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Abstract 

A large building with an open space is exposed to substantial infuence of the outdoor 

conditions on the exterior side of the walls and roof, which in return a�ects the indoor 

temperature conditions. This thermal process within the building is characterised by 

highly nonlinear behaviour and slow dynamics, presenting additional challenges of indoor 

climate control mechanism that the small to mid size constructions do not encounter. 

Many existing commercial and industrial buildings require these indoor climate control 

solutions to ensure that the indoor temperature remains within the specifed bound-

aries. Currently it is often achieved through the use of heating, ventilation and air 

conditioning (HVAC) systems, which tend to be energy intensive and contribute to the 

peak demand for gas and electricity. Many of the existing solutions, which are based on 

Proportional-Integral (PI) controller method, despite achieving some energy-saving, it 

is still ineÿcient particularly when operating to satisfy several indoor climate require-

ments concurrently. The research presented in this thesis has been conducted to develop 

an innovative approach for indoor climate control. The proposed reliable and energy 

eÿcient control solution adopts Model Predictive Control (MPC) architecture, which 

optimises the energy consumption by altering the air entering the Air Handling Unit 

(AHU) between the recirculated indoor air and the fresh outdoor air. The proposed 

control strategy is able to utilise only the mechanical ventilation (i.e. damper blades 

position) to pre-cool and pre-heat the indoor space, at the same time contributing to 

the indoor climate requirements satisfaction. The model derived for this purpose is a 

State-Dependent Parameter (SDP) model that is capable of responding to the changes 

in the model parameters caused by the variation in the supply air mass fow rate and 

alteration of the source air, which are nonlinear. The prediction of the indoor conditions 

is made with prior knowledge of the weather forecast. This prediction is used by the 

Genetic Algorithm (GA) to fnd the optimal control action for the position of damper 

blades on the AHU entrance. The results of using optimisation with the MPC via simu-

lation approach indicate the ability of the proposed method to lower the HVAC system 

energy consumption achieved through redesign of the control strategy. In the summer 

time it is possible to decrease energy consumption and save around 8%, whereas in other 

season it varies between 0% and 3%. This approach benefts from the fact that it doesn’t 

require additional mechanical equipment to the existing solutions other than a controller 

that can handle the algorithm locally or remotely, o�ering a reliable and robust energy 

eÿcient indoor air temperature control system. 
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Chapter 1 

Introduction 

Temperature control of an indoor air is a common practice in residential, industrial and 

commercial buildings to provide the desired environmental conditions for human activ-

ities or stored goods using heating, ventilation and air conditioning (HVAC) systems. 

Solutions vary from widely used Proportional-Integral-Derivative (PID) controllers to 

PID-based controllers to adaptive and predictive control schemes to optimisation al-

gorithms to Artifcial Intelligence (AI) and o�er diverse applications within the HVAC 

system, its control strategy and components. New control approaches are being de-

veloped to decrease the energy consumption as the building sector in the European 

Union accounts for up to 40% of the overall energy consumption, with indoor space 

heating and cooling accounting for 74% of energy consumption within residential sector 

and 56% in tertiary sector as outlined by Foucquier et al. (2013). Paris et al. (2010) 

discusses three heating control schemes aiming at reducing energy consumption and 

promoting the use of renewable energy, namely PID, PID-FLC (Proportional-Integral-

Derivative Fuzzy Logic Control) and PID-MPC (Proportional-Integral-Derivative Model 

Predictive Control). The fndings obtained through simulation show that the PID-MPC 

provided the best results, but is the most challenging to develop, whereas PID-FLC was 

found to be good compromise in terms of results and development diÿculty, setting out 

PID as not very eÿcient, but easy to develop. An application focused on controlling 

the vapor compression cycle (VCC) in an air-conditioning system to optimise the en-

ergy consumption using Model Predictive Control (MPC) is proposed by Wallace et al. 

(2012). The results of using this approach to control the air temperature within the 

building demonstrated better disturbance rejection ability in the zone air temperature 

and higher energy eÿciency than a PI-based control. Further, Mayer et al. (2017) dis-

cusses application of Hierarchical Model Predictive Controller (HMPC) in support of 

a fexible and sustainable building automation in comparison to conventional PID con-

troller. The proposed HMPC algorithm demonstrated a signifcant increase in energy 

1 



2 Introduction 

eÿciency with additional benefts coming from fexible pricing incorporation and cap-

ability to integrate with smart grid while meeting users’ thermal comfort requirements 

in smart building. Recognising potential of the MPC strategies in the building control 

sector, Valenzuela et al. (2020) discusses MPC-based HVAC system control that incor-

porates the closed-loop dynamics of the heating and ventilation subsystems to control 

performance and the building energy eÿciency. This data-based study addresses the 

problem of adjusting multiple set points (both temperature and fow rates) based on 

weather conditions, occupancy, and actual thermal comfort. Chen & Chang (2016) and 

Kampelis et al. (2019) propose optimisation of the HVAC system energy consumption 

with use of Genetic Algorithm (GA). The frst paper combines Support Vector Machine 

(SVM) and GA to fnd the optimal combination of operating parameters of the HVAC 

systems, achieving 22% on average in comparison to operation under fxed parameters. 

The considered parameters of the Air Handling Unit (AHU) thermal balance equation 

used in this paper include chiller, AHU, and pump operating parameters. In the second 

paper the user thermal comfort is achieved by minimising the daily cost of energy and 

fnding optimum temperature set-points while integrating Predicted Mean Vote (PMV) 

in the objective function. In this approach the energy savings are dependent on the 

trade-o� between the energy cost and the thermal comfort, reducing the amount of 

the energy consumed by 10-25%. Moon et al. (2014) provided numerical comparative 

performance tests for an Artifcial Neural Network (ANN)-based temperature control 

algorithm and conventional non-ANN-based counterpart in an indoor air temperature 

control. The ANN-based temperature controller utilised the predictive and adaptive fea-

tures of ANN models. While ANN control strategy didn’t exhibit signifcant superiority 

in energy eÿciency over the conventional control method, it showed an improvement in 

the indoor temperature environment with an increased comfortable temperature period 

and decreased overshoot and undershoot of temperatures outside of the operating range. 

Another application of ANN is discussed by Demirezen et al. (2020), where AI is used to 

predict the ambient temperature for a location-specifc building. This can improve the 

operation of the HVAC system as the outdoor temperature data is critical for energy 

eÿcient temperature control. 

In thermal modelling, an application of State-Dependent Parameter (SDP) method 

is considered by Tsitsimpelis & Taylor (2014), who formulate an SDP model for heating 

and ventilation control of conceptual thermal zones in a closed-environment growing 

system to obtain the dynamic thermal response. This follows an observation that the 

airfow, or the supply fan input, is state variable and a�ect both ventilation rate and 

temperature. Taylor et al. (2011b) discussed preliminary results of implementation of a 

gain scheduled PIP controller for the regulation of ventilation rate in agricultural build-

ings in comparison to equivalent PID design. The study shows that PIP controller can 
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help stabilise the airfow and provide robust control, ultimately leading to minimisation 

of the operating cost. Similarly, a PIP controller is designed and used for temperat-

ure control of multi-thermal zones in a ventilated space by Youssef et al. (2011a). The 

paper reports that the controller is robust to the unexpected noise that might be associ-

ated with the estimated data-based model parameters. Another approach combines PIP 

control system design with SDP models to regulate ventilation rate in mechanically vent-

ilated agricultural buildings (Stables & Taylor, 2006). Assessed on a forced ventilation 

test chamber, the proposed SDP-PIP control systems show an improved performance 

in comparison to both linear and conventional scheduled PIP control, for no increase in 

the implementational complexity. 

In this thesis the attention is dedicated to providing desirable temperature control 

for large single space commercial and industrial buildings such as warehouses, aircraft 

hangars or retail park stores. These type of building constructs require insight into 

the thermal process dynamics to understand how it operates and be able to develop 

strategies minimising the operational cost of the HVAC system as well as its energy 

consumption. This application is currently under-researched and strategies leading to 

considerable savings are still lacking. The challenges characterising large single space 

buildings, as compared to e.g. commercial oÿce buildings are: the large volume of con-

ditioned space, the small rate of change in the indoor air temperature, occurrences of 

thermal stratifcation, thermal mass within the building changing over time, and the 

large impact of the outdoor conditions through the walls and roof. Additionally, some 

commercial sectors are imposed with legislative requirements creating a demand for ac-

curate temperature regulation within the building, e.g. storage of temperature-sensitive 

products such as food and medications. The case studied in this thesis is based on an 

existing warehouse storing pharmaceutical products located in Midlands, UK described 

in Section 2.2 of Chapter 2. Having studied numerous methods for indoor thermal con-

trol outlined above, it is concluded that more advanced control algorithms demonstrate 

numerous benefts for the HVAC system and indoor temperature control over conven-

tional approaches, including lower energy consumption, increased temperature stability, 

thermal comfort assurance and optimisation of specifc HVAC system parameters. To 

balance computation and structural complexity and the potential of the method to 

handle predictive control with constraints to reduce the cost of the energy consumed, 

the solution proposed in this thesis is a model based approach, where a custom-design 

MPC introduced in Chapter 5 uses GA to achieve energy eÿcient control of the HVAC 

system. The MPC and GA employing a custom objective function are used to fnd 

the optimal control values for the mixing damper, which alters the air intake between 

recirculating the indoor air and drawing ambient air from the outside. The use of the 

outdoor air temperature forecast supports simulation of the indoor conditions. It is 
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found that the method proposed in this thesis has potential to lower the HVAC system 

energy consumption achieved through redesign of the control strategy. The results show 

that during summer months it is possible to decrease the energy consumption by 8%, 

whereas in other season it varies between 0% and 3%. 

The complexity of the indoor air temperature is high when modelling is considered. 

The dynamics of the thermal process within the building di�er from one to another due 

to size, volume, design of the indoor space, building envelope and air supply strategy. 

To capture the indoor air temperature for simulation and control as a part of the GA 

MPC approach (Chapter 5), a State-Dependent Parameter (SDP) model structure is 

proposed in Chapter 3. This unique solution is motivated by varying parameter values 

subject to the supply fan operation and the position of damper blades. The thermal 

model which forms a basis for SDP is introduced in Chapter 2. This thermal model 

is derived from frst principles and relies on the energy balance equations, similar to a 

thermal-electrical analogy model of a building for heating system control described by 

Tate et al. (2019). It contains sub-models of the HVAC system components, including 

supply fan, heating and cooling units with parameters estimated from the data. Further, 

a Proportional-Integral-Plus (PIP) controller is designed and introduced in Chapter 4. 

PIP is implemented internally as a part of GA MPC to calculate the heating and cooling 

controls. This formulation is derived explicitly for the proposed SDP indoor temperature 

model from Chapter 5. 

The research presented in this thesis is a result of a collaborative work between 

Jet Environmental Systems Ltd. and Coventry University and a continuation of the 

project summarised in the author’s Master thesis (Oswiecinska, 2014). Jet Environ-

mental Systems Ltd. specialises in design, installation and maintenance of the HVAC 

systems in some of the largest logistics and pharmaceutical warehouses, retail stores, 

museums, leisure facilities and production sites for many of the UK’s leading businesses 

(Jet Environmental Systems, n.d.). Their aim is to provide their clients with cost and 

energy eÿcient solutions while contributing to low carbon emission goals. Therefore, the 

research presented in this thesis is a response to an existing problem brought by the in-

dustry partner to be solved. Two strategies are proposed in the Master thesis to improve 

the energy eÿciency of the indoor air temperature control system: (1) Model Predict-

ive Control (MPC) was used for the damper blades position control to select between 

recirculating the indoor and outdoor air intake and (2) adaptive set-point management, 

where the dead-band is temporary expanded within safe limits. The work summarised 

in this thesis is built on the ideas from the Master thesis and expands it by proposing 

state-dependent model of the indoor air temperature, re-implementation of the MPC 

and more comprehensive simulation study. An overview of the approach motivated by a 

potential real world application has been published as a paper Towards energy eÿcient 
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operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory 

control design (Oswiecinska et al., 2015), where a two-level control approach is proposed. 

The two-level control approach is o�ered to extend the capabilities of already existing 

control systems with some level of energy eÿcient strategies, which performance could be 

improved making use of the advanced control strategy utilising the predictive methods 

initially proposed in the MSc thesis and then continued in this thesis. The author of the 

thesis also had an opportunity through collaboration with Jet Environmental Systems 

to work with the real controllers operating on the existing buildings, maintain them and 

then design and implement similar strategy in MATLAB and on a TREND controller, 

while gaining valuable insight into control systems operations through these experiences. 

1.1 Environmental impact 

Environmental concerns, including climate change and depletion of resources have been 

growing signifcantly over the last years (Fitzpatrick, 2013). Global trends around en-

vironmental risks have led to focus on sustainability among governments, industry, busi-

nesses and investors following the Great Acceleration, which relates to dramatic accel-

eration in human enterprise and the impacts on the Earth system over the last two 

centuries, starting with the Industrial Revolution at around 1800 and reveals synchron-

ous acceleration of trends from the 1950s to the present day (Future Earth, 2015; Ste�en 

et al., 2015). In light of that, the agreements made by the United Nations General As-

sembly in 2015 set goals to be achieved by 2030 called Sustainable Development Goals 

(SDG) that have targets and are measured with indicators, see (United Nations Sus-

tainable Development, n.d.; United Nations Development Programme, n.d.; GOV.UK, 

n.d., e.g.). These goals are: 

• No Poverty • Reducing Inequality 

• Zero Hunger • Sustainable Cities and Com-

munities • Good Health and Well-being 

• Responsible Consumption and • Quality Education 

Production 
• Gender Equality 

• Climate Action 
• Clean Water and Sanitation 

• Life Below Water 
• A�ordable and Clean Energy 

• Life On Land 
• Decent Work and Economic 

Growth • Peace, Justice, and Strong Insti-

tutions 
• Industry, Innovation, and Infra-

• Partnerships for the Goals structure 
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There are mutual relationships between the environment, society and economy, 

which includes fnance, business and government, indicating that imbalance in one of 

the areas causes imbalance in the others. This caused practices to change over the past 

few years in support of SDGs. For the environment, the e�orts are visible in shift toward 

reducing plastic usage, carbon o�setting and carbon footprint reduction, turning into 

renewable energy and many more. Larry Fink, Chairman and Chief Executive Oÿcer 

at BlackRock, an American global investment management corporation, stated in his 

letter published in 2020 Larry Fink’s Letter to CEOs (Fink, 2020) that Climate change 

has become a defning factor in companies’ long-term prospects and Every government, 

company, and shareholder must confront climate change. Nowadays investors look far 

beyond company’s good fnancial score, predicting the company’s future based on sus-

tainability ratings, e.g. using Environment, Social and Government (ESG) criteria. 

Climate change leading to global warming to some degree is caused by the green-

house gas emissions following the Industrial Revolution. As the average global temper-

ature rises, there is a threshold of 2◦C that is extremely dangerous to the ecosystem if 

exceeded. Therefore, there is a limit on greenhouse gases that can be emitted before 

temperature rises by 2◦C compared to pre-industrial era. The carbon emissions make 

a signifcant contribution in reaching of the 2◦C threshold and the governments have 

taken steps in attempt to slow it down. A visual presentation of the problem as of 2011 

is depicted in Figure 1.1, where it is shown that a half of the carbon emission allowance 

has already been used since the start of the industrial era until 2011. The history of the 

climate change and the 2◦C threshold is described by Carbon Brief in (2014). 

The growing interests and actions toward helping environment is not just a tem-

porary trend, but a way of working towards the future of the planet and forthcoming 

generations with understanding that investment goes beyond pure fnancial interest. UK, 

and many other countries worldwide, is committed to the delivery of the SDGs, there-

fore the goals are fully embedded in planned activity of each Government department. 

By doing so, the Government ensures that the message is distributed across all sectors. 

Sustainability is everyone’s business and everyone’s e�ort is needed to meet the targets 

and balance social, economic and environmental sectors. While rapid growth in the tech-

nology and industry over the past few decades contributed signifcantly to the carbon 

emissions and pollution of the Earth, it also enabled access to tremendous number of op-

portunities in engineering applied to various felds such as science, medicine and biology, 

biochemistry, aerospace, economy, sustainability and others. The research presented in 

this thesis is a way of recognition for the technology advancement and people behind it, 

without which the world would not be what it is now. Most importantly, it is a way of 

contribution to act upon sustainability concerns. The research described in this thesis 

encourages methods aiming to reduce the carbon footprint and support the environment 
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Figure 1.1: Estimated carbon budgets as of 2011. (Fitzpatrick, 2013) 

through energy eÿcient control strategies achieved by advanced control strategies and 

without the need for additional mechanical equipment for the HVAC system. 

1.2 Research aim and objectives 

The aim of the research work reported in this thesis is to provide a reliable and energy 

eÿcient operation of indoor air temperature control system targeting large volume open 

plan buildings with particular focus on the warehouse facility studied as a part of the 

research. The outcome of this project is to o�er a solution that minimises operational 

costs of a heating, ventilation and air conditioning (HVAC) systems while ensuring the 

required temperature conditions are met. These are the objectives: 

• To investigate linear and nonlinear model structures for building temperature, 

including linear transfer function models and nonlinear SDP models. 

• To develop a control oriented mathematical model of the indoor air temperature 

derived from frst principles. 
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• To propose a control method calculating heating and cooling demands and their 

respective control inputs. 

• To propose a new control framework that optimises the damper position in order 

to minimise the energy consumption through design of an advanced, high-level, 

control system based on Model Predictive Control (MPC) architecture. 

• To incorporate potential future controls and input data such as weather forecast 

and the position of damper blades into predictive controller. 

• To take advantage of the outdoor air temperature for ventilation and free cooling 

of the indoor space, see Section 5.2, regulated through the damper position. 

• To formulate a cost function representing the energy consumption resulting from 

the HVAC system operation. 

• To propose a optimisation method that minimises the cost function by fnding a 

set of consecutive mixing damper controls. Whereas the damper position itself is 

not a part of the cost function, it has an impact on the temperature of the air 

supplied to the building, which translates to heating and cooling demand. 

• To evaluate the performance of the new controller via simulation using outdoor 

temperature data representing various seasons of the UK climate. 

1.3 Academic contributions 

The main contributions identifed during development of the novel approach to energy 

eÿcient indoor air temperature control proposed in this thesis are: 

• Identifcation of the state-dependent character of an indoor air thermal process 

and the sub-models of the heating and cooling units in Chapter 2. 

• State-dependent model formulation for indoor air temperature and the use of 

damper position and air mass fow rate for model parameter estimation in Chapter 

3. 

• Non-minimal state space (NMSS) design of a State-Dependent Parameter (SDP) 

model of the indoor air temperature and respective Proportional-Integral-Plus 

(PIP) controller design using State-Variable Feedback (SVF) in Chapter 4. The 

PIP controller is utilised to calculate heating and cooling control inputs. 

• Optimisation problem formulation for a state-dependent indoor air temperature 

model, cost function and application-specifc MPC design utilising Genetic Al-

gorithm (GA) in Chapter 5. 
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1.4 Thesis outline 

The thesis is organised in the following manner: 

• Chapter 2 Starting with frst principles consideration, an indoor thermal process 

is formulated and studied. The simulation study incorporated sub-models of heat-

ing and cooling units based on the real system and analysis of the model indoor 

air temperature, which is observed to be state-dependent. 

• Chapter 3 Refecting on the conclusions in Chapter 2 with regard to model para-

meters, a general SDP model structure is introduced as well as reduced order SDP 

model of an indoor air temperature. Demonstration of the SDP model is shown 

through simulation study by covering system identifcation of state-dependent 

parameters, comparison study of linear and SDP model performance and full SDP 

model simulation scenario. 

• Chapter 4 In this chapter, control approach for SDP models is proposed. Start-

ing from general NMSS form to SVF and PIP, the next section provides NMSS 

model and PIP control design for the indoor air temperature. Then, it culmin-

ates at formulation of SDP-PIP controller for an indoor air temperature control. 

This controller utilised SDP model introduced in Chapter 3. The simulation study 

demonstrates operation of SDP-PIP controller under di�erent outdoor air temper-

ature scenarios and pole placements. 

• Chapter 5 MPC method proposed in this chapter utilises SDP model and SDP-

PIP controller introduced in previous chapters as an internal part of MPC. The 

sections elaborate on the control setup for MPC and optimisation problem for-

mulation, with the most important parts being presentation of the cost function 

and introduction to GA setup. The simulation study demonstrates the MPC al-

gorithm operation and contains a brief study on the cost associated with running 

the HVAC system. 

• Chapter 6 This chapter serves as a summary of the previous chapters, focusing 

on the main outcomes and conclusions on each subject. It also refects on possible 

improvements and o�ers suggestions regarding further development. 



Chapter 2 

Thermal modelling of an open 

air-conditioned indoor space 

2.1 Introduction 

Mathematical model is often used to describe, study and understand phenomena occur-

ring in the real world and also for theoretical considerations. As an indivisible part of 

science, models allow simulations and demonstrations of complex interactions that are 

not feasible to be investigated using physical experimentation. They are also used to 

gain greater insight into phenomena or process by conceptualisation and decomposing 

them into parts that are used for its reconstruction. Models are an approximation of a 

real system and can be formulated in multiple ways, allowing for various classifcation 

approaches. On the basis of mechanistic or physical insight into studied system, there 

are three model types that can be distinguished: white-box, grey-box and black-box 

(Larkowski & Burnham, 2011, p. 9-12). Overview of each type is summarised in Table 

2.1. Alternative method is the data-based mechanistic approach well described by Peter 

Young in (Young, 2002) and (Young, 2011, p. 357) that allows to obtain the model struc-

ture parameters via system identifcation and parameter estimation methods while, as 

oppose to black box concept, the parameters explain the data well and in the same time 

have physical meaning. Once the modelling approach is determined, modellers have a 

choice between di�erent types of model, i.e. static or dynamic models (Ljung & Glad, 

1994, p. 19). In brief, the link between variables in the static models is instantaneous. 

These models are described by algebraic equations only where the outputs are a function 

of the inputs only and depend only on the present values. On the contrary, dynamic 

models can be described by algebraic and di�erential equations, where the outputs are 

a function of the inputs, system states and previous outputs with the variables change 

10 
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with time. In this thesis, the dynamic models are used to describe the thermal process 

using di�erent mechanistic insight approaches. 

Table 2.1: Model types classifcation according to the level of mechanistic insight. 

White-box Black-box Grey-box 

• Physical laws-based or 
user-defned 

• A priori knowledge of 
the process required 

• Defned by di�erential 
and/or integral equa-
tions 

• Direct refection of the 
modelled phenomena 

• Physical meaning of 
parameters 

• Can be complex and of 
high order, especially 
for non-trivial systems 

• Obtainable without 
system identifcation 
tools 

• Empirical or experi-
mental models with 
unknown underlying 
dynamics 

• No physical meaning of 
the parameters 

• No prior engineering 
knowledge required 

• All parameters require 
identifcation 

• Parametric model 
structure must be 
assumed 

• Relatively simple mod-
elling procedure 

• Model reliability fully 
dependent on system 
identifcation data and 
results 

• Semi-physical models 

• Some underlying dy-
namics known, some not 
(hybrid of white-box 
and black-box) 

• Knowledge of all phys-
ical parameters not ne-
cessary 

• Parameter estimation 
required for unknown 
aspect 

• Potential for simplifca-
tion of certain dynamics 

• Medium model complex-
ity 

• Model reliability par-
tially dependent on sys-
tem identifcation data 
and results 

After determining whether a static or dynamic model to be used, the modellers will 

have to decide on the purpose of the model, the choice of model structure and the inputs 

and outputs of interest. The importance lays in the fact that a wrong setup of a modelling 

approach may result in the model that does not suit the application, producing results 

with intolerable inaccuracies and inability to be tuned or being overcomplicated. Once 

all those aforementioned characteristics of the model are determined, one can progress 

to fnd model parameters. 

The quality of the model, according to Ljung & Glad (1994, p. 244), is predomin-

antly determined based on three basic facts: its adequacy of use for intended purpose, 

ability to reproduce the behaviour of the system and its stability. If the model is able 

to fulfll all of these aspects, the model is considered to be good. Therefore, modelling 

is a vital part of developing reliable and energy eÿcient model-based control techniques 

for heating, ventilation and air conditioning (HVAC) systems (Chartered Institution of 

Building Services Engineers, 2005, e.g.). This chapter is dedicated to comprehensive 
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description of the thermal system model development characterising an indoor air tem-

perature behaviour. The model is derived using physical modelling approach (Ljung & 

Glad, 1994, p. 16), i.e. based on frst principles, where energy balance, physical prop-

erties of the building and heat transfer are of main interest. The main contributions of 

this chapter are (1) an indoor air temperature model formulation, (2) the sub-models 

of the heating and cooling units, (3) the use of damper position and air mass fow rate 

for model parameter estimation and (4) observations regarding nonlinearity and state-

dependence of the model structure. Note that the term thermal used in the thesis is 

referring to heat, whereas the term thermodynamic possesses a broader reference, in-

cluding heat, pressure and state. The research presented in the thesis is focused solely 

on the temperature aspect which is the manifestation of the thermal energy and signifes 

the presence of heat in all of the matters. 

2.1.1 Literature review 

The mathematical modelling of the thermal behaviour dates back to the 1800s owing 

to physicist Jean Baptiste Joseph Fourier. He contributed to the science of heat by 

developing mathematical theory of heat induction. The work of the analytic theory of 

heat was published in 1822 and is considered to be a classical literature in this domain. 

The Fourier’s transient heat conduction equation in modern notation is expressed as 

�T 
∇ · K∇T = c (2.1.1) 

�t 

where K denotes thermal conductivity, T denotes temperature, c denotes specifc heat 

capacity of the solid per unit volume, and t is time (Narasimhan, 1999). The heat 

balance approaches introduced in the 1970s improved the heat transfer model, leading 

to further developments and more complex methods of the HVAC systems modelling in 

the 1980s (Homod, 2013; Kusuda, 1976). The modelling of the indoor air temperature 

using energy balance equations used in the thesis is proposed by Underwood (1999), who 

discussed comprehensively concerns regarding modelling for control of the HVAC systems 

along with various control technologies including Proportional-Integral-Derivative (PID) 

control, adaptive control and artifcial intelligence. This demonstrates a variety of ways 

in which indoor air temperature control could be approached. Therefore, the approach 

proposed in the further chapters of this thesis represents one of the possible solutions to 

the problem. 

Challenges associated with the modelling of an indoor thermal process for temper-

ature control have been recognised in research body. From a statistical point of view, a 

thermal process is classifed as stochastic, therefore changing over time in an unpredicted 
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manner. From the control engineering point of view, these indoor thermal models rep-

resent a highly nonlinear process, where current parameter values are dependent on the 

past and present values, leading to complex model structures and dependencies. Atam 

& Helsen (2016) have illustrated in every aspect the issues related to control oriented 

thermal modelling of the multi-zone building, providing list of concepts, methods and 

aspects of related modelling approaches. The challenges described in the paper have 

been found familiar to the author of the thesis who encountered similar diÿculties and 

tendencies during the studies on the energy eÿciency of the HVAC systems serving large 

single space buildings. These structures are characterised by slow dynamics, nonlinear 

behaviour, thermal mass stored in shelving units, goods and machinery, air stratifca-

tion, additional heat gains and losses on every wall and roof from the solar irradiation 

and high speed winds and other disturbances introduced by opening the warehouse door 

for HGVs when no vehicle is parked on the entry for example. Another examples of work 

providing thermal model development methodologies for the HVAC systems with ana-

lysis of diÿculties, advantages and drawbacks of modelling approaches, e.g. resistance 

or computational fuid dynamics (CFD) models, and simulation tools are review papers 

by Homod (2013) and Harish & Kumar (2016b), where research gaps have also been 

identifed. Simulation tools vary for multi-purpose computation and simulation soft-

ware, such as MATLAB, Scilab or Maple, to software dedicated specifcally to building 

thermal behaviour simulation, e.g. SIMEDIF developed at INENCO (Non Conventional 

Energy Research Institute) used by Larsen et al. (2009) to analyse thermal behaviour 

of the building walls in summer in Argentina. Modelling based on frst principles and 

di�erential equations proposed in this chapter is not new methodology, however authors 

explore di�erent ways to prepare the model tailored for needs of their research. The 

advantage of frst principle modelling is its fexibility to model every construction and 

thermal process, provided the physical quantities are known or can be well estimated. It 

should be noted, however, that every model is only an approximation of the real system. 

The examples of thermal modelling based on frst principles and di�erential equations 

are works by Faizollahzadeh Ardabili et al. (2016) and Harish & Kumar (2016a). In the 

frst work, the model is used for HVAC system control with use of fuzzy and predictive 

control, while authors of the second paper use the frst principles method to model build-

ing energy systems and energy transfer processes; both use MATLAB as a simulation 

software. The alternative strategy is proposed by Zaj́ıc (2013), where Hammerstein-

bilinear approach is considered for nonlinear modelling, analysis and control design of 

HVAC, where the results shown demonstrate that knowledge of the system’s nonlin-

earities combined with ability to handle them brings improvement in an overall control 

performance. 
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Data-based mechanistic modelling (DBM) of the indoor air temperature distribu-

tions based on energy input is proposed by Youssef et al. (2011b). This approach ac-

knowledges that better understanding and management of energy distribution in heating, 

ventilating and air conditioning of the indoor spaces is essential for the improvement of 

process quality and eÿciency of energy use. The paper states that the proposed study 

is intended to be used with advanced multivariable Proportional-Integral-Plus (PIP) 

control algorithms based on the Non-minimal State Space (NMSS) methods, which are 

introduced in Chapter 4 of the thesis. 

Variety of modelling approaches for thermal control shows the importance of ob-

taining reliable model to facilitate good control design to optimal thermal control. Nev-

ertheless, a thermal control of the large single space buildings is an underresearched area. 

Exadaktylos (2007) considers state-dependent parameter (SDP) model structure to ac-

count for the nonlinearity in an indoor thermal process when designing Model Predictive 

Control (MPC). This approach allows to predict the output and fnd optimal control 

values while preserving nonlinear (SDP) model structure. The author of this thesis be-

lieves that the use of SDP model interpretation can contribute to cost reduction in the 

model-based indoor temperature control systems applications. 

2.1.2 Chapter overview 

The purpose of this chapter is to introduce a model of an indoor air temperature de-

rived from frst principles. This model is based on an existing building, where an HVAC 

system is in operation. Recommended reading for thermal systems, HVAC systems and 

indoor temperature control include, but is not limited to, (Bell Jr., 2000; Chartered 

Institution of Building Services Engineers, 2005; Montgomery & McDowall, 2008; Un-

derwood, 1999), which were also used for consultation during research and writing up 

of this chapter. 

The chapter is structured in the following manner. Firstly, Section 2.2 introduces 

the case study facility, a warehouse storing pharmaceutical products, then Section 2.3 

provides details of the plant (i.e. the system to be controlled) and a thermal system 

setup for a large single space building based on the pharmaceutical warehouse; then, 

Section 2.4 introduces mathematical formulation of the indoor thermal process based 

on frst principles; next, Section 2.5 discusses on the system identifcation approach for 

modelling heating and cooling units using the data collected from the studied warehouse; 

further, the simulation study in Section 2.6 provides insight into frst principles-based 

model; fnally, the chapter is summarised in Section 2.7. 
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2.2 Case study facility 

During the run of the project, the author of this thesis was privileged through collabor-

ation with Jet Environmental Systems Ltd. to study one of the facilities served by their 

HVAC control system. This facility was chosen as it represents a typical warehouse 

setup with heating and cooling capabilities. The temperature control is in operation 

to meet the indoor air temperature requirements for safe storage of pharmaceutical 

products. The warehouse is located in Midlands, UK and has the following dimensions: 

100× 96× 15.5 [m] (length × width × height) as found in Design Technical Submission 

provided by Jet Environmental Systems. There is also a three-foor open mezzanine 

area within the warehouse, i.e. ground foor, then frst and second foor, each measuring 

32× 60 [m] (length × width). Mezzanine area is neglected in modelling and considera-

tions in further chapters. 

2.2.1 Heating, ventilation and air conditioning system 

The warehouse is served by two identical air handling units focused on two main temper-

ature zones, each having its own Air Handling Unit (AHU), cooling unit, heating unit, 

supply air ductwork, return air ductwork, supply fan and inlet dampers section. One 

AHU distributes the air in the main warehouse area, whereas the other distributes the 

air across the mezzanine area. An image showing the considered AHUs is provided in 

Figure 2.1, where elements for one of them have been marked and described. An image 

showing the inside of the warehouse is given in Figure 2.2. 

A set of dampers for each AHU allows to switch between recirculating the indoor 

air or drawing the fresh air from the outside. If the damper blades are open, fresh 

air is drawn into AHU. Alternatively, if the damper blades are closed, the air entering 

the AHU via the return air duct is passed through the AHU and then back into the 

conditioned space (provided the supply air fan is operating). The temperature of the 

air passing through the AHU can be decreased by using cooling unit, increased by using 

heating unit, or the air can be passed as it is to stir the air and reduce stratifcation for 

example. 

2.2.1.1 Controller and temperature sensors 

Each AHU has its dedicated TREND IQ3 series controller with continuous space tem-

perature control and two indoor temperature sensors. That is, there are four indoor 

sensors in total, two per zone. Each zone has one sensor located around 3m above the 
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Figure 2.1: The warehouse facility - outdoor HVAC system elements of two identical 
air handling units. The elements of the AHU serving the main warehouse area are: 1 
- condenser unit (for cooling), 2 - fresh air inlet damper, 3 - return air duct, 4 - air 

handling unit, 5 - supply air duct, 6 - heating unit. 

foor (low sensor) and one located close to the roof (high sensor). The temperature dif-

ference between two sensors from the same zone can be used to monitor air temperature 

stratifcation within the conditioned area. There is no return air temperature sensor, 

therefore the average air temperature is used for control. 

The IQ3 controllers are networked together to share common information (e.g. 

the outdoor air temperature) and each controller is addressed separately. Both con-

trollers are accessed via one IQView network display panel used by both units. The 

IQ3 control logic operates in 15min intervals, which means that the air temperature 

measurements from sensors are read every 15min to update the controls accordingly for 

heating, cooling, supply fan and mixing dampers. The algorithm implemented on the 

controllers calculates heating and cooling demand using proportion control of the PID 

module, which is then used to determine stage, i.e. 0, low (1) or high (2) of heating 

or cooling. To avoid competitive heating or cooling between the two AHUs, the indoor 

air temperature sensor readings are shared by both controllers to calculate the average 

indoor air temperature. To do that, each zone has calculated a mean value of its high 

and low sensor readings. Then, the mean values for each zone are used to calculate the 
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Figure 2.2: The warehouse facility - inside view. Legend: 1 - supply air duct (mezzan-
ine area), 2 - supply air duct (main warehouse area), 3 - return air duct (main warehouse 

area) 

average indoor air temperature. The average indoor temperature then is calculated as a 

weighted average taking 0.75 of the mean air temperature of the area the AHU is serving 

and 0.25 of the mean air temperature of the other area. 

There is an outdoor air temperature sensor measuring the ambient air temperat-

ure, located behind one of the AHUs and shaded from sun and wind. The outdoor air 

temperature readings are passed to both controllers and used to determine free cooling 

capabilities described in Chapter 5, Section 5.2. Moreover, there is a supply air temper-

ature sensor located in the supply air duct, but is not directly used for control, although 

it can be used to monitor temperature di�erence between the air entering the AHU (the 

outdoor air temperature or the average indoor air temperature) and the air leaving the 

AHU. 

2.2.1.2 Technical details 

Bespoke design of the HVAC system components for the considered warehouse facility 

assumes the following setup for each AHU: 

http:taking0.75
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• Airfow generated by supply fan: 9.25m3/s. 

• Supply fan electric motor power: 18.5 kW. 

• Two stage direct expansion (DX) cooling unit connected to an external, air cooled, 

condenser unit Climavenata HCAT 0512. Each condenser uses two compressors 

and provide two step cooling. Overall cooling capacity: 160 kW. 

• Two stage gas fred burner unit: Reznor indirect gas burner RHC 8200 containing 

200 kW heat exchanger with two stage burner control (low and high), although 

four stage is also possible. 

• A set of mixing dampers. 

• Panel flter section. 

Each fan operates at 50-100% of total fan speed or is switched o�. The air is distributed 

through ductwork comprising of high velocity jet nozzle system for eÿcient blowing of the 

air at considerable distance from the ductwork to minimise air temperature stratifcation 

within the zone. If both supply fan units are operating at 100% of maximum speed, 

the air leaves the AHUs at rate of 18.5m3/s in total. Similarly, both cooling units can 

provide up to 320 kW cooling capacity. 

2.2.2 Data acquisition 

The IQ3 controller can be approached in multiple ways to access data and maintain 

settings such as heating and cooling set-points or manually set the damper position to 

closed. This can be done in multiple ways: 

1. Use IQView panel on site to access the IQ3 controllers connected to the same 

network. 

2. Connect PC to the local network on site (to which IQView panel and IQ3 control-

lers are connected) and use TREND-dedicated software to maintain the control 

strategy and settings. 

3. Dial into the controller remotely using TREND-dedicated software or IP address 

(separate for each controller) in web browser. This requires local control system 

to be equipped with an active sim card with mobile data allowance. 
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2.2.2.1 Method of data collection 

The data collection performed by the author of the thesis was achieved by accessing the 

controller remotely through IP address, where access is restricted and requires signing 

in as an administrator or other users with an appropriate level of rights. After signing 

in, the data can be viewed as a graph or as a list as depicted in Figures 2.3 and 2.4. 

Figure 2.3: Graph representation of data recorded on the controller. Data is accessed 
remotely. 

The controller is capable of storing the last 1000 records of each module (e.g. 

outdoor air temperature or damper position), therefore it is important to backup the 

data on regular basis. Having data saved every 15min, the log holds the data of the 

past 10.4 days and the oldest sample is overridden with the newest value. In order 

to create a data backup the data must be collected manually as there is no easy way 

to set up automatic data recording. To do so, each data of interest (such as sensor 

readings, average indoor air temperature, heating and cooling operation, fan operation, 

damper position) has to be opened separately and displayed as a list, then the rows of 

the list have to be selected manually, then copied and pasted into previously prepared 

spreadsheet. The data from spreadsheet can be imported to MATLAB and processed 

as required. By default it is not possible to select rows in the list and copy them. To 

unlock this feature, user must make changes in Oracle Java policy on the machine used 

to collect the data. Recording data for a specifc module has to be explicitly set within 

the control strategy or on the controller and no data is recorded on its own. 
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Figure 2.4: List representation of data recorded on the controller. Data is accessed 
remotely. 

The choice of the data collected was made based on how informative and useful it 

is. While some data might be found not important at frst, they could be used to cross 

check controller operation and identify inaccuracies and unexpected outputs. Examples 

of the data points collected and stored include: 

• outside air temperature, 

• supply air temperature, 

• minimum space temperature, 

• maximum space temperature, 

• supply fan heating mode usage, 

• supply fan free cooling mode usage, 

• supply fan mechanical cooling mode usage, 

• damper blades usage, 

• cooling stage 1 usage, 

• cooling stage 2 usage, 

• combined average space temperature (weighted average specifc to controller). 
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2.2.2.2 Data reliability and sensors 

The temperature sensors have been placed by TREND-trained engineers in the most 

representative place and free of disturbance, e.g. not directly under the nozzle, and 

tuned to provide the most representative air temperature reading for the area it is 

placed in, removing possible biases. The sensors are provided by TREND and are a 

part of T-Px series. The outdoor air temperature is measured using internal wall sensor 

and the outdoor air temperature is measured using wall outside sensor. The accuracy 

of the sensing element of the outdoor and duct sensors is dt = ±(0.15 + 0.002|t|)◦C. 

The accuracy of the indoor sensor is ±0.3◦C at +20◦C. The author of the thesis didn’t 

have an option to add or remove temperature sensor or manually change the operation 

of heating or cooling units. 

2.3 Thermal system setup 

The considered system is based on an existing pharmaceutical warehouse facility loc-

ated in Midlands, United Kingdom introduced in Section 2.2. This represents a typical 

arrangement for an indoor air temperature control solution providing thermal comfort 

in large volume open plan buildings (Goodfellow & Tahti, 2001). The developed sys-

tem model will be subsequently used for control design purposes and simulation studies 

provided in this thesis. The system set-up is depicted schematically in Figure 2.5. The 

total volume of the conditioned space is 185 472m3 and is served by the AHU adjacent 

to the warehouse. 

Figure 2.5: Indoor air temperature control system of a large space building. 

The following components can be distinguished in the thermal system depicted in 

Figure 2.5: 
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• Controlled area The indoor space of a large volume building where the temper-

ature is controlled to a given temperature set-point. 

• Air mixing damper An air damper which regulates the mixing ratio between 

the outdoor air intake and indoor air re-circulation. In other words, the damper 

is used to control the airfow analogous to a valve that controls water fow. The 

damper uses a set of blades which allows for full fresh outdoor air entry when fully 

open or allows for full indoor air re-circulation when fully closed. 

• Air handling unit Central air conditioning system comprising of heating unit, 

cooling unit and supply air fan unit to condition the air passing through and 

distribute it via the ductwork within the controlled area. 

• Control unit The main micro-controller which contains the implemented con-

trol strategy to maintain the indoor environmental conditions by manipulating 

the actuators of the AHU together with an air mixing damper. The unit also 

uses multiple indoor and outdoor temperature sensor readings (denoted T) and 

is capable of remote internet communication with a master server. The master 

server commonly runs the building management system used by a building facility 

management. 

• Ductwork The necessary duct system allowing for the conditioned air to be 

equally distributed within the conditioned area. 

Considering the system depicted in Figure 2.5, the air temperature control is achieved 

through the distribution of conditioned supply air from the AHU. Subsequently, the 

air is returned back from the controlled area to the AHU via a network of return air 

ducts. The air recirculation is achieved via the choice of the damper blade position 

within the air mixing damper. The damper blade position allows to choose between a 

fresh outside air intake or to recirculate the indoor (return) air. The indoor and outdoor 

air temperatures are constantly monitored by the control unit which then calculates 

the demand for heating or cooling at every sampling time instance based on the area’s 

temperature set-points. Subsequently, the control unit decides on how this demand is 

going to be met. This can be achieved in two ways: (1) either via passive conditioning 

by using directly the outdoor air or (2) to actively condition the return air by means of 

mechanical heating or cooling. The control unit also must decide on whether to switch 

on or o� the supply fan. By default, the air mixing damper is closed, i.e. full air re-

circulation is assumed. Note that there is enough of fresh air for human personnel within 

the building due to air leakage (infltration) and its volume. 

For mathematical modelling and subsequent control design purposes it is benefcial 

to re-draw the system schematic diagram from Figure 2.5 into a control block diagram 
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as shown in Figure 2.6. Four system inputs are considered: (1) The internal heat gain 

within the conditioned zone denoted q(t) [W]. (2) Measured outdoor air temperature 

Ta(t) [K], which is perceived as a load disturbance together with the heat gain q(t). 

Note that Ta(t) is entering the system directly at the inlet of the mixing box and also 

introduces heat gain within the conditioned zone indirectly via a heat transfer through 

the building’s envelope. (3) The di�erential temperature of the air passing through the 

AHU introduced by active heating or cooling denoted �T (t) [K]. (4) A fnal manipulated 

input is the position of damper blades, denoted ud(t), defned as 

 
Ta(t), 

Td(t) = 
ud(t) = 1 

(2.3.1) 
Tr(t), ud(t) = 0 

where Td(t) denotes the temperature of the air leaving the air mixing damper (before it 

enters the AHU). Alternatively, Td(t) can be also expressed as 

Td(t) = ud(t)Ta(t) + (1− ud(t))Tr(t) = ud(t)Ta(t) + Tr(t)− ud(t)Tr(t) (2.3.2) 

The supply air temperature, denoted Ts(t) [K], is defned as a sum of Td(t) and �T (t), 

i.e. Ts(t) = Td(t) + �T (t). The measured return air temperature is denoted Tr(t) [K] 

and is chosen to be the single output of the thermal system. Air fow rate is denoted 

ma(t) [m
3/s]. 

Ta(t) 

Ta(t) 

q(t) 

ud(t) 
Td(t) 

�T (t) 

Ts(t) 

ma(t) 
ZONE 

Tr(t) 

Figure 2.6: Control block diagram representation of the large space building (system) 
represented by ZONE. 

Note that the indoor air can be passed back into AHU and then back to ZONE, 

creating a loop. While it is desirable under certain conditions to reuse the indoor air, it 

is worth to consider that the model represented by the block diagram shown in Figure 

2.6 contains a positive feedback loop, which tends to cause system to become unstable. 
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2.4 Mathematical modelling of the indoor thermal process 

Mathematical modelling of the real world thermal process based on frst principles 

presented in this thesis allowed to grasp the main characteristics of the large space 

building in accordance with a heat fow concept (see e.g. Bell Jr., 2000; Çengel & Boles, 

2006; Chartered Institution of Building Services Engineers, 2005; Underwood, 1999). 

A simple model of the indoor air temperature is settled on energy balance where the 

temperature of the indoor air is a dynamic thermal process compounding three essential 

thermal energy exchanges. That is, the indoor air temperature in single space building 

is shaped by (1) an internal heat gain, (2) the temperature of the air supplied and (3) 

a heat transfer accompanying the building envelope, i.e. the temperature of the walls 

surrounding the controlled area. A simplifed diagram representing thermal energy ex-

change for a single space building as a multiple input single output (MISO) system is 

shown in Figure 2.7. Time index t has been chosen to emphasise a continuous-time 

nature of the process. The supply air entering the conditioned space is dispensed at 

temperature Ts(t) [K] and air volume fow rate ma(t) [m
3/s]. The indoor air temperat-

ure is altered by thermal energy generated within the building, e.g. lights, personnel 

or operating machines, denoted q(t). Further, the heat transfer through conduction is 

used to describe the heat transfer through the walls, where the ambient (outdoor) air 

temperature, denoted Ta(t) [K] and the wall temperature denoted Tw(t) [K] are of main 

interest. Note the mean temperature of the walls is shaped by the exterior conditions 

on the outer side and the indoor conditions on the inner side; the term walls is used to 

describe a building envelope enclosing the controlled area, where the structure consists 

of external walls of the building supporting the roof and the roof (or ceiling on the inner 

side). Carrying three main contributions, {Ta(t), Ts(t), q(t)}, the return air leaves the 

building at the temperature Tr(t) [K] which is equivalent to the mean temperature of the 

air within the controlled area. It is assumed that thermal stratifcation is not present 

and the supply air temperature is evenly distributed across the whole space in no time. 

The selection of inputs and outputs of the thermal system shown in Figure 2.7 is 

taken directly from the literature (Underwood, 1999) and is also based on the actual 

control strategies implemented on the controllers. It is worth noting that the overall 

thermal process is more complicated and the accuracy of the model can be further im-

proved if the following are considered. For instance, the heating e�ects originating from 

building’s outside can be further refned by incorporating the more weather conditions 

beyond the outdoor air temperature only, such as solar irradiation and wind speed. Ac-

cordingly, the heat transfer through walls could be refned by taking into account the 

solar energy a�ecting the walls and roof of the building. Furthermore, the model can 

be further improved by considering the e�ect of wind speed prominence by means of 
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Figure 2.7: Basic model of a thermal process for an open space building. 

infltration through change in rate of air leakage and chilling e�ect on the walls and 

roof areas. While all these variables can further improve the accuracy of the model, 

their inclusion to the model depend vastly on whether they can be measured or not. On 

the other hand, including too many variables may tend to complicate the model and 

compromise the use of the model for our purpose of control design. In this case, we 

can treat those variables as variable disturbance or o�set term while keeping the main 

dynamics of the model simple. 

While the internal heat gain and the supply air temperature together with the air 

fow can be relatively easy to estimate or known in value, it should be noted, however, 

that the temperature of the wall is a total of heat exchange between the wall and the 

outdoor air on the outer side plus the wall and the indoor air on the inner side of the 

wall. To account for the two part heat exchange of the thermal process describing the 

temperature of the walls (i.e. outdoor air-outer wall and indoor air-inner wall), we 

consider each part of the heat exchange as a state variable and the resulting two state 

variables is modelled with a second order linear di�erential equation. Representation 

of two individual energy elements is expected to be refected in two individual rates of 

change, with one being faster than the other. The set of two di�erential equations is 

detailed in Section 2.4.1. It is considered that rate of change related to building envelope 

is lower in comparison to the indoor air temperature process, however, the frst one is 

explicitly dependable on the wall thermal attributes resting on material properties it is 

built of and its thickness. Assuming the rate of change in the wall temperature is equal 

to 0, a reduced order model can be obtained and the details of this is given in Section 

3.4. 
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2.4.1 First principles conceptual model of the indoor thermal process 

The model of the thermal system shown in Figure 2.7 has been established as a core 

of further considerations to defne a model of the system with respect to mathematics. 

Additional simplifying assumptions has been adopted such that the lumped parameter 

modelling approach is considered, meaning that some contributions, diÿcult for model-

ling, are neglected and model accuracy is biased (Ramallo-González et al., 2013; Touret-

zky & Baldea, 2014). For simplicity, it is assumed that the air is evenly distributed 

across the space with no delay and the air is within the building is perfectly mixed with 

all points across the space having the equal temperature; similarly, no time delay for 

the heat transfer through walls is assumed. With that the fnal equations representing 

the thermal system are reduced into ordinary di�erential equations (Atkinson, 2009; 

Jackiewicz, 2009) with a fnite number of parameters. The two states of the model are 

the return air temperature Tr(t) [K] and the temperature of the wall Tw(t) [K] (Under-

wood, 1999; Çengel & Boles, 2006; Zaj́ıc, 2013). Predominant contributions have been 

encapsulated in the energy balance statement given in Equations (2.4.1a) and (2.4.1b) 

forming conceptual mathematical model of the indoor thermal process as a continuous 

dynamical system of two di�erential equations 

dTr(t)
Cr =ma(t)ˆaca [Ts(t)− Tr(t)]− (UA)int [Tr(t)− Tw(t)] 

dt 
ˆaVrca 

+ q(t)− nv [Tr(t)− Ta(t)] (2.4.1a) 
3600 

dTw(t)
Cw =(UA)int [Tr(t)− Tw(t)]− (UA)ext [Tw(t)− Ta(t)] 

dt 

+ qi(t) (2.4.1b) 

where 

- Cr/Cw [J/K] - thermal capacity of the air/wall, 

- ma(t) [m
3/s] - air volume fow rate, 

- ˆa [kg/m
u3] - density of the air, 

- ca [J/(kg · K)] - specifc heat capacity of the air, 

- Uint/Uext [W/(m2 · K)] - heat transfer coeÿcient on the inner/outer side of the 

walls, 

- Aint/Aext [m
2] - e�ective surface area of the inner/outer walls, 

- q(t) [W] - heat load disturbance within the indoor space, 

- Vr [m
3] - volume of the air within the indoor space, 
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- Ta(t) [K] - outdoor air temperature, 

- Tw(t) [K] - mean temperature of the walls, 

- Ts(t) [K] - supply air temperature, 

- Tr(t) [K] - mean temperature of the air within the indoor space, 

- nv [1/h] - air change rate, 

- qi(t) [W] - solar irradiation heat load on the outer side of the walls. 

The calculation of the units for the variables given in Equations (2.4.1a) and (2.4.1b), 

respectively, are 

3 � �J K m kg J W 2 · = · [K− K]− · m · [K− K] 
K s s m3 kg · K m2 · K 

kg 3 J· m ·1 m3 kg·K
+W − · · [K− K] 

h 3600 
� � � �J K W W2 2 · = · m · [K− K]− · m · [K− K] 

2 2K s m · K m · K 

+W 

which reduces to 

J J 1 J 
= − W+W − · 

s s h 3600 
J 
=W − W+W 

s 

1 1Since J = W and 1 · = , it is confrmed that the units are consistent. s h 3600 s 

Note that while the unit for temperature considered in Equations (2.4.1a) and 

(2.4.1b) is Kelvin, the fnal unit (J/s) is independent of the temperature unit. Moreover, 

the dynamics of Equations (2.4.1a) and (2.4.1b) are described by the di�erence of tem-

perature. Thus, the choice of temperature unit will not a�ect the dynamics of the 

thermal process. 

The thermal capacities Cr and Cw are calculated with the following formula 

Cr = ˆaVrca (2.4.4) 

Cw = ˆwVwcw (2.4.5) 

where ˆw [kg/m
3], Vw [m

3] and cw [J/(kg · K)] are wall material density, volume of the 

walls and specifc heat capacity of the wall material, respectively. The units on the 
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right-hand side of both above equations are 

kg J J3 · m · = 
m3 kg · K K 

which is equal to the units on the left-hand side. 

The area-integrated fabric surface U -value, denoted (UA), is the overall heat trans-

fer calculated as a sum of the heat fows through the individual areas such as walls, ceiling 

and foor. The heat transfer through the inner wall side, (UA)int, and outer wall side, 

(UA)ext, respectively, are computed as 

X 
(UA)int = UiAi = UwallAwall + UceilAceil + UfloorAfloor (2.4.6a) 

X 
(UA)ext = UiAi = UwallAwall + UceilAceil (2.4.6b) 

The internal heat transfer is calculated using the areas of walls, denoted Awall, ceiling, 

denoted Aceil, and foor, denoted, Afloor, and its respective heat transfer coeÿcients, 

namely Uwall, Uceil and Ufloor. The external heat transfer is calculated using the areas 

of walls, denoted Awall and ceiling, denoted Aceil, and its respective heat transfer coef-

fcients, namely Uwall and Uceil. 

The conceptual model of the system is made up by two separate energy balance 

equations (2.4.1a) and (2.4.1b), each referring to one of two possible states. Equa-

tion (2.4.1a) refers to changes in the indoor air temperature, specifed on the left-hand 

side of the equation. Equation (2.4.1b) refers to changes in the mean temperature of 

the wall, which is not directly measured. The components on the right-hand side of 

Equation (2.4.1a) contributing toward the indoor air temperature are energy received 

from the AHU, heat transfer on an inner side of the wall, the internal heat gain and 

the outdoor air leakage into the building. The mean temperature of the walls on the 

left-hand side of Equation (2.4.1b) is shaped by the exterior conditions on the outer side 

and the indoor conditions on the inner side. The components on the right-hand side 

of Equation (2.4.1b) contributing to the mean temperature of the walls are the heat 

transfer on the inner side of the wall, the heat transfer on the outer side of the wall, the 

heat gain due to sun irradiation on the outer side of the wall and the heat gain due to 

wind blowing on the outer side of the wall. 

For the thermal systems described using Equations (2.4.1a) and (2.4.1b) to be rep-

resentative of the thermal system, the physical quantities in the equations have to be 

known or estimated. Alternatively, the unknown terms should be substituted with black 

box components. Investigating the consequences of assuming some parameters of the 

frst principles model to be constant, i.e. the thermal capacity of the air, the density 
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of the air and the air specifc heat capacity, it has been recognised that the discrep-

ancies between extreme values are negligible when modelling for control is considered. 

These parameters are altered by meteorological variables such as atmospheric pressure 

and water vapour in the air. The studies have been carried out by direct calculation of 

the thermal capacity of the air, the density of the air and the air specifc heat capacity 

for range of possible values of the atmospheric pressure and the air humidity. There-

fore, these parameters are set to constant at the most representative value within the 

considered range. 

2.4.2 Laplace transform interpretation of the indoor thermal process 

di�erential equations 

The indoor thermal process model proposed in previous subsection has two states, Tr(t) 

and Tw(t). Since the main interest lies in obtaining a dynamic model describing the 

relationship between the system inputs {Ts(t), ma(t), Ta(t), q(t)} and the output Tr(t) 

and the knowledge of the wall temperature Tw(t) is not of direct interest here, the wall 

temperature Tw(t) has been substituted with its energy balance equivalent. The model of 

the indoor thermal process in Equation (2.4.7) has been obtained as a continuous time 

second order model by solving a coupled system of frst order di�erential Equations 

(2.4.1). Assuming no changes in ma(t) and q(t), the frst derivative terms ṁa(t) = 0 

and q̇(t) = 0. The solution leads to the indoor thermal process represented as 

¨ ¯ ¯a0Tr(t)+a1Ṫ  r(t)+a2Tr(t) = b0Ṫ  s(t)+b1Ts(t)+b0Ṫ  a(t)+b1Ta(t)+c0q(t)+ c̄0qi(t) (2.4.7) 

Applying Laplace transform to Equation (2.4.7), assuming zero initial conditions, and 

using Cr dependencies given in Equation (2.4.4), the indoor thermal process is repres-

ented in s-domain as 

� � � � � �

2 ¯a0s + a1s + a2 Tr(s) = b0s + b1 Ts(s) + b0s + b̄1 Ta(s) + c0q(s) + c̄0qi(s) (2.4.8) 
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where 

a0 = 1 

(UA)int nv ma (UA)int + (UA)ext 
a1 = + + + 

Cr 3600 Vr Cw 
h i(UA)int + (UA)ext ma nv (UA)int(UA)ext 

a2 = · + + 
Cw Vr 3600 CwCr 

ma
b0 = 

Vr 

(UA)int + (UA)ext ma
b1 = · 

Cw Vr 
nv

b̄0 = 
3600 
(UA)int + (UA)ext nv (UA)int(UA)ext 

b̄1 = · + 
Cw 3600 CwCr 

(UA)int + (UA)ext 
c0 = 

CwCr 

(UA)int 
c̄0 = 

CwCr 

and term ma(t) is denotedma. Such representation of the indoor thermal process may be 

used to create a discrete time domain model for simulation purposes in a mathematical 

software and analysis of the model characteristics. 

2.5 Black-box temperature model of Air Handling Unit 

The main components of the AHU are the air mixing box with damper, the heating unit, 

the cooling unit and the supply fan unit, see Section 2.3. The air mixing damper acts as a 

switch, but the other units can be approximated with simple frst order models and used 

to simulate the AHU operation. This section is focused on extracting parameters for the 

heating and cooling units sub-models using system identifcation. Since the dynamics 

of the indoor air temperature is slow and the data used for parameter estimation is 

recorded at 15min sampling time, the parameter estimation is performed in discrete 

time domain. The data have been recorded in the existing warehouse facility operating 

the HVAC system, therefore the data represents the actual control system operation 

without prior experimental setup. 

2.5.1 Heat loads within the Air Handling Unit 

The heat load �T (t) = Ts(t)−Td(t) generated in the AHU (Section 2.3) can be rewritten 

as 

�T (s) = �Th(s) + �Tc(s) + �Tf (s) +Ga(s) · Ta(s) (2.5.1) 
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with 

�Th(s) = Gh(s) · uh(s) (2.5.2) 

�Tc(s) = Gc(s) · uc(s) (2.5.3) 

�Tf (s) = Gf (s) · uf (s) (2.5.4) 

where �Th(s), �Tc(s) and �Tf (s) refect the temperature changes caused by the heating 

unit, cooling unit and the supply fan unit, respectively, and Gh(s), Gc(s), Gf (s) and 

Ga(s) are the continuous-time transfer functions corresponding to three manipulated 

control inputs uh(s), uc(s), uf (s), and one uncontrollable input Ta(s), respectively. The 

inputs uh(s), uc(s) and uf (s) control the heating unit, cooling unit and supply fan unit, 

respectively, taking values between 0 and 1, where 0 corresponds to 0% and 1 corresponds 

to 100% of total potential of a controlled unit. Note that �Th(s) and �Tf (s) take non-

negative values because heat is generated while the heating unit or the supply fan unit is 

in operation. Note also that �Tc(s) takes non-positive values since the heat is removed 

to decrease the temperature of the air whenever the cooling unit is in operation. The 

impact of the outdoor conditions acting through the AHU walls Ga(s) · Ta(s) can be 

modelled in a similar manner as done for the building if the thermal properties of the 

AHU walls are known or can be estimated to improve the accuracy of the �T (s). Ideally, 

the AHU should be insulated well enough to avoid outdoor conditions infuence the air 

passing through AHU in any manner other than known, measurable and controlled via 

the position of damper blades. In further considerations this disturbance in neglected 

due to its insignifcant impact compared to the overall system and inability to measure 

it. It has been confrmed that all e�ort has been taken to insulate the AHUs of the 

studied warehouse and the outdoor conditions should have minimal impact on the air 

within AHU. 

Equations (2.5.2), (2.5.3) and (2.5.4) allow to model separately each of the compon-

ents within the AHU. Here, Gh(s), Gc(s) and Gf (s) are modelled as frst order systems. 

The achievable temperature change caused the operation of the heating unit, the cooling 

unit and the supply fan unit is calculated as 

�Th/c/f (t) = 
qmax 

(2.5.5) 
ma(t)caˆa 

where qmax [W] is the total maximum power output generated by the units, which is 

translated into the heating load. The right-hand side units calculation is 

W W W 
= = · K = K 

m3 J kg J · · W 
s kg·K m3 s·K 
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which is consistent with the unit of the left-hand side referring to the temperature 

change. Since a change of one unit of Kelvin is equal to a change of one unit of degree 

Celsius, Equation (2.5.5) can also be used for calculations involving the latter unit. In 

further calculations of temperature change using Equation (2.5.5) it is assumed, based 

on specifcation of the studied warehouse, that ma = 18.5m3/s, ca = 1005 J/(kg · K) and 

ˆa = 1.183 kg/m3 . Note that qmax in the numerator of Equation (2.5.5) can be written 

as qh/c + qf , i.e. as a sum of the heat load coming from heating or cooling unit and 

supply fan. The physical meaning of this relationship is that the higher air fow rate, the 

smaller change in the air temperature. It is explained by the fact that the same amount 

of heat is distributed among bigger amount of the air. Similarly, the same heating load 

used to warm up (or cool down) smaller amount of air results in increased value of 

change in the temperature of the air. Note that the value of the air temperature change 

calculated using Equation (2.5.5) should be equal to the process gain of the respective 

function Gh(s), Gc(s) or Gf (s). 

2.5.2 Heating unit sub-model 

It has been observed that the supply air temperature Ts depends on the input �TO, the 

temperature of the air entering the AHU Td and the outdoor air temperature Ta acting 

on the walls of the AHU. Any additional heat gains, e.g. accounting for a heat generated 

by fan motor, can be captured in an o�set term denoted O. Assuming with regard to 

Equation (2.5.1) that there is no cooling element and the supply fan term is neglected 

on account of the o�set term, the following equation can be formulated: 

�TO(s) = Gh(s) · uh(s) +Ga(s) · Ta(s) +O (2.5.6) 

The term Ga(s) corresponds to the outdoor air temperature e�ect on the heating unit 

through the AHU envelope. Since the AHU is well insulated, according to the system 

specialists from Jet Environmental, the outdoor conditions should have negligible infu-

ence on the temperature within the AHU. The following frst order discrete time transfer 

function is proposed with respect to the heating process based on Equation 2.5.6: 

−1 −1bhz bhOAT z
�TO(k) = · uh(k) + · Ta(k) +O (2.5.7) 

1 + ahz−1 1 + ahz−1 

where the z operator denotes the forward shift operation, i.e. ziy(k) = y(k+i). The frst 

term on the right-hand side refers to heating unit control input component, the second 

term refers to the outdoor air temperature component and the last is the o�set term, 

which is a scalar. The left-hand side term �TO(k), which is an output signal, equals to 

Ts(k) − Tr(k), assuming the damper position is closed. The index k has been used to 



33 Thermal modelling of an open air-conditioned indoor space 

emphasise discrete-time domain of the equation. The coeÿcients bh and bhOAT refer to 

two respective inputs uh and Ta. Note that both terms have common denominator. 

2.5.2.1 Dataset 

The heating in the AHU of the real system as described in Section 2.2 is generated using 

gas burner. The heating unit model is characterised by the following features based on 

the real system: 

• There are two AHUs operating with the same control strategy, but having di�erent 

average indoor air temperature input Tr; one is biased toward open warehouse area 

(W ), other toward mezzanine area (M). The data collected from both AHUs have 

been merged into one, i.e. it is assumed both AHUs work combined together. The 

system inputs and outputs used for the system identifcation are an average of the 

supply air temperature values coming from both AHUs, e.g. Ts = (TsW +TsM )/2. 

• Each AHU operates with 0%, 50% (stage 1) and 100% (stage 2) of total heating 

capabilities, switching ON and OFF as dictated by the control system. 

• The gas burner output for stage 1 based on the data provided is observed to be 

slightly di�erent for both AHUs. It is concluded from the values of the supply air 

temperature readings as if for one of the units had 40% or 60% for stage 1 instead 

of 50%. To simplify, this discrepancy is neglected in further considerations. 

The data presented in Figure 2.8 have been used as estimation dataset for system 

identifcation and hold the following criteria: 

• The overall length of data used is 78 samples recorded uninterrupted with 15min 

sampling time starting at 22/02/2017 15:15; the data has been recorded in the 

pharmaceutical warehouse in Midlands, UK supported by use of four indoor sensors 

and one outdoor sensor as described in Section 2.2.1.1. 

• The position of damper blades is closed across all data points and the indoor air 

is recirculated. 

• The supply fans are ON at all times, meaning that the air is supplied through 

the ductwork. The fan operates at 72.5% of its maximum speed when the heating 

unit is ON and 62% when the heating unit is OFF. For simplicity, the fan speed 

is neglected and assumed constant. 
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Figure 2.8: The heating unit sub-model estimation dataset. 

The data presented in Figure 2.9 have been used as validation dataset and hold 

the following criteria: 

• The overall length of data used is 150 samples recorded uninterrupted with 15min 

sampling time starting at 05/04/2018 21:30; the data has been recorded in the 

pharmaceutical warehouse in Midlands, UK. 

• The position of damper blades is closed across all data points and the indoor air 

is recirculated. 

• The warehouse area supply fan is ON across all data points and operates at 100% 

of its maximum speed. The mezzanine area supply fan operates at 100% of its 

maximum speed when the heating is ON and 0% (air not supplied) when the 
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heating is OFF and the average mezzanine area air temperature TrM is above 

switching di�erential level defned within the AHU control strategy. For simplicity, 

the fan speed is neglected in calculations. 
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Figure 2.9: The heating unit sub-model validation dataset. 

The fan speed control input shown in Figures 2.8 and 2.9 is not taken into consid-

eration in system identifcation, but is provided for information purposes only to show 

coherence of data and analysis. Note that the use of heating unit (stage 1 or 2) means 

constant, non-variable, speed at which the supply fan operates, hence the data provided 

is not informative enough to identify meaningful parameters of the supply fan unit. The 

supply fan operation is well enough correlated with the heating unit operation, therefore 

the system identifcation methods might not be able to distinguish well between the head 
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loads of the heating unit and the supply fan unit. It is concluded that taking into con-

sideration the supply fan as a separate term would not bring valuable improvement in 

the parameter estimation as the supply fan unit sub-model parameters would be poorly 

estimated. 

The heating element control input has been normalised to vary between 0 and 1 

corresponding to 0 and 100% of heating capabilities, respectively. Note that the control 

inputs, in this instance for heating unit and fan unit, may at times di�er between AHUs 

as a consequence of correlated yet independent operation. Though the average is taken 

into consideration for the model parameters estimation, the values recorded by both 

AHUs separately are shown in Figures 2.8 and 2.9 to o�er the reader deeper insight 

into the data. Analysing stage operation of the heating unit with constant interval 

between stages and visually inspecting the data provided, it is deemed that with the 

data provided a linear model is good assumption for system identifcation and control 

purposes, regardless of the expected nonlinear characteristics of the gas burner (typically 

found in the gas burner documentation). However, the estimated model of the heating 

unit could be improved in accuracy if nonlinear or bilinear model would be used and 

more informative data provided. 

In all calculations and simulations, the disturbances such as warehouse loading door 

open, sun irradiation on the roof and the walls, heat generated by people and machines 

and e�ects due to storage mass are captured by the o�set term O. Also, although the 

indoor air temperature sensors (four in total) have been tested and calibrated, all of 

them are used for control purposes and might have been calibrated to refect the most 

accurate environmental conditions within the indoor space according to the engineer 

performing the calibration instead of actual reading for that particular space where the 

temperature sensor is placed. Similarly, the some of the sensor might be not calibrated 

properly. Another concern for the sensor readings is its accuracy of ±0.3◦C at +20◦C 

as found in data sheet. These observations apply to both heating and cooling units. 

2.5.2.2 System identifcation and validation and estimated model analysis 

The parameter estimation method used to obtain the model parameters characterising 

the heating element using Equation (2.5.7) is Least Squares (LS) (see e.g. Bobál et al., 

2005; Larkowski & Burnham, 2011). Although it has tendency to su�er from parameter 

bias in noisy data, LS is an elemental tool for parameter estimation in control engineering 

and regression analysis. It has been assumed that a frst order system is enough to 

capture the main behaviour of the system and higher order model will not provide much 

improvement in model ft based on the current knowledge of the real system and quality 
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of the data available. The model parameters of Equation (2.5.7) obtained using the 

LS method are bh = 20.6858, ah = −0.2093, bhOAT = 0.3501 and O = −0.7582 and 

the overall model ft for the estimation dataset is shown in Figure 2.10. The estimated 

model has been validated on di�erent dataset and the results are shown in Figure 2.11. 

The frst term on the right-hand side of Equation (2.5.7) relates to the temperature 

increase caused by the heating unit operation. By not considering the other two terms 

of Equation (2.5.7) the heating unit sub-model is formulated as 

bhz
−1 

�Th(k) = · uh(k) (2.5.8) 
1 + ahz−1 

and can be directly used in a simulation using discrete time model of the indoor air 

temperature to represent the heating unit operation. 

The performance of the estimator was subjected to the following metrics calcula-

tion: 

• R2 
T - coeÿcient of determination, the percentage amount of variance calculated 

with respect to the output simulated by the estimated model, 

• IAE - normalised integral of absolute error, a measure of the mean absolute error 

between the actual output and the estimated values, 

• MSE - mean squared error, the average squared deviation of the estimated values 

from the actual output, 

calculated, respectively, as 
||y − ŷ||2 2R2 = 100(1− ) (2.5.9) T ||y − ȳ||2 2 

n 
X1 

IAE = y(k)− ŷ(k) (2.5.10) 
N 

i=1 

n 
X1 

MSE = y(k)− ŷ(k) (2.5.11) 
N 

i=1 

where y is a vector of actual output values, ŷ is a vector of outputs generated (simulated) 

by a model and ȳ is a mean value of y. These metric values produced for the estimated 

model for estimation and validation datasets are given in Table 2.2. The model ft on 

validation dataset demonstrates less accuracy than on estimation dataset, however the 

peaks and general behaviour are well refected. The possible reasons for discrepancy 

include not informative enough indoor air temperature sensor readings, di�erent level of 

internal heat loads, disturbances and weather conditions, e.g. sunny day on one dataset 

and overcast on the other. 
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Figure 2.10: The heating unit sub-model (Equation (2.5.8)) using estimation dataset 
with �TO (Equation (2.5.7)), error and input signals as a function of time. 

Output signal 

uh 

5 10 15 20 

Time [hour] 
25 30 35 y 

ŷ 
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Figure 2.11: The heating unit sub-model (Equation (2.5.8)) using validation dataset 
with �TO (Equation (2.5.7)), error and input signals as a function of time. 

The discrete-time step response of the estimated model given in Equation (2.5.8) is 

shown in Figure 2.12; a hold between samples is assumed. Note that exciting the system 
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Table 2.2: Measures of the performance criteria for the estimated parameters of the 
heating unit sub-model (Equation (2.5.8)). 

Criteria Estimation Validation 

R2 [%] T 97.8367 81.7624 

IAE 0.5433 1.3605 

MSE 0.8996 2.7733 

with input signal uh = 1 means that the heating unit is 100% ON (stage 2) and this 

results in warming the air passing through the AHU. The temperature of the supply air 

leaving the AHU is changed by 26.16 °C from the temperature of the air entering the 

AHU and this is the process gain of sub-system provided in Equation (2.5.8). Note also 

that the steady state is approached in relatively short time, with settling time of 45min, 

which is three times of the sampling interval. There is no overshoot or undershoot 

observed. The calculated time constant is ˝h = 9.59min which is a shorter time period 

than the sampling interval. This observation is consistent with the expected heating unit 

time constant. The step response leads to an overall temperature rise caused mainly by 

the heating unit and the heat gain coming from the supply fan motor. By knowing the 

maximum heating unit output 400 kW and the maximum supply fan output is 37 kW, 

the expected maximum temperature rise is be calculated using Equation (2.5.5) as 

400 · 103 + 37 · 103 · 0.725 
�Th = = 26.77 °C (2.5.12) 

18.5 · 0.725 · 1005 · 1.183 

assuming the fan speed is 72.5%. Note that this value is less than 1 °C di�erent from the 

results obtained using system identifcation methods, where the step response settles at 

26.16 °C. 
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Figure 2.12: The heating unit sub-model step response - �Th settling at 26.16 °C. 
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2.5.2.3 Second order model system identifcation of the heating unit 

The data provided in Section 2.5.2.1 was used to estimate the heating unit sub-model 

assuming second order model structure provided in Equation 2.5.14, extracted from 

Equation 2.5.13, a respective second order model form of Equation 2.5.7. 

−1 −2 −1 −2bh1z + bh2z bh1OAT z + bh2OAT z
�TO(k) = · uh(k) + · Ta(k) +O (2.5.13) 

1 + ah1z−1 + ah2z−2 1 + ah1z−1 + ah2z−2 

−1 −2bh1z + bh2z
�Th(k) = · uh(k) (2.5.14) 

1 + ah1z−1 + ah1z−2 

The model parameters of Equation (2.5.13) obtained using the LS method are bh1 = 

20.6344, bh2 = 2.1840, ah1 = −0.1157, ah2 = 0.0136, bh1OAT = 0.2573, bh2OAT = 0.1186 

and O = −0.8904. 

The results represented through performance criteria are provided in Table 2.3. The 

improvement is negligible compared to frst order system results in Table 2.2, o�ering 

less than 1% increase in RT 
2 and decrease in IAE and MSE observed at second and 

third decimal places. The settling point of �Th is 26.21 °C. It is concluded that the 

higher order model does not allow to capture the heating unit behaviour better than 

a frst order model with the given dataset. The explanation for that is the 15min 

interval of the data sampled, which is not informative enough to provide more insight 

into the heating unit dynamics. The presence of a second or higher order dynamics 

is indistinguishable, hinting the data could be undersampled it terms of heating unit 

sub-model parameters estimation. While 15min is suitable for control of a large space 

building, the heating unit is characterised by much faster thermal response given heating 

the passing air up by around 26 °C. In order to obtain tangible improvement in the model 

parameter estimations for the heating unit it is recommended for the sampling time to be 

at least 10min. The suggested optimal sampling time to gather more informative data 

for heating unit identifcation is 5-10min, bearing in mind overall controller performance 

and thermal response of the building. Furthermore, the improvement in both estimation 

and validation results could be observed if another dataset was available. Ideally, the 

dataset would come from an experiment where the heating unit operation is determined 

manually and/or pre-planned and is not relevant to the heating set-point, changing freely 

between 0, 50% and 100% output or additional stages if possible. 
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Table 2.3: Measures of the performance criteria for the estimated parameters of the 
heating unit sub-model using second order model structure (Equation (2.5.14)). 

Criteria Estimation Validation 

R2 [%] T 97.8429 81.9908 

IAE 0.5337 1.341 

MSE 0.897 2.7386 

2.5.3 Cooling unit sub-model 

Following the concept proposed in the beginning of Section 2.5 in Equation (2.5.1), 

where the heat gain characterising the heating unit is obtained from the real data, the 

following transfer function has been formulated with respect to cooling unit 

�TO(s) = Gc(s) · uc(s) +Ga(s) · Ta(s) +Gf (s) · uf (s) +O (2.5.15) 

assuming there is no heating unit. Therefore, a frst order discrete time transfer function 

representing the cooling unit is formulated as 

−1 −1 −1bcz bcOAT z bf z
�TO(k) = · uc(k) + · Ta(k) + · uf (k) +O (2.5.16) 

1 + acz−1 1 + acz−1 1 + acz−1 

where the frst term on the right-hand side refers to cooling unit control input component, 

the second term refers to the outdoor air temperature, the third term refers to the supply 

fan unit and the last one is the o�set term, which is a scalar. The left-hand side term 

�TO(k), which is an output signal, equals to Ts(k)−Tr(k), assuming the damper position 

is closed. The coeÿcients bc, bcOAT and bf refer to three inputs uc(k), Ta(k) and uf , 

respectively, and all three terms share a common denominator of the corresponding 

transfer functions. 

2.5.3.1 Dataset 

The cooling in the AHU of the real system as described in Section 2.2 is achieved using 

direct expansion air conditioning unit (DX unit). The cooling unit model is characterised 

by the following features based on the real system: 

• There are two AHUs operating with the same control strategy, but having di�erent 

average indoor air temperature input Tr; one is biased toward open warehouse area 

(W ), other toward mezzanine area (M). The data collected from both AHUs have 

been merged into one, i.e. it is assumed both AHUs work combined together. The 
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system inputs and outputs used for the system identifcation are an average of the 

supply air temperature values coming from both AHUs, e.g. Ts = (TsW +TsM )/2. 

• Each AHU operates with 0%, 50% (stage 1) and 100% (stage 2) of total cooling 

capabilities, switching ON and OFF as dictated by the control system. 

• The cooling output for stage 2 is twice as the cooling output for stage 1 as the 

cooling unit consists of two identical DX units running on their full capacity when 

enabled. Demand for stage 1 cooling enables one of the unit, while demand for 

stage 2 cooling enables both of them. 

The data presented in Figure 2.13 have been used as estimation dataset for system 

identifcation and hold the following criteria: 

• The overall length of data used is 343 samples recorded uninterrupted with 15min 

sampling time starting at 24/05/2017 09:45; the data has been recorded in the 

pharmaceutical warehouse in Midlands, UK supported by use of four indoor sensors 

and one outdoor sensor as described in Section 2.2.1.1. 

• The position of damper blades is closed across all data points and the indoor air 

is recirculated. 

• The supply fans are ON at all times, meaning the air is supplied through the 

ductwork. The fan speed varies from 62.5% (nheating OFF) up to 100% (72.5%, 

80% or 100%, cooling ON). 

The data presented in Figure 2.14 have been used for validation and hold the 

following criteria: 

• The overall length of data used is 370 samples recorded uninterrupted with 15min 

sampling time starting at 30/05/2017 07:15; the data has been recorded in the 

pharmaceutical warehouse in Midlands, UK. 

• The position of damper blades is closed across all data points and the indoor air 

is recirculated. 

• The supply fans are ON at all times, meaning the air is supplied through the 

ductwork. The fan speed varies from 62.5% (cooling OFF) up to 100% of its 

maximum speed (72.5%, 80% or 100%, cooling ON). 

For this sub-unit, the fan speed control input shown in Figures 2.13 and 2.14 is 

taken into calculations, unlike for the heating unit model in Section 2.5.2. It is believed 
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Figure 2.13: The cooling unit sub-model estimation dataset. 

that the model parameters may be estimated more accurately when the fan speed is 

taken into account. This can be explained by the fact that there are two stages of 

cooling unit operation yet the fan speed is among one of three possible speed for active 

cooling unit, either 72.5%, 80% or 100%. The operation of the supply fan and cooling 

units are less correlated, hence the heat load generated due to the supply fan operation 

may be estimated and separated from the cooling load, as opposed to the heating unit 

model, where the heat loads of the heating and supply fan units blend. It has been also 

concluded that it is important to di�erentiate the supply fan heat load from the cooling 

unit heat load for two reasons: (1) they carry di�erent signs when active and the cooling 

leads to a dip in the temperature, while the supply fan contributes to the temperature 

rise, and (2) the expected absolute value of the cooling unit heat load is much lower 

than from the heating unit, therefore the supply fan contribution has more signifcant 

weight. Ignoring this fact could lead to a decreased value of the estimated cooling unit 

gain and poor accuracy, since the expected gains are known based on the calculations 

and consultations with the subject expert. 

The supply fan control input has been normalised to vary between 0 and 1 that 
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Figure 2.14: The cooling unit sub-model validation dataset. 

correspond to 0 and 100% of the maximum speed, respectively. Similarly, the cooling unit 

control input has been normalised to vary between 0 and 1 corresponding to 0 and 100% 

of cooling capabilities, respectively. By analysing the stage operation of the cooling unit 

with constant interval between stages (each stage enables one of two identical DX cooling 

units running at their full cooling capacity) and visually inspecting the data provided, 

it is deemed that a linear model is a good approximation for system identifcation and 

control purpose. More informative data, however, would allow to challenge it. 

2.5.3.2 System identifcation and validation 

The parameter estimation method used to obtain model parameters characterising cool-

ing unit in Equation (2.5.16) is the LS. It has been assumed that a frst order system is 

enough to capture the main behaviour of the system and higher order will not provide 
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much improvement in model ft based on the current knowledge of the real system 

and quality of the data available. The model parameters obtained using the LS are 

bc = −6.6397 and ac = −0.4509, bf = 4.0331, bcOAT = −0.0032 and O = 0.1913 and the 

overall model ft for the SID dataset is shown in Figure 2.15. The estimated model has 

been validated on di�erent dataset and the results are shown in Figure 2.16. Note that 

parameter bc is negative, hence the output �Tc(k) is negative when the cooling unit is 

switched on, i.e. uc(k) > 0. 

The frst term on the right-hand side of Equation (2.5.16) relates to the temperature 

drop caused by the cooling unit operation. By not considering the other two terms of 

Equation (2.5.16), the cooling unit sub-model is formulated as 

bcz
−1 

�Tc(k) = · uc(k) (2.5.17) 
1 + acz−1 

and can be directly used in a simulation using discrete time model of the indoor air 

temperature to represent the cooling unit operation. 

The performance of the estimator was subjected to the metrics calculation intro-

duced and defned in Section 2.5.2 as R2 , IAE and MSE. The metric values calculated T 

for the estimated model for both estimation and validation datasets are provided in 

Table 2.4. The results obtain present good model ft in estimation dataset in all metrics. 

Moreover, the validation trial demonstrated also good ft with R2 0.5% lower than for T 

estimation dataset and IAE and MSE higher by 40% and 26%, respectively, remaining 

below 0.625. 

Table 2.4: Measures of the performance criteria for the estimated parameters for the 
cooling unit sub-model (Equation (2.5.17)). 

Criteria SID Validation 

R2 [%] T 97.1652 96.6607 

IAE 0.4422 0.6219 

MSE 0.4798 0.6067 

The discrete-time step response of the estimated model given in Equation (2.5.17) 

is shown in Figure 2.17; a hold between samples is assumed. Note that exciting the 

system with input signal uc = 1, meaning the cooling unit is 100% ON (stage 2), results 

in cooling of the air passing through the AHU. The temperature of the supply air leaving 

the AHU is changed by −12.09 °C from the temperature of the air entering the AHU and 

this is the process gain of the cooling sub-system provided in Equation (2.5.17). Note 

also that the steady state is approached in more than an hour while the settling time is 

75min, which is fve times the sampling interval. There is no overshoot or undershoot 
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Figure 2.15: The cooling unit sub-model (Equation (2.5.17)) using estimation dataset 
with �TO (Equation (2.5.16)), error and input signals as a function of time. 

observed. The calculated time constant is ˝c = 18.83min and this period is close to the 

sampling interval. This observation is consistent with the expected cooling unit time 

constant. The overall air temperature change between the air entering and leaving the 

AHU is caused mainly by the cooling unit, but also includes the heat gain coming from 

the supply fan motor. By knowing the maximum cooling unit output is 314 kW and 

the maximum supply fan output is 37 kW, the expected maximum temperature change 

calculated using Equation (2.5.5) is 

−314 · 103 + 37 · 103 · 0.8 
�Tc = = −16.16 °C (2.5.18)

18.5 · 0.8 · 1005 · 1.183 

assuming the fan speed is 80% and 

−314 · 103 + 37 · 103 
�Tc = = 12.59 °C (2.5.19)

18.5 · 1005 · 1.183 

assuming the fan speed is 100%. The di�erence of the air temperature leaving AHU 
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Figure 2.16: The cooling unit sub-model (Equation (2.5.17)) using validation dataset 
with �TO (Equation (2.5.16)), error and input signals as a function of time. 

with regard to the fan speed is expected as the lower fan speed indicates that the air 

moves slower through the AHU, hence the cooling power infuences the air for a longer 

period of time. In other words, the higher fan speed is, the less time cooling unit has 

to cool the air down. As the cooling capacity is constant, a higher fan speed means 

that certain amount of cooling is distributed among bigger amount of air, while for a 

lower fan speed the same amount of cooling is distributed among bigger amount of air, 

providing more of cooling per unit of air. 

2.6 Simulation study 

The study presented in this section is to demonstrate and analyse a response of the 

second order indoor air temperature model derived from frst principles. It is achieved 

through a number of simulations covering various supply fan, heating and cooling units 

operation scenarios combined with two possible positions of damper blades. The system 
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Figure 2.17: The cooling unit sub-model step response - �Tc settling at −12.09 °C. 

model is also analysed with regard to e�ect of the fan and the position of damper blades 

on the model. The measurement noise is not considered as the interest at this stage is 

in nominal value only (although it is good to consider it in the future by utilising Monte 

Carlo simulation study, for example). External disturbances are considered by means of 

the outdoor air temperature, which is a manipulated input through the damper position 

and in the same time has indirect impact on the indoor conditions through the walls. 

2.6.1 First principles model equations for simulation 

The two di�erential equations provided in Equation (2.4.1) are discretised using the 

forward (explicit) Euler method (Atkinson, 2009, p. 4) and implemented in MATLAB 

for simulation purposes. The discretised equations for the indoor air temperature and 

the wall temperature, respectively, are 

ts � � 
Tr(k) = Tr(k − 1) + 

Vr 
· ma(k − 1) · Ts(k − 1)− Tr(k − 1) 

ts ts � � 
+ 

Cr 
· q(k − 1) + 

Cr 
· (UA)int · Tw(k − 1)− Tr(k − 1) 

+ ts · 
nv 

3600 

� � 
· Ta(k − 1)− Tr(k − 1) (2.6.1) 

ts � � 
Tw(k) = Tw(k − 1) + 

Cw 
· (UA)ext · Ta(k − 1)− Tw(k − 1) 

ts � � 
+ · (UA)int · Tr(k − 1)− Tw(k − 1) ; (2.6.2) 

Cw 

where ts is sampling interval. Equations (2.6.1) and (2.6.2) are used to simulate the 

indoor conditions, whereas Equations (2.6.5)-(2.6.8) are used to add the damper blades 

position and heating and cooling units directly into consideration. To be more specifc, 

the temperature of the air supplied to the indoor space Ts(k) in Equation (2.6.1) is 

calculated separately on each simulation step using Equations (2.6.3) and (2.6.4) and 

then the results are passed into Equation (2.6.1). The fnal value of Ts(k) acts as the 
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input to the plant following the confguration in Figure 2.6 and Equation (2.3.2) and 

makes use of the AHU model parameters provided in Section 2.5. Consider now the 

following equations in Laplace domain 

� � 
Td(s) =ud(s) · Ta(s) + 1− ud(s) · Tr(s) (2.6.3) 

Ts(s) =Td(s) + �Th(s) + �Tc(s) (2.6.4) 

which can be rewritten as 

� � 
Td(s) =ud(s) · Ta(s) + 1− ud(s) · Tr(s) 

Ts(s) =Td(s) + �Th · uh(s) + �Tc · uc(s) 

to allow for the damper blades position control using term ud(s) and manipulation of 

the heating and cooling units operation following heating and cooling unit models from 

Equations (2.5.8) and (2.5.17) with control inputs uh(s) and uc(s), respectively. Then, 

Equations (2.6.3)-(2.6.4) are discretised resulting in the following equations 

Td(k) =ud(k) · Ta(k − 1) + Tr(k − 1)− ud(k) · Tr(k − 1) (2.6.5) 

�Th(k) = − ah · �Th(k − 1) + bh · uh(k − 1) (2.6.6) 

�Tc(k) = − ac · �Tc(k − 1) + bc · uc(k − 1) (2.6.7) 

Ts(k) =Td(k) + �Th(k) + �Tc(k) (2.6.8) 

Equations (2.6.5)-(2.6.8) are implemented in MATLAB along with Equations (2.6.1) and 

(2.6.2) in a recursive manner for simulation of the indoor thermal conditions, recalcu-

lating inputs at each time step as required. The overall model of the system represented 

by these equations is of second order. Note that the model is obtained using grey box 

approach, linking together known parameters of frst principles model with the black 

box models of the heating and cooling units. No internal heat gains are present. 

2.6.1.1 Model parameters 

The parameters of the frst principles model used in simulation are provided in Table 2.5. 

The values chosen, where possible, have been motivated by the specifcation documents 

of the pharmaceutical warehouse located in Midlands, UK. The sampling interval used 

for simulation is ts=180 s and this value was chosen as an attempt to fnd deeper insight 

into the studied system than using the 15min sampling interval from the previously used 

dataset. 
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Table 2.5: The frst principles model parameters. The units of the parameters are 
provided in Section 2.4.1. 

Coeÿcient Value Coeÿcient Value 

Vr 185472 Vw 784.1 

ma 0− 18.5 nv 0.35 

ca 1005 Af loor 11520 

cw 1000 Aceil 11520 

ˆa 1.183 Awall 7833.2 

ˆw 600 Uf loor 0.13 

Uwall 0.35 Uceil 0.25 

Note that the value of nv indicates that 35% of the air within the indoor space is 

exchanged to fresh each hour. Normally this is not the case in the real conditions to 

prevent heat losses, nevertheless for the simulation purposes the value has been chosen 

to compensate for the overinsulation e�ect. The need for nv manipulation arose from 

two reasons. Firstly, the exact components of the wall are not known, hence assumptions 

have been made to represent simple model of concrete brick wall. Secondly, the proposed 

model is intended to be simple and represent main behaviour, hence some potentially 

meaningful inputs, e.g. solar irradiation on a sunny day or wind on a windy day, have 

been neglected. As per specifcation of the studied building nv = 0.25, however, nv = 

0.35 is used for simulation as empirically found value that represents the studied system. 

Cooling and heating unit models have been upsampled from their original ts = 

15min to required ts = 3min = 180 s using zero-order hold method as a conversion 

method for approximation of a continuous time model and then discretised back using 

zero-order hold method with ts = 180 s. 

2.6.2 Results 

The results of this study are divided into three scenarios depending on the supply fan and 

heating and cooling units operation, in which open and closed damper position situations 

are considered. The frst scenario studies the tracking of the indoor air temperature in 

the absence of operating supply fan unit, where no air is distributed into the conditioned 

area using ductwork. The second scenario considers supply fan unit active with air 

distributed through the ductwork, however the heating and cooling units are disabled. 

The third scenario combines active supply fan with heating and cooling units operating 

at di�erent levels of their maximum capacity. In each scenario the following steps were 

performed: 

1. Load the frst principles model parameters. 
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2. Represent the outdoor air temperature Ta as a square wave changing between 0 

and 10 ◦C every 3 days. 

3. Simulate the indoor air temperature using equations from Section 2.6.1. 

4. Perform system identifcation with second order system model structure using 

Least Squares method. 

5. Gather all the relevant coeÿcients and metrics representing the identifed model. 

6. Produce fgures to visually represent identifed system model. 

The following second order model structure has been formulated for system iden-

tifcation: 

Tr(s) = Gs(s) · Ts(s) +Ga(s) · Ta(s) (2.6.9) 

where Gs(s) and Ga(s) are the transfer functions corresponding to inputs Ts(s) and 

Ta(s), respectively. It is assumed that the internal heat gains are not present. Following 

the system model given in Equation (2.4.8), the functions Gs(s) and Ga(s) have a 

common denominator and are represented as 

b0s + b1
Gs(s) = (2.6.10) 

s2 + a1s + a2 

and 
b̄0s + b̄1

Ga(s) = (2.6.11) 
s2 + a1s + a2 

The system model represented by Equation (2.6.9) is a second order MISO system having 

two inputs and one output. This second order system model will be used to evaluate 

how precise the model parameters can be obtained for the same order system model as 

the reference system model represented by white-box model from Equations (2.4.1) and 

(2.4.8). 

The indoor air temperature generated by the model in the fgures from subsec-

tion below showing the system identifcation results is denoted data and the indoor air 

temperature simulated using parameters obtained using system identifcation method 

is denoted SID. The error is calculated as Error = data − SID. The step response 

of a system function representing the relationship between input Ta and output Tr is 

denoted Ga. Similarly, the step response of a system function representing relationship 

between input Ts and output Tr denoted Gs. Note that only scenario involving heating 

and cooling will have Gs term present. The supply fan on its own is assumed to not 

introduce additional input to the system and the heat gains resulting from the supply 

fan operation are neglected. 
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2.6.2.1 Supply fan disabled scenario 

In this scenario it is studied how the outdoor air temperature is able to infuence the 

indoor air temperature by means of a heat transfer through the walls only and the 

supply fan is not in operation. The indoor air temperature simulation results including 

model ft and the input outdoor air temperature are presented in Figure 2.18. The step 

response of the system function Ga is presented in Figure 2.19. 
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Figure 2.18: The indoor air temperature simulation with supply fan disabled (damper 
position not relevant). 
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Figure 2.19: Outdoor temperature process (Equation (2.6.11)) step response for sup-
ply fan disabled (damper position not relevant). 
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2.6.2.2 Supply fan in operation scenario 

In this scenario the operation of the supply fan is introduced to evaluate system model 

separately for an open (ud = 1) and a closed (ud = 0) loop system scenario. Con-

sequently, the supply fan passes through the ductwork either the fresh air from the 

outside or the recirculated indoor air at 75% of its maximum speed. There is no heating 

and cooling present. The simulation results of the indoor air temperatures for the open 

and closed loop systems are presented in Figure 2.20. An indoor air temperature sim-

ulation using model parameters from system identifcation of the open loop system is 

presented in Figure 2.21, while the closed loop system is presented in Figure 2.23. The 

step response of a system function Ga for the open loop system is presented in Figure 

2.22 and for the closed loop system in Figure 2.24. 
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Figure 2.20: The indoor air temperature simulation with supply fan operating at 75% 
of its maximum speed. 

2.6.2.3 Heating and cooling supply scenario 

In this scenario the operation of heating and cooling units is introduced to evaluate 

system model with controlled heat gains. The open and closed loop system scenarios 

are di�erentiated and evaluated separately. Consequently, the supply fan passes the air 

through the ductwork, either the fresh air from the outside or the recirculated indoor 

air, that can be heated or cooled by heating and cooling units. The simulation results 

of the indoor air temperatures for the open and closed loop systems are presented in 

Figures 2.25 and 2.28, respectively. The indoor air temperature simulation using the 

model parameters from system identifcation of the open loop system is presented in 

Figure 2.26 and in Figure 2.29 for the closed loop system. The step responses of the 
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System identifcation results - fan on 
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Figure 2.21: System identifcation of the indoor air temperature simulation (Equation 
(2.6.9)) with supply fan operating at 75% of its maximum speed and damper blades in 

an open position; ud = 1. 
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Figure 2.22: Outdoor temperature process (Equation (2.6.11)) step response for sup-
ply fan operating at 75% of its maximum speed and damper blades in an open position; 

ud = 1. 

system functions Gs and Ga for the open loop system are presented in Figure 2.27 and 

for the closed loop system in 2.30. It is assumed that the supply fan operates at 75% of 

its maximum speed. 

2.6.2.4 Discussion 

Numerical values gathered from the system identifcation for all scenarios and Figures 

2.18 to 2.30 have been summarised in Tables 2.6 and 2.7. Additional simulation study 

has been done for 100% of maximum fan speed with numerical results briefy summarised 

in Tables 2.8 and 2.9. 

Considering Equation (2.4.8) and its a and b coeÿcients defnition from the frst 

principles model, one could expect to get the same values for each simulation, regardless 
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System identifcation results - fan on 
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Figure 2.23: System identifcation of the indoor air temperature simulation (Equation 
(2.6.9)) with supply fan operating at 75% of its maximum speed and damper blades in 

a closed position; ud = 0. 
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Figure 2.24: Outdoor temperature process (Equation (2.6.11)) step response for sup-
ply fan operating at 75% of its maximum speed and damper blades in a closed position; 

ud = 0. 

of scenario, provided the air mass fow rate is constant. Nonetheless, the coeÿcients 

a1, a2, b0 and b1 are dependent on the air mass fow rate and b̄0 and b̄1 are independent 

of it. The values shown in Tables 2.6 and 2.8, however, di�er between scenarios even 

when the same fan speed is assumed. This di�erence is related to the position of damper 

blades. Therefore, it has been concluded that in these studied scenarios there are two 

parameters that have notable infuence on the system function coeÿcients and the system 

dynamics - the air mass fow rate and the position of damper blades. It has been 

demonstrated that when the supply fan is in operation and the air is distributed though 

the ductwork, the open loop system dynamics is faster than the closed loop as the 

outdoor air is passed directly to the inside of the building through the ductwork. Also, 

recirculating the air when no heating and cooling is present is no di�erent to keeping 

the supply fan disabled. Note that for a scenario with an open loop confguration, the 

supply fan is ON and no heating and cooling are present, the term Ga accounts not only 
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Figure 2.25: The indoor air temperature simulation with supply fan operating at 
75% of its maximum speed and heating and cooling present. Damper blades in an open 

position; ud = 1. 
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Figure 2.26: System identifcation of the indoor air temperature simulation (Equation 
(2.6.9)) with supply fan operating at 75% of its maximum speed, heating and cooling 

present and damper blades in an open position; ud = 1. 

for the heat transfer through walls and infltration nv, but also the air supplied directly 

through the ductwork. This results in its coeÿcients being di�erent than the closed loop 

with the supply fan ON scenario. 

Once the heating and cooling are introduced, the outdoor air process appears to be 

slower compared to the open loop with the supply fan on scenario. This matter, how-

ever, would need more investigation as the simulation study assumes variable position 
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Figure 2.27: Supply air temperature (top) and outdoor temperature (bottom) process 
(Equation (2.6.10) and (2.6.11)) step response for supply fan operating at 75% of its 

maximum speed and damper blades in an open position; ud = 1. 
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Figure 2.28: The indoor air temperature simulation with supply fan operating at 
75% of its maximum speed and heating and cooling present. Damper blades in a closed 

position; ud = 0. 

of damper blades throughout the simulation. By keeping the damper blades position 

constant, the same coeÿcient of the system functions is obtained as the method cannot 

discern between the source of the incoming air in the presence of heating and cooling. 

Instead, Gs is perceived as a system function related to the overall supply air. Note also, 

that the rise time, settling time and peak time for Ga are somewhat between the values 

for the open and closed loop with fan ON scenarios, which may be due to the problem 

with discerning between the open and closed loop system in the presence of heating 

and cooling. Similarly, Ga has di�erent coeÿcient values than in the other scenarios, 

yielding yet another model parameters. 
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System identifcation results - heating and cooling 
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Figure 2.29: System identifcation of the indoor air temperature simulation (Equation 
(2.6.9)) with supply fan operating at 75% of its maximum speed, heating and cooling 

present and damper blades in a closed position; ud = 0. 
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Figure 2.30: Supply air temperature (top) and outdoor temperature (bottom) process 
(Equation (2.6.10) and (2.6.11)) step responses for supply fan operating at 75% of its 

maximum speed and damper blades in a closed position; ud = 0. 

Comparing values obtained from simulation with 75% and 100% of maximum fan 

speed, it has been noticed that the trends are consistent, i.e. coeÿcients for the sup-

ply fan OFF or the closed loop with the supply fan ON scenarios are the same, while 

dynamics of the other scenarios increases together with speed. Also, Table 2.8 contain-

ing coeÿcients related to the simulation with the supply fan operating at 100% of its 

maximum speed presents the edge values. For example, it shows the maximum Gs gain 

possible with the current frst principles model given maximum ma = 18.5m3/s or the 

expected step response characteristics for the maximum control input. 

Overall, the model obtained is of good ft with the estimated model and matches 

well the input model. It can be noticed in the high values of R2 and close to zero T 

values of IAE and MSE in Tables 2.7 and 2.9, where measures of performance criteria 

10 20 30 40 50 60 
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Table 2.6: The second order continuous time system model parameters (Equation 
(2.6.9)) for operating supply fan open and closed position of damper blades and supply 
fan disabled. Fan operating at 75% of maximum speed for open and closed damper 

position. 

Coeÿcient 
Heating and cooling Fan on 

Fan o� 
Open Closed Open Closed 

Gs(s) Gain 0.4016 0.4016 n/a n/a n/a 

Ga(s) Gain 0.5984 0.5984 1.0 1.0 1.0 

b0 7.622−5 7.622−5 n/a n/a n/a 

b1 2.069−9 2.069−9 n/a n/a n/a 

b̄0 9.902−5 9.902−5 1.752−4 9.834−5 9.834−5 

b̄1 3.089−9 3.089−9 5.152−9 3.062−9 3.062−9 

a1 2.354−4 2.354−4 2.354−4 1.583−4 1.583−4 

a2 5.152−9 5.152−9 5.152−9 3.062−9 3.062−9 

Gs(s) Rise time [h] 4.55 4.55 n/a n/a n/a 

Gs(s) Settling time [h] 19.8 19.8 n/a n/a n/a 

Gs(s) Peak time [h] 40.95 40.95 n/a n/a n/a 

Ga(s) Rise time [h] 10.0 10.0 7.5 14.45 14.45 

Ga(s) Settling time [h] 28.5 28.5 25.75 34.55 34.55 

Ga(s) Peak time [h] 74.95 74.95 66.95 85.95 85.95 

Table 2.7: Measures of the performance criteria for the estimated parameters of a 
second order model of the system with open and closed position of damper blades 
(Equation (2.6.9)). Fan operating at 75% of maximum speed, unless stated di�erently. 

Criteria 
Heating and cooling Fan on 

Fan o� 
Open Closed Open Closed 

R2 [%] T 100 100 100 100 100 

IAE 6.6248−11 9.0341−11 1.0364−11 2.1433−11 2.1433−11 

MSE 7.535−21 1.3442−20 1.8772−22 7.7094−22 7.7094−22 

are listed. Lack of a visible di�erence between tracks of data and SID on plots from 

previous subsection also refects this relationship. 

2.6.2.5 Conclusions 

By nothing the varying values of Ga between di�erent scenarios, it is concluded that 

the model parameters are dependent on the air mass fow rate and the position of 

damper blades. Secondly, the nature of these two states, i.e. the air mass fow rate 

and the position of damper blades, prompts to observe the model as highly nonlinear. 

Therefore, it is suggested to formulate a bilinear or a state-dependent system model 
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Table 2.8: The second order continuous time system model parameters (Equation 
(2.6.9)) for operating supply fan open and closed position of damper blades and supply 
fan disabled. Fan operating at 100% of maximum speed for open and closed damper 

position. 

Criteria 
Heating and cooling Fan on 

Fan o� 
Open Closed Open Closed 

Gs(s) Gain 0.4723 0.4723 n/a n/a n/a 

Ga(s) Gain 0.5277 0.5277 1.0 1.0 1.0 

b0 1.019−4 1.019−4 n/a n/a n/a 

b1 2.765−9 2.765−9 n/a n/a n/a 

b̄0 9.925−5 9.925−5 2.011−4 9.834−5 9.834−5 

b̄1 3.09−9 3.09−9 5.855−9 3.062−9 3.062−9 

a1 2.614−4 2.614−4 2.614−4 1.583−4 1.583−4 

a2 5.855−9 5.855−9 5.855−9 3.062−9 3.062−9 

Gs(s) Rise time [h] 3.85 3.85 n/a n/a n/a 

Gs(s) Settling time [h] 17.95 17.95 n/a n/a n/a 

Gs(s) Peak time [h] 53.95 53.95 n/a n/a n/a 

Ga(s) Rise time [h] 9.15 9.15 6.15 14.45 14.45 

Ga(s) Settling time [h] 27.4 27.4 23.9 34.55 34.55 

Ga(s) Peak time [h] 58.95 58.95 59.45 85.95 85.95 

Table 2.9: Measures of the performance criteria for the estimated parameters of 
a second order model of the system with open and closed position of damper blades 
(Equation (2.6.9)). Fan operating at 100% of maximum speed, unless stated di�erently. 

Criteria 
Heating and cooling Fan on 

Fan o� 
Open Closed Open Closed 

R2 [%] T 100 100 100 100 100 

IAE 6.6248−11 4.7344−11 8.6531−12 2.1433−11 2.1433−11 

MSE 1.2973−21 3.7266−21 1.2832−22 7.7094−22 7.7094−22 

to capture this phenomena, which could be used to simulate the indoor conditions and 

for control. A state-dependent system model is proposed in Chapter 3, where State-

Dependent Parameter (SDP) model of an indoor air temperature is formulated and 

analysed in depth. 

2.6.3 First principles model validation 

A preliminary trial and simulation of the indoor air temperature using Equations (2.6.1)-

(2.6.2), as derived from frst principles di�erential equations provided in Equation (2.4.1), 
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have been performed using the real data gathered in the studied pharmaceutical ware-

house. The frst principles model parameters were chosen for simulation as per Table 

2.5. Additionally, a heat gain q = 120000 has been considered to mimic the internal 

heat gains within the building. The choice was supported by technical documentation of 

the case study warehouse and manual tuning. The results are provided in Figure 2.31, 

where the simulated Tr (dashed line) is shown along the recorded indoor air temperature 

denoted Tr[ref ] (dark grey), which is an average of four sensors as explained in Section 

2.2. The operation of heating and cooling units was simulated using the black box mod-

els estimated in Section 2.5 and was derived from the recorded heating and cooling units 

operation data for both AHUs combined together. This is shown in Figure 2.31 through 

�T , which indicates the amount of heat added or removed from the air supplied to the 

AHU. Similarly, the air mass fow rate ma is an average of the values from the data 

recorded for both supply fans, where the recorded fan speed was translated into the air 

mass fow rate ma. 

While visually there is a considerable di�erence between the simulated Tr and the 

expected Tr[ref ] in Figure 2.31, it is also seen that the simulated Tr follows the expected 

value and oscillates around, reacting to the outdoor air temperature and the AHU oper-

ation. It is observed that the model appears to overreact to the outdoor air temperature 

in comparison to Tr[ref ], which can be related to the wall structure assumptions, a di�er-

ence between the roof structure and the external walls structure (roof has been assumed 

to be the same as each external wall) and the weather conditions not captured by the 

recorded data, such as solar irradiation and wind speed. Moreover, the model doesn’t 

take into consideration the heat stored in the goods and furniture within the building, 

which may contribute to the inaccuracies. It is possible to improve the accuracy of the 

predicted indoor air temperature by including the outdoor conditions data, obtaining 

more representative parameters for the building envelope and considering variable in-

ternal heat gain q, if such data was available. Further, distributed modelling approach 

and consideration of the thermal mass due to the objects stored inside could bring addi-

tional boost in the model’s performance. For the needs of the research described in this 

thesis it is thought the model obtained is enough to perform preliminary studies and to 

design energy eÿcient temperature control system with understanding that further work 

is needed to improve the model. In real application the initial model would be assumed 

according to information available and then improved based on new data recorded by 

the controllers and/or additional equipment. 
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Figure 2.31: The indoor air temperature simulation based on the real data (Equations 
(2.6.1)-(2.6.2)). Damper position is closed. Performance criteria: R2 = -578.5518, IAE T 

= 2.2699, MSE = 6.9954. 

2.7 Conclusions 

In this chapter, the mathematical formulation of the thermal process describing the 

indoor air temperature within open plan building is presented. The model is derived 

from frst principles and o�er relevant insights to the understanding of the thermal 

characteristics. Based on the obtained results, the key points are summarised as follows. 

Firstly, the proposition of the indoor air temperature model encapsulates the es-

sence of thermal process, requiring variety of assumptions and simplifcations, while as-

suring it is safe for the intended use. It is understood that uncertainties will be present 

in the system model and it can be dealt with in two approaches: obtain an accurate 

model as possible until no signifcant improvement in the considered metrics can be seen 

and determine the o�set and error terms to improve model’s prediction accuracy. 

Secondly, whereas the indoor thermal process was introduced using white-box 

model approach, the simple model of the AHU has been obtained using black-box model 
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and system identifcation method from real data. This provided the model of the heating 

and cooling units located in the case study pharmaceutical warehouse from Midlands, 

UK, which is suÿcient for simulations and control. It has been noted that recirculation 

of the indoor air creates a closed loop system with positive feedback, where the output 

becomes the input, while the use of the outdoor air in the AHU creates the open loop 

system. From system identifcation point of view, the parameter estimation of such a 

closed loop system needs to be handle di�erently since the indoor air temperature is 

input and output at the same time. Things get more complicated when the outdoor air 

temperate becomes another input to the system. The proposed solution to address this 

issue is the use of dedicated closed loop system identifcation methods. Alternatively, 

one could fnd correlation between open and closed loop system such that the model 

parameters obtained for the open loop would allow calculation of the closed loop system 

parameters. 

Thirdly, it has been demonstrated in simulation how the second order system model 

can reproduce frst principles model data used for system identifcation. The results 

obtained for relatively simple scenario provided promising results, encouraging develop-

ment of the models with more controlled inputs and gains that cannot be controlled. 

Also, interpretation of the model parameters in physical terms relates the frst principles 

model with estimated model and improvement of one from the other is an advantage as 

in data-based mechanistic approach (Young, 2002, 2011). 

Finally, it has been observed that a linear model structure may not be suÿcient 

to provide a credible model output. Special attention is given to the analysis of the 

indoor thermal process dynamics with regard to the position of damper blades, chan-

ging between recirculation of the indoor air and using the outside air in the AHU. The 

air, whether recirculated or indrawn, is a thermal energy carrier in the HVAC system 

distributed through the ductwork at specifed supply air fow rate that is regulated by 

the fan speed control. The model provided shows capabilities to explain the build-

ing’s thermal response and thermodynamics processes within the controlled area with a 

degree suÿcient for research purposes and control development. By knowing the ther-

modynamics process is a nonlinear process, it is expected that a nonlinear model such as 

state-dependent, bilinear or Hammerstein structure should provide model ft of higher 

accuracy than the linear structure. Identifying the need for more complicated model 

than the simple linear model to capture main characteristics of the indoor thermal pro-

cess, State-Dependent Parameter (SDP) modelling approach is addressed in Chapter 

3. This allows to create a model that is able to simulate the indoor air temperature 

regardless of the changing air mass fow rate and the position of damper blades. 



Chapter 3 

State-Dependent Parameter 

modelling of an indoor air 

thermal process for energy 

optimisation 

3.1 Introduction 

It has been demonstrated in Chapter 2 that a simple yet representative model of a system 

characterising the indoor air temperature can be captured using second order system 

with two inputs: the supply air temperature and the outdoor air temperature. Observing 

the dynamic behaviour of the simulated system and the results of system identifcation, 

it has been noted that there are changes in the model parameters, demonstrating a 

nonlinearity within the studied system. When a real time system is considered, the 

parameters of the system will change as demanded by the Air Handling Unit (AHU) 

control system to satisfy the indoor air temperature requirements. These parameters will 

vary over time, yet it would be a mistake to consider such a system as a non-stationary 

with unpredictable time variable parameters as these parameters depend on the control 

logic. Therefore, the approach presented in this chapter comes from recognition of the 

fact that the changes in the model parameters are functions of the states and variables 

determined by the control strategy and immersed in the frst principle model defnition. 

64 
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3.1.1 State-Dependent Parameter approach background and motiva-

tion 

State-Dependent Parameter (SDP) modelling methods (Young, 2011, p. 327) are capable 

of dealing with highly nonlinear systems, whose parameters can be established from the 

state dependencies. While changes in the time variable parameters are typically slow 

and happen over time, a state-dependent parametric change is much more rapid and 

temporary, arising from the state dependency. The SDP methods can be perceived in 

a similar way as gain scheduling (° om & Wittenmark, 2008, p. 390) or linearisation Astr¨

around working point (equilibrium) (Nise, 2011, p. 89, 141) for selected state. Although 

the extension of the time varying parameter estimation methods to allow for state de-

pendency can be tracked down to a 1966 conference paper by Hoberock & Kohr (1966), 

one of the most signifcant contributors in developing the SDP modelling approach are 

Peter Young (Young, 1969, 1981) and Jerry Mendel (Mendel, 1969; Mendel & Fu, 1970). 

In both approaches it was assumed that the model parameters could vary because of 

their dependence on the variations in the other measured variables. More extensive 

history and evolvement of SDP has been described by Young (2011, p. 327). 

The SDP approach has been chosen to model the indoor air temperature following 

observations in Chapter 2 that the model parameters vary with regard to the air fow 

rate and the position of damper blades. As damper blades position is a part of the 

energy eÿcient solution o�ered in this thesis and is an important part of the control 

strategy, there is a need to fnd a suitable model capturing the identifed nonlinearities. 

The position of damper blades is a scheduling parameter for control design purposes, 

therefore the parameters will change as dictated by states such as the control input for 

the damper blades. In this instance temperature control with damper blades open and 

closed can be perceived as operating under di�erent conditions as the system is changed 

from open to closed-loop. A state-dependent parameter model structure is a convenient 

method to approximate the indoor thermal process with known nonlinearities that cause 

rapid changes in the parameter values. This allows to determine online the response of 

the system at an operating point that is the most representative of the actual system. 

The SDP method is presented in this chapter understating how critical is the indoor air 

temperature model in the model-based control approaches Proportional-Integral-Plus 

(PIP) with Non-minimal State Space (NMSS) and Model Predictive Control (MPC) 

introduced in Chapters 4 and 5, respectively, contributing to robustness, eÿciency and 

reliability of the dynamic model and the control system. 
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3.1.1.1 State-Dependent Parameter method applications 

Studies, practical applications and utility of the SDP approach are found in the literat-

ure, academia and various industry sectors. An example of the SDP method in modelling 

is the multi-state dependent parameter model identifcation and estimation for nonlinear 

dynamic systems (Sadeghi et al., 2010), which is an extension of a univariate SDP es-

timation to handle multi-state dependency. Demonstration of how bilinear systems are 

a special case of a more general SDP model is proposed by Taylor et al. (2011a), where 

Proportional-Integral-Plus (PIP) controller is used along with SDP model. Identifca-

tion and estimation of the SDP models are discussed by Young et al. (2002), where SDP 

Non-minimal State Space (NMSS) model structure is defned and utilised in SDP-PIP 

approach for the control of nonlinear systems. 

Recognising the importance in industrial applications, the frst application of SDP-

PIP methods to practical nonlinear system is summarised by Shaban et al. (2004), where 

an SDP-PIP control system was developed for a 1/5th scale representation of the Lan-

caster University Computerised Intelligent Excavator (LUCIE), a nonlinear robot digger 

arm. In another project discussed by Li & Lu (2013) a state-dependent parameter es-

timation is applied to regional importance measures (RIMs), where failure probability 

is analysed. Another application considers a quasi-linear SDP model structure to model 

a wind turbine (Cross & Ma, 2013). This approach is less common as typically SDP 

models have been used as the basis for nonlinear controllers and this paper considers 

employing SDP for a model-based condition monitoring system. In agriculture, Stables 

& Taylor (2006) proposed nonlinear PIP control for regulating ventilation rate in mech-

anically ventilated agricultural building. This method uses SDP models to represent a 

livestock building or glasshouse. The SDP-PIP control systems where developed and 

evaluated for a forced ventilation test chamber and demonstrated improved perform-

ance and better disturbance response compared to linear and conventional scheduled 

PIP control. Propp et al. (2016) formulated state-of-charge-dependent model to develop 

a multi-temperature state-dependent equivalent circuit discharge model of a lithium-

sulfur battery. In chemistry, the SDP models are used by Bidar et al. (2017) to improve 

product quality monitoring on a simulated continuous stirred tank reactor and an in-

dustrial debutaniser column. 

Examples of the SDP methods use within academia are PhD theses by Exadaktylos 

(2007) and Hitzemann (2013). Exadaktylos utilises Model Predictive Control (MPC) 

methods together with a Non-minimal State Space (NMSS) model to handle a system 

with constraints and proposes MPC-SDP control approach to handle the nonlinear sys-

tems. Similar approach is taken by Hitzemann, who also focuses on model-based control 
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utilising linear NMSS and nonlinear SDP forms. The MPC method is used in conjunc-

tion with proportional-integral-plus (PIP) pole assignment control with the SDP model, 

forming SDP-PIP, presented on a practical example of a DC-DC boost converter. Both 

approaches promote an approach employing model-based control with state-dependent 

model structure and make use of PIP control scheme, which encouraged the use of 

these methods for the research presented in this thesis. In another PhD thesis the SDP 

approach is used for perturbation extremum seeking control, where UK patent State 

dependent electricity controller has been fled as a part of the research (Maganga, 2015). 

3.1.2 Contributions 

The literature review conducted didn’t fnd many applications of SDP for the indoor air 

temperature control. Given state-dependent nature of the indoor air temperature pro-

cess and various examples of the SDP methods applied to other nonlinear systems, it is 

believed that this research is valid and important to the body of knowledge. The contri-

butions presented in this chapter include (1) a state-dependent-parameter formulation 

of a second order indoor air temperature model, (2) reliance of the SDP model para-

meters on the damper position and the amount of air supplied to the indoor space, (3) 

formulation of a reduced order model of an indoor air temperature and (4) parameter 

estimation for various damper position and air mass fow rate values to demonstrate 

state-dependent characteristics of the studied system. The SDP model proposed in this 

chapter is developed for the purpose of simulation and control used as a part of the MPC 

algorithm proposed in Chapter 5, where energy use of the heating, ventilation and air 

conditioning (HVAC) control system is optimised. 

3.1.3 Chapter overview 

This chapter is motivated by the properties of the indoor air temperature model intro-

duced in Chapter 2, where it has been discussed how model parameters depend on two 

manipulated control variables, the air mass fow rate ma and the position of damper 

blades ud. Therefore, recognising the need to defne model parameters as variables sub-

ject to the values of two states, the next Section 3.2 of this chapter introduced the general 

form of SDP model structure, which leads to a state-dependent form of the second order 

model of an indoor air temperature defned in Section 3.3. Then, the frst principles 

model structure is reduced to frst order and derived into state-dependent form in Sec-

tion 3.4. Further, Section 3.5 presents simulation study results based on the model of 

the indoor air temperature with regard to state-dependent parameter structure, followed 

by overall chapter conclusions in Section 3.6. 
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3.2 General State-Dependent Parameter form 

This section introduces general SDP model structure. The frst subsection focuses on 

a SISO system, the second on a MISO system, and in the third one a frst order SDP 

model is formulated for the indoor air temperature control application discussed in the 

thesis. 

3.2.1 State-Dependent Parameter model structure for single input single 

output systems 

The single input, single output discrete-time form of SDP model (Young, 2011) can be 

formulated as 

y(k) = z T (k) · ˆ(k) + e(k); e(k) = N (0, ˙2) (3.2.1) 

where zT (k) is a vector 1× (m + n + 1) and ˆ(k) a vector (n + m + 1) × 1 defned as 

z T (k) = [−y(k − 1) − y(k − 2) . . . − y(k − n) u(k − �) . . . u(k − � − m)] (3.2.2) 

ˆ(k) = [a1{˜(k)} a2{˜(k)} . . . an{˜(k)} b0{˜(k)} . . . bm{˜(k)}]T (3.2.3) 

and y(k) is the output signal, zT (k) the regression vector of previous input and output 

signals and ˆ(k) the state-dependent parameter vector of ai{˜(k)}, i = 1, 2, . . . , n and 

bj {˜(k)}, j = 0, 1, . . . ,m, which are assumed to be functions of one of the variables in 

a non-minimal state vector ˜T (k) = [zT UT (k)]. Here U(k) = [U1(k)U2(k) . . . Ur(k)]
T 

is a r × 1 vector of other variables that may a�ect the relationship between these two 

primary variables, but are not variables that appear in z(k). Then, � is a pure time delay 

on the input variable and e(k) is a zero mean, white noise input with Gaussian normal 

amplitude distribution and variance ˙2 (although this assumption is not essential to the 

practical application of the resulting estimation algorithms). Finally, for convenience of 

notation, let ˆ(k) be defned as a (n + m + 1) × 1 vector 

ˆ(k) = [ˆ1˜(k) ˆ2˜(k) . . . ˆn+m+1˜(k)]
T (3.2.4) 

with ˆi{˜(k)}, i = 1, 2, . . . , n +m+1, relating to ai{˜(k)} and bj {˜(k)} through (3.2.2). 

Transfer function form dedicated for the state-dependent models is also possible. 

SDP-TF (State-Dependent Parameters Transfer Function) is introduced by Taylor et al. 

(2013) as 
B{˜(k)} 

y(k) = u(k − �) + ˘(k) (3.2.5) 
A{˜(k)} 
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in its general form, which can be perceived as a pseudo-TF form, where ˘(k) is a general 

additive noise term and 

m 
X 

B{˜(k)} = bj {˜(k)} (3.2.6) 
j=0 

n 
X 

A{˜(k)} = ai{˜(k)} (3.2.7) 
i=1 

where the model parameters are functions of other variables. This form enables to 

preserve TF representation while utilising highly nonlinear models. 

3.2.2 State-Dependent Parameter model structure for multi input single 

output systems 

Following SDP formulation in Section 3.2.1, multi input single output form for the second 

order system model has been derived to capture the thermal system model proposed in 

Chapter 2 and used as presented in Section 3.3. Then, frst order SDP form has been 

derived to accommodate for reduced order model presented in Section 3.4. Both SDP 

forms are introduced below. 

3.2.2.1 Second order State-Dependent Parameter model form 

The multi input, single output discrete-time form of a second order SDP model having 

two input terms with common denominator can be formulated as 

T T y(k) = z1 (k) · ˆ1(k) + z2 (k) · ˆ2(k) + e(k); e(k) = N (0, ˙2) (3.2.8) 

where 

T z1 (k) = [−y(k − 1) − y(k − 2)u1(k − �)u1(k − � − 1)] (3.2.9) 

ˆ1(k) = [a1{˜1(k)} a2{˜1(k)} b0{˜1(k)} b1{˜1(k)}]
T (3.2.10) 

and 

T z2 (k) = [−y(k − 1) − y(k − 2)u2(k − �)u2(k − � − 1)] (3.2.11) 

ˆ2(k) = [a1{˜1(k)} a2{˜1(k)} b̄0{˜2(k)} b̄1{˜2(k)}]
T (3.2.12) 

T Tand y(k) is an output variable, z1 (k) and z2 (k) are 1 × 4 regression vectors of previous 

input and output signals for the frst and second input u1 and u2, respectively, and 

ˆ1(k) and ˆ2(k) are 4 × 1 state-dependent parameter vectors for inputs u1 and u2, 
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respectively. Parameters ai{˜1(k)}, i = 1, 2, bj {˜1(k)}, j = 0, 1 and b̄j {˜2(k)}, j = 

0, 1 are assumed to be functions of one of the variables in non-minimal state vectors 

˜T T T 
1 (k) = [z1 U

T (k)] and ˜2 
T (k) = [z2 U

T (k)] relating to inputs u1 and u2, respectively. 

Here U(k) = [U1(k)U2(k) . . . Ur(k)]
T is a r× 1 vector of other variables that may a�ect 

the relationship between the two primary variables, but are not variables that appear 

in z1(k) or z2(k). 

3.2.2.2 First order State-Dependent Parameter model form 

The multi input, single output discrete-time form of a frst order SDP model having two 

input terms with common denominator can be formulated as 

T T y(k) = z1 (k) · ˆ1(k) + z2 (k) · ˆ2(k) + e(k); e(k) = N (0, ˙2) (3.2.13) 

where 

T z1 (k) = [−y(k − 1)u1(k − �)] (3.2.14) 

ˆ1(k) = [a1{˜1(k)} b0{˜1(k)}]
T (3.2.15) 

and 

T z2 (k) = [−y(k − 1)u2(k − �)] (3.2.16) 

ˆ2(k) = [a1{˜1(k)} b̄0{˜2(k)}]
T (3.2.17) 

T Tand y(k) is an output variable, z1 (k) and z2 (k) are 1 × 2 regression vectors of pre-

vious input and output signals for the frst and second input u1 and u2, respectively, 

and ˆ1(k) and ˆ2(k) are 2 × 1 state-dependent parameter vectors for u1 and u2 in-

puts, respectively. Parameters a1{˜1(k)}, b0{˜(k)}, j = 0, 1 and b̄j {˜(k)}, j = 0, 1 are 

assumed to be functions of one of the variables in non-minimal state vectors ˜T 
1 (k) = 

T T[z1 U
T (k)] and ˜2 

T (k) = [z2 U
T (k)] relating to u1 and u2 inputs, respectively. Here 

U(k) = [U1(k)U2(k) . . . Ur(k)]
T is a r × 1 vector of other variables that may a�ect the 

relationship between the two primary variables, but are not variables that appear in 

z1(k) or z2(k). 
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3.3 Second order State-Dependent Parameter model of an 

indoor thermal process 

Consider the frst principle model of an indoor air temperature represented by Equation 

(2.4.8); internal and solar irradiation heat gains q and qi are neglected. If the fan speed 

changes over time and varies the air mass fow rate ma(s), the respective SDP form of 

Equation (2.4.8) is formulated as 

� � � � 
2 s + a1{ma(s)}s + a2{ma(s)} · Tr(s) = b0{ma(s)}s + b1{ma(s)} · Ts(s) 

� � 
¯+ b0s + b̄1 · Ta(s) (3.3.1) 

containing both state-dependent and constant value parameters 

(UA)int nv ma(s) (UA)int + (UA)ext 
a1{ma(s)} = + + + 

Cr 3600 Vr Cw 
h i(UA)int + (UA)ext ma(s) nv (UA)int(UA)ext 

a2{ma(s)} = · + + 
Cw Vr 3600 CwCr 

ma(s)
b0{ma(s)} = 

Vr 

(UA)int + (UA)ext ma(s)
b1{ma(s)} = · 

Cw Vr 
nv

b̄0 = 
3600 
(UA)int + (UA)ext nv (UA)int(UA)ext 

b̄1 = · + 
Cw 3600 CwCr 

Analysing the state-dependent model parameters of Equation (3.3.1), it appears that 

¯a2{ma(s)} = b1{ma(s)} + b̄1, whereas b0{ma(s)} and b0 are two out of four elements 

summing into a1{ma(s)} and the other two relate to the heat transfer through the walls. 

Secondly, it has been noted, that a and b parameters are dependent on the air mass fow 

¯rate ma(s) and b̄ parameters are not state-dependent. That is expected as b parameters 

are bounded to Ta(s) term, all representing changes in the indoor air temperature due 

to the temperature of the ambient air surrounding the building through the building 

structure only. On the contrary, b parameters are bounded to the temperature of the 

air supplied from the AHU at the air mass fow rate ma(s). Finally, since a parameters 

are bounded to the output Tr(s), it is expected that a parameters are state-dependent 

as changes in the indoor air temperature Tr(s) strongly depend on the rate at which the 

air is supplied through the ductwork. 
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Applying relations between Td(t), Tr(t) and Ta(t) from Equation (2.3.2) and Ts(t) = 

Td(t) + �T (t) from Figure 2.6, Ts(t) is reformulated to 

Ts(t) = �T (t) + Td(t) = �T (t) + ud(t) · Ta(t) + Tr(t)− ud(t) · Tr(t) (3.3.2) 

and its Laplace transform is 

Ts(s) = �T (s) + Td(s) = �T (s) + ud(s) · Ta(s) + Tr(s)− ud(s) · Tr(s) (3.3.3) 

Applying these properties to substitute Ts(s) in Equation (3.3.1), it takes new form 

� � 
2 s + a1{ma(s)}s + a2{ma(s)} · Tr(s) = 
� � � � 
b0{ma(s)}s + b1{ma(s)} · �T (s) + ud(s) · Ta(s) + Tr(s)− ud(s) · Tr(s) 
� � 
¯+ b0s + b̄1 · Ta(s) (3.3.4) 

which can be rearranged to 

� � 
2 s + a1{ma(s)}s + a2{ma(s)} · Tr(s) = 

� � 
+ b0{ma(s)}s + b1{ma(s)} · �T (s) 

� � 
+ b0{ma(s)}s + b1{ma(s)} · ud(s)Ta(s) 
� � � � 

+ b0{ma(s)}s + b1{ma(s)} · Tr(s)− ud(s)Tr(s) 
� � 
¯+ b0s + b̄1 · Ta(s) (3.3.5) 

and then to 

� � 
2 s + �1{ma(s), ud(s)}s + �2{ma(s), ud(s)} · Tr(s) = 

� � 
+ �0{ma(s)}s + �1{ma(s)} · �T (s) 

� � 
¯+ �0{ma(s)}s + �̄1{ma(s)} · Ta(s) (3.3.6) 
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representing a second order model of the system with state-dependent model parameters 

subjected to the air mass fow rate and the position of damper blades conforming to 

�1{ma(s), ud(s)} = a1{ma(s)} − b0{ma(s)} + b0{ma(s)}ud(s) 

�2{ma(s), ud(s)} = a2{ma(s)} − b1{ma(s)} + b1{ma(s)}ud(s) 

�0{ma(s)} = b0{ma(s)} 

�1{ma(s)} = b1{ma(s)} 

¯ ¯�0{ma(s), ud(s)} = b0 + b0{ma(s)}ud(s) 

¯ ¯�1{ma(s), ud(s)} = b1 + b1{ma(s)}ud(s) 

Note that even when the air mass fow rate ma(s) is constant, the model parameters will 

still vary following the damper blades position control input. Conclusively, the model 

(3.3.6) is identifed as a highly nonlinear system. 

3.4 First order State-Dependent Parameter model of an 

indoor thermal process 

Following derivation of the second order SDP model of an indoor air thermal process 

introduced in Section 3.3, similar methodology can be applied to obtain frst order SDP 

model. This will be referred to as a reduced order model of the system as the frst 
dTw (t)principles model is simplifed. Assuming dt = 0, q(t) = 0 and qi(t) = 0, the set of 

Equations (2.4.1) takes the following form 

dTr(t) nvCr
Cr =ma(t)ˆaca [Ts(t)− Tr(t)]− (UA)int [Tr(t)− Tw(t)]− [Tr(t)− Ta(t)] 

dt 3600 
(3.4.1a) 

0 =(UA)int [Tr(t)− Tw(t)]− (UA)ext [Tw(t)− Ta(t)] (3.4.1b) 

This assumption is made to simplify the overall model by eliminating one dynamic state 

out of two. This approximation is based on a reason that the heat transfer through the 

walls is so slow that it is close to 0. In other words, assuming rate of the wall temperature 

nearly 0 over each time step, this can be approximated and treated as a stationary point 

(or critical point) like dd
x
y = 0, see e.g. (Pender et al., 2012, p. 318). Note that in this 

case the wall structure, e.g. thickness, weight, does not matter as Cw term is no longer 

present. Further simulation study will demonstrate how well the reduced order model 

of an indoor air thermal process can represent the primary frst principles-based model. 
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Rearranging Equation (3.4.1b) with regard to Tw(t), so that 

(UA)intTr(t) + (UA)extTa(t)
Tw(t) = (3.4.2) 

(UA)int + (UA)ext 

and substituting Tw(t) in Equation (3.4.1a) with right-hand side of Equation (3.4.2) 

leads to a frst order di�erential equation 

� � 
dTr(t) (UA)intTr(t) + (UA)extTa(t)

Cr =ma(t)ˆaca [Ts(t)− Tr(t)]− (UA)int Tr(t)− 
dt (UA)int + (UA)ext 

nvCr
− [Tr(t)− Ta(t)] 

3600 

which after rearrangements is presented as 

dTr(t)
Cr = ma(t)ˆacaTs(t)− ma(t)ˆacaTr(t)

dt 
� � 

(UA)2 int nvCr
− (UA)intTr(t) + Tr(t)− Tr(t)

(UA)int + (UA)ext 3600 
� � 

(UA)int(UA)ext nvCr 
+ Ta(t) + Ta(t) (3.4.3) 

(UA)int + (UA)ext 3600 

Applying Laplace transform to Equation (3.4.3), assuming zero initial conditions, and 

using Cr dependencies (2.4.4), the reduced order model of an indoor thermal process in 

s-domain is 
� � 
s + a{ma(s)} Tr(s) = b1{ma(s)}Ts(s) + b2Ta(s) (3.4.4) 

with a controllable known input Ts(s) and a non-controllable known input Ta(s), where 

ma(s) (UA)int 1 (UA)int 
2 nv 

a{ma(s)} = + − · + (3.4.5) 
Vr Cr Cr (UA)int + (UA)ext 3600 

ma(s)
b1{ma(s)} = (3.4.6) 

Vr 

1 (UA)int(UA)ext nv
b2 = · + (3.4.7) 

Cr (UA)int + (UA)ext 3600 

Note that parameters a{ma(s)} and b1{ma(s)} are clearly dependent on the air fow 

rate, while b2 is constant. That observation is consistent with the parameters of the 

second order SDP model (3.3.1), where parameters bounding to Ta(s) are also not state-

dependent. If there is no air fow supplied, i.e. ma(s) = 0, then b1{ma(s)} = 0. 

Consequently, the frst term on the right-hand side of Equation (3.4.4) is not present 

and the outdoor air is the only infuence on the indoor air temperature, hence 

(s + b2) · Tr(s) = b2 · Ta(s) (3.4.8) 

Substituting Ts(s) in the indoor air thermal process described by Equation (3.4.4) 
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with its equivalent from Equation (3.3.3), the indoor air thermal process is rewritten 

into 

� � 
s + �{ma(s), ud(s)} Tr(s) = �1{ma(s)}�T (s) + �2{ma(s), ud(s)}Ta(s) (3.4.9) 

with the model parameters defned as 

� � 
�{ma(s), ud(s)} = a{ma(s)} − b1{ma(s)} · 1− ud(s) 

�1{ma(s)} = b1{ma(s)} 

�2{ma(s), ud(s)} = b1{ma(s)}ud(s) + b2 

It has been observed that the thermal process model’s complexity increases when a vari-

able air mass fow rate and the position of damper blades are taken into considerations. 

Note that the polynomial accompanying �T (s) is dependent on the air mass fow rate 

and not on the position of damper blades, while the polynomials accompanying Tr(s) 

and Ta(s) are dependent on both the air mass fow rate and the position of damper 

blades. 

To sum up, Equation (3.4.9) with state-dependent parameters �{ma(s), ud(s)}, 

�1{ma(s)} and �2{ma(s), ud(s)} can be used to express the indoor air thermal process 

of a system with variable fan speed and adjustable source of the supply air. Secondly, the 

relationship provided in Equation (3.4.9) allows to conclude that the indoor air thermal 

process can be calculated if the outdoor air temperature, AHU heat load, damper po-

sition and air mass fow rate are known. Formulation of the right-hand side equation 

without direct use of the indoor air temperature provides an equation that has no closed 

loop e�ect. Such confguration of a closed loop system would occur if the indoor air 

temperature is an input as well as output of the system, which occurs when the indoor 

air is recirculated. Finally, the use of �T (s) has an implication that the di�erence in the 

air temperature between the air entering and leaving AHU is calculated independently 

of the source of the air entering AHU. 

Special cases of the reduced order model are covered in the subsections below, 

where the models with variable and constant position of damper blades are considered 

as well as models with and without heating load �T (s). 

3.4.1 Special cases of the reduced order thermal system model 

The indoor air thermal process model shown in Figure 2.7 is expanded to the thermal 

model of the system by referring to the system confguration proposed in Section 2.3. In 

this system confguration the position of damper blades can be varied, allowing choice 
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of the supply air source between the recirculated indoor air or fresh air from the outside. 

Consider two scenarios, �T (t) = 0 and variable �T (t), to identify di�erent model 

characteristics discussed in the following Sections 3.4.1.1 and 3.4.1.2, where two special 

cases of the SDP system model are formulated. 

3.4.1.1 Reduced order open and closed loop system model interpretation 

with no heat load of Air Handling Unit 

Let �T (s) = 0 in Equation (3.3.3), so that Ts(s) = Td(s) = ud(s)Ta(s) + Tr(s) − 

ud(s)Tr(s). Substituting Ts(s) with this equivalent, Equation (3.4.4) is rewritten into 

� � � � 
s + a{ma(s)} Tr(s) = b1{ma(s)} ud(s)Ta(s) + Tr(s)− ud(s)Tr(s) + b2Ta(s) (3.4.10) 

where ud(s) shall take either 1 or 0 for the open and closed loop system, respectively. 

This scenario represents situation, where the air entering the AHU, whether fresh or 

recirculated, passes through the AHU without any change in its temperature. Let’s 

consider Equation (3.4.10) with regard to the position of damper blades and its structure 

for the open and closed loop systems individually. Thermal process for the open loop 

system, i.e. ud(s) = 1 and Ts(s) = Ta(s), is expressed as 

(s + a{ma(s)})Tr(s) = (b1{ma(s)} + b2)Ta(s) (3.4.11) 

In the same manner, the thermal process for the closed loop system, ud(s) = 0 and 

Ts(s) = Tr(s), is expressed as 

� � 
s + a{ma(s)} Tr(s) = b1{ma(s)}Tr(s) + b2Ta(s) (3.4.12) 

Moving the indoor air temperature Tr(s) term from the right-hand side to the left-hand 

side, the thermal process takes form of 

� � 
s + a{ma(s)} − b1{ma(s)} Tr(s) = b2Ta(s) (3.4.13) 

Whereas Equation (3.4.10) has been constructed to cater separately for the open and 

closed loop system cases as presented in Equations (3.4.11) and (3.4.13), respectively, 

to remove the dependency on ud(s), the parameters associated with Tr(s) and Ta(s) for 

the open loop system remain dependent on the air mass fow rate ma(s). Note also that 

when no heating and cooling is present, the model of the system has only one input, 

Ta(s), making the system model SISO. 
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3.4.1.2 Reduced order open and closed loop system model interpretation 

with heat load of Air Handling Unit 

Let’s assume that �T (s) is variable, i.e. the air passing through the AHU can be heated, 

cooled or passed without any heat treatment. Substituting Ts(s) with its equivalent 

following Equation (3.3.3), Equation (3.4.4) is rewritten into 

� � � � 
s + a{ma(s)} Tr(s) = b1{ma(s)} �T (s) + ud(s)Ta(s) + Tr(s)− ud(s)Tr(s) + b2Ta(s) 

(3.4.14) 

The value of ud(s) shall be 1 and 0 for the open and closed loop system, respectively. 

Adopting ud(s) = 1 and Ts(s) = �T (s)+Ta(s) in Equation (3.4.14), the thermal process 

for the open loop system is expressed as 

� � 
(s + a{ma(s)})Tr(s) = b1{ma(s)}�T (s) + b1{ma(s)} + b2 Ta(s) (3.4.15) 

Further, looking at the closed loop system, ud(s) = 0 and Ts(s) = �T (s) + Tr(s), the 

thermal process is expressed as 

� � 
s + a{ma(s)} Tr(s) = b1{ma(s)}(�T (s) + Tr(s)) + b2Ta(s) 

Moving the indoor air temperature Tr(s) term from the right-hand side to the left-hand 

side, the thermal process takes form of 

� � 
s + a{ma(s)} − b1{ma(s)} Tr(s) = b1{ma(s)}�T (s) + b2Ta(s) (3.4.16) 

Both Equations (3.4.15) and (3.4.16) represent MISO system models with the non-

controllable known input Ta(s) and controllable input �T (s). As in Section 3.4.1.1, 

dependency on ud(s) is removed and parameters associated with Tr(s) as well as Ta(s) 

for the open loop system remain dependent on the air mass fow rate ma(s). Since 

�T (s) is now present in the model, it is expected that the parameters associated with 

this term are dependent on ma(s). This would refect how quick or at what rate the 

heated or cooled air is distributed across the air-conditioned area. 

3.4.1.3 Reduced order model interpretation with heat loads of heating, cool-

ing and fan units 

Let’s address AHU elements contributing to the air temperature change �T (s) directly. 

Substituting �T (s) in Equations (3.4.15) and (3.4.16) with the right-hand side of Equa-

tion (2.5.1) (neglecting the outdoor air term related to heat transfer through the walls) 

to consider the heat loads of AHU components separately, the reduced order model of 
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the thermal system for the open loop scenario is 

� � � � 
(s + a{ma(s)})Tr(s) = b1{ma(s)} �Th(s) +�Tc(s) +�Tf (s) + b1{ma(s)} + b2 Ta(s) 

(3.4.17) 

and for the closed loop scenario is 

� � � � 
s + a{ma(s)} − b1{ma(s)} Tr(s) = b1{ma(s)} �Th(s) + �Tc(s) + �Tf (s) + b2Ta(s) 

(3.4.18) 

This extends the idea that all temperature changes within the AHU will drive the thermal 

process model by means of ma(s)-dependent parameter as they all contribute to the 

overall supply air temperature Ts(s) distributed at the air mass fow rate ma(s). 

3.4.2 Parameters decomposition 

The parameter values calculated from frst principles with regard to ma(s) and uk(s) 

values are given in Tables 3.1 and 3.2. It is assumed that the frst principles scalars 

are as provided in Table 2.5. The parameters a, b1, b2 are from the frst order model 

represented by Equation (3.4.4) and �, �1, �2 from frst order SDP model represented 

by Equation (3.4.9). 

Table 3.1: Parameter calculations from frst principles for ud = 0 and assuming 
ma = 18.5 [m3/s] at 100% of the maximum fan speed. States, on which parameters are 
dependent have been condensed from ma(s) and uk(s) to ma and uk, respectively, for 

the sake of notional simplicity. 

ma [m
3/s] �{ma, uk} �1{ma} �2{ma, uk} a{ma} b1{ma} b2 

0 (0%) 1.115−4 0 1.115−4 1.115−4 0 1.115−4 

11.5 (62%) 2.352−4 6.18−5 1.115−4 1.733−4 6.18−5 1.115−4 

13.4 (72.5%) 2.561−4 7.23−5 1.115−4 1.838−4 7.23−5 1.115−4 

14.8 (80%) 2.711−4 7.98−5 1.115−4 1.913−4 7.98−5 1.115−4 

18.5 (100%) 2.110−4 9.97−5 1.115−4 2.112−4 9.97−5 1.115−4 

3.5 Simulation study 

3.5.1 System identifcation of the frst order linear model parameters 

This aim of this section is to present and discuss results of the system identifcation 

and reduced order model parameters estimation. As in simulation study provided in 

Chapter 2, Equations (2.6.1) and (2.6.2) representing the frst principles system model, 
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Table 3.2: Parameter calculations from frst principle for ud = 1 and assuming ma = 
18.5 [m3/s] at 100% of the maximum fan speed. States, on which parameters are 
dependent have been condensed from ma(s) and uk(s) to ma and uk, respectively, for 

the sake of notional simplicity. 

ma [m
3/s] �{ma, uk} �1{ma} �2{ma, uk} a{ma} b1{ma} b2 

0 (0%) 1.115−4 0 1.115−4 1.115−4 0 1.115−4 

11.5 (62%) 1.733−4 6.18−5 1.733−4 1.733−4 6.18−5 1.115−4 

13.4 (72.5%) 1.838−4 7.23−5 1.838−4 1.838−4 7.23−5 1.115−4 

14.8 (80%) 1.913−4 7.98−5 1.913−4 1.913−4 7.98−5 1.115−4 

18.5 (100%) 2.112−4 9.97−5 2.112−4 2.112−4 9.97−5 1.115−4 

used in simulation study in Section 2.6, have been used to generate data for the system 

identifcation using LS with setup as described in Section 2.6.1. Results of this study 

have been divided into three scenarios depending on the supply fan operation and heating 

and cooling units operation, in which both open and closed damper position situations 

are considered. First scenario is to study the indoor air temperature track in the absence 

of operating supply fan unit, hence no air distributed into the conditioned area using 

ductwork. Second scenario considers supply fan unit active and air distributed through 

ductwork, but heating and cooling units are disabled. Third scenario combines operating 

supply fan with heating and cooling units operating at di�erent levels of their maximum 

capacity. In each scenario the following steps are performed: 

1. Load frst principles model parameters. 

2. Prepare vector representing the outdoor air temperature Ta as a square wave chan-

ging between 0 and 10 ◦C every 3 days. 

3. Simulate the indoor air temperature using equations from Section 2.6.1. 

4. Perform system identifcation with frst order system model structure using Least 

Squares method. 

5. Gather relevant coeÿcients and metrics representing identifed model. 

6. Produce fgures to visually represent identifed system model. 

The following frst order model structure has been considered for the system iden-

tifcation: 

Tr(s) = Gs(s) · Ts(s) +Ga(s) · Ta(s) (3.5.1) 

where Gs(s) and Ga(s) are the continuous-time functions corresponding to inputs Ts(s) 

and Ta(s), respectively. For simplicity, it is assumed that the internal heat gains are not 
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present. Following the system model given in Equation (3.4.4), the functions Gs(s) and 

Ga(s) have common denominator and are represented as 

b1{ma(s)}
Gs(s) = (3.5.2) 

s + a{ma(s)} 

and 
b2

Ga(s) = (3.5.3) 
s + a{ma(s)} 

In case where ma(s) is constant and the model parameters are not state-dependent, 

Equations (3.5.1), (3.5.2) and (3.5.3) can be considered as transfer functions; otherwise, 

they are referred to as pseudo-transfer functions. The frst order system model given in 

Equation (3.5.1) is used to evaluate how precisely the reduced order model can refect the 

reference system model represented by the second order white-box model from Equations 

(2.4.1) and (2.4.8). 

The following holds for the results presented in the subsequent subsections. The 

indoor air temperature generated by the model in the fgures showing system identifca-

tion results is denoted data and the indoor air temperature simulated using parameters 

obtained by system identifcation method is denoted SID. The error is calculated as 

Error = data − SID. Step response of a system function representing relationship 

between input Ta(s) and output Tr(s) is denoted Ga(s). Similarly, step response of 

a system function representing relationship between input Ts(s) and output Tr(s) de-

noted Gs(s). Note that only scenario involving heating and cooling will have Gs(s) term 

present; supply fan on its own is assumed not to introduce additional heat gain input 

to the system. 

3.5.1.1 Supply fan disabled scenario 

In this scenario the supply fan is not in operation and ma(s) = 0. The indoor air 

temperature simulation results including model ft and the input outdoor air temperature 

are presented in Figure 3.1. Step response of the system function Ga(s) is presented in 

Figure 3.2. 

3.5.1.2 Supply fan in operation scenario 

In this scenario the operation of the supply fan is introduced to evaluate the system 

model separately for the open and closed loop system scenario. Consequently, the supply 

fan passes through the ductwork either fresh outside air or recirculated indoor air at 75% 

of its maximum speed. There is no heating and cooling present. The simulation results 
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System identifcation results - fan o� 
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Figure 3.1: The indoor air temperature simulation with supply fan disabled scenario 
(Equation (3.5.1)). 
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Figure 3.2: The outdoor air temperature process (Equation (3.5.3)) step response for 
supply fan disabled scenario. 

of the indoor air temperatures for the open and closed loop systems are presented in 

Figure 3.3. The indoor air temperature simulation using model parameters from the 

system identifcation of the open loop system is presented in Figure 3.4 and in Figure 

3.6 for the closed loop system. Step response of the system function Ga for the open 

loop system is presented in Figure 3.5 and in 3.7 for the closed loop system. 

3.5.1.3 Heating and cooling supply scenario 

In this scenario the operation of the heating and cooling units is introduced to evaluate 

the system model with controlled heat gains. Open and closed loop system scenarios are 

evaluated separately. Consequently, the supply fan passes the air through the ductwork, 

either fresh outside air or recirculated indoor air, that can be heated or cooled by the 

heating and cooling units. The simulation results of the indoor air temperatures for the 

open and closed loop systems are presented in Figures 3.8 and 3.11, respectively. The 
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Indoor air temperature simulation - fan on 
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Figure 3.3: The indoor air temperature simulation with supply fan operating at 75% 
of its maximum speed. 
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Figure 3.4: System identifcation of the indoor air temperature simulation (Equation 
(3.5.1)) with supply fan operating at 75% of its maximum speed and damper blades in 

open position. 
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Figure 3.5: The outdoor air temperature process (Equation (3.5.3)) step response for 
supply fan operating at 75% of its maximum speed and damper blades in open position. 
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System identifcation results - fan on 
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Figure 3.6: System identifcation of the indoor air temperature simulation (Equation 
(3.5.1)) with supply fan operating at 75% of its maximum speed and damper blades in 

closed position. 
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Figure 3.7: The outdoor air temperature process (Equation (3.5.3)) step response 
for supply fan operating at 75% of its maximum speed and damper blades in closed 

position. 

indoor air temperature simulation using model parameters from the system identifcation 

of the open loop system is presented in Figure 3.9 and in Figure 3.12 for the closed loop 

system. Step responses of system functions Gs and Ga for the open loop system are 

presented in Figure 3.10 and in 3.13 for the closed loop system. It is assumed that the 

supply fan operates at 75% of its maximum speed. 

3.5.1.4 Discussion 

Numerical values gathered from system identifcation for all scenarios and Figures 3.1-

3.13 have been summarised in Table 3.3 and 3.4. Additional simulation study has been 

done for the same setup but with 100% of maximum fan speed with results briefy 

summarised in Tables 3.5 and 3.6. 

Expecting a state-dependent behaviour of the system, it has been demonstrated 

through simulations, Figures 3.1-3.13, with numerical values presented in Tables 3.3 and 

3.5 that the model parameters vary depending on the damper position and the fan speed, 
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Indoor air temperature simulation - heating and cooling 
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Figure 3.8: The indoor air temperature simulation with supply fan operating at 75% 
of its maximum speed, heating and cooling present and damper blades in open position. 
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Figure 3.9: System identifcation of the indoor air temperature simulation (Equation 
(3.5.1)) with supply fan operating at 75% of its maximum speed, heating and cooling 

present and damper blades in open position. 

which translates to the air mass fow rate. This demonstrates that the model parameters 

of the indoor thermal process are dependent on the position of damper blades and the 

air fow rate, parameters commonly regulated in a real temperature control system as 

the manipulated control variables. The process dynamics is changed together with the 

changing state-dependent parameters; the closed loop process is slower than the open 

loop and increased ma(s) makes the process faster. These results are consistent with the 

simulation study from Chapter 2, where in a similar manner parameters of the second 

order system model were obtained, see Section 2.6. For this reason, analysis of the 

characteristics and dynamics of the system based on the results provided will not be 

repeated here. Simulation results, nonetheless, allow to conclude that one may not be 
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Figure 3.10: The supply air temperature (upper plot, Equation (3.5.2)) and the 
outdoor air temperature process (lower plot, Equation (3.5.3)) step responses for supply 

fan operating at 75% of its maximum speed and damper blades in open position. 
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Figure 3.11: The indoor air temperature simulation with supply fan operating at 75% 
of its maximum speed and heating and cooling present. Damper are in closed position. 

able to simulate outputs for di�erent fan speeds and positions of damper blades with 

the same accuracy. If parameters were obtained for a selected fan speed and damper 

position, which implies certain time constant, rise time, settling time and peak time, then 

using these parameters to simulate output of the system with di�erent setup may result 

in discrepancy between simulated and expected output. For this reason, it is concluded 

that using methods requiring compromise, e.g. linearisation around a working point, 

may introduce challenges when fan speed or damper positions are changed, whereas the 
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Figure 3.12: System identifcation of the indoor air temperature simulation (Equation 
(3.5.1)) with supply fan operating at 75% of its maximum speed, heating and cooling 

present and damper blades in closed position. 
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Figure 3.13: The supply air temperature (upper plot, Equation (3.5.2)) and the 
outdoor air temperature process (lower plot, Equation (3.5.3)) step responses for supply 
fan operating at 75% of its maximum speed and damper blades in closed position. 

SDP approach can tackle nonlinearity by adapting parameters to the values according 

to the system states. 

Focusing on the model ft, it has been noticed that the frst order model is capable of 

providing fairly close match to the data generated using second order model of the system 

with R2 > 99%, IAE between 0.1715 and 0.2441 and MSE 0.0666 and 0.1181. The most T 

critical points causing peaks in discrepancy between data and SID trajectories are sharp 

changes in the system input, i.e. the outdoor air temperature and heating and cooling 

output; the biggest error has been observed in the heating and cooling scenario, Figures 

3.8 and 3.11. This lack of adaption to sharp changes and minimising error is related to 
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Table 3.3: The frst order continuous time system model parameters (Equation 
(3.5.1)) for operating supply fan open and closed position of damper blades and supply 
fan disabled. Fan operating at 75% of maximum speed for open and closed damper 

position. 

Coeÿcient 
Heating and cooling Fan on 

Fan o� 
Open Closed Open Closed 

Time constant [h] 1.9060 2.0383 1.9470 3.6735 3.6735 

Gs(s) Gain 0.4013 0.4011 n/a n/a n/a 

Ga(s) Gain 0.5803 0.5827 0.9821 0.9757 0.9757 

b1 5.849−5 5.466−5 n/a n/a n/a 

b2 8.458−5 7.941−5 1.1401−4 7.378−5 7.378−5 

a 1.457−4 1.363−4 1.427−4 7.562−5 7.562−5 

Gs(s) Rise time [h] 4.15 4.45 n/a n/a n/a 

Gs(s) Settling time [h] 7.50 8.00 n/a n/a n/a 

Gs(s) Peak time [h] 11.95 14.95 n/a n/a n/a 

Ga(s) Rise time [h] 4.15 4.45 4.25 8.10 8.10 

Ga(s) Settling time [h] 7.50 8.00 7.65 14.40 14.40 

Ga(s) Peak time [h] 11.95 14.95 24.95 26.95 26.95 

Table 3.4: Measures of the performance criteria for the estimated parameters of a frst 
order model of the system (Equation (3.5.1)) with open and closed position of damper 

blades. Fan operating at 75% of maximum speed, unless stated di�erently. 

Criteria 
Heating and cooling Fan on 

Fan o� 
Open Closed Open Closed 

R2 [%] T 99.8395 99.9293 99.4201 99.4201 99.4201 

IAE 0.2066 0.1959 0.1868 0.2441 0.2441 

MSE 0.0933 0.0838 0.0771 0.1181 0.1181 

reduction of the model order, which prevents model from capturing more sophisticated 

dynamics. Nonetheless, model ft can be partially improved by using other SID method, 

e.g. Instrumental Variables (Young, 2011, p. 171), and overcome LS limitations. 

3.5.2 Verifcation of a frst order model of the system 

This section is to demonstrate how well a frst order model can be ftted to represent a 

second order system when real data is used for simulation. 
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Table 3.5: The frst order continuous time system model parameters (Equation 
(3.5.1)) for operating supply fan open and closed position of damper blades and supply 
fan disabled. Fan operating at 100% of maximum speed for open and closed damper 

position. 

Criteria 
Heating and cooling Fan on 

Fan o� 
Open Closed Open Closed 

Time constant [h] 1.6304 1.7501 1.6714 3.6735 3.6735 

Gs(s) Gain 0.4718 0.4715 n/a n/a n/a 

Ga(s) Gain 0.5115 0.5139 0.9836 0.9757 0.9757 

b1 8.037−5 7.484−5 n/a n/a n/a 

b2 8.715−5 8.157−5 1.635−4 7.378−5 7.378−5 

a 1.704−4 1.587−4 1.662−4 7.562−5 7.562−5 

Gs(s) Rise time [h] 3.60 3.85 n/a n/a n/a 

Gs(s) Settling time [h] 6.40 6.85 n/a n/a n/a 

Gs(s) Peak time [h] 10.95 11.45 n/a n/a n/a 

Ga(s) Rise time [h] 3.60 3.85 3.65 8.1 8.1 

Ga(s) Settling time [h] 6.40 6.85 6.55 14.4 14.4 

Ga(s) Peak time [h] 10.95 11.45 11.95 26.95 26.95 

Table 3.6: Measures of the performance criteria for the estimated parameters of a frst 
order model of the system (Equation (3.5.1)) with open and closed position of damper 

blades. Fan operating at 100% of maximum speed, unless stated di�erently. 

Criteria 
Heating and cooling Fan on 

Fan o� 
Open Closed Open Closed 

R2 [%] T 99.8835 99.9567 99.7021 99.4201 99.4201 

IAE 0.1923 0.1875 0.1715 0.2441 0.2441 

MSE 0.0841 0.0841 0.0666 0.1181 0.1181 

3.5.2.1 Reduced order model equations for simulation 

Reduced order model represented by the frst order di�erential Equation (3.4.3) has been 

discretised using the forward Euler method (Atkinson, 2009, p. 4) and implemented in 

MATLAB for simulation purposes. The implemented discretised equation for the indoor 
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air temperature is 

ts � � 
Tr(k) = Tr(k − 1) + · ma(k − 1) · Ts(k − 1)− Tr(k − 1) 

Vr 

ts UAint · UAint 
− · (UAint − ) · Tr(k − 1) 

Cr UAint + UAext 
ts · nv ts 

− · Tr(k − 1) + · q(k − 1) 
3600 Cr 

ts UAint · UAext nv
+ ( · ) + ts · ) · Ta(k − 1) (3.5.4) 

Cr UAint + UAext 3600

where ts is the sampling interval. Further, Equations (2.6.5) to (2.6.8) for Ts calculation 

were implemented along Equation (3.5.4) in recursive terms for simulation purposes. 

3.5.2.2 First and second order thermal system model simulations 

First and second order systems were simulated using Equations (3.5.4) and (2.6.1)-

(2.6.2), respectively, and the real data. The models were built representing physical 

characteristics following Table 2.5. The data was collected by the HVAC system serving 

pharmaceutical warehouse facility introduced in Chapter 2. The sample count used for 

this simulation is 2400, 15min sampling time, collected between 01/05/2016 03:45 and 

26/05/2016 03:30. This simulation does not evaluate how well these models can match 

the recorded indoor air temperature from the data, therefore the recorded indoor air 

temperature is not displayed. The purpose of this simulation is to demonstrate discrep-

ancies between frst and second order model on real data. The output was simulated 

using the recorded outdoor air temperature Ta, fan speed (refected in the variable air 

mass fow rate ma), heating and cooling outputs as �T and damper position, which was 

closed. It was assumed that q = 0. Simulation results are shown in Figure 3.14. 

The results presented in Figure 3.14 show that the second order system model 

presents milder trend, while the frst order system model more aggressive one, exceeding 

upper and lower values of the second order model at the local maximum and minimum 

values. Note that the error between the frst and second order system models will vary 

depending on the wall model; the second order model will produce di�erent results 

depending on the wall thickness and material properties, but the frst order model is not 

dependent on these characteristics. 
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Indoor air temperature simulation - heating and cooling 
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Figure 3.14: First (black line) and second (light gray line) order system model simu-
lation (Equations (3.5.4) and (2.6.1)-(2.6.2)). The damper blades are in closed position 

and the fan speed is variable. 

3.5.3 First order linear model and State-Dependent Parameter model 

parameter estimation using Least Squares method 

This section presents the results of the system identifcation of the data generated us-

ing frst order system model following model described in Section 3.5.2.1. The data 

is identifed using two models, for the frst order linear model expressed by Equation 

(3.4.4) (or variation (3.4.8) for fan o� scenario) and the frst order SDP model from 

Equation(3.4.9). 

3.5.3.1 Real data input simulation 

Simulation study presented in this section di�ers from the previous ones in the input 

data used to generate data for SID; the real data gathered by a local temperature control 
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unit in the warehouse introduced in Chapter 2 is used. The data has been recorded with 

15min sampling interval during the period of 01/05/2016 03:45-04/05/2016 13:15 (327 

samples) for active AHU scenario, where heating goes on and o� and supply fan on, 

and 21/05/2016 20:45-27/05/2016 14:15 for fan o� scenario (641 samples). The data 

used as the inputs include the outdoor air temperature, supply fan speed and operation 

of the heating and cooling units. Since the recorded data refects operation of a real 

HVAC system, the speed at which supply fan operates varies over time. For this reason 

one cannot extract SDP parameters using simple LS and reverse engineer to obtain ma 

for each fan speed; this will be demonstrated in further section. This section aims to 

analyse results and investigate if the relationships shown and noted in Section 3.4 can 

also be observed in the estimated parameters. While the recorded data states damper 

blades closed all the time, this simulation has two scenarios for active AHU, dampers 

always open and dampers always closed. Consequently, this approach can test only for 

ma values as the damper position doesn’t change through each simulation, but can still 

demonstrate the di�erence in the parameters between the open and closed loop systems. 

(1) Fan o� scenario The indoor air temperature was simulated using a frst order 

model implemented as in Equation (3.5.4) (see Section 3.5.2.1) using the outdoor air 

temperature as the only input to the system; the input and output of the model are 

presented in Figure 3.15, top plot. The system identifcation results covering the model 

ft and the error between the expected Tr and the one simulated using estimated para-

meters are presented in the middle and bottom plots, respectively. Assuming the frst 

order system model with one input as in Equation (3.4.8), the step response for a func-

tion corresponding to input Ta is shown in Figure 3.16. Numerical results are presented 

in Tables 3.7-3.8. 

(2) Active Air Handling Unit scenario The indoor air temperature was simulated 

using a frst order model implemented as in Equation (3.5.4) using the outdoor air 

temperature, fan speed, heating unit operation and the damper position as the inputs 

to the system as presented in Figure 3.17 for the open loop system and 3.22 for the 

closed loop system. System identifcation was performed for two models separately: the 

frst order linear model (3.4.4) with inputs Ts and Ta, and the frst order SDP model 

(3.4.9) with inputs �T and Ta. Numerical results are presented in Tables 3.7-3.8. 

(2a) Linear model The system identifcation results covering the model ft and 

the error between the expected Tr and the one simulated using estimated parameters 

are presented in Figure 3.18 for the open loop system and Figure 3.23 for the closed loop 

system. Assuming the frst order system model with two inputs as given in Equation 
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Figure 3.15: System identifcation of the frst order model parameters of the indoor 
air temperature model with single input Ta (Equation (3.4.8)). Simulation of the input 

data is based on real data. Supply fan is o�. 
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Figure 3.16: The outdoor air temperature process step response for frst order indoor 
air temperature model with supply fan o� (Equation (3.4.8)). 

(3.4.4), the step responses for the function corresponding to inputs Ts and Ta are shown 

in Figures 3.19 and 3.24 for the open and closed loop system, respectively. 

(2b) State-Dependent Parameter model The system identifcation results 

covering the model ft and the error between the expected Tr and the one simulated 

using estimated parameters are presented in Figure 3.20 for the open loop system and 

Figure 3.25 for the closed loop system. Assuming the frst order system model with two 

inputs as given in Equation (3.4.9), the step responses for the function corresponding 

to inputs �T and Ta are shown in Figures 3.21 and 3.26 for the open and closed loop 

system, respectively. 
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Indoor air temperature simulation - AHU active 
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Figure 3.17: The indoor air temperature simulation based on real data with variable 
supply fan speed, damper blades in open position and heating unit active (Equation 

(3.4.4)). 
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Figure 3.18: System identifcation of the frst order parameters of the indoor air 
temperature model with inputs Ts and Ta (Equation (3.4.4)). Simulation of the input 
data is based on real data. This scenario has variable supply fan speed, damper blades 

in open position and heating unit active. 

Results analysis and discussion Estimated parameters together with other values 

describing the model characteristics are introduced in Table 3.7 and performance criteria 

in Table 3.8. 
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Figure 3.19: Step responses for processes corresponding to inputs Ts and Ta, respect-
ively, for scenario with variable supply fan speed, damper blades in open position and 

heating unit active (Equation (3.4.4)). 
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Figure 3.20: System identifcation of the frst order parameters of the indoor air 
temperature model with inputs �T and Ta (Equation (3.4.9)). Simulation of the input 
data is based on real data. This scenario has variable supply fan speed, damper blades 

in open position and heating unit active. 

Fan o� scenario The simulation of the indoor air temperature utilising estim-

ated model parameters resulted in a well-ft trajectory with a minimal error of less than 

4 · 10−14, with the biggest discrepancies occurring at the local maximum peaks. The 

steady state gain of the step response is 1, with time constant being 2.36 h, which is 

1.2 h less than the value obtained from SID of the second order system model with the 

frst order model structure. Also, rise time and settling time are 5.25 h and 9.5 h, which 

is, respectively, approx. 3 and 5 hours lower compared to values in Table 3.3. 

Active Air handling Unit scenario Comparing model ft between the linear 

model and the SDP model, it shows that the estimated SDP model provides slightly 

worse results than the estimated linear model. It is demonstrated in the error traject-

ories, which peak just outside of ±0.2 band for the SDP model (see Figure 3.20) and 
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Figure 3.21: Step responses for processes corresponding to inputs �T and Ta, re-
spectively, for scenario with variable supply fan speed, damper blades in open position 

and heating unit active (Equation (3.4.9)). 

50 

[ ◦
 C
] 

T
em

p
er
at
u
re
 [
◦

 C
] 

Tr 
Ts 

0 

Indoor air temperature simulation - AHU active 

0 0.5 1 1.5 2 2.5 3 3.5 

Time [days] 
20 

10 

0 

T
 a 

0 0.5 1 1.5 2 2.5 3 3.5 

Time [days] 

0.5 1 1.5 2 2.5 3 3.5 

0.5 

1 

u
 h 

0 
0 

Time [days] 

[m
 3 /
s]
 

13 

12 

0 0.5 1 1.5 2 2.5 3 3.5 

Time [days] 

m
a

 

Figure 3.22: The indoor air temperature simulation based on real data with variable 
supply fan speed, damper blades in closed position and heating unit active (Equation 

(3.4.9)). 

remains below ±0.13 for the linear model. This is refected in performance criteria, 

Table 3.8, where it seems that the linear model outperforms the SDP model. On the 

fip side, the results provided in Table 3.7 show that the linear model didn’t di�erentiate 

between the open and closed loop system, whereas the SDP model identifed the open 

and closed loop system simulations with distinct time constants, rise times and settling 

times. Time constants, rise times and settling times for the linear model are similar 

to those for the open loop SDP model, di�ering by approximately 0.1, 0.25 and 0.5, 
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Figure 3.23: System identifcation of the frst order parameters of the indoor air 
temperature model with inputs Ts and Ta (Equation (3.4.9)). Simulation of the input 
data is based on real data. This scenario has variable supply fan speed, damper blades 

in closed position and heating unit active. 
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Figure 3.24: Step responses for processes corresponding to inputs Ts and Ta, respect-
ively, for scenario with variable supply fan speed, damper blades in closed position and 

heating unit active (Equation (3.4.9)). 

respectively. Introducing a fresh outside air directly instead of recirculating the air is 

expected to provide faster changes in the system, therefore it is expected that the open 

loop model has faster dynamics and lower time constant, rise time and settling time than 

the closed loop system. Compared to results in Table 3.3 and 3.5, where the di�erences 

between the open and closed loop model characteristics are much less pronounced, res-

ults presented in Table 3.7 seem to refect expected dynamics more accurately. Note that 

�1 and �2 values for ud = 1 are between �1 and �2 values for ma = 13.4 and ma = 14.8 

in Table 3.2. These estimated values are as expected as the fan speed in the active AHU 

scenario varies with ma taking values either ma = 13.4 or ma = 14.8. As a result, the 

estimated parameter is an approximated value that is a compromise for both fan speeds. 

For ud = 0, both � parameters are slightly below the expected values, falling below � 
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Figure 3.25: System identifcation of the frst order parameters of the indoor air 
temperature model with inputs �T and Ta (Equation (3.4.9)). Simulation of the input 
data is based on real data. This scenario has variable supply fan speed, damper blades 

in closed position and heating unit active. 
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Figure 3.26: Step responses for processes corresponding to inputs �T and Ta, respect-
ively, for scenario with variable supply fan speed, damper blades in closed position and 

heating unit active (Equation (3.4.9)). 

values at ma = 13.4 from Table 3.1. Parameters a in Table 3.7 lie between a values 

for 80% and 100% of the maximum fan speed in Tables 3.1 and 3.2, being above the 

expected fan speed. For �, value for the open loop system in Table 3.7 falls between the 

expected � values for ma = 13.4 and ma = 14.8 in Table 3.2, representing a valid com-

promise between fan speed trend of the identifed data. The � value for the closed loop 

system in Table 3.7, however, is far from the expected value from Table 3.1, representing 

approximately no fan in operation. Overall, most of the model parameters are close to 

the expected values from Tables 3.1 and 3.2, demonstrating fairly good representation 

of the system model that was identifed. 

The results presented in Figures 3.15-3.26 are refection of the simulation study 

performed on the real data collected from the existing temperature control system. As 

far as the operation of the components within AHU can be predicted based on the control 
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Table 3.7: Estimated parameters and numerical values for the frst order system 
model for Equations (3.4.4) and (3.4.9). Parameters were estimated based on input 

generated from real data. 

Coeÿcient 

AHU active 

Fan o� Ts �T 

ud = 0 ud = 1 ud = 0 ud = 1 

Time const. [h] 1.38 1.40 2.49 1.49 2.36 

Gain Gs(s) 0.3936 0.3934 - - -

Gain G�T (s) - - 0.6478 0.3963 -

Gain Ga(s) 0.6044 0.6069 0.9977 0.9967 1.0 

Total gain 0.9980 1.0003 1.6455 1.3930 1.0 

b1 7.908−5 7.805−5 - - -

�1 - - 7.199−5 7.372−5 -

b2 1.214−4 1.204−4 - - 1.175−4 

�2 - - 1.109−4 1.854−4 -

a 2.009−4 1.984−4 - - 1.175−4 

� - - 1.111−4 1.86−4 -

Rise time [h] 3.0 3.0 5.5 3.25 5.25 

Settling time [h] 5.5 5.5 10.0 6.0 9.5 

Table 3.8: Measures of the performance criteria for the estimated parameters of a frst 
order model of the system with open and closed position of damper blades (Equations 
(3.4.4) and (3.4.9)). Parameters were estimated based on input generated from real 

data. 

Coeÿcient 

AHU active 

Fan o� Ts �T 

ud = 0 ud = 1 ud = 0 ud = 1 

R2 [%] T 99.9936 99.9964 99.9867 99.9452 100 

IAE 0.0198 0.0151 0.0336 0.0596 2.128−14 

MSE 8.7345−4 4.4617−4 1.827−3 6.819−3 4.8793−28 

logic implemented on the local controller, the rest depends on the outdoor conditions, 

which are predictable to a degree. Therefore, the operation of the AHU cannot be fully 

predicted and is correlated with the outdoor conditions. On the opposite side, previous 

simulation studies involved simple inputs like a square wave of regular frequency to 

control the whole AHU operation as well as simulation of the outdoor air temperature, 

which demonstrated results for pure simulation-based unrealistic setup. 

Model ft demonstrating some discrepancies visualised as the error in Figures 3.15-

3.26 and performance criteria values in Tables 3.7 and 3.8 is fairly optimistic, never-

theless, note that it was SID of the data generated using the frst order system model, 
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being the same order as the SID model structure. The ft could be worse, if the data 

was generated using a second order system model, but it is expected discrepancy could 

be far less than comparison between the frst and second order model ft simulated using 

real data shown in Figure 3.14 if appropriate methods would be used, e.g. SID using IV 

LS to improve the parameter estimation and the SDP model that takes di�erent values 

depending on the fan speed and position of damper blades. 

3.5.3.2 Estimation of the state-dependent parameters 

The simulation study presented in this section focuses on a system identifcation of the 

model with SDP parameters �, �1 and �2, where inputs ma and ud are held constant. 

Doing so enabled fnding parameter values for each state. The estimated SDP parameters 

are shown in Tables 3.9 and 3.10 for ud = 0 and ud = 1, respectively. The values 

obtained, as presented in Tables 3.9 and 3.10, can then be compared to the expected 

values presented in Tables 3.1 and 3.2. The frst observation is that the values for 

the open loop system have been estimated fairly well, while the closed loop values are 

much less accurate. It is demonstrated by �2 oscillating somewhere around 1.115−4 

and decreasing with the fan speed. The biggest discrepancy is in �, where values align 

with the estimated �2 and drift away from expected � by decreasing in value, therefore 

increasing time constant and slowing down the system dynamics. This phenomena can 

be related to the fact that this type of the closed loop system with positive feedback is 

more challenging for system identifcation and parameters estimation, requiring di�erent 

approach to obtain expected results. the control inputs used to generate the input data 

for the system identifcation are presented in Figure 3.27. 

The performance criteria for the results presented in Tables 3.9 and 3.10 demon-

strate good ft, producing R2 >99.93, IAE<0.8 for ud = 1 and IAE< 2.2−2 for ud = 0T 

and MSE< 1.2−2 for ud = 1 and MSE< 8.4−4 for ud = 0. While the open loop sys-

tem model parameter estimation underperformes compared to the closed loop system 

parameter estimation, the parameters estimated refect more accurately the expected 

parameters according to calculated state-dependent parameter values provided in Tables 

3.1 and 3.2. 

Performing similar experiment with the same input as in Figure 3.27, but generat-

ing data using the second order system model expressed by Equations (2.6.1)-(2.6.2) to 

be identifed with the frst order model structure given by Equation (3.4.9), another set 

of the estimated parameters has been obtained and presented in Tables 3.11 and 3.12 for 

the closed and open loop system, respectively. It has been noted, that the time constants 

are greater as compared to the results related to the frst order system identifcation from 
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Table 3.9: SDP model system identifcation for ud = 0 and assuming ma = 18.5 [m3/s] 
at 100% of the maximum fan speed. States, on which parameters are dependent have 
been condensed from ma(s) and uk(s) to ma and uk, respectively, for the sake of 
notional simplicity. Data for system identifcation have been generated using frst order 

system model. 

ma [m
3/s] �{ma, uk} �1{ma} �2{ma, uk} Time constant [h] 

0 (0%) 1.175−4 0 1.175−4 2.36 

11.5 (62%) 1.114−4 6.18−5 1.114−4 2.49 

13.4 (72.5%) 1.105−4 7.171−5 1.105−4 2.51 

14.8 (80%) 1.1−4 7.868−5 1.099−4 2.52 

18.5 (100%) 1.084−4 9.693−5 1.084−4 2.56 

Table 3.10: SDP model system identifcation for ud = 1 and assuming ma = 
18.5 [m3/s] at 100% of the maximum fan speed. States, on which parameters are 
dependent have been condensed from ma(s) and uk(s) to ma and uk, respectively, for 
the sake of notional simplicity. Data for system identifcation have been generated using 

frst order system model. 

ma [m
3/s] �{ma, uk} �1{ma} �2{ma, uk} Time constant [h] 

0 (0%) 1.175−4 0 1.175−4 2.36 

11.5 (62%) 1.759−4 6.29−5 1.76−4 1.58 

13.4 (72.5%) 1.861−4 7.342−5 1.862−4 1.49 

14.8 (80%) 1.935−4 8.097−5 1.936−4 1.44 

18.5 (100%) 2.139−4 1.013−4 2.139−4 1.30 

Tables 3.9 and 3.10 and demonstrating second order system model to have slower dy-

namics than the frst order system model. This is consistent with the observation from 

Section 3.5.2.2, where more aggressive behaviour was admitted to the frst order system 

model. Time constants, however, decrease as the fan speed increases in both open and 

closed loop system model results in Tables 3.11 and 3.12. The dynamics of the closed 

loop system is slower, as expected, as the indoor air is recirculated. Looking at the time 

constants for the open loop system, it is noticed that the time constant range related to 

the fan speed between 0 and 100% is wider in the estimated parameters from the second 

order system model, Table 3.12, than from the reduced order system model, Table 3.10. 

The performance criteria for the results presented in Tables 3.11 and 3.12 demon-

strate fair ft, but with loss of accuracy due to model order reduction. The results ob-

tained are 93.3<R2 <98.2, 0.6<IAE<0.7, 0.5<MSE<0.68 for ud = 0 and 97.83<R2 <98.2, T T 

0.43<IAE<0.61, 0.26<MSE<0.51 for ud = 1. 

http:0.26<MSE<0.51
http:0.43<IAE<0.61
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Table 3.11: SDP model system identifcation for ud = 0 and assuming ma = 
18.5 [m3/s] at 100% of the maximum fan speed. States, on which parameters are 
dependent have been condensed from ma(s) and uk(s) to ma and uk, respectively, for 
the sake of notional simplicity. Data for system identifcation have been generated using 

second order system model. 

ma [m
3/s] �{ma, uk} �1{ma} �2{ma, uk} Time constant [h] 

0 (0%) 8.482−5 0 8.296−5 3.28 

11.5 (62%) 8.314−5 4.903−5 8.126−5 3.34 

13.4 (72.5%) 8.539−5 5.805−5 8.336−5 3.25 

14.8 (80%) 8.718−5 6.48−5 8.506−5 3.18 

18.5 (100%) 9.195−5 8.362−5 8.962−5 3.02 

Table 3.12: SDP model system identifcation for ud = 1 and assuming ma = 
18.5 [m3/s] at 100% of the maximum fan speed. States, on which parameters are 
dependent have been condensed from ma(s) and uk(s) to ma and uk, respectively, for 
the sake of notional simplicity. Data for system identifcation have been generated using 

second order system model. 

ma [m
3/s] �{ma, uk} �1{ma} �2{ma, uk} Time constant [h] 

0 (0%) 8.482−5 0 8.296−5 3.28 

11.5 (62%) 1.355−4 5.169−5 1.334−4 2.05 

13.4 (72.5%) 1.459−4 6.076−5 1.347−4 1.90 

14.8 (80%) 1.537−4 6.742−5 1.514−4 1.81 

18.5 (100%) 1.753−4 8.591−5 1.728−4 1.58 

System identifcation and generated data control input 
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Figure 3.27: Variable control inputs used for data generation and system identifcation 
based on real data. 
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3.5.3.3 Parameter extraction from estimated values 

Calculation of the frst order model parameters a, b1, b2 with regard to ma and ud from 

Equation (3.4.4) from the SDP model parameters of Equation (3.4.9) using equations 

� � 
�{ma(s), ud(s)} = a{ma(s)} − b1{ma(s)} · 1− ud(s) 

�1{ma(s)} = b1{ma(s)} 

�2{ma(s), ud(s)} = b1{ma(s)}ud(s) + b2 

allows to extract some parameters to calculate the other ones without SID. To demon-

strate this, let’s consider the estimated parameters of an open loop model as presented 

in Table 3.10, which will be used to obtain the closed loop model parameters that are 

more diÿcult to estimate; there are methods dedicated for system identifcation in a 

closed loop system setup proposed by Taylor et al. (2013, p. 253). The values of the 

parameters a, b1, b2 with regard to ma and ud calculated from �, �1 and �2, presented in 

Table 3.13, are calculated as follows 

b1{ma(s)} = �1{ma(s)} 
� � 

a{ma(s)} = �{ma(s), ud(s)} + b1{ma(s)} · 1− ud(s) 

b2 = �2{ma(s), ud(s)} − b1{ma(s)}ud(s) 

Table 3.13: Linear model (Equation (3.4.4)) parameters calculation for ud = 1 from 
SDP model parameters (Equation (3.4.9)). 

ma [m
3/s] a{ma(s)} b1{ma(s)} b2 Time constant [h] 

0 (0%) 1.175−4 0 1.175−4 2.36 

11.5 (62%) 1.759−4 6.29−5 1.131−4 1.58 

13.4 (72.5%) 1.861−4 7.34−5 1.128−4 1.49 

14.8 (80%) 1.935−4 8.10−5 1.126−4 1.44 

18.5 (100%) 2.139−4 1.013−4 1.126−4 1.30 

The calculated values of the parameters a, b1 and b2 can then be used to calculate 

the closed loop system parameters �, �1 and �2, following aforementioned defnition. The 

values obtained for parameters �, �1 and �2 representing a closed loop system calculated 

from parameters a, b1 and b2 presented in Table 3.13 are presented in Table 3.14. Note 

that parameter b2 in Table 3.13 should keep the same value, regardless of the fan speed. 

The fact that it varies shows that the estimated model was not able to fully capture the 

dynamics and has some faws. 
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Table 3.14: SDP model parameters (Equation (3.4.9)) calculation for ud = 0 from 
linear model (Equation (3.4.4)) parameters. 

ma [m
3/s] �{ma, uk} �1{ma} �2{ma, uk} Time constant [h] 

0 (0%) 1.175−4 0 1.175−4 2.36 

11.5 (62%) 1.130−4 6.29−5 1.131−4 2.46 

13.4 (72.5%) 1.127−4 7.34−5 1.128−4 2.46 

14.8 (80%) 1.125−4 8.10−5 1.126−4 2.47 

18.5 (100%) 1.126−4 1.013−4 1.126−4 2.47 

The results presented in Table 3.14 di�er in some respect from those obtained 

directly shown in Table 3.9. Firstly, time constant when the supply fan is on is greater 

than when fan is o� and the value is approximately the same for the simulated fan speed, 

with negligible di�erences of around 1 minute; this refects the di�erences in � values. 

All of the parameters for the fan speed greater than 0 have slightly higher values than 

their respective parameters in Table 3.9. 

Following the same approach, conversions for parameters obtained from second 

order model SID have been made using values from Table 3.12 as a starting point. 

The results are provided in Tables 3.15 and 3.16, presenting linear model parameters 

calculated from the SDP model parameters and vice versa, respectively. 

Table 3.15: Linear model (Equation (3.4.4)) parameters calculation for ud = 1 from 
SDP model (Equation (3.4.9)) parameters. 

ma [m
3/s] a{ma(s)} b1{ma(s)} b2 Time constant [h] 

0 (0%) 8.482−5 0 8.296−5 3.27 

11.5 (62%) 1.355−4 5.17−5 8.17−5 2.05 

13.4 (72.5%) 1.459−4 6.08−5 7.39−5 1.90 

14.8 (80%) 1.537−4 6.74−5 8.40−5 1.81 

18.5 (100%) 1.753−4 8.59−5 8.69−5 1.58 

The calculated values of parameters a, b1 and b2 can then be used to calculate 

the closed loop system model parameters �, �1 and �2 following the aforementioned 

defnition. The values obtained for parameters �, �1 and �2 representing the closed loop 

system calculated from parameters a, b1 and b2 presented in Table 3.15 are presented 

in Table 3.16. Note that the parameter b2 in Table 3.15 should keep the same value 

regardless of the fan speed. The fact that it varies shows that the estimated model was 

not able to fully capture the dynamics and has some faws. 
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Table 3.16: SDP model (Equation (3.4.9)) parameters calculation for ud = 0 from 
linear model (Equation (3.4.4)) parameters. 

ma [m
3/s] �{ma, uk} �1{ma} �2{ma, uk} Time constant [h] 

0 (0%) 8.482−5 0 8.296−5 3.27 

11.5 (62%) 8.381−5 5.169−5 8.171−5 3.31 

13.4 (72.5%) 8.514−5 6.076−5 7.394−5 3.26 

14.8 (80%) 8.628−5 6.742−5 8.398−5 3.22 

18.5 (100%) 8.939−5 8.591−5 8.689−5 3.11 

Considering values in Table 3.16 in light of the values obtained directly presented 

in Table 3.11, they are not exactly the same, but close enough to provide similar time 

constant (9 minutes as the biggest discrepancy) and dynamics, looking at � parameters. 

The values for the fan o� scenario provides the most consistent result. Notably, the 

more signifcant discrepancies are related to the fact that a frst order model was used 

to identify data generated using a second order model. 

3.5.4 State-Dependent Parameter model demonstration 

A set of equations incorporating full SDP model structure recalculating the model para-

meters at every time step with respect to ma and ud has been implemented in MATLAB. 

The state-dependent model parameters are calculated in the following way at each time 

step: 

1. Reduced order model parameters a, b1 and b2 of a linear model are calculated 

based on frst principles following Equation (3.4.4) at each time step using the 

most recent ma value. 

2. Calculated parameters a, b1 and b2 are transformed from continuous-time domain 

into discrete-time domain assuming ZOH. 

3. Discrete-time parameters a, b1 and b2 are used to calculate discrete-time paramet-

ers �, �1 and �2 of the SDP model structure formulated in Equation (3.4.9) using 

the most recent ud value. 

4. Parameters �, �1 and �2 are used to simulate the indoor air temperature Tr for 

the current time step. 

The results of the simulation are presented in Figure 3.28. The system inputs 

Ta,ma, heating and cooling were taken from the data recorded and presented in the 
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previous section. The damper position input has been created manually as in the data 

the damper is closed throughout all samples recorded. The damper position switches 

between open and closed every two days. 
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Figure 3.28: SDP model simulation with variable fan speed and damper position. 
State-dependent model parameters are calculated at every time step according to the 

most recent ma and ud values. 

There are few observations consistent with the statements and characteristics presen-

ted in the previous part on this chapter and Chapter 2. Firstly, the system behaviour 

changes depending on the position of the damper blades. Comparing the indoor air 

temperature Tr in days 1-2 (ud = 0) with days 3-4 (ud = 1), where heating is present 

most of the time (�T > 0), the indoor air temperature takes higher values compared 

to the outdoor air temperature when the damper is closed and the air is recirculated. 

On the contrary, Tr for days 3-4 when the damper position is open does not deviate 

that much from Ta as fresh air heated up is introduced to the building. Secondly, the 

damper position does not make a di�erence to the indoor air temperature if the supply 

fan speed is not in operation and ma = 0. Thirdly, if the supply fan is o�, the indoor 

air temperature simply follows the outdoor air temperature with some delay. Finally, if 

there is no heating and cooling (�T = 0), but the supply fan is on (ma > 0) and the 

damper blades are in open position, the indoor air is a�ected more by the outdoor air, 
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bringing its values closer to Ta faster than with the fan o�. Since the observations are 

consistent with the expect behaviour, the model is considered adequate to represent the 

indoor air thermal behaviour of the studied system and suitable for control application 

studies. 

Demonstration of the fan speed and the air mass fow rate contribution to the 

system dynamics is shown in Figure 3.29, where a simple scenario was simulated using 

sine wave as Ta and ma, which is varied as a square wave with rising steps. 
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Figure 3.29: SDP model simulation with variable fan speed, ud = 0 and heating 
present when fan is in operation. State-dependent model parameters are calculated at 

every time step according to the most recent ma and ud values. 

Note the changes in the fan speed causing di�erent levels of the indoor air tem-

perature obtained. This demonstrates that greater amount of a hot air warms up the 

indoor air faster even if the same heating output is the same. 

3.6 Conclusions 

This chapter has introduced the SDP model structure for the indoor air thermal pro-

cess, having correlated the thermal response and dynamic behaviour of the system with 

changes of the position of damper blades and the supply air fow rate. It is believed 

that the results are meaningful for the temperature control systems employing model-

based predictive methods, where the model of the indoor air temperature is a necessity. 
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The fexibility of the SDP model benefts from its ability to adapt the model paramet-

ers, hence improve the model of the thermal process, based on the manipulated control 

inputs infuencing the indoor thermal dynamics. These inputs are often a part of a 

temperature control system, especially when energy eÿciency is emphasised during the 

design phase of the control system. 

As an important contribution, the reduced order system model has been formulated 

in Section 3.4 representing the second order system model based on frst principles from 

Chapter 2. This concept compromises some accuracy due to order reduction. The 

simulation study revealed that it is the lower time constant that shows predominant 

discrepancy between the frst and second order system models. It was noted, however, 

that the model is able to represent the studied system well enough to be used for control 

provided the model is well tuned and the parameters are estimated correctly. 

Study of the indoor air temperature model provided an interesting insight into 

the model structure and dependencies within. It has been noted that it is enough to 

estimate either open or closed loop system model parameters to simulate the system. A 

state-dependent structure involving damper position allows to convert between the open 

and closed loop model parameters. Another unique aspect of the indoor air temperature 

model are the inputs. In particular, an indoor air temperature input, known and non-

controllable signal, could be perceived as a disturbance. With a damper blades control 

in mind, however, the amount of the fresh air can be regulated as a part of an energy 

eÿcient control scheme. In other words, the impact of the outdoor conditions is partially 

controllable through the position of the damper blades. The simulation study is also 

provided to demonstrate how the values representing the air mass fow rate and damper 

position a�ect the model parameters, behaviour and output. It has been concluded, 

that the SDP model provides more accurate results than the linear model with constant 

parameters. 

The approach taken in this chapter concentrates on a well-formulated SDP model 

updating parameters at every time step to simulate the indoor air temperature and for 

control application. This model, incorporating heating, cooling, supply fan operation, 

damper blades position and disturbances (additional heat gains), is a core of the energy 

eÿcient control strategy to be used in conjunction with the MPC technique presented 

in Chapter 5 and a contribution of this chapter. It is also used to develop SDP-PIP 

controller for heating and cooling control proposed in Chapter 4 implemented as a part 

of the MPC strategy. 



Chapter 4 

Proportional-Integral-Plus control 

approach for state-dependent 

indoor air temperature models 

4.1 Introduction 

In control systems engineering terms, control is used to infuence the dynamic beha-

viour of the system, to achieve the desired behaviour within a dynamic environment 

or its elements (Taylor et al., 2013). In this thesis it is the thermal process that is 

subject to control, i.e. the indoor air temperature. The indoor conditions in this in-

stance are infuenced by means of heating and cooling in order to maintain the desired 

air temperature within the building. For this purpose, Underwood (1999) proposed 

the application of Proportional-Integral-Derivative (PID), adaptive and intelligent tech-

niques. The classical PID controller is still found the most common control method 

used in heating, ventilation and air conditioning (HVAC) systems. As the good HVAC 

control with PID controller requires appropriate choice of parameters, the problem of 

tuning and selecting parameters for PID controllers is a subject of continuous devel-

opment (e.g., Lim et al., 2009; Wang et al., 1998). Nowadays, its application is often 

supported by other techniques, e.g. by combining with the neural networks (Delnero, 

2000) or developing adaptive PI controller (Bai & Zhang, 2007). With a range of dif-

ferent control approaches, a method chosen for the indoor air temperature control in 

this thesis is a Proportional-Integral-Plus (PIP) controller deriving from a state variable 

feedback (SVF) pole assignment approach for linear discrete-time systems proposed by 

Peter Young and others in 1987 (Young et al., 1987). PIP is a digital controller that 

thrives on a growth within electronics industry and development of a modern computer 
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with the computational power and complexity of algorithms it o�ers. Being digital, it 

relies on the discrete-time samples of the input variables and uses online algorithm to 

update the control input variables at each time step. On the contrary, widely applied and 

commonly used even nowadays PID (Proportional-Integral-Derivative) controller origin-

ates from classical control sustaining, traditionally, continuous-time operation, in which 

PIP controller’s roots are embedded. PIP controller demands good a priori discrete 

time modelling of the controlled process, which usually implies adequate assumptions 

regarding the model structure and sampling interval as well as obtaining representative 

model parameters using system identifcation and parameter estimation methods. In re-

turn, PIP is a convenient solution for control systems imposing constraints on the input 

or output that makes use of Non-minimal State Space (NMSS) model. This method 

allows calculating of the output based only on the known, variables, i.e. the past and 

present samples of the input and output. It is also not so diÿcult to implement, robust, 

adaptive and can be interpreted in a variety of terms, including feedback and forward 

path control flters, resembling those used in classical designs. It can also work with 

state-dependent model forms, such as SDP introduced in Chapter 3. Fundamentally, it 

inherits from both classical and modern control systems architectures. Nevertheless, a 

considerable advantage of the PIP method is the tuning process, which can be rather 

tedious for PID and is performed o�ine, while pole placement allows for optimal design 

and stability (Taylor et al., 2013). 

4.1.1 Literature review 

One of the earliest work on structural and predictive aspects of PIP control is by Taylor 

et al. (1996) who establishes the conditions for the full equivalence between PIP, Gener-

alised Predictive Controller (GPC), and minimal Linear Quadratic (LQ) designs, demon-

strating the advantages of the NMSS-based PIP approach. Formulation of a PIP control-

ler that accommodates constraints in both the input and output variables is proposed by 

McCabe et al. (2000). This approach relies on the feedback loop, where constraints are 

transferred to the reference signal; an appropriate reference input flter (RIF) is employed 

to prevent overshoot to maintain the integrity of the feedback loop and ensure stability 

of the system. Ziemian & Burnham (2002) report on the advantages of extending the 

existing linear philosophy of PIP control to a bilinear case, covering quasilinearisation, 

design methods and tuning of the bilinear PIP controller. 

While some uses of the PIP controller were already covered in Chapter 3, where 

examples cited show SDP model as a part of the PIP controller, see Section 3.1.1.1, the 

list is by no means extensive. It is worth noting, however, that PIP controllers tend to be 

based on a state-dependent model structure. Example of use of the PIP controller with 
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a frst order system similar to the reduced order model used in this thesis is covered 

by Young et al. (1987), where it is applied to control a temperature in a glasshouse. 

Due to its heritage, PIP design reduces to a conventional Proportional-Integral (PI) 

controller when a frst order system model is considered, but in contrast to the PI 

controller used normally in a glasshouse, the PIP implementation is a true digital design 

(as oppose to a digitalised continuous-time PI system). Selection of the PIP method 

to control the temperature in a glasshouse allowed to increase sampling time from PI’s 

1min to 10min. The results presented shown that when compared, the conventional 

PI system shows itself sluggish and oscillatory in its response to both set-point changes 

and disturbances, while PIP system response is rapid and critically damped due to pole 

assignment design, reducing oscillations and providing better set-point tracking (Young 

et al., 1987). Further, Taylor et al. (2011b) propose design and implementation of a 

gain-scheduled PIP controller to control a ventilation rate in mechanically ventilated 

agricultural buildings. This approach is taken to mitigate the diÿculties of the fan 

system control caused by the pressure disturbances across the fan and wind disturbances 

from outside the building. Another application of the PIP controller relying on the SDP 

model is used to control a highly nonlinear and time-varying pH neutralisation process 

proposed by Ogun et al. (2017). This SDP-PIP controller is compared to a digital PI 

controller, where the optimal SDP-PIP controller outperforms PI both in set point and 

disturbance changes. In a recent research summarised by Zakeri & Moeinkhah (2019) 

the PIP controller is proposed in a novel approach as an adaptive optimal proportional-

integral-plus (AOPIP), used to control the beam-like ionic polymer-metal composite 

(IPMC) actuators. The paper states that compared to a digital PID controller and 

other opened-loop techniques applied to the same systems, the superiority of the AOPIP 

control method was obvious, in terms of tracking error, the level of controller output, 

and smoothness of the tracking desired signals, manifested in both simulation studies 

and real-time experimental tests. 

Observing examples of the PIP controller applications, it is clear that this approach 

is utilised and developed, however, not to such extent as PID or other methods. Despite 

the fact that no demand for PIP use in the HVAC control systems has been noticed 

in the literature, the variety of other applications justify the approach proposed in this 

chapter to be investigated. 

4.1.2 Chapter overview 

This chapter introduces the PIP controller and its derived form for an indoor air temper-

ature application. Section 4.2 provides a brief introduction to NMSS form, servomechan-

ism, being the core of the PIP, pole placement and then narrows these general patterns 
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into a frst order system model forms. Section 4.3 expands the frst order model into 

a form suitable for an indoor air temperature control. Then, Section 4.4 is there to 

propose an SDP-PIP controller for an indoor air temperature control following the SDP 

model introduced in Chapter 3. This special SDP-PIP form sets the main contribution 

of this chapter and will be used as a heart of the model predictive controller proposed 

in Chapter 5. Subsequently, simulation study is provided in Section 4.5, demonstrat-

ing operation of the SDP-PIP controller. Finally, the whole chapter is summarised in 

Section 4.6. 

4.2 Proportional-Integral-Plus control 

This section introduces a NMSS model used in a PIP controller as well as the control 

law under which the PIP controller operates. 

4.2.1 Non-minimal state space model representation 

Consider a discrete-time SISO transfer function model in general form defned as 

−mB(z−1) b1z
−1 + . . . + bmz

y(k) = u(k) = u(k) (4.2.1) 
A(z−1) 1 + a1z−1 + . . . + anz−n 

where z−1 is a backward-shift operator. As the model (4.2.1) is deterministic, it is 

possible to formulate NMSS equations (Taylor et al., 2013) representing it as 

x(k) = Fx(k − 1) + gu(k − 1) + dyd(k) 
(4.2.2) 

y(k) = hx(k) 

with x(k) being the state vector of dimension n + m, consisting of present and past 

samples of the output variable y(k), the past values of the input variable u(k) (control 

action) and the integral of error state z(k) introduced to ensure Type 1 servomechan-

ism performance and accommodate the reference input error sum automatically in the 

feedback loop (McCabe et al., 2000). The integral of error state z(k) is defned as 

z(k) = z(k − 1) + (yd(k)− y(k)) (4.2.3) 

where yd(k) is the command input, or, alternatively, with a discrete-time integrator 

as 
1−z−1 

1 
z(k) = (yd(k)− y(k)) (4.2.4) 

1− z−1 

1 
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Therefore, the state vector x(k) is (n + m)× 1 and consists of 

h iT 
x(k) = y(k) y(k− 1) . . . y(k− n +1) u(k− 1) u(k− 2) . . . u(k− m+1) z(k) 

The associated matrix and vectors are defned as the state transition matrix F with 

dimensions (n+m)× (n+m), the (n+m)× 1 input vector g, the 1× (n+m) command 

input vector d and the 1 × (n + m) output vector h in the following forms 

  
−a1 −a2 · · · −an−1 −an b2 b3 · · · bm−1 bm 0 

  
 1 0 · · · 0 0 0 0 · · · 0 0 0 
  
 
 0 1 · · · 0 0 0 0 · · · 0 0 

 
0 

  
 . . 
 . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
.  . .  

  
 

0 0 · · · 1 0 0 0 · · · 0 0 


0
  
  
F = 0 0 · · · 0 0 0 0 · · · 0 0 0 
  
  
 0 0 · · · 0 0 1 0 · · · 0 0 0 
  
 
 0 0 · · · 0 0 0 1 · · · 0 0 



0
 

  
 . . 
 . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. 
. .  

  
 0 0 · · · 0 0 0 0 · · · 1 0 0 
  

a1 a2 · · · an−1 an −b2 −b3 · · · −bm−1 −bm 1 

g = [b1 0 0 . . . 0 1 0 0 . . . 0 − b1]
T 

d = [0 0 0 . . . 0 0 0 0 . . . 0 1] 

h = [1 0 . . . 0 0 0 0 . . . 0 0 0] 

4.2.2 State Variable Feedback and Proportional-Integral-Plus control 

The SVF control law associated with the NMSS model (Taylor et al., 2013) formulated 

in Equation (4.2.2) can be written as 

u(k) = −kT x(k) (4.2.5) 

where k is the n + m-dimensional SVF vector consisting of control gains 

� � 
kT = f0 f1 . . . fn−1 g1 . . . gm−1 − kI 

The feedback control gains are selected by the designer to achieve desired closed loop 

characteristics. Block diagram representation of the controller (4.2.5), depicted in Figure 
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4.1 is refereed to as the NMSS servomechanism controller or the Proportional-Integral-

Plus (PIP) control law. The corresponding flter polynomials are defned as 

−1) −1 −(n−1) F (z = f0 + f1z + . . . + fn−1z 

−1) −1 −(m−1) G(z = 1 + g1z + . . . + gm−1z 

+ 

-

+ 

-

plantintegral 

control 

forward path filter 

feedback filter 

yd(k) y(k)kI 
1−z−1 

1 
G(z−1) 

F (z−1) 

B(z−1) 
A(z−1) 

u(k) 

Figure 4.1: Standard form of PIP controller - servomechanism control system. (Taylor 
et al., 2013) 

4.2.3 Pole assignment control tuning 

Consider a system model given by the discrete-time transfer function expressed by Equa-

tion (4.2.1) and the corresponding control law in Equation (4.2.5) defned in Section 

4.2.2. The control law for the input u(k) can be rewritten into 

h i1 kI 
u(k) = − F (z −1)y(k) + (yd(k)− y(k)) (4.2.7) 

G(z−1) 1− z−1

A polynomial describing the desired characteristics is given as 

n+m 
X 

−1 −2 n+m i−1)D(z = 1 + d1z + d2z + . . . + dn+mz = 1 + diz (4.2.8) 
i=1 

where di are the desired coeÿcients of the model. Knowing from the block diagram in 

Figure 4.1 that for the closed loop model the output can be expressed as 

−1)kI B(z
y(k) = h i yd(k) (4.2.9) 

� � 
1− z−1 G(z−1)A(z−1) + F (z−1)B(z−1) + kI B(z−1) 

the following relationship can be formulated: 

h i 
� � 

−11− z G(z −1)A(z −1) + F (z −1)B(z −1) + kI B(z −1) = D(z −1) (4.2.10) 



114 PIP control approach for state-dependent indoor air temperature models 

Once the system reaches steady-state there is no di�erence between the current and past 

sample, therefore y(k) = y(k − 1) and (1 − z−1)y(k) = 0. It also occurs in steady-state 

that the output signal equals the reference signal and yd(k) − y(k) = 0. Therefore, 

the desired closed loop transfer function having unity steady-state gain and demanded 

denominator D(z−1) is 
Pn1 + di 

y(k) = i=1 yd(k) (4.2.11) 
D(z−1) 

Knowing that in steady-state z → 1 (s → 0 for a continuous-time domain model), this 

substitution causes the polynomial D(z−1) to become a sum of coeÿcients as 

n+m 
X 

D(z −1 = 1) = 1 + d1 + d2 + . . . + dn+m = 1 + di (4.2.12) 
i=1 

This relation is valid only for static set-points or for a case when a transfer function sys-

tem model has only one bi parameter (Zaj́ıc, 2014). The method described is taken from 

PI tuning technique and is also known as pole placement. More extensive information 

and derivation for pole assignment is discussed by Taylor et al. (2013, p. 101), Aström °

& Wittenmark (2008, p. 92) and Bobál et al. (2005, p. 149). 

4.2.4 Non-minimal State Space design and Proportional-Integral-Plus 

controller for a frst order system model 

Assuming a frst order model of a SISO system defned as 

y(k) = −a1y(k − 1) + b1u(k − 1) (4.2.13) 

or as a transfer function 
b1z

−1 

y(k) = u(k) (4.2.14) 
1 + a1z−1

the corresponding NMSS form representing Equation (4.2.13) is 

x(k) = Fx(k − 1) + gu(k − 1) + dyd(k) 
(4.2.15) 

y(k) = hx(k) 

with 

x(k) = [y(k) z(k)]T (4.2.16) 

and the integral of error state 

z(k) = z(k − 1) + (yd(k)− y(k)) (4.2.17) 
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expanded for the frst order SISO system model as 

z(k) = z(k − 1) + yd(k) + a1y(k − 1)− b1u(k − 1) (4.2.18) 

The NMSS model of the frst order system model is defned by the state and observation 

equations (Taylor et al., 2013), respectively, as 

" # " # " # " # " # 

x(k) = 
y(k) 

z(k) 
= 

−a1 

a1 

0 

1 

y(k − 1) 

z(k − 1) 
+ 

b1 

−b1 
u(k − 1) + 

0 

1 
yd(k) 

(4.2.19) 
h i 

y(k) = 1 0 x(k) 

Using the same SVF control law as defned by Equation (4.2.5), the control gain vector 

kT is 
� � 

kT = f0 − kI (4.2.20) 

and the polynomials F (z−1) and G(z−1) of PIP controller are defned as 

−1)F (z = f0 (4.2.21a) 

−1)G(z = 1 (4.2.21b) 

As for SVF, the control action u(k) can also be represented as 

" # 
h i y(k) 

u(k) = − f0 −kI = −f0y(k) + kI z(k) (4.2.22) 
z(k) 

and, substituting z(k) with its equivalent from the right-hand side of Equation (4.2.4), 

u(k) is defned as 
kI 

u(k) = −f0y(k) + (yd(k)− y(k)) (4.2.23) 
1− z−1

Note that this frst order system model is equivalent to PI controller, where f0 represents 

the proportional term and kI the integral term. The di�erence between classical PI 

design and the presented approach using SVF controller is that instead of manual tuning, 

numerical values of the control gains are determined from pole assignment. To maintain 

consistency with a classic PI controller, the sign associated with kI is negative. As a 

result, the integral control appears in the forward path of the negative feedback control 

system, see Figure 4.1. Finally, as required for Type 1 servomechanism performance, 

the steady-state gain of the closed loop system is unity (Taylor et al., 2013). 
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4.2.4.1 Pole assignment control tuning of a frst order system 

Design of the controller using pole assignment method relying on denominators compar-

ison (briefy introduced in Section 4.2.3) for a frst order system model can be obtained 

from the characteristic equations according to (4.2.10) equating as 

h i 
� � 

−1 −1 −1 −1 −21− z (1 + a1z 
−1) + f0b1z + kI b1z = 1 + d1z + d2z (4.2.24) 

Performing possible multiplications, this is unwrapped into 

−1 −1 −11 + a1z + f0b1z 
−1 − z −1 − a1z 

−2 − f0b1z 
−2 − kI b1z = 1 + d1z + d2z 

−2 (4.2.25) 

Next, elements of the same z−i order can be equated as 

0 z : 1 = 1 

−1 −1 −1 −1 z : a1z + f0b1z 
−1 − z −1 − kI b1z = d1z 

−2 −2 −2 z : − a1z 
−2 − f0b1z = d2z 

Dividing sides by z−i, the equations are now 

0 z : 1 = 1 

z −1 : − 1 + a1 + f0b1 − kI b1 = d1 

z −2 : − a1 − f0b1 = d2 

Since ai and bi parameters are known, as well as di as chosen by the user, the above 

equations can be rearranged by separating fi and bi from di and ai into 

0 z : 1 = 1 

−1 z : f0b1 − kI b1 = d1 − (−1 + a1) 

−2 z : − f0b1 = d2 − (0− a1) 

Respective equations for z−1 and z−2 can be rewritten into 

" # " # " # 
b1 

−b1 

b1 

0 

f0 

−kI 

= 
d1 − (−1 + a1) 

d2 − (0− a1) 
(4.2.26) 

Then, rearranging it to keep the matrix with unknown f0 and kI on the left hand-side 

of the equation as 
" # " #" #−1 
f0 d1 − (−1 + a1) b1 b1 

= (4.2.27) 
−kI d2 − (0− a1) −b1 0 

allows to obtain the desired parameters f0 and kI . 
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4.3 Control design of Proportional-Integral-Plus control-

ler for an indoor air temperature control 

The model allowing to simulate the indoor conditions introduced in Chapters 2 and 

3 as a MISO system will be used to design a SVF controller suited for this purpose. 

Having two inputs present in the model, only one of them is controllable, i.e. control 

input related to the supply air as Ts or �T , while the other input, the outdoor air 

temperature, is a known uncontrollable input. The structure formulated in this section 

will focus on designing a PIP controller deploying a two-input one-output NMSS model. 

The PIP controller proposed in this section is used to determine the control signals 

sent to the AHU commanding heating and cooling units, following the specifc environ-

ment requirements described in Section 4.3.1. 

4.3.1 Indoor air temperature requirements 

An indoor air temperature controller relevant to the system introduced in Chapter 2, 

where AHU contains heating and cooling unit, requires two set-points, one for heating 

and one for cooling, separated by a dead-band. General presentation of such require-

ments with exemplary set-points is depicted in Figure 4.2. It is expected that the 

heating unit is controlled in such a way that the indoor air temperature remains above 

the heating set-point rh and similarly, the cooling unit is controlled in such a way that 

the indoor air temperature remains below the cooling set-point rc. In an overall picture, 

the controller ensures that the indoor air temperature remains within the dead-band as 

often as possible; no heating and cooling takes place when the indoor air temperature is 

within the dead-band. It is important, in such confguration, that the two components, 

heating controller and cooling controller, don’t act against each other and compensate 

each other. One of the solutions for that is having two controllers constrained by the 

inequalities around the set-points. For example, heating controller would have heating 

set-point, where heating can be triggered only if the indoor air temperature is below the 

set-point Tr < rh and cannot be applied otherwise. In the same manner, the cooling 

unit would operate only if the indoor air temperature is in exceed of the cooling set-

point Tr > rc, providing no cooling output if the indoor air temperature is lower than 

the cooling set-point. Alternatively, there could be one controller with a single variable 

set-point, switching between the dead-band borders, and depending on the sign of the 

calculated control input, the command would go either to the cooling unit (�T < 0) or 

to the heating unit (�T > 0), however, inequality constraint on the set-point is required 

as well. 
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— Cooling unit switched on 

— HVAC system switched 
o� 

— Heating unit switched on 

Figure 4.2: Environmental requirements of the indoor space for dual temperature 
set-point controller. The controller manages the indoor air temperature by operating 

one component for heating control and another one for cooling control. 

4.3.2 Non-minimal State Space model of an indoor air temperature 

model 

Consider a frst order discrete-time model with two inputs and one output defned as 

y(k) = −a1y(k − 1) + b1u1(k − 1) + b2u2(k − 1) (4.3.1) 

or in a transfer function form as 

−1 −1b1z b2z
y(k) = u1(k) + u2(k) (4.3.2) 

1 + a1z−1 1 + a1z−1

Modifying the model expressed by Equation (4.3.1) to represent the reduced model 

(3.4.4) of the indoor thermal process, the MISO system is defned as 

Tr(k) = −a1Tr(k − 1) + b1Ts(k − 1) + b2Ta(k − 1) (4.3.3) 

with transfer function defned as 

−1 −1b1z b2z
Tr(k) = Ts(k) + Ta(k) (4.3.4) 

1 + a1z−1 1 + a1z−1

Here a general model concept is considered, the input u1(k) can be either Ts(k), as in 

Equation (3.4.4), or �T (k), as in model (3.4.9), as the model structure remains the 

same. Note, however, that the parameters may take di�erent values and are not state-

dependent. The corresponding NMSS form representing model given by Equation (4.3.1) 

is 

x(k) = Fx(k − 1) + g1u1(k − 1) + g2u2(k − 1) + dyd(k) 
(4.3.5) 

y(k) = hx(k) 
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with 

x(k) = [y(k) z(k)]T (4.3.6) 

and the integral of error state 

z(k) = z(k− 1)+(yd(k)−y(k)) = z(k−1)+yd(k)+a1y(k− 1)−b1u1(k−1)−b2u2(k−1) 

(4.3.7) 

expanded for the frst order MISO system model with two inputs as 

z(k) = z(k − 1) + yd(k) + a1y(k − 1)− b1u1(k − 1)− b2u2(k − 1) (4.3.8) 

The associated matrix and vectors are defned as the state transition matrix F , input 

vector g, command input vector d and output vector h in the following forms 

" # 
−a1 0 

F = 
a1 1 

g1 = [b1 − b1]
T 

g2 = [b2 − b2]
T 

d = [0 1] 

h = [1 0] 

The resulting NMSS model is defned as 

" # " #" # " # " # " # 
y(k) −a1 0 y(k − 1) b1 b2 0 

x(k) = = + u1(k − 1) + u2(k − 1) + yd(k) 
z(k) a1 1 z(k − 1) −b1 −b2 1 

h i 
y(k) = 1 0 x(k) 

(4.3.9) 

4.3.3 State Variable Feedback control law 

Following the SVF control law formulated in Equation (4.2.5), the control actions for 

the input u1(k) is 

u1(k) = −kT x(k) (4.3.10) 

and there is no control law formulated for the second input u2(k) as it is assumed to be 

the outdoor air temperature Ta, which is known, but not controllable input. The control 

gain vector for the input u1(k) is 

� � 
kT = f0 − kI (4.3.11) 
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and the polynomials F (z−1) and G(z−1) of the PIP controller are defned as 

−1)F (z = f0 

−1)G(z = 1 

The control action u1(k) can also be represented as 

" # 
h i y(k) 

u1(k) = − f0 −kI = −f0y(k) + kI z(k) (4.3.13) 
z(k) 

and, substituting z(k) with its equivalent from the right-hand side of Equation (4.2.3), 

u1(k) is defned as 
kI 

u1(k) = −f0y(k) + (yd(k)− y(k)) (4.3.14) 
1− z−1

4.3.3.1 Proportional-Integral-Plus controller for the indoor air temperature 

control 

Tailoring variables name in Equation (4.3.13) to the indoor thermal process, the control 

action takes the following form 

" # 
h i y(k)

Ts(k) = − f0 −kI = −f0Tr(k) + kI z(k) (4.3.15) 
z(k) 

where �T (k) can be used in place of Ts(k) as appropriate. It is assumed that the 

output y(k) = Tr(k). The reference signal yd(k) will become in this instance a set-point, 

either for cooling, rc or heating, rh. The equations employing SVF for the indoor air 

temperature control are proposed as 

" # 
h 

�Tc(k) = �T (k − 1)− f0 

i 
−kI · 

y(k)− y(k − 1) 

rc − y(k) 
(4.3.16a) 

" # 
h 

�Th(k) = �T (k − 1)− f0 

i 
−kI · 

y(k)− y(k − 1) 

rh − y(k) 
(4.3.16b) 

for heating unit and cooling unit, respectively. Further, applying constraints on the 

cooling and heating capacity within the AHU and holding a dead-band between set-

points rc and rh ensures that no heating or cooling takes place when the indoor air 

temperature is within the dead-band. Consequently, 

�Tmin ≤ �Tc(k) < 0 
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and 

0 < �Th(k) ≤ �Tmax 

where �Tmin denotes the maximum cooling output, i.e. the heat that cooling unit is 

able to withdraw from the air passing through the AHU, and �Tmax the maximum 

heating output, i.e. the heat that heating unit is able to add to the air passing through 

the AHU. A zero in above constraints means that the unit is switched o� and does not 

contribute to the AHU operation. 

4.4 State-dependent Proportional-Integral-Plus controller 

The PIP method is capable of controlling the state-dependent models (Taylor et al., 

2013). Consider the following SDP-NMSS representation of a SISO SDP model following 

the general form as introduced in Chapter 3, Section 3.2.1, employing SVF as introduced 

in Section 4.2.2 formulated as 

x(k) = F {˜(k)}x(k − 1) + g{˜(k)}u(k − 1) + dyd(k) 
(4.4.1) 

y(k) = hx(k) 

The state variable feedback defning the control law for SDP-PIP is therefore 

u(k) = −kT {˜(k)}x(k) (4.4.2) 

where the control gains vector now is state-dependent and defned as 

� � 
kT {˜(k)} = f0{˜(k)} . . . fn−1{˜(k)} g1{˜(k)} . . . gm−1{˜(k)} − kI {˜(k)} 

(4.4.3) 

Note that the (n + m) × (n + m) matrix F {˜(k)}, the (n + m) × 1 vectors g{˜(k)}, 

k{˜(k)}, polynomials F (z−1){˜(k)} and G(z−1){˜(k)} as well as ai{˜(k)} and bi{˜(k)} 

parameters are now state-dependent. 

Pole placement for State-Dependent Parameter-Proportional-Integral-Plus 

There are three approaches for determining the control gains proposed by Taylor et al. 

(2013). First, scheduled LQ design, which assumes solving LQ control problem online at 

each sampling instant and assumes point-wise controllability. Second, scheduled pole as-

signment, relying on solving a standard linear pole assignment problem at each sampling 

interval as briefy described in Section 4.2.3. Third, stabilising pole assignment for all-

pole SDP models, developed in response to limitations of a scheduled pole assignment to 

cater for SDP-NMSS model. The SDP-PIP controller utilised in this thesis employs the 



122 PIP control approach for state-dependent indoor air temperature models 

second method, recalculating the poles at each time step according to the polynomial 

D(z−1), following the user’s design and choice of di coeÿcients. 

4.4.1 State-Dependent Parameter-Proportional-Integral-Plus for a frst 

order system 

Consider the frst order SDP SISO model provided in Equation (3.2.1). The NMSS 

representation of this model is 

" # " #" # " # " # 
y(k) −a1{˜(k)} 0 y(k − 1) b1{˜(k)} 0 

x(k) = = + u(k − 1) + yd(k) 
z(k) a1{˜(k)} 1 z(k − 1) −b1{˜(k)} 1 

h i 
y(k) = 1 0 x(k) 

(4.4.4) 

The integral of error state is therefore 

z(k) = z(k− 1)+(yd(k)− y(k)) = z(k− 1)+yd(k)+a1{˜(k)}y(k− 1)− b1{˜(k)}u(k− 1) 

(4.4.5) 

The control gain vector kT of SVF control law for SDP SISO model is then 

� � 
kT = f0{˜(k)} − kI {˜(k)} (4.4.6) 

as the polynomials F (z−1) and G(z−1) of PIP controller are defned as 

−1)F (z = f0{˜(k)} 

−1)G(z = 1 

Accordingly, the control action u(k) is represented as 

" # 
h i y(k) 

u(k) = − f0{˜(k)} −kI {˜(k)} = −f0{˜(k)}y(k) + kI {˜(k)}z(k) (4.4.8) 
z(k) 

and, substituting z(k) with its equivalent from the right-hand side of Equation (4.2.4), 

u(k) is defned as 

kI {˜(k)} 
u(k) = −f0{˜(k)}y(k) + (yd(k)− y(k)) (4.4.9) 

1− z−1 

which provides basis of SDP-PIP in regard to a SISO system model. 
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4.4.1.1 State-Dependent Parameter-Proportional-Integral-Plus for the in-

door air temperature control 

Following the introduction of PIP controller and the complementary NMSS model for 

the indoor air temperature control in Section 4.3, this section aims to establish SDP-

PIP design for the indoor air temperature control of a system with two inputs and one 

output, as described in Section 4.3. 

Firstly, the control action related to the supplied air control input takes the fol-

lowing form: 

" # 
h i y(k)

Ts(k) = − f0{˜(k)} −kI {˜(k)} = −f0{˜(k)}Tr(k) + kI {˜(k)}z(k) (4.4.10) 
z(k) 

where �T (k) can be used in place of Ts(k) as appropriate, following two approaches 

introduced in Chapter 3. It is also assumed that the output y(k) = Tr(k) and that the 

reference signal yd(k) will become a set-point, either for cooling, rc or heating, rh. The 

equations employing SVF for the indoor air temperature control following the SDP-PIP 

methodology are proposed as 

" # 
h 

�Tc(k) = �T (k − 1)− f0{˜(k)} 
i 

−kI {˜(k)} · 
y(k)− y(k − 1) 

rc − y(k) 
(4.4.11a) 

" # 
h 

�Th(k) = �T (k − 1)− f0{˜(k)} 
i 

−kI {˜(k)} · 
y(k)− y(k − 1) 

rh − y(k) 
(4.4.11b) 

for heating unit and cooling unit, respectively. Note that f0 and kI are now state-

dependent and will be reevaluated at each time step. The constraints on heating and 

cooling within the AHU remain as stated in Section 4.3. 

The overall SDP-NMSS model for the indoor air temperature control with variable 

fan speed and position of damper blades is 

" # " #" # 
y(k) −a1{˜(k)} 0 y(k − 1) 

x(k) = = 
z(k) a1{˜(k)} 1 z(k − 1) 

" # " # " # 
b1{˜(k)} b2{˜(k)} 0 (4.4.12) 

+ u1(k − 1) + u2(k − 1) + yd(k) 
−b1{˜(k)} −b2{˜(k)} 1 
h i 

y(k) = 1 0 x(k) 

where the input u1(k) is related to the air supplied, i.e. Ts(k) for (3.4.4) model or 

�T (k) for (3.4.9) model, u2(k) is the known and uncontrollable input attributed to the 

outdoor air temperature Ta(k) and the output is the indoor air temperature Tr(k). The 
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corresponding integral of error state is 

z(k) = z(k − 1) + (yd(k)− y(k)) = z(k − 1) + yd(k) 
(4.4.13) 

+ a1{˜(k)}y(k − 1)− b1{˜(k)}u1(k − 1)− b2{˜(k)}u2(k − 1) 

The model represented by Equation (4.4.12) can be implemented in MATLAB along 

with equations for the cooling and heating demand (4.4.11) and related constraints, 

where the heating and cooling temperature demands sum up into �T (k) as in Equation 

(2.5.1). Using pole assignment method briefy described in Section 4.2.3 at each time 

step of the simulation will allow to calculate the most recent values of f0{˜(k)} and 

kI {˜(k)}. 

4.5 Simulation study 

A demonstration of the SDP-PIP controller operation is presented in this simulation 

study consisting of two parts. In the frst part the outdoor air temperature input vec-

tor is considered to be a sine wave to illustrate the control response when the outdoor 

conditions are predictable and the main day-night temperature cycle is preserved. The 

second part makes use of real data, mimicking the controller operation under real con-

ditions. Each part contains two scenarios to account for unlimited and limited heating 

and cooling unit capacities. The study will also test di�erent SDP-PIP designs with 

selected pole assignment preferences. 

The simulation study presented in this section relies on the SDP-PIP design pro-

posed in Section 4.4.1.1 for the indoor temperature control and relies on the model 

structure in Equation (3.4.9) where two inputs are present, �T and Ta. The parameters 

a, b1 and b2 of the model (4.4.12) correspond to �, �1 and �2, respectively, where the val-

ues are calculated from frst principles as specifed for model (3.4.9). The frst principles 

coeÿcients are calculated based on the values presented in Table 2.5. The model para-

meters were converted from a continuous-time domain to discrete-time domain using the 

ZOH method. 

4.5.1 Pole placement 

Design of the SDP-PIP controller is demonstrated though simulations for three di�erent 

pole assignment probations, i.e. rapid response (dead-beat, (° om & Wittenmark,Astr¨

2008, p. 143)), moderately fast response and slow response. The poles and corresponding 

di coeÿcients are presented in Table 4.1. Note that the poles consist only of real part, 

imaginary part equals 0. 
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Table 4.1: Desired closed loop locations of pole assignment for SDP-PIP. 

Poles d1 d2 

0 0 0 

0.5 -1.0 0.25 

0.9 -1.8 0.81 

Note that this controller has no restrictions on the control action values and changes 

(other than heating and cooling capacities), which can be ineÿcient, especially in rap-

idly changing cases such as dead-beat. Additional algorithms need to be implemented 

to regulate control action increment and other adequate preferences to optimise the 

controller. 

4.5.2 First principles State-Dependent Parameter-Proportional-Integral-

Plus simulation with sine wave input 

This part is focused on an overall demonstration of the SDP-PIP controller using simple 

generated data with various damper position scenarios and the air mass fow rate. The 

simulation was performed for no restrictions on the heating and cooling capacity scenario 

and with restrictions imposed. 

4.5.2.1 Unrestricted heating and cooling 

The results are dived into two sections. The frst one demonstrates the di�erent outputs 

based on the pole choice and keeps the damper position and the air mass fow rate 

constant. The second part allows for variable damper position and the air mass fow 

rate while simulating the indoor air temperature series. 

Constant ud and ma The simulation results of the SDP-PIP controller with constant 

supply air fow and damper position are shown in Figures 4.4 to 4.8 containing a pair of 

the open and closed loop system simulations for each of the poles as per Table 4.1. 

Performance assessment by means of heating and cooling actions together with the 

number of samples that were out of the dead-band are presented in Tables 4.2 and 4.3 for 

closed and open loop systems, respectively. The signal yout(k) indicates the location of 

Tr(k) expressed in Equation (4.5.1). The total number of samples for a 3-days simulation 
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Figure 4.3: SDP-PIP indoor air temperature control with poles at 0. The set-points 
rc = 3◦C and rh = 0◦C are marked with dash line. The damper position ud = 0 and 

the air mass fow rate ma = 18.5m3/s. 
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Figure 4.4: SDP-PIP indoor air temperature control with poles at 0. The set-points 
rc = 3◦C and rh = 0◦C are marked with dash line. The damper position ud = 1 and 

the air mass fow rate ma = 18.5m3/s. 

with 15min sampling time is N = 288. 

 
 
 1, Tr(k) > rc(k) 
 
 

yout(k) = 0, rh(k) ≤ Tr(k) ≤ rc(k) (4.5.1) 
 
 
 


1, Tr(k) < rc(k) 

There are few observations that have been made based on the Figures 4.4 to 4.8. 

Firstly, the system dynamics and the AHU operation are a�ected by the design of the 

PIP controller and the choice of poles. Secondly, as a consequence, there is a trade-

o� between the fast response (dead-beat), accompanied by a lot of chattering (Figures 

4.3 and 4.4), and the slow response, where chattering is minimised, but the indoor air 

temperature requirements are not met (Figures 4.7 and 4.8). Therefore, the SDP-PIP 



127 PIP control approach for state-dependent indoor air temperature models 

0.5 1 1.5 2 2.5 3 

-5 

5 

Tr 
Ta

T
em

p
er
a
tu
re
 [
◦

 C
] SDP-PIP indoor air temperature control - ud = 0 

0 

0 
Time [days] 

0.5 1 1.5 2 2.5 3 
-5 

5 

10 

�
T
[ ◦

 C
] 

0 

0 
Time [days] 

Figure 4.5: SDP-PIP indoor air temperature control with poles at 0.5. The set-points 
rc = 3◦C and rh = 0◦C are marked with dash line. The damper position ud = 0 and 

the air mass fow rate ma = 18.5m3/s. 
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Figure 4.6: SDP-PIP indoor air temperature control with poles at 0.5. The set-points 
rc = 3◦C and rh = 0◦C are marked with dash line. The damper position ud = 1 and 

the air mass fow rate ma = 18.5m3/s. 

controller requires tuning specifc for the system and preferred response type. Then, 

it has been noted that regardless of the pole placement the dynamic responses remain 

di�erent for the open and closed loop systems, showing that the SDP-PIP controller 

does not compensate for it and that the SDP model given by Equation (3.4.9) relying 

on the damper position and the air mass fow rate is valid. Finally, the aforementioned 

observations are consistent with analysis of Tables 4.2 and 4.3, i.e. slower response 

consumer less energy over time, but the indoor air temperature criteria are not met as 

thoroughly as for poles related to faster response. It is refected in Figures 4.3 to 4.8 

in the fact that the maximum (minimum) values achieved by �T are higher (lower) for 

faster response while slow dynamic system oscillates tighter around 0. 
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Figure 4.7: SDP-PIP indoor air temperature control with poles at 0.9. The set-points 
rc = 3◦C and rh = 0◦C are marked with dash line. The damper position ud = 0 and 

the air mass fow rate ma = 18.5m3/s. 
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Figure 4.8: SDP-PIP indoor air temperature control with poles at 0.9. The set-points 
rc = 3◦C and rh = 0◦C are marked with dash line. The damper position ud = 1 and 

the air mass fow rate ma = 18.5m3/s. 

Table 4.2: SDP-PIP controller performance assessment for the closed loop system 
ud = 0. The air mass fow rate is ma = 18.5m3/s, heating and cooling unconstrained. 

Poles 
PN �Th(k)k=1 

PN �Tc(k)k=1 

PN (�Th(k) + |�Tc(k)|)k=1 

PN 
k=1 yout(k) 

0 574.15 -167.15 741.30 138 

0.5 569.15 -164.19 733.34 174 

0.9 438.92 -125.43 564.35 200 

Variable ud and ma The simulation results of the SDP-PIP controller with variable 

supply air fow and damper position are shown in Figures 4.9-4.10 containing a pair of 



129 PIP control approach for state-dependent indoor air temperature models 

Table 4.3: SDP-PIP controller performance assessment for the open loop system 
ud = 1. The air mass fow rate ma = 18.5m3/s, heating and cooling unconstrained. 

Poles 
PN �Th(k)k=1 

PN �Tc(k)k=1 

PN (�Th(k) + |�Tc(k)|)k=1 

PN 
k=1 yout(k) 

0 1100.1 -359.2 1459.3 156 

0.5 1080.2 -350.6 1430.8 195 

0.9 604.18 -172.02 776.20 222 

the open and closed loop system simulations for the dead-beat and 0.5 poles as per Table 

4.1. 
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Figure 4.9: SDP-PIP indoor air temperature control with poles at 0. The set-points 
rc = 3◦C and rh = 0◦C are marked with dash line. The damper position and the air 

mass fow rate are variable. 

Table 4.4: SDP-PIP controller performance assessment of a system with variable 
damper position ud and the air mass fow rate is ma, heating and cooling unconstrained. 

Poles 
PN �Th(k)k=1 

PN �Tc(k)k=1 

PN (�Th(k) + |�Tc(k)|)k=1 

PN 
k=1 yout(k) 

0 878.52 -341.15 1219.7 149 

0.5 866.84 -334.29 1201.1 185 

The simulation outputs presented in Figures 4.9 and 4.10 demonstrate the state-

dependent nature of the model exposed in the distinct amplitudes of �T when the 
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SDP-PIP indoor air temperature control - poles = 0.5 
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Figure 4.10: SDP-PIP indoor air temperature control with poles at 0.5. The set-
points rc = 3◦C and rh = 0◦C are marked with dash line. The damper position and 

the air mass fow rate are variable. 

air is supplied at di�erent rate. Notably, similar trend is observed with regard to the 

position of damper blades, where more heating and cooling is needed when the indoor 

air is not recirculated. The observations are consistent for both tested pole placements. 

Assessing the performance of the SDP-PIP controller based on the results in Table 4.4, it 

is visible that faster response yields more control action, i.e. higher demand for heating 

and cooling ensuring that the time spent outside the dead-band will be minimised; this 

observation is also consistent with those for constant air mass fow rate and damper 

position results presented in Tables 4.2 and 4.3. 

4.5.2.2 Heating and cooling constraints 

The results are divided into two sections. The frst one demonstrates the di�erent 

outputs based on the pole choice and keeps the damper position and the air mass fow 

rate constant. The second part allows for variable damper position and the air mass 

fow rate while simulating the indoor air temperature series. There are constraints on 

the heating and cooling units 0 ≤ �Th ≤ 10 and −5 ≤ �Tc ≤ 0. 

Constant ud and ma The simulation results of the SDP-PIP controller with constant 

supply air fow and damper position are shown in Figures 4.11-4.13 containing a pair of 
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the open and closed loop system simulations for each of the poles as per Table 4.1. 
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Figure 4.11: SDP-PIP indoor air temperature control with poles at 0. The set-points 
rc = 3◦C and rh = 0◦C are marked with dash line. The damper position ud = 0 and 

the air mass fow rate ma = 18.5m3/s. 
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Figure 4.12: SDP-PIP indoor air temperature control with poles at 0. The set-points 
rc = 3◦C and rh = 0◦C are marked with dash line. The damper position ud = 1 and 

the air mass fow rate ma = 18.5m3/s. 

Figures showing results of simulations for the closed loop system with poles at 0.5 

and the open and closed loop systems with poles at 0.9 have been omitted and are not 

displayed. The reason for that is �T does not reach constraints, therefore the output is 

exactly the same as for the unconstrained scenario with the respective Figures 4.5, 4.7 

and 4.8. 

Performance assessment by means of heating and cooling actions together with the 

number of samples that were out of the dead-band are presented in Tables 4.5 and 4.6 

for the closed and open loop systems, respectively. 
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Figure 4.13: SDP-PIP indoor air temperature control with poles at 0.5. The set-
points rc = 3◦C and rh = 0◦C are marked with dash line. The damper position ud = 1 

and the air mass fow rate ma = 18.5m3/s. 

Table 4.5: SDP-PIP controller performance assessment for the closed loop system 
ud = 0. The air mass fow rate is ma = 18.5m3/s, heating and cooling unconstrained. 

Poles 
PN �Th(k)k=1 

PN �Tc(k)k=1 

PN (�Th(k) + |�Tc(k)|)k=1 

PN 
k=1 yout(k) 

0 575.19 -167.47 742.66 147 

0.5 569.15 -164.19 733.34 174 

0.9 438.92 -125.43 564.35 200 

Table 4.6: SDP-PIP controller performance assessment for the open loop system 
ud = 1. The air mass fow rate ma = 18.5m3/s, heating and cooling unconstrained. 

Poles 
PN �Th(k)k=1 

PN �Tc(k)k=1 

PN (�Th(k) + |�Tc(k)|)k=1 

PN 
k=1 yout(k) 

0 1039.7 -340.6 1380.3 192 

0.5 1018.3 -330.6 1348.9 201 

0.9 604.18 -172.02 776.20 222 

While the observations are common with those made for unconstrained scenario, 

the additional note concerns the result of heating and cooling restrictions. As a matter 

of fact, �T does not exceed 10 and does not decrease below -5, therefore the overall 

e�ort made by the heating and cooling units is slightly lower. It acts in similar way as 

if the poles were located closer to a boundary of the unity circle, therefore it takes more 

time to satisfy the indoor air temperature requirements. 



133 PIP control approach for state-dependent indoor air temperature models 

Variable ud and ma The simulation results of the SDP-PIP controller with variable 

supply air fow and damper position are shown in Figure 4.14 to 4.15 containing a pair 

of the open and closed loop system simulations for the dead-beat and 0.5 poles as per 

Table 4.1. 
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Figure 4.14: SDP-PIP indoor air temperature control with poles at 0. The set-points 
rc = 3◦C and rh = 0◦C are marked with dash line. The damper position and the air 

mass fow rate are variable. 

Table 4.7: SDP-PIP controller performance assessment of a system with variable 
damper position ud and the air mass fow rate is ma, heating and cooling unconstrained. 

Poles 
PN �Th(k)k=1 

PN �Tc(k)k=1 

PN (�Th(k) + |�Tc(k)|)k=1 

PN 
k=1 yout(k) 

0 854.92 -297.46 1152.4 176 

0.5 839.79 -290.66 1130.5 191 

The results of the simulation employing the SDP-PIP controller with constraints on 

heating and cooling shown in Figures 4.14 and 4.15 and including Table 4.7 demonstrate 

likewise trends as the previously analysed scenarios in Section 4.5.2. Therefore, it is 

deemed, based on the tested scenarios, that the SDP-PIP controller designed for the 

indoor air temperature control fts the purpose in general terms. 
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SDP-PIP indoor air temperature control - poles = 0.5 
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Figure 4.15: SDP-PIP indoor air temperature control with poles at 0.5. The set-
points rc = 3◦C and rh = 0◦C are marked with dash line. The damper position and 

the air mass fow rate are variable. 

4.5.3 First principles SDP-PIP simulation with real data 

This part is focused on an overall demonstration of the SDP-PIP controller, using real 

data for the outdoor air temperature and varying the damper position and the air mass 

fow rate using square wave. Simulation was performed on a scenario with restrictions 

imposed on the heating and cooling units refecting their approximate real respective 

sizes, i.e. 24◦C and -10◦C. The results of the simulation for poles at 0 and 0.5 are 

presented in Figures 4.16 and 4.17, respectively. The controller performance is assessed 

as in Section 4.5.2 using calculations of �Th(k),�Tc(k) and yout(k) and results are 

provided in Table 4.8. 

Table 4.8: SDP-PIP controller performance assessment of a system with real data in-
put for the outdoor air temperature and variable square wave input for damper position 

ud and the air mass fow rate is ma. 

Poles 
PN �Th(k)k=1 

PN �Tc(k)k=1 

PN (�Th(k) + |�Tc(k)|)k=1 

PN 
k=1 yout(k) 

0 5935.3 -944.0 6879.3 508 

0.5 5870.7 -916.7 6787.3 596 

The results presented in Figures 4.16 and 4.17 demonstrate an outcome of the 

simulation for the SDP-PIP controller with the dead-beat design and a moderately fast 
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Figure 4.16: SDP-PIP indoor air temperature control with poles at 0. The set-points 
rc = 20◦C and rh = 17◦C are marked with dash line. The damper position and the air 

mass fow rate are variable. 

dynamics. To mimic the behaviour of the real system, real data-based outdoor air tem-

perature is used, the system input recorded by the HVAC system serving pharmaceutical 

warehouse located in Midlands introduced in Chapter 2. Also, the operation of the heat-

ing and cooling loads generated by the model was restricted to the values representing 

the real HVAC components of the aforementioned pharmaceutical warehouse, specifc-

ally sized for the purpose. While the indoor air thermal process dynamics is faster than 

the real system as the model is based on a simple frst principles approach with limited 

knowledge about the inputs, the simulation represents well the phenomena observed by 

the author of this thesis when analysing the real data records. In particular, it illustrates 

the problem of constraints on heating and cooling due to physical capabilities of these 

units, resulting in an inability of the indoor air temperature requirements to be met. 



136 PIP control approach for state-dependent indoor air temperature models 

SDP-PIP indoor air temperature control - poles = 0.5 
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Figure 4.17: SDP-PIP indoor air temperature control with poles at 0.5. The set-
points rc = 20◦C and rh = 17◦C are marked with dash line. The damper position and 

the air mass fow rate are variable. 

While the heating and cooling units are designed to meet the indoor air temperature re-

quirements under certain assumptions regarding the outdoor conditions, the sizing covers 

majority of the weather conditions predicted to happen throughout the year. The AHU 

may underperform if the outdoor temperature is higher than the maximum or lower than 

the minimum stated in the design document for Midlands, UK, e.g. during exceptionally 

hot summer days or rare harsh winter conditions. The heating and cooling units cannot 

be design to cover all exceptional weather conditions as it makes the design not optimal 

for regular conditions. Therefore, it is concluded that the SDP-PIP controller is suitable 

for applications where simple matching of the output to the set-point is required and is 

enough. However, more advanced techniques such as predictive may exhibit improved 

results, i.e. less time spent out of the dead-band and less energy spent on heating and 
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cooling. Also, some improvement might be achieved while using the PIP controller if 

a variable set-point is employed. Such set-point value could be calculated using e.g. 

Kalman Filter (Young, 2011, p. 71) to forecast the outdoor conditions, which allows 

to estimate the appropriate set-point favouring fexible dead-band and pre-cooling or 

pre-heating methods. Adaptive set-point adjustment strategy was proposed by Oswiec-

inska (2014) as a part of energy eÿcient HVAC control scheme, where gain scheduling 

technique was used to extend the time of the indoor air temperature remaining within 

the dead-band. 

4.6 Conclusions 

This chapter has considered the general form of the PIP controller together with the SISO 

NMSS model structure, the frst order SISO NMSS model and the PIP controller and 

their respective SDP-PIP interpretations. The main contribution of this chapter is the 

discrete-time SDP-PIP controller formulated specifcally for the indoor air temperature 

control following the models and assumptions provided in Chapters 2 and 3. This special 

approach dealing with two-input model, out of which only one is fully controllable, 

provides a method to determine the heating and cooling unit control actions used by 

the HVAC system to meet the demanded environmental conditions within the building 

and will be employed within the MPC design proposed in the following chapter. 

The simulation study demonstrated the operation of the SDP-PIP controller sub-

jected to basic input signals such as a sine wave and constant values and then using 

more complicated inputs or real data. This allowed to observe the system output under 

various conditions and evaluate its use for the intended indoor air temperature control. 

It has also shown that there is a need to tune the PIP controller, compromising fast 

response to achieve the designated output in short time and the control action with 

its increment values between samples. This translates into eÿciency concerns and may 

imply constraints on the actual control systems. Note that badly tuned controller may 

not be able to meet the requirements and match the designed output value as poles are 

getting closer to 1. On the other hand, well-tuned controller will not be able to achieve 

the designed output if the constraints on the input hinder the control actions. On the 

fnal note, SDP-PIP is a controller suitable for applications, where set-point tracking is 

required, constant or variable, which makes it good candidate for wide range of control 

applications in industries. 



Chapter 5 

Model Predictive Control for 

energy eÿcient indoor air 

temperature control 

5.1 Introduction 

Model Predictive Control (MPC) is an advanced control method for multi-variable sys-

tems with constraints. Being mature and well-established in the industry, it is widely 

used in automotive, power systems, process industries, thermal systems, fnance, health-

care, embedded systems. MPC is not a single technique, but a set of di�erent meth-

odologies, and uses a system model to predict the future responses at the current time 

step based on a given prediction horizon, computes a trajectory of optimal control ac-

tion by minimising a predefned cost function, apply only the frst value of the control 

action and repeat the calculation for the next time step. Its wide use is attributed to 

the benefts MPC o�ers which include online (event-based) optimisation, utilising future 

information, anticipation of future events, and dealing with many inputs and outputs 

constraints over a fnite prediction horizon. A recognised advantage is that if the future 

evolution of the reference is known beforehand, the system can react before the change 

has e�ectively been made, thus avoiding the e�ects of delay in the process response. 

Additionally, MPC can be used with various model structures, e.g. linear, nonlinear, 

hybrid, state-space, stochastic, mixed-integer. Recommended reading on MPC concepts 

include works by ° om & Wittenmark (2008); Astr¨ Camacho & Bordons (1999); Wang 

(2009); Bemporad (2020), which have been also consulted during the research process 

and writing up of this chapter. A summary on the MPC concept can be found in a 

paper published in Encyclopedia of Systems and Control (Grüne, 2015), covering the 

138 
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most important aspects of history, general form, stability, feasibility and performance 

analysis. Since the MPC is widely recognised and used method, there are existing solu-

tion o�ering Model predictive Control, such as MathWorks’ Model Predictive Control 

Toolbox for MATLAB providing functions, an app and Simulink model for simulating 

the model predictive controllers (MathWorks, n.d.d). This toolbox, however, was not 

used for the purpose of research described in this thesis due to associated costs and 

custom needs of the project. 

5.1.1 Basic Model Predictive Control concept 

There are three components involved in the MPC approach, each of them can be defned 

in various ways and use di�erent algorithms. These components are: 

• Prediction model is the fundamental part. Good models for MPC should be 

descriptive enough to capture the most signifcant dynamics of the system and 

simple enough for solving optimisation problem. Often there is a trade o� between 

these two criteria, therefore the design of MPC should be approached with these 

considerations. 

• Objective function (or cost function) is the function that is minimised using 

the control action sequence in optimisation algorithm. Depending on the control 

objective, the cost function has weighting matrices that can be tuned according to 

the required control e�ort. For example, the control action can be penalised more 

to reduce transient or less to improve response speed. 

• Control law is an algorithm (or functions) that determines the control action 

to be taken. These control laws are often expressed as a function of the states. 

An observer is usually included for state estimation in the case not all states are 

accessible. 

Ultimately, MPC is used to fnd the most optimal control sequence over a future hori-

zon of defned number of steps while avoiding deviations of the output from reference 

trajectory. A model of the process is used to predict the future evolution of the process 

to optimise the control signal. At each time step, measurements/data is collected to 

recalculate and update the current state. This knowledge is used to solve optimisation 

problem with respect to selected one of more control actions or parameters minimising an 

objective function. Once optimal control sequence is identifed, the frst optimal control 

action is applied, while the remaining items from control sequence are discarded. The 

idea of how MPC works can be compared to playing chess. Each player frst analyses 

the situation on the board, then predicts possible scenarios together with accompanying 
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moves. Finally, player chooses to follow one of the predicted scenarios and performs 

single move using one piece. Another daily example representing MPC concept is driv-

ing a car or following a sat-nav. Driver (or sat-nav) constantly evaluates situation on 

the road to choose best possible action, e.g. follow originally intended route or divert to 

avoid traÿc bottle necks. 

Another illustrative example of a car driver demonstrates di�erence between clas-

sic industrial standard Proportional-Integral-Derivative (PID) controller and MPC, see 

Table 5.1. A driver that is able to control the vehicle, but cannot see through the wind-

screen, is denied of information lying ahead; the decisions need to be taken based on 

views from the mirrors only. Secondly, control over the vehicle using PID controller 

analogy is limited to the fxed gains, the driver for MPC would have a knowledge of the 

vehicle response to the pedal inputs, which represents model-based approach. Finally, 

PID controller is normally a SISO system, hence each controlled element would need 

separate operator or driver, while MPC manages multiple inputs and outputs using one 

controller, like the driver having control over all vehicle. Note that is example focuses 

on main features to help understanding of MPC concept and its advtanages over PID. 

Table 5.1: Car driver analogy representing main di�erences between PID controller 
and MPC. 

PID controller Model predictive controller 

Cannot ’look ahead’ (only looking in 
the mirrors) 

Can make use of future information 
(road ahead) 

Fixed gains Knowledge of the vehicle response 
to pedal inputs 

Single input, single output (SISO). 
A controller needed for each actu-
ator. 

Multiple input, multiple output 
(MIMO). One controller manages 
all actuators. 

5.1.2 Chapter overview 

This chapter presents the Genetic Algorithm Model Predictive Control (GA MPC) ap-

proach developed for the indoor air temperature control to minimise the energy consump-

tion and is the main contribution of this chapter. The method is based on a ventilation 

through opening the damper blades and forcing the fresh air from the outside in. The 

idea of ventilation and free cooling is introduced in Section 5.2. The description of the 

MPC algorithm developed specifcally for this project is provided in Section 5.3, whereas 

more details on each of the components and the GA MPC algorithm are given in Section 

5.4. The simulation study in Section 5.5 demonstrates the operation of the algorithm 

and its ability to fnd the optimal solution. The fnal conclusions are provided in Section 

5.6. 
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5.2 Ventilation and free cooling 

To understand the use of the damper position control to minimise the operating costs 

and energy consumption of the heating, ventilation and air conditioning (HVAC) system, 

it is crucial to introduce the fundamental role of ventilation in the indoor conditions 

maintenance. Ventilation using outdoor air is generally used to ensure the indoor air 

quality does not fall below the safety standard for breathing and odour control, and in 

the same time is a part of the energy eÿcient strategies. The purposes of ventilation 

are provided in Table 5.2. 

Table 5.2: Purposes of ventilation. (Chartered Institution of Building Services En-
gineers, 2005) 

Purpose Explanation 

To provide suÿcient ‘back- Typical rates need to be increased where smoking is per-
ground’ ventilation for occu- mitted or additional sources of pollution are present. Most 
pants in terms of air quality pollutants originate from sources other than people but in 
for breathing and odour con- such cases general ventilation has been shown to be much 
trol less e�ective than treating the problems at source: e.g. by 

specifcation, cleanliness and local extraction. 

To provide natural cooling Care must be taken to avoid excessive air change rates that 
during the occupied period may cause draughts or disturb documents. Higher rates may 

be practicable in spaces occupied transitionally, such as at-
ria. The balance point above which mechanical cooling will 
provide a more e�ective solution should be considered. 

To provide natural cooling 
outside the normal occupied 
period 

Night cooling or ‘night purging’ can remove heat built-up in a 
structure and its contents, and provide some pre-cooling for 
the following day. Practical limitations will exist in terms 
of acceptable secure openable areas in the case of natural 
ventilation and on duct size and fan energy consumption for 
ducted mechanical systems. 

To exhaust heat and/or pol-
lutants from localised sources 
or areas 

Examples are kitchens, toilets, vending areas and equipment 
rooms. This enables adjacent areas to be more comfortable 
with less conditioning of the air. Such systems often need to 
operate for longer hours than those serving the main spaces, 
therefore independent extract systems are preferred. 

To act as a carrier mechanism 
for mechanical cooling and/or 
humidity control 

This can be either via an all-air system, in which the air 
is treated centrally, or via air/water or unitary systems in 
which the air is recirculated and treated locally. 

To prevent condensation Adequate ventilation for condensation control exceeds the 
within the building fabric minimum rate of fresh air necessary for health and comfort. 
(34) There is a specifc need to address the ventilation of areas 

where moisture generating activities occur. 

To enable the eÿcient opera- Needs are entirely dependent on the process. Ventilation 
tion of processes may be required to ensure safe combustion or to ensure 

that machinery is maintained within a suitable temperature 
range, e.g. lift motor rooms. 

Additionally, to achieve an acceptable energy eÿciency in the indoor air temperat-

ure control with regards to air management, it is important to appreciate the diversity 
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of ventilation strategies, as identifed by Chartered Institution of Building Services En-

gineers (2005): 

• Natural ventilation Natural ventilation relies on moving air through a building 

under the natural forces of wind and buoyancy. Wind driven ventilation is realised 

by cross fow or single or double-sided opening. Buoyancy driven ventilation is 

reliant on stacks, wind towers, atria roofights, conservatories, or by façade itself. 

While this ventilation type is applicable to many types of buildings, industrial 

buildings might be an exception due to size or specifc dimensions. 

• Mechanical ventilation Mechanical ventilation requires fan power to cause the 

movement of air through a building; fltration and heating of the air may also take 

place. Common distribution techniques involve food, ceiling or wall supply. This 

ventilation typically builds upon balance between supplying and extracting, which 

can include both mechanical and natural supply or extract. 

• Comfort cooling Comfort cooling makes use of the mechanical cooling to main-

tain control over the maximum air temperature achieved in the indoor space. The 

supplied air can be incidentally dehumidifed during the cooling process. 

• Air conditioning Term commonly used with or instead of comfort cooling is air 

conditioning, which means full control over the humidity within the conditioned 

space as well as temperature control. A more refned variation of air conditioning 

is close control, which demands more specifc or tight temperature and humidity 

control requirements. 

• Mixed mode system Mixed mode may be defned as the combination of natural 

and mechanical ventilation and/or cooling systems. Sub-classes of this ventilation 

type are contingency designs, allowing for selective additional mechanical vent-

ilation or cooling systems when needed on top of being a naturally ventilated 

building, such as complementary systems, where natural and mechanical systems 

are destined for integrated operation, and zoned systems, allowing for di�erent 

strategies occurring in di�erent parts of the building. 

Note that each ventilation purpose or strategy may require a di�erent air supply rate 

in order to achieve most e�ective results. For deeper insight on this matter, reader 

is encouraged to consult (Chartered Institution of Building Services Engineers, 2005) 

where the subject is comprehensively covered. Since the research presented in this 

thesis focuses mostly on energy eÿcient control strategies using mechanical cooling and 

mechanical ventilation, matters out of this scope will not be discussed. 
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5.2.1 Free cooling and night cooling 

Free cooling is a commonly used term referring to using outside air ventilation without 

mechanical cooling as a means of cooling a building. While this strategy can support 

the reduction of the energy use, there are few fundamental limitations present. The frst 

limitation lies in the outdoor air temperature. The energy used to transport the air can 

be greater than the delivered cooling energy. At worst, the work involved in moving the 

air (both supply and recirculated) will raise its temperature, resulting in warming of the 

building. Secondly, without the use of mechanical cooling, the outside air is generally 

higher than the inside temperature at the times when cooling is most necessary. This 

can partly be remedied by using overnight cooling, when outdoor air temperatures are 

lower, however, this is less energy eÿcient than daytime cooling, and the benefts of 

natural as opposed to mechanical night cooling would need to be considered. In terms 

of the night cooling methodology (or night purge), this is a cooling ventilation method 

used to remove heat built-up within a building and pre-cool the indoor space for the 

following day (Chartered Institution of Building Services Engineers, 2005). This type 

of ventilation would typically occur during unoccupied hours. Night cooling could be 

achieved using natural cooling or supply fan assisted air distribution. Nevertheless, night 

cooling is often used to limit a temperature rise. The air cools the fabric of the building 

and the stored cooling is then available the next day to o�set heat gains. For this reason, 

night cooling provides best results with a thermally heavyweight building constructions. 

The thermal capacity of buildings may be increased (commonly by exposing soÿts) to 

increase the amount of cooling that may be stored. The cooling would also be stored 

in the items, e.g. furniture, products, machinery, within the building, contributing as a 

thermal storage mass. 

5.3 Model Predictive Control approach for an indoor air 

temperature control 

The indoor air temperature model introduced in Chapter 2 and then expanded to State-

dependent Parameter (SDP) form in Chapter 3 is a nonlinear, multi-variable process 

with state-dependent parameters. Once the energy and/or cost eÿciency are identifed, 

adapting MPC for an indoor environment conditions management is straightforward 

considering the numerous benefts of MPC. In this thesis, energy eÿcient operation 

is achieved by minimising heating/cooling operation, heat load shifting and making 

use of the outdoor. It is carried out through manipulation of the damper blades to 

switch between fresh and recirculated air intake, free cooling and mechanical ventilation, 
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variable set-point and pre-heating or pre-cooling. The main components of MPC for the 

indoor air temperature control problem presented in this thesis are: 

• Model for control The SDP model of the indoor air temperature has two inputs 

(�T , Ta) and one output (Tr), where the model parameters change with respect 

to the fan speed, which changes the air mass fow rate ma, and the position of 

damper blades ud. This model is used to predict the indoor air temperature over 

time in MPC, based on which the control actions are taken. 

• Heating and cooling control method The Proportional-Integral-Plus (PIP) 

controller is implemented to evaluate the demand for heating and cooling and 

decide on the control action �T for the SDP model. 

• Cost function The aim of this function is to minimise the energy consumption or 

running costs of the heating and cooling. The original function consist of weighted 

sum of control actions �T and penalty for the time spent outside of the dead-

band. A variation adds cost per energy unit and provides more valuable results 

if the cost per unit varies during the day. Note that none of the inputs (�T , 

Ta) is MPC-controlled by means of optimising these control actions, however �T 

depends on the position of damper blades and generates the actual energy cost. 

• Optimisation algorithm Genetic Algorithm is used to fnd the optimal position 

of damper blades. This approach was selected as not many available optimisation 

methods were found that would meet all of the criteria during development of 

MPC. The solver is required to handle: integer problem, constraints on input and 

output and multivariable function. 

The advantage of using MPC to solve this energy eÿciency control problem lay in its 

versatility. The MPC design proposed in this chapter does not follow the standard MPC 

formulation presented in books such as (Camacho & Bordons, 1999) and (Wang, 2009), 

but rather creates bespoke control method while preserving all of MPC components 

and general structure. This application-specifc solution is the main contribution of this 

chapter. The details on each of the components are discussed in Section 5.4. The method 

proposed is fully customised to the application and for this reason the conventional form 

of the MPC is not introduced in the thesis. 

Consider the basic structure of Model Predictive Control shown in Figure 5.1. To 

demonstrate its operation, an example of a controller optimising an objective function 

using control sequence of damper position to maintain the indoor air temperature is 

shown in Figure 5.3. The controller minimises the cost function J over the prediction 

horizon hp and makes use of the frst output element. This corresponds to the operation 
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of Optimisation block and its output used by the system model in Model block. The 

objective of the function is to minimise the distances between the dead-band boundaries 

and the predicted output, which is the room temperature. This could be referred to the 

summation node of Reference Trajectory and Predicted Outputs resulting in Future Er-

rors. In other words, Future Errors are a part of the objective function. As a result, the 

controller produces the vector of predicted room temperature values, Predicted Outputs, 

and the corresponding dampers positions, which is the Future Inputs. In principle, the 

predicted room temperature vector, Predicted Outputs, is based on the damper position 

vector, Future Inputs. The prediction horizon hp is equal to the length of the weather 

forecast vector Ta. For the future calculations, only the frst elements are applied, mean-

ing the room temperature Tr(k), Past Output, and its corresponding damper position. 

This can also be considered as the controller having an insight into the future and takes 

decision concerning the nearest output only. This procedure is repeated with every new 

space temperature data sample, hence this type of control is also known as receding 

horizon control. 

Reference 
Trajectory 

Model 

Optimization 

Future 
Inputs 

Predicted 
Outputs 

Past Inputs 
and Outputs 

Future Errors 

Objective Constraints 
Function 

Figure 5.1: Basic structure of MPC. (Camacho & Bordons, 1999) 

A block diagram in Figure 5.2 shows the designed GA MPC structure incorporating 

SDP model of the indoor air temperature and PIP controller calculating the heating and 

cooling demand. The MPC module has a number of inputs required for its operation. 

Ta is the outdoor air temperature reading fed from the plant, which in real application 

would be the current outdoor temperature sensor reading, rh and rc are the heating and 

cooling set-points, respectively, Ta [ ] is a vector of the future outdoor air temperature 

values (sourced from weather forecast in real application for example), Tr [ ] is a vector 

of the future simulated indoor air temperature values, ud is a damper blades control 

input, uh is a heating unit control input, uc is a cooling unit control input, ud [ ] is a 

vector of the proposed damper blades control input and Tr is the indoor air temperature. 
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The length of vectors Ta [ ], Tr [ ] and ud [ ] equals to the control horizon hp. GA feeds a 

vector of damper blades positions to the SDP-PIP module and uses it to obtain data 

needed to calculate �T control action employed in the cost J ; see the optimisation 

problem formulated in Section 5.4.3. Once GA converges to the solution and vector ud [ ] 

resulting in the lowest J is known, the frst element of ud [ ] is passed to the SDP-PIP 

module to calculate the heating and cooling control inputs, which are then fed to the 

AHU control system. 
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Figure 5.2: Model Predictive Control block diagram for energy eÿcient HVAC system 
operation using Genetic Algorithm to fnd the optimal damper position. 

5.4 Design of the Model Predictive Controller 

Section 5.3 introduced the main components forming the MPC controller to optimise 

the eÿciency of the HVAC system. Each of these components is defned in more details 

in Sections 5.4.1-5.4.5. 
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Figure 5.3: Indoor air temperature control using MPC: the consecutive positions of 
damper blades over prediction horizon hp form the control sequence. �t denotes the 

time interval between consecutive samples. (Oswiecinska, 2014) 

5.4.1 Model for control formulation 

The model structure employed within the MPC controller for simulation of the indoor 

air temperature over the prediction horizon and used as a part of the SDP-PIP controller 

has been previously introduced in Chapter 3 and utilised in Chapter 4 to demonstrate 

the SDP-PIP controller operation. To summarise, the reduced order MISO SDP model 

for the indoor air temperature control follows Equation (3.4.9) and in NMSS form (see 

Equations (4.4.12)) is formulated as 

" # " #" # 
Tr(k) −�{ma(k), ud(k)} 0 Tr(k − 1) 

x(k) = = 
z(k) �{ma(k), ud(k)} 1 z(k − 1) 

" # " # " # 
�1{ma(k)} �2{ma(k), ud(k)} 0 

+ �T (k − 1) + Ta(k − 1) + yd(k) 
−�1{ma(k)} −�2{ma(k), ud(k)} 1 
h i 

Tr(k) = 1 0 x(k) 

(5.4.1) 

where the state-dependent model parameters are recalculated at each time step as 

defned for the model in Equation (3.4.9). For implementation, the model is simpli-

fed and reduced to extract the output Tr(k) directly as 

  
�{ma(k), ud(k)} 

h i 
  
Tr(k) = −Tr(k − 1) �T (k − 1) Ta(k − 1) · �1{ma(k)}  (5.4.2) 
  
�2{ma(k), ud(k)} 
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5.4.2 State-Dependent Parameter-Proportional-Integral-Plus control-

ler 

The heating and cooling demand is determined by the PIP controller utilising the fol-

lowing control law from Equation (4.4.11): 

" # 
h i Tr(k)− Tr(k − 1) 

�Tc(k) = �T (k − 1)− f0{˜(k)} −kI {˜(k)} · (5.4.3a) 
rc − Tr(k) 

" # 
h i Tr(k)− Tr(k − 1) 

�Th(k) = �T (k − 1)− f0{˜(k)} −kI {˜(k)} · (5.4.3b) 
rh − Tr(k) 

with constraints heating and cooling as 0 ≤ �Th ≤ �Tmax and �Tmin ≤ �Tc ≤ 0, 

where �Tmax and �Tmin represent the maximum outputs of the heating and cooling 

unit, respectively. Whenever the indoor air temperature is within the dead-band, no 

heating and cooling can be requested. The elements of the SVF control gains vector are 

calculated at each time step as follows: 

1. Following pole assignment method for the frst order model in Section 4.2.4.1, 

initialise matrices S and b as 

" # " # 

S = 
�1(k − 1) �1(k − 1) 

b = 
d1 − (�(k − 1)− 1) 

−�1(k − 1) 0 d2 − (0− �(k − 1)) 

2. Obtain the control gains vector kT from 

S · kT = b 

3. Extract control gains from kT 

f0 = k(1) 

kI = k(2) 

5.4.3 Optimisation problem formulation 

The research proposed in the thesis aims to develop energy eÿcient control approach 

for the indoor thermal process. The optimisation problem is formulated as 

hp 
X 

min J = |�T (i)| + wout · rout 
ud∈[0,1] (5.4.4) i=1 

subject to rh ≤ Tr(i) ≤ rc, i = 1, . . . , hp. 
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where 

• J is the objective function to be minimised over the hp-variable vector �T , 

• rout is the number of Tr samples recorded outside of the dead-band, 

• wout is the weight corresponding to rout element, 

• rh ≤ Tr(i) ≤ rc are the inequality constraints defning the required indoor air 

temperature boundaries, 

and i represent the current time instance. The cost function consists of two elements: a 

sum of heating and cooling loads applied over prediction horizon, which represents the 

energy integrator, and weighted number of instances while the indoor air temperature 

did not meet the criteria defned by the inequality constraints. Note that these criteria 

are soft constraints as the indoor air temperature does go out of the dead-band triggering 

heating or cooling action, depending on the outdoor conditions. However, it is desired 

that the indoor air temperature remains within the dead-band, yet it is not always 

possible without activating heating and cooling units within the AHU. Penalising time 

spent out of the dead-band through rout is motivated by the fact, that there is a thermal 

mass that includes all items within the building and the building fabric itself. The longer 

the indoor air temperature requirements are not met, the more time for the goods and 

fabric to absorb the heat (or have it removed for Tr < rh) and store it. This is undesirable 

as it prolongs the time for the indoor air temperature to be brought within the dead-

band limits. The building thermal storage mass utilisation for the heating and cooling 

benefts is summarised by Smarter Homes (n.d.), which explains how to use material 

properties to absorb more heat or prevent it. To avoid penalising time spent out of 

the dead-band and generate the cost exclusively based on the heating and cooling units 

loads, the weight can be set to zero wt = 0. Finally, the overall cost J in normalised 

to unify the cost value regardless of the sampling interval chosen using the following 

equation 
J 60 

J = , sph = (5.4.5) 
sph ts/60 

where sph denotes the number of samples per hour subjected to the sampling interval 

ts. Following this formula allows obtain the cost values that are comparable even if sim-

ulations were performed at di�erent sampling intervals. Additional measure is focused 

on evaluating the temperature changes only and in normalised form is 

hp 
X 

S�T = |�T (i)|/sph (5.4.6) 
i=1 
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The variations of the cost function could account for the energy consumption based 

on energy cost per unit, e.g. if the energy is cheaper at night time. It could refer only 

to heating and cooling unit running costs, but could also cover supply fan unit, where 

the cost increases together with fan speed. Alternatively, it could also include penalty 

on rate of change between consecutive control actions on heating, cooling, fan speed or 

damper position. 

5.4.4 Solver 

The optimisation problem defned in Section 5.4.3 is solved using Genetic Algorithm 

belonging to the larger class of evolutionary algorithms (EA) (Goldberg, 1989; Janiak 

& Lichtenstein, 2011). The choice of this the nature-inspired method is motivated by 

the capabilities of GA to fnd solutions to various diÿcult problems with constraints in 

a metaheuristic manner, outperforming classical methods. As a method that relies on 

natural selection and additional methods, such as mutation and crossover, this solver 

can provide the best optimal solution beyond local minimum and maximum solutions. 

To achieve the best results, it is necessary to confgure GA by tuning the parameters 

defning its performance and operation. The most important parameters confgurable 

by the user in the GA method provided within MATLAB toolbox (MathWorks, n.d.a) 

contents are: 

• Population size - specifes the amount of members within a population per each 

generation. 

• Generations - specifes the number of iterations before the algorithm will stop. 

• Elite size - defnes how many members of a population with the best score is 

preserved for the next generation in an unchanged form. The default value is 0.05, 

however, for integer problems it is recommended to choose bigger value to improve 

algorithm performance. 

• Crossover fraction - defnes how the composition of a member is exchanged. The 

higher the crossover fraction, the lower the mutation rate, therefore for integer 

problems it is recommended to use values above 0.8 (default). 

• Initial population - specifes the members of the initial population, which otherwise 

are randomly created. 

• Variables - specifes the number of variables per each member. In this project 

it is assumed that by default the number of variables is equal to control horizon 

hc = hp, i.e. the number of samples over which the indoor air temperature is 

forecasted. 

http:Thedefaultvalueis0.05
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• Constraints on input and output - allows to specify upper and lower limit on the 

input and output. For the input ud the limits are 0 and 1, and for the output the 

limits are defned by the heating and cooling set-points. 

Note that not all of the default parameters for the GA can be changed, if an integer 

problem is to be solved as the basic algorithm is modifed; see (MathWorks, n.d.c) for 

using the GA to solve mixed integer problems. The signifcant di�erence is that the 

creation, crossover and mutation functions enforce variables to be integers. Also, the 

genetic algorithm attempts to minimise a penalty function, not the ftness function; the 

penalty function includes a term for infeasibility. Note also that the number of variables, 

or the prediction horizon, is strictly dependent on the future outdoor air temperature 

information, i.e. hp is limited to the last point in time at which the forecasted outdoor 

air temperature is known. Finally, the tuning of the GA parameters and settings requires 

some insight into scenario for which the problem is solved. For example, using GA to 

solve a simple problems will lead to convergence of the optimal solution in much less 

iterations, i.e. require lesser number of generations for a stopping criteria than a more 

complicated problem. The selected GA setup is a compromise than performing better 

in certain scenarios and performing lesser for others. Finally, regardless of the initial 

setup, the fundamental operation of GA lies on random process, therefore the results 

may not be repeatable from run to run. 

5.4.5 Algorithm for simulation 

The MPC algorithm for simulation using MATLAB for the implementation and opera-

tion of the proposed method is presented in Figure 5.4. The algorithm operates in the 

following manner: 

1. LOAD Control setup, GA setup The following parameters are initialised: 

• Control setup: poles for the PIP controller D, heating and cooling set-points 

rh and rc, respectively, prediction horizon hp and control horizon hc. 

• GA setup: population size, number of generations, elite size, crossover frac-

tion, objective function, number of variables (equal to control horizon) and 

input constraints (damper position between 0 and 1). 

2. LOAD Model inputs Initialisation of the outdoor air temperature vector Ta 

(last, current and future samples), the indoor air temperature Tr (last and current 

sample), the damper position ud (last, current and future samples) and the heating 

load within the AHU �T (previous sample). 
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3. LOAD Initial population By default, initialisation of the initial population 

member is random. Initialising some of the members with ud vector containing 

only zeros for closed damper position helps to encourage faster convergence toward 

optimal solution. Similarly, further iterations might also be initialised with the last 

most optimal ud vector shifted by one sample to improve performance and the end 

results of the GA. 

4. RUN GA to fnd optimal damper position Genetic algorithm is run to fnd 

the vector of damper blades position that is related to the lowest cost J . 

5. RETURN Vector ud for the best J The optimal damper blades position 

vector is returned. 

6. SAVE ud(1) as current damper position The damper position corresponding 

to the current time interval is extracted and applied as the control input to the 

mixing box within AHU. 

7. SIMULATE Tr using SDP-PIP The indoor air temperature is simulated using 

the SDP model to obtain the output Tr for the next time step k+1. It represents 

shifting taking measurements of the indoor air temperature one sample later. PIP 

controller is used to calculate the control input for heating and cooling units. 

8. REPEAT for next time step? To repeat search for the next optimal damper 

position for the next sample, i.e. after select time interval ts, practising receding 

horizon technique, follow YES. To fnish operation of the MPC algorithm, follow 

NO. 

9. PASS Latest inputs and output Recent simulated (recorded) values of the sys-

tem inputs and output obtained in step 7 are passed to initialise another iteration 

of the MPC algorithm run. 

The subalgorithm covering GA operation in step 4 expanded in block Run GA 

consists of the following steps: 

1. LOAD Vector ud from population Initialise vector ud with a member of a 

population. 

2. SIMULATE Tr using SDP-PIP The indoor air temperature is simulated using 

SDP model to forecast the output Tr over hp samples using provided ud vector. 

3. RETURN Vector Tr, vector �T The indoor air temperature values and the 

heating and cooling unit loads are extracted and passed into cost function. 
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Figure 5.4: MPC algorithm fowchart. 

4. CALCULATE Cost function J The overall cost J over prediction horizon is 

calculated based on the indoor air temperature provided together with heating 

and cooling units load. The set-point values for heating and cooling are used to 

evaluate the time spent outside of the dead-band. 

5. REPEAT for the next generation? To repeat the cycle for the next generation, 
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provided the stopping criteria is not met, follow YES. To stop the algorithm, follow 

NO. 

Steps 1-4 are repeated for each member within the population, until cost function has 

been evaluated for all of the members. The default operation of the GA algorithm as 

implemented in MATLAB (MathWorks, n.d.b) is summarised in the following steps: 

1. The algorithm begins by creating a random initial population. 

2. The algorithm then creates a sequence of new populations. At each step, the 

algorithm uses the individuals in the current generation to create the next popu-

lation. To create the new population, the algorithm performs the following steps: 

(a) Scores each member of the current population by computing its ftness value. 

These values are called the raw ftness scores. 

(b) Scales the raw ftness scores to convert them into a more usable range of 

values. These scaled values are called expectation values. 

(c) Selects members, called parents, based on their expectation. 

(d) Some of the individuals in the current population that have lower ftness are 

chosen as elite. These elite individuals are passed to the next population. 

(e) Produces children from the parents. Children are produced either by mak-

ing random changes to a single parent-mutation-or by combining the vector 

entries of a pair of parents-crossover. 

(f) Replaces the current population with the children to form the next generation. 

3. The algorithm stops when one of the stopping criteria is met. 

5.5 Simulation study 

5.5.1 First principles Genetic Algorithm Model Predictive Control 

simulation with sine wave input 

Demonstration of the MPC algorithm on a simple scenario with sine wave Ta input is 

presented in this section, where a single run of the MPC is performed and the results 

present the forecasted scenario. The following settings are used: ts = 15min, control 

horizon is 1 day and hp = hc, wout = 0.25, population size 120, number of generations 

50, elite size 10% of population size, crossover fraction 0.9 and 20% of the population 

is initialised with vectors ud(i) = 0 ∀ i = 1, ... hp. The results are presented in Figure 

http:met,followYES.To
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5.5, where the outcome of a single MPC run provided the values of �T (i) from the PIP 

controller with a dead-beat setup and ud(i) values are determined by the GA. The control 

dead-band is defned by the heating and cooling set-points rh = 18◦C and rc = 21◦C. 

The fan speed has been set manually to operate at 75% of the maximum capacity at all 

times for simplifcation. In real application, however, the fan speed typically depends 

on the heating and cooling demand or as set by the user. 
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Figure 5.5: MPC prediction of the indoor air temperature for hp = 1day. The poles 
of the PIP controller are at 0. The set-points rc = 21◦C and rh = 18◦C are marked 
with dash line. The air mass fow rate is set to ma = 13.41m3/s, which is 75% of the 

maximum fan speed. 

GA is able to converge to the best optimal solution (or the best score close to the 

best optimal solution), which is demonstrated in the position of damper blades being 

closed almost all the time; the best solution in the case considered would be to keep 

the dampers closed over all prediction length. The cost function for the prediction 

presented in Figure 5.5 is J = 95.8766 and the normalised sum of heating and cooling 

is S�T = 92.9391. Note that there is one sample, where the damper blades are in open 

position. It has been observed that in majority of the situations, where single spikes 

ud(k+ i) = 1, i ∈ [1, hp] the damper position does not infuence the dynamics enough to 

generate (noticeable) changes in the cost function. This could happen when the indoor 

air temperature is within the dead-band and the air mass fow rate is low or 0, for 

example. Secondly, if the MPC algorithm is run at regular time intervals, the damper 

position vector will be recalculated every time and only frst value is applied, rejecting 

the rest, minimising the chances of spikes being applied by the HVAC control system. To 
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mitigate unnecessary spikes and improve the results, additional smoothering algorithm 

can be implemented. Such algorithm at a basic level would penalise changes in ud. 

Alternatively, it would have to smooth spikes in ud and recalculate the cost function J 

to make sure that the cost didn’t increase; otherwise, spikes would remain untouched. 

For comparison, the same scenario, but with dampers closed through all simulation has 

J = 95.8782 and S�T = 92.9407. While these are values are slightly higher than for the 

results for Figure 5.5 scenario, the di�erence is negligible. 

Observing the indoor air temperature in Figure 5.5 and the inputs, it can be seen 

that if the heating set-point was decreased temporary around 0.4-0.5 day, it would take 

more time for the indoor air temperature to reach and exceed the cooling set-point. 

The additional delay could also be caused by opening the damper blades around this 

period and close once the outdoor air temperature matches the indoor air. Adaptive 

set-point strategy proposed by Oswiecinska (2014) temporary compromises the default 

indoor conditions within agreed boundaries, but can lower the energy consumption in 

the long-term. 

Another simulation was performed using the settings, but with poles at 0.2. The 

results are presented in Figure 5.6. 

10 

15 

20 

Tr 
Ta

T
em

p
er
at
u
re
 [
◦

 C
]

Indoor air temperature simulation using GA MPC 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Time [days] 

10 

20 

�
T
[ ◦

 C
]

0 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Time [days] 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
-1 

1 

u
 d 0 

0 
Time [days] 

m
a

 [m
 3 /
s]
 

14 

13 

12 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Time [days] 

Figure 5.6: MPC prediction of the indoor air temperature for hp = 1day. The poles 
of the PIP controller are at 0.2. The set-points rc = 21◦C and rh = 18◦C are marked 
with dash line. The air mass fow rate is set to ma = 13.41m3/s, which is 75% of the 

maximum fan speed. 
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The cost function for the prediction presented in Figure 5.6 is J = 96.5457 and 

S�T = 93.1082. Note that the cost J is higher than for the dead-beat controller, however, 

the di�erence is less than 1%. Similarly, the overall heating and cooling load is lower, 

hence more energy is consumed. This relates directly to the PIP controller design and 

pole assignment described in Section 4.2.3 and corresponding observations gathered in 

Section 4.5. 

To demonstrate briefy the importance of the number of generations, consider the 

results presented in Figure 5.7, where the number of generations was set to 20. The 

function for the prediction presented in Figure 5.6 is J = 95.8766 and S�T = 92.9391. 

While these values are not that much di�erent than in previous demonstrations in Figures 

5.5 and 5.6, it is observed that there is a higher tendency to obtain spikes in the ud vector. 

This phenomena has its roots in the way the GA works, especially crossover function: 

initial population consists mostly of randomly created members, taking values either 0 

or 1 for the member’s variables. As the number of iterations goes up, the random spikes 

are less likely to be carried over to the next generations, therefore increasing chances for 

smoother and more optimal solution. 
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Figure 5.7: MPC prediction of the indoor air temperature for hp = 1day. The poles 
of the PIP controller are at 0. The set-points rc = 21◦C and rh = 18◦C are marked 
with dash line. The air mass fow rate is set to ma = 13.41m3/s, which is 75% of the 

maximum fan speed. 
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5.5.1.1 Model Predictive Control simulation 

Simulations of the MPC operation over a period of one day has been performed to 

simulate the real operation of the MPC controller. On the contrary to simulation study 

from Section 5.5.1, where the results provided are a forecast of the inputs and outputs for 

a single MPC run, this section demonstrates the control actions taken as recalculated and 

proposed by the MPC algorithm at each time step as detailed in the fowchart diagram 

in Figure 5.4. The following settings are used: ts = 15min, control horizon is 1 day and 

hp = hc = 96 samples, wout = 0.25, population size 120, number of generations 50, elite 

size 10% of population size, crossover fraction 0.9 and 20% of the population is initialised 

with vectors ud(i) = 0 ∀ i = 1, ... hp. The results of four consecutive simulations run 

with the same initial settings are presented in Figures 5.8-5.11. At each time step the 

values of �T (i) are determined by the PIP controller with dead-beat setup and ud(i) 

values are determined by the GA. The control dead-band is defned by the heating and 

cooling set-points rh = 18◦C and rc = 21◦C. The fan speed has been set manually to 

operate at 75% of the maximum capacity at all times. 
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Figure 5.8: MPC prediction of the indoor air temperature for hp = 1day over 1 day 
of simulation. The poles of the PIP controller are at 0. The set-points rc = 21◦C and 
rh = 18◦C are marked with dash line. The air mass fow rate is set to ma = 13.41m3/s, 

which is 75% of the maximum fan speed. 

Analysing the results presented in Figures 5.8-5.11 and the summary of the per-

formance measures for each of the four simulations provided in Table 5.3, it has been 

observed that the outcomes of the simulation are very similar in values of the control 

inputs and the cost J . The values of performance measures in each column of Table 

5.3 do not di�er more than 0.4 from each other. Therefore, it is concluded that the GA 

MPC is able to provide consistent results despite the stochastic characteristics of the 

GA. Considering the values from Table 5.3 and comparing to the results provided in 
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Figure 5.9: MPC prediction of the indoor air temperature for hp = 1day over 1 day 
of simulation. The poles of the PIP controller are at 0. The set-points rc = 21◦C and 
rh = 18◦C are marked with dash line. The air mass fow rate is set to ma = 13.41m3/s, 

which is 75% of the maximum fan speed. 
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Figure 5.10: MPC prediction of the indoor air temperature for hp = 1day over 1 day 
of simulation. The poles of the PIP controller are at 0. The set-points rc = 21◦C and 
rh = 18◦C are marked with dash line. The air mass fow rate is set to ma = 13.41m3/s, 

which is 75% of the maximum fan speed. 

Section 5.5.1, which were higher by not more than 6, it is concluded that the GA MPC 

operates correctly and is able to fnd the optimal solution. It is achieved by means of 

minimising the heating and cooling loads and the time spent outside of the dead-band. 

It is worth noting that the results of the simulations 2 and 3 (Figures 5.9 and 5.10) per-

formed exactly in the same way from the cost point of view. The simulation 2, however, 

di�ers from the simulation 3 by the damper blades position set to open for one time 

interval more. Since during this particular time interval the indoor was safely within 
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Figure 5.11: MPC prediction of the indoor air temperature for hp = 1day over 1 day 
of simulation. The poles of the PIP controller are at 0. The set-points rc = 21◦C and 
rh = 18◦C are marked with dash line. The air mass fow rate is set to ma = 13.41m3/s, 

which is 75% of the maximum fan speed. 

the dead-band, it did not trigger changes in the temperature of the air supplied. 

Table 5.3: The performance measures for the GA MPC simulation for four scenarios 
with identical setup. 

Simulation Figure J S�T 

1 5.8 91.7181 88.5931 

2 5.9 91.6053 88.4803 

3 5.10 91.6053 88.4803 

4 5.11 91.9945 88.8695 

5.5.2 First principles simulation with real data - 1 day prediction 

Demonstration of the MPC algorithm on a real data-based scenario for the input Ta is 

presented in this section, where a single run of the MPC is performed and the results 

present the forecasted scenario. The simulation setup is the same as for study with sine 

wave input from Section 5.5.1. The outdoor air temperature data was collected by the 

control system for the warehouse located in Midlands, UK, and belongs to the same set 

that was used in the previous chapters. The results are presented in Figures 5.12, where 

the outcome of a single MPC run provided the values of �T (i) from the PIP controller 

with a dead-beat setup and ud(i) values are determined by the GA. 
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Figure 5.12: MPC prediction of the indoor air temperature for hp = 1day for spring 
scenario. The poles of the PIP controller are at 0. The set-points rc = 21◦C and 
rh = 18◦C are marked with dash line. The air mass fow rate is set to ma = 13.41m3/s, 

which is 75% of the maximum fan speed. 

The results corresponding to Figure 5.12 are J = 113.2686 and S�T = 110.0811. 

For comparison, the simulation with the same outdoor air input as in Figure 5.12, but 

results for the damper blades in a closed position scenario over the prediction horizon are 

J = 113.9906 and S�T = 110.7406. Note that in standard control approach the dampers 

would remain closed during this period. While these results are not much di�erent from 

each other (the discrepancy is less than 1), it demonstrates again that the GA is able to 

fnd optimal solution with a lower cost if there are cooling or heating capabilities in the 

outdoor air utilisation. 

5.5.3 First principles recursive simulation with real data over 1 day 

Simulations of the MPC operation over a period of one day has been performed to 

simulate the real operation of the MPC controller. On the contrary to simulation study 

from Section 5.5.2, where the results provided are a forecast of the inputs and outputs for 

a single MPC run, this section demonstrates the control actions taken as recalculated and 

proposed by the MPC algorithm at each time step as detailed in the fowchart diagram 

in Figure 5.4. Performing a simulation over a period of one day allows to observe 

the GA MPC controller operation as a snapshot of its performance. The following 

settings are used: ts = 15min, control horizon is 1 day and hp = hc = 96 samples, 
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wout = 0.25, population size 120, number of generations 50, elite size 10% of population 

size, crossover fraction 0.9 and 20% of the population is initialised with vectors ud(i) = 

0 ∀ i = 1, ... hp. The results of four consecutive simulations run with the same initial 

settings are presented in Figures 5.13-5.14. At each time step the values of �T (i) are 

determined by the PIP controller with dead-beat setup and ud(i) values are determined 

by the GA. The control dead-band is defned by the heating and cooling set-points 

rh = 18◦C and rc = 21◦C. The fan speed has been set manually to operate at 75% of 

the maximum capacity at all times. 
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Figure 5.13: MPC prediction of the indoor air temperature for hp = 1day over 1 day 
of simulation. The poles of the PIP controller are at 0. The set-points rc = 21◦C and 
rh = 18◦C are marked with dash line. The air mass fow rate is set to ma = 13.41m3/s, 

which is 75% of the maximum fan speed. 

The summary of the performance measures for each of the four consecutive simu-

lations presented in Figures 5.13-5.15 are provided in Table 5.4. The results obtained 

demonstrate expected performance, where the control actions proposed and applied by 

the algorithm lower the cost, therefore improve the energy eÿciency of the HVAC sys-

tem. Comparing the results from Table 5.4 with the cost for scenario with damper 

blades in closed position, it can be observed that there is a beneft in this particular 

scenario to variate the damper blades position. The results obtained demonstrate that 

the GA MPC is able perform the HVAC system control in an energy eÿcient manner. 

While more studies is needed to confrm how well it can perform, the initial assumption 

regarding its capabilities of fnding cost-optimal control actions as the default operation 

is confrmed. 
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Figure 5.14: MPC prediction of the indoor air temperature for hp = 1day over 1 day 
of simulation. The poles of the PIP controller are at 0. The set-points rc = 21◦C and 
rh = 18◦C are marked with dash line. The air mass fow rate is set to ma = 13.41m3/s, 

which is 75% of the maximum fan speed. 
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Figure 5.15: MPC prediction of the indoor air temperature for hp = 1day over 1 day 
of simulation. The poles of the PIP controller are at 0. The set-points rc = 21◦C and 
rh = 18◦C are marked with dash line. The air mass fow rate is set to ma = 13.41m3/s, 

which is 75% of the maximum fan speed. 

5.5.4 First principles recursive simulation with real data over 3 days 

By extending the simulation time to three days it is possible to observe the GA MPC 

controller operation throughout the whole day-to-day cycle over three consecutive days. 

Therefore, a set of simulations of the MPC operation over a period of three days has been 

performed to simulate the real operation of the MPC controller. The control actions 
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Table 5.4: The performance measures for the GA MPC simulation for four scenarios 
with identical setup. 

Simulation Figure J S�T 

1 5.13 100.0204 96.9579 

2 5.13 100.0204 96.9579 

3 5.14 100.1655 97.103 

4 5.15 100.0622 96.9997 

taken are recalculated and proposed by the MPC algorithm at each time step as detailed 

in the fowchart diagram in Figure 5.4. The following settings are used: ts = 15min, 

control horizon is 1 day and hp = hc = 96 samples, wout = 0.25, population size 120, 

number of generations 50, elite size 10% of population size, crossover fraction 0.9 and 

20% of the population is initialised with vectors ud(i) = 0 ∀ i = 1, ... hp. The results of 

three simulations are presented in Figures 5.16, 5.18 and 5.20 with the respective closed 

damper position simulations in Figures 5.17, 5.19 and 5.21. At each time step the values 

of �T (i) are determined by the PIP controller with dead-beat setup and ud(i) values 

are determined by the GA. The control dead-band is defned by the heating and cooling 

set-points provided under each fgure. The fan speed has been set manually to operate 

at 75% of the maximum capacity at all times. The other parameters were set as follows: 

air infltration nv = 0.15 for Figures 5.16 and Figures 5.17, then nv = 0.25, heat gain 

q = 0.26 for Figures 5.18 and Figures 5.19 and nv = 0.25, q = 0.26, poles at 0.3 for 

Figures 5.20 and Figures 5.21. The heat gain has been added to imitate the internal 

heat gains generated in the building as well as heat stored in the goods and furniture. 

The results in Figures 5.16-5.21 and Table 5.5 show that the MPC is capable of 

fnding a set of damper positions so that the overall heating and cooling running costs 

are minimised. 

Table 5.5: The performance measures for the GA MPC simulation for three di�erent 
weather scenarios. 

Simulation Figure J S�T 

1 5.16 99.3871 93.0121 

2 (1 with ud = 0) 5.17 100.2936 93.8561 

3 5.18 136.7932 132.3557 

4 (3 with ud = 0) 5.19 173.1806 165.9306 

5 5.20 23.9807 21.7932 

6 (5 with ud = 0) 5.21 34.9314 31.8689 
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Figure 5.16: MPC prediction of the indoor air temperature for hp = 1day over 3 day 
of simulation. The poles of the PIP controller are at 0. The set-points rc = 21◦C and 
rh = 18◦C are marked with dash line. The air mass fow rate is set to ma = 13.41m3/s, 

which is 75% of the maximum fan speed. 
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Figure 5.17: MPC prediction of the indoor air temperature for hp = 1day over 3 day 
of simulation. The poles of the PIP controller are at 0. The set-points rc = 21◦C and 
rh = 18◦C are marked with dash line. The air mass fow rate is set to ma = 13.41m3/s, 

which is 75% of the maximum fan speed. 

In Figure 5.16, the damper is open most of the time between 0.4-0.6 day, allowing 

in the warmer air from the outside. This is desirable as later the temperature goes down 

to almost 10◦C and heating is required. Then, the damper is closed (apart from one 
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Figure 5.18: MPC prediction of the indoor air temperature for hp = 1day over 3 day 
of simulation. The poles of the PIP controller are at 0. The set-points rc = 21◦C and 
rh = 18◦C are marked with dash line. The air mass fow rate is set to ma = 13.41m3/s, 

which is 75% of the maximum fan speed. 
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Figure 5.19: MPC prediction of the indoor air temperature for hp = 1day over 3 day 
of simulation. The poles of the PIP controller are at 0. The set-points rc = 21◦C and 
rh = 18◦C are marked with dash line. The air mass fow rate is set to ma = 13.41m3/s, 

which is 75% of the maximum fan speed. 

sample where the indoor air temperature is around heating set-point), as the next peak 

around 1.5 day causes indoor air temperature rise over the cooling set-point, triggering 

cooling. In further part of the simulation the damper is closed as there is no beneft 

in introducing the fresh outside air. The minimum and maximum temperature values 
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Figure 5.20: MPC prediction of the indoor air temperature for hp = 1day over 3 day 
of simulation. The poles of the PIP controller are at 0.3. The set-points rc = 21◦C and 
rh = 16◦C are marked with dash line. The air mass fow rate is set to ma = 13.41m3/s, 

which is 75% of the maximum fan speed. 
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Figure 5.21: MPC prediction of the indoor air temperature for hp = 1day over 3 day 
of simulation. The poles of the PIP controller are at 0.3. The set-points rc = 21◦C and 
rh = 16◦C are marked with dash line. The air mass fow rate is set to ma = 13.41m3/s, 

which is 75% of the maximum fan speed. 

relating to natural day-night cycle are too distant (approx. 17◦C di�erence), therefore 

the indoor air temperature is driven out of the defned dead-band of 3◦C. Considering 

�T in Figure 5.17, where damper is kept closed, it can be noticed that the heating is 

introduced slightly earlier compared to Figure 5.16 around 0.75-0.8 day, increasing the 
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cost J by 0.9, which is 0.9%. Although this might look insignifcant, the small savings 

achieved by simply opening or closing the damper can accumulate over time, providing 

more compelling decrease in energy consumption of the temperature control system. 

The outdoor air temperature in Figure 5.18 varies signifcantly less compared to 

Figure 5.16 with amplitude of around 10◦C over the frst 2 days and rising up to around 

16◦C during the third day. Having internal heat gains q(t) = 0.26 at each time instance, 

it is noted that the indoor air temperature doesn’t drop below the heating set-point 

between 0-0.45 day (apart from one sample around 0.22) even though the outdoor air 

temperature is lower than the indoor and the dampers are open most of the time. The 

damper is set to open to pre-cool the space with the ambient air and then closed at peak 

times, around 0.5 and 2.5 day, when the Ta > Tr and mechanical cooling is required to 

satisfy the indoor climate requirements. This scenario allows for greater energy savings, 

yielding cost J and S�T lowered by over 20% compared to closed damper position 

simulation from Figure 5.19, where more cooling is required. Part of these savings could 

be achieved with control system utilising night purge and free cooling already o�ered by 

the industry. The issue with these solutions, however, is that they rely rather on current 

and past data and are used for cooling only. The risk of using the strategy o�ered by the 

industry is that sometimes unnecessary pre-cooling using outdoor air can occur. This 

happens typically in spring time when days are warm, but nights are still cold. As the 

controller is not aware of the potential future data, e.g. night temperature drop, pre-

cooling in these circumstances decreases the eÿciency of the system and adding costs 

of further heating in the night time. Employing the GA MPC allows to avoid undesired 

ventilation that would result in higher demand for cooling or heating, applying only the 

most recent control action based on the predicted data. 

The results presented in Figure 5.20 shows another outdoor air temperature scen-

ario and the model used for simulation includes internal heat gains q(t) = 0.26 at each 

time instance. To slow down the PIP controller and remove dead-beat behaviour, the 

poles are set to 0.3. The heating set-point has also been decreased by 2◦C to rh = 16◦C, 

extending dead-band to 5◦C. This change allows the simulated indoor air temperature 

to remain within the dead-band over larger number of time instances. As a consequence, 

the cost is only J = 34.93 when the damper is closed as in Figure 5.21. This cost can be 

further decreased by over 30% when GA MPC is used, achieving J = 23.98 with variable 

damper position for ventilation. As in this scenario the outdoor air temperature is not 

as favourable for night purge and free cooling, the GA MPC boosts the energy eÿciency 

of the control system leading to less energy spent on cooling. 

http:q(t)=0.26
http:around0.22
http:q(t)=0.26
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5.5.5 First principles recursive simulation with real data over 7 day 

The last set of simulations is intended to demonstrate GA MPC operation over a long 

period of time, 7 days, with real data outdoor air temperature data representing three 

seasons: spring/autumn, summer and winter. The data for simulation was chosen to 

illustrate essential tendencies of the season and estimate potential of the energy savings. 

Note that this is a 7 day snapshot representing 13 weeks long season, therefore the results 

are rather symbolic and the actual savings will depend on the weather conditions, which 

can vary signifcantly. While it would be ideal to perform the simulations with at least 2 

or 3 weeks length, a period of 7 days was chosen due to the time required for simulation. 

Simulations of the MPC operation over a period of 7 days have been performed 

to simulate the real operation of the MPC controller. The control actions taken are 

recalculated and proposed by the MPC algorithm at each time step as detailed in the 

fowchart diagram in Figure 5.4. The following settings are used: ts = 15min, control 

horizon is 1 day and hp = hc = 96 samples, wout = 0.25, population size 120, number of 

generations 50, elite size 10% of population size, crossover fraction 0.9 and 20% of the 

population is initialised with vectors ud(i) = 0 ∀ i = 1, ... hp. The results are presented 

in Figures 5.22, 5.24 and 5.26 with the respective closed damper position simulations 

in Figures 5.23, 5.25 and 5.26. At each time step the values of �T (i) are determined 

by the PIP controller with dead-beat setup and ud(i) values are determined by the GA. 

The control dead-band is defned by the heating and cooling set-points at rh = 17◦C 

and rc = 22◦C, respectively. The fan speed has been set manually to operate at 75% 

of the maximum capacity at all times. The other parameters were set as follows: air 

infltration nv = 0.25, heat gain q = 0.26 and poles at 0.3 for all simulations. The heat 

gain has been added to imitate the internal heat gains generated in the building as well 

as heat stored in the goods and furniture. 

The results in Figures 5.22-5.26 and Table 5.6 show that the MPC is capable of 

fnding a set of damper positions so that the overall heating and cooling running costs 

are minimised. 

The results shown in Figures 5.22 and 5.23 illustrate an indoor air temperature 

simulation under weather conditions that occurs in spring and autumn season. The 

outdoor air temperature in this scenario varies over day 2 and 3 with amplitude over 

20◦C and oscillates around the heating set-point for the next 3 days with amplitude 

around 12◦C. There is a lot of damper position chattering in Figure 5.22, but the energy 

savings achieved using GA MPC are negligible. This scenario represents less favourable 

situation with large changes between the minimum and maximum outdoor air temper-

atures causing the need for both heating and cooling and the outdoor air temperature 
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Figure 5.22: Spring scenario. MPC prediction of the indoor air temperature for 
hp = 1day over 7 day of simulation. The poles of the PIP controller are at 0.3. The 
set-points rc = 22◦C and rh = 17◦C are marked with dash line. The air mass fow rate 

is set to ma = 13.41m3/s, which is 75% of the maximum fan speed. 

Table 5.6: The performance measures for the GA MPC simulation for three scenarios 
representing spring/autumn, summer and winter outdoor temperature with identical 

setup. 

Simulation Figure J S�T 

Spring 5.22 348.6384 334.3259 

Spring (ud = 0) 5.23 349.965 335.7775 

Summer 5.24 388.0365 376.349 

Summer (ud = 0) 5.25 421.6933 407.1933 

Winter 5.26 1592.699 1555.5115 

Winter (ud = 0) 5.26 1592.699 1555.5115 

varying between the upper set-point and 10◦C, which forces the indoor air temperature 

to drop below the heating set-point. The energy consumption in this scenario is caused 

mainly by heating. Although the chosen spring/autumn scenario shows savings of less 

than 1%, it is possible to achieve higher amount of energy saved whenever the outdoor 

conditions permit as in Figure 5.20 for example. The spring and autumn seasons are 

most likely to allow for both heating and cooling of the indoor space using the outdoor 

air. 
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Figure 5.23: Spring scenario. MPC prediction of the indoor air temperature for 
hp = 1day over 7 day of simulation. The poles of the PIP controller are at 0.3. The 
set-points rc = 22◦C and rh = 17◦C are marked with dash line. The air mass fow rate 

is set to ma = 13.41m3/s, which is 75% of the maximum fan speed. 

Analysing summer scenario, the use of damper position control allowed to decrease 

the energy consumption by 8% for results presented in Figure 5.24 compared to Figure 

5.25. This season presents the largest opportunities for saving energy and minimising 

the cost of maintaining the indoor air temperature within the required limits. This is 

primarily accomplished through free cooling, relying on warm days and cooler nights, 

where the outdoor air temperature does not drop below 12-14◦C. 

The typical winter season in UK presents minimal chances for energy savings that 

come from damper position manipulation as the outdoor air temperature is low and does 

not allow for free heating. For this reason the damper positions selected by GA MPC 

for scenario in Figure 5.26 are closed, recirculating the warm indoor air. 

5.5.6 Discussion 

The results presented in Section 5.5 are prepared to represent the relationships and 

behaviours observed in a real system and in simulations presented in this thesis. While 

the data gathered allows to conclude that advanced control methods can increase the 

eÿciency of the indoor temperature control system, it is important to understand the 

correlations and dependencies between states and processes. Therefore, it is recognised 
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Figure 5.24: Summer scenario. MPC prediction of the indoor air temperature for 
hp = 1day over 7 day of simulation. The poles of the PIP controller are at 0.3. The 
set-points rc = 22◦C and rh = 17◦C are marked with dash line. The air mass fow rate 

is set to ma = 13.41m3/s, which is 75% of the maximum fan speed. 

that the issue of energy eÿcient indoor temperature control depends on the outdoor 

conditions, the dead-band and the indoor air temperature in the following manner: 

• Outdoor conditions The milder the outdoor conditions, the more potential for 

energy savings. If the outdoor conditions vary a lot, spikes can be observed or the 

di�erence between the maximum and minimum temperature throughout the day-

night cycle is more signifcant, less energy savings can be achieved. The outdoor 

conditions are a critical part contributing to the energy eÿciency of the system 

through damper position control using proposed MPC method. Unfavourable 

outdoor air temperature, solar irradiation or wind speed may reduce the energy 

savings to 0, forcing heating and cooling to be used for indoor climate control. 

Typical examples of such scenarios for UK climate are hot sunny days, warm 

summer nights, spring time with warm sunny days and cold nights and autumn-

winter season with the outdoor air temperature remaining below the heating set-

point. 

• Dead-band Increasing the upper limit, i.e. cooling set-point, and decreasing the 

lower limit, i.e. the heating set-point allows to maximise the space between the 

set-points. By doing so, it is possible to delay the moment of heating or cooling 
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Figure 5.25: Summer scenario. MPC prediction of the indoor air temperature for 
hp = 1day over 7 day of simulation. The poles of the PIP controller are at 0.3. The 
set-points rc = 22◦C and rh = 17◦C are marked with dash line. The air mass fow rate 

is set to ma = 13.41m3/s, which is 75% of the maximum fan speed. 

unit activation and reduce their use. Therefore, expanding the dead-band within 

safe limits increases the energy eÿciency of the HVAC system. 

• Indoor air temperature The heating and cooling are triggered by the indoor 

air temperature located outside of the dead-band. If the indoor air temperature 

remains between the upper and lower limits, no energy should be consumed on 

heating and cooling. While the indoor air temperature being within the dead-

band results in no need for heating and cooling, it is benefcial to look beyond 

this simple measure. The location of the indoor air temperature relative to the 

upper and lower limit matters and is used to improve the energy eÿciency of 

the HVAC system. The desired indoor air temperature location within the dead-

band is determined mainly by the current and future outdoor conditions. For 

example, if it is expected that it will be cold outside, the optimal current indoor 

temperature would be as close as possible to the upper limit, i.e. the furthest point 

within the dead-band from the heating set-point. This will result in prolonging 

the moment when the activation of the heating unit is required to meet the indoor 

air temperature requirement. On the contrary, if the outdoor air temperature 

oscillates within or around the dead-band, the indoor air temperature location 

within the dead-band is less important as the indoor conditions requirements will 
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Figure 5.26: Winter scenario. MPC prediction of the indoor air temperature for 
hp = 1day over 7 day of simulation. The poles of the PIP controller are at 0.3. The 
set-points rc = 22◦C and rh = 17◦C are marked with dash line. The air mass fow rate 

is set to ma = 13.41m3/s, which is 75% of the maximum fan speed. 

be met most of the time due to mild outdoor conditions, similar to the required 

indoor conditions. 

5.6 Conclusions 

In this chapter a novel approach to the HVAC energy consumption optimisation was 

proposed. The method relies on the predictions of the indoor conditions using the 

weather forecast and the PIP controller model used as a part of the MPC. The solver 

for the optimisation problem is GA, which fnds the optimal position of damper blades, 

therefore can beneft from the outdoor air heating or cooling capabilities, as weather 

permits. The results obtained show that while the GA MPC optimises the energy, it 

performs best when it is run at each time step rather than performing one simulation over 

prediction horizon and apply these actions over time. While the GA MPC relying only 

on the damper position manipulation is able achieve savings in the energy consumed by 

the HVAC system, an additional decrease of the energy consumption would be achieved 

when other methods would be implemented simultaneously. For example, adaptive set-

point technique can prolong the time of the indoor air temperature remaining within 
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the dead-band by temporary expanding or moving the dead-band in a safe, controlled 

manner. It also allows to pre-cool or pre-heat the space. 

The GA used as a solver for the energy optimisation problem is computationally 

intensive. This is not a problem for the large space building applications, where the 

sampling interval is much bigger than the computational time, however, could present 

challenges in smaller applications with more frequent sampling rate. The smaller ap-

plication would require separate tuning of the GA as the optimal prediction and control 

horizons and other GA-specifc parameters might vary from the studied large space 

building. A proposed method to alleviate the computational intensity is to set restric-

tions on how often the position of damper blades can change. This can be achieved 

through setting a condition that the damper blades must remain at least 2 (or other 

number) sampling intervals in selected position. Alternatively, the number of variables 

for optimisation can be reduced by fnding one position of damper blades per period of 

time. In this case the damper blades could move, for instance, only every 30min, which 

would reduce the number of variables by half if the sampling interval is 15min. 



Chapter 6 

Conclusions 

6.1 Conclusions 

Motivated by the economical and environmental aspects of the heating ventilation and 

air conditioning (HVAC) systems utilisation, this thesis proposed a novel approach to 

the indoor air temperature control with focus on the large open space buildings. These 

structures are characterised by slow dynamics and nonlinear behaviour associated with 

the building structure itself, thermal mass stored in storage units, goods and machinery, 

air stratifcation, internal heat gains generated by the sta� and operating machinery, 

additional heat gains and losses on every wall and roof from the solar irradiation and high 

speed winds and disturbance introduced by opening the large doors such as for HGVs 

when no vehicle is parked on the warehouse entry. Additional challenges are introduced 

by the HVAC system operation, where the control strategy together with the components 

within the Air Handling Unit (AHU) also demonstrate nonlinear characteristics. The 

solution in this thesis was designed to provide energy eÿcient operation of the HVAC 

system serving open space buildings such as the studied warehouse located in Midlands, 

UK, where the aforementioned challenges have been observed. This building represents 

typical HVAC setup for the large space buildings indoor air temperature control with 

heating and cooling capabilities. It has been achieved through development of the indoor 

air temperature model and the controller to ensure the indoor air requirements are 

satisfed. The existing methods have been used and combined together into a unique 

control approach for the indoor air temperature management. 

Refecting on the outcomes and progress achieved during the run of the project, 

some important fndings were observed during the model investigation leading to State-

dependent Parameter (SDP) structure. Additionally, preliminary tests of the proposed 

176 



Conclusions 177 

Genetic Algorithm Model Predictive Control (GA MPC) approach exposed valuable in-

sight into the potential savings and provided a basis for future research following the im-

proved energy eÿciency of the simulated HVAC system. While there could be done more 

in terms of model development to include more disturbances such as solar irradiation, 

wind speed and variable internal heat gain, the presented nonlinear model encourages 

future attempts and continuation of the indoor air temperature model improvement 

and expansion. The research aim was addressed by various studies and development 

activities along the objectives provided in Chapter 1 and provided valid contributions 

to the body knowledge. Although the preliminary results provided are satisfactory, the 

research constitutes future studies to direct further work starting with a thorough com-

parison of the GA MPC approach against other control methods, enhancement of the 

optimisation algorithm, model accuracy increase and evaluation of the proposed method 

on a real HVAC system, confrming the energy eÿciency potential and help to identify 

more areas in which the method could be improved. In light of that, the following sec-

tions summarise the research presented in this thesis and the last section identifes the 

scope of the future studies on this topic. 

6.1.1 Indoor air temperature modelling 

The indoor air temperature model detailed in Chapter 2 is developed from frst prin-

ciples and the energy balance. Modelling of this complex process requires a number of 

assumptions and simplifcations, leading to a lower order model. As a key component 

of a model-based approach, the model provides accuracy suitable for control and simu-

lation applications. The indoor air temperature control system by default represents a 

closed-loop system, where the indoor air is recirculated. This structure has a positive 

feedback loop as the indoor air is passed again into the indoor space. Estimation of the 

model parameters from data collected in this confguration is more challenging as the 

fraction of the system output is also an input. Using the outdoor air in place of the 

recirculation by setting the damper blades to open position removed the loop and the 

parameter estimation becomes straightforward. This method is widely used as a vent-

ilation technique to improve the air quality and energy eÿciency of the HVAC system. 

Consequently, the study performed on the system properties for the open and closed 

loop scenarios revealed a relationship between the model parameters and the position 

of damper blades. The State-dependent Parameter (SDP) approach has been proposed 

in Chapter 3 for its ability to accommodate the model to the changes in states, which 

are the control signals and variables representing the current settings and operation of 

the temperature control system. Using SDP model structure to capture the indoor air 

temperature process enabled to account for nonlinearity related to the damper position 
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within the model. It is worth noting that in the closed loop scenario the outdoor air 

temperature signal is a disturbance, whereas in the open loop scenario it becomes a 

controllable (to a degree) system input. While the value of the outdoor air temperature 

input to the model does not change, the model parameters are changed through the 

position of damper blades, adjusting the amount of the outdoor air introduced into the 

building. Moreover, it is possible to obtain the closed loop system model parameters 

from the open loop model if the position of damper blades is known and vice versa, 

which can be used to obtain the other set of parameters without additional parameter 

estimation. The SDP model also accounts for the air mass fow rate at which the supply 

air is distributed across the building, which typically varies throughout the day depend-

ing on the heating, cooling and ventilation needs and the implemented control strategy. 

The air mass fow rate from frst principles has an infuence on the model parameters, 

therefore contributes to the nonlinear dynamics of the system. 

In Chapter 3 the indoor air temperature model is reduced to frst order system 

model from frst principles’ second order system representation, which is able to repres-

ented the studied system with satisfying accuracy for control application. The former 

model having the supply air temperature and the outdoor air temperature as the inputs 

is also rearranged to achieve the state-dependent structure responding to the position of 

damper blades providing smooth online conversion between open and closed loop mod-

els. The derived SDP model has two inputs: the temperature change occurring in the 

AHU caused by heating or cooling and the outdoor air temperature. Only the frst input 

is directly and fully controllable, while the outdoor air temperature is provided and its 

infuence is partially controlled through the damper blades position. The results of the 

comparative study demonstrated improved accuracy of the SDP model, outperforming 

the linear model with constant parameters representing linearisation around the working 

point. The SDP model of the indoor air temperature is used to develop Non-minimal 

State Space (NMSS) model structure for the Proportional-Integral-Plus (PIP) controller 

introduced in Chapter 4 and as a part of the Model Predictive Control (MPC) strategy 

in Chapter 5 to optimise the HVAC system energy consumption. 

6.1.2 Control of the indoor air temperature 

Predictive control approach has been chosen as a method to improve the energy eÿciency 

of the HVAC system through the damper position control. The control strategy is 

extended by including future inputs and outputs into control algorithm supplementary 

to the past and present inputs and outputs. Switching the damper blades position 

to recirculate the indoor air or use the fresh air from the outside allows to minimise 

(or maximise) the outdoor air temperature impact on the indoor space as required, 
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infuencing the dynamics of the indoor thermal process. The optimal damper position 

is found using Genetic Algorithm (GA). The use of forecasting methods allows to react 

in advance to the upcoming events, providing an advantage over traditional approach 

considering only past and present signals. By doing so, it is possible to take preparatory 

actions and work toward more eÿcient energy consumption without compromising the 

indoor air conditions. The results obtained through simulation study using the Genetic 

Algorithm Model Predictive Control (GA MPC) demonstrate that the use of weather 

forecast contributes to improve energy eÿciency in the indoor air temperature control, 

o�ering around 8% of energy savings in summer and 1-3% percent in spring/autumn. 

6.2 Further work 

The project presented in this thesis has a potential for further research in both modelling 

and control approach aspects. While the list covers analysed topics, it is by no means 

extensive as the research is a continuous process. There is always a room for improvement 

within any research area, worth exploring to advance existing techniques and develop 

new solutions. The attempt to develop a reliable and more energy eÿcient control 

systems for the indoor air temperature control presented in this thesis is a response 

to the industry and economy needs. Further work and improvement of the proposed 

method can support the growing demand for acting upon environmental challenges and 

provide more energy and cost eÿcient solutions within the indoor climate control sector. 

The identifed directions for the improvements and investigations are: 

• Comprehensive comparative study evaluating proposed control strategies and 

selected solutions available on the market could be performed to understand en-

ergy and cost eÿciency aspects of each. The evaluation would include a variety 

of weather conditions scenarios, building models and the HVAC system setups, 

demonstrating the control strategy performance through the most representative 

experiments analysis. This study could also be extended by detailed model com-

parison evaluating di�erent model structures, e.g. bilinear, and frst and second 

system order models. Another avenue worth exploring would be a comparative 

study of MPC (combining SDP-PIP and GA) against other controllers. The pro-

posed controller types are a multivariable controller (with the damper position and 

heating/cooling as the two control inputs), PID or a linear PIP controller. 

• Model improvement The following elements could be included and utilised in 

the model: 
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– Inclusion of the disturbances in the model by considering the solar irradiation 

and the wind speed in the model could improve model accuracy signifcantly. 

This is especially true during sunny or windy days, where the outdoor air 

temperature readings collected by the sensor placed in a shaded, wind-free 

location are not representative enough to account for the occurring weather 

conditions. While weather conditions could be fetched from the external 

source and included in the model, additional improvement in real applications 

would come from installing a weather station local to the building to gather 

the most accurate data. In the same manner, including the thermal mass of 

the goods stored in the building, the changes in heat load generated by the 

machinery and people operating in the building and the heat losses related 

to the natural ventilation through the open doors and windows would also 

contribute to the model accuracy improvement. 

– Inclusion of the delays in the model could account for the fact that the 

dynamics of the indoor thermal process is slow, therefore the changes in the 

outdoor air do not happen immediately. 

– Inclusion of the AHU components sub-models could account more 

accurately for the heating, cooling and supply fan unit components and their 

nonlinear characteristics. While doing so is not crucial as the o�set term can 

be included in the model to account for it, separating them into separate 

submodels will increase the model fdelity as well as complexity. 

• Distributed modelling approach can be used to improve the model accuracy and 

provide deeper insight into the thermal process. This could be especially important 

for large open space buildings, where the air stratifcation is observed. This can be 

measured with use of several temperature sensors as the air temperature readings 

from the sensor located closer to the foor are typically lower than the readings 

from the sensor located closer to the ceiling or the roof. Understanding of the 

air temperature distribution from 3D model could expose design gaps and help 

developing more reliable and energy eÿcient control systems. 

• Adaptive model algorithm with ability to self-tune and correct the model para-

meters over time. This technique will fnd use when the initial model of the 

building is implemented based on the initial assumptions. The data collected by 

the controller can then be used to adjust the model parameters, converging to-

ward more accurate results, improving control and energy eÿciency of the HVAC 

system. Further, the same method can be continuously or periodically used to 

account for the seasonal changes in the outdoor conditions that a�ect the system 

di�erently. 
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• Weather forecasting algorithm could be developed to serve in two ways. First, 

the weather forecast data could be fetched from external source and adapted to 

represent more accurately the weather conditions expected in the particular loc-

ation of the building, in which the indoor air temperature is controlled. In the 

same manner as the adaptive model algorithm, this technique would improve over 

time the model predicting the outdoor conditions, learning from the data collec-

ted by the controller. Second, the weather forecasting algorithm would predict 

the weather conditions based on the past data, without relying on the external 

weather forecast. 

• Genetic Algorithm tuning performed in a more comprehensive manner would 

allow to ensure the optimal setup of the GA is used as a part of the GA MPC 

strategy for the indoor air temperature control. It is proposed to investigate the 

following parameters: the prediction and control horizons, the number of genera-

tions, the population size, the elite size, the initial population members defnition 

and, if possible, improve crossover and mutation functions. Note that di�erent 

weather conditions and indoor temperature requirements might require di�erent 

setup, therefore careful parameter selection should be supported by various ex-

periments on diverse scenarios. Additional considerations would account for the 

computational power and capabilities of the actual controller and the required 

response time, which can be a limitation in the real applications. 

• Another optimisation methods would be worth considering to ensure that the 

utilised optimisation algorithm is the most eÿcient in terms of time, cost, results 

and integration with the the MPC and the overall control system. Ideally, the op-

timisation algorithm should be able to solve integer problems with constraints on 

input and output and choose control action values from a set. Currently Artifcial 

Intelligence is widely explored in various applications, but it can be computation-

ally intensive. 

• PIP control law could be improved by designing the controller through pole 

placement. This approach requires knowledge of the system dynamics and the 

indoor air temperature requirements. The poles can be chosen by the designer 

to optimise the energy consumption while complying with the indoor conditions 

specifcation. 

• SDP-PIP controllability and stability were not given much attention in this 

thesis, therefore it is suggested to investigate SDP-PIP controller in respect of these 

issues. This is motivated by using the same model for simulation and control. It 

is suggested that the SDP-PIP is frst applied to the ideal model and confrm the 

expect controllability and stability and this will support testing the robustness 
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of the approach. SDP-PIP controllability and stability should be tested in both 

SDP-PIP alone presented in Chapter 4 and as a part of MPC in Chapter 5. 

• Implementation of the control approach to the real system is a natural 

progression in a system development process. It is proposed to perform the tests 

in stages at various levels of integration with the real system. This would include 

reviewing the control strategy and the model after each phase through validation 

and verifcation. As a result, the fnal solution should be reliable indoor air tem-

perature control system that satisfes the design requirements in an energy eÿcient 

manner. 
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