (sawn 
lamella). Bottom side of panel showing lake of leaked 
resin.  

 
Figure 5-17: Resin pocket on plywood panel (peeled 
veneer) showing crystallized resin. Left part showing nearly 
no indentation. 
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panel) and the still filled (top side) resin crack as well as the detection of the horizontally cut 

resin pocket are demanding. Being filled, there is often no indentation to be detected by 

triangulation measurement for example and even when leaked the detection is often not 

complete in terms of a complete defect contour as only subareas showing a certain 

indentation can be detected reliably. 

5.2.2.3 Pressed-in particle 

 
Figure 5-18: Pressed-in particle on plywood panel of spruce. 

Referring to section 2.2.1.2.5 thrash particles may be pressed into the face veneer 

destroying the surface respectively leaving an indentation when getting loose again. Due to 

the pressing there is hardly any difference in height measurable at the particle as most often 

the particle remains until a later step and is removed only during sanding for example. As 

indicated in Table 5-2 & Table 5-3 the colour information is useful only in rare cases where 

the thrash particle shows contrast to the face veneer in terms of colour or texture although 

in most cases the particle is clearly noticeable for the human eye. This defect is a good 

example for the complex and adaptable capabilities of the human visual system that are 

hard to model and imitate by technology in its entirety. 

Some disruption in the grain structure may be indicated in the scatter measurement, but the 

signal is commonly not strong enough to setup a stable detection. It has been found that 

only Thermographic Imaging (refer to 3.1.1) is capable to detect pressed particles reliably. 
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5.2.3 Specifically optimized detection techniques 

The previously described detection techniques (colour, 3D measurement and scatter 

evaluation) cover a wide range of the given defect spectrum. Nevertheless the automated 

production processes require full and reliable coverage of the defect spectrum. For the 

demanding defect of pressed-in particles the Thermographic Imaging could be identified to 

solve the detection, therefore a specifically optimized detection technique based on special 

physical characteristics (thermal flow) that compensates the inability to perform with the 

capability of the HVS to detect this defect has been found. Additional detection techniques 

tailored to the specific, problematic defect types knothole with glue and the resin pocket are 

still to be defined and to be integrated into the modular system architecture. 

5.2.3.1 Analysis of spectral data 

Simple RGB30 imaging does not produce satisfying segmentation results as the signal from 

reflected (white) light at both glue-filled holes and resin pockets is ambiguous and therefore 

no distinction to sound wood is possible, this has been shown in previous section 5.2.2. To 

verify if a suitable imaging technique exists in principal and to identify an appropriate 

illumination, the reflected spectrum needs to be analysed in more detail, including the near 

ultraviolet range (315-380nm) and infrared-range (780-3000nm). By using an optical setup 

sensitive from 300nm to 1300nm and a halogen lamp without UV-filter covering this range 

of wavelengths, an initial test shows that in the lower part as well as in the upper part of the 

visible spectrum a promising signal to noise ratio (SNR) can be achieved, refer to Figure 5-19. 

 
Figure 5-19: Determination of Signal-to-Noise-Ratios (SNRs) over the spectrum to 
identify interesting spectral bands for a specifically optimized imaging technique. 
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To further investigate and narrow the optimal spectral band for an optimized illumination 

and acquisition setup at first a UV illumination (315-380nm) is tested as (from Figure 5-19) 

this seems to be the most promising part of the spectrum. At first the used UV fluorescent 

lamp is measured using a spectrometer. Its light produces partially still visible light in the 

deep blue to near UV range having a spectrum with significant peaks around 436nm, 406nm 

and 367nm which is shown in Figure 5-20. 

 
Figure 5-20: Complete spectrum of the used ultra-violet lamp with significant peaks 
around 367nm, 406nm and 436nm. 

The analysis of recorded spectral data from the reflection of light from this lamp at glue-

filled (Kauramin®) knotholes shows that there is a strong remission of light with wavelengths 

around the main peek in the UV range of the UV lamp’s spectrum, refer to Figure 5-21. 

Additionally there exists a fluorescence effect in this adhesive which can also be seen from 

Figure 5-21. Stimulated with light only from the near UV range, an emission in the whole 

visible range of the spectrum from 390nm to 780nm is taking place. The maximum intensity 

thereby is in the band of 470-530nm, resulting in a bluish colour, refer also to the 

photography in Figure 5-23. Additionally, fluorescence with emission in the upper red 

around 710nm, 740nm and 760nm can be observed from the measured spectrum but can be 

seen as well in the photography from reddish colours. It can be shown by comparison with 

the reflecting spectra at resin pockets that this fluorescence in the red band is originating 

from the surrounding wood, the reddish colour can be seen in Figure 5-23. 

3
4
7
 

3
8
8
 

4
2
9
 

4
7
0
 

5
1
0
 

5
4
9
 

5
8
8
 

6
2
7
 

6
6
5
 

7
0
2
 

7
3
9
 

7
7
5
 

8
1
0
 

8
4
5
 

8
7
9
 

9
1
3
 

9
4
6
 

9
7
8
 

1
.0

1
0
 

in
te

n
si

ty
 

wavelength [nm] 

uv lamp 



 

108 
 

 
Figure 5-21: Fluorescence at glue: VIS-range of the spectrum comparing excitation and 
emission spectra, Red circled peaks result from fluorescence effect at surrounding 
wood (reddish colour). (Blue circled peak indicated remission). 

 

 
Figure 5-22: Photography (VIS) of glue-filled 
knothole. 

 
Figure 5-23: Photography (UV) of glue-filled 
knothole showing fluorescence at area with 
glue (note the light bluish, white colour) and 
fluorescence at the surrounding wood 
(reddish colour), refer to the measured 
emission spectrum in Figure 5-21. 

Analogous to the glue-filled knothole, the analysis of spectral data taken from the reflected 

light at resin pockets shows significant characteristics that can be exploited for an optimized 

detection. The stimulation with light having wavelengths below 400nm (near UV) results in 

an emission of light with a different wavelength which is shown in Figure 5-24; the 

fluorescence mainly produces light around 550nm to 580nm in the visible range of the 

spectrum resulting in a yellowish colour, refer also to the photography in Figure 5-26. Unlike 

with the Kauramin adhesive only fluorescence can be identified, there exists no such strong 

remission in the near-ultra violet range.  
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Figure 5-24: Fluorescence at resin: VIS-range of the spectrum comparing excitation and 
emission spectra. Red circled peaks result from fluorescence effect at surrounding 
wood (curve around 550nm is perceived as yellowish colour at resin and around 700m 
as reddish at sound wood). 

Comparing the spectra (Figure 5-21, Figure 5-24) one can see that besides the presence of 

the different defects the fluorescence with emission of light at wavelengths 550nm, 710nm, 

740nm and 760nm is taking place. Therefore this fluorescence must be caused by the 

surrounding wood which can also be seen in both images (Figure 5-23, Figure 5-26) by a 

reddish colour in the sound wood surrounding the defect. 

 

These findings (fluorescence at Kauramin-glue and resin, UV-remission only at glue) can now 

be used to setup three detection channels tailored to the detection of the common glue-

filled knothole on solid wood panels and to the detection of the resin pocket on solid wood 

panels as well as on plywood panels. This setup is described in more detail in the following 

sections. 
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Figure 5-25: Photography (VIS 
illumination) of resin pocket and leaked 
resin. 

 
Figure 5-26: Photography (UV illumination) 
of resin pocket and leaked resin showing 
fluorescence at area with resin. Note the 
yellowish colour. 
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5.2.3.2 Fluorescence evaluation 

As can be seen from the spectral data acquired 

at both the resin and the glue there is light 

emitted in the visible range of the spectrum as 

the result of fluorescence. Figure 5-27 shows an 

UV-illuminated image acquired with a camera 

equipped with a VIS bandpass filter blocking the 

excitation wavelength. Therefore bright areas in 

the image identify areas with fluorescence. 

Although the signal shows high contrast and 

allows a stable detection and segmentation in 

principle, no differentiation between glue and 

resin is possible. 

 

5.2.3.3 UV remission evaluation 

Figure 5-28 shows an image acquired with a 

camera equipped with an UV-bandpass filter, 

blocking all light with wavelength above 400nm, 

therefore showing only reflected UV light. As 

already illustrated in the spectrum (Figure 5-21) 

the glue (Kauramin®) is reflecting the light with 

wavelength below 400nm besides fluorescing 

visibly. Comparing the images in Figure 5-27 

and Figure 5-28 one can see from area (2) that 

the area of the glue-filled knothole is not 

complete and not homogenous in the remission 

image compared to the fluorescence image. 

This is due to (2) being a combination of a plug of glue covering only a part of the hole 

(brighter part) and the bottom of the knothole which is the core layer with a thin film of glue 

on top (darker part). Due to less intense illumination at the knothole’s bottom (thickness of 

top layer approximately 5 mm) the response there is much weaker. The dark area (4) is 

identified as a leaked resin pocket. 

 
Figure 5-27: Image showing glue-filled holes (1&2), 
smeared glue (3) and lake of resin (4) on a wooden 
panel (spruce) in VIS spectrum as the result of 
fluorescence. 

 
Figure 5-28: Image showing glue (1, 2 &3) as the result 
of remission of UV light on wooden panel (spruce). 
Note that the resin (4) is showing less remission. 
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5.2.3.4 UV absorption evaluation 

In the UV remission image (Figure 5-28) areas 

with resin (4) can be identified as black areas 

due to strong absorption of the UV light (no UV-

reflection, only fluorescence; refer to spectrum 

in Figure 5-24). Figure 5-29 illustrates the same 

effect on a solid wood panel made from larch. 

The use of the absorption evaluation is in an 

indirect detection: Starting with the 

fluorescence image that is suitable to segment 

areas of interest, the discrimination between 

glue and resin can be made using the absorption image showing resin as dark areas and glue 

(still) as bright areas. Due to varying contrasts the absorption image is not seen to be 

sufficient for detection solely by itself. Therefore the both images have to be registered to 

be able to compare the gray levels at corresponding locations 

 

5.2.4 Summary 

Initially this chapter verified the detection respectively the segmentation capabilities on 

image data using standard techniques like colour imaging, spatially resolved structural 

measurement (scatter) and depth measurement (triangulation). Several defect types were 

identified that can only be unsatisfactorily detected by using these standard techniques. By 

analysis of the extended reflection spectra including UV and IR light, the gaps in the defect 

catalogue concerning a reliable detection could be closed, identifying special, spectral 

optimized detection techniques working in the UV band of the spectrum and incorporating 

fluorescence, remission and absorption effects. The extended verification matrix including 

these new techniques is given in Table 5-6 and Table 5-8. A more simplified symbolic coding 

and assessment (Table 5-7) is thereby used indicating which channel is suitable for 

segmentation (S) and which channels contribute with features (F) while the colour coding is 

indicating the importance respectively the contribution. 

 

 
Figure 5-29: Image snippet of wooden panel (larch) 
showing UV absorption on resin (1 & 2). 
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Sound knot F,S F,S F  F  F F 

Cracked Knot F,S F F  F  F F 

Dark Knot F,S F,S F  F  F F 

Loose Knot F,S F F  F  F F,S 

Ringed Knot F,S F F  F  F F 

Knot with bark F,S F,S F  F  F F 

Knothole F F F,S F F  F F 

Knothole with 
glue (Kauramin) 

F   F F F  F 

Crack F,S F F  F  F F 

Resin Pocket F F F F F,S F,S F  

Pressed-in 
particles 

F F F     F,S 

Discoloration F,S      F  

Fungal decay F,S F,S  F F F   

Glue (Kauramin) F   F,S F F   

Table 5-6: Verification matrix for detection of defects on solid wood panels incorporating specifically optimized 
detection techniques. 

 

 No detection if used alone 

 Unstable detection if used alone 

 Stable detection if used alone 

 F: Contribution with features 

 S: Used for segmentation 

Table 5-7: Colour coding and legend for verification matrix, incorporating specifically optimized defect 
detection techniques. 
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Sound knot F,S F,S F  F  F F 

Cracked Knot F,S F F  F  F F 

Dark Knot F,S F,S F  F  F F 

Loose Knot F,S F F  F  F F,S 

Ringed Knot F,S F F  F  F F 

Knot with bark F,S F,S F  F  F F 

Knothole F F F,S F F  F F 

Crack F,S F F  F  F F 

Resin Pocket F,S F F F F,S F,S F  

Roughness F F F,S  F  F  

Shells F F F     F,S 

Pressed-in particles F F F     F,S 

Discoloration F,S      F  

Fungal decay F,S F,S  F F F   

Glue (urea-formaldehyde) F,S F     F F 

Table 5-8: Verification matrix for detection of defects on plywood incorporating specifically optimized detection techniques. 

 

 No detection if used alone 

 Unstable detection if used alone 

 Stable detection if used alone 

 F: Contribution with features 

 S: Used for segmentation 

Colour coding and legend for verification matrix, incorporating specifically optimized defect detection 
techniques. 
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To some defect types a perfect detection (green) cannot be assigned, in these cases the 

segmentation will produce much more false alarms which must then be identified by the 

classification that therefore incorporates all the information (features) from the other 

channels. 

5.3 Defect classification system 

So far the system architecture with its underlying modular, extendable approach identifying 

the responsibilities in the processing chain, the sensor data fusion and the detection and 

segmentation based on different imaging techniques have been presented in this chapter. 

This sub-chapter finally addresses the classification approach that has already been 

mentioned in chapter 4 and which is based on the research methods introduced in chapter 

4, specifically in 4.1.2 and 4.1.3. A defect classification system is developed that utilises in 

the training phase a cascaded approach with unsupervised machine learning (SOM) for the 

preparation of the data sets (training and testing) carried out interactively by a wood-

working expert. These data sets are then used for supervised learning with SVMs. This covers 

the identified requirement to base the learning approach on examples given by defect 

images describing not only the different defect types but also aesthetic properties (refer to 

4.1). 

Based on the multi-sensorial approach which has been described in section 5.1, registered 

image data from the incorporated sensors (colour, ultra-violet, infrared, range, scatter, etc.) 

is present and from section 4.1 a method is available allowing feature engineering to be 

waived. Therefore no compromise must be made with loss of information for the purpose of 

reducing computational complexity. It is therefore possible to use the raw image data itself 

containing maximum information content. This is in principle the approach tested by Ziadi 

[Ziadi et al. 2007] using a non-segmenting approach with tiles of 5x5 pixels from colour 

images to be fed directly to the classifier, but which showed to be impractical due to very 

slow convergence of the used neural network classifier. Modern classification algorithms like 

the SVM have overcome this delimitation and even perform better with rising feature space 

dimensionality; this has been already supported by theory in section 4.1.3. 
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5.3.1 Principle of cascaded training 

The basis for classification is formed by independent training, testing and validation data 

sets which are taken from a comprehensive image snippet data base. At least several 

thousand image snippets must be presented to the classifier in the training stage to cover 

the bandwidth of appearance of natural defects especially when incorporating aesthetic 

aspects. While defect image snippet extraction is the result of the segmentation process 

(Defect Candidate Map, refer to 5.1.2.1), labelling the snippets involves manual labour from 

an expert. To be able to manage the huge data sets and to carry out fast overall re-training 

with newly added image snippets, this labelling process must be supported by automation. 

For this purpose the cascaded approach for the training of defect classification on wooden 

panels on the basis of multi-dimensional image is used. This principle is illustrated in Figure 

5-30: 

 
Figure 5-30; Principle of cascaded training. 

 

For pre-sorting the huge amount of sample image snippets in advance to assignment of class 

labels the SOM is perfectly suited as it generates a two-dimensional sorted representation of 

the registered multi-dimensional image tiles represented by the colour image snippet; refer 

to 4.1.2 and to Figure 5-30. The time saving when class labels need only to be assigned by 

hand to the outliers of a previously executed grouping by similarity is obvious. Therefore the 
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limited accuracy of the SOM based only on some selected features containing colour, 

texture, shape and structural measures does not carry weight. 

An exemplary training data set generation by using a SOM for grouping the training image 

snippets from the segmenting approach is shown in Figure 5-31. The user (usually a wood 

working expert) can adjust or newly define the boundaries between the clusters, move 

single samples among the distribution and is able to set or change class labels. In the case of 

multi-channel image snippets the colour channel serves for visualization. 

 
Figure 5-31: Pre-sorting of training data (images) using ColourBrain® SOM user interface. 

The output of the tool is a folder structure containing the training images in separate folders 

labelled with the defined class label, so that it can be easily imported to the training of the 

supervised learning. 
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5.3.2 Classification of raw pixel data 

The Support Vector Machine has been identified as being capable of handling theoretically 

infinite-dimensioned feature spaces and actually is exploiting high feature space 

dimensionality for the advantages of linear learning machines (Cover’s theorem) as has been 

reviewed in chapter 4.1.3. The classification of raw pixel data in contrast to explicitly 

calculated and selected features is therefore possible, leaving the extraction of valuable 

features to the classifier. The input to the SVM in the training stage as well as in the online 

classification is therefore the serialized pixel data from the registered multi-channel image 

snippets (refer to 5.1.1) extracted by the segmentation (refer to 5.1.2.1). This principle is 

shown in Figure 5-32: 

 

Figure 5-32: Principle of multi-channel raw pixel data serialized to feature vector. 

With reference to 4.1.3, Figure 4-9, the SVM is then built literally by multi-channel image 

snippets serving as support vectors as illustrated in Figure 5-33. Every input vector 

containing the serialized pixel data that represents a defect candidate to be classified in the 

online procedure is then compared with the support vectors. Non-linear transformation and 

calculation of the inner product which is carried out implicitly by the kernel function is 

thereby incorporated. The position relative to the stored hyperplanes defines the class label. 
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Figure 5-33: Illustration of raw pixel data used for SVM-classification. The input pattern is 
compared to the support vectors (red arrows) by mapping and calculating the inner 
product in one step using kernel function.  

As the segmentation approach is producing areas of interest of variable size around the 

possible defect candidates, the N-dimensional image snippets must be resized to a standard 

size to be fed to the classifier. The standard size used in the prototype setup is set to 85 x 85 

pixels, resulting in a feature vector of 65025 elements in length ([85 x 85] x [R-colour + G-

colour + B-colour + Scatter + Range + UV-fluor. + UV-rem. + UV-abs. + IR]) for a fully 

equipped multi-sensor setup (refer to 5.2.4). Due to the different value ranges of the 

channels normalization of the feature vector is incorporated. 

5.3.3 Incorporating a priori knowledge 

The resizing of the N-dimensional image snippets in advance to serialization into a feature 

vector results in a certain loss of information about the actual defect size. The defect size 

nevertheless is relevant and valuable information (e.g. the similar looking dark knot and 

loose knot actually differ mainly in size, having the same cause, refer to chapter 2, 

specifically to 2.2.1.2.1). Therefore this size information must be incorporated again 

appropriately in the feature vector. This is done by extending the serialized image data 

(refer to 5.3.2 respectively to Figure 5-32) by a so-called A Priori Knowledge Feature Vector 

Extension (APKFVE). This extension is shown in Figure 5-34. 

By using this approach, further valuable information that is obtainable from the Defect 

Candidate Map (refer to 5.1.2.1) can be incorporated, for example: 

w1

w2

wm

support 
vectors

x1…xm

input vector x (serialized multi-
channel image snippet) 

.

.

.

.

.

.

.

.

.

mapped 
vectors

inner 
products

∑
.
.
.

weights output 
y

0 N x M x M

,



 

119 
 

 Symmetry information: e.g. defect is individually placed or defect is in a row 

(plywood only, due to peeling) 

 Neighbourhood information: class affiliation of already classified defects in the direct 

vicinity, valuable for aesthetic evaluation (defect cluster criteria, refer to quality 

standards in 2.2.3) 

 
Figure 5-34: Principle of feature vector extended by a priori knowledge.  

 

5.3.4 Summary 

The setup of the final classification system of the scanner for automated detection of defects 

on wooden panels has been explained in detail. The issue of learning from examples is 

addressed by a database containing several ten thousand image snippets of wood defects 

gained from the segmentation on which the training of the classifier is carried out. 

Knowledge from wood working is thus necessary to label the training data set. To support 

this highly manual labour process, the clustering capability of SOMs is incorporated. The 

proposed system is thereby capable of fast overall re-training and only a limited amount of 

image snippets (outliers, noisy samples) usually needs to be labelled manually. Minimized 

effort in the adaption (for example to a different kind of wood or to new classification 

guidelines) but also in the installation phase of the system is therefore achieved. Raw pixel 

data from the segmenting approach extended by a priori knowledge is used to train a SVM-

classifier capable of handling the huge sets of high-dimensional feature vectors to address 

local aesthetics without using feature engineering.  
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5.4 Decision making  

With reference to 5.1, Figure 5-9, the third layer of the cluster architecture is addressed by 

this section. The related decision making has already been briefly introduced in 5.1.3. In 

terms of information flow the defects on the currently inspected wooden panel have been 

segmented from the image data, descriptions (for example defect contour information, 

mean colour and texture) have been generated and stored in the Defect Candidate Map and 

the specific defect type has been classified by the defect classification system as discussed in 

the previous section. 

5.4.1 Information flow 

In the decision layer the information contained in the defect descriptions is now combined 

with knowledge related to the rectification process for the specific defect types to be able to 

define if and how the detected defects are patched, this principle is illustrated in Figure 5-35: 

Decision making

Class label

(defect type)

Defect 

descriptions

List of tools

(incl. description)

List of materials

(incl. description)

Knowledge

(rules)

Instructions: 

IF and HOW to patch

Defect Candidate Map (DCM)

 

Figure 5-35: Information flow in the decision layer: decision making. 

For the decision if a rectification of the defect is carried out, the rules which contain the 

limits of the specific defect types (diameter, depth, etc.) must be incorporated. This first 

decision then also already determines if pre-processing is necessary as in most cases the 

rules define specific procedures for specific defects. Dark Knots for example must always be 

routed to remove the defective wood. These unconditional decisions can easily be based on 

a look-up table as illustrated in Figure 5-36. The same mechanism (look-up table) can be 

used when the decision making is free to decide between several types of filling material for 

the specific defect type (rules often allow different types of filling). 
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Knotholes in contrary need to be routed only if there is bark involved or when 2K putty is 

used on the upper side of the panel where bad adhesion is possible due to the glue on the 

core layer, refer to Figure 5-37 - Figure 5-39. Therefore a sub-process as illustrated in Figure 

5-40 must be incorporated in the decision. The list of available tools, for example to make a 

choice for the most appropriate router diameter and the list of available material, for 

example in terms of colour options, is then incorporated. 

Figure 5-36 illustrates the issue that the rules may either only specify if pre-processing or a 

certain material needs to be used for the patching of a specific defect type, the 

corresponding ambiguity must therefore be resolved first in the decision making by 

identifying valid combinations which can be achieved by an approach using a look-up table. 

FillingPre-processing

Defect Type

Decision

 
Figure 5-36: Resolving assignment of pre-processing and filling material. 

Valuable and necessary information about the defect is gained from the Defect Candidate 

Map that is generated during segmentation (refer to 5.1.2.1). The rules rely on the 

descriptions from the DCM about the specific defect but also about its neighbourhood. 

Figure 5-37 - Figure 5-39 illustrate the previously mentioned example of a knothole that 

needs to be pre-processed when either bark is present at the border of the knothole or due 

to adhesion problems with 2K putty when glue is present on the bottom of the knothole 

(refer to Figure 5-38), or both (refer to Figure 5-39). 
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Figure 5-37: Knothole with bark 
(no glue on knothole 
bottom/core veneer due to 
bottom side of the panel). 
Needs routing due to 
soft/loose bark. 

 

 
Figure 5-38: Knothole with glue 
on knothole bottom/core 
veneer (due to top side of 
panel). Needs routing due to 
adhesion when filling with 2K 
putty. 

 

 
Figure 5-39: Knothole on top 
side of panel, therefore 
showing glue on core veneer 
and having additionally bark. 
Needs routing in any case. 

Figure 5-40 exemplarily illustrates the corresponding sub-process that needs to be 

incorporated in the decision making for the knothole that may have bark or glue and which 

therefore may need pre-processing by routing. 

Colour

Scatter

Defect Type:

Knothole

Glue?

Bark?

No

YES

YES

No

Routing Filling

 

Figure 5-40: Decision process for routing knotholes incorporating neighbourhood evaluation. 

The related decision is facing uncertainty in the rule specifying the neighbourhood 

relationship, for example a typical formulation is “..knotholes are allowed to show some 

bark...”, refer also to 2.2.3.1 and 0. The Fuzzy Inference System (FIS, refer to research 

methods chapter, 4.2.3) is incorporated here as it can handle such uncertainty and 

additionally provides a user interface with adjustment possibilities for the membership 

functions which are related to the adjectives introducing the uncertainty in the rules, refer 

to A.3.1 and Table 5-12. 
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5.4.2 Definition of fuzzy rules at the example of Knothole with bark 

In the following the Expert System for patching defects on wooden panels based on a Fuzzy 

Inference System is designed and set up. First the rules in if...then – notation are formulated. 

The input and output variables can therefrom then be defined. A FIS is setup and the 

segmentation of the n-dimensional input space by the rules, respectively the 

parameterization of the membership functions associated to the input values, is illustrated. 

The rules are grouped in relation to the three main aspects of patching for each defect: 

 Group 1.x: Main decision IF and HOW to patch principally 

 Group 2.x: Addressing local aesthetics, e.g. neighbourhood appearance 

 Group 3.x: Incorporation of overall panel appearance  

At the example of the Knothole with bark on a solid wood panel of appearance quality II 

(Table 2-1 in 2.2.3.1) it is illustrated in the following how the Expert System is setup. At first 

the rules of group 1 address patching in principle, in this example based on the presence of 

bark and the diameter of the hole: 

rule no. If-then formulation Comment 

rule 1.1 
IF (bark is some) OR (glue is some) AND (diameter is big) 
THEN (pre-processing is routing)  

Bark bigger than a certain size 
and glue, both need to be 
routed at bigger holes 

rule 1.2 
IF (bark is little) AND (diameter is small) THEN (pre-
processing is none) 

Small holes shall stay small 
when there is not much bark, 
therefore no routing 

rule 1.3 
IF (bark is little) AND (diameter is too small) THEN (pre-
processing is none) 

Do not rectify, diameter below 
threshold (5mm) 

rule 1.4 
IF (bark is little) AND (diameter is too small) THEN 
(filling is none) 

Do not rectify, diameter below 
threshold (5mm) 

Table 5-9: Rule set group 1.x on if and how to patch knothole with bark in principle. 

Applying the rules from group 1 results in a first segmentation of the input space by a 

decision surface indicating in principle if patching will take place. By additionally 

incorporating the rules from group 2 and group 3, which focus the choice of the filler, the 

appearance is taken into account and the decision surface will be biased: 
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rule no. If-then formulation Comment 

rule 2.1 
IF (diameter is medium)  AND (shape is unround)  THEN 
(pre-processing is routing) 

Small to medium holes which 
are not round-shaped shall be 
routed to appear smooth 

rule 2.2 
IF (diameter is medium) AND (grain is strong) AND 
(clustering is low) THEN (filling is circular-textured 
dowel)  

Try to adapt the patch to 
surrounding texture by 
choosing textured dowel 

rule 2.3 
IF (diameter is medium) AND (grain is weak) AND 
(clustering is low) THEN (filling is homogenous-coloured 
dowel ) 

Try to hide the patch by 
avoiding contrast in texture 
using untextured dowel 

rule 2.4 
IF (diameter is big) OR (clustering is high) THEN (filling is 
2K-putty ) 

Prevent clusters of dowels and 
unintended overlaps but use 2K 
because of shrinkage 

rule 2.5 
IF (diameter is small) OR (clustering is high) THEN (filling 
is 1K-putty ) 

Prevent clusters of dowels and 
unintended overlaps as well as 
excessive routing (smear the 
area with 1K) 

Table 5-10: Rule set group 2.x on appearance (decision between dowels, putty and options). 

Incorporating additional rules that address the preference(s) concerning the overall 

appearance of the panel will bias the input space segmentation additionally by aesthetic 

aspects: 
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rule no. If-then formulation Comment 

rule 3.1 
IF (target appearance is knotty) THEN (filling is circular-
textured dowel)  

Produce tendentially knotty-
looking surfaces using textured 
dowel 

rule 3.2 
IF (target appearance is calm) THEN (filling is 
homogenous-coloured dowel)  

Produce tendentially 
homogenous-looking surfaces 

rule 3.2 IF (target appearance is calm) THEN (filling is  1K-putty) 
Produce tendentially-
homogenous-looking surfaces  

rule 3.3 IF (target appearance is calm) THEN (filling is  2K-putty) 
Produce tendentially 
homogenous-looking surfaces 

Table 5-11: Rule set group 3.x incorporating overall panel appearance. 

To every adjective (some, weak, calm, etc.) related to the input variables (bark, diameter, 

grain, etc.) contained in the rules, a set of membership functions is linked which models the 

uncertainty. Table 5-12 lists all membership function involved with the rules above:  

 

Figure 5-41: Membership functions for “bark”. 

 
Figure 5-42: Membership functions for “glue”. 

 
Figure 5-43: Membership functions for “diameter”. 

 
Figure 5-44: Membership functions for "shape". 
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Figure 5-45: Membership functions for "grain". 

 
Figure 5-46: Membership functions for "clustering". 

 
Figure 5-47: Membership functions for "target 

appearance" (overall panel appearance). 

 

Table 5-12: Membership function used for modelling rules concerning Knothole with bark. 

Note the steep function modelling “too small” for input variable diameter, which actually 

represents a threshold. The fuzzification with “too small” and “small” addresses the issue of 

uncertainty with the diameter of not perfectly round knotholes. Apart from that, the 

illustrated setup in Figure 5-25 segments the input space quite homogenously. Adjustment 

of the membership functions can be done graphically, therefore Figure 5-18 to Figure 5-24 

represent the graphical user interface to the decision making system for the defect type 

Knothole with bark. 

5.4.3 Spanning the decision surface 

The above defined rules and related membership functions span a 7-dimensional input 

space that is segmented according to the output variables pre-processing (with possible 

values routing and no routing) and filling (with possible values 1K-putty, 2K-putty, circular-

textured dowel, homogenous-coloured dowel, no filling). Table 5-13 lists the two-

dimensional combinations of the inputs to illustrate the input-space segmentation towards 

the output pre-processing related to the decision if routing is necessary for a specific defect. 

Red colours indicate no pre-processing while blue colours indicate that pre-processing is 

needed (for a binary, defuzzified decision output appropriate thresholds still need to be 

applied). With reference to the membership functions given in Table 5-12 some 

interpretations are further given to illustrate the concept: 
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Figure 5-48: Decision surface (pre-processing) bark – 
glue. 

Interpretation: Some bark combined with some 

glue indicates potential false detection of bark 

(actually glue) and the ouput of no routing is 

supported. 

 

Figure 5-49: Decision surface (pre-processing) bark – 
diameter. 

Interpretation: with rising certainty (much) for 

bark as well as rising diameter (small → 

medium) the routing becomes necessary and 

likely. 

 

Figure 5-50: Decision surface (pre-processing) bark – 
shape. 

Interpretation: With increasing roundness 

‘barky’ candidates will be routed more likely. 

 

Figure 5-51: Decision surface (pre-processing) bark – 
grain. 

Interpretation: This combination of the two 

dimensions from the decision space is more 

relevant for the second output variable filling 

where appropriate textured dowels are 

prefereed for specific grain surroundings 

(therefore routing needs to be applied for pre-

processing). 
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Figure 5-52: Decision surface (pre-processing) bark – 
clustering. 

Interpretation: Part of the rule to avoid clusters 

of dowels for clustered knot defects and use 2K 

putty with appropriate routing instead. 

 

Figure 5-53: Decision surface (pre-processing) bark – 
panel appearance (overall). 

Interpretation: Depending on the intended 

overall appearance (calm ↔ knotty) the 

removal of knot defects including knots with 

bark is prevented (red) or emphasized (blue). 

 

Figure 5-54: Decision surface (pre-processing) glue – 
diameter. 

Interpretation: Removal of glue depending on 

size. 

 

Figure 5-55: Decision surface (pre-processing) glue – 
shape. 

Interpretation: Removal of glue depending on 

roundness, more round candidates with glue 

will be routed. 
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Figure 5-56: Decision surface (pre-processing) glue – 
grain. 

Interpretation: This combination of the two 

dimensions from the decision space is more 

relevant for the second output variable filling 

where appropriate textured dowels are 

prefereed for specific grain surroundings 

(therefore routing needs to be applied for pre-

processing). 

 

Figure 5-57: Decision surface (pre-processing) glue – 
clustering. 

Interpretation: Part of the rule to avoid clusters 

of dowels for clustered knot defects and to use 

2K putty with appropriate routing instead. 

 

Figure 5-58: Decision surface (pre-processing) glue - 
panel appearance (overall). 

Interpretation: Depending on the intended 

overall appearance (calm ↔ knotty) the 

removal of knot defects is prevented (red) or 

emphasized (blue). Note: decision to 

repair/remove knotholes with glue is mainly 

influenced by type and diameter, with less 

influence from this combination. 

 

Figure 5-59: Decision surface (pre-processing) diameter – 
shape. 

Interpretation: The combination of roundness 

and diameter is important for the repair of 

pinholes and gradually bigger knot defects. 

Knots with bark are to be routed for better 

adhesion of 2K putty (necessary due to 

shrinkage with 1K putty on bigger defects) on 

glue while pinholes may be filled with 1K putty 

without routing.  
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Figure 5-60: Decision surface (pre-processing) diameter - 
grain. 

Interpretation: The diameter overrules the 

influence of the information about the 

surrounding grain (this is more important for 

the second output filling).. 

 

Figure 5-61: Decision surface (pre-processing) diameter – 
clustering. 

.. also, the clustering is less important on the 

decision if pre-processing is necessary than it is 

the diameter information. 

 

Figure 5-62: Decision surface (pre-processing) diameter – 
panel appearance (overall). 

Interpretation: For a calm overall appearance 

of the panel the bigger defect (knots and 

knotholes are more important to be removed 

than smaller ones (of course this is biased 

additionally by clustering). 

 

Figure 5-63: Decision surface (pre-processing) shape – 
grain. 

Interpretation: Roundness (characteristical for 

knotholes and knots) mainly influences the 

decision to preprocess, with only a slight 

influenceof the surrounding grain (this is more 

important for the second output filling). 
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Figure 5-64: Decision surface (pre-processing) shape – 
clustering. 

Interpretation: Knotholes and knots 

(characterized by roundness) are to be routed 

for better adhesion of 2K putty (necessary due 

to shrinkage with 1K putty on bigger defects) 

on glue. 

 

Figure 5-65: Decision surface (pre-processing) shape – 
panel appearance (overall). 

Interpretation: Removal of knots and knotholes 

is most important to achieve a calm 

appearance of the final panel. 

 

Figure 5-66: Decision surface (pre-processing) grain – 
clustering. 

Interpretation: The rule to prevent clusters of 

repairs overrules any influence of the grain 

surrounding in the decision. 

 

Figure 5-67: Decision surface (pre-processing) grain – 
panel appearance (overall). 

Interpretation: The rule to adapt to the 

intended final appearance of the panel (calm 

↔ knotty) overrules any influence of the grain 

surrounding in the decision. 
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Figure 5-68: Decision surface (pre-processing) clustering 
– panel appearance (overall). 

Interpretation: The rule to adapt to the 

intended final appearance of the panel (calm 

↔ knotty) overrules any influence of clustered 

knot defects in the decision. 

 

Table 5-13: Segmentation of decision space towards output “pre-processing” 

Analogous, Table 5-14 lists the two-dimensional combinations of the inputs to illustrate the 

input-space segmentation towards the output filling related to the decision if and how a 

specific defect is to be patched. (Deep) blue indicates no filling while lghter shades up to red 

colour indicate gradually (no threshold to produce a crisp, defuzzified output is applied yet) 

that filling with 1K-putty, 2K-putty, circular-textured dowel, homogenous-coloured dowel,is 

needed. 

 

 

Figure 5-69: Decision surface (filling) bark –glue. 

Interpretation: Equivalent to the output pre-

processing, but inverted in terms of colour.  

 

Figure 5-70: Decision surface (filling) bark –diameter. 

Interpretation: Rising likelyness for bark as well 

as rising dimater gradually imply appropriate 

filling. 
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Figure 5-71: Decision surface (filling) bark –shape. 

Interpretation: With increasing roundness 

‘barky’ candidates need appropriate filling, 

equivalent to output pre-processing. 

 

Figure 5-72: Decision surface (filling) bark – grain. 

Interpretation: The preservation of a grainy 

surrounding is taken into account, making a 

filling unlikely when strong grain is present 

biased additionally with uncertainty for bark. 

Filling with putty in contrast is ensured in 

homogenous areas when bark is most likely. 

 

Figure 5-73: Decision surface (filling) bark – clustering. 

Interpretation: the use of putty for filling is 

gradually preferred for clusters of candidates.. 

 

Figure 5-74: Decision surface (filling) bark - panel 
appearance (overall). 

..but must be combined with the 

superordinated preference for either a calm or 

knotty overall appearance. 
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Figure 5-75: Decision surface (filling) glue – diameter. 

Interpretation is not realy feasible as there is 

no real dependency between glue and 

diameter in terms of the output filling. The 

decision surface is biased by the other 

combinations mainly. 

 

Figure 5-76: Decision surface (filling) glue – shape. 

Interpretation: Equivalent to the output pre-

processing the removal of glue is depending on 

the roundness, more round candidates will be 

filled. 

 

 

Figure 5-77: Decision surface (filling) glue – grain. 

Interpretation: In contrast to the output pre-

processing the output for filling is clearly 

biased by the presence of a grainy surround 

which is aimed to be preserved and therefore 

only homogenous surroundings should be 

(excessively) filled with putty. 

 

Figure 5-78: Decision surface (filling) glue – clustering. 

Interpretation: Equivalent to the output for pre-

processing this combination is part of the rule 

to avoid clusters of dowels for clustered knot 

defects und to used 2K putty instead. 
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Figure 5-79: Decision surface (filling) glue - panel 
appearance (overall). 

Interpretation: Equivalent to the output pre-

processing and depending on the overall 

appearance (calm ↔ knotty) the removal of 

knot defects is prevented (blue) or emphasized 

(red). 

 

Figure 5-80: Decision (filling) surface diameter – shape. 

Interpretation: The doundness and diameter 

are important characteristics for the repair of 

pinholes and gradually bigger knot defects. The 

tendency to to repair/fill bigger defects with 2K 

putty for the reason to prevent problems with 

shrinkage is modelled equivalent to the output 

pre-processing.  

 

Figure 5-81: Decision surface (filling) diameter – grain. 

Interpretation: not really related with each 

other, this combination shows the overruling 

property of the input from the surrounding 

grain, contrary to the influence on the output 

pre-processing.  

 

Figure 5-82: Decision surface (filling) diameter – 
clustering. 

Interpretation: Only small and large diameters 

of Knotholes with bark in combination with high 

clustering bias the decision towards the filling 

with putty. 
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Figure 5-83: Decision surface (filling) diameter - panel 
appearance (overall). 

Interpretaion: Analogous to the output pre-

processing, for a calm overall appearance of 

the panel the bigger defects the removal of the 

candidates is getting more important, 

additionally biased with increasing size. 

 

Figure 5-84: Decision surface (filling) shape – grain. 

Interpretation: The surrounding grain influences 

the type of filling, with leaving smaller defects 

in a grainy environment unrepaired and using 

putty in homogenous surroundings. 

 

Figure 5-85: Decision surface (filling) shape – clustering. 

Interpretation is not realy feasible as there is 

no real dependency between clustering and 

shape in terms of the output filling. The 

decision surface is biased by the other 

combinations mainly. 

 

 

Figure 5-86: Decision surface (filling) shape - panel 
appearance (overall). 

Interpretation: The removal of knot defects is 

most important to achieve a calm appearance 

of the final panel, therefore bigger defect need 

to be repaird for a calm appearance while for a 

knotty appearance especially the smaller 

defects are left unpatched. 
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Figure 5-87: Decision surface (filling) grain – clustering. 

Interpretation: Equivalent to the output pre-

processing, the filling is influenced mainly by 

the surrounding grain, in a homogenous 

surrounding there is a strong decision towards 

patching, but also in a heavily clustered, knotty 

surrounding patching must/will occur. 

 

Figure 5-88; Decision surface (filling) grain - panel 
appearance (overall). 

Interpretaiton: Analogous to the output pre-

processing, the targeted final, overall 

appearance of the panls (calm ↔ knotty) 

overrules any influence of the grain surrounding 

in the decision, with putty used for 

homogenous appearance. 

 

Figure 5-89: Decision surface (filling) clustering - panel 
appearance (overall). 

Interpretation: The rule to adapt to the 

intended final appearance of the panel (calm 

↔ knotty) overrules any influence of clustered 

knot defects in the decision with putty used for 

homogenous appearance. 

 

Table 5-14: Segmentation of decision space towards output “filling”. 
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The decision not to patch a defect (e.g. knothole with bark is too small, refer to rule 1.3 and 

rule 1.4 in Table 5-9, is therefore always defined by a combination of the outputs pre-

processing=no routing and filling=none. 

It seems natural to define and incorporate further rules possibly addressing the preference 

to avoid routing for economic reasons, biasing the decision surface accordingly. Saving filling 

material, especially when patching with putty, is nevertheless influenced most efficiently in 

the patching data generation itself (this will be addressed in the following section). The 

simulations, respectively the calculations and comparisons of different solutions which need 

to be incorporated for the decisions related to savings should therefore be handled 

separately from the decision process on how to patch principally. 

5.4.4 Summary 

The decision making principle by modelling human wood-worker knowledge in rules 

grouped to principal patching, local aesthetics and overall panel appearance has been set up 

and configured exemplarily for the defect type Knothole with bark. What is challenging in 

conditional programming can be solved in an elegant manner by the Fuzzy Inference System 

which incorporates rules in if...then notation with fuzzy membership functions connected to 

the contained input variables for segmenting the n-dimensional input space according to the 

desired output of if and how to patch. Additional rules can easily be incorporated (e.g. 

ecological, economical aspects) to further bias the decision surface. 

5.5 Patching data generation 

This section approaches the fourth step in the automated patching process after the defect 

detection which is the defect classification and the decision making using the knowledge 

base. The differentiation of patching methods for wooden panels based on the used 

materials and the resulting classification by solid and liquid fillers has been introduced in 

chapter 0. From the observations made at different panel production plants, automated 

processes were defined in chapter 2.3.2, also under aesthetic aspects in chapter 2.3.3. 

Finally, the main concepts behind patching data generation are introduced in this chapter 

based on the early findings from patching solid wood panels with dowels and the processing 

of defects for patching with liquid fillers (putty). This includes pre-processing by routing in 

most plywood applications. A generic framework that allows the flexible creation of patching 
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instructions and their transmission to patching robots has been implemented and studied by 

Göttlicher [Goettlicher 2011] in his diploma thesis under supervised by the author. 

Having detected a defect and defined an area of interest for segmentation, having 

segmented an image snippet to be used for the classification of the corresponding defect 

type and having finally made a decision on if and how to patch this specific defect, the 

patching data generation can be carried out. Analogous to the illustration of the information 

flow for the decision making and its outcome in terms of if and how instructions in the last 

section, the information flow for the patching data generation is shown in Figure 5-90. 

Patching data generation

Class label

(defect type)

Defect 

descriptions

Machine-readable

 instructions & data

Defect Candidate Map (DCM)

Decicison making

 
Figure 5-90: Information flow in the decision layer: generation of patching instructions and data. 

Based on the input how to patch (filler type, colour/appearance variants, pre-processing) the 

defect description, mainly the defect contour is used to create machine-readable 

instructions. 

5.5.1 Patching with dowels 

In the case of patching with dowels, the patching data simple consists of a list indicating 

dowel types (circular, elliptical and different sizes each, refer to 2.3.1.1), position 

information in x-/y-coordinates with reference to the panel edges in the correct order and 

the orientation (for elliptical dowels). Optional variant information can be used to define a 

certain colour or texture, refer also to 2.3.1.1. 

#ID Type Pos_x Pos_Y Orientation Variant1 Variant2 

193 1 695,4 3901,5 0 dark circular 

194 3 586,6 3014,1 0 dark stripy 

Table 5-15: Exemplary patching data set for patching with dowels on solid wood panels 
including dowel type (circular, elliptical), position with reference to panel edges, 
orientation and information containing preferred colour and/or texture. 
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Based on the contour information of the defect which is gained from the segmentation the 

possible dowels are tested for the best fit in terms of coverage of the defect contour in an 

iterative approach. Starting with centres of gravity from both the defect contour and the 

dowel contour, the figures in Table 5-16 illustrate the corresponding procedure: 

 

Figure 5-91: Initial test with 15mm 
circular dowel: coverage not reached. 

 

Figure 5-92: Test: 20mm dowel is 
sufficient / promising to start position 
optimization. 

 

Figure 5-93: Calculation of shift 
vectors based on uncovered areas. 

 

Figure 5-94: Movement of dowel 
according to added shift vectors and 
re-testing the coverage (result: 
insufficient at multiple positions). 

 

Figure 5-95: Testing & shifting a 
combination of one circular and one 
elliptical dowel (result: insufficient at 
the left). 

 

Figure 5-96: Testing and shifting a 
combination of one circular and two 
elliptical dowels results in sufficient 
coverage of the defect. 

Table 5-16: Sequence of finding appropriate dowel size/ dowel combination including 
position optimization. 

Starting with the defect’s contour (blue contour in Figure 5-91 the possible dowels 

respectively the possible combinations as defined in the patching rules are tested in terms of 
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coverage. Exemplary the following dowel types are available in the sequence illustrated in 

Table 5-16: 

 Type 1: 15mm circular dowel 

 Type 2: 20mm circular dowel 

 Type 3: 50mm elliptical dowel 

 Combination of 1 x 20mm circular and 1 x 50mm elliptical dowel allowed 

 Combination of 1 x 20mm circular and 2 x 50mm elliptical dowels allowed 

Commonly there exist further variants in the combinations with different horizontal offsets 

between the dowels for the reason to optimize the coverage of either horizontally or 

vertically extended defect contours (usually the rotation of elliptical dowels is mechanically 

not possible or unwanted). From Figure 5-91 one can see that in the first iteration the 15mm 

circular dowel is not sufficient at all in terms of coverage (uncovered area is indicated by red 

colour). In the next iteration the 20mm dowel is tested for coverage satisfying a certain 

percental coverage criteria indicating that it is worth to carry out position optimization. This 

in turn is done by first defining direction and length of shift vectors (white parts of orange 

lines in Figure 5-93) according to the uncovered parts of the defect contour (red areas in 

Figure 5-93), subsequent shift vector addition and finally repositioning of the dowel on the 

defect contour for testing the coverage again (Figure 5-94). In this example the coverage 

criteria satisfying the final choice for the dowel is not reached (Figure 5-94) and the next 

bigger dowel is tested which is the combination of one circular dowel and one elliptical 

dowel, refer to Figure 5-95. Due to an exemplary strict final coverage the coverage is finally 

satisfying with a combination of one circular and two elliptical dowels (Figure 5-96) after a 

slight shift to the right (initial position by blue contour, final position by green contour). 

A cost-benefit analysis can be carried out by comparing the additional dowel necessary to 

achieve full/preferred coverage and slight non-coverage when saving this dowel, related to 

the given example this would be a decision between the solutions found in Figure 5-95 and 

Figure 5-96. 
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5.5.2 Patching with putty 

In contrast to the patching with dowels, single position information for the placement is 

mostly insufficient when patching with putty as the corresponding tools need to incorporate 

paths defined by a sequence of at least two x-/y-coordinates. Only in rare cases (small 

diameter knotholes for example) a single coordinate may be sufficient for filling the defect 

with putty respectively for routing the area with the predefined router (so-called “short dip” 

approach). Therefore the patching data ideally consists of a list of positions defining the 

optimal path across the defect contour for both the so-called routing-path and filling-path 

and additionally defining volumes of putty assigned to the segments of the filling-path. 

It is necessary to realize that when incorporating routing in the pre-processing of the defect 

(for the reason to remove defective wood like bark, dark knots, etc. but also to remove 

material showing bad adhesion as it is the case with resin and glue, refer to 2.3.2.2) the 

original defect contour is destroyed and a synthetic defect contour is created. This must then 

be incorporated in the calculation of the path for the filling tool (so-called filling path) as well 

as in the volume calculation. The advantage of the synthetic defect contour is the well-

defined depth that can be incorporated in the calculation of the putty volume. Figure 5-97 

and Figure 5-98 illustrate this fact by the example of two differently sized routing tools 

(orange circles) applied to the original defect contour (black contour): 

 
Figure 5-97: Small diameter router applied to defect 
contour. Red path is needed to fully cover/mill the 
defect contour. White contour is the resulting synthetic 
defect contour. 

 
Figure 5-98: Large diameter router applied to defect 
contour. Red path is needed to fully cover/mill the 
defect contour. White contour is the resulting synthetic 
defect contour. 
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The difference in the results is obvious from the white contour which is the resulting 

synthetic contour. While a router with small diameter is able to follow the original defect 

contour more precisely (Figure 5-97), meaning that less sound wood from the surrounding is 

unnecessarily removed as in comparison to the larger diameter router in Figure 5-98, this is 

at the cost of an extended path length and therefore processing time. Also the appearance 

of the resulting defect contour is affected by the router diameter as larger diameters (in 

relation to the size of the defect contour) produce more artificial looking shapes (Figure 

5-98). This is an important issue as a compromise between favoured aesthetic appearance 

and costs in terms of processing time has thus always to be found. This issue will get extra 

attention in the evaluation of performance in chapter 6. 

From a mathematical perspective the calculation of the routing path is easily accomplished 

by incorporating morphological operations: when the router is defined as a circular kernel, 

simple morphological erosion is carried out iteratively, decomposing the defect contour like 

an onion with the kernel’s centre moving along the path of the router. 

 

Based on either the original defect contour or the synthetic contour an appropriate filling 

path has to be calculated for the final filling with putty. Unlike the routing path, the filling 

path is not relying on a certain diameter but on the viscosity of the liquid material in the case 

of 2K-PU putty (refer to 2.3.1.2.2) or the aperture and operating pressure of the 1K-putty 

(refer to 2.3.1.2.1) nozzle. As identified by Göttlicher [Goettlicher 2011] these parameters 

can be transformed and reduced to volume and motion speed. The aim is nevertheless to 

abstract the incorporated machinery as much as possible. Acceleration ramps and associated 

limits of the available drives for example need therefore not to be configured on the scanner 

system. This means that ideally only path segments with associated volumes are contained 

in the generated patching instructions and data. The filling path calculation is therefore 

trying to find the optimal path across the defect in terms of homogenous distribution of 

putty. This is exemplary illustrated in Figure 5-99 - Figure 5-101: 
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Figure 5-99: Low viscosity guarantees 
homogenous filling of the narrowings. 

 
Figure 5-100: Higher viscosity 
requires nozzle to move into the 
narrowings. 

 
Figure 5-101: Depending on expanse 
of the defect and the viscosity of the 
putty the filling path needs 
extension.  

In the above figures an unprocessed original defect contour is shown (black contour). Two 

major parameters influence the final result of the patching with putty, both related to the 

viscosity of the liquid filler. These are the ability of the putty to flow into narrowings of the 

defect contour (Figure 5-99) or if the tool has to follow into these narrowings (Figure 5-100) 

and the ability of the putty to distribute evenly by itself within the boundaries of the defect 

contour. Depending on the expanse of the contour the tool needs to follow a path offside 

the shortest path across the defect to ensure homogenous distribution of the putty (Figure 

5-101). 

From a mathematical perspective the calculation of the filling path is based on the operation 

of morphological skeletisation and subsequent adjustment of the skeleton points according 

to an optimal distribution of putty. 

5.6 Summary 

With reference to the dedicated cluster architecture presented in 5.1 (refer to Figure 5-9), 

the different processing layers of the scanner system for automated defect detection and 

defect rectification have been introduced and refined in this chapter. Layer 1 has been 

designed to be responsible for the data acquisition and sensor data fusion of various sensors 

with great differences in spatial resolution. The resulting overall multi-channel image is then 

split again according to the processing capabilities and configuration level of layer 2. This is 

responsible for defect detection by segmentation and defect evaluation incorporating the 

classification research methods introduced in chapter 4 being able to judge on local 

aesthetics. The classification system that has been introduced is based on the learning from 

examples in terms of image tiles to address the complexity of describing defects. The 
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creation of the related training data sets (image snippets) is supported by SOM-clustering 

which is optimal suited to support the manual task of labelling the training data due to its 

capability to group the images by similarity. Incorporating the detection and classification 

results, abstracted defect descriptions and information gained from the Defect Candidate 

Map a knowledge-based approach has been defined to be used in layer 3 that is able to 

make decisions whether and how to repair a certain defect also under aesthetic aspects and 

based on the rules defined by a wood-working expert. Finally, the principles and 

implementation concepts of patching data generation for both patching with dowels and 

liquid fillers (putty) have been illustrated. 

Having covered the overall system design, the following chapter summarizes the 

development and the outcome of testing the overall interaction of the components and 

analyses the performance of the scanner system for automated defect detection and defect 

rectification. 
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6 System development & performance 

 

This chapter deals with the possibilities to control and measure the performance of a system 

for the automated rectification of wooden panels. The automated patching system 

incorporates image acquisition devices, image processing units, common sensors and several 

patching tools and therefore performance evaluations from several points of view have to be 

incorporated. The overall performance is mainly derived from the visible result, which 

means assessment of the final repaired panel. To understand and define the capabilities as 

well as the limits causing possible errors perceived as imperfect repairs, the processing chain 

needs to be differentiated. The most obvious failure of a repair is an incomplete repair either 

due to 

 incomplete/wrong detection, 

 a wrong repair instruction (inappropriate filler and/or pre-processing) or due to 

 misplacement resulting in insufficient coverage of the defective area. 

The first and the second scenario are mainly seen in the area of signal and data processing 

related to the research methods as it is assumed that a proper sensor setup is used. The 

third scenario is severe because it combines the insufficient repair with the destruction of 

sound material, eventually calling for manual rework and resulting in a downgrade of the 

final product, and may be related to system/hardware design. Nevertheless, all scenarios are 

related to accuracy and precision but under different aspects which will be addressed 

separately in this chapter. 

Slight over-detection in the segmentation is deliberately adjusted as this must be handled 

conceptually by the classification system. Therefore the focus is first on the classification 

rates in terms of accuracy and precision of the classification system. This will be addressed in 

section 6.1 Detection performance. 

Assuming correct defect detection, the repair itself is always characterized by the proper 

choice of the repair kit31 related to the amount of unnecessarily affected (removed) sound 

material and the coverage of the defective area. The proper choice of the repair kit underlies 

physical and aesthetical requirements as has been described in section 2.3 and is 

furthermore dependent on the capability of the Expert System to model human knowledge. 

                                                        
31

 Repair kit: Either solid (dowel) or liquid (putty) filler including optional pre-processing. 
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The assessment of unnecessary destruction of sound wood (and correlated to this the waste 

of filler material) together with the perceived appropriateness of the rectified defect are 

therefore the only measures which can be applied. This aspect of performance will be 

addressed in 6.2 Patching performance. 

Accuracy in the classical sense and related to the positioning is the bias from the true value 

[Dunn 2005] that can be compensated by calibration [Foster 1982]. What remains after 

calibration is the error in precision which is in the best case distributed around the true value 

[ANSI Y14.5M]. There is usually no single responsibility in the processing chain for the errors 

in terms of precision. Positioning errors are more likely a product of lens aberration, limited 

resolution of the image acquisition devices and calibration errors, rounding errors in the 

data processing units and in the conversion between different coordinate systems. Rounding 

errors also occur in the control software of the actuators and finally the actuators (x-y-z axis, 

tools and conveyor belt) as well as their sensors (shaft encoders, etc.) are all limited in 

precision. The aspect of positioning accuracy will not further be addressed in the scope of 

this study. 

6.1 Detection performance 

6.1.1 Training of the classification system 

The following section covers the actual development of the classification system and the 

related testing of the performance by carrying out training experiments. During these 

training experiments it was noticed that besides the huge potential of SVMs with non-linear 

kernels (refer to 4.1.3 and A.2) the computation of the kernel values in the training and 

testing is very time consuming (approx. 14 hours per class on the database containing 60.000 

samples with 6 classes). Therefore cross-validation by varying several parameters would 

become inefficient with the available hardware (Pentium i7, 8GB of Random Access 

Memory, RAM). The objective to show the capability of learning from (image) examples 

therefore is addressed by the fact that large-scale non-linear SVMs can be approximated by 

linear ones using explicitly computed feature maps [Vedaldi et al. 2010] that approximate 

the kernel function and their generated, theoretically infinite feature spaces. This approach 

results in much lower training and testing times (in the setup used for this evaluation below 

1 hour per class) while still producing comparable results. 
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The multi-class classification problem (4.1.3.2) is addressed by an one-versus-all (OVA) 

approach, resulting in actually one binary SVM-classifier per class being trained and tested 

with the positive samples of that class and all samples of the other classes as the negatives. 

The class with the highest score is then used in the final multi-stage classification. The model 

testing involves per-class performance evaluation by using Precision-Recall Curves (RPCs) 

which are favoured over ROC32-curves due to unbalanced data sets33 and to address the loss 

of precision if moving to sparser data. Besides the principle capability to distinguish between 

the different defect types the capability to judge on local aesthetics is evaluated separately 

also using RPCs for comparison with the standard defect classification. 

6.1.1.1 Training experiment setup 

The classification system as proposed in 5.3 incorporating semi-automated generation of 

training and testing data sets is used. A database consisting of 60.000 multi-channel image 

snippets from lengthwise scanned plywood panels of spruce is hereby generated that 

contains the defect types Dark Knot, Ringed Knot, Bark, Sound Knot, Cracked Knot and Resin 

Pocket. Originally 15.000 image snippets were extracted by the segmentation approach 

proposed in 5.1, but every image snippet is rotated by 180° and additionally mirrored 

horizontally as well as vertically to extend the database by factor 4 and to cover rotation 

invariance while preserving the grain structure orientation (lengthwise scanned panels). The 

6 data sets are quite balanced with initial 2000 – 2500 (extended to 8000 – 10.000) snippets 

per class while using 50% of the snippets from each set for training and 50% for testing. To 

the corresponding negatives (the remaining 5 classes) of each class 3000 additional image 

snippets of glue are added to address the false detection issue. 

  

                                                        
32 Receiver-Operator-Characteristics, a popular method used for characterising binary classificatory system by 
comparing true positive rates against false positive rates at various thresholds. 
33

 Ratio of positives and negatives approximately 1:26 
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Among several parameters the following options are used to optimize the training result. 

These parameters are not explicitly analysed, varied and compared for each defect 

type/class due to the still high training and testing times: 

 Ratio to split data sets for gaining training and testing data: 

o 50% training, 50% testing for cross-validation  

 K-fold cross-validation: 

o 2-fold cross-validation34, switching training and testing data randomly 

assigned from the overall set 

 Sub-sampling / scaling of the multi-channel image snippets: 

o 85 x 85 pixels, 9 channels, 10 possible a priori features: 65035-dimensional 

input feature space, refer to 5.3.2 

 A priori features used:  

o symmetry (row), 4 nearest neighbour estimates 

 Linear SVMs and feature maps: 

o  Hellinger Kernel35 generated feature map 

Matlab R2014a and LIBLINEAR36 are used to implement the training experiment. The linear 

SVM classifier used has just one parameter C which controls the regularization and 

misclassification penalties (refer to 4.1.3.2 and A.2.3). C is either set to 10 (low level of 

generalisation), 100 (medium level of generalisation) or 1000 (high level of generalisation) 

differently for each SVM respectively for each class to achieve best performance. 

6.1.1.2 Training and testing 

In the following sections the trained binary SVM classifiers are evaluated on the independent 

testing sets. This is done by quantitative evaluation using the precision (in the binary case 

this is the proportion of returns that are positives) and the recall (in the binary case this is 

the proportion of positives returned) at various thresholds, illustrated by the precision-recall 

curve. Further, every 15th support vector is illustrated in a 6x6 image snippet representation 

including its score (distance to the hyperplane:       , refer to Formula A-6). Thereby an 

impression of the class boundaries (defined by the support vectors) and the decision 

                                                        
34 Advantage of 2-fold cross validation: training and testing set are both large and each data point is used for 
both training and validation on each fold. 
35

             
    

36
 A library for large-scale linear classification [LIBLINEAR n.d] 
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boundary (hyperplane stylised by red line) can be gained. From the RPC the Average 

Precision (AP) is gained as the area under the curve in order to assess the performance by a 

single number. Further the RPCs indicate the corresponding random classifier by a red, 

dotted horizontal line for comparison purpose. Due to the unbalanced data sets (ratio of 

positives and negatives) the random classifiers may have a precision different from 0.5. 

6.1.1.2.1 Bark 

Best result achieved with regularization parameter C = 100 (medium level of generalisation): 

 
Figure 6-1: Support Vectors of SVM for defect type “Bark”. Every 15th SV is shown 
including its scoring by the hyperplane, red line indicating decision boundary. 

When viewing the decision boundary between the samples representing the two classes, it is 

striking that in third row, second from right a support vector of the negative class is 

obviously Bark which is also underlined by the very low score to the decision boundary. This 

is presumably a training sample wrongly assigned in the semi-automated generation of the 

training and testing data sets, contaminating the training data of the negatives and therefore 

reducing the accuracy to a certain extent. In the same way the testing set is likely to be 

affected and therefore the Average Precision also. This is accepted to be a natural error in 

the proposed process which of course opens room for optimization. Presumably this issue 
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will never be totally eliminated due to the huge amount of samples, due to uncertainty and 

finally due the subjective manner the expert is assigning the class labels. Higher values for 

the regularization parameter C improve the soft margin capabilities of the SVM as outlined in 

Appendix A.2.3 and certainly can compensate this error influence. 

 

From Figure 6-1 one can further see that the decision boundary is most likely very tight to 

samples from ringed knots among the negatives. The knotholes with bark in the upper row 

(part of bark in this experiment) are clearly distinguished, presumably due to the 

unambiguous depth information contained in the 3D channel of the image snippets. The 

representation, although being just a very small subset, indicates visually quite strong 

support vectors. 96.39% is achieved as overall accuracy (AP), refer to Figure 6-2. 

  

 
Figure 6-2: RPC for defect type “Bark”, Average Precision (AP) is 96.39%. Red dotted line 
represents random classifier. 
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6.1.1.2.2 Dark Knot 

Best result achieved with regularization parameter C = 1000 (high level of generalisation): 

 
Figure 6-3: Support Vectors of SVM for defect type “Dark Knot”. Every 15

th
 SV is shown 

including its scoring by the hyperplane, red line indicating decision boundary. 

 

To distinguish between Dark Knots and Ringed 

knots is presumably one of the most critical 

issues in knot classification, also for human 

experts, as the transition is floating especially 

with the main characteristics of homogeneity in 

the dark area versus the ring-shaped boundary. 

The support vectors seem visually to be less 

strong than previously with the classification of 

bark. Therefore an Average Precision of 97.16% 

is quite satisfying when the uncertainty in the 

labelling process is considered. As with the Bark 

a certain contamination of the training data 

influencing the achievable Average Precision must also be assumed. 

 
Figure 6-4: RPC for defect type “Dark Knot”, 
Average Precision (AP) is 97.16%. Red dotted line 
represents random classifier. 
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6.1.1.2.3 Ringed Knot 

Best result achieved with regularization parameter C = 100 (medium level of generalisation): 

 
Figure 6-5: Support Vectors of SVM for defect type “Ringed Knot”. Every 15th SV is shown 
including its scoring by the hyperplane, red line indicating decision boundary. 

 

Also challenging is therefore the 

discrimination between Ringed Knots and 

Dark Knots due to the same reasons as 

mentioned previously for the Dark Knot 

classification. Visually the support vectors 

seem to rely on the diameter to some extent 

which is correct, as the Ringed Knot is 

physically the larger grown branch, refer to 

2.2.1.2.1 and 2.2.1.2.2. Nevertheless the AP 

is lower (94.63%) in the classification of 

Ringed Knots than with the Dark Knots 

although the classes seem to share their 

boundaries. Uncertainty in the training and/or testing data set might be responsible. 

 
Figure 6-6: RPC for defect type “Ringed Knot”, Average 
Precision (AP) is 94.63%. Red dotted line represents 
random classifier. 
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1.1.1.1.1 Sound Knot 

Best result achieved with regularization parameter C = 100 (medium level of generalisation): 

 
Figure 6-7: Support Vectors of SVM for defect type “Sound Knot”. Every 15th SV is shown 
including its scoring by the hyperplane, red line indicating decision boundary. 

 

The limits of the raw-pixel data approach are 

reached when it comes to the discrimination 

between Sound Knots and Cracked Knots. As 

the major distinguishing characteristic is 

actually the quantization of the crack’s 

width (refer to 2.2.1.1.8), there are possibly 

much more samples needed to represent 

this in the training data implicitly. Further, to 

a certain extent the training data of Sound 

Knots has been found to be contaminated 

with Cracked Knots and vice versa (see 

support vectors in Figure 6-7), this is most 

likely due to a pure visual sorting incorporating more a “feeling” and the appearance than 

 
Figure 6-8: RPC for defect type “Sound Knot”, Average 
Precision (AP) is 65.42%. Red dotted line represents 
random classifier. 
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quantitative measurements, ideally the measurements of the crack widths. Therefore the a 

priori knowledge extension introduced in 5.3.3 is additionally populated with the explicit 

calculation of a feature representing the crack width. 

The challenge hereby is the finding that no single sensor is providing a signal to solely base 

on a stable measurement of the crack width, refer to Table 5-3 in 5.2. Therefore the multi-

channel concept is used to support the crack segmentation and its subsequent evaluation: 

While the colour image (Figure 6-9) provides high-resolution, the knot colour varies greatly. 

The segmentation is therefore supported by incorporating the Scatter signal providing 

information based on the light scattered in the crack (Figure 6-10) and, at larger indentations 

(illuminated and less visible in the colour image), the depth information from the 

triangulation sensor (Figure 6-11). A fused single channel image is shown in Figure 6-12. 

 
Figure 6-9: Colour image 
snippet of Cracked Knot. 

 
Figure 6-10: Scatter image 
snippet of the same 
Cracked Knot. 

 
Figure 6-11: 3D image 
snippet of the same 
Cracked Knot. 

 
Figure 6-12: Fused image 
snippet of Cracked Knot for 
crack width estimation. 

Based on radial projection, the star-like components are segmented and can then be 

measured for generating the a priori information containing the crack’s width. Subsequently 

re-training and testing is carried out. 

 

As can be seen already from the new representation of the decision boundary and related 

support vectors in Figure 6-13 when comparing to Figure 6-7, the support vectors are much 

stronger. Although the class distribution of Sound Knots is presumably close or even 

overlapping the class distribution of Cracked Knots, the decision boundary is clearly 

separating the samples with the presence of the crack width. This is also reflected by the 

much improved Average Precision which is enhanced from 65.42% to 95.75% (refer to Figure 

6-14). 



 

156 
 

 
Figure 6-13: Support Vectors of SVM for defect type “Sound Knot” based on improvement 
with crack width incorporated in the a priori knowledge extension. 

 
Figure 6-14:  RPC for defect type “Sound Knot”, based on improvement with crack width 
incorporated in the a priori knowledge extension. Average Precision (AP) is improved to 
95.75%. Red dotted line represents random classifier. 
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6.1.1.2.4 Cracked Knot 

Best result achieved with regularization parameter C = 100 (medium level of generalisation): 

 
Figure 6-15: Support Vectors of SVM for defect type “Cracked Knot”. Every 15

th
 SV is 

shown including its scoring by the hyperplane, red line indicating decision boundary. 

 

The improvement based on the a priori 

knowledge related to the crack width 

applies to the classification of the Cracked 

Knot itself too of course. Interestingly the 

support vectors of the negatives are 

relatively wide spread among the different 

classes showing samples of Sound Knots in 

direct immediate vicinity as expected but 

also (very dissimilar) Resin Pockets and 

Bark with quite large scores indicating a 

good separability incorporating the width 

feature. 

 
Figure 6-16: RPC for defect type “Cracked Knot”, 
Average Precision (AP) is 94.57%. Red dotted line 
represents random classifier. 
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6.1.1.2.5 Resin Pocket 

Best result achieved with regularization parameter C = 100 (medium level of generalisation): 

 
Figure 6-17: Support Vectors of SVM for defect type “Resin Pocket”. Every 15th SV is 
shown including its scoring by the hyperplane, red line indicating decision boundary. 

 

The classification of Resin Pockets is fairly 

stable due to strong support vectors as can 

be seen in Figure 6-17. It can be assumed 

that the UV reflection/absorption 

information (refer to 5.2.2) is mainly 

supporting the discrimination as often the 

colour information seems to be ambiguous 

and depth information is only partly 

present and at the limits of depth 

resolution, refer also to the verification 

matrix Table 5-3 in 5.2. The accuracy of 

99.14% is therefore satisfactorily high. 

 
Figure 6-18:  RPC for defect type “Resin Pocket”, 
Average Precision (AP) is 99.14%. Red dotted line 
represents random classifier. 
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6.1.1.2.6 Judgement on local aesthetics 

The capability to automatically judge local aesthetics in terms of nice-looking or ugly-looking 

knots for example has been stated to be feasible by training from images as it is possible for 

humans to differentiate on the basis of (colour) images and because a learning fully 

incorporating all available information is incorporated. The judgement on Dark Knots is used 

exemplarily to assess this capability. In parallel to the other defect types previously trained 

and tested, images of Dark Knots were rated as “unobtrusive” or “looking unpleasant”. The 

set with examples of the unpleasant looking Dark Knots is taken as the positives and the 

acceptable, unobtrusive Dark Knots are trained as the negatives. Only several hundred image 

snippets could be incorporated in this experiment as the automated pre-sorting using a SOM 

does not perform well in this task, most likely due to wrong features. 

No closer examination of the criteria in the manual sorting has been incorporated. The 

decision making applied to this sorting is further assumed to be subjective. From The 

training/example image sets one can nevertheless recognize a preference to symmetry, 

roundness and an undisturbed surrounding of the Dark Knot in terms of less discoloration. 

The achievable average precision of 91.93% in the training experiments carried out with 

samples of aesthetic and unaesthetic Dark Knots is less high than the precision achieved in 

the differentiation between Dark Knots in common and the other involved defect types. The 

class distributions are recognized to be much tighter, presumably due to weaker features. 

Nevertheless the sub-sampled representation of the support vectors in Figure 6-19 reflects 

the already mentioned impression of shape and homogeneity having been the basis of 

judgement in the sorting of images for the training data set creation. The fact that less 

samples are included than with the previous experiments certainly influences the results in a 

negative way. 
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Best result achieved with regularization parameter C = 100 (medium level of generalisation): 

 

Figure 6-19: Support Vectors of SVM in aesthetic judgement on Dark Knots. Every 15th 
SV is shown including its scoring by the hyperplane, red line indicating decision 
boundary. 

 

Figure 6-20: RPC for local aesthetics judgement yielding in an AP of 91.93%. Red dotted 
line represents random classifier. 
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6.2 Patching performance 

6.2.1 Decision making  

Evaluating the performance of the Decision Making is rather a validation (check if the right 

things are done) of the choice for a specific pre-processing, filler type and possible related 

options (size, combination, colour, etc.) and therefore the assurance to meet the customer’s 

needs rather than numeric verification (check if things are done right) of requirements. This 

is due to room for interpretation and uncertainty in the rules (refer to 5.4). Therefore the 

performance evaluation under the aspect of decision making is the result of suitability and 

acceptance tests carried out with cooperating panel manufacturers using prototype 

installations of the automated patching system. 

Due to the fact that panels are unique and a repair can be carried out only once per panel, 

the test procedure is as follows: 

1. Scan the panel and execute the process of detection, classification, decision making 

and patching data generation. 

2. Verify the defect detection again roughly (corresponds to detection performance, 

previous section), identify the defects unambiguously (e.g. by numbering). 

3. On the user interface of the scanner system the generated patch is visualized, either 

on-screen (refer to Figure 6-21 & Figure 6-22) or using a print-out. 

4. The appropriateness of the patch is therefrom assessed qualitatively. 

5. Adjustments in the rules (refer to section 5.4) or to the patching data generation 

(refer to section 5.5) are made on statistical basis and based on general observations, 

e.g. majority of dowel-combinations too excessive, routing on majority of small Dark 

Knots unnecessary, etc. to incorporate a certain variety. 
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Figure 6-21: User interface visualizing the result of the decision making and patch data generation for 
validation. UV channel image of solid wood panel undergoing patching (knothole with glue) using a dowel 
is shown. Green circle represents circular dowel true to scale. 

 
Figure 6-22: User interface visualizing the result of decision making and patch data generation for 
validating the patching on a plywood panel. Colour image channel is shown with overlays indicating 
routing path, resulting synthetic defect contour and filling path true to scale. 
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6.2.1.1 Patching with dowels 

Figure 6-23 gives an example from the production of solid wood panels made of spruce 

respectively their automated patching with dowels according to the iterative approach 

outlined in 5.5.1. Generating patching instructions is thereby done by finding the most 

appropriate dowel(s) from an allowed set of dowels and optimizing the position(s) in terms 

of coverage: 

 
Figure 6-23: Screenshot of combination of circular and elliptic dowel placed on a knothole 
addressing the requirement to align the elliptical dowel to the lamella border (indicated by 
red line). Cyan contour is indicating a defect in 3D channel. 

With reference to 2.2.3 Quality standards and 5.4 Decision making one can see from Figure 

6-23 that certain rules are incorporated in the underlying decision process: The requirement 

to align elliptical dowels to the lamella border (if present) for better appearance is satisfied 

in Figure 6-23 indicating the lamella border by the red line. 

The corresponding result from Figure 6-23 is further illustrated in the photography in Figure 

6-24 showing the patched area right after dowel insertion. Remains from gluing the dowels 

can be seen as well as the fact that the patched panel has not yet undergone sanding to 

finish the surface entirely, further obfuscating the patch. 
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Figure 6-24: Photography of result from patching with combination of circular and elliptical 
dowels, refer to Figure 6-23.  

The fulfilment of the requirement to preserve sound wood when patching at the lamella 

border can be seen from a similar defect in Figure 6-25 by the closest possible placement of 

the right elliptic dowel to the defect contour shown in cyan. Further the segmentation of the 

defect respectively the defect contour based on the multi-sensor approach can be seen in 

Figure 6-25 indicating the combination of the defect contours from UV-channel (blue 

contour) and 3D-channel (black area) to the contour highlighted in cyan. 

 
Figure 6-25: Screenshot of combination of circular and two elliptic dowels placed on a glue-
filled knothole addressing the requirement to align the elliptical dowel to the lamella 
border (indicated by red line). Cyan contour is indicating a combination of defect 
segmentation partially in UV channel (dark blue contour) and partially in 3D channel, being 
merged. 
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Figure 6-26 and Figure 6-27 show an before and after example of patching a resin pocket on 

a solid wood panel of spruce (before sanding). The dowel is correctly placed but shows a 

low-frequency texture which does not perfectly match to high-frequency texture around the 

resin pocket. 

 
Figure 6-26: Resin pocket on solid wood panel of spruce 
with leaked resin forming resin lake. 

 
Figure 6-27: Same resin pocket on panel of spruce patched 
correctly with one elliptic dowel. 

For repeatable validation tests in the development and setup of the system a standard solid 

wood panel of spruce is used which contains 13 defects from all relevant defect types 

(Knothole / Knothole with Glue, Bark, Ringed Knot, Resin Pocket). With the already verified 

Classification System the focus is thereby on the principle appropriateness of the output of 

the Decision Making and further on the patching instructions related to the appropriate 

dowel or combination of dowels. The results are judged accordingly to the main processing 

steps Detection, Classification, Decision Making and Patching and lead to an overall result in 

terms of (customers) acceptance as shown in Table 6-1: 
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1  x  x  1xCD + 1xED  1x CD + 1x ED x  yes 

2  x  x  1xED 1xED x  yes 

3   x x  1xED 1xED x  yes 

4  x  x  1xCD 1xCD x  yes 

5  x   x 1xCD 1CD+1xED x  yes 

6   x  x 1xCD+1xED 1xCD+2ED x  yes 

7  x  x  1xCD 1xCD x  yes 

8  x   x 1xCD 1xED x  yes 

9  x  x  1xCD 1xCD x  yes 

10  x  x  1xED 1xED x  yes 

11  x  x  1xED 1xED x  yes 

12   x x  1xCD+2ED 1xDD+3xED x  yes 

13  x  x  1xED 1xED x  yes 

Panel acceptable: yes 

Table 6-1: Evaluation of standard panel for validation of patching performance. Each 
defect is compared according to detection, classification, decision making (system vs. 
expert) and patching. CD=circular dowel, ED=elliptic dowel. 

The system is tuned until an optimal result is achieved on this standard panel and actually 

patched only in the final run. For the purpose of a realistic evaluation including variance in 

the (scanning) process, the panel is scanned each time although a simulated evaluation on 

once acquired image data is thinkable. Acceptance of patching is mainly rated by sufficient 

coverage. From Table 6-1 it can be seen that to achieve acceptance of the result from 

automated patching with dowels the bigger defects which show slightly incomplete 

detection and some wrong classifications (which in all the cases can be disregarded, e.g. 

medium sized hole with bark classified to Bark) obviously need larger combinations of 

dowels (orange highlighted patching instruction) than the expert would have chosen. This is 

related to the fact that bigger defects are more often a compound, therefore getting more 

complicated due to components such as hole, bark, contamination, etc. 

For statistical measures a bigger number of panels needs to be evaluated to gain a sound 

data basis. Based on the evaluation of 50 solid wood panels of spruce of quality A/C (upper 

side quality A, lower side quality C) 624 defects overall (refer to Figure 6-28) were evaluated 

for appropriateness of the automated patching according to the previously mentioned 
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procedure (scanning, comparison of patching instructions from system and expert, execution 

of patching and subsequent evaluation of patched panel). 

 

Figure 6-28: Statistical validation of decision making and patching instruction generation 
on a solid wood panel patched with dowels only (48 panels with 624 defective areas). 

From these 50 panels 2 panels were discarded by the scanner without patching due to not 

allowed defects (panels obviously not satisfying either quality A or C, system setting is not to 

patch excessive defects). 3 panels were not accepted in the final evaluation due to several 

occurrences of wrong dowel types and thus either bad appearance (27 times) or insufficient 

coverage (6 times). Wrong dowel types are chosen either due to wrong classification or due 

to wrong segmentation (segmentation incomplete and resulting in too small dowel 

combinations, over-segmentation resulting in unnecessarily big dowel combinations). 

6.2.1.2 Patching with putty 

In Figure 6-30 and Figure 6-31 examples of defects filled with putty on the basis of the 

patching data generation introduced in chapter 5.5.2 are shown. In contrast to patching with 

dowels an evaluation of the appropriateness of the patch is possible only after sanding as 

can be seen from Figure 6-29. 
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Figure 6-29: Combined patching with 1K and 2K putty on plywood panel of spruce 
(note strong Needleflex that is tolerated in this setting. Panel not sanded, therefore no 
evaluation is possible yet. 

 
Figure 6-30: Example of putty (1K) filled 
defect without pre-processing, after 
sanding. 

 
Figure 6-31: Example of putty (2K) filled defect 
with pre-processing by routing, after sanding. 

The difference in appearance between a previously routed synthetic contour (Figure 6-31) 

and a natural defect contour (Figure 6-30) can clearly be seen, especially when the 

surrounding texture is considered. Therefore the choice to incorporate pre-processing and 

its parameterization needs to be based not only on the defect type and technical 

considerations (adhesion, etc.) but also on the surrounding texture which has been 

successfully achieved in the given examples in Figure 6-30 and Figure 6-31 with respect to 

the available options (putty with only one colour). 
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In contrast to the patching with dowels a comparative assessment using the patch visualized 

on a screen or printout is found to be impossible. Dowels can be placed manually or 

measurements using a calliper can be used for evaluation of the patching with specific 

dowels after scanning but before the actual patching. The patching with putty, especially the 

pre-processing, is quite complex to assess virtually. Furthermore, the putty fully covers the 

patched area (refer to Figure 6-29). Therefore the validation tests must incorporate multiple 

panels and actual patching as well as subsequent sanding. 

 

Figure 6-32: Statistical validation of decision making and patching instruction generation 
on plywood panels of spruce (50 panels with 3535 defects). 

Again one packaging unit consisting of 50 panels was used for the validation test. Plywood 

panels of spruce in quality C/C (only topside with quality C is repaired) were used which is 

demanding due to the quite bad quality, also in terms of appearance. From Figure 6-32 it can 

be seen that 6% of the amount of defective areas are not repaired at all. If the amount of 

insufficient routed areas (either due to segmentation errors or positioning errors) is added 

(depending on the purpose of the panel, e.g. panels for laminating/coating must not show 

soft bark at all), approximately up to 10% of the defects need manual re-work or lead to a 

downgrade of the panel. With higher quality panels showing only some defects with less 

complexity (e.g. less than 10 per face in quality A in contrast to 30 defects and more on 

quality C panels) the patching result is improving dramatically. 

To highlight the challenge of automated patching on low-quality plywood panels Figure 6-33 

illustrates a quality C panel after automated patching and sanding. 
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Figure 6-33: Example of low-quality (C-quality) plywood panel (spruce) posing high 
demands especially on segmentation, classification and decision making. Red circles 
highlight selection of patched defects shown below (from left to right). 

 
Figure 6-34: Patch ok, although 
insufficient routing results in poor 
appearance. (Left highlighting circle in 
Figure 6-33). 

 
Figure 6-35: Path intentionally 
not carried out completely at the 
panel’s edge, combined with 
crack.  

 
Figure 6-36: Proper patched defect 
without pre-processing. (Right 
highlighted circle in Figure 6-33). 

One can see the potential of false detection on the various coloured texture and the issues 

along the panel border which are shown yet untrimmed. Therefore a certain ratio of 

unnecessarily repaired to not repaired defects needs always to be accepted. The decision if 

the resulting compromise is towards excessive or insufficient patching is therefore a 

fundamental configuration of the system. 
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6.2.1.2.1 Optimization approaches 

As already identified in the beginning of the previous section, optimization in the 

(automated) patching of wooden panels can be summarized under three main aspects:  

 Economic optimization mainly addresses throughput of panels in the production line 

and to a subordinated extent the usage of material. 

 Ecological optimization favours less usage of chemicals (putty) and preservation of as 

much wood as possible. 

 Appearance optimization focuses the aesthetics of the final result in terms of 

selection from colour and/or texture options of the filler (if available) and 

minimization of artificial-looking contours as a result from routing. 

Optimization under economic aspects in terms of throughput and reduced processing time is 

highly related to the complexity of the individual patching operations. An example is given 

for the patching with putty: complex shapes that force the routing and filling tools to 

execute complicated movements (sudden changes in direction in the context of discrete 

curves, forcing accelerations and de-accelerations) may preserve sound material and may 

need less filling material but are most time-consuming. On the other hand, especially with 

x/y-axis based patching tools, smooth curves can be executed with high acceleration, but the 

limitation to shapes that fulfil this criterion is at the cost of removing sound material (and 

therefore the need to use more filling material). 

Figure 6-37 shows an image of a resin pocket on a panel of spruce plywood that needs to be 

repaired by pre-processing with a router and subsequent filling with two-component putty. 

An example for an associated repair instruction generated by the algorithm introduced in 5.5 

is shown in Figure 6-38. The red lines and vertices show the path for the routing tool while 

blue lines and vertices correspond to the path for the filling tool. Additional information 

about area (A, mm2) is given. 
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The way the repair is carried out in Figure 6-38 is preserving the sound wood but consists of 

complicated movements of the tools with unsteady curves for the router (red) and four 

impasses for the filling tool (blue) which require unfavourable inward and outward 

movements. Figure 6-39 shows an alternative repair instruction where the settings are 

adjusted to produce smooth curves with the avoidance of abrupt reverse movements. The 

nozzle can thereby operate with high flow. With rising viscosity a slightly S-shaped 

movement would be more favourable. In the example given, the area that is routed and 

therefore has to be filled is raised from approximately 2927mm2 to 3650mm2 by therefore 

nearly 25% (volume is depending on the thickness of the face veneer to be routed which is in 

certain limits a machinery parameter). In parallel the overall execution time is reduced by 

more than 50% (depending on various parameters at the machinery which are out of the 

scope of the scanner). With reference to low-quality panels showing 30 - 50 defective areas 

to be repaired (refer to Figure 6-29 and Figure 6-33 the saving potential in terms of 

throughput as well as in putty consumption is enormous but a compromise needs to be 

found. 

Optimization under economic and also ecological aspects (in terms of less usage of 

chemicals) means therefore a preference to either high performance of the machinery or 

less consumption of filling material or vice versa. In practice the higher quality panels are 

   

 

Figure 6-37: Resin pocket that has to 
be repaired by routing first and then 
filling with 2K putty. 

Figure 6-38: Example for a 
corresponding repair instruction 
(red track: router, blue track: 
filling tool) where the preference 
is set to the preservation of sound 
wood and less usage of putty, 
resulting in complex, time-
consuming movements. Area is 
2926.5mm2. 

Figure 6-39 Example for a 
corresponding repair instruction 
(red track: router, blue track: 
filling tool) where the 
preference is set to the least 
time-consuming execution of 
both tools which is achieved by 
smoothed and straight 
movements. Area to process 
increases to 3650mm2. 
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automatically patched with adjustments preferring slower but more precise processing while 

lower quality panels are patched at high throughput. This is because a compromise between 

process throughput and saving material respectively, creating less artificial looking patches, 

needs to be found. Finally, the correlation of the two optimization possibilities with the 

quality of the panels supports the finding that appearance aspects are tightly linked to 

ecological optimization. 

6.3 Summary 

The possibilities to control and measure the overall performance of the proposed system 

respectively of the implemented research methods have been shown by testing. 

By setting up a training experiment, the learning from image examples has been 

accomplished and the proposed classification system has been verified. Six common defect 

types on plywood panels (Bark, Dark Knot, Ringed Knot, Sound Knot, Cracked Knot and Resin 

Pocket) have therefore been evaluated in terms of the achievable Average Precision of the 

classificatory system and by varying the generalisation capability. Further the improvement 

of the a priori knowledge extension to the pixel feature vector has been tested and 

compared. To address the claimed capability of judgement on aesthetic appearance (local 

aesthetics) additionally to these six common defect types the training and classification of 

unobtrusive and unpleasant looking Dark Knots has been carried out. With the knowledge 

base for detection of defects built up, the main component in the detection & evaluation 

layer of the new scanner architecture has been addressed. 

The Expert System component in the decision making layer of the scanner has been 

evaluated for the patching with dowels as well as with putty, using the rule base established 

in chapter 5 based on the appearance quality II defined in ISO 2426-3:2000. With data from 

realistic, industrial environments the decision making component has been validated by 

customer satisfaction. Finally the identified optimization approach under economical, 

ecological and appearance-related aspects has been evaluated. 

In the following chapter the results of the research are briefly reviewed. Results and findings 

are discussed and interpreted also with regard to relevant applications found in literature. 

Besides the generalisation and the impacts of the study, the limits of the study are subject to 

the discussion and outlook to future applications is given.  
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7 Discussion and Conclusions 

7.1 Review 

It is understood that the availability of an automated visual inspection system being able to 

deal with tasks of aesthetics and being usable in the context of an automated, industrial 

patching is highly desirable in the wood working industry from an ecological view as well as 

from an economical view. A rethinking from scrapping defective wooden panels to 

upgrading them for the reason of added value raises the labour costs in this currently still 

mainly manual process. In highly automated woodworking production environments, 

inspection systems incorporating machine vision technologies are already successfully used 

mainly for the purpose of grading with respect to the various natural defects. So it seems 

sensible to use similar systems in the important process of upgrading by patching those 

defects. The review of literature summarized the findings of previous research in the area of 

automated visual inspection on wood products which led to the insight that multi-sensorial 

setups are essential to overcome the identified deficiencies and limitations of current 

systems. An overview on the production sub-processes of patching solid wood panels and 

plywood panels has been gained as well as an overview on the defects on wood. The variety 

of a natural product like wood poses high demands on both machine vision systems and 

humans. The huge bandwidth of appearance, mainly influenced by the presence of 

acceptable knots and unacceptable surface defects is manageable by trained human 

workers, but issues with reproducibility and reliability arise, especially when aesthetic 

aspects are included. Methods were identified that address the two main tasks in the 

rectification process; these are the detection and the decision making. Both tasks are carried 

out easily by humans through incorporation of their abstraction capability, flexibility, 

creativity and fast decision-making ability. Having understood that colour and texture are 

equally important and that further supporting measurements of defect-specific 

characteristics should be incorporated in an automatic pendant of the wood worker, the 

system design of a multi-sensorial scanner system has been accomplished. The design on 

system level as well as on processing level has thereby adopted the principles of the human 

way of working as a model. The aesthetic issues are found to be necessarily addressed 

separately as local and global aesthetics in different processing stages. While local aesthetics 
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are found to be modelled best by teaching image examples in a supervised machine learning 

approach for the use in the detection and evaluation, the global across-the-board aesthetics 

follow certain rules which can be formulated well in human language to be incorporated in 

the decision making for patching. 

The overall concept towards automated patching can therefore be summarized on a top-

level view with a: 

 System architecture, abstracting the information flow based on modules related to 

hardware and logical building blocks/units in hierarchical order and providing sensor 

data fusion. 

 Segmentation approach as the first instance in the image processing chain based on 

registered image data following the human approach to this task identifying common 

irregularities first before classifying them. 

 Classification capable to address the complexity of industry standards as well as 

human perception-related product requirements (local aesthetics) with the concept 

of using the maximum available information. 

 Decision making using an Expert System based on fuzziness in the rules and to be 

able to deal with the creation, modification and adjustment of the overall favoured 

panel appearance (overall aesthetics). 

 Patching data generation being able to provide instructions to machinery on where 

and how to perform the actual patching using different filling materials and pre-

processing tools. Optimization capabilities are provided in this final processing step 

related to costs as well as to appearance. 

 User interface for interaction with the wood working expert for the purpose of 

adjustment, teaching, monitoring and process control, incorporating rather wood 

worker expert knowledge than machine vision expert knowledge. 

From the tests related to customer satisfaction and acceptance it can be stated that the 

complexity of the rectification rises with decreasing quality of the panel as this is closely 

related to an inferior appearance which is dominated by bigger defects. Often these bigger 

defects are a compound of several defects (e.g. knothole with bark showing also glue and 
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cracks) which is the main cause for the rising complexity. Depending on the panels’ purpose 

a rejection rate of 6-10% of the defects has currently to be accepted on low-quality panels. 

With 30 defects on average on C-quality plywood panels this implies statistically 1 – 3 

unsatisfactorily patched defect(s) on each panel. Therefore a subsequent manual process for 

re-working seems be unavoidable at least for low-quality panels, still offering huge potential 

for cost savings and throughput enhancement compared to the overall manual process. 

7.2 Discussion  

7.2.1 Interpretation of findings 

A novel system has been designed, implemented and studied in real-production 

environments showing partially the capabilities of human workers when it comes to 

incorporate specific aesthetic issues in the decision of what and how to patch. The system 

can therefore be used for the adjustment for different levels of perceived acceptable 

aesthetic appearance. As aesthetic appearance is a subjective notion, standards like ISO 

2426-x and company-specific specifications try to establish certain parameters and related 

values for acceptable appearance classes of wooden panels. The system provides capability 

to define and adjust detection and repair rules according to these specifications including 

the level of intervention (patching type including pre-processing) for a certain production 

batch. It is hereby possible to achieve satisfying results with automated rectification in 

comparison to manually carried out patching under certain constraints. The Human Visual 

System (HVS) is greatly optimized to judge new scenes, to identify previously unseen objects 

and is able to identify irregularities often on a basis of like and dislike. The great abstraction 

capability is seen to be the HVS’s key of success. Learning is understood to be thereby an 

important component as abstraction relies on a certain amount and variety of observations. 

The common characteristics are assumed to be learned from such a variety, enabling 

generalisation capability. Besides that, some simple principles can be identified in the 

iteratively repeated completion of the manual tasks involved in defect detection as a first 

step to defect rectification. These principles can be used to improve the result of the 

automated counterpart, once adopted. The approach to extract irregularities on previously 

unseen data before an actual assessment is one of them. Learning from examples is another, 

very important one: A child learns what a cat looks like by direct experience and being 
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shown many visual images of cats. If asked to draw a cat the child will produce a very 

abstracted line drawing but will recognizable as an abstraction. 

The human perception and especially the HVS are much too complicated to be fully 

understood, but these clearly identifiable principles can be adopted to model the HVS in 

specific tasks, for example the human wood worker in defect detection. With the studied 

approach of automated defect detection on wooden panels the main principles 

“segmentation prior to classification” and “learning based on image examples” have been 

demonstrated to be adaptable and to be feasible also for a machine. 

The concept of learning from raw data, waiving feature engineering is adopted from Deep 

Learning [Deng and Yu 2014] which is a branch of machine learning and whose research has 

spawn several algorithms specifically for large-scale complex data structures like images, 

recorded speech and similar. The decision to incorporate the well-known classification 

techniques (SOM, SVM) in this research is due to their proof in industrial applications, 

related to the aim to install prototype systems in real-production environments. Great 

capabilities are seen when following the path of development of Deep Learning as the 

underlying principle has been shown to work in the context of an industrial application. 

Having shown the feasibility of replacing manual labour in the defect detection by dedicated 

machines, a quite huge field of similar applications is opened. The automated quality control 

incorporating visual sensors is currently facing its limits with the huge bandwidth in the 

appearance of natural products. The principles of recognition identified and adapted for 

defect detection in this research might help to improve defect detection on other natural 

surfaces as well, more generalized the localization of objects in terms of irregularities and 

their identification in previously unseen natural scenes can thereby be addressed. Thinkable 

applications are therefore sub-tasks in face-recognition, for example the segmentation of 

the major elements like mouth, eyes, nose and their correct classification prior to further 

processing. In parallel to the implicit and complex aesthetic information contained in images 

of knots, visual data of eyes contains information (male/female, happy/sad, tired, etc.) 

which is quite easily interpretable by humans, but currently is limited interpretable by 

machines. This issue could be promisingly addressed with the proposed approach of raw 

features and large-scale non-linear classification. The limitation of this approach is thereby 

on single objects as elements of a scene rather than on complete scenes, e.g. knots on a 
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wooden panel have been shown to be classifiable well, also in terms of local aesthetics, but 

not full images of complete panels. A prerequisite for adopting this approach is the 

availability of huge training data sets. 

The appearance assessment of complete wooden panels and related global aesthetics is 

incorporating several relationships among the objects (e.g. knots) in the scene. Besides the 

fact that complete images of panels are represented by many times the amount of pixels 

than it is the case for a knot image snippet for example, the approach of raw features in the 

training from examples is impracticable for an automated approach on panel-level. 

Decomposition of the scene is done by the human counterpart and has been adopted in the 

approach to decision making in the automated rectification. The relationships of elements in 

a scene are part of implicit and explicit knowledge of the wood worker and reflect also in the 

implicit preference of a customer of the wood product. To model this incorporated 

knowledge uncertainty has to be addressed in the formulation of rules that are used to 

represent such knowledge. From a technical point of view such complex decisions can be 

represented by a high-dimensional decision space spanned by a certain number of 

parameterized rules which thereby define a decision surface in that space. Adding a rule 

simply helps to refine the decision making in terms of decision space segmentation while the 

parameters add weight along the axis belonging to the specific rule. Using rules formulated 

in human language but interpretable by a system as used in the decision making for 

automated patching is seen to be the key to a variety of complex decisions related to human 

perception in automation technology. In combination with the previously discussed 

classification of objects in a scene, the interpretation of the scene analogous to the overall 

appearance of a wooden panel could be adapted to the evaluation of camera-acquired 

scenes in autonomous driving vehicles for example. Especially the concept of incorporating 

rules formulated in human language, linking the segmented and classified objects, might fit 

well to the interpretation of traffic signs and the related decision making. Coming back to 

wood products the development of a wood grading system could be accomplished to ensure 

the visually acceptable combination of wood-based components. For example in the 

production of kitchens and furniture having a wood look certain homogeneity is desired by 

the end customer and all cabinet carcasses of a kitchen should have similar looking faces 

related to the visual texture, which is defined by the mean colour and frequency of the grain 

structure, but also by the amount and frequency of knots. 
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The actual patching of wooden panels has been identified partially as art handicraft, 

especially when it comes to the proper selection of dowels by means of colour and texture 

or when routing needs to be executed prior to filling with putty as several options exist on 

how to achieve a pleasing result. While manual labour will always incorporate human 

creativity which hardly can be modelled by algorithms, automatically generated patching 

instructions run the risk of producing more artificial looking patches as well as of producing 

repeatedly, similar looking patches which might be appreciated in some cases and might be 

annoying in others. The judgement capability incorporated in this matter remains reserved 

to humans at the present time. Nevertheless optimization parameters have been indentified 

that allow adjustments towards either precise - therefore more complex - carried out 

patching or more efficient patching favouring throughput and therefore addressing 

economic aspects. In large-scale industrial productions like for wooden panels, this lack of 

creativity and related judgement is less a disadvantage than in the manufacture of more or 

less unique products where manual labour is favoured over cost saving and increase of 

throughput, as highly automated processes favour reproducibility and reliability. 

The bottleneck in automated patching seems to depend on the amount of defects per panel. 

For the studied prototype systems it can be seen that with only a couple of defects (higher 

quality boards) the transportation speed and processing by the tools is quite high and the 

scanner system is the limiting component. With rising amount of defects both the software 

computation time of the scanner and the processing time of the patching tools increased, 

but more drastically for the machinery, whereby the path optimization (between the 

defects) for the tools is currently out of the scope of the scanner and is seen as an area of 

improvement. The detection and patching data quality decreases on more complex and 

therefore more demanding panels of low-quality and with more defects. When 

incorporating these two findings it can be concluded that it is more efficient to use 

automated patching on medium and high quality panels. 

Besides the automation of the actual patching process a system for automated patching 

offers secondary benefits as a source of data related to the process. With its data interfaces, 

not only to the patching machinery, but also to Enterprise Resource Planning systems (ERP), 

Production Planning Systems (PPS) and similar databases, an automated patching system is 

able to deliver valuable information. This includes statistics about the occurrence of certain 
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defects, amount of used materials, achieved qualities as well as a possible feedback-loop to 

the preceding veneer sorting, addressing overseen, not repairable defects. It can be stated 

that superior production processes thereby may become more effective, to a certain extent 

more intelligent. 

7.2.2 Interpretation in context of literature 

Earlier research and present known systems addressing the similar, but less demanding, task 

of grading wooden panels evolved from single image channel to multi-channel imaging 

systems, incrementally incorporating colour imaging, structural and three-dimensional 

measurements. The ever-growing computational power enables the further development of 

multi-channel imaging systems. Imaging in spectral bands like UV, tailored to specific effects 

on wood, has been incorporated additionally and with benefit in this study. With a rising 

number of sensors the importance of a well-structured concept concerning the sensor data 

fusion comes to the fore to handle the algorithmic complexity. Unlinked evaluation of the 

single channels is found to be still common in current system designs, only linking the results 

on the highest level of information processing (sensor fusion on symbol level). Ideally a 

multi-imaging sensor system acquires pixel-wise registered multi-channel images, 

independently from varying spatial resolutions, number of sensor elements (pixels) and 

sampling rates (sensor fusion on pixel level). This allows the linkage of the channels on the 

earliest possible stage of evaluation when using appropriate algorithms. Known present and 

comparable systems have further been found to be designed in a monolithic approach from 

the aspect of information processing. The studied system design differs to these systems in 

terms of its clearly structured, modular system architecture for both software and hardware. 

This incorporates different layers for image data acquisition, pre-processing and data fusion, 

evaluation and classification and finally content-interpretation to derive patching 

instructions. This design follows the paradigm of increasing abstraction of the underlying 

image data. 

The majority of comparable systems are found to be based on the non-segmenting 

approach, which means that the captured image data of a wooden panel is processed 

entirely in equal-sized tiles. Problems arise from this tiled processing approach in terms of 

the tile size being inappropriate to the various defect sizes. In automated patching, it has 

been found to be more intuitive to use the segmenting approach: Strong characteristics of 
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surface and aesthetic defects gathered with optimized sensors in combination with a priori 

knowledge, for example derived from symmetry and repetition of the defects, are proposed 

to be used to create a so-called Defect Candidate Map. This map is then used for a reliable 

delimitation of areas of interest from the background. These defect candidates are then fed 

solely to the defect classification system. This approach imitates the manner in which 

humans solve the task by first identifying irregularities in an adaptive manner and only then 

categorizing them. Thereby, in the very beginning of the image processing chain, the 

adaption to human visual perception is achieved. The design experiments and related testing 

show mainly satisfactory results which are seen to be superior over the non-segmenting 

approach that often fragments the defect candidates. A worsening in terms of segmentation 

results getting incomplete with rising complexity of the defects is however observed. 

Based on the segmenting approach a processing chain has been developed with respect to 

the comparative human approach to the task of defect detection and defect classification. 

The processing is thereby executed on the complete defect. This completeness allows a 

much more effective classification (average precision significantly above 90% constantly 

among the different defect types). Table 7-1 shows the average precisions achieved for the 

defect types incorporated in the training experiments, including a pure aesthetic judgement 

of unpleasant Dark Knots. 

 Bark 
Dark 
Knot 

Ringed 
Knot 

Sound 
Knot 

Cracked 
Knot 

Resin 
Pocket 

Unpleasant 
Dark Knot 

Average 
Precision 
(AP) 

96.39% 97.16% 94.63% 95.75% 94.57% 99.14% 91.93% 

Table 7-1: Summary of average precisions achieved in the classification of defect types. 

Other, earlier research on machine vision applications for grading wooden panels (either 

solid wood or plywood) reports classification accuracies in the range of 75% – 98%. The 

different defect types thereby perform with great variance; easy to classify defects as holes 

and cracks can be classified in the range of 90 - 98% due to strong (3D) features. Other 

defects are reported to perform less reliable, independent from the classification technique 

used. For example, Alapuranen and Westman [Alapuranen and Westman 1992] showed that 

only using colour features with a K-NN classifier can result in correct classification rates of 

92% for rotten knots, 88% for sound knots, 85% for colour strokes, 98% for clear wood and 
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only 75% for pressed-in thrash particles on plywood panels of spruce. More complex defect 

types like finer discriminated knot types (dark knots, rotten knots, knots with bark, sound 

knots and cracked knots) addressing implicitly local aesthetic issues, which are sometimes 

even hard to discriminate correctly by human experts, are commonly reported to perform 

only in the 75% - 85% range of correct classification. Lampinen and Kauppinen [Lampinen et 

al. 1994] showed a performance increase from 77.0% to 81.3% when extending solely 

texture feature-based classification on solid spruce boards using a K-NN classifier with colour 

features, respectively a multi-layer perceptron neural network from 76.0% to 82.7% mean 

correct classification rate. In particular their setup distinguished between seven different 

knot types (sound knot, decayed knot, dry knot, encased knot, leaf knot, horn knot, edge 

knot). It is necessary to understand, that in the scope of automated patching much higher 

demands are posed on classification accuracy than in grading tasks. This is due to the fact 

that false positives destroy sound material unnecessarily. This may result in a quality 

downgrade for the whole panel. False negatives leave defective areas unrepaired. This is 

unacceptable in certain subsequent processing steps like foil-coating the panel. 

The underlying research has identified that improvement of the classification accuracies, 

especially under local aesthetic aspects, is gained from maximizing the involved information 

content. This is achieved in terms of new sensors gathering additional information, but also 

by waiving explicit feature preparation and selection in favour of using raw image data 

directly and incorporating huge amounts of training samples. This clearly distinguishes the 

studied approach from the approaches based on feature engineering commonly used. To 

deal with the related huge amount of data, respectively with the thereof resulting high-

dimensional feature spaces, novel classification techniques like Support Vector Machines 

(SVM) must be incorporated. The concept of the support vectors representing the relevant 

training samples on the optimal decision boundary guarantees a good computational 

performance (O(n) in testing) compared to the popular K-NN algorithm (O(log(n)) for 

example, as K-NN needs to store all the training samples and needs to carry out an excessive 

search. SVMs show therefore to be suitable for large-scale online classification in industrial 

applications. Improvement of the classification accuracy nevertheless remains substantial 

due to the huge quantities of defect candidates. With thousands of repairs per hour, only 

some tenths of a percent of either higher true positive rate or lower false positive rate imply 

higher creation of value, respectively some tenths of a percent of lower false negative rate 
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save money due to unnecessary manual re-work. In the worst case an already coated panel 

needs to be scrapped solely due to a single undetected and therefore unpatched defect. 

The main requirements to the patching instruction generation are the preservation and the 

adjustment of the global aesthetics of a wooden panel. Patching instructions must be 

compiled incorporating explicit as well as implicit rules which are part of the wood-working 

expert’s knowledge. This knowledge can be formulated well in human language and has 

been extracted by observations of manually carried out repairs in real production facilities. 

The approach to use an Expert System in form of a Fuzzy Inference System processing these 

formulations including linguistic variables (adjectives) whose meaning can be fuzzy (little, 

some, strong, weak, knotty, plain, unsettled, calm, etc.) represents expert knowledge in a 

more intuitive way than sets of hard to interpret thresholds in conditional programming. 

This approach has to the best of one’s knowledge never before been applied in the 

production of (wood) products, especially not in the automated generation of patching data 

which is seen to be accomplished on wooden panels for the first time by the prototype 

systems developed and studied in the scope of this research. Expert Systems and neuro-

fuzzy methods have recently become popular for mapping product parameters to customer 

feelings towards the product. This is of interest in product design incorporating Affective 

(Kansei) Engineering. This parallel development strengthens the chosen approach. 

The extension with additional rules can be used to further bias the decision surfaces under 

several aspects, e.g. economic, ecological or aesthetic optimization. In addition, fundamental 

parameters in the patching with liquid fillers have been identified that allow the 

optimization of the patching process based on the necessary compromise between panel 

throughput and material consumption and appearance. 

For the system to be easily adaptable, explicit feature selection which would require a 

machine vision expert’s work of analysis and testing has been waived. This means the wood 

working expert now has to correctly label huge sets of example image snippets for the 

supervised learning. The advantage of SOMs to project high-dimensional problems to a two-

dimensional grid is exploited hereby for an automated pre-sorting of the image snippets 

used for the final training. This concept of grouping similar images from defects on wooden 

panels has been proposed initially by Kauppinen [Kauppinen 1999] for the actual 

classification in his research. Kauppinen achieved comparatively good results, but faced the 
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limitations caused by feature selection which he needed to incorporate due to issues with 

the computational complexity of SOMs. In the setup of the prototype systems used in this 

research, the SOM is used offline only to pre-group the images by similarity based also on 

handcrafted features. This considerably supports the wood working expert in the tasks of 

defining and labelling training sets and training set harmonization. The number of training 

images which must be explicitly labelled is thereby reduced drastically to only the visually 

noticeable outliers. Fast retraining from scratch as well as learning something new is 

therefore possible based on an easy to understand pictorial representation. Appropriate 

(radiometric) image calibration techniques further allow the exchange and re-use of the 

image database representing fundamental knowledge between different systems. This in 

turn allows more homogenous results among different production lines and even among 

production plants. 

7.2.3 Generalisation and implications 

In the discussion of the research methods for detection and decision making, several fields 

of application were already outlined where the proposed methods might be of beneficial 

use. The generalisation from wood to other natural surfaces, especially with coloured and 

textured appearance and huge portions of visually perceived quality, seems logical and 

feasible. The large-scale classification using raw features is seen to be able to replace 

conventional methods whenever image data can serve for learning from examples directly, 

enabling much more complex inspection tasks to be automated. This is especially valuable 

when aesthetic judgements are requested as these are hard to describe numerically in a 

feature engineering approach. It is definitely useful to incorporate registered colour images 

in any case due to the good interpretability and to establish a connection to the perception 

and knowledge of the human(s) creating the training data sets. Furthermore quite huge 

training data sets should exist. The concept of the A Priori Knowledge Feature Vector 

Extension may be used to additionally incorporate data from acoustic sensors and/or haptics 

sensors to improve automated product quality inspection for example. 

As identified previously, the rule-based Expert System incorporating fuzziness is actually 

analysing a scene which is set up by the various apparent defective and non-defective 

elements in the case of the surface of a wooden panel. This concept of combining object-

identification with scene-interpretation could be adapted to various applications 
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incorporating (multiple) spatially resolving sensors, from vision-based autonomous driving to 

earth-imaging for geo-information. 

Automated rectification can be understood as the automated drawing of specific 

consequences from the scene analysis and can be imagined on a variety of products. 

Although non-flat surfaces introduce an extra challenge, for the sensors as well as for the 

actuators, the automated production of wooden goods beyond the limitation to panels 

could profit from the technology developed in this research. The application to panels of 

stone is more a question of adapting the sensor setup than the decision making, patching 

data generation and patch application, as higher-valued stone panels are currently patched 

in a very similar way to plywood panels by using liquid fillers. The modular approach of the 

system design and the fact that importance has been placed on the traceability of the 

information processing, involving images whenever possible is seen as the key to adaption of 

automated patching to other natural surfaces in principle. 

Large-scale automated patching on natural materials like wood and stone, used as feedstock 

for therefrom assembled goods, might have impact on the availability and therefore the 

price of these goods. While real-wood flooring, for example, has had, for several years, an 

exclusive character due to much higher costs than laminate flooring or of course linoleum 

covered floors, the modern production of ultra-thin face veneers for parquet flooring has 

already dropped the price significantly. With large-scale automated patching not only the 

yield from the currently used wood species is significantly increased, but other, faster 

growing wood species like Eucalyptus and Caribbean Pine with therefore more and bigger 

defects might become usable and worthwhile. While ecological benefits can easily be 

derived from such a theoretical progression of an increased use of renewable raw materials, 

questions arise on the possibilities and needs of recycling large quantities of natural 

materials patched with artificial compounds ranging from water-based putty to polymers like 

polyurethane and epoxy resin. 

7.2.4 Limitations of the study 

This thesis and the underlying study of prototype systems for automated patching of 

wooden panels is solely based on panels (solid wood panels and plywood panels) made of 

softwood, mainly Nordic Spruce and to some extent on panels of Pine Radiata (plywood 



 

186 
 

only). Due to the industry-driven nature of the research project the prototype systems were 

linked and therefore limited to the needs of potential customers. The availability of panels 

made from other types of softwood like Larch and Fir could have proven the concept in 

more detail especially under appearance and aesthetic aspects. Further, the degree of 

flexibility of the information processing components could have been shown, concerning 

detection as well as the actual patching, as different defects and different appearances imply 

different rules for the generation of repair instructions. 

Panels made from hardwood, for example birch, needed to be excluded from this research 

for the same reason as for Larch and Fir. The scatter effect on hardwood is expected to be 

much less intense due to the different cell structure compared to softwood. This presumably 

raises several issues on the segmentation concept and the Defect Candidate Map in the 

application on hardwoods. 

The validation tests using real-production panels are extremely time-consuming. Only a 

packaging unit of 50 panels can realistically be scanned, marked, evaluated, patched and 

assessed per day, which represents a certain constraint on the validity of the gained 

statistics. Besides a limited number of panels the fact that a natural product like wood 

incorporates an almost infinite bandwidth of appearances, both locally per defect and 

concerning the overall panel, renders it practically impossible to provide the proof that such 

a system for automated patching works correctly in all cases. Measures like accuracy in 

detection and decision making used as a statistical measure on the basis of a representative 

sample of panels therefore must be accepted as sufficient. Only by proving the adaptability 

of such a system to changes on the raw material by efficient configuration and training 

capabilities can the acceptance be achieved. 

While wooden panels patched solely with dowels can be verified in detail before sanding, 

this is impractical for panels patched with plywood, refer to Figure 7-1. Marking the defects 

manually before scanning has been incorporated on solid wood panels as shown in Figure 

7-2. 
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Figure 7-1: Plywood panel patched with putty does not allow assessment and replicability 
using markings made previous to scanning. 

 

Figure 7-2: Defect marked previous to scanning and patching with dowels for replicability 
purposes and evaluation before sanding. 

The assessment of patched plywood panels after sanding has therefore been carried out on 

the basis of acceptance of the final result. No unique traceability of the panels from scanning 

to sanding was available. This could have been achieved by the use of Radio-Frequency 

Identification (RFID) technology with RFID chips laminated into the panel for example but 

was not adopted due to cost. More simple and cheaper methods like printed barcodes, 

stickers and similar are destroyed during sanding and edge trimming. Therefore no link from 

the appearance and the condition of the panel before patching to the visible result of 

patching after sanding, by viewing the corresponding images for example, could be 

established. Further, no reconstruction of the patching data generation including decision 

making could be made for the same reason. This has several implications: 

 The existence of a better solution could not be assessed in the case of an accepted 

patch. 

 A certain unknown amount of false detections and subsequent unnecessary repairs 

may be assumed among the accepted patches. 
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The limitations and constraints of the industry-driven research, especially in terms of 

available time, also did not allow investigating into all possible alternatives concerning the 

research methods and related algorithms. The methods therefore needed to be pre-selected 

by theoretical assessment and by specified requirements, e.g. a classifier able to handle 

huge sample sizes, high dimensionality, showing good convergence and a unique solution in 

training, and an expert system to incorporate fuzziness in the rules. Furthermore, the 

industrial applicability of the methods stood in the foreground. 

Due to the quite time-consuming training and testing on the available hardware, linear SVMs 

approximating the proposed non-linear counterparts had to be used. By showing acceptable 

results, this technology in principle has been shown to be appropriate and gives a promising 

outlook. 

Certainly the cultural background influences the rules derived. The restriction on panel 

products produced for the European market introduces limitations concerning the cultural 

differences in the perception and appreciation of wood surfaces including aesthetics 

preferences which most likely pose further, yet unknown requirements. 

7.3 Conclusions 

Human labour in the production of wooden panels, specifically in the task of finishing the 

wooden surface by patching, can now be replaced by machines. It is therefore now possible 

to detect and rectify surface and aesthetic defects in an automated manner such that the 

output is satisfying compared to the results of the human counterpart.  

Specifically, it is now possible to automatically discriminate defects on wood surfaces by 

physical and aesthetic properties through a newly built system using machine vision, 

knowledge-based decision making and intelligent automation. This answerers the research 

question on “how it is possible to detect and repair surface and aesthetic defects on natural 

surfaces like wooden panels in an automated manner such that it can replace human 

labour?”. It has been demonstrated that for this purpose human perception can be modelled 

by training from huge sets of multi-channel images. Further, human expert knowledge 

formulated in natural language has shown to be usable in machine-interpretable rules by a 

specifically adapted Expert System. When compared to the results of the wood workers’ 
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labour, in certain limits it is possible to achieve aesthetically satisfying results with this novel 

automated patching, 

The underlying research successfully addressed the thesis that an industrial-suited 

automated system can be designed, built and integrated, satisfying the requirements for 

rectification of natural surfaces. The therefrom derived aim “to develop a solution to 

automatically generate patching instructions which are to be applied on natural surfaces by 

automated tools” has been met by attaining all the five initially stated objectives: 

 The first objective was to identify defect detection techniques and to assess their 

adaptability for the specified task of automated patching. This has been met by 

gaining an overview on potential methods from a comprehensive literature review 

first. A selection of appropriate methods has then been made academically by 

contrasting them against previously identified requirements.  

 The second objective was to establish research methods for the purpose of defect 

detection for decision making, including the requirement of aesthetic assessment. 

This has been met by developing a unique combination of a segmenting approach on 

the input images and Support Vector Machines with direct image classification, 

following the principle of the Human Visual System. 

 The third objective was to indentify suitable common patching techniques for 

different types of defects on different types of wooden panels. The patching with 

solid fillers (dowels), mainly on high-valued solid wood panels, and the filling of 

optionally previously routed defects on both solid wood panels and plywood panels 

with different types of liquid fillers (putty) have been identified as the most required, 

reasonable and promising techniques to be automated for industrial productions. 

 The fourth objective was to implement and integrate the corresponding generation 

of patching instructions. By development of a specifically tailored Expert System this 

objective has been completed. This Expert System is holding the rules for patching 

with different types of putty and dowels including appropriate pre-processing. The 

concept has been demonstrated working in an industrial production. 

 The fifth objective was to devise possibilities for adjusting quality, also in terms of the 

final appearance of the panels. This has been met by incorporating wood working 

expert knowledge in both main data processing stages of defect detection and 
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patching data generation. This has been achieved first by combining unsupervised 

and supervised learning to a unique method preventing loss of information. This 

novel method is able to model and generalise also aesthetic properties of potential 

defects. Second, this objective has been met by incorporating adjustable rule sets in 

the Expert System for modelling the customers’ preferences towards the overall 

product appearance. 

Prototype installations show that replacing the manual labour in this diverse and demanding 

task by a machine is now possible. Patching wooden panels has previously been conducted 

by trained operatives. Despite certain limitations automated patching can therefore achieve 

economic benefits due to: 

 A much higher production throughput because of reduced need for manual 

workplaces. 

 Sensor data fusion from multiple imaging sensors at low level to combine colour, 

texture, structural and defect-specific measurements to gain maximized information 

content in detection and evaluation. This opens new possibilities for intelligent 

automation. 

 A defect-segmenting approach followed by classification to better model the human 

visual system for the improvement of intelligent automation. 

 

The main findings of studying the proposed methods and the contribution to knowledge are: 

 Training with image examples directly in supervised machine learning is the best way 

to tell a machine what is visually acceptable and what is not. This could not be 

achieved in former attempts and is now possible. 

 Feature engineering must therefore be replaced by methods similar to deep learning 

in machine vision tasks addressing aesthetics. This is seen as the best way to deal 

with the related complexity. 

 Multi-sensorial images holding information (features) from different spectral bands 

like UV and IR as well as from Scatter Imaging can and need to be incorporated. This 

is related to wooden properties not being visually perceptible from the colour image 

but being perceived by human experts through a-priori knowledge. 
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The result from development, integration and testing in an industrial environment is: 

 Modern machines are not yet able to outperform human workers when creativity 

and decision making is necessary to address natural variety. But specific and clearly 

delineated automated tasks of patching on wooden panels of pre-sorted quality 

outperform human labour in terms of speed, throughput and reproducibility. 

 A working parametric model incorporating high degrees of uncertainty to represent 

the woodworker’s explicit and implicit knowledge related to the actual patching and 

the final appearance of wooden panels. This could also be used in similar tasks like 

grading. 

Automated visual inspection of panels is significantly enhanced by the findings related to the 

previously unsolved, complex task of aesthetic judgement. Having demonstrated that 

patching can be carried out autonomously to a huge extent by machines, a gap in the 

automation of wooden panel production is closed. Costs of manual labour can therefore be 

substantially reduced. For the panel producing sector of the wood-working industry facing 

competition from dumped imports, the automated patching technology is prospectively 

vital. For this reason it is important to establish the generalisation of the methods to 

hardwoods and also to other cultural backgrounds which influence the appreciated 

appearance. This generalized approach to surfaces of other types of wood is rated positively 

and may be extended to natural surfaces such as stone. 

The algorithms developed significantly take control over the sub-process where added value 

is attained and represent a further advancement in intelligent automated production. 

Another future aspect is the coupling with modern and future product design techniques 

incorporating for example customer psychology for the creation of customized product 

appearances. 

The classification and decision making component could further be applied in other areas 

where automated scene-analysis based on classified objects and complex rules relating 

these objects is demanded. 
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7.4 Further research 

The research presented in this thesis resulted in the first (prototype) system for automated 

patching available to the wood working industry and introduced several further questions 

which could not be answered in the scope of this thesis. Further possibilities of research are 

seen with the following topics: 

The investigation into and development of optimized kernels for the use with non-linear 

Support Vector Machines in the classification of raw multi-channel pixel-data, tailored to 

improve the classification accuracy as well as the runtime performance both in training and 

testing. This is seen necessary due to the ever-growing demands concerning production 

capacity and overall performance mainly rated by the achievable throughput. Computation 

time could further be saved with parallel computing and the use of General Purpose 

Computation on Graphics Processing Units (GPGPU). 

The application of the patching instructions generated by an automated system is 

irreversible. Additionally there exist no two identical panels made from real wood. Especially 

in the setup-phase of the prototype system it has been found difficult to test several 

different settings as no real comparison could be made due to these facts. Furthermore, the 

test panels are in the best case downgraded or need to be scrapped in the worst case. 

Computer simulations of the results from different patching strategies and related options 

would help improving the capabilities, adjusting efficacy, shorten setup times and reduce 

costs. Theoretically, auto-adjusting rules incorporating learning from the characteristics of a 

production batch by extending the FIS - Expert System to an Adaptive Neuro-Fuzzy Inference 

System (ANFIS) could be used with simulated patching results. 

Perception of appearance and aesthetics of wood in other, non-European cultures needs to 

be studied to understand the requirements for adaption and extension of the rule-sets used 

in the knowledge base for patching. 

A purely aesthetic repair is a wide but nearly unexplored area in the field of automated 

patching on natural surfaces. Retouching as the process of photo/image manipulation can be 

carried out on digital images quite effectively. Although mainly carried out manually by 

experts using professional image processing applications, a variety of algorithms already 

exists that allows semi-automated retouching. Retouching includes the deletion of parts or 
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objects in an image as well as their creation, either by assembling from several images 

(photomontage) or by creating artificial parts and objects. The artificial creation of image 

data by algorithms is called inpainting. Inpainting could be used to generate synthetic 

patches applicable also to wooden panels. The application could include the overprinting of 

already physically patched defective areas for the reason to fully camouflage the repaired 

area. Ink-jet printing is already successfully applied in large-area digital printing on wood, for 

example in the production of real wood floorings showing so-called “Wood-Design” surfaces 

(e.g. Kaindl TWO real wood design, [Kaindl-TWO n.d.]) which are clear-varnished 

additionally. For the generation of locally printed patches a variety of issues needs to be 

addressed: Besides optimized inpainting algorithms for the image patch generation, the 

colour calibration and colour adaption to the surrounding wood is seen crucial to make the 

patch visually imperceptible. Presumably issues related to the printability of putty and other 

filling materials used for the physical patching will arise in this context and specifically 

optimized filling materials may necessarily need to be developed. The automated decision 

making could thereby draw on much more possibilities in terms of “knot generation”, 

generation of “camouflage textures” and similar. This in turn could open the possibility to 

radically change the aesthetic appearance of a wooden panel. While the current approach is 

able to modify the appearance only in certain limits, for example sound knots are currently 

most often accepted, the panel is therefore being inappropriate for top-quality ‘A’ (no knots 

allowed). Panels which are visually free from any irregularity like shown in Figure 7-3 could  

be produced using overprinting. 

 
Figure 7-3: Defect free surface of plywood panel quality ‘A’. This result would be 

achievable also with large-scale overprinting on lower quality panels while local patching 

is able to remove only some defects and cannot radically change the appearance. 
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The appropriateness of such camouflaged panels would of course be limited to only certain 

purposes as the overprinting most likely will not withstand outside influences in the same 

way as the real surrounding wood and further cannot be processed arbitrarily (e.g. sanding). 

Clear varnish coating might be appropriate nevertheless for several end products like 

furniture and floorings. The fact that most of nowadays produced parquet is no longer 

sandable anyway due to ultra-thin face veneers is a strong argument for this purpose. 

A coupling of large-scale overprinting and the already mentioned Affective (Kansei) 

Engineering could open new possibilities in automated, customized produced furniture, 

floorings and similar wood-based products. With full freedom in the creation of visual wood 

textures by printing, the approach to “Wood-Design Surfaces” described by Kansei features 

linked back to a common Expert System might allow the creation of an unique and 

customer-specific appearance which is seen as an important property in the more exclusive 

range of products. In the example of floorings, besides the acoustics and haptics, the 

overprinted wood would thereby be much more ‘natural’ than laminates for example. 

The overall concept of the proposed automated patching might be transferred to other 

natural and natural looking surfaces. This might be panels of hardwoods as well as from 

stone. E.g. marble which is today patched manually with resin in a similar way compared to 

plywood, refer to Figure 7-4 which shows panels of Spanish Dark Emperador Marble being 

manually patched with brown epoxy resin to close surface defects. 

 
Figure 7-4: Panel of marble patched with epoxy resin (not yet sanded) in a similar manual 

way like plywood. [GHGGroup 2010], image used with kind permission. 
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Single approaches and components like the classification under local aesthetic aspects by 

training examples of what is nice and what is ugly could be adapted to the referenced 

grading systems for wooden panels, lumber and veneer to improve their detection 

capabilities. 

Further unconventional patching techniques respectively patching materials could be 

incorporated. There exist several approaches to use materials for patching that do not 

attempt to hide the repaired area but in contrary emphasize them in an artistic manner as 

shown in Figure 7-5, Figure 7-6 and Figure 7-7: 

 
Figure 7-5: Oak board with tin used for filling cracked 

knots with the purpose to emphasize aesthetically. 

[LUNA-DESIGN n.d.], image used with kind permission. 

 
Figure 7-6: Walnut board with tin used for filling knot 

holes with the purpose to emphasize aesthetically. 

[Buck 2015], image used with kind permission. 

 

For example liquid metals like tin or aluminium can be used for patching and to intentionally 

create an aesthetically pleasing contrast at the defective area, refer to Figure 7-5 & Figure 

7-6 which show hardwood panels of oak and maple whose indentations at knots were filled 

with hot tin. Another interesting synthetic/artificial appearance with an intended contrast 

between the wood and the filling material is achievable by incorporating coloured resins. 

Figure 7-7 shows fluorescent resin used to fill natural and intentionally produced 

indentations on a wood board of Pecky Cypress. 
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Figure 7-7: Fluorescent resin used for filling immersions on a panel of Pecky Cypress. Pecky 

Cypress shows pockets that reside from heartwood which is destroyed by a fungus [Saurus 

2014]. Image used with kind permission. 

Aesthetic patching does therefore not necessarily mean to disguise defective areas but 

might follow the contrary approach of enhancing them, creating intentionally artificial 

looking surface. This opens another field of future work reaching into the field of arts and 

arts created by machines. 
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Appendix 

A.1. Function principle of SOM 

The function principle of the SOM can be briefly summarized as follows: The initial setup is a 

mesh with a predefined number           of equally distanced nodes      
  , each node 

holding a mesh-coordinate             with              , respectively    

           and a random initialized weight vector      whose length equals the feature 

space dimension  , refer to Figure A-1. 

 

Figure A-1: SOM principle: initially equally distanced nodes in the mesh holding weight 
vector with length equal to the feature space’s dimension. 

The mesh is trained by iteratively presenting the training sample    to the map. The goal 

hereby is to find the best matching node    defined by minimal Euclidian distance to    

(refer to Formula A-1) incorporating the Euclidian norm of the vectors in feature space   . 

        
 

 

   

 

Formula A-1: SOM principle: Euclidian norm for identification of BMU. 

                          

Formula A-2: SOM principle: identification of BMU in terms of Euclidian distance to input 
sample. 

This best match is called Best Matching Unit (BMU). Adaption of the BMU and, referring to 

the lateral inhibition of the cortex in the human brain, also the neighbour nodes    is then 

carried out: 
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Formula A-3: SOM principle: adaption of BMU and neighbours according to lateral 
inhibition. 

The adaption according to Formula A-3 incorporates a learning rate   and influences all 

neighbour nodes defined by a threshold   on the distance between    and    in terms of 

the Euclidian distance in the two-dimensional space         of the mesh. The adaption 

therefore bends the mesh to approximate the BMU and its neighbourhood to the presented 

training data, refer to Figure A-2. 

 
Figure A-2: SOM principle: mesh bended to best matching unit (BMU) adapting to 
similarity among the samples. 

Starting from a state of complete disorder when using random initiated weight vectors, the 

training can be separated into two phases: the organisation phase and the convergence 

phase. Large values for the learning rate as well as for the neighbourhood radius should be 

used in the organisation phase to incorporate the whole mesh respectively all the weight 

vectors to move towards the training data so to avoid artefacts. The convergence phase can 

be considered as the fine-tuning of the mesh where the neighbourhood decreases as well as 

the learning rate becomes very small so the weight vectors converge to their correct values. 

While   is typically decreased linearly from 1.0 to 0.0 over the predefined number of 

iterations, the neighbourhood distance can be incorporated to the adaption: 
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Formula A-4: SOM principle: neighbourhood kernel   and learning rate    decrease during 
convergence. 

  is thereby the so-called neighbourhood kernel giving more weight to nodes    with 

coordinate    closer to coordinate    of BMU-nodes   . Much research has been done on 

possible functions for    but ideally some monotonically decreasing function is chosen 

[Kohonen 1989], widely used is the Gaussian function. 

The iterative approach to train a self organizing map is summarizing given in pseudo code as 

follows: 

 initialisation 

 for i=1:number of training samples 

  take sample xi; 

  find BMU; 

  define neighbourhood; 

  adaption of BMU & neighbourhood; 

 end for 
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A.2.  Function principle of SVM 

A.2.1 Linear learning machines 

To establish naming conventions, the linear learning machine will be briefly reviewed. Figure 

A-3 shows a distribution of samples in a two-dimensional feature space which is separable 

(linear two-class classification problem) by a linear function         , in the two-

dimensional case this is a straight line, in general this is a hyperplane expressed by Formula 

A-5 

                     

 

   

   

Formula A-5: Hyperplane in n-dimensional space. 

assigning each sample             a value of 1 when being above the plane and a value 

of -1 when being below the plane by incorporating          .            are the 

control parameters of the function where w is a vector perpendicular to the hyperplane 

defining its orientation and b is an offset to zero point, Figure A-3 gives an exemplary 

graphical representation for the case in the two-dimensional space: 

 
Figure A-3: Separating hyperplane (w, b) for a two-dimensional training set. 

In literature with SVMs [Cristianini and Taylor 2000] the parameters (w, b) are often referred 

to weight and bias/threshold, terms that will be used accordingly in this context. 

 

w

b
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Hyperplane margin optimization 

In an iterative process to find the (optimal) hyperplane for separating a linearly separable 

data set the most obvious approach is to update the weight vector w and bias b each time a 

mistake in terms of separation has been made. This is done by calculating the margin   in 

terms of the distances from a sample point (xi, yi) of the (training) data set by: 

                

Formula A-6: Margin to hyperplane calculation for sample point (xi, yi). 

The graphical illustration of this margin is given in Figure A-4 showing that the margin can be 

interpreted by the shortest Euclidian distance of the sample to the hyperplane which is a 

straight line in the two-dimensional case: 

 
Figure A-4: Margin γi, γj of two samples si,  sj, each from one of the two classes, as Euclidian 
distance to a hyperplane. 

According to the margin of a single sample point, the margin of the complete data set in 

terms of the maximum margin among all possible hyperplanes can be defined which is 

illustrated in Figure A-5: 

sj

γi

si

γj
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Figure A-5: Margin of training set defined by closest sample(s). 

The following sections briefly review the efficient calculation concept and the mathematical 

formulation of the margin optimization before the already mentioned advantageous 

behaviour of the SVM on high-dimensional feature sets and nonlinearly separable data and 

noise-tolerance is addressed. 

Maximum margin 

To satisfy the generalisation requirement of a classifier operating on linearly separable data, 

the strategy of the margin-based classifier is to maximize the margin calculated according to 

Formula A-6 among all samples in the training data set as illustrated in Figure A-5. The 

margin of the training set in this context is therefore referred to as the maximum margin 

among all hyperplanes. Such a hyperplane is called maximal margin hyperplane and is the 

basis of the maximum margin classifier. 

Optimization strategy 

To realise this strategy from the viewpoint of optimization theory, the one separating 

hyperplane has to be found which minimizes or maximizes a certain functional37. With 

respect to the (linear) learning machines, this comes down to finding a vector of parameters 

that minimises (maximises) a cost function   bounded to certain constraints  ,  which is 

formulated as the primal optimization problem [Cristianini Taylor 2000]: 

 

 

                                                        
37

 a function from a vector space into its underlying scalar field taking vectors as inputs and returning a scalar 

γ
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minimise               objective function 

subject to        inequality constraint 

        equality constraint 

Formula A-7: Primal optimization problem with objective function and constraints. 

With the codomain R where the objective function is defined and where the constraints are 

satisfied, which is called the feasible region: 

                         

Formula A-8: Codomain (feasible region) of the objective function. 

With the feasible region the basis for the statement of the optimization problem is given, 

working towards the solution in terms of the optimal point      with no other     for 

which           , therefore    being a global minimum of     . 

When the objective function and both the inequality and the equality constraints are linear 

functions, the optimization problem is referred to as a linear programme. When using a 

quadratic function for the objective function and linear functions for the constraints the 

optimisation problem is referred to as a quadratic programme [Cristianini and Taylor 2000]. 

When the set Ω, the objective function and the constraints are convex, the optimisation 

problem is also convex. For the use of SVMs, the constraints are chosen to be linear, the 

objective function is chosen to be quadratic and convex and the (training) set Ω is chosen to 

be a subset of    to establish a convex quadratic programme as a restriction from the 

classes of optimisation problems on which optimisation theory can be applied. The class of 

convex optimization problems incorporating linear inequalities has been well-studied and 

very effective algorithms have been implemented (Lagrange function, Lagrange multipliers 

and related theory) that can reliably and effectively solve large complex problems with 

hundreds or thousands of variables and constraints [Boyd and Vandenberghe 2004], (chapter 

1.1). 
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Convexity 

An affine function      with      is convex by definition [Cristianini and Taylor 2000] 

and is expressed by 

           

with A being a matrix and b being a vector. For a convex function   being the objective 

function of an optimization problem, any local minimum  * qualifies as global minimum 

[Cristianini and Taylor 2000], (definition 5.3). 

A set Ω is convex if     , if every       and if for any         the point     

          [Cristianini Taylor 2000]. A geometric interpretation of this convention is a 

set where every point in the set can be seen by every other point from the set, that is, a 

virtual line exists between these points fully lying in the set. 

The convex hull of a set Ω, denoted with      , is then the set of all convex combinations 

of the points in Ω which is convex itself by definition and which is the smallest convex set 

that contains Ω. [Boyd and Vandenberghe 2004], (chapter 2.1.4). 

Application of optimization strategy 

In the maximum margin classifier, the convex optimization problem to be solved can be 

refined to an affine classifying function (hyperplane)            being a set of linear 

inequalities on the variables a and b that define f. If two sets in              and 

          in n-dimensional feature space can be linearly separated, there exists a 

geometric body (polyhedron) of affine functions that separates these sets 

[Boyd,Vandenberghe2004], (8.6.1, p. 428). In terms of the maximal margin hyperplane the 

goal is to find those functions that give the maximum possible gap between the positive 

values returned for the samples xi and the negative values returned for the samples yi by the 

hyperplane which can be formulated as a standard optimization problem: 
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maximise    

subject to             i=1,…,N  

             i=1,…,N 

      2   

 

Formula A-9: Formulation of convex optimization problem for maximum margin classifier. 

The optimal value t* is positive only if the two sets to be separated are linearly separable, 

optimizing the inequality         to become close to 1. 

A geometric interpretation of this optimization problem is that if the convex hulls of the sets 

do not intersect they are therefore separable by an affine function (hyperplane). In any 

optimal point   ,       is equal to 1 and        is therefore the Euclidian distance from 

point xi. Accordingly        is the Euclidian distance from point yi to the separating 

hyperplane            . The optimal value t* is then half the distance between the 

convex hulls of the two sets [Boyd,Vandenberghe2004], (chapter 8.6.1). 

Extended optimization theory 

In the previous paragraph the basic concept behind the SVM has been introduced. The 

concept of using linear learning machines in dual representation will be shown to be 

significant for the good performance of SVMs. Some further detail of Lagrangian 

(optimization) theory and one of its most important derivates the Kuhn-Tucker 

(optimization) theory will therefore be introduced briefly in this section to complete the 

image. 

Reconsidering the optimisation problem in standard/primal form  

minimise        objective function 

subject to                 inequality constraint 

                 

     

equality constraint 

Formula A-10: Primal optimisation problem. 
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Lagrangian theory introduces the idea of taking the constraints into account by magnifying 

the objective function with a weighted sum of the constraint functions 

[Boyd,Vandenberghe2004], (chapter 5.1.1, p.215), [Cristianini and Taylor 2000], (definition 

5.13) 

                        

 

   

        

 

   

 

Formula A-11: Lagrangian dual function for optimization problem statement, magnifying 
the objective function with weighted sum of constraint functions. 

where       are referred to as the Lagrange multipliers and     to as the Lagrange multiplier 

vectors or dual variables of the optimization problem. With     as the dual variables the 

Lagrangian dual function g is formulated as the minimum of the Lagrangian function which 

can in turn be expressed as the Lagrangian dual problem. 

maximize        objective function 

subject to     constraint 

                         

Formula A-12: Lagrangian dual optimisation problem. 

The dual optimization problem is much easier to solve than the primal optimization problem 

due to no direct inequality constraints and it allows working in high dimensional feature 

spaces (which will be subject in the next paragraph when introducing the kernel-trick). The 

value of the objective function at the optimal point is called optimal value. The optimal value 

is subject of the optimization efforts when using SVMs in terms of finding those optimization 

problem values that are equal for the primal and for the dual problem which is denoted as 

minimizing the duality gap. The dual problem further allows applying state of the art 

algorithms from the field of optimization theory like Kuhn-Tucker theory. Kuhn and Tucker 

extended Lagrangian theory which can be used to characterize the solution to an 

optimisation problem to allow inequality constraints [Kuhn,Tucker1951]. This allows solving 

a convex optimization problem related to the minimization of the duality gap in a highly 

efficient way without the calculation of the primal problem [Cristianini and Taylor 2000], 

(definition 5.2.1, 4.2.3). 
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minimise        objective function 

subject to                 inequality constraint 

                 

     

equality constraint 

 

Given that    is convex and   ,    are affine, according to Kuhn-Tucker theory the conditions 

for an optimal point    with optimal       are: 

          

  
 = 0 

          

  
 =0 

      
             

    
                        

                               

Formula A-13: Kuhn-Tucker theory: Lagrangian dual optimization problem with inequality 
constraints solved via Karush-Kuhn-Tucker conditions for optimal point. 

The fact that the dual problem (and therefore the primal problem indirectly) is solvable very 

efficiently and much more efficient than the primal problem directly is one of the most 

important principles of Support Vector Machines [Boyd,Vandenberghe2004], (chapter 5.5.3, 

p. 244 & chapter 5.5.5, p. 248). This is achieved by incorporating the Karush-Kuhn-Tucker 

(KKT) conditions and due to the fact that the KKT conditions (refer to Formula A-13) can be 

solved analytically via differentiation [Murray et al 1981] followed by resubstitution to the 

Lagrangian function. 
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Support Vectors 

To close the circle, the already explained function principle together with the background 

(optimization) theory from the previous paragraph can now be incorporated to fully explain 

the functionality of the SVM. 

From 1.1A.2.1 the hyperplane is defined with weight vector w and bias b by: 

                     

 

   

   

The optimization strategy for the hyperplane parameters is to formulate the optimization 

problem with a quadratic objective function under linear inequality constraints. The 

intention hereby is to optimize the margin in terms of the norm of the normalized weight 

vector on to points    and     which is formulated as:  

         = +1 

         = -1 

And therefore the primal optimisation problem on the training set 

                       to be solved by a separating hyperplane is formulated by: 

minimisew,b       objective function 

subject to               ,                 Linear inequality constraint 

 [Cristianini and Taylor 2000], (proposition 6.1) 

The corresponding Lagrangian function L with Lagrangian multipliers   can be obtained from 

this primal optimization problem as follows: 

         
 

 
         

 

   

                 

Formula A-14: Primal Lagrangian for Support Vector Machine margin optimization. 

with the dual form under KKT 38conditions obtained by differentiation: 

                                                        
38 Karush-Kuhn-Tucker conditions: allowing generalisation of method of Lagrangian multipliers (limited to 
equality constraints) to inequality constraints 
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Applying the KKT conditions the optimal solution           is constrained [Cristianini and 

Taylor 2000], (remark 6.4) to: 

  
       

                            

Formula A-15: Constraint on optimal solution - meaning of Support Vectors in the SVM 
optimization concept/strategy. 

It can be seen from this term, that the KKT condition can only be satisfied for those    with a 

margin of 1 to the hyperplane, for all other inputs    the    need to be zero and therefore 

the weight vector w is not influenced by these inputs. This is the origin of the term Support 

Vectors indicating those input points from the training set that contribute to the 

parameterization of the separating hyperplane as illustrated in Figure A-6 by bold framed 

symbols: 

 

Figure A-6: Maximal margin hyperplane, support vector highlighted. 

 

  

γ
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Solving the above equations (Lagrangian primal, KKT conditions applied) by differentiation 

       

  
            

 

   

 

       

  
        

 

   

 

followed by resubstitution of    : 

         

 

   

 

       

 

   

 

into the primal Lagrangian (refer to Formula A-14) results in the corresponding dual 

Lagrangian: 

            

 

   

 
 

 
                

 

     

 

Formula A-16: Dual Lagrangian for Support Vector Machine margin optimization. 

The geometric interpretation of SVM maximum margin optimization referring to Formula 4-2 

with the corresponding optimization problem statement, the identity of the objective 

function from Formula 4-3 (finding the closest distance between two convex hulls) and the 

dual Lagrangian function in Formula A-16 can be seen. 

 

A.2.2 The Kernel Trick 

The maximum margin SVM classifier reviewed so far can only be applied to linearly 

separable data as it cannot converge on data that is linear nonseparable. This is a severe 

limitation as most applications (including the classification of high-dimensional data from 

multi-channel images of wood defects) have to deal with nonlinearity and noisy (training) 

data (wrong labelled training examples, etc.). One of the basic ideas of SVM classification is 
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to find a way to use the well-understood theory and efficient implementation of the linear 

learning machines incorporating convex optimization which has been introduced in the 

previous sections and to transform the input/feature space to be usable by these linear 

learning machines. Cover’s theorem states that the probability of a classification problem to 

be linearly solvable raises with the dimensionality of the underlying feature space and that it 

is therefore possible to find a mapping function that produces a higher-dimensional (even 

infinite dimensional), linearly separable, transformed feature space [Cover1965]. This is the 

basis for kernel representations of the training data used by modern SVM classifiers. 

The use of Mercer's theorem for interpreting kernels as inner products in a feature space 

was introduced into machine learning in 1964 by the work of Aizermann, Bravermann and 

Rozoener [Aizerman et al. 1964]. The fact that the dual representation of learning machines 

allows the separating hyperplane of the SVM to be expressed as a linear combination of the 

training points and the fact that the decision rule can be evaluated using just the inner 

products between the test point and the training points lead therefore to computing the 

inner product in the transformed feature space directly: Mercer’s theorem identifies a class 

of (nonlinear) function, known as kernels, that produce a mapping of the input data 

                  into a higher or even infinite space such, that the inner 

product in this higher dimensional space can be expressed by     
     (equivalent: 

         where      is the so called kernel function. Therefore, replacing the inner product in 

Formula A-16 by a kernel function K is equivalent to working in a higher dimensional feature 

space [Cristianini and Taylor 2000], (proposition 6.6): 

            

 

   

 
 

 
                 

 

   

 

Formula A-17: Dual Lagrangian incorporating kernel function for implicit mapping of 
feature space. 

An important consequence of this is that the dimension of the feature space does not affect 

the computation. As the features are not necessarily to be represented explicitly but 

mapped implicitly by the kernel function, the amount of operations which are required to 

compute the inner product by the kernel function is independent from the number of 

features, allowing even infinite feature spaces. 
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There exists a variety of functions which can be used as kernel functions with this approach. 

The most common group of kernel functions are polynomial and Gaussian radial basis 

functions (RBFs), the latter resulting in a feature space of infinite dimension [Cristianini and 

Taylor 2004] and being used widely in all kinds of SVM-based classification setups. The 

design of proprietary kernels tailored to the structure of the underlying data gives further 

options in terms of performance and accuracy but might call for the incorporation of a 

domain expert. 

 

A.2.3 Soft margin extension 

In the previous paragraph the Kernel-Trick has been introduced allowing the creation of a 

high-dimensional, even infinite feature space, which is linearly separable, by transformation 

of the linearly nonseparable input feature space. The transformed feature space then can be 

used by a linear learning machine. Nevertheless the hard margin concept will produce a 

perfectly separating classifier by default, which is problematic in terms of overfitting on 

noisy data as can be seen from Figure A-7. 

 
Figure A-7: Comparison of maximal margin classifier 
and soft margin classifier working on linearly 
nonseparable data:  
Hard margin classifier producing complex overfitted 
hyperplane due to noisy data. Highlighted (square) 
sample points indicate support vectors. 

 
Figure A-8: Comparison of maximal margin classifier and 
soft margin classifier working on linearly nonseparable 
data: 
Soft margin classifier tolerating noise (big/red crosses) in 
favour to generalizing capabilities. Highlighted (square) 
sample points indicate support vectors. 

Figure A-7 and Figure A-8 show a two-dimensional (training) data set transformed with a 

Gaussian kernel using a hard margin (Figure A-7) as well as using a soft-margin (Figure A-8) 

applied on the feasibility region. The separating hyper-plane in the transformed feature 
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space (the untransformed, original feature space is shown in Figure A-7 & Figure A-8, 

representing the hyperplane as a curve) divides the data set into a positive (green/bright 

area, dark spots) and a negative (blue/dark area and bright spots) area according to their 

position in relation to the hyperplane. The involved support vectors are highlighted by bigger 

squares. While the hard margin classifiers produces a hyperplane perfectly separating the 

training data including the noisy samples, a soft margin classifier is based on a hyperplane 

tolerating some potentially misclassified sample points which are marked with red/bigger 

crosses in Figure A-8.  

The soft-margin extension introduces a regularization parameter C that has to be found 

empirically by testing the performance of the SVM over a wider range of values [Cristianini 

and Taylor 2000], (chapter 6.1.2), incorporating cross validation for example. In a cascaded 

training of a classification using huge sets of pre-sorted image tiles with wood defects 

labelled by an expert, the capability to tolerate noisy samples due to wrong labelling and due 

to the involved uncertainty is very valuable as faultless labelling cannot be guaranteed and 

often the boundaries between the classes are challenging for the human expert as well, refer 

to examples initially given with the different knot defect types in Table 4-1 as well as to the 

pre-sorted planar representation of knot images in Figure 4-8. 

A soft margin classifier is based on a hyperplane tolerating some misclassified sample points. 

This is achieved by introducing slack variables    to the primal optimisation problem (refer to 

beginning of Appendix 1.1A.2.2): 

minimisew,b       objective function - origin 

minimiseξ,w,b 

          
 

 

   

 
objective function - incorporating 

slack variable 

subject to               ,                        Linear inequality constraint - origin 

subject to                  ,                

                                                             

Linear inequality constraint – 

incorporating slack variable 

Formula A-18: Primal optimization problem extended by slack variables to produce a soft 
margin classifier 
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That is leading to Lagrangian function L: 

         
 

 
      

 

 
   

 

 

   

    

 

   

                    

 

and the derived optimal solution           constrained by the KKT conditions: 

  
       

                               

where C is a constant called regularisation parameter that has to be found empirically by 

testing the performance of the SVM over a wider range of values [Cristianini and Taylor 

2000], (chapter 6.1.2), incorporating cross validation for example. 
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A.3. Fuzzy logic 

Since Lotfi Zadeh established Fuzzy Logic in 1965 at University of California [Zadeh 1965], 

many publications have been made in this field which in the meanwhile developed to a wide 

area of research. In all kinds of applications where the relationships of the system's input 

variables are complex and therefore the partitioning of the input space is difficult, especially 

if the input data contains much noise, the advantages of the unsharp/fuzzy logic in contrast 

to crisp logic has been proven. Expert systems, especially, could gain a lot from the methods 

based on the newly developed operators. 

 

A.3.1 Membership functions 

Fuzzy set theory is an extension to crisp set theory. The belonging or membership      of 

the value x to one or another class B, D in the interval [0,threshold] using crisp logic can be 

expressed as: 

                                          

Formula A-19: crisp threshold example, class dark 

For D, respectively in the interval [threshold,255] for B as: 

                                            

Formula A-20: crisp threshold example, class bright 

Figure A-9 shows the corresponding function which can be grasped as the membership 

function of the values belonging to class B: 

 
Figure A-9: Crisp value of membership to class B when threshold is applied. 

0 
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) 

value 
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Analogous to Figure A-9, the membership function for the values belonging to class D is the 

inverted membership function. With the extension of the crisp set theory by fuzzy sets, the 

belonging can be expressed alternatively by a value in the interval [0,1], with the meaning 

that value x belongs to D and B as well, implementing the concept of degree of membership 

     as illustrated by the sigmoidal function in Figure A-10: 

                                                  

 
Figure A-10: Fuzzy value of membership to B (sigmoidal membership function). 

When the sigmoidal membership function shown in Figure A-10 is utilized, the membership of 

a value may be 0.5 for both B and D. The membership function µ(x) is therefore the essence 

of the fuzzy inference system, mapping the input space to a fuzzy set, expressing the degree 

of membership beyond the two conventionally possible and therefore exclusive values 0 and 

1. There exist various types of membership functions [Hazlina2013], [Mathworks1995]. The 

proper selection depends on the specific demands for simplicity, speed and accuracy of the 

underlying system and is in the responsibility of an expert doing proper testing and 

evaluation [Yan et al. 1994]. 

 

A.3.2 Fuzzy logic operators 

Fuzzy logical reasoning is based on the fact that it is a superset of standard Boolean logic. If 

the fuzzy values are kept at their extremes of 0 (completely false) and 1 (completely true) 

the standard logical operations will remain valid [Zadeh 1965]. That is for example, "a AND 

b" operator is replaced with minimum - min (a,b) operator, "a OR b" with maximum - max 

(a,b) operator and "NOT b" with 1-b. 
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A.3.3 If-then rules 

Fuzzy sets as well as fuzzy operators are the subjects and the verbs of the fuzzy logic 

language [Zadeh 1965]. Usually the knowledge involved in fuzzy reasoning is expressed as 

rules in the form: 

If x is A then y is B 

where x and y are fuzzy variables (input and output) and A and B are fuzzy values generated 

by the membership functions. The if-part of the rule "x is A" is called the antecedent or 

premise, while the then-part of the rule "y is B" is called the consequent or conclusion 

[Zadeh 1965]. Note, that in the if-then rule, the word "is" gets used in two entirely different 

ways depending on whether it appears in the antecedent or the consequent part 

[Mathworks1995]. Statements in the antecedent parts of the rules may, and usually do 

involve fuzzy logical connectives such as ‘AND’, ‘OR’ and ‘NOT’, for example a typical rule 

connecting two inputs has the form: 

If x is A AND y is B then z is C 

where x as well as y are again fuzzy input variables and A and B are the fuzzy values from the 

fuzzification which form together the antecedent. The right hand side of the rule, the 

consequent, now is the resulting fuzzy variable z from the fuzzy set C. Figure A-11 illustrates 

the principle of the fuzzy rule and its application to the input space exemplarily by two 

inputs x and y  and a corresponding set of three membership functions for each input: 
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Figure A-11: Principle application of fuzzy rules to the input space, top view illustrating the 
segmentation of the input space by the rules. 

It can be seen from Figure A-11 that applying the rules determines to which degree (output z) 

a two-dimensional input is related to the output (fuzzy set C) associated with each rule 

(represented as coloured fields). It is in the nature of fuzzy logic that this can result in the 

membership to several fields as those overlap as can also be seen in the figure. Note that for 

the purpose of illustration not all rules and connected fields are drawn and that the degree 

of membership cannot be estimated from Figure A-11 as it is the two-dimensional top view.  

Figure A-12 illustrates another input space segmented by two fuzzy rules and their 

appropriate membership functions (not shown), but also representing the degree of 

membership due to the three-dimensional perspective. 
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Figure A-12: Principle application of fuzzy rules to the input space spanned by three fuzzy 
variables, surface plot visualizing the degrees of membership. 

If, for example, the input space is the n-dimensional space spanned by the rules derived 

from ISO 2426-3-2000 (norm for wood appearance, refer to 2.2.3), then the surface plot 

would represent the floating membership to either the appearance classes E, I & II. 

Decisions are therefore gained by testing all rules, the so-called rule base or rule engine, in a 

fuzzy inference system. The results of all rules must then be aggregated to get to the final 

decision. Aggregation is therefore the process by which the fuzzy sets that represent the 

fuzzy outputs of the rules are combined into one single fuzzy set [Dubois et al. 1996]. The 

output is one fuzzy set for the output variable which represents the final output of the rule 

base but which encompasses a range of output values and therefore must be de-fuzzified in 

order to resolve a single output value (crisp value n) from the set. There exist several 

defuzzification methods [Zadeh 1965] whereby the most common method is to calculate the 

centroid in terms of the centre of gravity under the curve of aggregation. 
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A.4. Algorithms and calibrations for image sensor data fusion  

The output of the fusion process is the so-called global image which combines (stitches) 

equal sensors in a row to channels and combines channels to a global image with 

corresponding pixels registered. 

 

A.4.1 Calibrations 

With reference to chapter 5.1.1 addressing the sensor data fusion, this section summarizes 

the various calibrations needed in the fusion process. The requirements are: 

 Removal of sensor-specific noise and distortion in the image sensor signals 

(radiometric calibration). 

 Removal of lens distortion and shading effects caused by the optics (lenses) and 

illumination invariance. 

 Normalization of intensities between monochrome imaging devices. 

 Normalization of colour values between the different colour imaging devices. 

 Geometric alignment of pixels to real world coordinates to be used by the patching 

tools. 

The ColourBrain® inspection system technology of Baumer Inspection GmbH was used as a 

framework for the integration of a scanner for automated patching. The ColourBrain® 

software framework provides calibration methods satisfying the requirements stated above, 

this includes shading correction and removal of lens distortion as well as normalization of 

intensities by white balancing. Geometric calibrations are carried out using special 

calibrations plates as shown in Figure A-13 and are provided by the ColourBrain® framework 

as well. 
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Figure A-13: Scanner calibration plates used to carry out various calibrations. Right 
calibration plate showing laser alignment, white balancing and geometrical calibration 
using column-wise binary-coded real world coordinates. 

In addition to the existing calibrations the stitching and registration itself were newly 

implemented for the application of patching. Further, the elimination of dynamic effects 

(which are in the wider sense also calibrations but are carried out iteratively per panel) was 

newly introduced in the scope of this work and is summarized in the subsequent Appendix 5. 

 

A.4.2 Image stitching 

Image stitching is commonly found in digital consumer cameras, Smartphone cameras and 

similar. To generate a panorama view a certain number of images is taken in sequential 

order. This is done while following a certain direction of viewing (mostly in horizontal 

direction for the creation of landscape panoramas). Based on a movement model [Shum et 

al. 1997] the images are combined by an algorithm resulting in a new image with much more 

pixels in the direction of the movement than the image sensor is able to acquire in a single 

acquisition. 

The process of image stitching usually relies on finding strong reference points in the 

adjacent images which therefore must define overlap zones  in which the reference points 

have to be present [Shum et al. 1997], [Shum et al. 2000]. By mapping the reference points 

between the images next to each other, a transformation instruction can be derived to 

combine the images in such a way that there are ideally no transition artefacts visible. The 

procedure of finding the corresponding points is known as the correspondence problem 

[Shum et al. 1997], [Ogale et al. 2005], [Belhumeur et al. 1992]. Finding the most appropriate 

transformation has been subject of lots of research, Brown [Brown 1992] gives a nearly 
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complete list of successfully applied methods and classifies them first by the type of 

misregistration (translation, rotation, warping) and type of distortion which is involved, then 

by the complexity of the transformation (affine, polynomial, elastic). 

For the use in non-stationary setups the process of finding corresponding reference points 

and deriving the transformation parameters from them is normally done with every image 

sequence taken. This is most practical because there is no need to carry out any calibrations 

in advance [Steedly 2005]. For an industrial application like for the scanner for automated 

defect detection, the retrieval of strong reference points in the overlapping image regions by 

solving the correspondence problem and deriving the transformation instruction repeatedly 

is unnecessary and also excessively time consuming. As the scanner’s setup is stationary with 

static fields of view, working distances, etc., the transformation parameters for one image 

channel (several cameras of same type lined up, refer to Figure A-14) can be determined in 

an offline calibration routine using a suitable calibration normal offering strong reference 

points in the zone of overlapping fields of view. 

Having created all the global channel images, the next step in the processing chain is the 

creation of a registered multi-channel image which will be addressed in the next section. 

 

A.4.3 Image registration 

In image processing and machine vision, Image Registration is the term used for the process 

of calibrating images from different sensors in such a way, that the pixels corresponding to a 

physical coordinate in the object plane are linked together although the different imaging 

devices have different resolutions, fields of view, acquisition rates, etc [Gottesfeld 2007]. A 

mapping algorithm is used to transform the pixels respectively from their camera coordinate 

system to one common world coordinate system used for all involved imaging devices. 

Table 5-1 already gave an overview of the different resolutions and data rates of the imaging 

devices incorporated in the proposed setup of the scanner for automated repair to illustrate 

the need and extent of the registration process. It can be seen that there are great 

differences between the channels in terms of amount of imaging devices and also in terms 

of their spatial resolution, which makes it necessary not only to apply transformations but 

also interpolations to the channels with lower resolution to obtain a fully populated matrix 
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representation of the registered multi-channel image. The output from the registration is 

however the result of image sensor fusion. 

Based on the previously combined geometric and photometric calibrated images from one 

channel, the registration process can be reduced to a combination of translation, scaling and 

pixel value interpolation applied to the different channel images. The proposed sensor data 

fusion based on image registration is mainly based on the findings and implementation of 

Schmitt [Schmitt 2006] and his research on multi-channel imaging for automated visual 

inspection systems for ceramic tiles, but has been extended by multiple-camera channels; 

refer to the image stitching presented in A.4.3. 

 

 

Figure A-14: Exemplary registration (translation, scaling and interpolation of lower 
resolution 3D channel image to high resolution colour image, channel images are the 
product of stitching the channel’s single overlapping camera images. 

 

Figure A-14 illustrates the combination per channel by stitching calibrated, undistorted 

camera images, exemplary from a colour channel (2 cameras)  and a 3D channel (4 cameras) 

and illustrates further the combination in terms of registration of the channel images to one 

global multi-dimensional image with the dimensions of the higher-resolved colour image 

(upscaling). The labels from the four origin cameras are kept in the transformed image to 

illustrate the virtual boundaries.  
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A.5. Elimination of internal & external disturbing effects 

The following sections address effects influencing the reliability and accuracy of optical 

inspection on wooden panels that cannot be calibrated statically. 

 

A.5.1 Elimination of dynamic effects from vibration 

Vibration is common disturbing influence in an industrial environment using heavy 

machinery like in wood-working production facilities. Transportation systems like roller 

tracks or belt tracks are never free from vibrations and always show some unsteadiness in 

forward movement. While the latter is in forward direction and can be compensated with 

the use of shaft encoders, vibrations are directed vertically. The change of height results in a 

distortion of the image signal. This distortion - often a superimposed periodical signal in the 

case of vibration or a single impulse in the case of a stroke - normally shows propagation in 

the direction of transportation. 

In the case of a plain periodical disruption signal the identification of its frequency and the 

application of a band-pass filter would give an undisturbed image signal. Non-periodical 

shocks cannot be filtered properly in an un-shading process (refer to A.5.2 Shaded images) 

because of their signal characteristics (impulse) and therefore need special treatment. Using 

the a priori knowledge of the orientation of the pulse in the image signal, a row-wise 

calculation of a correction factor or correction offset from the mean grey value to a nominal 

value can be incorporated like illustrated in Figure A-15. 

 
Figure A-15: Elimination of disruptive impulse disturbance. 
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The described pre-processing of shading correction and vibration correction can be carried 

out serially to compensate both influences and to provide best possible data for the 

subsequent detection algorithms. 

 

A.5.2 Elimination of  dynamic effects from panel warping 

Wooden panels (plywood panels as well as solid wood panels) tend to bending and warping 

during drying as shown exemplarily in Figure A-16. Mechanical measures (vacuum belts and 

similar) are incorporated to flatten panels during scanning and the processing with patching 

tools, but the dynamic effects hereby cannot be eliminated entirely. Software algorithms 

and optical measures therefore need to be incorporated additionally. 

 

Figure A-16: Warped plywood panel introducing disturbing dynamic effect 

The following sections present techniques (software and hardware) to address the issues 

with flatness imperfection during image acquisition. 

Shaded images 

A triangulation camera, measuring height and representing different height levels with 

different grey values in a 3D-image, delivers shaded images as a result of the changing 

height. Change of height is introduced by twist and warping of the panel (a reflection-based 

setup with directed light delivers shaded images too, although the changing grey values 

result from a change in the reflection on the surface caused by a different reflection angle). 

While shading in the terminology of machine vision normally refers to a constant influence 

induced by the light source and/or the lens, these disruptive influences are neither constant 

nor regular, neither per panel nor from panel to panel and therefore demand a dynamic 
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compensation. Shaded images complicate the utilization of thresholding techniques in the 

image processing, most often a global threshold value results in severe segmentation errors. 

Besides the use of dynamic thresholding techniques with a floating threshold value, a pre-

processing of shaded images is common in machine vision as then the full bandwidth of 

image processing operations is useable again. As already mentioned, the shading effect is 

normally constant and therefore teachable to the system, often in form of mathematically 

defined correction functions or look-up-tables. In the case of dynamic and irregular shading, 

the signal with the unwanted information (change of height due to warping) has to be 

separated from the signal with the useful information (holes, cracks, etc – the real defects in 

common). This is effectively done by applying a carefully designed low-pass filter to the 

shaded image, which only leaves the low-frequent component induced by the overall 

unevenness of the panel in the resulting image. The signal carrying the useful information is 

normally much more high-frequent in relation to the influence of skew and twist allowing 

the design of a good and stable filter. From this low-pass-filtered image representing the 

unevenness of the panel, correction factors or offsets (depending on the restriction on 

additive shading correction) to a nominal value can be computed that then are applied to 

the original, unfiltered image, resulting in an signal carrying almost exclusively the 

information of real defects. The processing chain is illustrated in Figure A-17. 

 
Figure A-17: Elimination of disruptive shading using low-pass (LP) filter and either an 
additive of multiplicative shading model. Grey values represent depth/height. 

The decision if multiplicative or additive shading is appropriate depends on the physical 

interpretation of the image signal. In case of triangulation measurement the multiplicative 

variant induces a change of contrast by spreading the values which results in depth 

measurement errors, therefore additive shading correction must be applied in the case the 

shaded image signal is a triangulation signal. 
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Displacement of image plane in triangulation 

Figure A-18 shows the displacement on 

the image plane as the welcome effect of 

the triangulation as well as a 

displacement vertical to the image plane 

that is unwanted as it introduces blur in 

all but one object positions. The effect on 

the laser line evaluation based on the 

centre of gravity method for the 

triangulation measurement is quite small. 

This is due to tolerant algorithms for the 

estimation of the laser line (e.g. centre of 

gravity evaluation is unaffected by 

unfocused and therefore wider laser line). The effect on the scatter evaluation, for example, 

results in an uncertainty or error in the determination of the width of the blurred (laser) line. 

To correct the setup optically, it is necessary to satisfy the Scheimpflug-rule by tilting the 

sensor plane. This can be achieved with so called tilt/shift lenses; the derivation of the tilted 

image plane that satisfies the Scheimpflug-rule is described in the following section. 

  

 

Figure A-18: Displacement of focus/image plane with 
variation of depth in object plane. 
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Derivation of tilted image plane satisfying the Scheimpflug rule 

The mathematical description of a correct 

tilted image plane regarding the 

Scheimpflug-rule follows the graphical 

derivation described by [Donges and Noll 

1993]. In doing so, the correct tiled plane 

(refer to Figure A-19 ) is then described by 

a line equation in a rectangular coordinate 

system spun in the centre of the lens and 

with the axis u´ and v´. 

On the object side the coordinates of two 

points are described by the coordinates v, 

u and on the image side by the 

coordinates v´, u´. The two points P1 and 

P2 lie on the light ray that is described 

universally by the equation 

 

         Formula A-21: light ray line. 

The lens transforms P1(v1,u1) and P2(v2,u2) that lie on the light ray  to P1´(v´1,u´1) and   

P2´(v´2,u´2) that lie on the tilted image plane in the Scheimpflug  arrangement. This can be 

expressed as a transformation of the line equation of the light ray to a line equation of the 

tilted image plane through the mapping function: 

Image scale   
 

  
 Formula A-22: Image scale. 

Mapping function 
 

 
 
 

  
 
 

 
 Formula A-23: Mapping function. 

Converting Formula A-23 to   
  

 
 

  

 
 →   

    

  
 gives  u 

Converting Formula A-22 to   
     

    
 gives v 

 

Figure A-19:  Optical setup satisfying the Scheimpflug rule. 
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Using u and v in Formula A-21 and dissolving to u´ results in the equation of the tilted 

detector plane satisfying the Scheimpflug-rule: 

           
  
 
     Formula A--24: Tilted detector plane satisfying the 

Scheimpflug rule. 

From this equation the tilting angle can be derived easily, i.e. for the construction or 

adjustment of special tilt/shift lenses or lens adapters. 
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