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This publication presents a tool that can be trained with motion capture 
data and then used to generate new dance movement sequences. This tool 
combines two different components: a deep learning model based on a 
recurrent adversarial autoencoder architecture, and a sequence blending 
mechanism that is inspired by granular and concatenative sound synthesis 
techniques. The publication contextualizes this tool with respect to other 
artificial intelligence inspired approaches in dance. Subsequently, the imple-
mentation of the tool is detailed and results from its usage are presented. 
These results are discussed in terms of their artistic potential. Finally, the 
publication provides a brief outlook into possible future research directions.
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1. Introduction

Research from the field of artificial intelligence (AI) has a long history of provid-
ing inspiration and informing novel techniques for creative practitioners, in 
particular those who work with algorithmic and generative methods. Recent 
progress in machine learning has led to a surge of interest in data-driven 
approaches. Compared to the more established rule-based methods that 
have so far formed the foundations of algorithmic and generative art, data-
driven approaches offer different challenges with respect to their adoption by 
artists. Some of these challenges are related to issues of originality, idiosyncrasy, 
and mastery. The issue of originality arises from the fact that many machine 
learning systems excel at imitating the data on which they have been trained. 
Accordingly, the capability of such systems to create novel and original output 
is limited. The issue of idiosyncrasy is caused by the large amount of data that 
is typically required to train deep learning models from scratch. This require-
ments forces artists to resort to the use of standardized datasets rather than 
their own personal and unique material. The issue of mastery has to do with the 
specialized expertise that is required to make informed decisions when modify-
ing existing machine learning models or designing new ones. As a result, many 
artists are tempted into using off-the-shelf models as black box mechanisms.

The publication tries to address some of these issues by presenting a hybrid 
tool. This tool combines a machine learning model with a rule-based algorithm 
for the purpose of generating new dance movement sequences from previously 
recorded motion capture data. This combination offers a balance between 
exploiting the impressive imitation capabilities of state of the art deep learning 
models and the creative development of and experimentation with rule-based 
algorithms.

The publication starts with an overview of AI-inspired approaches in dance. 
This overview is divided into two sections, one focusing on artistic motivations 
and the other on technical principles. It then describes in some detail the tool’s 
implementation. After that, preliminary results are presented that have been 
obtained through the author’s own experimentation with the tool. These results 
are then discussed in terms of their artistic potential. Finally, the publication 
concludes with an outlook into possible future research directions.
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2. Artistic Background

While artistic applications of machine learning for the purpose of creating 
imagery and music have garnered much public visibility, the field of dance has 
an enthusiastic community of its own that experiments with creative uses of 
machine learning.

The Open Ended Group (OEG) has played a pioneering role at the intersection of 
AI and dance. In 2001, OEG collaborated with choreographer Merce Cunning-
ham on the development of an AI that could record and analyze Cunningham’s 
hand movements for the purpose of controlling live visuals (OEG 2001). In a 
subsequent collaboration between OEG and choreographer Wayne McGregor, 
the Choreographic Language Agent was created. This software operates as 
partially autonomous sketchbook that translates phrase-based instructions 
into abstract geometric animations which can be interpreted by dancers through 
body movements (Church et al. 2012). In 2016, OEG and Wayne McGregor 
collaborated again on the development of Becoming, an AI-controlled abstract 
and fully autonomous dancer that was displayed during dance rehearsals (Leach 
and Delahunta 2017).

Many topics that motivate artistic interest at the intersection of AI and dance 
are already present in these pioneering examples. These motivations can be 
roughly grouped into four categories: gain novel insights into dance, enable 
intuitive forms of interactions, create artificial dancers, and enhance a chore-
ographer’s own creativity.

The tool that is presented in this publication is meant to be used in co-creative 
scenarios. For this reason, the topic of creativity enhancement is addressed in 
a bit more detail than the other topics.

2.1. Insights into Embodied Creativity

Marc Downie, one of the two members of OEG, proposes in his PhD thesis that 
metaphors taken from biology and AI can serve as foundations for developing 
a ‘theoretical, technical, and aesthetic framework for the innovative art form of 
digitally augmented human movement’ (Downie 2005). The multi-year inter-
disciplinary research project Entity was initiated in 2000 by Wayne McGergor 
and dance scholar Scott deLahunta with the purpose of studying the potential 
of AI to ‘broaden understanding of the unique blend of physical and mental 
processes that constitute dance and dance making’ (deLahunta 2009). Mariel 
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Pettee and colleagues argue that machine learning can be used as tool to ‘spark 
introspection and exploration of our embodied knowledge‘. They suggest that 
machine learning can shift our description of movement away from culturally 
centred opinions and encourage ‘normative discussion about what it means to 
choreograph’ (Pettee et al. 2019).

2.2. Intuitive and Embodied Interfaces

A popular use of machine learning in the context of interactive media perfor-
mance is to design interactivity through demonstration rather than by specifying 
rules and algorithms (Gillies et al. 2016). The authors argue that this approach is 
particularly suitable for creative practices in that it emphasizes the exploratory, 
playful, embodied, and expressive aspects of the design process (Fiebrink and 
Caramiaux 2016). One example is a two user training scenario for an interactive 
artificial dancer in which one user plays the role of the human dancer and the 
other user performs the artificial dancer’s intended responses (Gillies, Brenton, 
and Kleinsmith 2015).

2.3. Artificial Dancers

AI-inspired methods have also been used for the creation of systems that 
can be used as autonomous artificial dancers. These methods aim to endow 
the system with the capability of making creative movement decisions on its 
own. One example project places an artificial dancer at the center of its artistic 
concept by exposing the system’s learning during the performance to the audi-
ence (Berman and James 2018).

2.4. Creativity Enhancement

The integration of AI-inspired methods into software tools has been explored 
with the purpose of supporting the creative workflow of choreographers and 
dancers. Here, the biggest potential lies in the development of co-creative 
systems whose functionality is between that of a creativity support tool and a 
fully autonomous creative system (Carlson et al. 2016). Many software tools 
for enhancing a choreographer’s creativity have been proposed, a small selec-
tion of which is presented here. Kristin Carlson and colleges have developed 
several tools such as Scuddle (Carlson, Schiphorst, and Pasquier 2011) and 
Cochoreo (Carlson et al. 2016). These tools combine genetic algorithms with a 
fitness function that quantifies movement based on Laban effort qualities and 
Bartenieff movement patterns. The output of these tools is meant to foster the 
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exploratory creativity of choreographers. Other researchers have presented 
deep-learning based software tools that can be trained on a choreographer’s 
own pose or movement material. These tools can generate output that is stylis-
tically similar to the movement material that they have been trained with. For 
their system Chor-rnn, the authors suggest a form of creativity facilitation that 
involves the system and the choreographer taking turns in creating movement 
material (Crnkovic-Friis and Crnkovic-Friis 2016). Similarly, Pettee et al. (2019) 
present a suite of deep-learning based tools whose output is meant to be more 
or less directly used for creating a new choreography.

3. Technical Background

The tool presented in this publication is trained to generate short move-
ment sequences for a single dancer which can then be combined into longer 
sequences. There exists a large diversity of technical approaches for generating 
synthetic dance movements. Some of these approaches are based on machine 
learning, others use more conventional statistical approaches, and still others 
resort to entirely different techniques.

The following section provides a brief overview over some of these techniques. 
For a much more exhaustive review of machine learning techniques for synthe-
sizing body movements, the reader is referred to Alemi and Pasquier (2019).

3.1. Concatenation and Interpolation

Conventionally, in computer animation and game design, character movements 
are created either by interpolating between poses that serve as key-frames or 
by concatenating shorter movement sequences into longer ones. One exam-
ple of combining these operations with machine-learning is through the use 
of autoencoders. An autoencoder is an architecture that operates as informa-
tion bottleneck by encoding and mapping high-dimensional information into a 
low-dimensional latent-space. To make this compression as lossless as possi-
ble, the autoencoder learns to extract the statistically most significant features 
of the original information. When using an autoencoder, mathematical oper-
ations can be conducted in latent-space and the result then converted back 
through decoding into poses and movement sequences. Some examples of this 
approach include (Augello et al. 2017; Berman and James 2018). The benefits 
of this approach over more conventional methods is that a latent space not only 
reduces the amount of data the computer has to deal with but also captures in 
its spatial organization some of the fundamental principles of a human body’s 
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morphology and movement capabilities. This can be exploited for a variety of 
purposes such as: correcting corrupted poses/movements, avoiding movement 
blending artefacts, and employing euclidean distances as movement similarity 
measures (Holden et al. 2015).

3.2. Direct Sequence Generation

Alternatively or in combination with the previous approach, machine learn-
ing can also be used to directly create movement sequences. Since a move-
ment sequence can be represented as time series, any model that is able to be 
trained on and predict time series could in principle be used for this purpose. 
Auto-regressive systems are able to learn sequential relationships in train-
ing data which enables them to predict the continuation of sequences. In the 
context of deep learning, the most frequently used auto-regressive systems are 
Recurrent Neural Networks, in particular those that maintain and transmit an 
internal memory state alongside the neurons’ regular output such as Long Short-
Term Memory (LSTM) Networks (Hochreiter and Schmidhuber 1997) or Gated 
Recurrent Units (GRU) (Cho et al. 2014). Some example applications of recur-
rent neural networks for human motion synthesis include (Crnkovic-Friis and 
Crnkovic-Friis 2016; Li et al. 2017). More recently, recurrent neural networks 
are facing competition from Temporal Convolutional Networks (Lea et al. 2016) 
since the latter can handle very long time sequences and be trained in paral-
lel. A comparison between the two approaches for the purpose for movement 
generation can be found in Pavllo et al. (2019).

3.3. Combined Approaches

Each of the two previously mentioned approaches offers its own benefits and 
drawbacks. The creation of movement sequences by navigating latent space 
provides ample possibilities for manual control but makes it difficult to obtain 
aesthetically convincing movements. Auto-regressive systems excel at creating 
aesthetically interesting movements but they offer limited means for manual 
intervention and control.

In two publications, autoencoders and auto-regressive systems are compared 
from a choreographic point of view. Based on a subjective evaluation of Mixed 
Density Networks, autoencoders, and LSTMs that have trained on poses and 
pose sequences, respectively, the authors conclude that only LSTMs perform 
well on criteria such as posture prediction, temporal coherence, motion consis-
tency, and aesthetics (Kaspersen et al. 2020). Another comparison between 
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autoencoders and LSTMs places a stronger focus on the creation of movement 
variations (Pettee et al. 2019). This comparison ends up given more attention 
to autoencoders than LSTMs.

Accordingly, it seems reasonable to combine auto-regressive systems and auto-
encoders. Such a combination has been undertaken by several researchers such 
as Holden et al. (2015), Fragkiadaki et al. (2015), Habibie et al. (2017), Holden, 
Saito, and Komura (2016).

3.4. Alternative Approaches

It is worthwhile to mention some entirely different approaches to generate 
movement sequences. Many of these alternative approaches focus on the 
agency exhibited by an artificial character and how movement emerges from 
the interplay between character and environment. 

Reinforcement Learning is an approach to machine learning that allows an agent 
to learn through trial and error from rewards or punishments it receives when 
interacting with its environment. This approach has for example been used to 
create locomotion animations across varied and difficult terrain (Peng, Berseth, 
and Van de Panne 2016).

Other approaches focus on the cognitive plausibility of their models rather than 
their performance. One example is the work by Infantino et al. (2016) which 
employs a sophisticated cognitive architecture for the purpose of controlling 
the movement of a humanoid robot in response to music.

Finally, some researchers follow an Artificial Life approach by implementing 
a computational ecosystem within which agents struggle for resources. Here, 
body movements result from behaviors that are selected by agents to increase 
their chances of survival. An example of this approach is Antunes and Leyma-
rie (2012).

4. Implementation

The system presented in this publication combines a deep-learning model for 
pose sequence generation with a sequence blending mechanism. The model 
and the blending mechanism are implemented in Python and make use of the 
Tensorflow machine learning platform (Abadi et al. 2015). 
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4.1.Machine-Learning Model

The architecture of the machine-learning model is depicted in Fig. 1. The 
model consists of an encoder, decoder, and discriminator and follows one 
of the designs proposed by Wang et al. (2020). The encoder takes as input a 
sequence of poses in which each pose is represented by joint orientations in 
the form of unit quaternions. This input is passed through a two layer LSTM 
network followed by a two layer Dense network before being output as latent 
vector. The decoder operates in reverse. It takes as input a latent vector which 
is passed through a two layer Dense network followed by a two layer LSTM 
network before being output as a sequence of poses. The discriminator takes 
as input a latent vector which passes through a three layer Dense network 
before being output as scalar value. The purpose of the discriminator is to force 
the latent vectors to follow a specific prior distribution, which in this case is a 
Gaussian distribution. It does so by entering into an adversarial game with the 
encoder in which the discriminator is rewarded for successfully distinguishing 
between vectors coming from a true Gaussian distribution and latent vectors 
output from the encoder, whereas the encoder is rewarded for fooling the 
discriminator. Controlling the prior distribution ensures that the latent space is 
free of gaps and that distances within it represent a measure of similarity. This 
ensures that arbitrarily chosen latent vectors can be converted by the decoder 
into meaningful pose sequences.

Fig. 1. Architecture of a 
Recurrent Adversarial 
Autoencoder. The inputs and 
outputs of the autoencoder 
are pose sequences. The 
trapezoid shapes with which 
the LSTM and Dense networks 
are depicted indicate the 
dimension reduction and 
expansion that is performed 
by the encoder and decoder, 
respectively.



184

During training, the loss function used for the discriminator is based on the 
cross entropy between the discriminator’s output and a vector of zeros for the 
encoder’s output and a vector of ones for samples taken from a true Gaussian 
distribution. The autoencoder is trained on four different loss functions that 
quantify its error in reconstructing a pose sequence and its capability to fool the 
discriminator. The loss functions associated with the reconstruction error are 
based on the deviation of quaternions from unit length, the difference in joint 
orientations between input and output, and the difference between joint posi-
tions between input and output. Joint positions are derived from joint orienta-
tions through forward kinematics. This combination of quaternion-based joint 
orientations with a loss function operating on joint positions has been suggested 
by Pavllo et al. (2019). In contrast to Pavllo et al. (2019) it was found that using 
both orientation difference and position difference as loss criteria improved the 
quality of the output.

4.2. Sequence Blending Mechanism

The sequence blending mechanism is inspired by two methods from computer 
music that combine short sound fragments to generate longer sounds: Gran-
ular Synthesis and Concatenative Synthesis. In a nutshell, Granular Synthesis 
employs very short (microseconds to milliseconds) sound fragments, whose 
amplitude fades in and out by means of a windowing function. By combining 
a large number of grains, new sounds can be generated that, depending on 
the length of the grains, are acoustically more or less similar to the sounds 
contained within the grains. This approach has been popularized among others 
by composer Curtis Road (Roads 2004). Concatenative Synthesis is a more 
recent method. Contrary to the former method, the sound fragments are typi-
cally longer (milliseconds to seconds) and their combination is based on finding 
best matches (Schwarz et al. 2004; Zils and Pachet 2001).

Fig. 2. Pose Sequence 
Blending. This figure 
schematically depicts 
the operation of the pose 
sequence blending mechanism. 
Prior to blending, the result 
pose sequence is populated 
with a base pose (bottom). 
Short pose sequences are 
blended one after the other 
with the result pose sequence 
(top) using quaternion SLERP. 
The bell shaped curves 
represent Hanning windows 
which control the amount of  
SLERP.
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For this project, the sequence blending mechanism is used to combine short 
pose sequences generated by the decoder into longer pose sequences. To 
obtain smooth transitions between successive pose sequences, two approaches 
are employed. Similar to Granular Synthesis, a window function (Hanning in this 
case) is superimposed on the pose sequence. But rather than controlling an 
amplitude, this function blends the joint orientations of the overlapping pose 
sequences by spherical linear interpolation (SLERP) (Shoemake 1985). This 
method is depicted in Fig. 2. Similar to Concatenative Synthesis, sequences 
are selected for blending based on similarity criteria. Since the latent encod-
ings follow a Gaussian distribution, the euclidean distances between them can 
be used as measure of similarity between pose sequences. Fig. 4 shows two 
example distributions of sequence encodings in latent space.

5. Data Acquisition

Training data for machine learning was acquired using a markerless motion 
capture system (The Captury). The recording was conducted at MotionBank, 
University for Applied Research Mainz. The recorded subjects were professional 
dancers specialized in contemporary dance. The recording used for training was 
taken from a single male dancer who was freely improvising to excerpts of music 
including experimental electronic music, free jazz, and contemporary classic. 
This recording is about 9.5 minutes in length which corresponds to a sequence 
of 28600 poses consisting of 29 joints each and taken at 50 frames per second. 
This data was cleaned using the software MotionBuilder.

6. Results

The results presented here stem from experiments with two versions of the 
machine-learning model. These versions differ with respect to the length of pose 
sequences they operate on and the encoding dimension. One model works with 
sequences of 128 poses and an encoding dimension of 64. The other model 
works with sequences of 8 poses and an encoding dimension of 16. From now 
on, these models are referred to as model128 and model8. The models have 
been chosen with two application scenarios in mind. Using sequence blending 
on the output of mode128 largely preserves the recognizability of the individ-
ual sequences with blending having little influence on this. With model8, the 
recognizability of the individual sequences is mostly lost but blending provides 
more control on the dynamics of the resulting sequence. 
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The publication documents results obtained with both models when conduct-
ing the following types of experiments: movement reconstruction, latent space 
organisation, latent space navigation.

6.1. Movement Reconstruction

An obvious thing to do when analyzing a trained machine learning model is to 
evaluate its performance on data that it has not been trained with. This evalu-
ation provides some insights into the kinds of materials the model works best 
width and the types of artifacts it introduces. For this analysis, the data has been 
split into an 80% training set and a 20% validation set. The movement recon-
structions tests where conducted on the validation set and involved a subjec-
tive comparison between the original and reconstructed pose sequences. An 
example of a reconstruction test is shown in Fig. 3. Additional reconstruction 
examples are provided online as videos.1 2 3 4

 
 
 
6.2. Latent Space Organization

Gaining an understanding for the organization of latent space forms an important 
prerequisite for creative experimentation with autoencoders. One approach is 
to visualize the distribution of the training data within latent space. Such a visu-
alization conveys information about which regions in latent space are densely 
populated and this in turn points to locations from which familiar or unfamiliar 
pose sequences can be decoded. Latent space visualizations for model128 and 
model8 are depicted in Fig. 4.

In latent spaces that follow a Gaussian distribution, the euclidean distance 
between latent vectors represents a measure of similarity between their 
decoded outputs. This can be exploited to identify similar pose sequences 
that smoothly transition when concatenated by sequence blending. Several 
similarity tests have been conducted based on a pairwise comparison of pose 

1. https://player.vimeo.com/
video/507600887
2. https://player.vimeo.com/
video/507600952
3. https://player.vimeo.com/
video/507595938
4. https://player.vimeo.com/
video/507595896

Fig. 3. Pose Sequence 
Reconstruction Test. The 
figure depicts the first 30 
seconds of an original (top) and 
reconstructed (bottom) pose 
sequence with individual poses 
drawn at ten frames intervals. 
The deviation between the two 
sequences at their beginning 
is due to the SLERP algorithm 
gradually fading in a pose 
sequence on top of a base pose 
with which the result pose 
sequence has initially been 
populated with.

https://player.vimeo.com/video/507600887
https://player.vimeo.com/video/507600887
https://player.vimeo.com/video/507600952
https://player.vimeo.com/video/507600952
https://player.vimeo.com/video/507600952
https://player.vimeo.com/video/507600952
https://player.vimeo.com/video/507600952
https://player.vimeo.com/video/507600952
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sequences that follow each other in the original motion capture recording. The 
results of these tests are available as online videos. Three videos display those 
paired sequences with smallest euclidean distances between their encod-
ings by model1285 6 7 and model8.8 9 10 Another three videos display those 
paired sequences with largest euclidean distances between their encodings 
by model12811 12 13, and model8. 14 15 16

One of the biggest challenges in working with latent space concerns the typi-
cally inapprehensible relationship between latent vectors and their decodings. 
Usually, there exists no direct correspondence between dimensions of latent 
space and perceptual aspects of the decoded output. Nevertheless, it is possible 
to examine this relationship by systematically varying the values of each latent 
vector dimension, one at a time. Fig. 5 shows such a variation for the first four 
dimensions for model128. Online videos of variations for the first eight dimen-
sions are available for model12817 18  and model8.19 20

 
6.3. Latent Space Navigation

A popular approach of using autoencoders for the purpose of movement gener-
ation is to navigate through latent space and collect latent vectors along the 
way which are then decoded and concatenated into a sequence. This approach 
has been chosen both by researchers working with encodings of poses e.g. 
Berman and James (2018); Kaspersen et al. (2020); Pettee et al. (2019) and 
researchers working with encodings of pose sequences e.g. Holden et al. (2015); 
Holden, Saito, and Komura (2016); Habibie et al. (2017). Using model128 
and model8, the following latent space navigation experiments have been 
conducted: random walk, trajectory offset following, trajectory interpolation.

5. https://player.vimeo.com/
video/507947066
6. https://player.vimeo.com/
video/507946028
7. https://player.vimeo.com/
video/507945397
8. https://player.vimeo.com/
video/507962838
9. https://player.vimeo.com/
video/507962433
10. https://player.vimeo.com/
video/507962060
11. https://player.vimeo.com/
video/507947528
12. https://player.vimeo.com/
video/507948141
13. https://player.vimeo.com/
video/507948603
14. https://player.vimeo.com/
video/507960527
15. https://player.vimeo.com/
video/507961391
16. https://player.vimeo.com/
video/507961782
17. https://player.vimeo.com/
video/507668465
18. https://player.vimeo.com/
video/507682338
19. https://player.vimeo.com/
video/507682930
20. https://player.vimeo.com/
video/507683557

Fig. 4. Pose Sequence 
Encodings in Latent 
Space. The two figures 
show two-dimensional 
representations of the 
distribution of all encoded 
pose sequences that have 
been used for training model8 
(left) and model128 (right). 
For dimension reduction, 
the t-Distributed Stochastic 
Neighbouring algorithm has 
been used. In these figures, 
individual pose sequences are 
represented as dots. » 

https://player.vimeo.com/video/507947066
https://player.vimeo.com/video/507947066
https://player.vimeo.com/video/507946028
https://player.vimeo.com/video/507946028
https://player.vimeo.com/video/507945397
https://player.vimeo.com/video/507945397
https://player.vimeo.com/video/507962838
https://player.vimeo.com/video/507962838
https://player.vimeo.com/video/507962433
https://player.vimeo.com/video/507962433
https://player.vimeo.com/video/507962060
https://player.vimeo.com/video/507962060
https://player.vimeo.com/video/507947528
https://player.vimeo.com/video/507947528
https://player.vimeo.com/video/507948141
https://player.vimeo.com/video/507948141
https://player.vimeo.com/video/507948603
https://player.vimeo.com/video/507948603
https://player.vimeo.com/video/507960527
https://player.vimeo.com/video/507960527
https://player.vimeo.com/video/507961391
https://player.vimeo.com/video/507961391
https://player.vimeo.com/video/507961782
https://player.vimeo.com/video/507961782
https://player.vimeo.com/video/507668465
https://player.vimeo.com/video/507668465
https://player.vimeo.com/video/507682338
https://player.vimeo.com/video/507682338
https://player.vimeo.com/video/507682930
https://player.vimeo.com/video/507682930
https://player.vimeo.com/video/507683557
https://player.vimeo.com/video/507683557
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Random Walk

In this experiment, the encoding of a pose sequence is chosen as starting point 
for a random walk within the neighboring latent space. During the random walk, 
a random offset is repeatedly added to the latent vector. If the latent vector 
exceeds a user specified distance limit from the starting position, the offset 
reflects the vector back towards the starting position. The latent vectors that 
have been obtained from the random walk are decoded and the resulting pose 
sequences are concatenated. An example of this approach is shown in Fig. 6. 
An online video is available for model12821 and model8.22

Trajectory Offset Following

A consecutive set of pose sequences is encoded into a series of latent vectors 
that describe a trajectory through latent space. Then a user specified fixed offset 
is added to these latent vectors. This creates a second trajectory that runs at 
a distance in parallel to the original trajectory. Latent vectors from this second 
trajectory are then decoded and the resulting pose sequences are concatenated. 
An example of this approach is shown in Fig. 6. An online video is available for 
model12823 and model8.24

» Thin lines connecting 
these dots represent pose 
sequences that follow each 
other in the original mocap 
recording. Colored dots 
and lines highlight those 
pose sequences which have 
been used for sequence 
reconstruction and latent 
space navigation experiments. 
All other pose sequences are 
shown as grey dots and lines.

21. https://player.vimeo.com/
video/508401476
22. https://player.vimeo.com/
video/508445339

Fig. 5. Value Variations Along 
Latent Vector Dimensions. The 
figure shows a single pose from 
a pose sequence that has been 
encoded by model128. The 
latent vector representation 
of this pose sequence is 
varied by changing its value 
for each dimension in turn. 
In the figure, value changes 
run along the horizontal axis 
with no change in the center 
(red poses), and increasingly 
negative and positive changes 
(blue poses) to the left and 
right, respectively. The 
dimension increases from top 
to bottom. For space reasons, 
only changes for the first four 
dimensions are shown.

23. https://player.vimeo.com/
video/508402996
24. https://player.vimeo.com/
video/508446279

https://player.vimeo.com/video/508401476
https://player.vimeo.com/video/508401476
https://player.vimeo.com/video/508445339
https://player.vimeo.com/video/508445339
https://player.vimeo.com/video/508402996
https://player.vimeo.com/video/508402996
https://player.vimeo.com/video/508446279
https://player.vimeo.com/video/508446279
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Trajectory Interpolation

An intuitive approach that provides fairly predictable results is to interpolate 
between two (or more) trajectories through latent space. These trajectories can 
be obtained for instance by encoding different consecutive pose sequences. A 
new trajectory can then be created by following the given trajectories while 
gradually approaching one trajectory and withdrawing from the other. The latent 
vectors from this new trajectory are then decoded and concatenated. A simi-
lar but less predictable approach can be chosen to obtain more original pose 
sequences. In this case, a new trajectory is created by extrapolating between 
the given trajectories, i.e. moving away from one trajectory in the opposite direc-
tion of the other trajectory. The decoded latent vectors can then be concate-
nated into a new pose sequence that increasingly exaggerates the differences 
between the two given pose sequences. Two examples of this approach, one 
for interpolation and one for extrapolation, are shown in Fig. 6. Online videos of 
each approach are available for model12825 26 and model8.27 28

25. https://player.vimeo.com/
video/508403507
26. https://player.vimeo.com/
video/508404186
27. https://player.vimeo.com/
video/508449003
28. https://player.vimeo.com/
video/508450467

Fig. 6. Latent Space Navigation. 
The figure depicts several 
approaches of navigating 
latent space in combination 
with sequence blending. The 
latent space used in this 
example corresponds to 
model128. The sequences 
are depicted as poses taken at 
intervals of 20 frames. From 
top to bottom, the sequences 
represent: an original 
sequence, a sequence created 
from a random walk starting at 
the encoded beginning of the 
original sequence, a sequence 
created by adding an offset 
of 2.0 in all dimensions to 
all encodings of the original 
sequence, a sequence 
obtained by interpolating 
between the encodings of two 
original sequences, a sequence 
obtained by extrapolating 
between the encodings of the 
same two original sequences.

https://player.vimeo.com/video/508403507
https://player.vimeo.com/video/508403507
https://player.vimeo.com/video/508404186
https://player.vimeo.com/video/508404186
https://player.vimeo.com/video/508449003
https://player.vimeo.com/video/508449003
https://player.vimeo.com/video/508450467
https://player.vimeo.com/video/508450467
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7. Discussion

The experiments conducted so far highlight some of the benefits of combining a 
machine learning system with a sequence blending mechanism for the purpose 
of creating new pose sequences. The latent space of sequence representations 
that autoencoders establish offers an interesting environment for exploration 
and discovery. Since the principle of navigation is easy to understand, users with 
very different levels of technical expertise can devise their own methods for 
navigation. The chosen autoencoder only operates on sequences containing a 
fixed number of poses. The use of sequence blending overcomes this limitation. 
This blending mechanism is also easy to understand and use. But in addition, it 
provides the opportunity for creative experiments that draw inspiration from 
musical approaches of working with Granular and Concatenative Synthesis. 

In the following, the results from the previous section are discussed with respect 
to their artistic potential.

7.1. Latent Space Organization

Visualizations of latent space can grant new insights into movement material 
that choreographers or dancers are working with. These visualizations can for 
instance be interpreted in terms of the diversity of material that is available, 
the duration of movement phrases, the number of phrases in a sequence, or 
the difference that consecutive phrases exhibit with respect to each other. 
This information might be helpful to find aligned and contrasting movement 
phrases that can then be used either sequentially in time or simultaneously 
for different dancers. 

Comparing the similarity of encodings of pose sequences with one’s own 
perception of these sequences raises interesting questions concerning the 
universality and characteristics of salient movement features. For practical 
applications, the similarity of encodings can be used as measure of originality 
of movement material. If movement material ends up in a location within latent 
space that is sparsely populated, then this movement is under-represented in 
the material that has been used for training. An alternative and stronger indi-
cation of originality is a failure of the autencoder to reproduce the movement. 
Errors in reproduction are exploited for detecting anomalies, an application of 
which is the forecasting and prevention of catastrophes such as earthquakes. 
In dance, an anomaly would be a strong indicator of a very original movement.
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The systematic variation of values in a latent vector is a tedious method for 
creating new movement material. Nevertheless, this approach might be useful 
for introducing very nuanced deviations in a pose sequence, for instance for the 
purpose of creating movements for a group of virtual characters in which each 
character should exhibit some degree of individuality. 

7.2. Latent Space Navigation

Navigating a latent space of encodings is a popular method for creating new 
movement material. This method is useful for a variety of purposes, including 
data cleaning, the design of behaviors for artificial characters, and choreo-
graphic ideation.

The mundane task of data cleaning benefits from the fact that autoencoders 
discard features that appear seldomly. Therefore, autoencoders can eliminate 
non systematic artifacts in a mocap recording (Holden et al. 2015). From an 
aesthetic point of view, this effect might be useful to smooth out small vari-
ations or rare extremes in a pose sequence. To achieve either of these goals, 
latent space navigation would exactly follow the trajectory of encodings from 
a movement sequence and then reconstruct this movement through decoding 
and sequence blending (see 6.1 Movement Reconstruction) 

Similar random walks in latent space as described in section 6.3 have been 
employed by Berman and James (2014;2018). In these publications, a random 
walk is used to create improvisation-like movements for an artificial dancer. 
Contrary to these previous examples, the random walk presented here oper-
ates on pose sequence encodings rather than pose encodings. This requires 
the use of sequence blending to prevent movement discontinuities. But even 
with sequence blending, it is difficult to obtain movements that look plausible. 
Often, the resulting movements are repetitive and erratic. This issue is more 
pronounced for model8 than model128. To obtain somewhat interesting results, 
it is necessary to balance the size of the random steps taken in latent space and 
the size of the overlap used for sequence blending. 

Following a trajectory through latent space at a fixed offset provides an alterna-
tive to a random walk. This method avoids the occurrence of repetitive move-
ments while still succeeding in creating new movement material. The size of the 
offset can be used to control the amount of novelty. The examples presented so 
far are quite rudimentary in that they employ the same offset value for all dimen-
sions of latent space. A more sophisticated approach would take into account 
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how variations along individual dimensions affect the resulting pose sequence. 
Also, rather than being fixed, the offset could change while it follows a trajectory. 
This would result in an output that exhibits varying levels of similarity with the 
original material. But even the current rudimentary implementation provides 
some interesting results, in particular concerning the size of the pose sequence 
that the autoencoder and sequence blending operate on. The result obtained 
from model128 is a pose sequence that changes minimally and slowly. This is 
not the case for the result obtained from model8. This points to an interesting 
difference in application for the models. Model128 is more useful for creating 
more or less faithful reconstructions of the original movement but generates 
less interesting results when exploring neighboring regions of latent space. 
Model8 is more useful for the opposite application. 

The interpolation and extrapolation between multiple trajectories consti-
tutes the possibly most productive approach to latent space navigation that is 
described in this publication. Both methods offer intuitive means of controlling 
the similarity and variability of the resulting movement material. In case of 
interpolation, the given trajectories provide boundaries for latent space navi-
gation. In most cases, the regions between those boundaries have become 
densely populated with encodings during training. Therefore, interpolation 
typically generates a movement sequence that blends properties of the target 
sequences in a predictable and plausible manner. In case of extrapolation, the 
generated results are more varied and unpredictable but this comes at the cost 
of plausibility and realism. One reason for this is an increased likelihood that 
extrapolated trajectories cross parts of latent space that have been scarcely 
populated during training. Extrapolation frequently results in the generation of 
pose sequences that are neither plausible or realistic and that differ so much 
from each other that they are difficult to combine by sequence blending. Since 
interpolation and extrapolation are not mutually exclusive, the strengths and 
weaknesses of each approach can be balanced against each other.

8. Outlook

The results obtained from combining a recurrent adversarial autoencoder with a 
grain-based sequence blending mechanism seem promising enough to warrant 
further research and development. So far, sequence blending has been used 
to seamlessly concatenate decoded pose sequences. A next step would be to 
experiment with additional uses of sequence blending. This includes working 
with a larger range of different sequence lengths and experimenting with more 
varied sequence combinations such as: non-consecutive placement of grains, 
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different grain weightings, additive and subtractive grain combinations, stack-
ing multiple grains on top of each other, etc.

It also seems promising to explore additional methods for navigating latent 
space. The simplest improvement would be to employ more sophisticated 
versions of random walks. Rather than directly randomizing position offsets, 
randomization could be applied to first or higher order derivatives to obtain 
smoother trajectories. More sophisticated approaches could be based on the 
simulation of flocking behavior. This would allow to create multiple trajectories 
that are clustered and aligned but still vary from each other. Such trajectories 
could be used to control the movement of a group of virtual characters. It might 
also be interesting to extract features from an external modality such as music 
and use them to control navigation in latent space. Such an approach has been 
used for instance by (Augello et al. 2017).

It’s also worthwhile to address the difficulty of obtaining an understanding for 
the relationship between latent vectors and their decodings. One approach 
would be to condition the autoencoder on higher level control parameters (e.g. 
Wang et al. 2020). Another approach is to extend an autoencoder with a control 
network that learns to disambiguate latent space (e.g. Li et al. 2017).

The possibly most promising improvement would combine machine-learning 
with a simulation of the bio-mechanical properties of the human body. Such a 
combination would get rid of a common problem that plagues purely data-driven 
approaches: the generation of physically impossible movements. But since 
training neural networks is based on gradient decent and gradients typically 
don’t propagate through a physics’ simulation, a different learning paradigm is 
needed. This is the paradigm of reinforcement learning. Reinforcement learn-
ing is still in its infancy but has recently attracted significant research interest. 
Accordingly, its likely challenging to come up with an implementation that is 
both robust and accessible to artists for creative experimentation.
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