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Abstract 

Refill friction stir spot welding (RFSSW) is a novel solid-state joining technology being developed 

primary as a replacement of mass-adding mechanical fastening processes. The appropriate choice 

of tool material and geometry can influence the tool life-expectancy and may impact the 

mechanical properties of the joint. Despite the extensive research, there is a lack of publicly 

available experimental data regarding the effect of different tool designs and tool materials on 

the microstructural and mechanical properties of RFSSW lapped joints. 

The aim of this research is to further understand the relationship between RFSSW tool design and 

material with the mechanical performance and microstructural features of the joint produced. 

The main objectives are: 1) to quantify the influence of process parameters on the mechanical 

performance; 2) to select and benchmark the most promising tool material candidates for RFSSW 

based on industrially relevant criteria (e.g. process repeatability, tool life, joint mechanical 

properties); 3) to characterise the effect of different tool materials and geometries on the 

mechanical performance of the weld; 4) to compare the material flow and microstructural 

features of welds produced with tools with different geometries.  

The key findings are summarised as follows. Firstly, the influence of RFSSW process parameters 

on the weld mechanical strength was determined for various aluminium alloys using a standard 

RFSSW tool. This allowed determining the most effective process parameter combination for 

each alloy. Plunge depth had the greatest impact on mechanical strength, while welding 

conditions promoting lower heat input tended to improve the shear strength. Furthermore, 

residual stress measurements on RFSSW specimens with multiple spot-weld were performed 

using the contour method. The results suggest that the increasing number of spot-welds 

translates into lower peak stress values. RFSSW in the presence of aerospace grade sealant was 

also investigated. The results showed an increase in mechanical performance, which was 

attributed to the adhesiveness of the sealant at preventing secondary bending of the specimen. 

Secondly, the tool material benchmarking investigation suggests that surface treated specimens 

produced intermetallic compounds at the internal surface of the tool specimen per plunge, which 

lead to persistent clogging. M42 high speed steel showed to be the most suitable tool material 

for RFSSW with the best cost-benefit ratio.  
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Finally, the impact of different tool materials and geometries in the microstructure and 

mechanical performance of the weld was determined. The main findings from this investigation 

suggest that the left-handed features present on the surface of the plunging component 

enhanced the stirring action, accentuating downward material flow and enlarging the welded 

area. Welds made with a conventional design RFSSW tool and made from M42 high speed steel, 

exhibited decreased mechanical performance. This can be attributed to the use of a tool material 

with a lower thermal conductivity coefficient, producing a weld with a higher peak temperature 

and promoting softening of the base material.  

This thesis contributed to the further development of RFSSW, establishing both a theoretical and 

technical basis for new researchers or industrial users searching for alternative single point joining 

methods. Technological strong points and limitations are discussed, aiming to identify the most 

promising fields of application. 

  



 

 
PhD Thesis - Pedro de Sousa Santos iii Coventry University (2020) 

 

Disclaimer 

 

 

 

 

 

 

 

 

 

 

Coventry University PhD Thesis in Materials and Manufacturing Engineering. 

 

I hereby declare that the work submitted in this PhD thesis entitled “Development of Refill Friction 

Stir Spot Welding (RFSSW) for lightweight applications”, is my own original work except where 

otherwise indicated and have referenced all sources of information. In the event of any work 

performed jointly, contributions of collaborators and myself have been stated clearly in the text. 

 

The attached thesis has not been and will not be, submitted in whole or in part to another 

university for the award of any other degree. 

Content removed on data protection grounds



 

 
PhD Thesis - Pedro de Sousa Santos iv Coventry University (2020) 

 

  



 

 
PhD Thesis - Pedro de Sousa Santos v Coventry University (2020) 

 

Preface 

This thesis is submitted for the degree of Doctor of Philosophy at Coventry University. This 

research project was based at the National Structural Integrity Research Centre (NSIRC) in TWI 

Ltd, sponsored by the Industrial Members of TWI as part of the Core Research Programme and 

Coventry University. The research work was carried out under the supervision of Professor Xiang 

Zhang (Director of Studies) and Dr Bilal Ahmad from Coventry University and Dr João Gandra 

(Industrial Supervisor) from TWI Ltd, for the period of May 2017 to September 2020. 

A significant portion of the work performed during this PhD research has already been 

disseminated in an international conference and many local conferences/events as listed below: 

International Conferences 

◼ De Sousa Santos, Pedro; McAndrew, Anthony; Gandra, João; Zhang, Xiang. ‘Refill Friction Stir 

Spot Welding parameter optimisation for transport industry aluminium alloys’, 6th 

International Conference on Scientific and Technical Advances on Friction Stir Welding & 

Processing (FSWP 2019), Louvain-la-Neuve, Belgium, 11-13th September 2019 (Abstract plus 

Oral presentation) 

Local Conferences/Presentations 

◼ De Sousa Santos, Pedro; McAndrew, Anthony; Gandra, João; Zhang, Xiang. ‘Development of 

Refill friction stir spot welding for aerospace applications’, NSIRC Annual Conference 2018, 

TWI Ltd, Cambridge, 3-4th of July 2018. (Poster presentation) 

◼ De Sousa Santos, Pedro; McAndrew, Anthony ‘Development of Refill friction stir spot welding 

for aerospace applications’, TWI research board yearly review, TWI Ltd, 13th November 2018 

(Oral presentation) 

◼ De Sousa Santos, Pedro; McAndrew, Anthony; Gandra, João; Zhang, Xiang. ‘RFSSW parameter 

optimisation for transport industry aluminium alloys’, NSIRC Annual Conference 2019, TWI 

Ltd, Cambridge, 2-3rd July 2019. (Extended abstract plus oral presentation) 

◼ De Sousa Santos, Pedro; McAndrew, Anthony. ‘RFSSW parameter optimisation for transport 

industry aluminium alloys’, TWI research board yearly review, TWI Ltd, 8th November 2019 

(Oral presentation) 



 

 
PhD Thesis - Pedro de Sousa Santos vi Coventry University (2020) 

 

◼ De Sousa Santos, Pedro; McAndrew, Anthony; Gandra, João; Zhang, Xiang. ‘Influence of tool 

material and design on the mechanical and microstructural properties of refill friction stir 

spot welds’, NSIRC Annual Conference 2020, TWI Ltd, Cambridge, 23rd July 2020. (Extended 

abstract plus oral presentation) 

The author’s contribution to the research performed and that of others is given below: 

Specimen preparation: All specimens were manufactured by TWI Ltd using TWI’s Kawasaki RFSSW 

C-frame system as specified by the author and with support from TWI technicians Simon Walford 

and Ian Jeakins. 

Residual stress evaluation: The contour measurements were performed by Dr Bilal Ahmad at 

Coventry University as requested by the author. 

Mechanical testing and metallographic characterisation: Lap shear, cross tension and fatigue 

testing was performed by laboratory technicians at TWI under the direction of the author. 

Metallographic specimen preparation and characterisation and fractography were performed by 

the author using the facilities at TWI Ltd. The experimental methodology, specimen design, 

coordination of all mechanical testing performed by technicians, and finally analysis and 

interpretation of test results presented in this thesis was carried out by the author.  



 

 
PhD Thesis - Pedro de Sousa Santos vii Coventry University (2020) 

 

Acknowledgements 

The work presented in this document represents the outcome of one of the most exciting 

chapters of my academic life, truly a unique experience that has shaped me at a professional as 

well as a personal level. However, I could not have achieved this goal without the help, support 

and conviction from crucial people and organisations. 

First and foremost, I would like to thank my academic supervisors Prof. Xiang Zhang and Dr Bilal 

Ahmad for their guidance and continuous support. I would also like to acknowledge Dr Bilal 

Ahmad for performing residual stress measurements using the contour method and for his input 

on the analysis of data.  

It is with a great deal of appreciation that I thank my industrial supervisor, Dr João Gandra, for his 

everlasting patience, guidance and constructive feedback, as well as his dedication. In addition to 

his cornerstone teachings, I am thankful for his friendship. 

I would also like to thank my colleagues at the Friction and Forge Processes at TWI. Special thanks 

to Dr Steve Dodds, for his friendship and invaluable dedication towards my professional 

development; Dr Anthony McAndrew, for his continuous enthusiasm, guidance and crucial 

support; Mr Bertrand Flipo and Mr Richard Andrews, for their insightful conversations and 

valuable advices; Mr Stuart Page, for his educational insights; Mrs Helen Everson, for her support 

and readiness to help; Mr Ian Jeakins and Mr Simon Walford for their support during the many 

welding activities.  

This research was conducted as part of a Core Research project co-funded by the Industrial 

Members of TWI, Coventry University and the National Structural Integrity Research Centre 

(NSIRC). I would like to acknowledge the importance of the granted funding that enabled this 

research.  

I would like to thank all the staff members at TWI, whose teachings and insights are present in 

this work or have allowed me to contribute in various scientific outreach activities. Thank you for 

your contribution to this research and for the opportunities to develop new skills. 

To the friends that I’ve made through the NSIRC PhD program, thank you for your friendship and 

for the unforgettable moments we shared. A special thank you to the members of the NSIRC 

Student Committee and the “cake office”. 



 

 
PhD Thesis - Pedro de Sousa Santos viii Coventry University (2020) 

 

It is with great deal of appreciation that I express my indebtedness to my family. Their constant 

encouragement and never-ending love have always been my driving forces to face greater 

challenges and achieve greater milestones. A special thanks to my parents, who incentivise me to 

pursue this opportunity and start my doctorate. 

To my Kochanie, Berenika Syrek-Gerstenkorn, I would like to express my gratitude for her 

patience, support, dedication and love throughout this journey. Thank you for believing in me, 

for making me a better and happier person and for the good times we had and that are yet to 

come. 

In loving memory of my grandmother - Fernanda Gabriel Marques Duarte dos Santos, a true-life 

example, who always believed in me and to who I will be forever grateful for all the love, care and 

dedication she gave me throughout my life. 

  



 

 
PhD Thesis - Pedro de Sousa Santos ix Coventry University (2020) 

 

Table of Contents 

Library Declaration and Deposit Agreement .................................................... Erro! Marcador não definido. 

Abstract ......................................................................................................................................................... i 

Disclaimer .................................................................................................................................................... iii 

Preface .......................................................................................................................................................... v 

Acknowledgements .................................................................................................................................... vii 

Table of Contents ......................................................................................................................................... ix 

List of Figures ............................................................................................................................................... xi 

List of Tables ............................................................................................................................................... xix 

List of Abbreviations ................................................................................................................................... xxi 

 Motivation .......................................................................................................................................... 2 

 Aim and Objectives ............................................................................................................................ 4 

 Thesis Structure ................................................................................................................................. 4 

 Friction Stir Welding .......................................................................................................................... 8 

 Friction stir spot welding ................................................................................................................... 9 

 Refill friction stir spot welding......................................................................................................... 11 

 Process parameters ........................................................................................................... 13 
 Microstructural regions and flaws .................................................................................... 22 
 Material combinations ...................................................................................................... 26 
 Modelling of RFSSW .......................................................................................................... 27 
 Applications ....................................................................................................................... 31 
 Equipment suppliers .......................................................................................................... 34 

 Residual Stresses .............................................................................................................................. 37 

 Conclusions ...................................................................................................................................... 38 

 Introduction ..................................................................................................................................... 44 

 Materials and methods .................................................................................................................... 44 

 Materials ............................................................................................................................ 44 
 Welding equipment ........................................................................................................... 45 
 Tool design ......................................................................................................................... 46 
 Welding sequence ............................................................................................................. 46 
 Microstructural and mechanical characterisation ........................................................... 49 

 Results and discussion ..................................................................................................................... 51 

 Lap shear strength analysis ............................................................................................... 51 
 Cross-tension strength analysis ........................................................................................ 71 



 

 
PhD Thesis - Pedro de Sousa Santos x Coventry University (2020) 

 

 Fatigue life analysis ............................................................................................................ 84 
 Microstructural analysis .................................................................................................... 94 
 Residual stress measurements ....................................................................................... 102 

 Conclusions .................................................................................................................................... 119 

 Introduction ................................................................................................................................... 124 

 Materials and methods .................................................................................................................. 124 

 Base material ................................................................................................................... 124 
 Tool materials/surface treatment combinations ........................................................... 124 
 Specimen Geometry ........................................................................................................ 126 
 Plunging procedure ......................................................................................................... 127 
 Characterisation techniques ........................................................................................... 129 

 Results and discussion ................................................................................................................... 130 

 Performance .................................................................................................................... 130 
 Metallography.................................................................................................................. 132 
 Temperature measurements .......................................................................................... 135 
 Wear characterization of shoulder component ............................................................. 138 

 Conclusions .................................................................................................................................... 142 

 Introduction ................................................................................................................................... 146 

 Materials and methods .................................................................................................................. 146 

 Base materials .................................................................................................................. 146 
 Welding equipment ......................................................................................................... 146 
 Tool material and design ................................................................................................. 147 
 Welding sequence ........................................................................................................... 148 
 Microstructural and mechanical characterisation ......................................................... 149 
 Temperature measurements .......................................................................................... 150 
 Tool failure analysis ......................................................................................................... 151 

 Results and discussion ................................................................................................................... 151 

 Temperature measurements .......................................................................................... 151 
 Lap shear strength analysis ............................................................................................. 153 
 Tool fracture analysis ...................................................................................................... 168 

 Conclusions .................................................................................................................................... 171 

 Thesis Summary ............................................................................................................................. 176 

 Recommendations for Further Research ..................................................................................... 177 

 - Reported RFSSW material combinations ............................................................................................. II 

 - Drawings of RFSSW tool components .................................................................................................. V 



 

 
PhD Thesis - Pedro de Sousa Santos xi Coventry University (2020) 

 

List of Figures 

Figure 1.1 – Cross-section of RFSSW weld A) mid-process and B) a completed weldment. .......... 3 

Figure 1.2 - Thesis structure. ......................................................................................................... 5 

Figure 2.1 - Schematic representation of the FSW process phases (Threadgill et al, 2009). ......... 8 

Figure 2.2 - A) Schematic drawing of the conventional FSSW process and B) correspondent 

cross-section. ................................................................................................................................. 9 

Figure 2.3 - Schematic illustration of the FSSW process with refilling stage. (Uematsu et al. 2008)

 ..................................................................................................................................................... 11 

Figure 2.4 - RFSSW tool. .............................................................................................................. 11 

Figure 2.5 - Schematic drawing of the RFSSW process for A) shoulder-plunge and B) probe-

plunge variant. ............................................................................................................................. 13 

Figure 2.6 - Displacement of tool components during a RFSSW weld cycle (positive values of 

displacement represent a  plunge of the tool component in the weld material). ....................... 13 

Figure 2.7 - Shear test results for the different tool rotation speeds (Zhou et al., 2017). ........... 14 

Figure 2.8 - Shear test results for the different tool plunge depths (Zhao et al., 2014). ............. 15 

Figure 2.9 - Correlation between the A) revolutions per plunge depth and retract with the 

Energy input during the weld cycle and B) with the peak temperature measured (Reimann et al., 

2017a). ......................................................................................................................................... 16 

Figure 2.10 - Wear analysis on titanium Ti-6Al-4V RFSSW tool (Gonçalves et al., 2015). ............ 20 

Figure 2.11 - RFSSW tool with a threaded shoulder from H&W (Nasiri et al. 2018). ................... 20 

Figure 2.12 - Shoulder designs used to simulate the material flow in (Ji et al. 2017-B). ............. 21 

Figure 2.13 - RFSSW shoulder designs (Łogin et al. 2019) ........................................................... 22 

Figure 2.14 - A) Standard left-hand threaded RFSSW shoulder and B) modified version with 

groves on the bottom surface. (Shen et al. 2018) ....................................................................... 22 

Figure 2.15 - A) Optical microscope macrograph of a typical RFSSW connection cross-section 

showing the weld regions and B) detailed view of the Stir Zone. ................................................ 23 

Figure 2.16 - Microhardness profile along an RFSSW weld on a heat-treatable aluminium alloy 

(Rosendo et al. 2011) ................................................................................................................... 24 

Figure 2.17 - A) Incomplete refill and B) discontinuity at the centre of the weld. ....................... 25 

Figure 2.18 - Example of different hook profiles (Cao et al. 2016): ............................................. 26 

Figure 2.19 - Temperature, stress and strain distribution plots (Muci-Küchler et al., 2010). ...... 28 

Figure 2.20 - Numerical simulation results for the A) process temperature, B) strain distribution 

and C) and D) material flow during the plunge (left) and the retracting (right) stage (Zhao et al., 

2016). .......................................................................................................................................... 29 



 

 
PhD Thesis - Pedro de Sousa Santos xii Coventry University (2020) 

 

Figure 2.21 - (a) Load-displacement curves obtained from experimental data and numerical 

simulation and (b) cross-section of the finite element model analysis (Goushegir, dos Santos and 

Amancio-Filho 2016). ................................................................................................................... 31 

Figure 2.22 - A) RFSSW Skin stiffened panel as welded and B) in compression testing (Patnaik et 

al., 2006). ..................................................................................................................................... 32 

Figure 2.23 - Airbus A380 cross-section (FLUG REVUE 02/2013). ................................................ 32 

Figure 2.24 - RFSSW prototype door for a helicopter (Okada et al., 2013).................................. 33 

Figure 2.25 - Schematic drawing of the RFSSW exit hole closure process (Reimann et al. 2016).

 ..................................................................................................................................................... 34 

Figure 2.26 - Harms & Wende RFSSW systems A) RPS 100 SK, B) RPS 100 ZA and C) RPS 200 

(Courtesy of HZG, GmbH and Nasiri et al., 2018) ........................................................................ 35 

Figure 2.27 - KHI RFSSW system (Courtesy of TWI, Ltd). ............................................................. 36 

Figure 2.28 - Bond technologies RFSSW system (Bond technologies 2018) ................................ 37 

Figure 2.29 - Typical distribution of residual stress in FSW of similar material............................ 38 

Figure 3.1 - TWI’s FW-35 KHI RFSSW system. .............................................................................. 45 

Figure 3.2 - KHI RFSSW tool components. ................................................................................... 46 

Figure 3.3 - Lap shear and fatigues test specimen geometries. ................................................... 48 

Figure 3.4 - Cross tension test specimens. .................................................................................. 48 

Figure 3.5 - Schematic drawing of the A) RFSSW residual stress measurement specimen and B) 

sectioning planes at mid length (A-A) and along the length (B-B). .............................................. 51 

Figure 3.6 - Contour plot of lap shear strength as function of process parameters for RFSSW 

AA2024-T3. .................................................................................................................................. 54 

Figure 3.7 - Fracture surfaces of RFSSW AA2024-T3 weld condition W3 (RS = 1000 rev/min; 

PD = 2.4mm): ............................................................................................................................... 55 

Figure 3.8 - Stress regions caused by asymmetric loading on lap joints: ..................................... 56 

Figure 3.9 - Rotation of the nugget due to unguided asymmetric loading. ................................. 57 

Figure 3.10  - Lap shear test load-displacement curve of RFSSW AA2024-T3 weld conditions W3 

(RS = 1000 rev/min; PD = 2.4 mm) and W7 (RS = 2160 rev/min; PD = 2.0 mm). ......................... 57 

Figure 3.11 - Lap shear test load-displacement curve of RFSSW AA2024-T3 weld condition W3 

(RS = 1000 rev/min; PD = 2.4 mm) in bare and with sealant condition. ...................................... 58 

Figure 3.12 - Fracture surfaces of RFSSW AA2024-T3 weld condition W3 with sealant (RS = 1000 

rev/min; PD = 2.4 mm): ............................................................................................................... 59 

Figure 3.13 - Contour plot of lap shear strength as function of process parameters for RFSSW 

AA5754-H24. ............................................................................................................................... 62 

Figure 3.14 - Lap shear test load-displacement curve of RFSSW AA5754-H24 weld conditions 

W12 (RS = 1000 rev/min; PD = 2.2 mm) and W16 (RS = 2160 rev/min; PD = 1.8 mm). ............... 63 



 

 
PhD Thesis - Pedro de Sousa Santos xiii Coventry University (2020) 

 

Figure 3.15 – Fracture surfaces of condition W12 (RS = 1000 rev/min; PD = 2.2 mm): ............... 64 

Figure 3.16 - Contour plot of lap shear strength as function of process parameters for RFSSW 

AA7075-T6. .................................................................................................................................. 66 

Figure 3.17 - Fracture surfaces of RFSSW AA7075-T6 condition W21 (RS = 1000rev/min; PD = 

2.4mm): ....................................................................................................................................... 68 

Figure 3.18 - Lap shear test load-displacement curve of RFSSW AA7075-T6 weld condition W21 

(RS = 1000 rev/min; PD = 2.4 mm) and W25 (RS = 2160 rev/min; PD = 2.0 mm). ....................... 69 

Figure 3.19 - Lap shear test load-displacement curve of RFSSW AA7075-T6 weld condition W21 

(RS = 1000 rev/min; PD = 2.4 mm) in bare and with sealant condition. ...................................... 70 

Figure 3.20 - Fracture surfaces of RFSSW AA7075-T6 condition W21 with sealant (RS = 1000 

rev/min; PD = 2.4 mm): ............................................................................................................... 71 

Figure 3.21 - Schematic representation of the loading directions during cross-tension testing 

and the stresses produced on the weld....................................................................................... 72 

Figure 3.22 - Fracture surfaces of a through interface failure mode of RFSSW AA2024-T3 

condition W1 (RS = 1000 rev/min; PD = 2.0 mm): ....................................................................... 74 

Figure 3.23 - Fracture surfaces of a plug pull out top sheet failure mode of RFSSW AA2024-T3 

condition W1 (RS = 1000 rev/min; PD = 2.0 mm): ....................................................................... 75 

Figure 3.24 - Fracture surfaces of a plug pull out top sheet failure mode of RFSSW AA2024-T3 

condition W3 (RS = 1000 rev/min; PD = 2.4 mm) with sealant: ................................................... 76 

Figure 3.25 - Fracture surfaces of a plug pull out top sheet failure mode of RFSSW AA5754-H24 

condition W10 (RS = 1000 rev/min; PD = 1.8 mm): ..................................................................... 78 

Figure 3.26 - Fracture surfaces of a through interface failure mode of RFSSW AA5754-H24 

condition W16 (RS = 2160 rev/min; PD = 1.8 mm): ..................................................................... 79 

Figure 3.27 - Fracture surfaces of a plug pull out bottom sheet failure mode of RFSSW AA7075-

T6 condition W27 (RS = 2160 rev/min; PD = 2.4 mm): ................................................................ 81 

Figure 3.28 - Fracture surfaces of a through interface failure mode of RFSSW AA7075-T6 

condition W19 (RS = 1000 rev/min; PD = 2.0 mm): ..................................................................... 82 

Figure 3.29 - Fracture surfaces of a plug pull out top sheet failure mode of RFSSW AA7075-T6 

condition W21 (RS = 1000 rev/min; PD = 2.4 mm) with sealant: ................................................. 83 

Figure 3.30 - S-N Curve of RFSSW AA2024-T3 welding condition W3 (RS = 1000 rev/min; PD = 2.4 

mm) in bare and with sealant condition. ..................................................................................... 85 

Figure 3.31 - Through the top sheet failure mode of RFSSW AA2024-T3 subjected to cyclic stress 

of 44.6 MPa: ................................................................................................................................ 87 

Figure 3.32 - Shear fracture through the interface failure mode of RFSSW AA2024-T3 with 

sealant subjected to cyclic stress of 185.5 MPa: ......................................................................... 88 

Figure 3.33 - Shear through the plug on the top sheet failure mode of RFSSW AA2024-T3 

subjected to cyclic stress of 156.3 MPa: ...................................................................................... 89 



 

 
PhD Thesis - Pedro de Sousa Santos xiv Coventry University (2020) 

 

Figure 3.34 - S-N Curve of RFSSW AA5754-H24 welding condition W12 (RS = 1000 rev/min; PD = 

2.2 mm). ...................................................................................................................................... 91 

Figure 3.35 - Through the top sheet failure mode of RFSSW AA5754-H24 subjected to cyclic 

stress of 37.2 MPa: ...................................................................................................................... 92 

Figure 3.36 - S-N Curve of RFSSW AA7075-T6 welding condition W21 (RS = 1000 rev/min; PD = 

2.4 mm) with and without sealant. .............................................................................................. 94 

Figure 3.37 - Cross-section of RFSSW AA2024-T3 welding condition W3 (RS = 1000 rev/min; PD 

= 2.4 mm): ................................................................................................................................... 95 

Figure 3.38 - Internal defects on the cross-section of RFSSW AA2024-T3 condition W1 

(RS = 1000 rev/min; PD = 2.0 mm). .............................................................................................. 97 

Figure 3.39 - Cross-section of RFSSW AA2024-T3 welding condition W3 (RS = 1000 rev/min; PD = 

2.4 mm) with sealant: .................................................................................................................. 98 

Figure 3.40 - Cross-section of RFSSW AA5754-H24 welding condition W12 (RS = 1000 rev/min; 

PD = 2.2 mm): .............................................................................................................................. 98 

Figure 3.41 - Cross-section of RFSSW AA7075-T6 performed with welding condition W21 (RS = 

1000 rev/min; PD = 2.4 mm): .................................................................................................... 100 

Figure 3.42 - Internal defects on the cross-section of RFSSW AA7075-T6 welding condition W19 

(RS = 1000 rev/min; PD = 2.0 mm). ............................................................................................ 101 

Figure 3.43 - Cross-section of RFSSW AA7075-T6 welding condition W21 (RS = 1000 rev/min; PD 

= 2.4 mm) with sealant: ............................................................................................................. 101 

Figure 3.44 - 3D FEM model of the residual stress distribution on an AA2024-T3 single spot-weld 

specimen (values presented in MPa). ........................................................................................ 102 

Figure 3.45 - Line plot of residual stress distribution on an AA2024-T3 single spot-weld specimen 

at specified thicknesses. ............................................................................................................ 103 

Figure 3.46 -3D FEM model of the residual stress distribution across two rows on an AA2024-T3 

multiple spot-weld specimen (values presented in MPa). ......................................................... 104 

Figure 3.47 - Line plot of residual stress distribution across two rows on an AA2024-T3 multiple 

spot-weld specimen at specified thicknesses. ........................................................................... 105 

Figure 3.48 - 3D FEM model of the residual stress distribution across the five columns of the top 

row on an AA2024-T3 multiple spot-weld specimen (values presented in MPa). ..................... 106 

Figure 3.49 - Line plot of residual stress distribution across the five columns on an AA2024-T3 

multiple spot-weld specimen at specified thicknesses. ............................................................. 107 

Figure 3.50 - 3D FEM model of the residual stress distribution on an AA5754-H24 single spot-

weld specimen (values presented in MPa). ............................................................................... 108 

Figure 3.51 - Line plot of residual stress distribution on an AA5754-H24 single spot-weld 

specimen at specified thicknesses. ............................................................................................ 109 

Figure 3.52 - 3D FEM model of the residual stress distribution across two rows on an AA5754-

H24 multiple spot-weld specimen (values presented in MPa). ................................................. 110 



 

 
PhD Thesis - Pedro de Sousa Santos xv Coventry University (2020) 

 

Figure 3.53 - Line plot of residual stress distribution across two rows on an AA5754-H24 

multiple spot-weld specimen at specified thicknesses. ............................................................. 111 

Figure 3.54 - 3D FEM model of the residual stress distribution across the five columns of the top 

row on an AA5754-H24 multiple spot-weld specimen (values presented in MPa).................... 112 

Figure 3.55 - Line plot of residual stress distribution across the five columns on an AA5754-H24 

multiple spot-weld specimen at specified thicknesses. ............................................................. 112 

Figure 3.56 - 3D FEM model of the residual stress distribution on an AA7075-T6 single spot-weld 

specimen. .................................................................................................................................. 114 

Figure 3.57 - Line plot of residual stress distribution on an AA7075-T6 single spot-weld specimen 

at specified thicknesses. ............................................................................................................ 115 

Figure 3.58 - 3D FEM model of the residual stress distribution across two rows on an AA7075-T6 

multiple spot-weld specimen (values presented in MPa). ......................................................... 116 

Figure 3.59 - Line plot of residual stress distribution across two rows on an AA7075-T6 multiple 

spot-weld specimen at specified thicknesses. ........................................................................... 117 

Figure 3.60 - 3D FEM model of the residual stress distribution across the five columns of the top 

row on an AA7075-T6 multiple spot-weld specimen (values presented in MPa). ..................... 117 

Figure 3.61 - Line plot of residual stress distribution across the five columns on an AA7075-T6 

multiple spot-weld specimen at specified thicknesses. ............................................................. 118 

Figure 4.1. Tool material test specimens:  A) M42 and MP 159 and B) Si3N4. ........................... 127 

Figure 4.2 - Protruding feature produced during the plunge trials. ........................................... 127 

Figure 4.3 - FW-36 AWEA LP 4025Z FSW machine. ................................................................... 128 

Figure 4.4 - Fracture surface of a Si3N4 tool after 92 plunges. ................................................... 130 

Figure 4.5 - Tool clogging stages: A) base material accumulation on the inside surface of tool 

specimen, B) fully clogged tool with a C) slug of material. ........................................................ 131 

Figure 4.6 - Cross-section of a protruding feature produced with a M42 high speed steel 

hardened and tempered............................................................................................................ 133 

Figure 4.7 - A) Temperature and B) Material flow velocity simulations during the plunging stage 

of the RFSSW (Zhao et al. 2016). ............................................................................................... 134 

Figure 4.8 - Temperature measurement plot for the single spot specimen. ............................. 137 

Figure 4.9 - Temperature measurement plot for the multiple spot specimen. ......................... 137 

Figure 4.10 - Collapsed thermocouple hole in the M42 HT+PN single spot specimen. ............. 138 

Figure 4.11 - Plot of wear measurements of the tool material specimens. ............................... 139 

Figure 4.12 - SEM analysis of M42 HT specimen after 300 plunges; ......................................... 140 

Figure 4.13 - SEM analysis of M42 HT specimen after 2000 plunges; ....................................... 140 

Figure 4.14 - SEM analysis of MP159 H specimen after 300 plunges; ....................................... 141 

Figure 4.15 - SEM analysis of MP159 H specimen after 2000 plunges; ..................................... 142 



 

 
PhD Thesis - Pedro de Sousa Santos xvi Coventry University (2020) 

 

Figure 5.1 - A) RFSSW tool components of Tool 1 and B) the RFSSW tool components of Tool 2 

made from M42 high-speed steel. ............................................................................................ 147 

Figure 5.2 - Shoulder and probe design for A) Tool 2 and B) Tool 3 RFSSW tool sets. ............... 148 

Figure 5.3 - Lap shear test specimen geometries. ..................................................................... 150 

Figure 5.4 - Schematic drawing of temperature measurement block with three thermocouple 

holes. ......................................................................................................................................... 150 

Figure 5.5 - Temperature measurement plot of Tool 1, 2 and 3. .............................................. 152 

Figure 5.6 - Shoulder and probe position during the four stages of the RFSSW cycle for A) Tool 1 

and B) Tool 2 during the weld cycle relative to the reference point (top surface of the base 

material). ................................................................................................................................... 152 

Figure 5.7 - Influence of different tool materials on the lap shear strength results of bare 

specimens. ................................................................................................................................. 154 

Figure 5.8 - Fracture surfaces of RFSSW AA2024-T3 using Tool 1: ............................................ 155 

Figure 5.9 - Fracture surfaces of RFSSW AA5754-H24 using Tool 2: .......................................... 156 

Figure 5.10 - Fracture surfaces of RFSSW AA7075-T6 using Tool 1: .......................................... 157 

Figure 5.11 - Cross-section of RFSSW AA2024-T3 using Tool 2 in bare condition: .................... 158 

Figure 5.12 - Cross-section of RFSSW AA5754-H24 using Tool 2 in bare condition: .................. 158 

Figure 5.13 - Cross-section of RFSSW AA7075-T6 using Tool 2 in bare condition: .................... 159 

Figure 5.14 - Influence of different tool materials on the lap shear strength results of specimens 

with interfacial sealant. ............................................................................................................. 159 

Figure 5.15 - Cross-section of RFSSW AA2024-T3 using Tool 2 with interfacial sealant: ........... 161 

Figure 5.16 - Cross-section of RFSSW AA7075-T6 using Tool 2 with interfacial sealant: ........... 161 

Figure 5.17 - Influence of different tool profiles on the lap shear strength results of bare 

specimens. ................................................................................................................................. 163 

Figure 5.18 - Cross-section of RFSSW AA2024-T3 using Tool 3 in bare condition: .................... 164 

Figure 5.19 - Cross-section of RFSSW AA5754-H24 using Tool 3 in bare condition: .................. 165 

Figure 5.20 - Cross-section of RFSSW AA7075-T6 using Tool 3 in bare condition: .................... 165 

Figure 5.21 - Influence of different tool profiles on the lap shear strength results of specimens 

with interfacial sealant. ............................................................................................................. 166 

Figure 5.22 - Cross-section of RFSSW AA2024-T3 using Tool 3 with interfacial sealant: ........... 167 

Figure 5.23 - Cross-section of RFSSW AA7075-T6 using Tool 3 with interfacial sealant: ........... 168 

Figure 5.24 - Fracture surface of the components from Tool 2 after 92 welds: ........................ 169 

Figure 5.25 - Fracture surface of the components from Tool 3 after 55 welds: ........................ 171 

Figure A0.1 - Technical drawing of the RFSSW clamp component. ............................................... V 

Figure A0.2 - Technical drawing of the RFSSW probe component. .............................................. VI 



 

 
PhD Thesis - Pedro de Sousa Santos xvii Coventry University (2020) 

 

Figure A0.3 - Technical drawing of the RFSSW featureless shoulder component. (Tool 2) ......... VII 

Figure A0.4 - Technical drawing of the RFSSW threaded shoulder component. (Tool 3) ........... VIII 

 

  



 

 
PhD Thesis - Pedro de Sousa Santos xviii Coventry University (2020) 

 

  



 

 
PhD Thesis - Pedro de Sousa Santos xix Coventry University (2020) 

 

List of Tables 

Table 3.1 - Chemical composition of the base material. .............................................................. 44 

Table 3.2 - Mechanical properties of the base material. ............................................................. 45 

Table 3.3 - TWI RFSSW system specifications .............................................................................. 46 

Table 3.4 - RFSSW tool dimensions .............................................................................................. 46 

Table 3.5 - RFSSW process parameters ....................................................................................... 47 

Table 3.6 - Interfacial sealant properties ..................................................................................... 49 

Table 3.7 - Lap shear strength results of RFSSW AA2024-T3 ....................................................... 52 

Table 3.8 - ANOVA for the shear strength output of RFSSW AA2024-T3. .................................... 53 

Table 3.9 - Second order regression equation for RFSSW AA2024-T3. ........................................ 53 

Table 3.10 - Comparison between experimental shear strength and predicted shear strength 

from Equation 1. .......................................................................................................................... 54 

Table 3.11 - RFSSW AA2024-T3 weld conditions W3 lap shear strength comparison between the 

bare and sealant condition .......................................................................................................... 58 

Table 3.12 – Lap shear strength results of AA5754-H24. ............................................................. 60 

Table 3.13 - ANOVA for the shear strength output of RFSSW AA5754-H24. ............................... 61 

Table 3.14 - Second order regression equation for RFSSW AA5754-H24 .................................... 61 

Table 3.15 - Comparison between experimental shear strength and predicted shear strength 

from Equation 2. .......................................................................................................................... 62 

Table 3.16 - Lap shear strength results of RFSSW AA7075-T6. .................................................... 65 

Table 3.17 - ANOVA for the shear strength output of RFSSW AA7075-T6. .................................. 66 

Table 3.18 - Second order regression equation for RFSSW AA7075-T6 ....................................... 66 

Table 3.19 - Comparison between experimental shear strength and predicted shear strength 

from Equation 3 ........................................................................................................................... 67 

Table 3.20 - RFSSW AA7075-T6 Lap shear strength comparison between the bare and sealant 

condition. ..................................................................................................................................... 69 

Table 3.21 - RFSSW cross tension strength results of AA2024-T3. .............................................. 72 

Table 3.22 - RFSSW cross tension strength of 2 mm thick AA2024-T3 in the bare and with 

sealant conditions. ....................................................................................................................... 75 

Table 3.23 - Cross-tension testing results of RFSSW AA5754-H24. ............................................. 77 

Table 3.24 - Cross tension strength results of 2 mm thick RFSSW AA7075-T6 in bare condition. 80 

Table 3.25 - RFSSW AA7075-T6 cross tension strength comparison between the bare and 

sealant condition. ........................................................................................................................ 83 



 

 
PhD Thesis - Pedro de Sousa Santos xx Coventry University (2020) 

 

Table 3.26 - Fatigue load and results for RFSSW AA2024-T3 specimens in bare and with sealant 

condition. ..................................................................................................................................... 84 

Table 3.27 - Equations of RFSSW AA2024-T3 S-N curves with correspondent coefficient of 

correlation. .................................................................................................................................. 85 

Table 3.28 - Fatigue load amplitudes and results of 2 mm thick RFSSW AA5754-H24. ............... 90 

Table 3.29 - Equation of S-N curve with correspondent coefficient of correlation ..................... 90 

Table 3.30 - Fatigue load amplitudes and results for RFSSW AA7075-T6 specimens .................. 93 

Table 3.31 - Equations of S-N curves with correspondent coefficient of correlation .................. 94 

Table 3.32 - Hook height of all experimented process parameter combinations of RFSSW 

AA5754-H24. ............................................................................................................................... 99 

Table 4.1 - Chemical composition of AA7050-T7451. ................................................................ 124 

Table 4.2 - Mechanical properties of AA7050-T7451. ............................................................... 124 

Table 4.3 - Properties of tool materials. .................................................................................... 125 

Table 4.4 - Chemical composition of metallic tool materials. .................................................... 125 

Table 4.5 - Physical properties of selected tool materials. ........................................................ 126 

Table 4.6 - Designations for tool materials and surface treatment combinations ..................... 126 

Table 4.7 - Process parameters ................................................................................................. 128 

Table 4.8 - Maximum number of plunges before clogging for each tool material and surface 

treatment combination. ............................................................................................................ 132 

Table 4.9 - Peak temperature values registered for each tool material and surface treatment 

combination for the single and multiple spot specimens. ......................................................... 136 

Table 4.10 - Tool material evaluation based on industrially relevant and operational criteria for 

RFSSW. ....................................................................................................................................... 144 

Table 5.1 - Chemical composition of the base material. ............................................................ 146 

Table 5.2 - Mechanical properties of the base material. ........................................................... 146 

Table 5.3 - Tool material properties .......................................................................................... 147 

Table 5.4 - RFSSW tool materials and profiles. .......................................................................... 148 

Table 5.5 - RFSSW tool dimensions ............................................................................................ 148 

Table 5.6 - RFSSW process parameters ..................................................................................... 149 

Table 5.7 - Hook height for RFSSW AA2024-T3, AA5754-H24 and AA7075-T6 welds using Tool 2 

and 3. ......................................................................................................................................... 166 

Table A1 - Similar material combinations successfully welded/joined by RFSSW. ......................... 2 

Table A2 - Dissimilar material combinations successfully welded/joined by RFSSW. .................... 4 

 



 

 
PhD Thesis - Pedro de Sousa Santos xxi Coventry University (2020) 

 

List of Abbreviations 

Abbreviation Definition 

AISI The American Iron and Steel Institute 

ALE Arbitrary Lagrangian-Eulerian formulation 

ANOVA Analysis of variance 

AWS American welding society 

BS Bottom sheet 

CF-PPS Carbon fibre polyphenylene sulphide 

CFRP Carbon fibre reinforced polymer 

CMM Coordinate measuring machine 

CNC Computer numerical control 

DF Degrees of freedom 

FEM Finite element method 

FFDoE Full-factorial design of experiments 

FSpW Friction spot welding 

FSSW Friction stir spot welding 

FSW Friction stir welding 

GKSS Gesellschaft für Kernenergieverwertung in Schiffbau und Schiffahrt gmbh 

H&W Harms & wende 

HAZ Heat affected zone 

HZG  Helmholtz-zentrum geesthacht 

KHI Kawasaki heavy industries 

LSS Lap shear strength 

PCBN Polycrystalline cubic boron nitride 

PD Plunge depth 

PMMA Polymethyl methacrylate 

PPO Plug pull out 

RFSSW Refill friction stir spot welding 

RS  Rotation speed 

SEM Scaning electron microscope 

SEM Scanning electron microscopy 

SF-TI Shear fracture through the interface 

STP Shear fracture through the plug 



 

 
PhD Thesis - Pedro de Sousa Santos xxii Coventry University (2020) 

 

SZ Stir zone 

SZP Probe stir zone 

SZS Shoulder stir zone 

TI Through the interface 

TMAZ Thermo-mechanically affected zone 

TS Top sheet 

TTS Through the Sheet 

TWI The welding institute 

 

  



Chapter 1 - Introduction 
 

 

 
PhD Thesis - Pedro de Sousa Santos 1 Coventry University (2020) 

 

 

 

 

 

 

 

 

 

 

 

 

   
Introduction  

 

This chapter describes the motivation and the objectives for this work, as well as, the structure 

of this document. The chapter sequence is explained, complemented by a short description of 

the topics addressed and a flowchart diagram linking the chapters together.  
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 Motivation 

The increasing number of vehicles, such as cars and aeroplanes, have contributed to an increase 

in greenhouse gas emissions. To address this situation, governments enforce progressively 

stricter limits on carbon dioxide and nitrogen oxide emissions. All transport sectors are being 

challenged to develop innovative solutions that satisfy new regulations and the customer-driven 

demand for more efficient vehicles. In addition to the potential efficiency gains by improved 

powertrain designs, lowering the weight of a vehicle is a common solution to increase its 

efficiency and performance. The use of lighter materials and innovative structural designs reduces 

the vehicle’s propulsion energy requirements. For vehicles powered by fossil fuel powertrains, 

weight reduction also lessens the polluting emissions. 

Vehicle body structures are commonly assembled using single-point lap joints, especially when 

considering aerospace and automotive platforms. In addition to be a cost-effective route for 

fabricating large structures, this approach also minimises the total heat input into the component, 

reducing distortion and residual stresses. Most manufacturers rely on mechanical fastening or 

fusion welding processes like resistance spot welding or laser spot welding as summarised by 

Briskham et al. (2006). The use of an autogenous fusion-based processes will mitigate the weight 

additions and galvanic corrosion considerations linked to the use of external fasteners. However, 

specific issues may arise from locally melting and solidifying the material as reviewed by 

Padmanabhan et al. (2011). In the case of resistance spot welding, the progressive contamination 

and degradation of the electrode tip will also affect the weld quality, as identified by Zhou et al. 

(2004). Mechanical fastening has been the most popular joining solution for aerospace. 

Fasteners, such as flush head solid rivets, are extensively used in load-bearing aircraft joints as 

they are fit for purpose and have well-established standards and specifications. However, pre-

joining operations like drilling and deburring, as well as the need for galvanic protections, are 

some of the drawbacks associated with this joining method.  

Refill friction stir spot welding (RFSSW) has clear advantages compared to other mainstream 

single-point joining or mechanical fastening processes. As a solid-state process, the RFSSW avoids 

many of the defects associated with fusion welding of lightweight metals, typically caused during 

melting and solidification (e.g. porosity and solidification cracking). The lower peak temperatures 

also offer advantages when controlling shrinkage and distortion, which is critical on large 

assemblies with multiple spot welds. The process can also weld different thicknesses with the 
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same tool setup, reducing cycle time and costs on equipment in a production environment. 

RFSSW does not require the addition of a third element to produce a joint, meaning that there is 

no added weight to the final assembly. Moreover, there is no need for pre- or post-joining 

operations such as hole drilling and cleaning or sealant coating. The absence of a third material 

element to produce a joint also means that the electrochemical potential of the welded material 

remains unaltered, providing higher corrosion resistance. Due to the independent vertical motion 

of the rotating components during the weld cycle, the RFSSW process produces a flush surface 

finish as shown in Figure 1.1. This offers an improved surface finish for applications where 

aerodynamics and air-flow management are critical factors.  

 

Figure 1.1 – Cross-section of RFSSW weld A) mid-process and B) a completed weldment.  

Extensive research focused on the effect of process parameters on joint mechanical performance, 

microstructural features and defect formation has been reported by Boldsaikhan et al. (2019), Da 

Silva et al. (2007-A) and Pieta et al. (2014). However, as emphasised in the work of Montag et al. 

(2014) and recently highlighted by Feng et al. (2019), the effect of different tool external 

geometrical features and tool materials on the microstructural and mechanical properties of 

RFSSW joints has not been widely studied. This lack of experimental data publicly available 

regarding the RFSSW tool design has been identified as one of the reasons for the limited 

industrial implementation of the RFSSW process. As in its parent process, friction stir welding, the 

tool plays a vital part in the RFSSW process. As an external-tool based friction welding process, 

the correct choice of tool geometry and features can influence heat generation and the material 

flow around the tool. In addition, when welding high strength and abrasive materials, the choice 

of tool material can have a significant impact on the tool life-expectancy and wear. The 

importance of this topic has been highlighted by the research work of Barnes et al. (2012), Buffa 

et al. (2012), Seighalani et al. (2010) and Singarapu, Adepu and Arumalle (2015).  
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 Aim and Objectives 

The present thesis was developed within the framework of a 3-year research program at The 

Welding Institute (TWI) funded by the Industrial Members of TWI. The aim of this project was to 

gather impartial data on the properties of RFSSW on aluminium alloys used in the automotive 

and aerospace industries. This involved the determination of optimal process parameters, as well 

as the assessment of mechanical performance and microstructural characterisation of the joints.  

Within this broad scope, the aim of this thesis is to further understand the relationship between 

RFSSW tool design and material with the mechanical performance and microstructural features 

of the joint produced.  

The primary objectives are as follows: 

◼ Quantify the influence of process parameters on the mechanical performance. 

◼ Select and benchmark the most promising tool material candidates for RFSSW based on 

industrially relevant criteria (e.g. process repeatability, tool life, joint mechanical properties). 

◼ Characterise the effect of different tool materials and geometries on the mechanical 

performance. 

◼ Compare the material flow and microstructural features of welds produced with tools with 

different geometries. 

 Thesis Structure 

This thesis is comprised of 6 chapters as follows. 

Chapter 2 presents a comprehensive literature review, with special emphasis on the RFSSW 

process. The main objective of this review was to identify the remaining “knowledge gaps” in the 

available literature, so that a relevant research project could be formulated. Based on the 

conclusions from this chapter, the aim and objectives of this thesis were chosen as detailed in the 

previous section. 

Chapters 3 to 5 describe the experimental work developed in this thesis along with an analysis of 

the findings and a summary of the conclusions gathered. Figure 1.2 presents a flowchart of the 

thesis structure. 
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Figure 1.2 - Thesis structure. 

Chapter 3 focuses on the on the design and analysis of experimental refill friction stir spot welds 

on AA2024-T3, AA5754-H24 and AA7075-T6. In this chapter, a process parameter window was 

defined for each alloy using a RFSSW tool provided by the equipment manufacturer. The most 

promising process parameter combination was determined by lap shear strength and weld cross-

section examination. An empirical-based analytical model was developed to predict the shear 

strength of a single-spot weld specimen. The effect of an interfacial sealant on the weld 

properties was investigated for AA2024-T3 and AA7075-T6. Lastly, Fatigue testing and residual 

stress measurements were performed on specimens with the most promising process parameter 

combination.  

Chapter 4 focuses on the assessment of various material candidates to be used as RFSSW tool 

materials. In this chapter, five different material and surface modification combinations were 

tested under RFSSW service conditions. A candidate material was chosen based on relevant 

selection criteria for tool materials, as well as its performance in service and specimen life-

expectancy. 

Chapter 5 focuses on the impact of different tool materials and geometrical features in the weld 

mechanical performance and microstructure. In this chapter, three RFSSW tools made from 

different materials and with different designs were used: one RFSSW tool provided by the 

equipment manufacturer and two RFSSW tools produced from the tool material selected from 



Chapter 1 - Introduction 
 

 

 
PhD Thesis - Pedro de Sousa Santos 6 Coventry University (2020) 

 

Chapter 4 with different designs. Welds were produced with all tools using the base materials and 

the strongest process parameter combination from Chapter 3. The lap shear strength of the 

weldments was assessed and the cross-section of the welds was characterised. Finally, tool failure 

was analysed using SEM fractography.  

Chapter 6 presents recommendations for further research based on industrially relevant topics 

as well as the limitations of the work presented in this thesis. 



 

 
PhD Thesis - Pedro de Sousa Santos 7 Coventry University (2020) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

Literature review  

 

The present chapter provides a broad overview throughout to the fundamentals of the RFSSW 

process, applications and the most relevant developments of this technology 
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 Friction Stir Welding 

Friction stir welding (FSW) is a solid-state joining process pioneered at TWI in 1991 (Thomas et al. 

1991). The development of this process represented a significant breakthrough in the metal 

joining technology by producing high integrity joints in materials that were difficult or even 

deemed non-weldable by conventional fusion joining processes. Figure 2.1 demonstrates the 

operating principles of FSW. The process uses a non-consumable rotating tool (typically featuring 

a shoulder and a probe) which is plunged into the abutting edges of components to join. As the 

tool penetrates the material, frictional heat is developed creating a boundary layer of viscoplastic 

material. It is common practice to dwell the tool at the plunge location for a period until suitable 

temperature and viscoplasticity conditions are developed. The tool is then traversed along the 

joint line producing a forged joint where both materials have been mechanically mixed. At the 

end of the joint, the tool is extracted from the components, leaving an exit hole (Colligan 2010 

and Threadgill et al. 2009).  

 

Figure 2.1 - Schematic representation of the FSW process phases (Threadgill et al, 2009). 

Since its first commercial application to produce hollow aluminium panels for the fishing industry, 

products manufactured using FSW can be found in a myriad of applications across various sectors. 

From joining frames for high-fidelity speakers to more critical applications such as aerospace and 

aviation applications, FSW has established itself as the joining process of reference (Amini, Asadi 

and Zolghadr 2014). With the growing trend of vehicle electrification, FSW has found its way into 
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the automotive industry in the production of housings for batteries and thermal management 

components (Klender 2020; TRA-C 2020) 

 Friction stir spot welding  

Friction Stir Spot Welding (FSSW) is a single spot joining process developed as a variant of FSW 

and patented by Mazda Motor Corporation in 2003 (Iwashita 2003). In FSSW, the non-

consumable tool is used to produce a localised joint without any linear movement across the 

workpiece material. Figure 2.2 shows the main steps of the FSSW process. The process begins by 

plunging the rotating tool through the upper sheet to a depth that allows interaction with the 

sheet underneath. The tool is dwelled for a set time to generate sufficient frictional heat and 

viscoplastic deformation around the tool probe. After the tool is extracted from the material, the 

joint between the upper and lower sheets is completed in the area where the plastic flow 

occurred (Yang et al. 2014). 

 

Figure 2.2 - A) Schematic drawing of the conventional FSSW process and B) correspondent cross-section. 

Compared to other single-point fusion welding techniques, FSSW produces no fumes or spatter, 

while offering a high energy efficient process. As a solid-state process, FSSW produces welds with 

good mechanical and metallurgical properties, especially in materials that would suffer 

degradation when subjected to melting and subsequent solidification. This translates into lower 

processing temperatures which allows to minimise distortion and residual stresses (Ojo, Taban, 

and Kaluc 2015).  

These advantages allowed FSSW to be used in large scale production of components for the 

automotive industry. The first industrial application was in 2003 on the Mazda RX-8 rear doors, 

bonnet and boot, as a replacement for resistance spot welding (Da Silva et al. 2007-B). The shift 

in joining processes enabled an energy reduction of 99 % and 80 % when joining aluminium and 

steel, respectively, in comparison with that of resistance spot welding. Later on, the company 



Chapter 2 – Literature review 
 

 

 
PhD Thesis - Pedro de Sousa Santos 10 Coventry University (2020) 

 

used FSSW on its MX-5 model to reduce weight on the boot lid by joining aluminium to steel 

(Automation 2005). Toyota also used FSSW to produce the boot lid and bonnet of its Prius model 

(Pan 2007). For the rolling stock industry, railcar prototypes for the next-generation Shinkansen 

and Maglev have been produced by Kawasaki Heavy Industries. The company has proposed the 

use of FSSW to join aluminium reinforcement ribs to sheet panels (Pan 2007).  

The limitation on the materials and thicknesses that the process is capable of welding are some 

of the disadvantages of the FSSW process. Furthermore, the inherent exit hole feature after 

welding have limited its industrial application. This feature causes stress concentration at the 

centre of the joint, as well as a reduction of the effective joined area. Finally, this feature is prone 

to localised fouling and corrosion even in applications where corrosion protective coating are 

used due to the complex shape (Chen, Liu and Ni 2017) 

To mitigate the issues associated with feature, researchers attempted to develop new variants 

that would minimise or eliminate the exit hole feature. Venukumar et al. (2014) attempted to 

refill the exit hole by applying a secondary operation using a flat rotating tool and a filler plate. In 

this study, the author was able to eliminate the exit hole and increase static strength. Another 

approach was investigated by Chen, Liu and Ni (2017) while welding aluminium to steel. The 

authors proposed a methodology in which the welding cycle consisted of a regular FSSW cycle 

along with a refilling operation by traveling the tool along a circular path.  The welding cycle 

finished leaving an exit hole on the aluminium top sheet at a shallower plunge depth. Despite 

some surface cracks, the authors observed an increase in static strength in comparison to 

conventional FSSW. A hybrid approach was adopted by Deng et al. (2019) while welding AA2024-

T4. In this study, the authors devised a welding process consisting of a conventional FSSW cycle 

followed by a resistance spot welding cycle with a plug to refill the exit hole. This methodology 

was able to refill the exit hole and produced a combination of plastically deformed and fusion 

microstructure. In the study conducted by Uematsu et al. (2008), the authors used a flat shoulder 

tool with a retractable probe to eliminate the FSSW exit hole. In this approach, the cycle began 

by plunging the probe to a pre-defined depth, followed by retraction of the probe and a final 

plunge of both the probe and shoulder components into the weld area. This plunging action 

forged and consolidated the weld area prior to the extraction of the tool, as shown in Figure 2.3. 

The outcome of this study showed that the proposed methodology was able to refill the exit hole 

and improved the static strength of the weld. However, lack of fill at the centre of the weld area 

was observed. 
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Figure 2.3 - Schematic illustration of the FSSW process with refilling stage. (Uematsu et al. 2008) 

Despite the best attempts, the shortcomings of these methodologies are that they either require 

a secondary operation, increasing weld cycle time, or produce a secondary exit hole. 

 Refill friction stir spot welding  

Refill friction stir spot welding (RFSSW) or Friction spot welding (FSpW) is the newest variant of 

the FSSW processes. Developed and patented by HZG (former GKSS) in 2004 (Schilling and 

dos Santos, 2004), RFSSW produces a single spot solid-state weld between adjacent materials in 

an overlap configuration. The process uses a non-consumable tool as shown in Figure 2.4. The 

tool is comprised of two concentric rotating components named as the probe and shoulder, 

encompassed by an outer static clamp ring. The main difference of RFSSW compared to FSSW 

tools is that the rotating components have vertical independent motion allowing to create a 

nugget of plastic material without leaving an exit hole, as shown in Figure 2.5 and Figure 2.6.  

 

Figure 2.4 - RFSSW tool. 
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The operating process of the Refill FSSW system consists of four stages (Boldsaikban et al. 2017; 

Campanelli et al. 2011; Padhy et al. 2017): 

Stage 1 (sheet clamping and frictional heating) – the clamp presses the sheets against the anvil 

to prevent plate separation. The rotating probe and shoulder contact the top sheet to soften the 

workpiece material by frictional heating.  

Stage 2 (plunge) – the shoulder is plunged into the material to a set depth at a predetermined 

constant speed or load. At the same time, the probe moves in the opposite vertical direction at a 

different speed than the shoulder, creating a chamber between the probe and shoulder, that 

allows the softened material to flow into this space. To increase the stirring time and heat 

generation, the shoulder remains at the targeted depth for some time, defined as the wait time. 

This process variant is commonly described as shoulder plunge. Because of the aforementioned 

vertical independent movement of the rotating components, a probe plunge variant can also be 

performed by changing the plunging and retracting components. Due to the smaller diameter of 

the probe, the volume of processed material is smaller which leads to a lower heat input that may 

be beneficial for some applications. However, the weld size is smaller and narrower in this variant, 

typically producing a weaker joint.  

Stage 3 (re-plunge or refill) – whilst rotating, the shoulder and probe return to the surface of the 

top of the material to refill the weld nugget. To ensure proper consolidation of the processed 

material, the probe is plunged slightly into the material during this stage. 

The same principle is applied for the probe plunge, but in this variant, the probe remains at the 

surface of the top sheet material while the shoulder produces the final consolidating plunging 

action. 

Stage 4 (retract or removal) - the rotating probe and shoulder are retracted to the original 

position. The process is then completed, and the tools are released from the surface material. 
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Figure 2.5 - Schematic drawing of the RFSSW process for A) shoulder-plunge and B) probe-plunge variant. 

 

Figure 2.6 - Displacement of tool components during a RFSSW weld cycle (positive values of displacement represent a  

plunge of the tool component in the weld material). 

 Process parameters 

In RFSSW, the quality of the welds is strongly dependent on the appropriate selection of process 

parameters. Depending on the type and thickness of material to weld, these parameters need to 

be adjusted to meet the requirements of the application. The main process parameters are 

described herein.  

2.3.1.1. Tool rotation speed [rev/min] 

The rotational speed of the probe and shoulder plays a major part on the material mixing and the 

heat input of the process. However, excessive rotational speeds may overheat the material 

contributing to a detrimental effect on the metallurgical properties of the weld. The effect of 

different rotational speed values on the microstructure and the mechanical strength was 
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investigated by Zhou et al. (2017).  When welding overlapped AA6061-T6 plates at tool rotation 

speeds from 1100 to 1700 rev/min, the author observed that the grains in the Heat Affected Zone 

(HAZ) became coarser with the increase of the tool rotation speed. This was most likely associated 

with the higher thermal cycle. The maximum ultimate shear strength values were achieved for a 

rotational speed value of 1500 rev/min (Figure 2.7). Furthermore, the rotational speed also 

influenced the type of failure mode observed. 

 

Figure 2.7 - Shear test results for the different tool rotation speeds (Zhou et al., 2017). 

Similar conclusions were also reported by Shi et al. (2018) when welding AA2198-T8. For a range 

of rotational speed values between 1200 and 1800 rev/min, a maximum failure load of 9298 N 

was registered for a rotational speed of 1600 rev/min. Also, the weld cross-section presented 

voids for a rotational speed of 1200 rev/min, most likely due to poor material consolidation. 

Santana et al. (2017) performed a process parameter optimisation study when joining a 3-mm 

thick Al-Mg-Si alloy to maximise mechanical strength. Based on the statistical analysis, the 

rotational speed was the factor with the largest influence on the shear strength of the joints 

(36.6%). 

2.3.1.2. Plunge depth [mm] 

The plunge depth corresponds to the depth of penetration of the plunging tool element into the 

workpiece material. In RFSSW, the plunge depth affects the volume of stirred material during the 

welding cycle, influencing the weld nugget size. Pieta et al. (2014) conducted a parameter 

optimisation study on overlapped AA2198-T8 plates, with 3.18 mm thickness, using a shoulder 

plunge variant. The effects of different rotational speed, plunge depth and welding times on the 

mechanical and microstructural properties were investigated. For a constant rotational speed 

value of 2000 rev/min and a plunge depth range between 3.7 to 5.2 mm, the maximum shear 
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strength of 14.73 kN was obtained for a plunge depth of 4.7 mm. Zhao et al. (2014) investigated 

the effect of the plunge depth of the shoulder on the microstructure and mechanical properties 

of Alclad 7B04-T74 aluminium alloy sheets. As demonstrated in Figure 2.8, a maximum shear 

strength was achieved with a plunge depth of 3mm, 1.1 mm into the bottom sheet. Increasing 

the plunge depth altered the geometry and height of the hook feature resulting in a detrimental 

effect on joint strength.  

 

Figure 2.8 - Shear test results for the different tool plunge depths (Zhao et al., 2014). 

2.3.1.3. Plunge rate [mm/s] 

The plunge rate, along with the rotation speed, also plays a major part on the total heat input and 

the material strain rate during RFSSW. The ratio between these two process parameters provides 

the number of tool revolutions per unit of distance during the plunge or retract stage, as shown 

in equation 1.  

𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑝𝑙𝑢𝑛𝑔𝑒/𝑟𝑒𝑡𝑟𝑎𝑐𝑡 (𝑟𝑒𝑣/𝑚𝑚) =  
𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑 (𝑟𝑒𝑣/𝑚𝑖𝑛)

𝑃𝑙𝑢𝑛𝑔𝑒/𝑟𝑒𝑡𝑟𝑎𝑐𝑡 𝑟𝑎𝑡𝑒 (𝑚𝑚/𝑚𝑖𝑛)
  [1] 

The heat input in RFSSW is proportional to this ratio, as demonstrated by Reimann et al. (2017a). 

In this investigation, the microstructure and mechanical properties of through-hole repair welds 

on AA7075-T651 using RFSSW were investigated. The thermal cycle analysis was based on the 

input process parameters correlated with the data from thermocouples imbedded in the 

aluminium plate at a set distance. As shown in Figure 2.9, it was observed that an increase of the 

revolutions per plunge distance increased the energy supplied to the weld, leading to higher peak 

temperatures. This led to the formation of a larger layer of material undergoing viscoplastic 

deformation, taking place ahead of the shoulder during the plunge state. It was also noted that 
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the frictional conditions between the tool and the workpiece have a linear relationship without 

significant change within the process parameters tested. 

 

Figure 2.9 - Correlation between the A) revolutions per plunge depth and retract with the Energy input during the 

weld cycle and B) with the peak temperature measured (Reimann et al., 2017a). 

Rosendo et al. (2011) investigated the effect of different rotational speed values and joining times 

on the mechanical and microstructural properties of AA6181-T4 plates. Defects associated with 

material flow located on the path of the shoulder were observed for excessive plunge rates (short 

joining times). Different microstructure of the thermo-mechanically affected zone (TMAZ) was 

also observed depending on the maximum process temperature and faster plunge rates lead to 

consistently lower shear strength for the same rotation speed. Tier et al. (2013) studied the 

influence of different values of rotation speed, plunge depth, plunge rate and cycle times on the 

microstructure and shear strength on AA5042 plates. Based on the results obtained in this study, 

plunge rate was not a critical process parameter for shear strength as joining time. Plunge depth 

was the parameter that had the greatest influence on the shear strength, followed by the tool 

rotation speed. 

2.3.1.4. Joining time [s] 

The joining time is a combination of three separate phases such as:  

◼ Plunging time: the time to achieve the target depth.  

◼ Dwell time: the period that the tool remains at target depth.  

◼ Retraction time: the time to retract the tool from the workpiece material.  

Joining time can also be related to the plunge rate and therefore can affect the heat input of the 

process. Amancio-Filho et al. (2011-B) studied the influence of the process parameters on the 

microstructure and mechanical performance of AA2024-T3 plates. The results showed that 
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joining time had a greater effect on the shear strength compared to that of the rotation speed. 

Also, the first-order interaction between rotation speed and joining time demonstrated a 

maximum value of shear strength for the middle range values that were experimented, which can 

be explained by different efficiencies in the frictional heating. 

Effertz et al. (2017) performed a process parameter optimisation when joining AA7050-T76 plates 

using a Taguchi orthogonal array. This is a highly fractional orthogonal design type of factorial 

designs which allows to consider a selected subset of combinations of multiple factors at multiple 

levels. Different values for plunge depth, plunging time and rotational speed were experimented 

in an L9 orthogonal array and an Analysis of variance (ANOVA) was performed to determine the 

influence of each parameter on the shear strength. The ANOVA test is used in statistics to 

determine the influence that independent variables have on the dependent variable in a 

regression study. The parameter with the greatest influence was the plunge depth (43.6%) 

followed by the plunging time (29.7%) and the rotational speed (16.0%). 

2.3.1.5. Clamp force [kN] 

The clamp force prevents the separation of the workpiece plates during the welding cycle. In 

some applications, it can constrain the workpiece material after the welding cycle to prevent joint 

detachment while cooling. This parameter is of special importance when joining dissimilar 

material combinations without plunging into the lower sheet (joining aluminium to Zn-coated 

steel or aluminium to polymers are some examples). It prevents the processed material from 

deforming towards the interface between the two sheets, leading to incomplete refill of the spot. 

However, an excessive clamp force can leave an indent on the top surface due to local material 

softening. 

In the study performed by Esteves et al. (2015) on the dissimilar joining of AA6181-T4 and carbon 

fibre reinforced polymer (CFRP), the clamp force had a minimal effect on the joint shear strength. 

However, the hydrostatic forces created by the clamp, controlled the flow of the molten polymer 

and promote the filling of microscopic grooves on the surface of the aluminium. Increasing the 

clamping force promoted bonding between the polymer and the aluminium, but excessive values 

decreased the thickness of the molten polymer.  

When studying the influence of RFSSW process parameters on AA2024-T3 and CFRP, 

Goushegir et al. (2015) observed that the rotational speed was the most important parameter 

affecting the shear strength, followed by the clamping force. On a pre-treated aluminium surface, 
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higher values of clamp force promoted the flow of molten polymer into the pores and crevices 

which increased the micro-mechanical interlocking between the joining parts. 

2.3.1.6. Tool temperature 

During multiple weld cycles, the heat from the process can build-up within the tool components, 

which can lead to premature failure of the tool due to thermal fatigue (Persson, Hogmark and 

Bergström, 2005). To increase weld efficiency and reduce scattering of results, it is important to 

prevent the tool from overheating. Excessive accumulated heat in the tool promotes wear 

reducing the tool life and weld quality. Several authors applied a cooling cycle after each weld 

using compressed air- or water-cooling blocks to improve the mechanical strength  

(Seaman et al., 2016; Shen et al., 2016 and Shen et al., 2017). 

2.3.1.7. Tool material and profile 

The selection of an appropriate tool material is critical to ensure good weld quality as well as a 

long tool life expectancy. This choice, however, is strongly dependent on the application and the 

physical properties of the tool material. The essential tool materials requirement for FSW and its 

variants, as described by Fuller (2007), Infante and Vidal (2014) and Rai et al. (2011), can be 

summarised as follows: 

◼ High compressive and shear strength, both in ambient and elevated temperature conditions; 

◼ High thermal fatigue strength and dimensional stability when in use; 

◼ Low coefficient of thermal expansion, especially for bimetal tools; 

◼ Be inert with the environment and the workpiece material; 

◼ Good fracture toughness and wear resistance; 

◼ Must be machinable, readily procurable and cost-effective; 

Similar requirements can be defined for RFSSW tools, since the main difference to an FSW cycle 

is the absence of the bending moment produced the traverse motion of the tool across the joint. 

The plunge is the stage of the process which generates more load on the tool, with most of the 

wear and tool fractures being observed during this stage. In the start of the plunge stage, high 

flow stresses arise from processing the workpiece material at room temperature. This loads the 

tool with the maximum axial force and torque experienced during the cycle. This is due to the 



Chapter 2 – Literature review 
 

 
PhD Thesis - Pedro de Sousa Santos 19 Coventry University (2020) 

 

cold conditions the workpiece material requires of the workpiece material which leads to greater 

flow stress and axial load (Thomas et al., 1999 and Lienert et al., 2003).  

Although it has not been the primary focus for most of the published research work, this section 

presents some of the tool materials used for RFSSW and the conclusions from various 

researchers. Tool steel is the most common choice when manufacturing tools for joining 

combinations of aluminium alloys or joining aluminium to other engineering materials. In 

particular, the AISI H13 alloy (a chromium-molybdenum tool steel for hot working applications) 

has been the most widely used due to its low cost, commercial availability, machinability and 

good wear resistance when a surface hardening coating is applied. From published work, several 

authors have reported fully consolidated welds with high joint strengths (in both shear and cross 

tension loading conditions) and good fatigue life (Ding et al., 2017; Plaine et al., 2016 and 2017; 

Reimann et al., 2016; and Yue et al., 2017). This is the tool material of choice for most of the 

research work conducted when using an RFSSW system supplied by Harms & Wende.  

Montag et al. (2014) investigated the influence of the tool wear on quality criteria such as the lap 

shear strength (LSS) and the surface quality of AA6082-T6 RFSSW lap welds. After 3,500 welding 

points made with an AISI H13 tool, the study showed no dependence between tool wear and lap 

shear strength. However, the increasing wear of the tool components led to loss of welding 

material and increase of spindle current. A premature failure on 2 sets of AISI H13 tools was 

recorded by Nasiri et al. (2018) while welding 1 mm thick sheets of AA2099-T83. The failure 

mechanism was identical on both toolsets and it was attributed to liquid metal embrittlement 

from permeation of lithium-rich film into the tool surfaces.  

Oliveira et al. (2011 and 2012) studied the influence of the tool material on the weld properties 

of Polymethyl methacrylate (PMMA) resin RFSSW joints. In their study, stainless steel TS30000 

and titanium Ti-6Al-4V were selected as tool material candidates. Both materials have good 

mechanical properties and low thermal conductivity coefficients, which minimised heat losses 

through the tool body. The lower thermal conductivity coefficient of the titanium tool produced 

better quality welds with higher shear strengths than the welds performed with the stainless 

steel. However, the titanium tool had a life expectancy of about 50 welds before the features on 

the outside of the shoulder were completely eroded. Further developments to the joining of 

PMMA and carbon-fibre-reinforced polyamide 66 laminate were presented by Gonçalves et al. 

(2015a and 2015b). A titanium Ti-6Al-4V RFSSW tool with a nitriding hardened surface was tested. 
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The addition of the nitriding process extended the tool life expectancy to about 200 welds without 

major material loss or complete erosion of the features of the shoulder. Figure 2.10 presents the 

graphs from the profilometer measurements before welding trials and after 200 welds. 

 

Figure 2.10 - Wear analysis on titanium Ti-6Al-4V RFSSW tool (Gonçalves et al., 2015). 

Like in the FSW process and its variants, the tool geometry and profile have a significant influence 

on the quality and properties of the welds. Different features and groves on the surface of the 

tool generate affect the heat generation process and the material flow behaviour. This will 

ultimately influence the weld microstructure as well as the mechanical properties. The most 

common tool profile is the simple left-hand threaded shoulder, as shown in Figure 2.11. This tool 

profile has been extensively used in RFSSW to join different materials and is the typical design of 

the Harms & Wende system.  

 

Figure 2.11 - RFSSW tool with a threaded shoulder from H&W (Nasiri et al. 2018). 

However, despite the knowledge from other FSW variants, the influence of the RFSSW tool profile 

on the weld properties is still not fully understood. Limited studies have been conducted to 

determine which of the various geometrical parameters of the tool profile influence the weld 
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quality and what is the impact on mechanical performance. Ji et al. (2017-B) studied the effect of 

different tool geometries on the material flow based on a three-dimensional model. The different 

shoulder geometries are depicted in Figure 2.12, with the model validation being performed for 

the threaded shoulder [Figure 2.12.A)], rotating in a clockwise motion.  

 

Figure 2.12 - Shoulder designs used to simulate the material flow in (Ji et al. 2017-B). 

The results from the simulation work suggested that the absence of features on the outer surface 

of the shoulder may have contributed to the reduction of the hook height. However, the 

maximum velocity of the material flow on this area is lower than that enabled by the conventional 

threaded shoulder tool design. The results for the inner thread shoulder design promoted the 

mixing of material at the interface, decreasing the bonding ligament thickness. Regarding bottom 

shoulder profiles, the scrolled design performed better than the concentric circle design by 

promoting a higher flow of material in the vertical direction. 

Further developments on the effect of modifying the bottom surface of the shoulder on weld 

properties were achieved by Łogin et al. (2019). In this study, the authors used three designs for 

the bottom shoulder surface to determine the impact on the process temperature as well as weld 

mechanical and microstructural properties. The tools used in this study are shown in Figure 2.13. 

The outcome from this study confirmed that lower process temperatures and better mechanical 

performances can be achieved with modifications to the bottom surface of the shoulder. In this 

study, the single-spiral design [Figure 2.13.A) and B)] produced the strongest welds with the best 

surface finish and lower process temperatures. This result confirmed one of hypothesis from the 

study conducted by Ji et al. (2017-B). 
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Figure 2.13 - RFSSW shoulder designs (Łogin et al. 2019) 

Shen et al. (2018) compared the mechanical and microstructural properties of welds performed 

with a standard threaded RFSSW shoulder and a modified version. The tools used in this study 

are shown in Figure 2.14. The welds made with the modified tool displayed improved 

metallurgical bond and intermixing between both materials. As a result, a more consistent lap 

shear strength was observed for all the process parameter combinations tested. 

 

Figure 2.14 - A) Standard left-hand threaded RFSSW shoulder and B) modified version with groves on the bottom 

surface. (Shen et al. 2018)  

 Microstructural regions and flaws 

The heat and pressures generated during the process affect the base material microstructure, 

grain size and orientation. The cross-section of an RFSSW weld is shown in Figure 2.15.A), where 

the characteristic regions are delimited and are symmetric concerning the tool axis.  
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Figure 2.15 - A) Optical microscope macrograph of a typical RFSSW connection cross-section showing the weld 

regions and B) detailed view of the Stir Zone. 

The Stir Zone (SZ), consists in the region of the weld where the base material has been in direct 

contact with the rotating tool. This submits the base material to intense plastic deformation and 

high temperatures due to the frictional heating, promoting the dynamic recrystallization of the 

grains in this region. The microstructure consists of equiaxed grains, with an order of magnitude 

smaller than the grains in the base material region and a stochastic grain orientation. Because of 

the self-regulating nature of the frictional heat generation in the RFSSW process, the 

temperatures in this area typically reach the 80% of the melting temperature (Campanelli et al. 

2013-B). However, for some alloys, local grain boundaries can reach their eutectic melting 

temperature. As a result, liquation cracks can occur, as showed by Zhao et al (2018-B). The stir 

zone can be further divided into the Shoulder Stir Zone (SZS) and the Probe Stir Zone (SZP) located, 

respectively, on the outer side and at the centre of the stir zone [Figure 2.15B)]. This is particularly 

noticeable in the shoulder plunge variant due to the different rate of plastic deformation 

experienced in these two zones, producing distinct grain sizes and orientation.  

The TMAZ is the area of the material located at the vicinity of the tool. In this area, due to the 

plunge and retracting shoulder motion, the material generally experiences moderate plastic 

deformation and thermal cycle. This leads to microstructural changes and vertical upward flowing 

pattern without grain recrystallisation. In the region closer to the stir zone, inhomogeneous grains 

can also be present due to partial recrystallisation (Yue et al. 2017)   

With a grain orientation similar to that of the base material, the HAZ only experiences a thermal 

cycle caused by dissipation of the heat generated at the stir zone. This leads to the coalescence 

of the grains and a decrease in hardness values in this region. In heat-treatable alloys, coarsening 

of the incoherent particles also leads to a deterioration in strength due to over ageing.  The extent 

of the TMAZ and HAZ is influenced by the process parameters, such as rotation speed, and the 

boundary between these two areas can be challenging to observe by optical microscopy. In the 

work published by Rosendo et al. (2011) of RFSSW AA6181-T4, the transition between these two 
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regions can be defined as the area of minimum hardness value between the stir zone and the 

base material, as showed in Figure 2.16.  

 

Figure 2.16 - Microhardness profile along an RFSSW weld on a heat-treatable aluminium alloy (Rosendo et al. 2011)  

An appropriate selection of process parameters has a great impact on the quality and mechanical 

strength of the weld. Most of the flaws or defects are caused by either incorrect process 

parameters or excessive wear of components (Schmal, Meschut and Buhl 2019). 

Voids can be described as an internal discontinuity between the plasticised material and the weld 

region. This defect is usually associated with insufficient heat and consolidation of the plasticised 

material. Kubit et al. (2019-A) studied the effects of structural defects on the fatigue strength of 

RFSSW joints. The authors observed that, although these defects did not have a detrimental effect 

on the static shear strength, a significant reduction in fatigue life was measured. By performing 

C-scan analysis on the welds the authors also revealed that, despite the asymmetry of process, 

the voids do not present a continuous form along the perimeter of the weld.  

The incomplete refill defect is shown in Figure 2.17.A and can be defined as a consolidation defect 

from the top surface of the weld material relative to the original sheet surface. As explained by 

Adamus, K. and Adamus, J. (2019), this defect is caused by loss of plasticised material in the form 

of superficial chips of flash during welding. However, this feature can also be caused by 

insufficient pressure from the probe component during the refill stage, leading to the formation 

of a discontinuity at the centre of the weld [Figure 2.17.B)]. 
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Figure 2.17 - A) Incomplete refill and B) discontinuity at the centre of the weld. 

The joint line remnant is located along the width of the stir zone and is characterised by an 

alignment of oxide from the original base material interface. This feature can be more or less 

noticeable depending on the process parameters and the base material used. Also, due to the 

intense shearing action from the shoulder surface, the joint line remnant is generally more 

dispersed at the corner regions of the weld. As observed in the study performed by 

Shen et al. (2013), this feature provides the path for crack propagation of shear fracture failure 

modes.  

The hook feature is described as the transition between the bonded area of the stir zone and the 

unbonded regions of the thermomechanical affected zone. This is an inherent feature to overlap 

welding configurations that can act as a stress concentration point and provide a location for 

crack initiation. The hook profile can present various geometries depending on the material flow 

during the plunge and refill stage, as seen in Figure 2.18. The hook height is measured from the 

original interface level to the highest point the feature (hook tip). Cao et al. (2016) examined the 

effect of process parameters on the hook formation and shear strength. Three different hook 

profiles were identified by varying the rotation speed, joining time and plunge depth. A positive 

correlation between these process parameters and the hook height was observed, leading to 

weaker welds. Similar findings were observed by Santana et al. (2017).   
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Figure 2.18 - Example of different hook profiles (Cao et al. 2016): 

A) Upward curved; 

B) Flat; 

C) Upwards and downwards. 

D) Hook tip. 

The presence of surface contaminants or protective coatings (e.g. Alclad or primer paint), have 

also been shown to have a detrimental effect on joint strength. Kubit et al. (2018-B) analysed the 

microstructure and mechanical properties of RFSSW AA7075-T6 Alclad sheets. In their study, the 

authors observed an increase in grain size near the Alclad swirl inside the stir zone, suggesting 

that these heterogeneities have a detrimental effect on the recrystallisation process. To address 

this issue, Cao et al. (2020) proposed an initial plunge of the probe component prior to the RFSSW 

cycle, as shown in Figure 2.5. Despite the increase in cycle time, stronger welds without 

consolidation defects at the centre of the stir zone were produced. 

 Material combinations 

As a relatively new technology compared to other spot-welding processes, the full extent of 

industrial and academic research topics is far from being explored. Currently, most of the 

published research regarding the RFSSW technology is focused on similar and dissimilar material 

welding or joining and process parameters experimentation based on the optimisation of 

mechanical properties (Montag et al. 2014). The characterisation of the microstructural areas as 

well as defects are also areas of current research (Silva et al. 2020). The materials addressed in 

literature have been selected based on the current or future application requirements from the 

aerospace or the automotive industry as well as, current RFSSW system’s capability. Table A1 
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presents a non-extensive list of the similar material joining combinations addressed so far along 

with the lap shear strength values. 

The introduction of new lighter weight alloys in current design structures has provided a short-to-

medium term solution to the continuous demand for more efficient and less pollutant means of 

transportation. As a result, designs that include hybrid material structures have become more 

common due to the greater design freedoms and weight-to-strength ratios that can be achieved. 

Several authors have published their findings regarding the use of RFSSW to join various 

combinations of lightweight alloys, proving it to be a versatile technology. Table A2 presents a 

non-extensive list of the dissimilar material joining combinations addressed so far. 

 Modelling of RFSSW 

In general, computational models and numerical simulations greatly promote a better 

understanding of the operating principles of many manufacturing processes, often providing an 

insight of parameter inter-dependencies. Several challenges arise when numerical modelling 

RFSSW, mainly associated with the complex material deformation developed over a short weld 

cycle. The viscoplastic flow of material close to the plunging component and the elastic-plastic 

behaviour of the workpiece material, require a hybrid simulation model based on fluid and solid 

dynamics (Santos et al. 2009). The heat generation is also highly dependent on the thermo-

mechanical properties of the workpiece material as well as the tool geometry, material and 

features. The latter affects the friction coefficient which varies throughout the process. 

During the first decade after the RFSSW process was patented, a relatively low number of 

research papers were published concerning the numerical modelling. Some authors proposed 

schematic models based on experimental studies, grain morphology and orientation to describe 

the material flow during RFSSW (Kalagara et al., 2010 and Suhuddin et al., 2011). However, the 

information provided by these representations is limited when compared to computational 

models. 

Both variants of the RFSSW process have been analysed with a currently greater focus on the 

shoulder plunge variant due to the higher weld strengths achieved in this variant. 

2.3.4.1. Probe plunge 

Muci-Küchler et al. (2005a) developed a three-dimensional isothermal model using Finite 

Element Method (FEM) for the initial plunge stage. In this study, the author developed two 
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models in Abaqus/Explicit© with physical properties of AA7075-T6 and AA2024-T3. His findings 

were confirmed with experimental trials, using aluminium foil to trace the material flow. 

Following the work of Muci-Küchler et al. (2005b) on the visualisation of the material flow in 

AA7075-T6 using AA1100 markers, Itapu and Muci-Küchler (2006) performed a similar analysis 

using a three-dimensional isothermal FEM model of the plunge stage using an arbitrary 

Lagrangian-Eulerian (ALE) formulation, together with an adaptive meshing strategy. In this study, 

the author used virtual tracers to visualise the material flow near the tool. Despite the 

simplifications in the model, the results showed reasonable agreement with experimental results 

reported in the literature. A preliminary attempt to add the thermal phenomenon to the previous 

model was presented by Kalagara and Muci-Küchler (2007). A fully coupled thermo-mechanical 

model was used to explore the effect of the stick/slip condition between the tool and the 

workpiece material on the process temperature, stress and strain distribution predicted by the 

model. Further development of this model was presented by Muci-Küchler et al. (2010). This 

study compared the results obtained between the fully thermo-mechanical FEM model with an 

ALE formulation and an adaptive mesh algorithm and experimental results. The model showed 

good agreement with the process temperature, flash height and other process outputs. Stress 

and equivalent plastic strain distributions were consistent with the expected for the RFSSW, as 

shown in Figure 2.19. 

 

Figure 2.19 - Temperature, stress and strain distribution plots (Muci-Küchler et al., 2010). 

2.3.4.2. Shoulder plunge 

Zhao et al. (2016 and 2018-A) presented the first computational model to describe the 

temperature distribution and material flow on the shoulder plunge variant. A FEM model using 

DEFORM-3DTM© with an ALE formulation and adaptive re-mesh algorithm was developed to 

simulate the welding of Alclad 7B04 (Figure 2.20) using a threaded shoulder. The results obtained 
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from the numerical model were compared against temperature measurement trials and 

microstructural morphology analysis. Overall, the simulated results showed good agreement with 

the experimental trials. 

 

Figure 2.20 - Numerical simulation results for the A) process temperature, B) strain distribution and C) and D) 

material flow during the plunge (left) and the retracting (right) stage (Zhao et al., 2016). 

Ji et al. (2017-A) studied the material flow of the RFSSW process using a threaded shoulder on an 

aluminium alloy LY12. For this simulation, a Re-normalisation group (RNG) k-ε numerical model 

was developed in the fluid dynamic software ANSYS FLUENT©. The model was first verified by 

experimental studies, followed by an analysis on the effect of different plunge depths, rotation 

speeds and plunge rates on the material flow. Results showed that, for the shoulder outer and 

inner wall, the maximum flow velocity is located near the contact area and this value decreases 

as the distance from this point increases. All process parameters that were experimented had a 

positive influence on the material flow maximum velocity being the rotation speed the parameter 

with the greatest influence. Higher flow velocities provided more deformation promoting the 

mixing between Alclad and the workpiece material.  

2.3.4.3. Mechanical performance 

The possibility of determining the mechanical performance of a weld is of great importance and 

value when designing structures. A reliable numerical model of the weld properties could predict 

failure loads and locations, fracture modes and stress distributions as well as, the plastic 

deformation of small and large assemblies under service conditions. This can lead to savings in 
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costs and time by minimising the number of experimental trials and iterations when developing 

new components. 

Some authors have published their best efforts to model the mechanical response of an RFSSW 

joint. Mazzaferro et al. (2009) developed a numerical model of a single RFSSW joint coupon using 

a combination of the commercial packages Solidworks© and Abaqus©. The welds were produced 

of similar material AA2024-T3 and loading conditions representing lap-shear and cross-tensile 

were simulated and compared to experimental data. The results showed good agreement 

between the maximum force obtained via simulation and experimental data, but the loading 

curve profile was different due to the absence of a failure criterion. Campanelli et al. (2013-A) 

investigate the stress distribution on different nugget and hook shapes for lap shear test of single-

spot RFSSW AZ31 magnesium alloy. The analysis of the finite element model showed that the 

presence of the hook defect, regardless of the nugget distinction, produces a degree of 

uncertainty regarding the failure mode and stress distribution in the vicinity of the weld area, 

where tensile and compressive stresses are concentrated. Lacki and Derlatka (2016) addressed 

the numerical model of similar AA6061-T6 RFSSW welds to determine the crack location under 

tensile loading. In this study, coupons with four and five spot welds were used and assessed 

regarding maximum shear strength as well as stress and strain distributions. The model results 

showed good agreement with the experimental results obtained using a digital image correlation 

software. Recently, Kubit et al. (2019-B) conducted numerical and experimental analysis on the 

stability under compressive loading of an aircraft skin model produced using RFSSW and riveting. 

This study also investigated the influence of different spacing between the welds on local buckling 

of the panel. The results between both analyses show good agreement up to 75% of the 

maximum load, with the panel with equal spacing displaying similar ultimate load.  

A numerical model to simulate the mechanical performance of RFSSW joints between AA2024-

T3 and CF-PPS was presented by Paz et al. (2014) and Goushegir, dos Santos and Amancio-Filho 

(2016). The model was produced a combination of the commercial packages Solidworks© and 

Abaqus© and the results were compared with experimental data obtained using a digital image 

correlation software. Good agreement between the load-displacement curve from the model and 

the experimental data was obtained as showed in Figure 2.21. 
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Figure 2.21 - (a) Load-displacement curves obtained from experimental data and numerical simulation and (b) cross-

section of the finite element model analysis (Goushegir, dos Santos and Amancio-Filho 2016). 

 

 Applications 

With the increasing use of lightweight alloys in the transport industry, RFSSW can provide an 

alternative solution to applications where established fusion welding and mechanical fastening 

process may not be suitable. Although most of the published research presents the 

microstructural and mechanical characterisation of test coupons, some studies present the 

development of prototype demonstrators as well as the development of new applications like 

FSW exit hole closure. 

2.3.5.1. Technology demonstrators 

Traditional riveting is still the technique of choice for aluminium sheet joining in the aerospace 

industry due to its reliability and extensive knowledge on the process. However, the process is 

not easily automated, requires complex pre-joining operations and adds extra weight to the 

aircraft (Hameister, 2013). Preliminary data and proof of concept research work using RFSSW has 

been published regarding the production of aerospace closures and structural components. 

However, further development is required until the process can achieve the same level of 

strength and reliability as the established techniques. 

Patnaik et al. (2006) studied the microstructural and mechanical properties of RFSSW skin 

stiffened panels. In this work, RFSSW process parameters were optimised to produce AA2024-T3 

T-joint stiffener panels for compression testing (Figure 2.22). The panels produced in the study 

behaved as expected, with a failure mode attributed to the excessive crippling of the stiffener 

and a 9% lower buckling load compared to design equations for rivets. Nevertheless, the stiffener 
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and skin behaved as a single unit and exhibited an adequate performance under buckling 

characteristics. 

 

Figure 2.22 - A) RFSSW Skin stiffened panel as welded and B) in compression testing (Patnaik et al., 2006). 

Cellular beams can be used to produce aircraft structures such as floor sections (Figure 2.23). 

Their major advantage is the reduction of material volume without compromising structural 

integrity  

 

Figure 2.23 - Airbus A380 cross-section (FLUG REVUE 02/2013). 

Derlatka and Kasza (2014a) presented a numerical analysis of aluminium cellular beams produced 

using RFSSW. The beam components were modelled from two AA6061-T6 cold-bent C-section 

and two flat bars, joined together by RFSSW. The effect of different cell diameters on the bending 

strength of the beam was analysed via three-point bending test simulation. The effect of different 

cell spacings was also analysed by Derlatka and Kasza (2014b). The results showed that these 

factors affect the stress distribution across the beam as well as the location of the maximum and 
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minimum stresses. Furthermore, increasing the diameter and reducing the spacing between the 

cells was found to produce higher stresses and Z-displacements.  

Further experimental work on composite cell beams was conducted by Lacki and Derlatka (2017). 

In this study, a comparison between the load-bearing capacity of an aluminium-titanium and an 

aluminium-fibreglass cell beam is presented. Three-point bending tests were performed on both 

composite beams and a numerical analysis was performed for the aluminium-titanium. The load-

bearing capacity was reported to be similar for both composite beams with an economical and 

physical advantage for the aluminium fibreglass combination. However, lateral-torsional buckling 

appeared in the webs due to lower stiffness when compared to the flanges. The addition of 

polyurethane (PU) foam as a measure to increase the buckling resistance was explored by Lacki 

and Derlatka (2018). This produced an increase of the load-bearing capacity of the beam by 200% 

and limited lateral-torsional buckling without a significant addition of weight to the structure. 

Okada et al. (2013) performed a parameter optimisation study to produce helicopter closures. 

The materials joined were AA6061-T6 and AA2024C-T3 which are used, respectively, for skin 

panels and stiffeners in the aerospace industry. Prototype doors and frames were produced 

without any spring back, almost no distortion and with a flushed surface without defects 

(Figure 2.24). These results suggest that RFSSW has the potential to replace conventional rivets 

to produce aerospace closures. Further work and research are needed before the full application 

of these components in-service conditions.  

 

Figure 2.24 - RFSSW prototype door for a helicopter (Okada et al., 2013). 
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2.3.5.2. Exit hole and crack closure 

A novel application for the RFSSW process was presented by Reimann et al. (2016; 2017-A; 2017-

B; 2018) for the closure of weld exit holes and borehole sealing. With a different approach to the 

conventional use of RFSSW, this solution was developed to repair through holes in aluminium 

components and to refill exit holes produced during welding processes such as FSW. This is a 

convenient solution for applications that require high-quality seal standards where runoff tabs 

are challenging due to geometrical and metallurgical factors. Examples of such applications are 

housings and pressurized tanks for aerospace applications.  

As a solid-state process, this solution can be applied to aluminium grades that are not weldable 

by fusion welding processes. The process stages are schematically shown in Figure 2.25 This 

technique uses a cylindrical plug of material, identical to the workpiece material, to fill the hole 

in the workpiece. The RFSSW process is performed, promoting the mixing between the plug and 

the workpiece material, producing a sealed joint. 

 

Figure 2.25 - Schematic drawing of the RFSSW exit hole closure process (Reimann et al. 2016). 

 

 Equipment suppliers  

To the best of the author’s knowledge, Harms & Wende (H&W, Germany), Kawasaki Heavy 

Industries (KHI, Japan) and Bond technologies are the only machine suppliers offering RFSSW 

commercial solutions. On a basic level, the RFSSW machines possess three independent servo 

motors that control the vertical movement of the shoulder, probe and the rotation speed during 

the weld cycle, as described in Section 2.3. The clamping force can be generated mechanically 

(using an assembly with a set of calibrated springs) or hydraulically (by using a hydraulic cylinder 

to move the welding head into position). The clamp force is them recorded via load cell under the 

backing support. 
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2.3.6.1. H&W 

The first commercially available system was produced by H&W which was developed in a 

technology transfer project with the participation of HZG, H&W and RIFTEC (Camilo et al. 2014). 

The process control system is based on position/displacement control of the plunging component 

and time for each of the four-welding stages. On the plunging stage, the plunge rate of the 

plunging component can be defined as linear (constant plunge rate) or sinusoidal (variable plunge 

rate).  

Figure 2.26.A) shows the first welding head prototype launched by the company, the RPS 100 SK. 

This is a modular system that can be assembled as a pedestal system or coupled with a robot for 

production operations, requiring external backing support to react the welding forces. 

The RPS 100 ZA is the C-frame version as shown in Figure 2.26.B). This assembly provides the 

necessary backing support and records the reaction forces via loadcell.  

The RPS 200 is a custom-built system, designed to withstand high process loads from high 

strength materials and larger thickness components. Figure 2.26.C) shows an RPS 200 system 

installed at HZG, GmbH. This is a gantry type machine meaning that the movement of the welding 

head is restricted to the Z-direction. The travelling worktable enables the movement in the (X, Y) 

direction using electric ball screw actuators. This allows the system to weld multiple spots on the 

same component in different locations without the need to readjust the component between 

spots. This system is also capable of bi-rotational speed of the components, meaning that the 

shoulder and probe can rotate at different speeds and directions. This can increase the 

viscoplastic flow in the weld area, leading to an increase in lap shear strength as observed by 

Fu (2019). 

 

Figure 2.26 - Harms & Wende RFSSW systems A) RPS 100 SK, B) RPS 100 ZA and C) RPS 200 (Courtesy of HZG, GmbH 

and Nasiri et al., 2018) 
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2.3.6.2. KHI 

KHI patented a different process control variant (Okada et al. 2015) and developed an RFSSW 

system which is currently considered a research prototype machine. As such, it is not as readily 

commercially available as the H&W machines. In this system, a reactive force limit experienced 

by the shoulder during the plunge stage is predefined as an input process parameter. This means 

that the plunge rate will be continuously adjusted until the shoulder reaches the predefined 

plunge depth. Another difference between the KHI system and the H&W systems is the way the 

clamp force is applied during the welding cycle. H&W relies on a clamping cylinder to apply the 

clamp force while the KHI system uses an assembly of calibrated springs to apply a constant force. 

An example of this system has been installed at TWI (Figure 2.27). 

 

Figure 2.27 - KHI RFSSW system (Courtesy of TWI, Ltd). 

2.3.6.3. Bond technologies 

Bond technologies currently provides the most robust commercially available system. With a 

maximum rotation speed range of 6000 rev/min and maximum torque 16.9 N.m, this system 

enables the production of sub-one second weld. In the study performed by Larsen and Hovanski 

(2020), RFSSW AA5052-H36 sheets with 2mm were produced under one second using optimised 

process parameters. Both tool components can be operated under force or position control, 

providing great versatility to the system. Similar to the KHI system, the bond technologies 

machine can be coupled with a 6-axis robot or a gantry type system.  
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Figure 2.28 - Bond technologies RFSSW system (Bond technologies 2018) 
 

 Residual Stresses  

The characterisation of residual stress fields in engineering components and welded assemblies 

is important to ensure their structural integrity in safety-critical applications. The presence of 

residual stresses can have a detrimental effect on the mechanical performance of the component 

and its assembly during service. As explained by Leggatt (2008), the development of residual 

stresses in welded assemblies can be attributed to the following factors: 

◼ The fabrication operations prior to/after joining (manufacturing and machining); 

◼ The geometry of the parts to be joined; 

◼ The restraints applied to the parts during and after welding; 

◼ The welding process and procedure; 

◼ The thermal or mechanical loading of components during service life; 

During welding, residual stresses arise due to the restricted thermal expansion of the weld 

material by the cold materials in its vicinity. In fusion welding, residual stress levels are often at, 

or very close to, parent material or weld metal yield strength. Even though FSW is a solid-state 

joining technology, during which melting and solidification of the materials is avoided, formation 

of residual stresses is inevitable. As summarised by Staron, Kocak and Williams (2002) and 
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Threadgill et al. (2009), residual stresses in FSW present an “M” shape distribution, as shown in 

Figure 2.29. The tensile stress region encompass the nugget and TMAZ to the extent of the hot 

region beneath the shoulder, with a peak value usually located between HAZ and TMAZ. This “M” 

shape is produced by the non-uniform temperature field in the transverse section as explained 

by Peel et al. (2006). Lower level compressive residual stresses are produced away from the weld 

region, to balance the tensile stress.  

 

 

Figure 2.29 - Typical distribution of residual stress in FSW of similar material. 

To the best of the authors knowledge, residual stresses measurements and distribution in a 

RFSSW joint has not been addressed in any publicly available source. With the advantages of this 

technology for the transport sector, further research in this topic is recommended. 

 Conclusions  

RFSSW has clear advantages compared to other mainstream single-point joining or mechanical 

fastening processes. As a solid-state joining process, the RFSSW avoids many of the defects 

commonly associated with fusion welding of lightweight metals (e.g. porosity formation and 

solidification cracking). Involving peak temperatures below melting also offers advantages when 

controlling shrinkage and distortion, which is critical on large assemblies with multiple spot welds. 

It is also an energy-efficient process without the need for special shielding or cooling units. It is 

readily automated making it suitable for a production environment. The process can also weld 

different thicknesses without the need to exchange the design of tool design (riveting and 

clinching for instance, would require a bespoke tooling for each thickness/material combination). 
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This reduces the cycle time and costs on equipment in a production environment, especially when 

joining assemblies comprising various plate arrangements 

Unlike conventional mechanical fastening processes such as bolting or riveting, RFSSW does not 

require the addition of a third element to produce a joint. This means that there is no added 

weight to the final assembly and no need for pre- or post-joining operations such as hole pre-

drilling and cleaning, nor the application of sealants or coatings (Hameister and Bock 2011). When 

welding similar materials, the absence of a third element to produce a joint also means that the 

electrochemical potential of the welded material stays unaltered, providing higher corrosion 

resistance. The dynamic recrystallisation of the material in the stirred zone leads to a higher 

corrosion protection as observed in FSW (Maggiolino and Schmid 2008). Due to the independent 

vertical movement of the rotating components during the weld cycle, the RFSSW process 

produces a flush surface finish. This offers an improved surface finish compared to FSSW, riveted 

or resistance spot-welded joints. This is a valuable feature for applications where aerodynamics 

and air-flow management are critical factors. 

However, several factors are limiting the industrial application of the process for mass production, 

namely: 

◼ The limited number of suppliers that commercialise the RFSSW system. 

◼ The increased complexity of the system compared to a conventional FSSW machine. 

Despite the growing research in the RFSSW technology, some areas of industrial and academic 

relevance need to be further developed, namely: 

◼ Modelling of the RFSSW process 

As previously discussed in this review, the material movement is quite complex due to the thermal 

and mechanical nature of the RFSSW process. Most of the published research work regarding the 

modelling of the material flow during the RFSSW is mainly based on similar material 

combinations, in particular AA7xxx series alloys. Some authors proposed material flow models for 

RFSSW of dissimilar material combinations based on experimental studies. However, the 

development of numerical models would be a valuable contribution to further improve the 

optimisation of process parameter and augment the understanding of the material flow in similar 

and dissimilar material welding/joining. 
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◼ Process development 

RFSSW is a relatively new technology with a significant contribution to offer to improve the joining 

operations that are currently used in various industry sectors. However, the process still 

possesses great potential for improvement and development that could enable to overcome its 

current limitations.  

Topics that have been explored for other friction technologies include the effect of using a pre-

heating method to reduce the overall process force and weld cycle times (especially relevant for 

joining materials like steel). Another topic that can enhance the mixing of material in the stir zone 

is the use of opposite rotating tool components as explored by Fu (2019). The encouraging results 

from this study highlight the need for further research.  

The heat input during the weld cycle is mainly governed by the selected process parameters and 

influences the mechanical performance of the weld and the metallurgical regions. The use of a 

temperature control system as proposed by de Backer and Bolmsjö (2013) and Silva, de Backer 

and Bolmsjö (2017) in combination with an online control system can be a very useful process 

feedback control tool, with minimum workpiece instrumentation. 

◼ RFSSW tool data 

The tool geometry and material are both main process parameters in the RFSSW process and its 

influences in the heat generation, material flow and deformation during the weld cycle are 

unquestionable. A better understanding of the effect of different tool designs and tool materials 

on the weld quality and mechanical performance of the joint would allow to optimise the tool 

design for various applications based on its requirements.  

Also, a greater knowledge of the tool life and a more intuitive indicator of the tool wear during 

its service life would be beneficial to develop preventive maintenance plans and reduce costs 

caused by catastrophic failures. The investigation on different tool materials already used on 

other processes such as FSW and FSSW could enlarge the process capability to weld high strength 

materials such as steels and titanium alloys. 

◼ Residual stress investigation 

Although the peak temperature reached during RFSSW is substantially lower when compared to 

that of other fusion spot-welding processes, the impact of the heat accumulation by various spot 
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welds on the development and intensity of residual stresses has not been addressed in any 

publication. This is probably due to most of the research work that was conducted performed 

analysis only at a coupon level with a limited number of spots. Further research needs to consider 

how this phenomenon can affect the mechanical performance of the component.  
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RFSSW process parameter influence and development  

using a standard welding tool 

 

This chapter addresses the effect of process parameters on the mechanical performance of 

RFSSW joints between lapped sheets of AA2024-T3, AA5754-H24 and AA7075-T6. The research 

reported in this chapter was performed using a standard tool provided by the equipment 

manufacturer.  
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 Introduction 

Despite the relative infancy of the RFSSW process, several authors have published their results 

on the feasibility of RFSSW for joining similar and dissimilar materials, frequently reporting on the 

influence of key process parameters on joint static mechanical performance and microstructure 

(de Castro et al. 2018-B; Effertz et al. 2017; Tier et al. 2013 and Xu et al. 2018). However, as shown 

in the previous chapter, there is a lack of experimental data publicly available regarding the effect 

of tool material and geometrical features on joint microstructure and mechanical properties. The 

experimental work reported in this chapter aimed at understanding the effect of process 

parameters on the mechanical performance of RFSSW joints using a standard tool provided by 

the equipment manufacturer.  

 Materials and methods 

 Materials 

In this investigation, AA2024-T3, AA5754-H24 and AA7075-T6 sheets were used as base materials, 

all with a thickness of 2 mm and supplied as bare. AA2024-T3 and AA7075-T6 are high strength 

heat treatable aluminium alloys used in the aerospace industry. As explained by Mouritz (2012), 

the AA2024-T3 aluminium alloy is commonly used in fuselage and structural applications due to 

its fatigue resistance and improved toughness, while AA7075-T6 is mainly used as reinforcement 

for higher load-bearing structures for its higher strength. AA5754-H24 is a non-heat treatable 

aluminium alloy generally used for formed parts in the automotive industry, namely body-in-

white structures, body closure panels and internal door stiffeners, as described by Senkara and 

Zhang (2000). The chemical compositions and mechanical properties of the alloys, obtained from 

experimental testing at TWI and from the mill certificates for this material and thickness, are 

presented in Table 3.1 and Table 3.2, respectively. 

Table 3.1 - Chemical composition of the base material. 

Element 

[Weight %] 
Si Fe Cu Mn Mg Zn Cr Ti Al 

AA5754-H24 0.1 0.4 0.02 0.30 2.73 < 1.00 0.05 0.01 

remainder AA2024-T3 0.9 0.11 4.3 0.52 1.5 0.1 0.01 0.04 

AA7075-T6 0.07 0.17 1.5 0.03 2.4 5.9 0.2 0.03 
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Table 3.2 - Mechanical properties of the base material. 

 

Yield  

stress 

σ0.2% [MPa] 

Ultimate tensile  

stress 

σUTS [MPa] 

Elasticity 

modulus 

[GPa] 

Poisson 

ratio 

[ʋ] 

Elongation 

[%] 

Hardness 

[HV0.2] 

AA5754-H24 206.0 ± 2.4 264.1 ± 2.7 

73 0.33 

11.7 ± 0.6 77 ± 1.9 

AA2024-T3 343 ± 3.0 473 ± 5.0 18.0 ± 1.0 137 ± 4.9 

AA7075-T6 512 ± 2.0 580 ± 1.0 13.0 ± 0.7 177 ± 4.3 

 Welding equipment 

The work was carried out using TWI’s RFSSW system, shown in Figure 3.1. This system consists of 

a 6-axis articulated robot with a 300kg payload capacity manufactured by Kawasaki Heavy 

Industries Ltd (KHI), which has been fitted with a C-frame RFSSW gun. In contrast to other systems 

in the market relying purely on position control, KHI’s system incorporates force control capability 

on the shoulder component. This means that the plunge rate of the shoulder is determined by 

the input force applied to this component during the welding cycle. The C-frame gun is 

instrumented to monitor process parameters in real time, namely rotation speed, Z-position for 

each tool component, shoulder force and probe vertical speed. 

 

Figure 3.1 - TWI’s FW-35 KHI RFSSW system. 

This information was recorded with the manufacturer’s data acquisition system and processed 

using a dedicated macro. The RFSSW equipment specifications are provided in Table 3.3. 
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Table 3.3 - TWI RFSSW system specifications 

Robot System 

Gun Mounting 6 axis articulating arm 

Gun specifications 

Drive Method 
AC servomotor drive 

(Shoulder axis/rotating axis/probe axis) 

Force Range 1,470 to 14,700 N (150 to 1,500 kgf) 

RPM Range 0 to 2,160 rev/min 

Pressure Shaft Stroke Max. 180 mm 

Mass Approx. 190 kg 

 Tool design 

The RFSSW tool used for the welding trials was provided by KHI and it is shown in Figure 3.2. The 

tool material of all components was a metal matrix composite of tungsten carbide particles 

imbedded in a cobalt binder and coated with a low friction diamond-like carbon coating. This tool 

material has been used for FSW and FSSW to weld steel and titanium alloys due to its high 

toughness and hardness as well as its dimensional stability under service conditions.  

 

Figure 3.2 - KHI RFSSW tool components. 

The geometry of the tools was cylindrical without any superficial features, unlike the conventional 

FSW or FSSW tools. The dimensions of the components are provided in Table 3.4. 

Table 3.4 - RFSSW tool dimensions 

 Probe Shoulder Clamp 

External diameter [mm] Ø 4 Ø 7 Ø 16 

Internal diameter [mm] n/a Ø 4 Ø 7 

 Welding sequence 

Interface surfaces were manually cleaned with acetone prior to welding to remove contaminants. 

Similar material and single spot RFSSW specimens were produced using the shoulder-plunge 

variant of RFSSW [Figure 2.5.A)], operating in force-control mode. A full-factorial design of 

experiments (FFDoE) with 2 factors and 3 levels was performed to determine the optimised 
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weldability range of the selected alloys. The best performing process parameter combination was 

determined based on lap shear strength and cross-section analysis. Table 3.5 presents the range 

of the process parameters varied in the present investigation. An Analysis of Variance (ANOVA) 

was conducted to quantify the influence of each process parameter as well as their interaction 

on the shear strength. All the statistical analysis in this work was performed using the software 

MINITAB® 17. 

Table 3.5 - RFSSW process parameters 

Factor Level 1 Level 2 Level 3 

Rotation Speed [RS] [rev/min] 1000 1580 2160 

Plunge Depth [PD] [mm] 

AA5754-H24 

AA2024-T3 and AA7075-T6 

 

1.8 

2.0 

 

2.0 

2.2 

 

2.2 

2.4 

Stage 1 Dwell time [s] 

AA5754-H24 

AA2024-T3 and AA7075-T6 

 

1.0 

2.0 

Shoulder plunge force [kN] 

AA5754-H24 

AA2024-T3 and AA7075-T6 

 

13.5 

14.5 

Clamp force [kN] 7.0 

The process parameter optimisation on AA5754-H24 was initially performed followed by the 

higher strength alloys, AA2024-T3 and AA7075-T6. The plunge depth range was increased for the 

higher strength alloys following the findings from the mechanical testing of AA5754-H24. Dwell 

times and shoulder plunge forces were adjusted to the higher strength alloys due to the increase 

of hardness.  

The geometry of the testing specimens is shown in Figure 3.3 and Figure 3.4. Specimens for lap 

shear and fatigue testing were produced in accordance with BS EN ISO 18785-4:2018 and BS EN 

ISO 14324:2003, respectively. Sheet rolling direction was perpendicular to the loading direction 

on both geometries. Specimens for cross tension testing were produced in accordance with BS 

EN ISO 18785-4:2018. 

The use of interfacial sealants in assembly joints is a common practice in the aerospace industry 

to protect against corrosion in extremely variable conditions. Therefore, once the most promising 

process parameter combination was identified, RFSSW with an interfacial aerospace sealant was 

performed to investigate its effect on the mechanical strength and microstructural properties of 

the weld. This was performed for the AA2024-T3 and AA7075-T6 alloys. A high temperature 

resistant manganese dioxide-based polysulphide polymer sealant was used in this investigation 
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in accordance with industrial practices. The sealant was applied on the overlapping area of the 

top and bottom sheets with a layer thickness of approximately 0.15mm. The lap shear strength 

of the cured sealant specimen without a weld was also evaluated under shear loading conditions. 

The welding cycle was performed with the sealant in the uncured state followed by natural curing 

at ambient temperature. The sealant properties are shown in Table 3.6. 

 

Figure 3.3 - Lap shear and fatigues test specimen geometries. 

 

Figure 3.4 - Cross tension test specimens. 
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Table 3.6 - Interfacial sealant properties 

Sealant type PR-1770 class C-12 faying surface sealant 

Viscosity of base compound [poise] 280 

Application timeframe [hours] 12 

Temperature range [°C] - 55 to + 180 

 Microstructural and mechanical characterisation 

Metallographic specimens were sectioned, polished and etched with Keller reagent for 

microstructural analysis. Optical microscopy was conducted using an OLYMPUS GX71 inverted 

geometry optical microscope with a Colorview III camera. As previously mentioned, AA2024-T3 

and AA7075-T6 alloys are heat-treatable alloys, meaning that changes in distribution of the main 

strengthening precipitates, during and after welding, will affect the mechanical properties of the 

weld. Also, the sealant used in this investigation requires a minimum of 14 days to be fully cured. 

Therefore, mechanical characterisation was performed seven weeks after welding, ensuring the 

consistency between the testing of bare aluminium specimens and specimens with interfacial 

sealant. Weld static strength was evaluated via lap shear and cross-tension testing in accordance 

with BS EN ISO 18785-4:2018. Both tests were performed using an INSTRON 8502 tensile machine 

with a displacement rate of 1 mm/min at room temperature. Three specimens of each process 

parameter combination were tested.  

Fatigue testing was performed for the most promising process parameter combination in 

accordance with BS EN ISO 14324:2003. A stress ratio of R = 0.1 was set under a sinusoidal axial 

tensile with constant amplitude load and a frequency of 3 Hz. Loading conditions of 20, 35, 55 

and 70% of lap shear strength were tested, with three specimens per loading condition and a 

stopping criterion of 106
 cycles or complete failure of the specimen was defined. The tests on 

AA5754-H24 were ceased after a maximum amplitude of ± 1 mm was reached while the tests on 

AA2024-T3 and AA7075-T6 were ceased after complete specimen failure. Fracture surfaces from 

selected conditions were inspected under scanning electron microscopy (SEM) using a Zeiss EVO 

LS15. 

Residual stress measurements were performed using the contour method. The contour method 

is a destructive residual stress measurement technique based on the stress relaxation. As 

described by Prime (2001), the displacement profile of the cut surface is measured with a 

coordinate measuring machine (CMM) and postprocessed to input in a 3D Finite Element model 

(FEM). A linear elastic finite element analysis is finally used to calculate the residual stress in the 
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sample. This method is a quick and cost-effective that has been used previously for other welding 

technologies (Frankel et al. 2009; Liu and Yi 2013 and Thibault et al. 2010). 

Measurements were performed for the most promising process parameter combination on a 

bare multiple spot-weld specimen as shown in Figure 3.5. A spacing between spot-welds and each 

row was set to approximately three times the spot size diameter, which is consistent with the 

best practices for aerospace riveted joints (Skoruba and Skoruba, 2012). The arrangement of the 

spot-welds within the specimen aims to replicate the typical design of riveted fuselage panels 

found in aeroplanes. For comparison, measurements on bare RFSSW single spot-weld specimen 

were also performed. The single spot-weld specimen analysis of the AA2024-T3 and AA7075-T6 

specimens was produced using two overlapped 136 x 60 x 2 mm sheets with a spot-weld in the 

centre of the sheet, while the single-spot specimen analysis of AA5754-H24, was performed on a 

specimen produced in a lap-shear configuration, as shown in Figure 3.3. Samples were cut on a 

Fanuc Robocut α-C600i wire electric discharge machine with 0.25 mm diameter brass wire. The 

samples were symmetrically clamped while cutting along the A-A and B-B plane through the 

sample thickness at a speed of 0.7 mm/min without wire breakage. Cutting direction for A-A and 

B-B plane was, respectively, from weld nr 5 to nr 6 and from weld nr 2 to nr 10. To improve the 

surface finish and reduce the magnitude of cutting artefacts, the low power cutting settings were 

select, as reported by Ahmad et al. (2018). Surface displacement profile was measured with a 

Zeiss Contura g2 CMM with a resolution of 0.2 µm and an accuracy of 1.5 µm (Carl Zeiss AG 2013). 

A 3 mm diameter touch trigger probe was used to measure two profiles at mid-thickness of the 

top sheet and the bottom sheet, with a spacing between individual measurement points of 

0.1 mm. The displacement data was post-processed for data aligning, cleaning, flattening and 

smoothing using the software Matlab®. Spline knot spacing was selected based on the good fit of 

the averaged displacement data. The data smoothing of sample was performed with a cubic 

spline with knot spacing of 2.5 mm along both X and Y-directions. The finite element model of the 

cut sample was built using an 8-node brick element (C3D8R) from the software Abaqus® with a 

mesh size of approximately 0.2 mm.  



Chapter 4 - RFSSW tool material evaluation 
 

 
PhD Thesis - Pedro de Sousa Santos 51 Coventry University (2020) 

 

 

Figure 3.5 - Schematic drawing of the A) RFSSW residual stress measurement specimen and B) sectioning planes at 

mid length (A-A) and along the length (B-B). 
 

 Results and discussion 

 Lap shear strength analysis 

3.3.1.1. AA2024-T3 

Table 3.7 shows the lap shear testing results for the weld conditions obtained from the FFDoE. 

Within the explored process parameter window, lap shear strength values ranged between 

5.56 ± 0.21 kN and 8.59 ± 0.10 kN. In general, standard deviation values varied between 0.8 

to 4.6 % of the lap shear strength value, supporting the consistency and repeatability of the 

results. Shear strength values improved as plunge depth values increased and rotation speed 

values decreased. The strength gain with the increase of plunge depth can be attributed to an 

increase of welded area and improved bonding at the weld interface. The lower rotation speed 

values contribute to a lower heat input and more effective stirring action preventing frictional slip 

between the tool and the weld material, as observed in friction stir welding (Reilly et al. 2015; 

Schneider, Beshears and Nunes Jr 2006). Based on a “maximum strength” criteria, the optimised 

process parameter combination was obtained for 1000 rev/min and 2.4 mm, corresponding to 

condition W3. This process parameter combination will be used later in this section to determine 

the effect of an interfacial sealant on the static and fatigue strength, as well as the microstructural 

characteristics. 
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Table 3.7 - Lap shear strength results of RFSSW AA2024-T3 

Welding 

Condition 

Rotation Speed 

[rev/min] 

Plunge Depth 

[mm] 

Lap Shear Strength 

[kN] 

Failure 

Mode 

W1 

1000 

2.0 6.97 ± 0.29 

Shear fracture 

through the weld 

nugget 

W2 2.2 8.01 ± 0.20 

W3 2.4 8.59 ± 0.10 

W4 

1580 

2.0 6.00 ± 0.13 

W5 2.2 7.88 ± 0.36 

W6 2.4 8.52 ± 0.26 

W7 

2160 

2.0 5.56 ± 0.21 

W8 2.2 7.47 ± 0.06 

W9 2.4 8.27 ± 0.08 

As a potential replacement for resistance spot welding and riveting, lap shear strength values of 

RFSSW should be compared with the strength requirements for these joining methods. Based on 

the thickness and material properties of the alloys used in this investigation, the AWS 

D17.2/D17.2M:2019 standard specifies for resistance spot welding a minimum lap shear strength 

of 4.56 kN per spot. All conditions tested in this investigation exceeded this value, confirming that 

the RFSSW process is a suitable replacement technology. The shear strength design for a 1/4” 

MS20426DD (AA2024-T31) solid rivet is 8.99 kN for AA2024-T3 joints, as specified by MMPDS-04 

(2008). The shear strength of W3 did not exceeded the strength requirements of an equivalent 

riveted joint, with a value of 95.5% of the strength requirement. However, the negligible 

difference between the strength values demonstrate the potential of RFSSW as a suitable joining 

technology for aerospace applications. 

The ANOVA of the acquired lap shear strength data from RFSSW AA2024-T3 is presented in 

Table 3.8. For this analysis, a confidence interval of 95% (α = 0.05) was used. A process parameter 

is considered relevant to the output if its contribution is higher than the associated error. The 

results suggest that PD was the factor with the greatest influence on lap shear strength values 

with a contribution of 78.93%. The interaction between factors and the second order factors 

presented a negligible effect on the shear strength values. Within the process parameter window 

tested, RS has relatively low influence on the mechanical properties of the weld. As previously 

mentioned, the alloys used in this investigation are designated as heat treatable, i.e. their 

mechanical properties can be influenced by thermal cycles. Since rotation speed is one of the 

process parameters that controls the heat input, the minor influence of rotation speed to the 

weld shear strength is a somewhat contradictory result. A possible explanation for this conclusion 

is that in the RFSSW process, due to high plunge and retraction speeds, a variation on the rotation 
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speed value does not translate into a significant increase or decrease of the total number of 

rotations of the tool during the welding cycle. 

Table 3.8 - ANOVA for the shear strength output of RFSSW AA2024-T3. 

Source DF 
Sum of 

Squares 

Mean 

Square 

F 

Value 

P 

Value 

Contribution 

[%] 

RS 1 2.57 0.78 11.04 0.003 8.62 

RS2 1 0.00 0.00 0.01 0.908 0.00 

PD 1 23.51 0.01 0.20 0.000 78.93 

PD2 1 1.33 1.33 18.66 0.000 4.45 

RS x PD 1 0.89 0.89 12.51 0.002 2.98 

Error 21 1.49 0.07   5.01 

Total 26 29.79    100.00 

To predict the shear strength of the joint within the process parameter window explored, a 

second order regression model was developed (Equation 1). Table 3.9 presents the second order 

regression model equation with the correspondent coefficient of correlation, R2. It should be 

noted that, the R2 is considerably high (> 0.95). This is an indication that there is good agreement 

between the experimental results and the results from the model. 

Table 3.9 - Second order regression equation for RFSSW AA2024-T3. 

 
Equation 

[kN] 

R2  

Value 

Equation 1 
 LSSST = −52.4 − 5.93 × 10−3 × RS +  53.7 × PD −

−11.75 × PD2 + 2.346 × 10−3 × RS × PD 
0.997 

The contour plot of Equation 1 is presented in Figure 3.13. The dominant effect of plunge depth 

compared to the rotation speed on the shear strength can be observed by the higher variation of 

shear strength along the X-axis compared to the Y-axis. 
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Figure 3.6 - Contour plot of lap shear strength as function of process parameters for RFSSW AA2024-T3. 
 

To determine the accuracy of the model, specimens with process parameters from within the 

explored process parameter window were performed and tested to compare the experimental 

shear strength value (LSS Actual) against the predicted shear strength value from the model 

(LSS Predicted). The results are presented in Table 3.10. Considering that the discrepancy 

between the values is small and within the confidence interval, the results confirm the accuracy 

of the model.  

Table 3.10 - Comparison between experimental shear strength and predicted shear strength from Equation 1. 

Rotation Speed  

[rev/min] 

Plunge Depth  

[mm] 

LSS Predicted 

[kN] 

LSS Actual 

[kN] 

Error 

[%] 

1280 2.4 8.51 ± 0.60 8.27 ± 0.09 2.80 

Figure 3.7 shows the fracture surface of condition W3 with magnified regions obtained by SEM 

of RFSSW AA2024-T3. All specimens fractured through the nugget region. 
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Figure 3.7 - Fracture surfaces of RFSSW AA2024-T3 weld condition W3 (RS = 1000 rev/min; PD = 2.4mm): 

A) Top sheet; 

B) Bottom sheet; 

C) SEM fractography; 

D) High magnification region – location shown in Figure 3.7.C); 

E) High magnification region – location shown in Figure 3.7.C); 

F) High magnification region – location shown in Figure 3.7.C). 
 

Figure 3.7.B) shows the fracture surface on the bottom sheet of RFSSW AA2024-T3. Overlapped 

joining configurations generally possess a transition region between the bonded weld area and 

the unbonded interface, designated as the hook, which is prone to stress concentration. A full 

description of this feature will be presented in Section 3.3.4.1. In this investigation, two types of 

cracks developed on opposite sides of the weld: an initial crack initiated by the nucleation of 

annular cracks at the tip of the hook (Figure 3.7.B)-1) and a circumferential crack, originating at 

the hook from the opposite side (Figure 3.7.B)-2) propagating perpendicular to the loading 

direction. These crack initiating sites and the type of cracks are closely related to the type of 

stresses that are generated on the edges of the spot-weld. As shown in Figure 3.8, due to the 

asymmetric design of the overlapped configuration, the location from Figure 3.7.B)-1) on the 

bottom sheet relate to areas of tensile stresses while the location from Figure 3.7.B)-2 on the 
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bottom sheet relate to areas of compressive stresses. For the top sheet, the same locations on 

the specimen have stresses of opposite nature. 

 

Figure 3.8 - Stress regions caused by asymmetric loading on lap joints:  

A) tensile-stressed side of top sheet; 

B) tensile-stressed side of bottom sheet; 

C) load paths. 

Due to the asymmetry of the forces being applied to the specimen under unguided shear loading 

conditions, the weld nugget is forced to rotate and deform to a certain angle. This rotation 

generates a perpendicular load component on the load vector that is perpendicular to the sheet 

surface, (𝐹𝑁
⃗⃗ ⃗⃗  ), forcing the crack to propagate at an angle with the loading direction. Figure 3.9 

shows a schematic drawing of this phenomenon at an extreme stage. The deformation angle 

before failure will mainly depend on the ductility of the joint. This phenomenon, although of small 

effect, can be seen in Figure 3.7.B) by the inclined fracture surfaces and by the striation pattern 

present in Figure 3.7.F). Complete specimen fracture occurred with the interception of both 

cracks at the periphery of the weld nugget.  
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Figure 3.9 - Rotation of the nugget due to unguided asymmetric loading. 

Figure 3.10 presents the load-displacement curve for the strongest and the weakest conditions, 

W3 and W7 respectively, of RFSSW AA2024-T3 under shear loading conditions. The minimum 

strength requirement for AWS D17.2/D17.2M:2019 and MMPDS-04 are also shown on each 

graph. For the strongest and weakest weld condition, the behaviour under shear loading 

conditions is very similar. Specimens exhibited low deformation during the plastic deformation 

stage, which is coherent with a brittle fracture of the weld. 

 

Figure 3.10  - Lap shear test load-displacement curve of RFSSW AA2024-T3 weld conditions W3 (RS = 1000 rev/min; 

PD = 2.4 mm) and W7 (RS = 2160 rev/min; PD = 2.0 mm). 
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Table 3.11 shows the strength comparison between RFSSW in the bare condition and in the 

presence of an interfacial sealant. The use of sealants on overlapped configurations typically has 

a detrimental effect on the weld mechanical properties, since the sealant layer acts both as a 

thermal insulator and barrier to material stirring leading to sealant entrapment in the weld area. 

In this investigation, the presence of the interfacial sealant improved the lap shear strength with 

an increase of 51% compared to the bare material condition. 

Table 3.11 - RFSSW AA2024-T3 weld conditions W3 lap shear strength comparison between the bare and sealant 

condition 

Welding  

Condition 

Rotation Speed 

[rev/min] 

Plunge Depth 

[mm] 

Lap Shear Strength 

[kN] 

Failure 

Mode 

AA2024-T3  

Bare 
1000 2.40 

8.59 ± 0.10 
Shear through  

the weld nugget 

AA2024-T3  

Sealant 
12.98 ± 1.15 

Shear through  

the weld interface 

Figure 3.11 presents the load-displacement curve for weld condition W3 of RFSSW AA2024-T3 

specimens in the bare and with interfacial sealant condition. The minimum strength requirement 

from both AWS D17.2/D17.2M:2019 and MMPDS-04 are also shown. Considering that low 

rotation speed values reduce the heat input and improves the shear strength of the weld, it is 

likely that this increase in strength comes from an even lower peak temperature due to the 

energy absorption by the sealant during volatilisation of the solvent. 

 

Figure 3.11 - Lap shear test load-displacement curve of RFSSW AA2024-T3 weld condition W3 (RS = 1000 rev/min; 

PD = 2.4 mm) in bare and with sealant condition. 

Figure 3.12 shows the fracture surface of RFSSW AA2024-T3 welding condition W3 with sealant 

with magnified regions obtained by SEM. Similar fracture mechanism to the one observed in the 

bare specimen condition was recorded, however the crack propagated through the joint line 
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remnant on RFSSW AA2024-T3, as opposed to what was observed in the bare condition. Poor 

bonding and material stirring at the weld centre can be observed in Figure 3.12.C) and E), which 

can be the cause for the different fracture path. Away from the weld area and on the sealant side, 

a predominant cohesive failure can be observed. Despite not using any sealant squeeze-out 

technique before the welding cycle, most of the sealant was displaced away from the weld area 

as observed in Figure 3.12.A), B) and F). Microscopic analysis will provide further indication of any 

sealant remnants within in the weld region. 

 

Figure 3.12 - Fracture surfaces of RFSSW AA2024-T3 weld condition W3 with sealant (RS = 1000 rev/min; PD = 2.4 

mm):  

A) Top sheet; 

B) Bottom sheet; 

C) SEM fractography; 

D) High magnification region – location shown in Figure 3.12.C); 

E) High magnification region – location shown in Figure 3.12.C); 

F) High magnification region – location shown in Figure 3.12.C). 
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As mentioned before, an increase in the shear strength values for the RFSSW with sealant 

specimens was observed. Another possible explanation for this phenomenon can be the adhering 

layer of sealant at the vicinity of the spot-weld. Once fully cured, specimens only bonded with 

sealant were also tested under shear loading conditions producing an average shear strength 

value of 2 kN. Therefore, the load distribution through this area further prevented nugget 

rotation. As observed in the work of Amâncio-Filho et al. (2011-B), one of the main bonding 

mechanisms for joining of AZ31 magnesium alloy and carbon fibre reinforced poly (phenylene 

sulphide) was the interfacial chemical adhesion between the polymer and the alloy. 

3.3.1.2. AA5754-H24 

Table 3.12 shows the lap shear testing results for the weld conditions selected based on the 

FFDoE. Shear strength load varied between 4.93 ± 0.08 kN and 7.16 ± 0.02 kN, within the explored 

process parameter window. The standard deviation vales for all process parameter combinations 

varied between 0.28 % and 1.62 % of the shear strength, supporting the consistency and 

repeatability of the results and the joining process. As previously observed, the shear strength 

values improved as plunge depth values increased and rotation speed values decreased. This 

strength gain with the increase of plunge depth can be attributed to an increase of the welded 

area and better bonding at the weld interface. Although this alloy group is considered as non-

heat treatable, the lower rotation speed values contribute to a lower heat input, reducing 

material overaging and grain growth. 

Table 3.12 – Lap shear strength results of AA5754-H24. 

Welding 

Condition 

Rotation Speed 

[rev/min] 

Plunge Depth 

[mm] 

Lap Shear Strength 

[kN] 

Failure 

Mode 

W10 

1000 

1.8 5.87 ± 0.07 

Shear fracture 

through the 

weld interface 

W11 2.0 6.85 ± 0.04 

W12 2.2 7.16 ± 0.02 

W13 

1580 

1.8 4.99 ± 0.02 

W14 2.0 6.37 ± 0.06 

W15 2.2 6.76 ± 0.09 

W16 

2160 

1.8 4.93 ± 0.08 

W17 2.0 5.91 ± 0.05 

W18 2.2 6.16 ± 0.06 

The optimised process parameter settings for this study, based on a “maximum strength” criteria, 

was obtained for condition W12 with a rotation speed value of 1000 rev/min and a plunge depth 

of 2.2 mm. As a potential replacement for resistance spot welding, strength values were 
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compared against the strength requirements set by the relevant standard. Based on the 

AWS D17.2/D17.2M:2019 standard for spot-welding strength requirements, a minimum lap 

shear strength value of 3.80 kN per spot is specified for this alloy. All conditions tested in this 

investigation exceeded this value, supporting the suitability of the RFSSW process as a joining 

process for lightweight automotive applications.  

Table 3.13 presents the ANOVA of the acquired lap shear strength data from RFSSW AA5754-H24. 

A standard 95 % confidence interval was used, similar to what was used in the previous section. 

In this study, PD was the factor with the greatest influence on the shear strength values with a 

contribution of 62%, followed by RS with a contribution of 28%. The low contribution of the RS x 

PD suggests that there is a negligible effect of the process parameter interaction on the shear 

strength. Considering that AA5754-H24 belongs to a strain hardened alloy group, the higher 

contribution value of RS compared to the value obtained for AA2024-T3 is an interesting result. 

This could be attributed to the influence of the rotation speed to the thermal softening of the 

work-hardened treatment. 

Table 3.13 - ANOVA for the shear strength output of RFSSW AA5754-H24. 

Source DF 
Sum of 

Squares 

Mean 

Square 

F 

Value 

P 

Value 

Contribution 

[%] 

RS 1 4.13 0.06 12.48 0.00 28.02 

RS2 1 0.07 0.07 42.87 0.00 0.47 

PD 1 9.19 1.14 7.29 0.01 62.32 

PD2 1 0.97 0.96 9.86 0.01 6.54 

RS x PD 1 0.00 0.01 3.92 0.06 0.02 

Error 21 0.39 0.02   2.62 

Total 26 14.75    100.00 

A second-order model was developed to predict the shear strength value within the process 

parameter window explored. Table 3.14 presents the second order model equation (Equation 2), 

along with the correspondent coefficient of correlation, R2. The large value of R2 suggests a good 

fit between the model and the results obtained experimentally.  

Table 3.14 - Second order regression equation for RFSSW AA5754-H24 

 
Equation 

[kN] 

R2  

Value 

Equation 2 
 LSSST = −39.28 − 1.56 × 10−3 × RS + 43.9 × PD −

−10 × PD2 + 1.40 × 10−4 × RS × PD 
0.994 

The response surface plot from Equation 2 is presented in Figure 3.13. As observed in the previous 

section and by the ANOVA table, the surface plot shows the dominant effect of plunge depth 
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compared to the rotation speed on the shear strength by the higher variation of shear strength 

values along the X-axis compared to the Y-axis. The strongest process parameter combination can 

be found for high plunge depth and low rotation speed values, as observed in Table 3.12. 

However, it should be noted that significantly lower rotation speed and higher plunge depth 

values than the ones tested could lead to process parameter combinations unsuitable for 

welding. These conditions may not generate enough frictional heat to plasticise the material. For 

such low values of rotation speed, Kubit et al. (2018-A) have reported internal and volumetric 

defects and de Castro et al. (2018-A) considered to be unsuitable for welding due to low heat 

input. 

 

Figure 3.13 - Contour plot of lap shear strength as function of process parameters for RFSSW AA5754-H24. 

To determine the accuracy of the model, specimens with process parameters from within the 

explored process parameter window were produced and tested to compare the experimental 

shear strength value (LSS Actual) against the predicted shear strength value from the model 

(LSS Predicted). The results are presented in Table 3.15 and it can be observed that the 

discrepancy between the values is negligible, confirming the accuracy of the model.  

Table 3.15 - Comparison between experimental shear strength and predicted shear strength from Equation 2. 

Rotation Speed  

[rev/min] 

Plunge Depth  

[mm] 

LSS Predicted 

[kN] 

LSS Actual 

[kN] 

Error 

[%] 

1280 2.2 6.905 ± 0.310 6.909 ± 0.024 0.06 
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Figure 3.14 presents the shear testing load-displacement curve for the strongest and the weakest 

conditions, W12 and W16 respectively. Both welding conditions exhibited similar load-

displacement behaviour and fractured under the same failure mode, designated by shear fracture 

through the interface. The stronger welding condition, W12, has experienced significantly more 

plastic deformation which is consistent with the higher displacement values recorded for this 

sample. This deformation comes from the nugget rotation phenomenon explained in 

Section 3.3.1.1 before failure and can be clearly seen in Figure 3.15.A). 

 

Figure 3.14 - Lap shear test load-displacement curve of RFSSW AA5754-H24 weld conditions W12 (RS = 1000 rev/min; 

PD = 2.2 mm) and W16 (RS = 2160 rev/min; PD = 1.8 mm). 

Figure 3.15 shows the fracture surface for condition W12 and magnified regions obtained by SEM. 

The fracture mode is similar to the one observed and described in Section 3.3.1.1, with the crack 

propagating along the joint line remnant. The principle of crack initiation and propagation was 

the same for both the strongest and weakest weld conditions. However, the extent of the plastic 

deformation from the rotation of the nugget experienced by the stir zone region was higher on 

the strongest conditions, as shown in Figure 3.15.A), suggesting better bonding conditions. The 

presence of microscopic voids (commonly designated as dimples) throughout the surface is 

consistent with a predominantly ductile fracture mode. Different dimple formations and shapes 

can be seen between Figure 3.15.D) and E) which can be attributed to different crack propagation 

rates and microstructure gradients. 
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Figure 3.15 – Fracture surfaces of condition W12 (RS = 1000 rev/min; PD = 2.2 mm):  

A) Top sheet; 

B) Bottom sheet; 

C) SEM fractography; 

D) High magnification region – location shown in Figure 3.15.C); 

E) High magnification region – location shown in Figure 3.15.C); 

F) High magnification region – location shown in Figure 3.15.C). 

3.3.1.3. AA7075-T6 

Table 3.16 shows the lap shear testing results for the weld conditions obtained from the FFDoE. 

Within the explored process parameter window, shear strength values of RFSSW AA7075-T6 

varied between 6.03 ± 0.04 kN and 9.10 ± 0.08 kN. The results obtained were consistent and 

repeatable with standard deviation values ranging between 0.66 % and 2.53 % of the shear 

strength value. Similar trend to the previous alloys was observed with the shear strength values 

improving as plunge depth values increased and rotation speed values decreased. Considering 

the properties of this alloy, the explanation for the increase of strength is similar to the one 

presented for the AA2024-T3. The optimised process parameter combination within the explored 
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process parameter range, based on a “maximum strength” criteria, was obtained for 

1000 rev/min and 2.4 mm, corresponding to condition W21 and it will be used later in this section 

to determine the impact of an interfacial sealant on the weld microstructure and mechanical 

properties. 

Table 3.16 - Lap shear strength results of RFSSW AA7075-T6. 

Welding 

Condition 

Rotation Speed 

[rev/min] 

Plunge Depth 

[mm] 

Lap Shear Strength 

[kN] 

Failure 

Mode 

W19 

1000 

2.0 7.06 ± 0.17 

Shear fracture 

through the weld 

interface 

W20 2.2 8.68 ± 0.19 

W21 2.4 9.10 ± 0.08 

W22 

1580 

2.0 7.17 ± 0.06 

W23 2.2 8.34 ± 0.06 

W24 2.4 9.09 ± 0.11 

W25 

2160 

2.0 6.03 ± 0.04 

W26 2.2 7.52 ± 0.19 

W27 2.4 8.31 ± 0.07 

As performed for the previous sections, shear strength values of RFSSW were compared with the 

shear strength standards for resistance spot welding and riveting. Based on the thickness and 

material properties of the alloys used in this investigation, the AWS D17.2/D17.2M:2019 standard 

specifies for resistance spot welding a minimum lap shear strength of 4.56 kN per spot. All 

conditions tested in this investigation exceeded this value, confirming that the RFSSW process is 

a suitable resistance spot welding replacement technology. The shear strength design for a 

1/4” MS20426DD AA2024-T31 solid rivet, according to MMPDS-04 (2008), is 9.43 kN for AA7075-

T6. In this investigation, with a shear strength value of 96.5% of the shear strength of an 

equivalent rivet, the maximum lap shear strength did not exceed the strength requirements. 

However, the negligible difference between the strength values demonstrate the potential of 

RFSSW as a suitable joining technology for aerospace applications. 

The ANOVA of the acquired shear strength data from RFSSW AA7075-T6 is presented in 

Table 3.17. For this analysis, a standard confidence interval of 95% (α = 0.05) was used. The results 

suggest that PD was the factor with the greatest influence on lap shear strength values with a 

contribution of 73.54 %. Similar to what was observed for AA2024-T3, the rotation speed has 

small influence on the weld shear strength. Considering the influence of this parameter on the 

process heat input, this is a non-intuitive result for this heat treatable alloy. 
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Table 3.17 - ANOVA for the shear strength output of RFSSW AA7075-T6. 

Source DF 
Sum of 

Squares 

Mean 

Square 

F 

Value 

P 

Value 

Contribution 

[%] 

RS 1 4.42 0.08 2.84 0.106 16.68 

RS2 1 1.04 1.04 35.58 0.000 3.94 

PD 1 19.48 1.07 38.46 0.000 73.54 

PD2 1 0.89 0.89 30.18 0.000 3.34 

RS x PD 1 0.04 0.04 1.45 0.242 0.16 

Error 21 0.67 0.03   2.33 

Total 26 26.49    100.00 

A second order regression model to predict the shear strength of the weld within the process 

window explored was developed. Table 3.18 shows the model equation, Equation 3, along with 

the coefficient of correlation, R2. The R2 is considerably high (> 0.95), which indicates good 

agreement between the experimental results and the results from the model.  

Table 3.18 - Second order regression equation for RFSSW AA7075-T6 

 
Equation 

[kN] 

R2  

Value 

Equation 3 
LSSST = −49.45 + 1.94 × 10−3 × RS + 1 × 10−6 × RS2 +

+46.66 × PD − 9.61 × PD2 + 5.14 × 10−4 × RS × PD  
0.977 

The contour plot of Equation 3 is presented in Figure 3.16. The dominant effect of plunge depth 

compared to the rotation speed on the shear strength is further supported by the higher variation 

of shear strength along the X-axis compared to the Y-axis. 

 
Figure 3.16 - Contour plot of lap shear strength as function of process parameters for RFSSW AA7075-T6. 
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To determine the accuracy of the model, specimens with process parameters from within the 

explored process parameter window were performed and tested to compare the experimental 

shear strength value (LSS Actual) against the shear strength predicted by Equation 3 (LSS 

Predicted). The results are presented in Table 3.19 and it can be observed that the discrepancy 

between the predicted and the experimental shear strength value is negligible, confirming the 

accuracy of the model.  

Table 3.19 - Comparison between experimental shear strength and predicted shear strength from Equation 3 

Rotation Speed  

[rev/min] 

Plunge Depth  

[mm] 

LSS Predicted  

[kN] 

LSS Actual  

[kN] 

Error 

[%] 

1280 2.4 9.22 ± 0.39 8.96 ± 0.06 2.94 

Figure 3.17 shows the fracture surface of condition W21 with magnified regions obtained by SEM 

of RFSSW AA7075-T6. In this investigation, both AA2024-T3 and AA7075-T6 joint samples 

presented similar fracture mechanisms, described as shear through the interface, with different 

fracture propagation paths. For RFSSW AA2024-T3, the initial crack propagated through the weld 

nugget, while on the RFSSW AA7075-T6 the initial crack propagated along the joint line remnant 

leading to the separation of the top sheet from the bottom sheet. An extensive explanation of 

this fracture mechanism and particularities of an unguided shear test has been previously 

presented in Section 3.3.1.1. 

Figure 3.18 presents the load-displacement curve for the strongest and the weakest conditions, 

W21 and W25 respectively, of RFSSW AA2024-T3 under shear loading conditions. The minimum 

strength requirement for AWS D17.2/D17.2M:2019 and MMPDS-04 (2008) are also shown on 

each graph. For the strongest and weakest weld condition, the behaviour under shear loading 

conditions is very similar, with the specimens presenting poor elongation during the plastic 

deformation stage. This is coherent with the brittle fracture surface observed in Figure 3.17. 
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Figure 3.17 - Fracture surfaces of RFSSW AA7075-T6 condition W21 (RS = 1000rev/min; PD = 2.4mm): 

A) Top sheet; 

B) Bottom sheet; 

C) SEM fractography; 

D) High magnification region – location shown in Figure 3.17.C); 

E) High magnification region – location shown in Figure 3.17.C); 

F) High magnification region – location shown in Figure 3.17.C). 
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Figure 3.18 - Lap shear test load-displacement curve of RFSSW AA7075-T6 weld condition W21 (RS = 1000 rev/min; 

PD = 2.4 mm) and W25 (RS = 2160 rev/min; PD = 2.0 mm). 

 

Table 3.20 shows the strength comparison between RFSSW in the bare condition and in the 

presence of interfacial sealant. Similar to what was observed for AA2024-T3, the presence of the 

interfacial sealant improved the lap shear strength, with an increase of 44 % compared to the 

bare material condition.  

Table 3.20 - RFSSW AA7075-T6 Lap shear strength comparison between the bare and sealant condition. 

Welding 

Condition 

Rotation Speed 

[rev/min] 

Plunge Depth 

[mm] 

Lap Shear Strength 

[kN] 

Failure 

Mode 

AA7075-T6 

Bare 
1000 2.40 

9.10 ± 0.08 
Shear fracture through 

the weld Interface 

AA7075-T6 

Sealant 
13.10 ± 0.78 

Shear fracture through 

the weld nugget 

Figure 3.19 presents the load-displacement curve for weld condition W21 of RFSSW AA7075-T6 

specimens in the bare and with interfacial sealant condition. The minimum strength requirement 

from both AWS D17.2/D17.2M:2019 and MMPDS-04 (2008) are also shown on each graph. The 

adhesion of the interfacial sealant near the joint limited nugget rotation and cleavage stress 

concentration at the hook. Considering the similarity of trends between the AA2024-T3 and 

AA7075-T6, the heat absorption from the sealant during volatilisation of solvent is likely to have 

caused the increase in strength on both alloys.  
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Figure 3.19 - Lap shear test load-displacement curve of RFSSW AA7075-T6 weld condition W21 (RS = 1000 rev/min; 

PD = 2.4 mm) in bare and with sealant condition. 

Figure 3.20 shows the fracture surface of condition W21 with sealant with magnified regions 

obtained by SEM of RFSSW AA7075-T6. As seen for the AA2024-T3 analysis, similar fracture 

mechanism to the one observed in the bare specimen condition was recorded, with the crack 

propagating through the weld nugget, as opposed to what was observed in the bare condition. 

Tearing of the probe stir zone at the centre of the weld can be observed in Figure 3.20.A) and E). 

Away from the weld area, a predominant cohesive failure of the sealant can be observed. Most 

of the sealant was displaced away from the weld area as observed in Figure 3.20.A) and B). 

Microscopic analysis will provide further indication of any sealant present in the weld region. 
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Figure 3.20 - Fracture surfaces of RFSSW AA7075-T6 condition W21 with sealant (RS = 1000 rev/min; PD = 2.4 mm):  

A) Top sheet; 

B) Bottom sheet; 

C) SEM fractography; 

D) High magnification region – location shown in Figure 3.20.C); 

E) High magnification region – location shown in Figure 3.20.C); 

F) High magnification region – location shown in Figure 3.20.C). 

 Cross-tension strength analysis 

3.3.2.1. AA2024-T3 

Table 3.21 shows the cross-tension testing results for the weld conditions obtained from the 

FFDoE. Within the explored process parameter window, cross tension strength values ranged 

between 2.18 ± 0.45 kN and 3.19 ± 0.11 kN. Lower strength values compared to the lap shear 

strength performance were expected, as overlap joints tend to have poorer performance under 

cross tension conditions. This can be attributed to the peeling stress concentration at the hook 

region, which promotes premature crack initiation. Figure 3.21 shows a schematic representation 

of the loading direction during cross-tension testing and the stresses generated at the edge of 

the weld area. In this study, two different failure modes were observed: Through interface (TI) 
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and Plug Pull Out (PPO). The plug pull out failure mode was observed on the top sheet (TS) and 

the bottom sheet (BS).  

 

Figure 3.21 - Schematic representation of the loading directions during cross-tension testing and the stresses 

produced on the weld. 

A significant increase in standard deviation and reasonable decrease in the overall strength values 

was observed for welding conditions with high rotation speed values. This can be explained by 

the increase in the heat input conditions leading to higher degree of material softening and 

different failure modes within the same welding condition. The decrease in strength at low 

rotation speed values and deeper plunge depth values can be attributed to the increase in hook 

height at relatively low heat input conditions. For rotation speed values of 1000 and 1580 rev/min 

and plunge depth values higher than the sheet thickness, the standard deviation was smaller due 

to the consistent failure modes observed. This supports the consistency and repeatability of the 

results within a smaller operating window.  

Table 3.21 - RFSSW cross tension strength results of AA2024-T3. 

Welding 

Condition 

Rotation Speed 

[rev/min] 

Plunge Depth 

[mm] 

Cross Tension Strength 

[kN] 

Failure 

Mode 

W1 

1000 

2.0 3.19 ± 0.11 Mixed failures  

W2 2.2 3.13 ± 0.04 
PPO - TS 

W3 2.4 2.91 ± 0.04 

W4 

1580 

2.0 2.89 ± 0.14 Mixed failures  

W5 2.2 3.02 ± 0.08 
PPO - BS 

W6 2.4 2.99 ± 0.01 

W7 

2160 

2.0 2.18 ± 0.45 
Mixed  

failures  
W8 2.2 2.71 ± 0.25 

W9 2.4 2.76 ± 0.39 
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The ANOVA table and regression models for this study are not presented in this section due to 

the poor fitting of the model with the experimental results. This can be attributed to the overall 

higher standard deviation values. Due to the mixed failures observed in the specimens within the 

same welding condition, it is not clear which failure mode is indication of an effective process 

parameter combination. However, specimens that failed by plug pull out provided the most 

consistent results and stronger values within the same welding condition. Based on a “maximum 

strength” criteria, the optimised process parameter combination was obtained for 1000 rev/min 

and 2.0 mm, corresponding to condition W1. However, considering the overall mechanical 

performance, the welding condition W3 will be used later in this section to determine the effect 

of an interfacial sealant on the static cross tension strength. 

Figure 3.22 shows a fracture surface of the through interface failure mode along with SEM 

micrographs of regions of interest. Similar to the shear fracture through the interface failure 

mode described in Section 3.3.1.1, the fracture starts at the hook along the weld periphery. The 

initial crack then progresses through the weld interface along the joint line remnant until 

complete failure occurs as the crack reaches the centre of the weld or tears through the stir zone. 

Poor bonding at the centre of the weld can be observed in Figure 3.22.D) and .F), which relates 

to the stir zone affected by the probe motion. This area possesses less plastic deformation and 

consolidation in comparison with other regions of the weld.  

Figure 3.23 presents the fracture surface of a plug pull out failure mode along with SEM 

fractography of high-magnification areas. The fracture starts at the hook in various locations of 

the weld periphery and progresses up to the surface along the interface between the stir zone 

and thermo-mechanically affected zone, as observed by the striation patterns in Figure 3.23.E). 

Different crack propagation rates can be observed by the difference in surface morphology 

between Figure 3.23.D) and. E). Complete plug failure occurs once all the cracks meet and reach 

the surface of the plug. This failure mode was predominantly observed on the top sheet, with the 

nugget being partially stuck to the bottom sheet. The crack propagation mechanism is identical 

for the bottom sheet failure variant, as observed by Figure 3.23.F). 

Table 3.22 shows the cross-tension strength comparison between RFSSW AA2024-T3 in the bare 

condition and in the presence of interfacial sealant. As opposed to what was observed under lap 

shear conditions, cross-tension strength did not improve with the presence of the interfacial 

sealant. In fact, a reduction of 19% of the cross-tension strength along with an increase of an 
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order of magnitude on standard deviation was observed when compared to the bare specimen 

results. This outcome can be explained by the generation of cleavage stresses at the edge of the 

specimen, which represent the most severe form of loading for sealants and adhesives. The 

concentration of these stresses led to a premature failure of the bonded edge of the sealant, 

without any improvement to the cross-tension strength. 

Mixed failure modes were observed for the three specimens tested, with a plug pull out failure 

mode being related to a best performing weld. A description of this failure mode has been 

previously presented in this section. Sealant failure is predominantly cohesive, showing good 

adhesion to the substrate. Due to the initial pressure applied by the clamp, a considerable portion 

of the sealant on the overlapped area was expelled away from the weld area. 

 

Figure 3.22 - Fracture surfaces of a through interface failure mode of RFSSW AA2024-T3 condition W1 (RS = 1000 

rev/min; PD = 2.0 mm):  

A) Top sheet; 

B) Bottom sheet; 

C) SEM fractography; 

D) High magnification region – location shown in Figure 3.22.C); 

E) High magnification region – location shown in Figure 3.22.C); 

F) High magnification region – location shown in Figure 3.22.C). 
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Figure 3.23 - Fracture surfaces of a plug pull out top sheet failure mode of RFSSW AA2024-T3 condition W1 

(RS = 1000 rev/min; PD = 2.0 mm): 

A) Top sheet; 

B) Bottom sheet; 

C) SEM fractography; 

D) High magnification region – location shown in Figure 3.23.C); 

E) High magnification region – location shown in Figure 3.23.C); 

F) High magnification region – location shown in Figure 3.23.C). 

Table 3.22 - RFSSW cross tension strength of 2 mm thick AA2024-T3 in the bare and with sealant conditions. 

Welding 

Condition 

Rotation Speed 

[rev/min] 

Plunge Depth 

[mm] 

Cross Tension Strength 

[kN] 

Failure 

Mode 

AA2024-T3  

Bare 
1000 2.4 

2.91 ± 0.04 
Plug pull out  

Top sheet 

AA2024-T3  

Sealant 
2.34 ± 0.40 

Mixed  

failures 
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Figure 3.24 - Fracture surfaces of a plug pull out top sheet failure mode of RFSSW AA2024-T3 condition W3 

(RS = 1000 rev/min; PD = 2.4 mm) with sealant: 

A) Top sheet; 

B) Bottom sheet; 

C) SEM fractography;  

D) High magnification region – location shown in Figure 3.24.C); 

E) High magnification region – location shown in. Figure 3.24C); 

F) High magnification region – location shown in. Figure 3.24C). 
 

3.3.2.2. AA5754-H24 

Table 3.23 presents the cross-tension testing results for the weld conditions selected based on 

the FFDoE. The cross-tension strength values varied between 2.27 ± 0.84 kN and 3.88 ± 0.29 kN, 

for conditions W16 and W10, respectively. Higher standard deviation across the results was 

observed, compared to the values observed in the lap shear tests. This is particularly true for 

welding conditions with low plunge depth values and increasing rotation speed values. As 

observed in Section 3.3.2.1, an explanation for the scatter in the results can be attributed to the 

inconsistent failure modes between replicates observed for the same welding condition. As the 

plunge depth increases, the observed failure modes become more consistent within the 

parameter combination, leading to a decrease in the standard deviation values. 
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Table 3.23 - Cross-tension testing results of RFSSW AA5754-H24. 

Welding 

Condition 

Rotation Speed 

[rev/min] 

Plunge Depth 

[mm] 

Cross-Tension Strength 

[kN] 

Failure 

 Mode 

W10 

1000 

1.8 3.88 ± 0.29 

PPO - TS W11 2.0 3.56 ± 0.03 

W12 2.2 3.35 ± 0.13 

W13 

1580 

1.8 2.93 ± 0.66 Mixed failure  

W14 2.0 3.71 ± 0.15 
PPO - TS 

W15 2.2 3.39 ± 0.09 

W16 

2160 

1.8 2.27 ± 0.84 Mixed 

failure  W17 2.0 3.06 ± 0.53 

W18 2.2 3.17 ± 0.11 PPO - TS 

A clear trend regarding the mechanical performance was not observed in this investigation. 

However, for lower rotation speed values, increasing the plunge depth value tends to decrease 

the strength of the joint. This can be explained by the increasing size of the hook at relatively low 

heat input conditions. The overall higher standard deviation values compromised the validity of 

the ANOVA table and regression models for this study due to the poor fitting of the model with 

the experimental results. Therefore, this analysis is not presented in this section. Similar failure 

modes as observed in the previous section were observed, with plug pull out failure modes 

producing the highest cross-tension strength values. 

Figure 3.25 presents the fracture surface of a RFSSW AA5754-H24 plug pull out failure along with 

SEM fractography of high-magnification areas. The fracture propagation mechanism has been 

covered in Section 3.3.2.1. In Figure 3.25.D) and .E), striation patterns can be observed which 

demonstrates the development and propagation of circumferential cracks up to the surface and 

along the weld periphery, respectively.  



Chapter 4 - RFSSW tool material evaluation 
 

 

 
PhD Thesis - Pedro de Sousa Santos 78 Coventry University (2020) 

 

 

Figure 3.25 - Fracture surfaces of a plug pull out top sheet failure mode of RFSSW AA5754-H24 condition W10 

(RS = 1000 rev/min; PD = 1.8 mm):  

A) Top sheet; 

B) Bottom sheet; 

C) SEM fractography; 

D) High magnification region – location shown in Figure 3.25.C); 

E) High magnification region – location shown in Figure 3.25.C); 

F) High magnification region – location shown in Figure 3.25.C). 

Figure 3.26 presents the fracture surface of a RFSSW AA5754-H24 through the interface failure 

along with SEM fractography of high-magnification areas. This failure mode has been previously 

described in Section 3.3.2.1. Tearing of the stir zone began much prematurely (halfway the 

shoulder diameter) and was the main cause of failure. 
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Figure 3.26 - Fracture surfaces of a through interface failure mode of RFSSW AA5754-H24 condition W16 

(RS = 2160 rev/min; PD = 1.8 mm):  

A) Top sheet; 

B) Bottom sheet; 

C) SEM fractography; 

D) High magnification region – location shown in Figure 3.26.C); 

E) High magnification region – location shown in Figure 3.26.C); 

F) High magnification region – location shown in Figure 3.26.C). 

3.3.2.3. AA7075-T6 

Table 3.24 shows the cross-tension testing results for the weld conditions obtained from the 

FFDoE. Cross-tension strength values ranged between 1.46 ± 0.27 kN and 3.43 ± 0.05 kN within 

the process parameter window explored. In this study, no clear trend regarding mechanical 

strength could be identified, however the more successful process parameter window, in terms 

of strength and consistency of results, were the ones with highest plunge depth values. This could 
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be attributed to more consistent failure modes, in particular when specimens failed via plug pull 

out. As opposed to what was previously observed in this investigation, increasing the rotation 

speed value for the shallowest and deepest plunge depth values improved the cross-tension 

strength. 

Table 3.24 - Cross tension strength results of 2 mm thick RFSSW AA7075-T6 in bare condition. 

Welding 

Condition 

Rotation Speed 

[rev/min] 

Plunge Depth 

[mm] 

Cross Tension Strength 

[kN] 

Failure 

Mode 

W19 

1000 

2.0 1.46 ± 0.27 TI 

W20 2.2 3.41 ± 0.12 
PPO - TS 

W21 2.4 3.36 ± 0.05 

W22 

1580 

2.0 2.20 ± 0.26 TI 

W23 2.2 3.39 ± 0.07 Mixed failures 

W24 2.4 3.38 ± 0.05 PPO - BS 

W25 

2160 

2.0 2.90 ± 0.49 Mixed failures 

W26 2.2 3.18 ± 0.08 
PPO - BS 

W27 2.4 3.43 ± 0.05 

Similar to what was observed in the previous sections, the accuracy of the ANOVA table and 

regression models for this study were low due to a poor fitting of the model with the experimental 

results. This was caused by the mixed failures observed in this study, leading to an increase in 

scatter of the results. In this study, plug pull out and through interface failure modes were 

observed as well as a combination of failure modes within the same welding condition. 

Figure 3.27 and Figure 3.28 present, respectively, examples of plug pull out and through interface 

failure modes. Plug pull out failures were observed in the top sheet as well as the bottom sheet 

and were an indication of an effective process parameter combination, presenting the strongest 

results. A detailed explanation on the fracture mechanism of these failure modes has been 

presented in Section 3.3.2.1. 
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Figure 3.27 - Fracture surfaces of a plug pull out bottom sheet failure mode of RFSSW AA7075-T6 condition W27 

(RS = 2160 rev/min; PD = 2.4 mm):  

A) Top sheet; 

B) Bottom sheet; 

C) SEM fractography; 

D) High magnification region – location shown in Figure 3.27.C); 

E) High magnification region – location shown in Figure 3.27.C); 

F) High magnification region – location shown in Figure 3.27.C). 
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Figure 3.28 - Fracture surfaces of a through interface failure mode of RFSSW AA7075-T6 condition W19 (RS = 1000 

rev/min; PD = 2.0 mm):  

A) Top sheet; 

B) Bottom sheet; 

C) SEM fractography; 

D) High magnification region – location shown in Figure 3.28.C); 

E) High magnification region – location shown in Figure 3.28.C); 

F) High magnification region – location shown in Figure 3.28.C). 

Based on “maximum strength” criteria, the optimised process parameter combination was 

obtained for 2160 rev/min and 2.4 mm, corresponding to condition W27. However, considering 

the overall mechanical performance, the welding condition W21 will be used later in this section 

to determine the effect of an interfacial sealant on the static cross tension strength. 
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Table 3.25 shows the strength comparison between RFSSW AA7075-T6 in the bare condition and 

in the presence of interfacial sealant. Similar to what was observed in Section 3.3.2.1, a decrease 

of 4% in the cross-tension strength was observed when compared to the bare specimen results. 

A plausible explanation for this phenomenon has been given in the same section. 

Table 3.25 - RFSSW AA7075-T6 cross tension strength comparison between the bare and sealant condition. 

Welding 

condition 

Rotation Speed 

[rev/min] 

Plunge Depth 

[mm] 

Cross tension strength 

[kN] 

Failure 

mode 

AA7075-T6 Bare 
1000 2.40 

3.36 ± 0.05 Plug Pull Out 

Top sheet AA7075-T6 Sealant 3.24 ± 0.05 

Plug pull out failure mode was observed on all tested specimens with sealant, which produced a 

repeatable and accurate strength result. A detailed explanation of the fracture mechanism has 

been presented in Section 3.3.2.1. 

 

Figure 3.29 - Fracture surfaces of a plug pull out top sheet failure mode of RFSSW AA7075-T6 condition W21 

(RS = 1000 rev/min; PD = 2.4 mm) with sealant: 

A) Top sheet; 

B) Bottom sheet; 

C) SEM fractography; 

D) High magnification region – location shown in Figure 3.29.C); 

E) High magnification region – location shown in Figure 3.29.C); 

F) High magnification region – location shown in Figure 3.29.C).  
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 Fatigue life analysis  

3.3.3.1. AA2024-T3 

Table 3.26 presents the fatigue loading levels with the corresponding number of cycles and failure 

modes, in bare and with sealant conditions. Fatigue tests were performed using weld condition 

W3 (RS = 1000 rev/min; PD = 2.4 mm) and maximum stress values (SMAX) were determined as a 

fraction of the mean lap shear strength (%LSS) and the weld cross-section area (38.5 mm2). In this 

investigation, three different fatigue fracture modes were observed: Shear fracture through the 

interface (SF-TI), Through the Sheet (TTS) and Shear fracture through the plug (STP). TTS and STP 

failures were observed in the top sheet (TS) and bottom sheet (BS) as well. 

Table 3.26 - Fatigue load and results for RFSSW AA2024-T3 specimens in bare and with sealant condition. 

SMAX  

[%LSS / MPa] 

Bare Specimens SMAX 

[%LSS / MPa] 

Specimens with Sealant 

Cycles [Nf] Failure Mode Cycles [Nf] Failure Mode 

20 % / 44.6 

577,588 TTS - BS 

20 % / 67.6 

2,398,010 
SF-TI 

542,154 
TTS - TS 

3,929,380 

506,710 3,039,893 TTS - BS 

35 % / 78.1 

26,675 STP - BS 

35 % / 178.0 

52,881 

SF-TI 

20,389 TTS - TS 165,245 

20,344 SF-TI 95,440 

55 % / 122.8 

2,554 

SF-TI 55 % / 185.5 

5,094 

3,730 5,329 

2,924 8,541 

70 % / 156.3 

743 SF-TI 

70 % / 235.9 

2,740 

743 STP - TS 2,069 

631 STP - BS 593 

The results obtained are consistent with observations from other authors such as Lage et al. 

(2018) and Effertz et al. (2016), who also obtained high fatigue life values for specimens under 

low force loading conditions. This outcome suggests that further research into solutions to 

improving high load cyclic loadings performance is required before progressing into sub-sized 

component evaluation.  

A general fatigue life improvement was registered for the RFSSW specimens with interfacial 

sealant. Fatigue life was improved by various factors ranging between 2 and 11 times when 

compared with the bare specimen condition, with the improvement being more noticeable under 

the loading conditions of 20 and 35 %LSS. The overall fatigue life improvement can be attributed 

to the adhesion from the sealant at the edge of the specimen, similar to what was observed under 

shear loading. Figure 3.30 presents the S-N curve plot obtained from the experimental data to 
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predict the fatigue life of the single RFSSW joint specimen. Using the experimental data to 

produce stress-life curves means that the initial conditions of as welded components (initial and 

fabrication induced residual stresses) are influencing parameters that affect the measured cycles 

to failure for all cases. 

 

Figure 3.30 - S-N Curve of RFSSW AA2024-T3 welding condition W3 (RS = 1000 rev/min; PD = 2.4 mm) in bare and 

with sealant condition. 

Table 3.27 shows the equations used to predict the fatigue life along with the correspondent 

coefficient of correlation, R2. These equations were determined based on the experimental data 

and it should be noted that the R2 is high (> 0.95). This means that the model is an adequate fit 

to the experimental results and therefore suitable for an accurate prediction of the fatigue life 

within the loading conditions explored. The units for Smax are MPa and present the highest stress 

applied for a cyclic stress ratio of 0.1 and an oscillation frequency of 3 Hz.  

Table 3.27 - Equations of RFSSW AA2024-T3 S-N curves with correspondent coefficient of correlation. 

Specimen Condition Equation R2 value 

AA2024-T3 Bare Smax = 552.0 × Nf
-0.191 0.997 

AA2024-T3 Sealant Smax = 777.5 × Nf
-0.164 0.998 
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Figure 3.31 shows an example of a through the top sheet failure and SEM micrographs of the 

fracture surface and regions of interest. The crack initiation and development are reasonably 

similar between the top sheet and bottom sheet variant, therefore only the top sheet failure will 

be analysed. This type of failure was commonly observed in specimens that were loaded at 

20 %LSS, as in this condition the lower stress concentration on the hook tip has a reduced impact 

on the early failure of the weld. As seen in Figure 3.31.A) and Figure 3.31.B), a predominant crack 

initiated on the tensile-stressed side of the spot-weld at the hook tip of the top sheet, propagating 

along the weld periphery, perpendicular to the loading direction until full specimen fracture at 

the edge of the sheet. The appearance of a secondary crack on the opposite edge of the weld of 

the bottom sheet with similar propagation mechanism is common in this failure mode, however 

it was not observed in this specimen. Figure 3.31.C) presents the SZ/TMAZ interface with multiple 

subtle striations due to the refined grain microstructure. Figure 3.31.D) shows the centre of the 

nugget on the top sheet, where the fatigue striations (beach marks) features along the fracture 

surface show the propagation direction of the circumferential crack along the spot-weld 

periphery. Figure 3.31.E) presents the interface between the welded and unwelded region at a 

higher magnification. The longitudinal striation pattern suggests a gradual propagation of the 

crack from the weld area until the edge of the sheet until complete specimen failure. 

Figure 3.32 shows an example of a shear fracture through the interface failure and SEM 

micrographs of the fracture surface and regions of interest. This type of failure was consistently 

observed in specimens with sealant that were subjected to loads above 20 %LSS. This can be 

attributed to the presence of sealant at the weld interface, contributing to poor bonding in this 

area. The fracture mechanism is comparable to the one observed under lap shear conditions. 

however, some particularities can be observed due to the cyclic loading. Figure 3.32.A) and. B) 

present the fracture surface of the bottom sheet. The crack initiated at location 1 from 

Figure 3.32.A) (tensile-stressed side of the spot-weld at the hook tip of the bottom sheet), 

propagating along the joint line remnant until full specimen fracture at the opposite edge of the 

spot-weld. At halfway, circumferential cracks began to develop perpendicular to the loading 

direction but did not developed up to the surface. A higher magnification of the fracture surface 

at the centre of the weld is shown in Figure 3.32.D). This is an area of low peripheral velocity and 

less effective stirring action, leading to a weaker bond and a quicker crack propagation rate. 

Fatigue striations can be observed in Figure 3.32.E) along the base of the SZ evidencing the 

gradual propagation of the original crack along the joint line remnant. Complete specimen 

fracture occurred suddenly as evidence by the smooth surface on Figure 3.32.F).  
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Figure 3.31 - Through the top sheet failure mode of RFSSW AA2024-T3 subjected to cyclic stress of 44.6 MPa:  

A) Fracture surface on top sheet; 

B) SEM macrograph of fracture surface on top sheet; 

C) High magnification region – location shown in Figure 3.31.B); 

D) High magnification region – location shown in Figure 3.31.B); 

E) High magnification region – location shown in Figure 3.31.B). 

Figure 3.33 shows an example of a shear through the plug on the top sheet failure and SEM 

micrographs of the fracture surface and regions of interest. This type of failure presents a 

variation from the previous failure mode, since the crack initiation mechanism is identical but not 

the crack propagation mechanism. In this work, this type of fracture was observed exclusive on 

bare conditions under different loading conditions. This could be attributed to a better bonding 

at the weld interface, preventing crack propagation along the joint line remnant. Figure 3.33.A) 

presents the fracture surface of the bottom sheet. Similar to the shear fracture through the 

interface failure mode, the crack initiated on the tensile-stressed side of the top sheet at the hook 

tip, shown in Figure 3.33.D), propagating at an angle with the loading direction up to the surface 

of the spot-weld. A second crack is formed on location 1 from Figure 3.33.A) (tensile-stressed side 
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of the bottom sheet at the hook tip), propagating perpendicular to the loading direction. When 

both cracks reach the surface, full fracture of the specimen occurs. The surface at the centre of 

the weld is shown in Figure 3.33.C). This area exhibits a smooth surface due to the continuous 

cyclic loading action, with subtle crack propagation marks along the surface. A change in the crack 

propagation rate can be observed between the fracture face and the top surface of the spot-weld 

in Figure 3.33.E). 

 

Figure 3.32 - Shear fracture through the interface failure mode of RFSSW AA2024-T3 with sealant subjected to cyclic 

stress of 185.5 MPa:  

A) Fracture surface on top sheet;  

B) Fracture surface on top sheet; 

C) SEM micrographs of fracture surface on top sheet;  

D) High magnification region – location shown in Figure 3.32.C);  

E) High magnification region – location shown in Figure 3.32.C);  

F) High magnification region – location shown in Figure 3.32.C). 
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Figure 3.33 - Shear through the plug on the top sheet failure mode of RFSSW AA2024-T3 subjected to cyclic stress of 

156.3 MPa: 

A) Fracture surface on bottom sheet;  

B) Fracture surface on bottom sheet;  

C) High magnification region - location shown in Figure 3.33.B);  

D) High magnification region - location shown in Figure 3.33.B);  

E) High magnification region -  location shown in Figure 3.33.B); 

3.3.3.2. AA5754-H24 

Table 3.28 presents the fatigue loading levels with the corresponding number of cycles and failure 

modes. Fatigue tests were performed under four different loading conditions, which were 

determined as a fraction of the mean lap shear strength. For the conditions tested, full fracture 

of the specimen before triggering the displacement threshold was only observed for maximum 

stress of 37.2 MPa (20 %LSS). The fracture mode observed is described as through the sheet on 

the top sheet and a detailed explanation of the fracture mechanism has been presented in Section 

3.3.3.1. The remaining conditions presented fracture initiation at the edge of the weld region on 
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the tension side, leading to the rotation of the nugget. However, full specimen failure did not 

occur before the imposed displacement limit was triggered. The fatigue life results obtained are 

similar to the results observed in the previous section, supporting the need for solutions to 

improve the fatigue performance. 

Table 3.28 - Fatigue load amplitudes and results of 2 mm thick RFSSW AA5754-H24. 

SMAX 

[%LSS / MPa] 

Cycles  

[Nf] 

Failure 

 mode 

20 % / 37.2 

716,004 

TTS - TS 736,869 

640,275 

35 % / 65.1 

33,073 

Fracture did not 

occur for these 

conditions before 

the displacement 

threshold was 

reached 

26,650 

24,431 

55 % / 102.3 

3,549 

3,207 

3,143 

70 % / 130.2 

935 

1,046 

1,190 

Figure 3.34 presents the S-N curve plot obtained from the experimental data to predict the 

fatigue life of the single RFSSW joint specimen. Using the experimental data to produce stress-

life curves means that the initial conditions of as welded components (initial and fabrication 

induced residual stresses) are influencing parameters that affect the measured cycles to failure 

for all cases. Table 3.29 presents the S-N equation used to predict the fatigue life of the single 

RFSSW joint specimen This equation was determined based on the experimental data and it 

should be noted that the coefficient of determination is considerably high (> 0.95). This means 

that the model is an adequate fit and therefore suitable for an accurate prediction of the fatigue 

life based on the loading conditions. The units for Smax are MPa and present the highest stress 

applied for a stress ratio of 0.1 and oscillation frequency of 3Hz. 

Table 3.29 - Equation of S-N curve with correspondent coefficient of correlation 

Specimen condition Equation R2 value 

AA5754-H24 Smax = 488.3 × Nf
-0.193 0.997 
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Figure 3.34 - S-N Curve of RFSSW AA5754-H24 welding condition W12 (RS = 1000 rev/min; PD = 2.2 mm). 

Figure 3.35 shows visual and SEM imaging of the fracture surface for a specimen loading under 

20% LSS loading. An extended description of this failure mode has been presented in 

Section 3.3.3.1. In this investigation, all specimens developed a secondary crack on the tensile-

stressed side of the bottom sheet. However, due to the different crack propagation rate, the 

fracture occurred consistently on the top sheet. 
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Figure 3.35 - Through the top sheet failure mode of RFSSW AA5754-H24 subjected to cyclic stress of 37.2 MPa:  

A) Fracture surface on top sheet;  

B) Fracture surface on bottom sheet;  

C) SEM micrograph of transition between welded and unwelded regions;  

D) SEM micrograph of fatigue striations in the welded region;  

E) High magnification region – location shown in Figure 3.35.C);   

F) High magnification region – location shown in Figure 3.35.D); 

3.3.3.3. AA7075-T6 

Table 3.30 presents the loading conditions with the corresponding number of cycles and failure 

modes in bare and with sealant conditions. Fatigue tests were performed using weld condition 

W21 (RS = 1000 rev/min; PD = 2.4 mm) and maximum stress values, SMAX, were determined as a 

ratio of the mean lap shear strength (%LSS) and the weld cross-section area (38.5 mm2). In this 

investigation, similar failure modes as seen in Section 3.3.3.1 were observed and an extensive 

explanation of the crack propagation mechanism along with fractography images have been 

presented for each failure mode.  
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Table 3.30 - Fatigue load amplitudes and results for RFSSW AA7075-T6 specimens 

SMAX 

[%LSS / MPa] 

Bare specimens SMAX 

[%LSS / MPa] 

Specimens with sealant 

Cycles [Nf] Failure mode Cycles [Nf] Failure mode 

20 % / 1.82 

183,600 
TTS - TS 

20 % / 2.62 

2,268,477 
TTS - TS 

193,446 1,851,408 

203,175 TTS - BS 1,035,882 SF-TI 

35 % / 3.19 

32,583 

SF-TI 35 % / 4.59 

112,557 

SF-TI 

24,678 95,253 

28,410 51,677 

55 % / 5.01 

3,165 

SF-TI 55 % / 7.21 

5,934 

2,613 5,529 

2,810 3,044 

70 % / 6.37 

745 SF-TI 

70 % / 9.17 

1,444 

581 
STP - TS 

887 

461 465 

For the specimens tested in the bare condition, full fracture was observed before the first million 

cycle within the load range tested. A general fatigue life improvement was registered for the 

RFSSW specimens with interfacial sealant. This improvement was more noticeable under lower 

loading conditions, where the fatigue life improved by various factors ranging between 2 and 11 

times when compared with the bare specimen condition. 

Figure 3.36 presents the S-N curve plot obtained from the experimental data to predict the 

fatigue life of the single RFSSW joint specimen. Using the experimental data to produce stress-

life curves means that the initial conditions of as welded components (initial and fabrication 

induced residual stresses) are influencing parameters that affect the measured cycles to failure 

for all cases. Full fracture at higher loads occurs at similar number of cycles for both specimen 

conditions. The effect of the adhesion layer from the sealant reduces the stress concentration at 

the hook as the maximum applied load decreases in value, significantly improving the fatigue life. 

Table 3.31 shows the equations used to predict the fatigue life along with the correspondent 

coefficient of correlation, R2. These equations were determined based on the experimental data 

and it should be noted that the coefficient of determination is considerably high (> 0.95). This 

means that the model is an adequate fit and therefore suitable for an accurate prediction of the 

fatigue life based on the loading conditions.  
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Figure 3.36 - S-N Curve of RFSSW AA7075-T6 welding condition W21 (RS = 1000 rev/min; PD = 2.4 mm) with and 

without sealant. 

Table 3.31 - Equations of S-N curves with correspondent coefficient of correlation 

Specimen condition Equation R2 value 

AA7075-T6 Bare Smax = 687.3 × Nf
-0.21 0.982 

AA7075-T6 Sealant Smax = 746.2 × Nf
-0.165 0.996 

 Microstructural analysis 

3.3.4.1. AA2024-T3 

Figure 3.37 presents the cross-section of RFSSW AA2024-T3 welding condition W3 

(RS = 1000rev/min; PD = 2.4mm).  
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Figure 3.37 - Cross-section of RFSSW AA2024-T3 welding condition W3 (RS = 1000 rev/min; PD = 2.4 mm): 

A) SZ/TMAZ interface;  

B) Hook region.  

The three common weld areas can be identified based on the microstructural changes, namely 

the stir zone (SZ), the thermo-mechanically affect zone (TMAZ) and the heat affected zone (HAZ). 

The SZ is an area where the material undergoes extreme plastic deformation and frictional 

heating driven by the tool action. This combination of heat and deformation leads to dynamic 

recrystallisation producing a fine and equiaxed microstructure. The SZ is located at the centre of 

the spot-weld and can be further divided into two areas: (i) the area processed by the shoulder 

(SZS) and (ii) the area processed by the probe (SZP). Due to the increase in the peripheral velocity 

of the tool, the average grain size present in the SZS is smaller than the one at the SZP. This 

phenomenon was also observed by Suhuddin et al. (2019). In this study, no visible distinction can 

be observed between the two sub-areas on AA2024-T3. This suggests an even distribution of 

frictional heat and material deformation in the SZ, promoting an even degree of dynamic 

recrystallisation along the whole area. 

The interaction between the edge of the rotating tool and the base material in its vicinity 

produces a narrow area with a refined grain structure, corresponding to the TMAZ. This area does 

not undergo dynamic recrystallisation, as opposed to the grains in the SZ, due to the moderate 

strain rate and the lower temperatures. However, grain refinement is observed near the SZ/TMAZ 

interface and gradually decreases as the stirring action from the tool becomes less prevalent. The 
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TMAZ presents a deformed structure when compared to the base material rolling direction, as 

observed in the studies conducted by de Castro et al. (2018-B). This can be explained by the 

material movement during the different stages of the welding cycle, which can be enhanced by 

the presence of external geometrical features on the plunging component. The fact that the tool 

used comprises a featureless shoulder explains the lack of significant grain deformation in the 

TMAZ. This is consistent with what was reported by Ji et al. (2017-B), as this tool design produces 

less downward material flow compared to threaded component designs. 

The HAZ is located between the TMAZ and the base material that only experiences a thermal 

cycle due to heat conduction. This promotes growth and coalescence of second phase 

precipitates, leading to a decrease of the mechanical properties of the weld. Its exact extension 

is generally estimated by the decrease in hardness values across the weld cross-section. 

The joint line remnant is created between the top and bottom sheet in the SZ due to the original 

aluminium oxide films at the lap interface and its usual curved morphology is a consequence of 

the material movement during the refilling stage. In this study, the joint line remnant is not 

evident which suggests an extensive material mixing and breakdown of the oxide film. In parallel, 

the hook is another feature commonly observed in overlapped joints, produced at the transition 

between the unwelded and welded interface. The hook feature is shown in Figure 3.37.B), 

however the extent or height of this feature was not identifiable in this study. Due to the material 

flow direction in this region, it is common to find voids and internal defects in this area. As 

explained by Kwee et al. (2019), these internal voids are formed by poor material flow to fill the 

corners of the weld nugget during the refill stage. The role of the hook in the structural integrity 

of the weld is not clear, with different authors reporting different outcomes regarding the 

influence of the hook height (distance between the original interface and the tip of the hook) in 

mechanical performance. Santana et al. (2017) reported that higher hook heights related to 

weaker joint strength. However, no correlation between shear values and hook height was found 

for the study of de Castro et al. (2018-B) for RFSSW of AA2198-T8. In this investigation, although 

the fracture initiated on the hook, no relationship between the hook height and the shear 

strength value of a welding condition was found. 

No internal voids or volumetric defects can be observed, supporting a correct choice of process 

parameters. However, as shown in Figure 3.38, internal voids were observed on the bottom edge 

of the weld nugget for welding condition W1 (low rotation speed and plunge depth values). This 
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is an indication of unsuitable welding conditions and a process boundary within the parameter 

window tested. A shallow surface indent on the probe region was observed for this welding 

condition, which can be attributed to incorrect tool zero level. 

 

Figure 3.38 - Internal defects on the cross-section of RFSSW AA2024-T3 condition W1 (RS = 1000 rev/min; PD = 2.0 

mm). 

Figure 3.39 presents the cross-section of RFSSW AA2024-T3 welding condition W3 

(RS = 1000rev/min; PD = 2.4mm) with sealant. The weld structure of the RFSSW is, in general, 

similar for the bare and with sealant specimens. However, a difference in grain morphology can 

be observed on the top of the SZP area, which relates to the lower peripheral velocity produced 

by the probe. No volumetric or internal defects can be observed, however the joint line remnant 

in the specimens with sealant is more evident. A possible explanation for this observation is the 

presence of small amounts of sealant trapped between the weld interface that mix with the oxide 

films. These sealant remnants display a different colour when etched. Boldsaikhan et al. (2019) 

also observed this phenomenon, where the use of Keller’s reagent reacted with the cured epoxy 

sealant revealing sealant residue along the joint line remnant. 
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Figure 3.39 - Cross-section of RFSSW AA2024-T3 welding condition W3 (RS = 1000 rev/min; PD = 2.4 mm) 

with sealant:  

A) Hook region;  

B) SZ/TMAZ interface. 

3.3.4.2. AA5754-H24 

Figure 3.40 presents the cross-section of RFSSW AA5754-H24 performed with the parameter 

combination W12 (RS = 1000 rev/min; PD = 2.2 mm). A general overview of the weld regions has 

been presented in Section 3.3.4.1. 

 

Figure 3.40 - Cross-section of RFSSW AA5754-H24 welding condition W12 (RS = 1000 rev/min; PD = 2.2 mm):  

A) SZ/TMAZ interface;  

B) Hook region.  
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No volumetric or internal voids can be observed, confirming an effective selection of weld 

parameters. A shallow surface indent was produced during the refilling stage to ensure weld 

consolidation in the stir zone. As observed by Xu et al. (2018), loss of material through the tool 

clearance fits needs to be compensated with a surface indent to enhance the diffusion bonding 

at the TMAZ/SZ interface and lap interface. Additionally, insufficient flow of the SZ material at the 

refilling stage can lead to the formation of voids at the maximum shoulder plunge depth. Due to 

the increased peripheral velocity of the shoulder, which promotes the dispersion of the original 

oxide films, the joint line remnant is less noticeable at the edges of the stir zone. The hook feature 

is visible in Figure 3.40.B). As mentioned in the previously, higher hook heights are generally 

associated with weaker joint strength values. However, the opposite was true for this work as 

shown in Table 3.32. No correlation between lap shear strength and hook height was also 

observed for the study of de Castro et al. (2018-B) for RFSSW of AA2198-T8.  

Table 3.32 - Hook height of all experimented process parameter combinations of RFSSW AA5754-H24. 

Welding 

condition 

Rotation Speed 

[rev/min] 

Plunge Depth 

[mm] 

Lap shear strength 

[kN] 

Hook height 

[µm] 

W10 

1000 

1.8 5.87 ± 0.07 44.2 

W11 2.0 6.85 ± 0.04 247.5 

W12 2.2 7.16 ± 0.02 366.5 

W13 

1580 

1.8 4.99 ± 0.02 24.1 

W14 2.0 6.37 ± 0.06 96.8 

W15 2.2 6.76 ± 0.09 337.6 

W16 

2160 

1.8 4.93 ± 0.08 21.4 

W17 2.0 5.91 ± 0.05 178.2 

W18 2.2 6.16 ± 0.06 223.5 

The heterogenous nature of the SZS on this alloy shows striation bands along the thickness of the 

sheet. This feature is generated during the refill action, as the shoulder maintains intimate 

contact with the top layer of the material while retracting in the final stages of the cycle. This 

creates a gradient of shear layers that become closer to each other as the material is refilled and 

the retraction rate slows downs. This feature was initially observed for friction stir welding and is 

known as “onion rings”. Krishnan (2002) explains that this phenomenon occurs due to the 

combination of frictional heating being generated by the tool rotation and the tool forward 

motion. 
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3.3.4.3. AA7075-T6 

Figure 3.41 presents the RFSSW AA7075-T6 cross-section of welding condition W21 

(RS = 1000 rev/min; PD = 2.4 mm). The three common weld areas can be identified based on the 

microstructural changes and different etching degrees, which have been extensively described in 

Section 3.3.4.1. 

 

Figure 3.41 - Cross-section of RFSSW AA7075-T6 performed with welding condition W21 (RS = 1000 rev/min; 

PD = 2.4 mm):  

A) Hook region;  

B) SZ/TMAZ interface.  

No internal voids or volumetric defects can be observed in the cross-section for welding condition 

W21, confirming the correct choice of process parameters. A shallow surface indent on the probe 

region was observed for this welding condition, which can be attributed to incorrect tool zero 

level. The joint line remnant is not evident which suggests an extensive material mixing and 

breakdown of the oxide film. Similar to what was observed on the AA2024-T3 cross-section, 

although the fracture initiated on the hook, no relationship between the hook height and the lap 

shear strength of a welding condition was found. 

As observed in Section 3.3.4.1, internal voids were observed on the bottom edge of the weld 

nugget for welding conditions W1 (low rotation speed and plunge depth values). These voids, of 

smaller dimensions than the ones observed in Section 3.3.4.1, can be seen in Figure 3.42. This is 

an indication of a lower process boundary within the parameter window tested. An upper process 

boundary was not found due to equipment limitation. 
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Figure 3.42 - Internal defects on the cross-section of RFSSW AA7075-T6 welding condition W19 (RS = 1000 rev/min; 

PD = 2.0 mm). 

Figure 3.43 present the cross-section of RFSSW AA7075-T6 with sealant performed with welding 

condition W21 (RS = 1000 rev/min; PD = 2.4mm). The weld structure of the RFSSW is similar for 

the bare and with sealant specimens, which has been covered in Section 3.3.4.1. A clear 

difference in grain size and morphology between the SZP and SZS area can be seen. As covered in 

Section 3.3.4.1, this can be attributed to the difference in peripheral velocity as well as the smaller 

interaction between the weld material and the probe. No volumetric or internal defects can be 

observed, however the joint line remnant in the cross-section with sealant is much more visible. 

This can be explained by the presence of small amounts of sealant trapped between the weld 

interface that mix with the oxide films, which display a different colour when etched. 

 

Figure 3.43 - Cross-section of RFSSW AA7075-T6 welding condition W21 (RS = 1000 rev/min; PD = 2.4 mm) 

with sealant: 

A) Hook region;  

B) SZ/TMAZ interface 
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 Residual stress measurements 

3.3.5.1. AA2024-T3 

The longitudinal residual stress distribution across the thickness of a RFSSW AA2024-T3 single 

spot-weld specimen obtained by the contour method is shown in Figure 3.44. The longitudinal 

residual stress distribution across the width of the specimen is consistent with what would be 

expected for a welded specimen, demonstrating the potential of the contour method to map the 

residual stress field in a RFSSW component. A comparison with other residual stress 

measurement techniques would fully confirm the accuracy of the results however, such analysis 

is out of the scope of this investigation and is recommended to be addressed for future work.  

From the finite element model, it can be seen that within the weld region and its vicinity, the 

longitudinal stress distribution is entirely tensile. The same is observed across the thickness of the 

specimen. This distribution is typical of various welding processes as the free thermal expansion 

of the weld material during the weld process and subsequent contraction during cooling are 

restricted by the adjacent parent material. As a result, residual stresses generated by thermal 

strains are present in this region. Due to the deep plunge depth and thin gauge of the sheets, it 

was expected that the heat flow from the weld area would produce a uniform residual stress 

profile. However, an area of higher residual stress values can be observed at the stir zone which 

is consistent with the temperature profile distribution presented by Zhao et al. (2018-B) and the 

microstructural transformations present in this area.  

 

Figure 3.44 - 3D FEM model of the residual stress distribution on an AA2024-T3 single spot-weld specimen (values 

presented in MPa). 

The high value tensile residual stresses on the bottom sheet can be explained by the restrained 

to the free thermal expansion of the bottom sheet material imposed by the circular anvil when 

performing the weld cycle. Away from the weld area, the magnitude of the tensile residual 

stresses decreases as the peak temperatures are lower. A compressive stress state is achieved on 
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the top sheet parent material that restrains the thermal contraction of the weld material. The 

opposite state can be observed on the parent material of the bottom sheet and can be attributed 

to the residual stresses induced in the sheet by rolling during its production. The lower 

temperature heat flow from the weld area in the bottom sheet compared to the heat flow from 

the top sheet is less effective at relieving the previous stress state.  

Figure 3.45 presents the longitudinal residual stress plot from two measurement lines across the 

mid-thickness of both sheets. The vertical dash-dotted line marks the centre of the specimen and 

the spot-weld. For both measurements, the profiles are reasonably symmetrical to the centre line 

of the spot-weld and follow the same distribution in the weld area and its vicinity. In this 

investigation, the distinct “M-shaped” distribution generally observed in other friction stir 

welding technologies (Reynolds et al., 2003; Threadgill et al., 2009) was not observed. This 

phenomenon can be explained by the different geometry of the plunging component, which leads 

to a difference in the material flow and the produced microstructure in the stir zone. Although 

the area with the lowest hardness values, the peak tensile stress value can often be observed at 

the heat affected zone. However, for both measurement lines, the peak stress values were found 

at the centre of the stir zone with the highest value observed on the top sheet and a magnitude 

of 240.77 MPa. This value corresponds to around 70 % of the yield strength of the material.   

 

Figure 3.45 - Line plot of residual stress distribution on an AA2024-T3 single spot-weld specimen at specified 

thicknesses. 
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Based on the analysis of the single-spot sample, a weld induced affected area can be measured 

up to 1.5 spot-weld diameters from the centre of the spot. Therefore, the distance of three spot-

weld diameters between spot-welds implemented for the multiple spot-weld specimen should 

minimise the interaction between the residual stresses induced by the multiple spot-welds. The 

finite element model of the residual stress distribution across the width, as per section ‘A’ in 

Figure 3.5, of a multiple spot-weld specimen is depicted in Figure 3.46. 

 

Figure 3.46 -3D FEM model of the residual stress distribution across two rows on an AA2024-T3 multiple spot-weld 

specimen (values presented in MPa). 

Comparing with the stress distribution of a single spot specimen, the type and location of the 

residual stresses are reasonably similar. The peak stresses were observed at the centre of the 

spot-weld and were higher on the second spot-weld. This can be explained by a higher peak 

temperature reached during the weld cycle of the second spot. Since the column of spot-welds 

in this specimen was performed sequentially, the sheets and tool have more residual heat before 

the second spot-weld cycle compared to the first one. This phenomenon was also observed by 

Larsen, Hunt and Hovanski (2020), while producing multi-weld specimens. Away from the spot-

weld affected area, compressive stress values are of similar magnitude to the single spot-weld 

while lower peak tensile stress values were observed.  

The longitudinal residual stress plot from two measurement lines across the mid-thickness of 

both sheets is presented in Figure 3.47. The vertical dash-dotted line indicates the centre of the 

spot-weld. The stress profiles evidence similar degree of uniformity along the thickness as 

observed for the single-spot specimen. Peak tensile stresses were measured on the top sheet due 

to a higher peak temperature and degree of recrystallisation. A decrease of 33.2 % and 36.5 % of 

the peak tensile value between the top and bottom sheet was determined for the first and second 

spot-weld, respectively.  
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Figure 3.47 - Line plot of residual stress distribution across two rows on an AA2024-T3 multiple spot-weld specimen 

at specified thicknesses. 

Similar weld affected area can be observed for this spot-weld arrangement, with the weld-

induced residual stresses shifting from tensile to compressive at the distance of around two spot-

weld diameters from the peak point. The peak values of both profiles are slightly offset from the 

centre of the spot-weld, however this can be attributed to a referencing error while setting up 

the specimens for welding. The peak tensile stress values for the first and second spot-weld were, 

respectively, 139.85 and 170.16 MPa, corresponding to 40.7 % and 49.6 % of the base material 

yield stress. A peak value variation of 17.8 % between the two spot-welds was observed. 

The compressive stress value measured between the spot-welds is similar to the expected 

compressive stress value away from the weld region. This suggests that an appropriate distance 

between spot-welds was chosen and that there is no truncation of the original stress profile. 

However, comparing with the single spot-weld specimen, a decrease of 41.9 % and 29.3 % of the 

peak tensile stress value was measured for the first and second spot-weld, respectively. This 

observation can be explained by both the influence of the stress distribution of a second spot-

weld and the stress relief on the first spot-weld by the heat flow from the second one. This led to 

an overall balance of the weld-induced residual stress magnitude.  
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The finite element model of the residual stress distribution across the length, as per section ‘B’ in 

Figure 3.5, of a multiple spot-weld specimen is depicted in Figure 3.48. In this analysis, the 

specimen was cut through the centre of the second spot-weld of each column. As predicted the 

stress distribution is similar to what was previously observed for the single and double spot-weld 

specimens, with the peak values being observed at the centre of the spot-weld. For the analysed 

spot-weld arrangement, similar peak tensile stress values can be observed along the profile. As 

reported for the double spot-weld specimen, this could be explained by the increase in 

temperature of the sheets due to the heat flow from the array of spot-welds which leads to a 

stress relieving action across the specimen. 

 

Figure 3.48 - 3D FEM model of the residual stress distribution across the five columns of the top row on an AA2024-

T3 multiple spot-weld specimen (values presented in MPa). 

When cutting the multiple spot-weld specimen along its length, the rolling direction is aligned 

with the measurement surface. The increase in value of the compressive stresses observed away 

from the multiple spot-weld array can be explained by the pre-existing residual stresses due to 

rolling, which produces an anisotropic behaviour and stress distribution. The longitudinal residual 

stress plot from the two measurement lines across the mid-thickness of both sheets is presented 

in Figure 3.49.  

It can be seen from the longitudinal stress profiles gathered for the five spot-weld analysis that, 

similar to what was observed for the single and double spot-weld specimens, the stress profile is 

fairly uniform along the thickness of the specimen with the peak residual stress values being 

recorded on the top sheet. An explanation to this phenomenon has been provided previously in 

this section. Along the length of the specimen, the maximum tensile stress value was registered 

on the last spot-weld (10th spot), similar to what was observed for the double spot-weld 

specimen. However, the difference in the peak tensile stress values of the spot-welds was not 

significant ranging between 105.3 and 124.3 MPa, corresponding to a percentual increase of 

15.2 %. These values are equivalent to 30.7 % and 36.2 % of the parent material yield stress, 
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respectively. Comparing with the peak tensile stress observed on the single spot-weld specimen, 

a decrease of 56.7 % and 48.3 % was measured for the 2nd and 10th peak tensile stress value. 

 

Figure 3.49 - Line plot of residual stress distribution across the five columns on an AA2024-T3 multiple spot-weld 

specimen at specified thicknesses. 

As observed for the double spot-weld specimen, it seems that the increase in number of spot-

welds has a detrimental effect on the maximum tensile stress value. However, this is a positive 

outcome considering that the ideal scenario in an array of multiple spot-welds is to have the 

lowest residual stress value possible. Due to a smaller thermal expansion and contraction cycle, 

the peak tensile and compressive stresses on the bottom sheet are fairly uniform along the length 

of the specimen. The greatest percentual variation between the stress values of the two profiles 

were measured at the centre of the 10th spot-weld and between the 4th and 6th spot-weld, with a 

variation of 28.4 % (tensile) and 28.9 % (compressive). 

Between the spot-welds, lower compressive stress values were registered compared with the 

values registered away from the weld area. As already observed in the double spot-weld 

specimen, this is due to the presence of an adjacent spot-weld that truncates the original stress 

profile, affecting the stress magnitude and distribution in this area. In fact, since that in this 

specimen the array of spot-welds is greater than previously analysed, a decrease in the 

compressive stress values between spot-welds along the profile was observed, with the lowest 
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value found between the 10th and the 8th spot-weld. This suggests that, as the number of spot-

welds increase, the affected area by the weld-induced residual stresses increases and that the 

original profiles from previous spot-welds are truncated. Although the overall residual stress 

distribution is significantly below the yield strength of the base material, a bigger spacing between 

spot-welds might be required to minimise the interaction effects of various spot-welds.   

3.3.5.2. AA5754-H24 

The longitudinal residual stress distribution across the thickness of a RFSSW AA5754-H24 single 

spot-weld specimen obtained by the contour method is shown in Figure 3.50. The stress 

distribution for the single spot-weld specimen of this strain-hardened alloy is fairly similar to the 

stress distribution observed in the specimen from Section 3.3.5.1, with a tensile stress distribution 

in the weld area and its immediate vicinity due to the material thermal expansion and contraction 

experienced in this area. For this specimen, a small indent was observed on the bottom sheet at 

the anvil region and can explain the higher tensile peak value measured in this region. In 

comparison with the AA2024-T3 alloy, the inherent physical properties of the AA5754-H24 alloy 

for stamping applications, such as lower hardness values, allow for further deformation. This 

deformation can be attributed to the high process forces coupled with local material softening 

due to the thermal cycle.  

 

Figure 3.50 - 3D FEM model of the residual stress distribution on an AA5754-H24 single spot-weld specimen (values 

presented in MPa). 

Away from the weld region, a gradient of compressive stresses along the width of the specimen 

was measured on the top sheet with similar magnitude as the peak tensile stresses found in the 

stir zone area. A reasonable level of symmetry at the centre line can also be observed with a slight 

deviation of the residual tensile stresses on the left-hand side of the weld area on the top sheet. 
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This deviation was also observed on the bottom sheet on the opposite side, which can be 

explained by the difference in the design of the specimen and the spot-weld location used in this 

analysis as mentioned in Section 3.2.5. Due to the close proximity of the spot-weld to the edge of 

the specimen, the heat flow from the weld area is greater at the free edges of the specimen 

leading to uneven expansion and contraction of the weld material. 

Figure 3.51 presents the longitudinal residual stress plot from two measurement lines across the 

mid-thickness of both sheets. The vertical dash-dotted line indicates the centre of the spot-weld. 

The same bell curve stress distribution was observed at the weld area for both profiles, as 

observed in the previous Section. For both measurement profiles, the peak tensile stress values 

were found at the centre of the stir zone with the highest value observed on the top sheet and a 

magnitude of 110.78 MPa, corresponding to 53.8 % of the parent material yield stress.  

 

Figure 3.51 - Line plot of residual stress distribution on an AA5754-H24 single spot-weld specimen at specified 

thicknesses. 

The finite element model of the residual stress distribution across the width of the multi spot-

weld specimen is shown in Figure 3.52. The residual stress distribution on both spot-welds is 

consistent with what was observed for the single spot-weld specimen and for the double spot-

weld specimen from Section 3.3.5.1. A comprehensive description of the stress distribution has 
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been presented in that section. Both peak tensile stresses were found at the centre of the spot-

weld with a higher value on the second spot-weld.  

 
Figure 3.52 - 3D FEM model of the residual stress distribution across two rows on an AA5754-H24 multiple spot-weld 

specimen (values presented in MPa). 

The longitudinal residual stress plot from two measurement lines across the mid-thickness of 

both sheets is presented in Figure 3.53. The vertical dash-dotted line indicates the centre of the 

spot-weld. Due to an alignment error while producing the multiple spot-weld specimen, the 

centre of the first spot-weld was offset by 18 mm from the edge as opposed to the 20 mm 

distance set in Figure 3.5. The stress profiles evidence similar degree of uniformity along the 

thickness as observed for the single spot-weld specimen, with the peak stresses being higher on 

the top sheet. However, a negligible discrepancy between the peak tensile stresses of both 

profiles was measured on the first spot-weld. Similar weld affected area can be observed for this 

spot-weld arrangement, with the weld-induced residual stresses shifting from tensile to 

compressive at the distance of around two spot-weld diameters from the peak value. The peak 

tensile stress values were 63.82 and 130.79 MPa for the first and second spot-weld, 

corresponding to 30.9 % and 63.5 % of the base material yield stress, respectively. Comparing 

with the double spot-weld specimen from Section 3.3.5.1, the stress relieve effect from the 

second spot-weld on the peak tensile stress value of the first spot-weld was slightly higher, with 

a reduction of 57.6 % of the peak value obtained from a single spot-weld specimen. However, 

compared to the peak tensile value of a single spot-weld specimen, an increase of 18 % on the 

peak tensile stress value (20.01 MPa) was recorded for the second spot-weld, as opposed to the 

30 % decrease observed in the specimen from the previous section. 
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Figure 3.53 - Line plot of residual stress distribution across two rows on an AA5754-H24 multiple spot-weld specimen 

at specified thicknesses. 

 

Due to the small variation between the two values, an explanation for this phenomenon could be 

attributed to the machining operations performed to the single spot-weld specimen before the 

residual stress measurements. As previously mentioned, a lap shear stress specimen (Figure 3.3) 

was used to measure the residual stress on a single spot-weld in this section. The free edges of 

this specimen were cut in the guillotine followed by linishing of the corners and edges. These 

operations could have an impact on the residual stress profile and could have led to stress relieve 

in the single-spot coupon. Due to the limited budget and time, a new specimen could not be 

analysed to confirm this hypothesis. As observed in Section 3.3.5.1, a smaller compressive stress 

value between the spot-welds compared with the values measured for the single spot-weld 

specimen was registered. An explanation for this phenomenon has been presented in that 

section.  

The finite element model of the residual stress distribution across the length of a multi spot-weld 

specimen is depicted in Figure 3.54. In this analysis, the specimen was cut through the centre of 

the second spot-weld of each column. Due to a setup error while welding the specimen, the 

location of the stresses along the profile length do not fully match the centre of the spot-weld 

from the 3D model. However, as predicted, the stress distribution is similar to what was 

previously observed for specimen in Section 3.3.5.1, with the peak stress values being observed 

at the centre of the spot-weld. In the analysed spot-weld arrangement, similar stress distributions 
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and magnitudes can be observed from the 2nd to the 8th spot-weld, with a significant increase in 

tensile stress for the 10th spot-weld. 

 
Figure 3.54 - 3D FEM model of the residual stress distribution across the five columns of the top row on an AA5754-

H24 multiple spot-weld specimen (values presented in MPa). 

The longitudinal residual stress plot from the two measurement lines across the mid-thickness of 

both sheets is presented in Figure 3.55. The vertical dash-dotted line indicates the centre of each 

spot-weld. The stress profile is reasonably uniform along the thickness with overall greater 

residual stress values being recorded on the top sheet. An explanation to this phenomenon has 

been provided in this section. Similar behaviour to the double spot-weld specimen was observed 

with a continuous increase in the peak tensile stress value and a maximum registered on the last 

spot-weld (10th spot). Both profiles evidence a fairly similar peak tensile stress value along the 

remaining spot-welds. 

 

Figure 3.55 - Line plot of residual stress distribution across the five columns on an AA5754-H24 multiple spot-weld 

specimen at specified thicknesses. 
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Peak tensile stresses ranged between 82.32 and 136.75 MPa, corresponding to the 2nd and 10th 

spot-weld, respectively. These values are equivalent to 39.9 % and 66.3 % of the parent material 

yield stress, respectively. Comparing with the peak tensile stress value observed on the single 

spot-weld specimen, a decrease of 25.7 % for the 2nd peak tensile spot-weld and, as observed for 

the double spot-weld specimen, an increase of 23.4 % on the maximum tensile stress was 

measured. However, similar stress magnitude ranges to the ones observed in the two spot-weld 

specimen were observed for this specimen, suggesting that the increasing number of spot-welds 

does not have an impact on the peak tensile stress value. This could be attributed to the non-

heat treatable nature of this alloy. However, further testing of this hypothesis is out of the scope 

of this investigation. 

Compressive stress values between the spot-welds tend to increase in magnitude along the 

length of the specimen. The greatest percentual variations in the stress value between the two 

profiles were measured between the peak value at the centre of the 4th and 8th spot-weld, with a 

decrease of 31.8 % and 29.1 %. Between the spot-welds, lower compressive stress values were 

registered compared with the values registered away from the weld area. The conclusions drawn 

from the analysis in Section 3.3.5.1 can also be applied to this alloy group. 

3.3.5.3. AA7075-T6 

The longitudinal residual stress distribution across the thickness of a RFSSW AA7075-T6 single-

spot specimen obtained by the contour method is shown in Figure 3.56. The stress distribution 

for this specimen of this heat treatable alloy is fairly similar to the stress distribution observed in 

the specimen from Section 3.3.5.1, with a tensile stress distribution in the weld area and its 

immediate vicinity due to the material thermal expansion and contraction experienced in this 

area. A small tensile stress region can be observed at the centre of the spot-weld on bottom 

surface of the bottom sheet. This phenomenon can be attributed to an overheating of the bottom 

anvil, which generated a localised thermal expansion and contraction cycle of the material in this 

region. The presence of the anvil to restrict the free movement of the material led to the 

development of the observed stress state. 
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Figure 3.56 - 3D FEM model of the residual stress distribution on an AA7075-T6 single spot-weld specimen (values 

presented in MPa). 

 

Away from the weld area, the magnitude of the tensile residual stresses decreases as the peak 

temperatures are lower. A compressive stress state is achieved on the top sheet parent material 

that restrains the thermal contraction of the weld material during cooling. As observed for the 

specimen in Section 3.3.5.1, the opposite stress distribution can be observed on the parent 

material of the bottom sheet. An explanation for this effect has been provided in that section. 

Figure 3.57 presents the longitudinal residual stress plot from two measurement lines across the 

mid-thickness of both sheets. The vertical dash-dotted line indicates the centre of the spot-weld. 

Due to a minor error on the welding setup, the centre of the spot-weld from the 3D model is not 

fully aligned with the stress profile. Nevertheless, a reasonable level of symmetry at the centre 

line can be observed for the stress profile on the top sheet. Comparing with the stress profile 

from the bottom sheet, it can be seen that away from the weld area the stress profile is not 

uniform along the thickness. Although the bottom sheet displays an asymmetric stress profile at 

the weld area, the weld-induced residual stress distribution for both profiles are approximately 

of the same size. Similar “bell” curve stress distribution was observed at the weld area for both 

profiles, as observed in the previous sections. For both measurement profiles, the peak tensile 

stress values were found at the centre of the stir zone with the highest value observed on the top 

sheet and a magnitude of 222.8 MPa, corresponding to 43.5 % of the parent material yield stress. 

A decrease of 36.3 % between the peak tensile stresses of the stress profiles from the top and 

the bottom sheet was measured as observed for the single spot-weld specimen in Section 3.3.5.1.  
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Figure 3.57 - Line plot of residual stress distribution on an AA7075-T6 single spot-weld specimen at specified 

thicknesses. 

The finite element model of the residual stress distribution across the width of the multiple spot-

weld specimen is shown in Figure 3.58. Due to a change in the half of the specimen used for the 

analysis, the 2nd spot is located on the left-hand side of the model. The residual stress distribution 

on both spot-welds is consistent with what was observed for the single spot-weld specimen and 

a comprehensive description of the stress distribution has been presented in Section 3.3.5.1. Both 

peak tensile stresses were found at the centre of the spot-weld with a higher value on the second 

spot-weld, as observed in the previous specimens. Away from the weld area, a significantly higher 

compressive stress value was measured on the top sheet. This can be attributed to the restraint 

to the free thermal contraction of the weld material during cooling. This effect is not as noticeable 

on the bottom sheet as the peak temperatures and microstructural changes are less intense. 
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Figure 3.58 - 3D FEM model of the residual stress distribution across two rows on an AA7075-T6 multiple spot-weld 

specimen (values presented in MPa). 

The longitudinal residual stress plot from two measurement lines across the mid-thickness of 

both sheets is presented in Figure 3.59. The vertical dash-dotted line indicates the centre of the 

spot-weld. Due to a setup error while welding the specimen, the location of the stresses along 

the profile length do not fully match the spot-weld centre on the 3D model. Both profiles are 

fairly symmetrical at the centre of the specimen, as observed on the double spot-weld specimen 

from Section 3.3.5.1. Similar weld affected area can be observed for this spot-weld arrangement, 

with the weld-induced residual stresses shifting from tensile to compressive at the distance of 

around one spot-weld diameter from the peak value. At the weld area, the stress profiles 

evidence uniformity along the length and thickness, with the peak stresses being higher on the 

top sheet.  

The peak tensile stress values were 149.70 and 170.36 MPa for the first and second spot-weld, 

respectively, corresponding to 29.2 % and 33.2 % of the base material yield stress. A decrease of 

24.3 % and 29.5 % of the peak tensile value between the top and bottom sheet was determined 

for the first and second spot-weld, respectively. Comparing with the single spot-weld specimen, 

a decrease of 32.8 % and 23.5 % of the peak tensile stress value was measured for the first and 

second spot-weld, respectively. As a heat treatable alloy, this stress distribution is similar to the 

one observed for the specimen in Section 3.3.5.1, which further supports the explanation for the 

different stress distribution observed for the AA5754-H24 specimen.  



Chapter 4 - RFSSW tool material evaluation 
 

 
PhD Thesis - Pedro de Sousa Santos 117 Coventry University (2020) 

 

 

Figure 3.59 - Line plot of residual stress distribution across two rows on an AA7075-T6 multiple spot-weld specimen 

at specified thicknesses. 

Contrary to the previously presented data for the double spot-weld specimens, the compressive 

stress value between the spot-welds was considerably similar to the value observed for the single 

spot-weld specimen. This leads to the conclusion that, for this alloy, the selected distance 

between spot-welds allows for the stress profile to fully stabilise without truncating any of the 

profiles. The finite element model of the residual stress distribution across the width of a multi 

spot-weld specimen is depicted in Figure 3.60. As performed in previous sections, the specimen 

was cut through the centre of the second spot-weld of each column.  

 

Figure 3.60 - 3D FEM model of the residual stress distribution across the five columns of the top row on an AA7075-

T6 multiple spot-weld specimen (values presented in MPa). 

The stress distribution is similar to what was previously observed for the specimen in Section 

3.3.5.1, with the peak stress values being observed at the centre of the spot-weld on the top 

sheet. In the analysed spot-weld arrangement, similar stress distributions can be observed across 
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all spot-welds, with a continuous increase in the peak tensile stress value of each spot-weld. The 

highest tensile stress value was observed on the 10th spot and an explanation for this 

phenomenon has been previously presented. 

The longitudinal residual stress plot from the two measurement lines across the mid-thickness of 

both sheets is presented in Figure 3.61. The stress profile is fairly uniform along the thickness and 

length of the specimen, except at the edges of the specimen where the opposite stress 

distribution between the two profiles was registered. An overall greater residual stress value was 

recorded on the top sheet due to a higher peak temperature and degree of recrystallisation. 

Similar behaviour to the double spot-weld specimen was observed with the peak tensile stress 

values increasing with the number of spot-welds.  

Peak tensile stresses ranged between 107.9 and 142.6 MPa, corresponding to the 2nd and 10th 

spot-weld, respectively. These values are equivalent to 21.1 % and 27.8 % of the parent material 

yield stress, respectively. Comparing with the peak tensile stress observed on the single spot-weld 

specimen, a decrease of 51.5 % and 35.9 % was measured for the 2nd and 10th peak tensile spot-

weld, respectively. The greatest percentage variations in the stress value between the two 

profiles were measured between the 4th and 6th spot-weld and at the centre of the 8th spot-weld, 

with a variation of 49.9 % (compressive) and 49.2 % (tensile). 

 
Figure 3.61 - Line plot of residual stress distribution across the five columns on an AA7075-T6 multiple spot-weld 

specimen at specified thicknesses. 
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For the first spot-welds, the peak tensile and compressive stresses on the bottom sheet are fairly 

uniform and aligned with the profile from the top sheet. However, due to an increase in the tool 

temperature, a significant increase on the tensile stress values of the top sheet was observed. 

Similar patterns were observed for the peak compressive stress values between the spot-welds, 

with a continuous decrease in the compressive stress values as the number of spot-welds 

increases. 

 Conclusions 

In this investigation, RFSSW of AA2024-T3, AA5754-H24 and AA7075-T6 with a thickness of 2 mm 

was performed. Rotation speed and plunge depth values were varied to determine the most 

promising process parameter combination based on lap shear strength, cross tension strength 

and weld cross-section analysis. Further experiments, such as fatigue testing and residual stress 

measurements, were carried out on specimens produced using the optimised process parameter 

combination. The following conclusions can be drawn from the present investigation: 

◼ Within the process window explored, RFSSW lap shear strength values in bare condition 

varied between 5.56 and 8.59 kN for AA2024-T3 welds, 4.93 to 7.16 kN for AA5754-H24 and 

between 6.03 and 9.10 kN for AA7075-T6 welds. These results surpassed the minimum 

strength requirements for resistance spot welding defined by AWS D17.2/D17.2M:2019. 

◼ RFSSW lap shear strength values in bare condition of AA2024-T3 and AA7075-T6 were closely 

matched with an equivalent AA2024-T31 solid rivet.  

◼ The ANOVA tables allowed to quantify the contribution of the RFSSW process parameters on 

the lap shear strength of the joints. For both alloys, plunge depth was the dominant process 

parameter with a contribution between 74 %, 62 % and 79 % for AA2024-T3, AA5754-H24 

and AA7075-T6, respectively. 

◼ For the alloys used in this investigation, weld lap shear strength was improved with low 

rotation speed and high plunge depth values. Increasing plunge depth increases the welded 

area and promotes better bonding at the weld interface. Lower rotation speed values 

contribute to a lower heat input weld which reduces coarsening and over aging of the 

strength precipitates. 

◼ The typical microstructure and metallurgical features of RFSSW were observed on all welds, 

evidencing a fine and recrystallized grain structure in the centre of the weld. Despite the high 
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hook height, failure mode under lap shear testing was consistent with effective joining of the 

SZ/TMAZ interface.  

◼ For the high strength alloys, AA2024-T3 and AA7075-T6, a process parameter boundary was 

determined for low plunge depth and rotation speed values. These conditions led to the 

formation of internal voids due to low heat input conditions and poor flowability of the 

material during the refilling stage. 

◼ Fatigue test results were used to establish an equation for the S-N curve. Good fitting 

coefficients were correlated for each test condition. Stress concentration from out-of-plane 

bending promoted crack development at the hook and early failure of the bare specimens. 

◼ Residual stress measurements were performed using the contour method on a bare multiple 

spot-weld specimen and single spot-weld specimen. Peak tensile stresses were always found 

at the centre of the spot-weld on the top sheet with values bellow the yield strength of the 

parent material. 

◼ For heat-treatable alloys, the maximum tensile stress value decreased as the number of spot-

welds increased. This trend was not observed for the strain-hardened alloy.  

RFSSW of AA2024-T3 and AA7075-T6 in the presence of an aerospace grade sealant was 

performed to determine the influence of an interfacial sealant on the mechanical properties and 

weld microstructure. The following conclusions can be drawn from the present investigation: 

◼ Under lap shear conditions, the presence of an interfacial sealant improved the shear 

strength value by 44 % and 51% for AA7075-T6 and AA2024-T3, respectively.  

◼ The opposite trend was observed under cross tension conditions, where the presence of an 

interfacial sealant decreased the strength values by 3 % and 19% for AA7075-T6 and AA2024-

T3, respectively. 

◼ The presence of an interfacial sealant improved the fatigue life under all loading levels on 

both alloys, surpassing the first million cycle threshold under the lower load condition.  

◼ The performance improvement observed under shear and fatigue conditions can be 

attributed to the adhesion from the sealant at the edge of the specimen. The sealant restricts 

sheet separation, preventing the generation of peeling stress at the hook region and fretting 

damage. 
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◼ The thin layer of sealant at the weld interface influences the stirring efficiency and 

consolidation of material in this area, decreasing the strength under cross tension loading. 
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RFSSW tool material evaluation 

 

This chapter compares a range of relevant materials that could be used to produce RFSSW tool 

components based on their performance, influence on the microstructure and preliminary wear 

analysis. The knowledge gathered from this investigation will provide an indication of the most 

appropriate tool material to use as a replacement for the current WC-Co RFSSW tool material 

supplied by KHI.  
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 Introduction  

In all third body friction welding technologies, the tool has a significant impact on the 

performance and efficiency of the joining process (Mehta et al. 2011; Rai et al. 2011). Different 

tool materials have different physical properties that can influence the heat generation process 

as well as the heat conduction from the weld area to the tool body. This can lead to changes in 

the mechanical performance and microstructural properties of the weld. An appropriate material 

selection considering the stress that the tool will be subjected while in service can ensure its 

longevity and prevent catastrophic failures (Buffa et al. 2012; Liu et al. 2018). 

 Materials and methods 

  Base material  

The base material chosen was AA7050-T7451 which is a high strength heat treatable aluminium 

alloy used extensively in aerospace structural applications. This alloy is known to have a 

detrimental effect on the tool life due to the high flow stresses and pressures during friction stir 

welding. For this study, the base material was provided in plate form with the dimensions 

200x400x25 mm. The chemical composition and mechanical properties are shown in Table 4.1 

and Table 4.2, respectively.  

Table 4.1 - Chemical composition of AA7050-T7451. 

Element 

[Weight %] 
Si Fe Cu Mn Mg Zn Cr Ti Al 

AA7050-T7451 0.12 0.15 2.3 0.1 2.3 6.2 0.04 0.06 remainder 

Table 4.2 - Mechanical properties of AA7050-T7451. 

Hardness [HV] 162 

Ultimate Tensile Stress [MPa] 524 

Yield Tensile Stress [MPa] 469 

Elongation at Break [%] 11 

 Tool materials/surface treatment combinations  

Like the conventional FSSW, during the RFSSW process the tool is mainly subjected to 

compression stresses at temperatures reaching approximately 85% of the melting temperature 

of the base material (Zhao et al. 2016). Also, significant wear and other degradation phenomena 

can arise due to the continuous friction coupling between the tool and the base material. The 

essential and desirable properties for a RFSSW tool material are summarised in Table 4.3.  
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Table 4.3 - Properties of tool materials. 

Essential properties Desirable properties 

Sufficient high temperature strength Oxidation resistance 

Wear resistance at ambient  

and service temperatures 
Established material 

Fracture toughness at ambient  

and service temperatures 
Low toxicity 

Machinability Affordability 

Stable microstructure  

at service temperature 
Availability 

Inert to workpiece 

at service temperature 
Thermal fatigue 

In this investigation, three different materials were selected based on their physical properties 

and previous uses in friction stir welding applications:  

◼ M42 High speed tool steel;  

◼ MP159 multiphase alloy; and  

◼ Silicon Nitride (Si3N4).  

Table 4.4 shows the chemical compositions of the selected materials. The composition of Si3N4 is 

not present since the material is entirely composed of this chemical compound.  

Table 4.4 - Chemical composition of metallic tool materials. 

Element 

[Weight %] 
Co Cr Fe Mo C V W Ni Ti Cb Al 

M42 8 3.9 remainder 9.4 1.1 1.2 1.5 ----- ----- ----- ----- 

MP159 35.7 19 9 7 ----- ----- ----- 25.5 3 0.6 0.2 

M42 belongs to the cobalt molybdenum series of tool steel that is commonly used to produce 

cutting tools and applications that require hot hardness due to its good balance between 

toughness and hardness (ASM International, 1989). In its annealed form it is easily machinable 

material and its extensive use in industry makes it an easily obtainable material at a relatively low 

cost. MP159 is a Co-Ni-Cr multiphase alloy with ultra-high strength, ductility and corrosion 

resistance at elevated temperatures (Davis, 2000). It is used in various industries under 

demanding environments such as high temperature fasteners, components for jet engines and 

marine applications. It is a reasonably machinable material in the annealed condition with a high 

relative cost and reasonable market availability. Si3N4 is part of the flexible and machinable 

engineering ceramics branch (AZOM, 2001). Characterised by high strength, toughness and 

hardness and excellent chemical and thermal stability, the aim was to replace metals with 
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ceramics in high service temperature applications. Due to its high manufacturing cost, Si3N4 is 

currently used in niche market applications for example in reciprocating engine components and 

turbochargers, bearings, metal cutting and shaping tools and hot metal handling. Table 4.5 

presents the physical properties of the materials used in this investigation. 

Table 4.5 - Physical properties of selected tool materials. 

  M42  MP159 Si3N4 

Density [Kg/m³] 7.9 8.4 3.3 

Modulus of Elasticity [kN/mm²] 200.0 234.0 310.0 

Thermal Conductivity [W/m °C] 28.0 11.2 30.0 

Coefficient of thermal expansion [10-6/ °C] 11.5 14.9 3.3 

To determine if improvements in tool life and overall performance could be gained by the use of 

surface engineering/coating techniques, surface treatments were applied to M42 and MP159 

specimens as shown in Table 4.6. For components where resistance to wear and galling is 

important, the use of plasma nitriding in high alloyed steels can be beneficial as the release of 

active nitrogen into the surface of the steel generates a layer that increases the surface hardness 

of the material. A suitable surface treatment for the MP159 was identified and applied based on 

previous research conducted by TWI. Consisting on low temperature diffusion of large quantities 

of carbon and/or nitrogen into the surface, this surface treatment improves wear resistance, 

strength and resistance to galling. The exact process details are confidential property of the 

company. The process parameters for both surface treatments were adjusted to treat the 

material up to a depth of 100 µm. 

Table 4.6 - Designations for tool materials and surface treatment combinations 

Tool 

Materials 
M42 MP159 Si3N4 

Surface 

treatment 

Hardened and 

tempered  

Hardened, tempered and 

Plasma Nitriding (PN) 
Hardened 

Hardened and 

Surface engineered  
------ 

Designation HT HT+PN H H+SE Si3N4 

 Specimen Geometry 

The tool materials were supplied as round bar in annealed condition. This enabled machining to 

size prior to heat treatment and surface treatments. Tool material test specimen geometry is 

presented in Figure 4.1. The present design aimed at simplifying the machining operations, while 

replicating the dimensions of the plunging area of the shoulder (which are the key features 

governing the stage 1 and 2 of the RFSSW process. To machine Si3N4, dedicated tools are required 

which would increase the total cost of the component. Therefore, to reduce the lead time and 
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costs of each specimen, only the plunging region was machined to match the dimensions of the 

shoulder. 

 

Figure 4.1. Tool material test specimens:  A) M42 and MP 159 and B) Si3N4. 

 Plunging procedure 

The stage 1 and 2 of the RFSSW, dwell and plunging stage respectively, are the stages that impose 

the greatest amount of wear and stresses on the tool. As the heat to plasticise the material ahead 

of the tool has not been generated yet, this leads to higher flow stresses between the tool and 

the base material. A RFSSW cycle consisting only of the stage 1 and 2 of the process will be 

hereinafter referred to “plunge cycle” and an array of plunge cycles will be hereinafter referred 

to “plunge trials”. For each plunge cycle, no weld is produced since the process only displaces and 

processes the material around the tool, creating a protruding feature as shown in Figure 4.2. 

 

Figure 4.2 - Protruding feature produced during the plunge trials. 

Considering the shape of the specimens used in this investigation, a conventional FSW machine 

without traverse motion is suitable to replicate the stage 1 and 2 of the RFSSW weld cycle. 
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Figure 4.3 shows the machine used to perform the experiments, TWI’s FW-36 AWEA LP 4025Z. 

This machine is a based on a gantry type CNC milling machine, which has been fitted with 

recording instruments to monitor rotation speed, plunge speed and depth, as well as tool axial 

and side force. 

 

Figure 4.3 - FW-36 AWEA LP 4025Z FSW machine.  

Plunge trials were performed in position-control, using the best effort process parameters 

obtained from Chapter 3. However, due to frequent clogging of material inside the tool, a 

shallower plunge depth of 2.0 mm was later selected. Clogging was one of the most significant 

issues found in this investigation and will be addressed in further detail later in this chapter. 

Table 4.7 presents the process parameter combinations used in this investigation.  

Table 4.7 - Process parameters 

Rotation speed [Rev/min] 1000.0 

Plunge depth [mm] 2.0 

Dwell time [s] 2.0 

Plunge rate [mm/min] 54.0 

Retraction rate [mm/min] 750.0 

Before initiating the first plunge trial sequence, the top surface of the base material plate was 

skimmed to remove surface oxides and contaminants. Plunge trials consisted of 9 plunge cycles 
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in a row along the width of the plate, with the first plunge being located 15 mm from the edges 

and the subsequent plunges being separated by 20 mm intervals. In order to maintain a stable 

tool temperature and minimise the likelihood of clogging, three consecutive rows were 

performed followed by rapid water cooling to ambient temperature. This procedure was 

repeated up to the end of the plate, in a total of 16 rows, until a tool inspection milestone was 

reached or until the tool became clogged. 

After the 16th row was completed, a 2.2 mm layer of material was milled from the base material 

plate to remove the previous features and level the base material sample. This was performed 

until a minimum plate thickness of 12 mm was reached or excessive bowing of the plate was 

observed due to the thermal and machining stresses generated on the top side of the plate. 

Once the tool became clogged, plunge trials were ceased and the tool was removed. This was to 

ensure that no premature failure of the tool specimen would occur as a result of the excess 

material inside the tool and to continue to replicate the material movement around the tool 

observed during RFSSW in every plunge. The clog was removed from the specimen using a 

3.8 mm diameter drill and a 4 mm rimer on a manual lathe, endeavouring to preserve the external 

surfaces of the tool. The tool inspection procedure will be described later in the following section.  

 Characterisation techniques 

Prior to conduct an inspection of the tool external surfaces, the specimens were dipped in a 

solution of sodium hydroxide (NaOH) for a maximum period of 4 hours. This was performed to 

remove the aluminium layer that adheres to the tool contact surfaces. To determine the wear of 

the tool throughout the plunge trials, tool test specimens were measured using an Alicona 

InfiniteFocus SL 3D surface profilometer. Analysis was performed using the associated IF Measure 

Suite software. This procedure was initially performed every 150 plunges up to 450 plunges, 

following an analysis at 750 plunges and at 2000 plunges. The affected surface of the tool was 

also inspected for cracks using a Zeiss EVO LS15 SEM.  

Metallographic specimens of the protruding features were sectioned, polished and etched with 

Keller’s reagent for microstructural analysis. Optical microscopy was conducted using an 

OLYMPUS GX71 inverted geometry optical microscope with a Colorview III camera.  

Thermal measurements on single and nine-consecutive plunges specimens were performed to 

understand the variation of peak weld temperature across multiple spots. To record the thermal 
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cycle during the plunge cycle and measure the maximum temperature at the vicinity of the plunge 

zone, two Type-K thermocouples were embedded in the aluminium plate at a depth of 2 mm and 

a distance of 1 mm from the edge of the tool. Temperature measurements were recorded at 

100Hz using a calibrated Ni 9213 digital acquisition module and processed using Ni Express 2015 

software. 

 Results and discussion 

 Performance  

Si3N4 has been used previously in friction stir welding for high temperature applications. Ahn et 

al. (2012) examined the microstructural and mechanical properties of 409L stainless steel with a 

thickness of 3 mm when friction stir welded using a Si3N4 tool. Sound welds were produced with 

similar mechanical strength to the base material. Kim et al. (2014) compared the performance of 

a high cost polycrystalline cubic boron nitride (PCBN) tool with a lower cost Si3N4 tool for friction 

stir welding of 1.4mm DP590 steel sheets. Despite the similar weld mechanical performance to 

the base material, the Si3N4 tool life was around 5 m (half of the PCBN tool) with possible tool life 

improvements after welding conditions and tool design optimisation.  

During the plunge trials, the two Si3N4 tool specimens presented significantly shorter lives than 

the other tool material candidates, registering only 92 and 2 plunges. Furthermore, a catastrophic 

and predominantly brittle fracture surface was observed on both specimens. The fracture surface 

of a Si3N4 tool specimen after 92 plunges is presented in Figure 4.4.  

 

Figure 4.4 - Fracture surface of a Si3N4 tool after 92 plunges. 

Considering the poor performance and reliability issues allied with its relative high cost and 

special machining requirements, Si3N4 was not considered a viable tool material alternative for 

RFSSW shoulder designs. No further testing or analysis was performed for this tool material. 
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A fundamental RFSSW tool material requirement to prevent unexpected tool failures is to 

minimise material adhesion to the tool surface, which can lead to clogging. The stages leading to 

the clogging of the tool specimens are shown in Figure 4.5. Like the formation of a built-up edge 

in cutting tools, as described by Song et al. (2017), clogging is promoted by the high temperatures 

and strain rates. These conditions lead to the interdiffusion between aluminium and the tool 

material, generating a thin layer of intermetallic compounds. These compounds on the inside wall 

of the tool specimen provide a nucleation site for additional layers of base material, promoting 

the continuous entrapment of the processed material. This could lead to the restriction of motion 

of the tool components during the welding process as well as liquid metal embrittlement of 

alloying elements as observed by Nasiri et al. (2018), causing catastrophic failures. 

 

Figure 4.5 - Tool clogging stages: A) base material accumulation on the inside surface of tool specimen, B) fully 

clogged tool with a C) slug of material. 

The performance of each tool material and surface treatment combination was evaluated based 

on the maximum number of consecutive plunges without clogging or chemical cleaning. The 

results from this analysis are presented in Table 4.8. The high temperature and pressure 

experienced by the tool material test specimens during the plunge trials can be compared to 

other manufacturing processes, such as extrusion of aluminium. Due to the high friction and wear 

of the die associated with this process, the extrusion dies, usually manufactured from tool steels 

such as AISI H13, undergo a nitriding process to increase their wear resistance. As described by 

Akhtar, Arif and Tilbas (2012), this process is repeated several times during the service life of the 

dies due to gradual decrease in thickness of the surface nitride layer. Once this layer decreases 

and exposes the hardened layer of the material, the affinity with aluminium increases. 
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Table 4.8 - Maximum number of plunges before clogging for each tool material and surface treatment combination. 

Tool Material 

Surface 

treatment 

Tool performance 

[Maximum number of plunges before 

clogging] 

M42 HSS 

HT 

HT + PN 

 

508 

150  
MP159 

H 

H + SE 

 

494 

100 

As previously mentioned, clogging was observed in various occasions with all metallic tool 

materials used in this investigation. As shown in Table 4.8, a greater propensity for clothing was 

observed in both tool materials with surface treatment, when compared to the simple heat 

treated variant. This was an unexpected result considering that the purpose of the surface 

treatment was to produce the opposite outcome. An explanation for this phenomenon might be 

related to differences in surface energy or surface roughness between the specimen variants, 

which increased the affinity between the tool material and the base material. 

 Metallography 

A typical cross-section of a protruding feature produced during the plunge trials is shown in 

Figure 4.6. Due to the similarity in microstructure and geometry, only the feature produced using 

a M42 HT tool specimen will be analysed. The hole on the bottom right-hand side of the picture 

shows the location where the thermocouple was inserted. The analysis of this feature can provide 

a greater understanding of the material microstructural changes and flow patterns at the end of 

the plunging stage of the RFSSW process. Other researchers have employed “stop-action” 

procedures to further understand the material flow at each stage as well as the formation of 

intermetallic compounds at the interface of dissimilar material welds (Reimann, Goebel and Dos 

Santos 2017; Suhuddin, Fischer and Dos Santos 2013 and Suhuddin et al. 2017). These procedures 

consist in stopping the weld cycle during or once the plunging stage has been completed and 

analyse the joint produced.  
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Figure 4.6 - Cross-section of a protruding feature produced with a M42 high speed steel hardened and tempered  

A) SZSH/TMAZ 1 interface in protruding feature; 

B) SZSH /TMAZ 1 interface in base material; 

C) Top TMAZ 2; 

D) Bottom TMAZ 2. 

In this simplified scenario however, limited or no interaction between the surface of the tool 

specimen and the centre region of the protruding feature has occurred due to the absence of the 

probe element of the RFSSW tool. Also, due to the absence of a clamp ring, part of the displaced 

material by the shoulder was pushed outwards. This highlights the need for the clamping ring 

component in order to contain the displaced material within the weld area and promote a 

confined material flow during the plunge stage of the RFSSW cycle, thereby minimising material 

losses. Based on the microstructural changes, four different weld regions can be identified: the 

stir zone produced by the shoulder (SZSH), the thermo-mechanically affected zone 1 (TMAZ 1), the 
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thermo-mechanically affected zone 2 (TMAZ 2) and the unaffected base material. The SZSH is the 

volume of material in direct contact with the rotating surface of the shoulder, which is located at 

the periphery of the protruding feature, side and bottom of the indent mark left by the shoulder. 

Some of the simulation work carried out by Zhao et al. (2016) is shown in Figure 4.7. The outcome 

of their investigation shows that this area, during the plunge stage, exhibits both the highest 

temperature and peripheral velocity. The combination of intense heat and plastic deformation 

leads to dynamic recrystallisation producing a fine and equiaxed microstructure, as shown in 

Figure 4.6.A) and B). 

 

Figure 4.7 - A) Temperature and B) Material flow velocity simulations during the plunging stage of the RFSSW (Zhao 

et al. 2016). 

As observed in Figure 4.7.B), the peripheral velocity naturally decreases towards the centre as 

the influence from the contact area is less noticeable. This leads to a gradient of microstructural 

changes, producing two TMAZ regions with different grain sizes and orientation. The TMAZ 1 is 

the region adjacent to the SZSH which, due to the lower temperature and plastic deformation, 

does not undergo dynamic recrystallisation. The TMAZ 2 is the region of material at the centre of 

the protruding feature that has been pushed upwards as a reaction to the plunging motion of the 

shoulder.  

The TMAZ 1 is characterised by distorted grains due to the upward viscoplastic flow during the 

plunge stage. The grain alignments observed in Figure 4.6.A) and B) are consistent with the 

material flow model proposed by Shen et al. (2020). The material from the bottom surface of the 

shoulder progresses predominantly inwards and upwards while the shoulder moves downwards. 

This symmetrical movement of material generates a concave surface at the top of the protruding 

feature, like the joint line remnant shape observed in the study conducted by Shen et al. (2018). 

In their study, the authors proposed that the explanation for this phenomenon was the 
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compression effect from the probe. However, in this investigation the material was not restricted 

by any surface during the plunge of the shoulder and similar results were observed. This seems 

to suggest that the shape of the joint line remnant is predominantly, if not exclusively, dictated 

by the motion of the shoulder and could possibly be influenced by different shoulder geometries 

and features. 

Within the TMAZ 2 different grain sizes and alignments can be observed, caused by the 

temperature and plastic deformation gradients. The upper and lower regions of the core of the 

protruding feature are shown in Figure 4.6.C) and D), respectively. The grain morphology and 

alignment from the lower regions of the TMAZ 2 are similar to the base material, as shown is 

Figure 4.6.D), due to the negligible interaction between the tool and the base material. Internal 

voids of small scale can be observed in Figure 4.6.C), which can be explained by the absence of 

the probe element of the RFSSW tooling (which would, in nominal conditions, contribute to 

ensure the consolidation of material as its being extruded). Smaller size and distorted grains can 

be observed at the upper regions of the feature due to the increased influence of the upward 

peripheral material flow.  

 Temperature measurements 

The peak temperatures recorded for each tool material candidate for a single spot and a multiple 

spot specimen are shown in Table 4.9. The temperatures recorded for all settings are substantially 

lower than the tempering temperature of both tool materials. However, the measurements were 

taken 1 mm away from the tool/base material interface where the temperature values are 

significantly higher and local melting of secondary phase particles and eutectic films is likely to 

occur as observed by other authors (Gerlich, Yamamoto and North 2008; Horie et al. 2010 and 

Zhao et al. 2018-B). The long exposure of the tool materials to these temperatures can lead to 

over-tempering and reduce the hardness as observed by Nasiri et al. (2018). 
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Table 4.9 - Peak temperature values registered for each tool material and surface treatment combination for the 

single and multiple spot specimens. 

Tool material  
Single 

spot 

Multiple spot 

1st  9th  

Surface 

treatment 

Peak temperature 

[°C] 

Peak temperature 

[°C] 

Peak temperature 

[°C] 

M42     

HT 190.39 187.09 261.33 

HT + PN 215.79 176.94 241.57 

MP159     

H 189.86 178.11 243.88 

H + SE 186.42 186.73 276.05 

From an energetic balance point of view, there are various variables that can influence the 

temperature during the welding process as explained by Su et al. (2006). In their work, the authors 

suggest that the effective energy released from the tool rotation is the difference between the 

heat generated by the tool and the associated heat losses. Heat dissipation sources include 

energy losses to the surrounding atmosphere, to the clamping and fixturing system, conductive 

heat loss through the sheets as well as through the tooling components. Consequently, the choice 

of tool material can have a direct impact on the weld mechanical performance and 

microstructural changes. The tool materials chosen for this experiment have both low values of 

thermal conductivity, with MP159 being the least thermally conductive of the two, as shown in 

Table 4.5. 

The thermal profiles for the single spot and multiple spot are presented in Figure 4.8 and 

Figure 4.9, respectively. The heat propagation from the various plunge cycles can be seen by the 

multiple peaks observed in Figure 4.9. Based on the data gathered from Table 4.9, Figure 4.8 and 

Figure 4.9, no correlation between the thermal conductivity coefficients of the various tool 

materials and the peak temperature values can be observed. In fact, the thermal behaviour is 

similar across all tool materials apart from the temperature profile for the M42 HT+PN single spot 

specimen. However, upon analysis of the cross-section, this difference in profile is explained by 

the collapse of the thermocouple hole, as seen in Figure 4.10.  
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Figure 4.8 - Temperature measurement plot for the single spot specimen. 

 

 

Figure 4.9 - Temperature measurement plot for the multiple spot specimen. 

One explanation for this observation, as described by Threadgill et al. (2009), can be the fact that 

the heat generation in FSW relies on the interaction of various factors, including the process 
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parameters, the parent material and the tool design. The same reasoning is valid for the multiple 

variants of the process, like RFSSW. This makes the calculation of the effective heat input a 

complex task, compared to processes using an external heat source. Nevertheless, considering 

this scenario where the setup for each tool material was nearly identical between experiments, a 

more reasonable explanation could be the short plunge cycle times which limits the actual 

interaction of the tool surface with the base material. This observation coupled with a varying 

stick-slip contact condition between the tool surface and the base material, limits the peak 

temperature of the weld cycle and maintains a self-stabilising behaviour.  

 

Figure 4.10 - Collapsed thermocouple hole in the M42 HT+PN single spot specimen. 

 Wear characterization of shoulder component  

Monitoring tool wear is an essential task for all FSW process variants to ensure consistency in tool 

performance and weld quality. Severe tool wear can lead to internal defects, such as inclusions 

of solid particles from the tool body, which can compromise weld integrity and surface quality 

(Farias et al. 2013; Lacki, Więckowski and Wieczorek 2015). This has been observed by various 

researchers while producing FSW joints in abrasive parent materials (Fernandez and Murr 2004; 

Prado et al. 2003; Shindo, Rivera and Murr 2002; Wang et al. 2014), leading to a “self-

optimisation” of the tool profile. “Self-optimisation” is a term introduced by the previous authors 

describing a stage of the tool life when, after an initial period of wear, the new tool geometry 

experiences negligible wear rates. If this condition is not achieved, as reported by Montag et al. 

(2014), the continuous wear of the tool can lead to increase in process temperature, deviation 

from the zeroing-reference point and lead to surface defects such as burrs at the periphery of the 

tool area. Additionally, the reduction in radius increases the clearance-fit between the tool 

components, leading to material entrapment in this area.  
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The wear measurements recorded during the plunge trials on the tool material specimens are 

shown in Figure 4.11. A reduced set of data points is presented for both surface treatment 

specimens due to persistent clogging. Despite the similar wear performance, a marginally higher 

reduction in radius was observed on the MP159 H tool specimen in comparison with the M42 HT 

tool specimen. This was an unexpected result considering that MP159 is commonly used in FSW 

as the probe tool material due to its stable material properties and wear resistance under high 

temperature and pressure conditions. However, similar observations were also reported in the 

study conducted by Więckowski et al. (2019). Despite the limited sample points, a tool geometry 

self-optimisation trend was not observed in the current study as continuous wear on both tool 

specimens was measured. 

 

Figure 4.11 - Plot of wear measurements of the tool material specimens. 

The SEM analysis of the M42 HT tool specimen after 300 and 2000 plunges is shown in Figure 4.12 

and Figure 4.13, respectively. The specimens from this material initially presented remnants of 

turning marks on the surface, as observed in Figure 4.12.D) and Figure 4.13.D). After 300 plunges, 

signs of sliding wear can be observed in Figure 4.12.B) by the smooth surface close to the bottom 

of the specimen. This effect becomes greater after 2000 plunges with some tool surface 

degradation as observed in Figure 4.13.B). Figure 4.12.C) shows the bottom edge of the tool 

specimen which is in contact with the highest temperature region during the plunge cycle. This 

area shows minor outward deformation, commonly referred to as “mushrooming”, which is likely 

caused by tool material over-tempering leading to a local reduction of the original hardness value. 
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Figure 4.12 - SEM analysis of M42 HT specimen after 300 plunges; 

A) Contact surface of the tool specimen; 

B) High magnification region – location shown in Figure 4.12.A); 

C) High magnification region – location shown in Figure 4.12.A); 

D) High magnification region – location shown in Figure 4.12.A). 

 

Figure 4.13 - SEM analysis of M42 HT specimen after 2000 plunges; 

A) Contact surface of the tool specimen; 

B) High magnification region – location shown in Figure 4.13.A); 

C) High magnification region – location shown in Figure 4.13.A); 

D) High magnification region – location shown in Figure 4.13.A). 
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The SEM analysis of the MP159 H tool specimen after 300 and 2000 plunges is shown in 

Figure 4.14 and Figure 4.15, respectively. In this tool material, a small discoloration can be seen 

in Figure 4.14.A) at the contact surface area. This allied with the smooth surfaces are signs of 

sliding wear in this area. No cracks or severe tool degradation were visually identified during the 

course of this investigation as opposed to the M42 HT tool specimen. This could be related to the 

multiphase crystalline structure present in this material which impedes the motion of dislocations 

and provides its high strength properties (Davis 2000). 

 
Figure 4.14 - SEM analysis of MP159 H specimen after 300 plunges; 

A) Contact surface of the tool specimen; 

B) High magnification region – location shown in Figure 4.14.A); 

C) High magnification region – location shown in Figure 4.14.A); 
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Figure 4.15 - SEM analysis of MP159 H specimen after 2000 plunges; 

A) Contact surface of the tool specimen; 

B) High magnification region – location shown in Figure 4.15.A); 

C) High magnification region – location shown in Figure 4.15.A); 

 Conclusions 

The aim of this investigation was to identify alternative tool material candidates for RFSSW. Rod 

specimens of M42 high speed steel, MP159 multiphase alloy and silicon nitride were selected 

considering their suitability for FSW. Plunge trials were conducted using a conventional FSW 

machine to simulate the stresses on the tool during service conditions. Performance and 

microstructural analysis coupled with thermal and wear measurements were carried out to 

evaluate the suitability of each material for RFSSW. The following conclusions can be drawn from 

the present investigation: 

◼ Due to the poor reliability and short life observed in the silicon nitride tool specimens, this 

material cannot be considered as a suitable alternative for RFSSW tooling components. 

Additionally, the high material costs and special production considerations could potentially 

make this material less viable economically for in a production scenario. 

◼ During the plunge trials, tool fracture was only observed for the silicon nitride specimens. The 

catastrophic failure of both tool specimens occurred in a predominantly brittle fracture, as 

expected given the nature of the material. 
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◼ Surface treatments on the metallic specimens increased the affinity between the tool 

specimens and the base material, leading to the more frequent occurrence of clogging. Due 

to extra cost of the treatment and the detrimental effect on performance, further 

investigation was not performed to explain this phenomenon. 

◼ The protruding features produced by the different tool materials exhibited similar grain 

morphology and alignment. The plastic deformation and temperature gradient in different 

areas of the feature evidenced the presence of different microstructural regions and material 

flow patterns during the plunging phase.  

◼ Temperature measurements were performed for all metallic tool material candidates in a 

single and multiple spot specimen analysis. Similar temperature profiles and values were 

observed across all specimens, despite the difference in thermal conductivity properties. 

◼ Wear measurements were performed on all metallic tool materials, with limited data on the 

surface treated specimens due to persistent clogging. M42 HT and MP159 exhibited similar 

performance, with M42 HT displaying greater wear resistance. 

◼ SEM analysis showed signs of sliding wear on both tools, with small tool degradation on the 

surface of the M42 HT specimen.  

◼ M42 high speed steel in hardened and tempered condition and MP159 multiphase alloy in 

hardened condition presented similar levels of performance and should both be considered 

as alternative materials to be used as tooling components for RFSSW. 

A summary of the performance for each tool material based on industrially relevant and 

operational criteria for RFSSW is presented in Table 4.10. From this table, it can be observed that 

M42 high speed steel in the hardened and tempered condition is the most promising tool material 

for RFSSW. Although MP159 in the hardened condition presented similar promising results and 

is extensively used in other friction welding technologies, M42 is a more economically viable and 

widely available material. For this reason, this material will be used in the following chapter. 
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Table 4.10 - Tool material evaluation based on industrially relevant and operational criteria for RFSSW. 

Tool  

Material 

M42 

 High Speed Steel 

MP159  

Co-Ni-Cr alloy 
Si3N4 

Surface 

Treatment 

Hardened 

and tempered  

Hardened, tempered  

and Plasma Nitriding 
Hardened 

Hardened and  

Surface Treated 
As received 

Affordability 
     

Availability 
     

Machinability 
     

Inert to Workpiece 
     

Wear Resistance 
    N/A 

Microstructure 
     

Susceptibility to 

Clogging     

N/A 

Score 1st  3rd  2nd 4th 5th 

Legend:  - Very poor;  - Poor;  - Average;  - Good;  - Very good 
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Influence of tool material and profile on RFSSW joints 

 

The influence of the process parameters in the weld microstructure and mechanical properties 

using standard RFSSW tool was addressed in Chapter 3. From Chapter 4, a suitable tool material 

that could withstand the cyclic loads and frictional wear during RFSSW was identified. In this 

chapter, the effect of different tool materials and profiles on the mechanical and microstructural 

properties of RFSSW joints was investigated.  
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 Introduction 

As stated in the work of Montag et al. (2014) and most recently highlighted in the RFSSW review 

by Feng et al. (2019), there is a lack of published experimental data regarding RFSSW tool design. 

Although the welding tool plays a critical role in the process, the impact of different tool profiles 

as well as different materials on the process has not been studied. This fact was also highlighted 

in chapter 2. The investigation conducted in this chapter aims to provide an understanding of the 

influence of different tool materials and profiles on the mechanical performance and 

microstructural properties on RFSSW joints. 

 Materials and methods 

 Base materials 

This investigation employed the same base materials which were used in Chapter 3. The chemical 

compositions and mechanical properties of the alloys are presented in Table 5.1 and Table 5.2, 

respectively. 

Table 5.1 - Chemical composition of the base material. 

Element 

[Weight %] 
Si Fe Cu Mn Mg Zn Cr Ti Al 

AA5754-H24 0.1 0.4 0.02 0.30 2.73 < 1.0 0.05 0.01 

remainder AA2024-T3 0.9 0.11 4.3 0.52 1.5 0.1 0.01 0.04 

AA7075-T6 0.07 0.17 1.5 0.03 2.4 5.9 0.2 0.03 

Table 5.2 - Mechanical properties of the base material. 

 

Yield  

stress 

σ0.2% [MPa] 

Ultimate 

tensile stress 

σUTS [MPa] 

Elasticity 

modulus 

[GPa] 

Poisson 

ratio 

[ʋ] 

Elongation 

[%] 

Hardness 

[HV0.2] 

AA5754-H24 206.0 ± 2.4 264.1 ± 2.7 

73 0.33 

11.7 ± 0.6 77.0 ± 1.9 

AA2024-T3 343.0 ± 3.0 473.0 ± 5.0 18.0 ± 1.0 137.0 ± 4.9 

AA7075-T6 512.0 ± 2.0 580.0 ± 1.0 13.0 ± 0.7 177.0 ± 4.3 

 Welding equipment 

The work was carried out using TWI’s RFSSW system, shown in Figure 3.1. The RFSSW system at 

TWI consists of a 6-axis articulated robot with a 300kg payload capacity from KHI, which has been 

fitted with a C-frame RFSSW gun. An extensive description of the technical data and recordable 

process parameters has been provided in Chapter 3.  
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 Tool material and design 

Two different tool materials and two different profiles were selected for this investigation. M42 

High Speed Steel and a metal matrix composite of tungsten carbide particles imbedded in cobalt 

(WC-Co) were use as tool materials. These materials were selected based on the results obtained 

from Chapter 4 and from the equipment manufacturer, respectively. The physical properties of 

the tool material are displayed in Table 5.3. 

Table 5.3 - Tool material properties 

  M42 WC-Co 

Density [Kg/m³] 7.9 14.4 

Modulus of Elasticity [kN/mm²] 200.0 580.0 

Thermal Conductivity [W/m °C] 28.0 105.0 

To determine the influence of a different tool material on the RFSSW process and weld 

properties, a tool set was manufactured by combining (i) the most promising tool material 

candidate proposed in Chapter 4 with (ii) the RFSSW tool design supplied by KHI, assessed in 

Chapter 3. The tool provided by KHI (Tool 1) was used as the reference for comparison against 

the new tool set, which will be referred hereinafter as Tool 2. The geometry of the tool 

components on both tool sets was cylindrical without any features on any of the surfaces as 

shown in Figure 3.2.  

 

Figure 5.1 - A) RFSSW tool components of Tool 1 and B) the RFSSW tool components of Tool 2 made from M42 high-

speed steel. 
 

To determine the influence of different shoulder profiles on the RFSSW process and weld 

properties, a second tool set was manufactured utilising the same material as in Tool 1, while 

incorporating a grooved feature on the external surface of the shoulder. This tool design will be 

referred hereinafter as Tool 3. The use of a left-hand groove, in relation to the right-hand grip 

rule, on the external surface of the shoulder has been widely used by other researchers when 
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welding using the shoulder-plunge variant, as reported in Chapter 2. This external surface feature 

is reported to enhance the stirring action and improve the material flow during the plunging 

stage. However, a direct comparison between RFSSW tool profiles and materials has not been 

previously reported in literature.  

 

Figure 5.2 - Shoulder and probe design for A) Tool 2 and B) Tool 3 RFSSW tool sets. 

The different materials and profiles used in this investigation are summarised in Table 5.4. Both 

the clamp and probe profiles were identical on all the tool sets and were based on the KHI design 

(Tool 1). This was deliberate as the welding trials were performed using the shoulder-plunge 

variant of the process and the designs of the probe and clamp were considered to have a 

neglectable influence on the weld cycle or material flow.  

Table 5.4 - RFSSW tool materials and profiles. 

  Tool material Shoulder design 

Tool 1 WC-Co Featureless 

Tool 2 M42 Featureless 

Tool 3 M42 Left-hand grooved 

The general dimensions of the tool components are provided in Table 3.4 while detailed technical 

drawings of the tool components are presented in Appendix A2.  

Table 5.5 - RFSSW tool dimensions 

 Probe Shoulder Clamp 

External diameter [mm] Ø 4 Ø 7 Ø 16 

Internal diameter [mm] n/a Ø 4 Ø 7 

 Welding sequence 

Sheet interface surfaces were manually cleaned with acetone to remove contaminants prior to 

welding. Similar material and single spot RFSSW specimens were produced using the shoulder-

plunge variant of RFSSW Figure 2.5.A, operating in force-control mode. The best performing 
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process parameter combination determined in Chapter 3 for each aluminium alloy was used in 

the present investigation, as shown in Table 3.5.  

Table 5.6 - RFSSW process parameters 

RFSSW Process parameters 

Rotation Speed [rev/min] 1000 

Plunge Depth [mm] 

AA5754-H24 

AA2024-T3 and AA7075-T6 

 

2.2 

2.4 

Stage 1 Dwell time [s] 

AA5754-H24 

AA2024-T3 and AA7075-T6 

 

1.0 

2.0 

Shoulder plunge force [kN] 

AA5754-H24 

AA2024-T3 and AA7075-T6 

 

13.5 

14.5 

Clamp force [kN] 7.0 

 Microstructural and mechanical characterisation 

Metallographic specimens were sectioned, polished and etched with Keller’s reagent for 

microstructural analysis. Optical microscopy was conducted using an OLYMPUS GX71 inverted 

geometry optical microscope with a Colorview III camera. Weld static strength was evaluated via 

lap shear testing using an INSTRON 8502 tensile machine with a displacement rate of 1 mm/min 

at room temperature. The geometry of the specimens for lap shear testing were produced in 

accordance with BS EN ISO 18785-4:2018 with the sheet rolling direction perpendicular to the 

loading direction, as shown in Figure 3.3. Three specimens were tested for each aluminium alloy 

and each tool design variants. Fracture surfaces were inspected under SEM using a 

Zeiss EVO LS15. 

As a common practice in the aerospace industry, the effect of the presence of an interfacial 

sealant on the mechanical strength and microstructural properties was also investigated. This 

investigation was performed for the high strength alloys AA2024-T3 and AA7075-T6 with all tool 

design variants. The sealant and application method used in Chapter 3 were also applied in this 

investigation.  

Mechanical characterisation of specimens was conducted four weeks after welding in order to 

ensure consistency in specimen aging time between the testing of specimens with interfacial 

sealant and in bare condition, as performed in Chapter 3. However, on the aforementioned 

chapter, a longer wait period was applied (seven weeks). This means that a new base line 

comparison was established with a new set of mechanical specimens produced using Tool 1. 
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Figure 5.3 - Lap shear test specimen geometries. 

 Temperature measurements 

For each tool design, temperature measurements were performed to record the thermal history 

of the weld cycle and measure the peak temperature. As performed in Chapter 4, a block 

measuring 150 x 50 x 20 mm  of AA7050-T7451 was used as the base material using the process 

parameters from Table 3.5. The first spot-weld was distanced 25 mm from the edges. A spacing 

of 50 mm between each spot-weld along the length was applied, as shown in Figure 5.4.  

For this investigation, a calibrated 1 mm diameter Type K shielded thermocouple was placed at a 

depth of 2 mm from the top surface and 20.5 mm from the side. Temperature measurements 

were recorded using a calibrated Ni 9213 digital acquisition module and processed using Ni 

Express 2015 software. A 100 Hz frequency of acquisition was used. 

 

Figure 5.4 - Schematic drawing of temperature measurement block with three thermocouple holes. 
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 Tool failure analysis 

To estimate the life expectancy of Tool 2 and 3 under RFSSW service conditions, one specimen of 

each tool design was used to perform rows of consecutive welds. Similar to the procedure 

described in Section 4.2.4 from Chapter 4, an AA7050-T7451 25 mm thick plate was used as the 

base material. The first weld was located 15 mm from the edge of the plate. The subsequent 

welds were separated by 20 mm intervals. This procedure, along with a compressed air-cooling 

period of 15 seconds between each weld, was continuously repeated until tool fracture. The 

fracture surfaces of the tools were inspected under SEM using a Zeiss EVO LS15. 

 Results and discussion 

 Temperature measurements 

Figure 5.5 shows the thermal history of the welds performed with the various tool designs under 

consideration. Tool 1 presented the highest peak temperature of all the welds experimented in 

this study. This result can be explained by the longer cycle time, which increases the processing 

time between the tool and the base material leading to a higher temperature. The RFSSW 

equipment used in this study, as described in Chapter 3, works in force control-mode, with a 

constant applied plunge force. Under certain welding conditions, this can lead to a variable plunge 

rate that is dependent on the rate and extent of material softening from the heat generated by 

the tool. 

As described in Section 5.2.3, Tool 1 was produced by the equipment manufacturer using a 

featureless design. This design provides low downward acceleration to the base material, as 

stated in the study by Ji et al. (2017-B). Also, the material used to manufacture this tool has a 

significantly higher thermal conductivity than the alternative candidate tool material, M42. This 

means that the heat generated by frictional contact between the base material and the bottom 

of the tool can dissipate quicker along the full length of the tool body, potentially narrowing the 

region of plasticised base material ahead of the tool. The development of this plasticised base 

material zone is crucial to produce consolidated welds as observed in other friction welding 

technologies (Vairis and Frost 2000; Thomas and Nicholas 1997).  
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Figure 5.5 - Temperature measurement plot of Tool 1, 2 and 3.  

Figure 5.6.A) and B) present the tool position during the weld cycle for Tool 1 and 2, respectively. 

The numbers in the graph relate to the stages of the process, as described in Chapter 2. It can be 

seen that, during stage 2, a much quicker and consistent plunge rate can be achieved with Tool 2. 

This leads to a shorter weld cycle, which limits the exposure time of the rotating tool to the base 

material, delivering a lower heat input to the weld.  

 

Figure 5.6 - Shoulder and probe position during the four stages of the RFSSW cycle for A) Tool 1 and B) Tool 2 during 

the weld cycle relative to the reference point (top surface of the base material). 

Both Tools 2 and 3 show a lower weld peak temperature, as well as a shorter weld cycle compared 

to that of Tool 1. The significant differences between Tool 1 and 2 are their raw material and 

surface treatment. The low friction coating prevents the base material from adhering to the 

surface of the tool as well as the tool components from joining together under service conditions. 

This is accomplished by reducing the static friction coefficient between the contact surfaces. For 
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comparison, the surface coating used provides a friction coefficient varying between 0.04 and 

0.08 (Wallwork 2020), while the values between steel and aluminium typically range between 

0.47 and 0.61 (Avallone 2007). From a tribological perspective, the frictional interaction between 

the base material and the uncoated tool will generate a higher degree of heat. As previously 

mentioned, using a material with a lower thermal conductivity reduces the heat loses via 

conduction through the tool body. This in turn, increases the parent material softening rate and 

extends the plasticised material region ahead of the tool, thereby enabling faster plunge rates. 

Considering the conclusions gathered from Chapter 3, it is likely that Tools 2 and 3 would produce 

welds with greater mechanical performance.  

The influence of different tool profiles on the weld peak temperature can be determined by 

comparing the thermal history of Tool 2 and 3. The presence of an external groove promotes the 

downward material flow and the plasticisation of more weld material. The resistance to the 

shoulder plunging motion would be expected to increase, thus increasing the weld cycle time and 

the weld peak temperature. However, it can be seen from the thermal plot that the opposite was 

observed. Building on the hypothesis presented in the previous paragraph, it is possible that the 

increase in mechanical stirring promoted further material softening around and ahead of the tool 

direction. This translated into an increase in plunge rate and a shorter interaction time between 

the tool and the weld material.   

 Lap shear strength analysis 

5.3.2.1. Influence of tool material  

In this investigation, the effect of different tool materials on the mechanical performance of the 

weld can be determined by comparing the lap shear testing results between Tool 1 and 2 (i.e. 

both tools have the same design and dimensions but are made from different tool materials). 

Figure 5.7 shows the results of lap shear testing of bare specimens for all the alloys used in this 

study. For each alloy, the minimum lap shear strength value specified by AWS 

D17.2/D17.2M:2019 for resistance spot welding as well as the shear strength design for a 1/4” 

MS20426DD AA2024-T31 solid rivet, specified by MMPDS-04 (2008), are presented in the bar 

chart. Similar to what was observed in section , all welds surpassed the minimum value set by 

AWS D17.2/D17.2M:2019 yet none of the welds exceeded the strength requirements specified 

by MMPDS-04 (2008). The difference between the strength values however is negligible, in 

particular for the AA2024-T3. 
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Figure 5.7 - Influence of different tool materials on the lap shear strength results of bare specimens. 
 

The choice of tool material impacts the frictional heat generation rate, the tool mechanical 

properties and weld thermal cycle (Chandrashekar, Kumar and Reddappa 2015). For FSW, 

researchers have reported a clear influence in the weld mechanical performance and 

microstructure with the change of tool material (Bozkurt and Boumerzoug 2018; Jayaseelan et al. 

2019; Khaliq and Bharti 2015 and Withers et al. 2012). Certain tool material properties, as 

mentioned in the previous chapter, ultimately dictate which materials can be welded using 

RFSSW. Oliveira et al. (2011) attributed the improvement in weld quality and strength to the 

lower thermal conductivity of a titanium tool when joining thermoplastics using RFSSW.  

From the data presented in Figure 5.7, contrary to the predictions from the previous section, it 

can be seen that similar lap shear strength values between welds performed with Tool 1 and 2 

were measured. Comparing the static strength from Tool 2 with Tool 1, the values ranged 

between a decrease of 7 % and an increase of 3 % in lap shear strength. This observation suggest 

that for the tool geometry under consideration, the choice of tool material did not have a clear 

impact on the joint mechanical properties. This suggests that a more cost-effective material 

alternative can be used, without compromising the performance of the joint. This result was also 

observed by other authors for FSW (Çevik, Özçatalbaş, and Gülenç 2016; Singarapu, Adepu and 

Arumalle 2015) 
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In this study, three different failure modes were observed: shear fracture through the nugget 

(Figure 5.8), shear fracture through the interface (Figure 5.9) and shear through the plug on the 

top sheet (Figure 5.10). An explanation for the crack initiation and propagation for each failure 

mode has been provided in Sections 3.3.1 and 3.3.3. Shear fracture through the interface and 

shear through the plug on the top sheet were observed on RFSSW of AA5754-H24 and AA7075-

T6, respectively. These failure modes were observed for both tools across all the tested 

specimens. For RFSSW AA2024-T3, shear fracture through the nugget was observed for welds 

performed with Tool 1 whilst shear fracture through the interface was predominantly observed 

for welds performed with Tool 2. 

 

Figure 5.8 - Fracture surfaces of RFSSW AA2024-T3 using Tool 1: 

A) Top sheet; 

B) Bottom sheet; 

C) SEM fractography; 

D) High magnification region – location shown in Figure 5.8.C); 

E) High magnification region – location shown in Figure 5.8.C); 

F) High magnification region – location shown in Figure 5.8.C). 
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Figure 5.9 - Fracture surfaces of RFSSW AA5754-H24 using Tool 2: 

A) Top sheet; 

B) Bottom sheet; 

C) SEM fractography; 

D) High magnification region – location shown in Figure 5.9.C); 

E) High magnification region – location shown in Figure 5.9.C); 

F) High magnification region – location shown in Figure 5.9.C). 
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Figure 5.10 - Fracture surfaces of RFSSW AA7075-T6 using Tool 1: 

A) Top sheet; 

B) Bottom sheet; 

C) SEM fractography; 

D) High magnification region – location shown in Figure 5.10.C); 

E) High magnification region – location shown in Figure 5.10.C); 

F) High magnification region – location shown in Figure 5.10.C). 

Figure 5.11, Figure 5.12 and Figure 5.13 present the cross-sections of RFSSW AA2024-T3, 

AA5754-H24 and AA7075-T6, respectively, performed using Tool 2. An extensive description of 

the microstructural regions of the weld has been provided in Section 3.3.4. The geometry of the 

welds are nearly identical to the ones produced by Tool 1, which suggest that the change in the 

tool material has a negligible effect on the weld microstructure. No internal defects were 

observed on any of the cross-sections, which supports the hypothesis that the tool external 

profile has a greater influence on the microstructure and quality of the weld. Also, these 

observations confirm the correct choice of process parameters which can be used with tools 

made from different materials with the same design. As observed in Section 3.3.4, the surface 

oxides present in AA5754-H24 can be seen at the joint line remnant (Figure 3.40.D) and on the 

contact area between the probe and the surface of the top sheet (Figure 3.40.C). This is due to 

the higher melting temperature of the films formed by this alloy.  

 



Chapter 5 - Influence of tool material 
 and profile on RFSSW joints

 

 
PhD Thesis - Pedro de Sousa Santos 158 Coventry University (2020) 

 

 

Figure 5.11 - Cross-section of RFSSW AA2024-T3 using Tool 2 in bare condition: 

A) SZ/TMAZ interface;  

B) Hook region. 

 

Figure 5.12 - Cross-section of RFSSW AA5754-H24 using Tool 2 in bare condition: 

A) SZ/TMAZ interface;  

B) Hook region; 

C) Probe contact region; 

D) Joint line remnant. 
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Figure 5.13 - Cross-section of RFSSW AA7075-T6 using Tool 2 in bare condition: 

A) SZ/TMAZ interface;  

B) Hook region. 

As performed in Section 3.3.1, the impact of an interfacial aerospace sealant on the mechanical 

strength and microstructural properties of RFSSW welds produced with tools from different 

materials was investigated. Figure 5.14 shows the results of lap shear testing of specimens with 

interfacial sealant for AA2024-T3 and AA7075-T6, along with the shear strength requirements 

specified by AWS D17.2/D17.2M:2019 and MMPDS-04 (2008). All welds surpassed the minimum 

value set by AWS D17.2/D17.2M:2019 and only the RFSSW AA2024-T3 specimen produced with 

Tool 2 did not exceeded the shear strength requirement for a riveted joint.  

 

Figure 5.14 - Influence of different tool materials on the lap shear strength results of specimens with interfacial 

sealant. 
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In contrast to what was observed for the bare specimen testing, the tool material properties can 

have a significant impact on the mechanical strength of the welds with interfacial sealant. 

Comparing the lap shear strength values obtained for Tool 2 with Tool 1, a decrease in shear 

strength ranging between 14 and 25 % was observed. The explanation for this phenomenon can 

be attributed to a higher temperature of the edge of the shoulder in Tool 2, due the differences 

in tool material conductivity. As observed by Zhao et al. (2016), the contact area between the 

edge of the shoulder and the base material is where the peak welding temperature is observed. 

The peak temperature at the tool contact area depends on multiple factors, including the rate of 

heat loss in the weld due to conduction through the tool body. These losses are related to the 

tool and base material physical properties, in particular the thermal conductivity. Considering the 

same base material, the tool material used in Tool 2 has a lower thermal conductivity coefficient, 

which leads to smaller heat losses through the tool body. Despite that being a positive factor in 

producing a faster weld cycle, it can also lead to severe overheating and degradation of the 

sealant, as well as the pre-cured areas around the weld. Whoever further testing and analysis 

would be required to confirm this hypothesis.  

For the AA2024-T3 welds performed with Tool 2, shear fracture through the nugget and through 

the interface failure modes were observed. This can be linked to the unpredictable flow of the 

interfacial sealant in the weld area and the similarity in the crack propagation mechanism of these 

failure modes. The welds produced with Tool 1 produced consistent Shear through the plug on 

the top sheet failure modes for RFSSW AA7075-T6 and Shear fracture through the nugget for 

RFSSW AA2024-T3. The fracture surfaces are identical to the ones presented for the bare 

specimens and in Section 3.3.1. 

The cross-sections of RFSSW AA2024-T3 and AA7075-T6 with interfacial sealant performed using 

Tool 2 are shown, respectively, in Figure 5.15 and Figure 5.16. Similar to the cross-section on the 

bare specimens, no internal defects were observed, which further supports the greater influence 

of the tool design on the microstructure and quality of the weld, compared to tool material 

choice. Comparing the cross-sections produced using Tool 1 in Section 3.3.4, the cross-sections 

produced with Tool 2 only show a thin layer of sealant at the centre of the joint line remnant. This 

is particularly evident for the RFSSW AA7075-T6 as observed in Figure 5.16.C). In spite of this, 

strong bonding was obtained at the centre of the weld nugget as shown by the shear through the 

plug failure mode.  
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Figure 5.15 - Cross-section of RFSSW AA2024-T3 using Tool 2 with interfacial sealant: 

A) SZ/TMAZ interface;  

B) Hook region. 
 

 

Figure 5.16 - Cross-section of RFSSW AA7075-T6 using Tool 2 with interfacial sealant: 

A) SZ/TMAZ interface;  

B) Hook region; 

C) Joint line remnant. 
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5.3.2.2. Influence of tool profile  

In FSW, the profile of the tool plunging component has a great impact on the flow of plasticised 

material, heat generation and weld properties (Rai et al 2011). Multiple researchers have 

acknowledged the importance and need for further research in this topic, with many of them 

studying the effect of the probe profile with the weld mechanical performance and 

microstructure (Khodaverdizadeh, Heidarzadeh and Saeid 2013; Mohanty et al. 2012; Palanivel 

et al. 2012; Ullegaddi, Murthy and Harsha 2017). For the RFSSW process, limited studies have 

been published on the influence of different tool profiles on the weld microstructure, mechanical 

performance and quality. Shen et al. (2018 and 2020) achieved greater dissimilar intermixing 

between dissimilar RFSSW of AA6022-T4 and AA7075-T6 by adding grooves on the bottom 

surface of the shoulder.  

The effect of different tool profiles on the mechanical performance of the weld can be 

determined by comparing the lap shear testing results between Tool 2 and 3. Both tools have the 

same dimensions and are made from the same material but feature different profiles. These 

experiments aimed to further understand the relationship between RFSSW tool profile with the 

weld mechanical performance and microstructural features. Figure 5.17 shows the results of lap 

shear testing of bare specimens for all the alloys used in this study.  

In comparison with Tool 2, adding a profile to Tool 3 allowed to improve the joint shear strength 

from 2 to 24 % depending on the material welded. Shear through the plug on the top sheet failure 

mode was observed for all welds performed with Tool 3, suggesting adequate bonding conditions 

at the weld interface. The presence of the left-hand thread on the profile of the tool increases 

the downward flow of material, improving the consolidation of material in this area. This positive 

outcome highlights the importance and the need for further research in this topic.  
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Figure 5.17 - Influence of different tool profiles on the lap shear strength results of bare specimens. 

The weld cross-sections of RFSSW AA2024-T3, AA5754-H24 and AA7075-T6 performed using 

Tool 3 are presented in Figure 5.18, Figure 5.19 and Figure 5.20, respectively. In comparison with 

the shape of the welds for the previous section, the cross-section of the welds produced with 

Tool 3 present an enlarged area at the bottom edge of the weld. This is particularly noticeable on 

the cross-section of RFSSW AA2024-T3 and AA7075-T6, however it was not observed for AA5754-

H24. In fact, for this alloy, the cross-sections from all tools tested in this investigation are nearly 

identical, with the difference of a noticeable oxide alignment at the edge of the stir zone matching 

the threaded profile of the shoulder [Figure 5.19.B)]. These observations, along with the similar 

shear strength observed from the lap shear testing, seem to suggest that this alloy is more 

sensitive to changes in the process parameters than the tooling material and profile. Similar weld 

cross-section shape was observed by Suhuddin et al. (2015) when joining the same alloy using 

RFSSW.  

When using a threaded tool profile, Shen et al. (2013 and 2014) and Kluz et al. (2019) observed 

internal voids and lack of fill defects. The authors have attributed these defects to poor 

metallurgical bonding, residual heat stress after welding and insufficient flow of material during 

refill, which directly relate to the tool profile as well as process parameters. However, Adamus, J 

and Adamus, K (2019) considered the loss of material during the plunging stage to be the cause 

of voids in the weld, this being corrected by a slight surface compression at the end of the cycle. 

This would cause a characteristic indent. In this study however, no internal defects were observed 
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on any of the cross-sections, which confirms the correct choice of process parameters which can 

be used with tools of different materials and profiles. 

In the simulation work carried out by Ji et al. (2017-B), the author analysed the material flow of 

RFSSW using different tool profiles and dimensions. Based on the observations in this study, it 

was suggested that a featureless profile (Tool 1 and 2) may be able to reduce or even eliminate 

the hook defect. This is ideal as other authors have suggested a correlation between hook heights 

and poor lap shear strength (Cao et al 2017; Santana et al. 2017; Zhao et al. 2014). However, this 

relationship is not verified consistently, as some authors did not find an evident relationship (De 

Castro et al. 2018-A; Shen et al. 2014; Zhou et al. 2017). As observed in Table 5.7, the welds 

produced using Tool 2 showed to have higher hook height than the welds produced with Tool 3. 

 

Figure 5.18 - Cross-section of RFSSW AA2024-T3 using Tool 3 in bare condition:  

A) Hook region; 

B) SZ/TMAZ interface. 
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Figure 5.19 - Cross-section of RFSSW AA5754-H24 using Tool 3 in bare condition: 

A) SZ/TMAZ interface;  

B) Hook region; 

 

Figure 5.20 - Cross-section of RFSSW AA7075-T6 using Tool 3 in bare condition:  

A) Hook region;  

B) SZ/TMAZ interface. 
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Table 5.7 - Hook height for RFSSW AA2024-T3, AA5754-H24 and AA7075-T6 welds using Tool 2 and 3. 

Aluminium 
Alloy 

Welding 
Condition 

Tool 
ID 

Hook Height 
[µm] 

AA2024-T3 

Bare 
Tool 2 48.75 

Tool 3 58.75 

with  
sealant 

Tool 2 73.10 

Tool 3 50.30 

AA5754-H24 Bare 
Tool 2 49.75 

Tool 3 34.65 

AA7075-T6 

Bare 
Tool 2 108.70 

Tool 3 49.75 

with  
sealant 

Tool 2 193.65 

Tool 3 47.80 

The impact of an interfacial aerospace sealant on the mechanical strength and microstructural 

properties of RFSSW welds produced with tools with different profiles was investigated. 

Figure 5.21 shows the results of lap shear testing of specimens with interfacial sealant for 

AA2024-T3 and AA7075-T6, along with the shear strength requirements specified by AWS 

D17.2/D17.2M:2019 and MMPDS-04 (2008). All welds produced with Tool 3 surpassed the 

minimum value set by AWS D17.2/D17.2M:2019 and the shear strength requirement for a riveted 

joint. This can be attributed to a more efficient material flow promoted by the threaded profile 

of the shoulder and a more even distribution of the sealant around the weld area.  

 

Figure 5.21 - Influence of different tool profiles on the lap shear strength results of specimens with interfacial sealant. 
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Figure 5.22 and Figure 5.23 show the cross-sections of RFSSW AA2024-T3 and AA7075-T6, 

respectively, with interfacial sealant performed using Tool 3. Similar to the cross-section on the 

bare specimens, no internal defects were observed. However, in comparison to the cross-section 

of the welds from the bare specimens, the joint line remnant is noticeable at the centre of the 

weld. This could be explained by a lower temperature due to the volatilisation of the sealant 

solvent, which acts as a thermal barrier leading to an incomplete dispersion of the oxide films.  

In this study, shear fracture through the interface was mainly observed for the RFSSW AA7075-

T6 welds. This result was expected considering the strong presence of oxide films on the joint line 

remnant, as shown in Figure 5.23.C). The oxide films provided poor consolidation in this area and 

promoted the crack propagation from the hook through the weld interface. The opposite is true 

for the RFSSW AA2024-T3 welds where shear through the plug on the top sheet was mainly 

observed.  

 

Figure 5.22 - Cross-section of RFSSW AA2024-T3 using Tool 3 with interfacial sealant: 

A) SZ/TMAZ interface;  

B) Hook region. 
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Figure 5.23 - Cross-section of RFSSW AA7075-T6 using Tool 3 with interfacial sealant:  

A) SZ/TMAZ interface;  

B) Hook region; 

C) Joint line remnant. 

 Tool fracture analysis 

As described in Section 5.2.7, the life of RFSSW Tool 2 and 3 was determined by producing 

multiple welds on an AA7075-T7451 plate. This activity was performed without tool inter-cleaning 

and until tool fracture occurred. Tool 2 fractured after 92 welds while Tool 3 fractured after 55 

welds. The fracture surfaces of the tool components from Tool 2 and 3 are presented in 

Figure 5.24 and Figure 5.25, respectively. Both tool failures occurred on the probe component, 

with the fracture being located on the 4 mm side of the transition radius region. The type of 

fracture observed in this study originates from rotating-bending fatigue conditions commonly 

observed in axles, as well as medical devices (de Freitas et al. 2011; Yan, Yang and Qi 2006) 
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Figure 5.24 - Fracture surface of the components from Tool 2 after 92 welds: 

A) Probe; 

B) Shoulder, with fractured portion of probe; 

C) SEM fractography of the probe component; 

D) High magnification region – location shown in Figure 5.24.C); 

E) High magnification region – location shown in Figure 5.24.C); 

F) High magnification region – location shown in Figure 5.24.C). 
 

Considering that the probe component has vertical independent movement whilst concentrically 

assembled with the shoulder, the external surfaces of both components, as well as the internal 

surface of the shoulder require a ground finish. This operation ensures that, after the hardening 

and tempering process, the diameter of these surfaces is within the tolerance specified in the 

drawing and the total runout is minimised. The maximum total radial runout for the probe is 

40 µm as specified by the component drawing in the Appendices (Figure A0.3). This tolerance was 

determined considering the clearance between the probe and the shoulder, 60 µm, aiming to 

reduce the likelihood of interference. 

However, when assembling the tool components, a total runout of 80 µm was observed whilst 

rotating the probe component. This superior value means that, under service conditions with 

both components rotating at the same speed and direction, the probe would have intermittent 
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contact with the inside surface of the shoulder and experiencing bending stresses. The 

continuous contact between these two components can lead to the development of microcracks 

at the surface of the component ultimately resulting in failure. This phenomenon can be seen in 

Figure 5.24.A) and Figure 5.25.A) by the difference in striation appearance, where the smoother 

surface indicates cyclic and continuous crack propagation while the rougher surface with river 

markings is indication of a predominantly brittle fracture mode. The crack initiation point is 

consistent with the location of the highest runout value on the probe component.  

Another cause for the premature failure if the tools could be the weld material entrapment 

between the components. Once the probe failure occurred, the broken portion of this 

component was stuck to the inside of the shoulder, as seen in Figure 5.24.B). and Figure 5.25.B). 

Figure 5.25.B) exhibited a layer of intermetallic compounds of noticeable thickness while a 

considerable amount of accumulated material between the components can be observed in 

Figure 5.24.B). As mentioned in Chapter 4, this entrapment of material could restrict the motion 

of the tool components during welding, producing a sudden fracture. The continuous build-up of 

aluminium intermetallic compounds on a H13 steel RFSSW toolset was also observed in the study 

conducted by Larsen, Hunt and Hovanski (2020). In their study, the experimented tools had 

considerably short tool life (53 and 48 welds for different process parameter combinations) as to 

what would be required in high-volume production. The authors showed that the affinity 

between the steel tool and the aluminium workpiece promoted the continuous intermetallic 

compound growth outward from surface of the probe and inward from the surface of the 

shoulder. The estimation by the authors suggest that this layer can reach more than a third of the 

clearance between the two components, leading to the seizing of the tool components. 

Finally, the location of the fracture can be attributed to the design of the probe component and 

the transition radius region in the main body. Due to the difference in diameters of the probe 

component, the presence of this transition region presents a stress concentration area and a 

highly probable area for the component to fracture. Considering that both RFSSW tools fractured 

in this region, this suggests that a redesign of this component is required.  

The premature and unexpected failure of these components can be attributed to the interaction 

of three distinct causes presented in this section. To potentially increase the life expectancy of 

the RFSSW tooling, these points should be addressed and complimented with further research 
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into manufacturing routes as well as effective coatings to prevent material entrapment and 

prevent joining of tool components during welding. 

 

Figure 5.25 - Fracture surface of the components from Tool 3 after 55 welds: 

A) Probe; 

B) Shoulder, with fractured portion of probe; 

C) SEM fractography of the probe component; 

D) High magnification region – location shown in Figure 5.25.C); 

E) High magnification region – location shown in Figure 5.25.C); 

F) High magnification region – location shown in Figure 5.25.C). 
 

 Conclusions 

The relationship between RFSSW tool design and material with the weld mechanical performance 

and microstructure was addressed. M42 high speed steel in hardened and tempered condition 

was used to manufacture RFSSW with different profiles and compare its performance against a 

conventional RFSSW tool. Lap shear tests were performed to quantify the mechanical strength of 

welds produced with various tool material and design combinations. Cross-section analysis was 

conducted to understand the influence of different tool profiles and materials on the weld 

microstructure. The following conclusions can be drawn from the present investigation: 
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◼ The highest weld peak temperature was measured for Tool 1. The featureless design and 

higher thermal conductivity of the material lead to an increase of the weld cycle time, 

increasing the processing time between the tool and base material. 

◼ RFSSW lap shear strength values in bare condition varied between 8.69 and 9.10 kN for 

AA2024-T3 welds, 6.58 to 7.09 kN for AA5754-H24 and between 8.62 and 10.72 kN for 

AA7075-T6 welds. These results surpassed the minimum strength requirements for 

resistance spot welding defined by AWS D17.2/D17.2M:2013. 

◼ RFSSW lap shear strength values in bare condition of AA2024-T3 and AA7075-T6 performed 

with Tool 3 surpassed the shear strength requirements for an equivalent AA2024-T31 solid 

rivet.  

◼ Using the best performing process parameters from Chapter 3, all tool material and design 

variants produced fully consolidated welds with the typical microstructure and metallurgical 

features of RFSSW. Tool 3 produced larger weld areas due to the increased stirring action 

from the external tool features. This design also produced welds with small hook heights, 

contributing to the increase in lap shear performance. 

◼ For the same tool material, a threaded shoulder profile (Tool 3) produced welds with stronger 

shear strength values. This result highlights the need for further research in this topic, by 

testing various tool profiles. 

◼ Similar strength results observed for the tools made from different materials with the same 

profile. This suggests that the tool profile has a greater influence on the mechanical strength 

of the weld compared to the choice of material. 

◼ M42 high speed steel in hardened and tempered condition can be used as a reliable 

alternative tool material for RFSSW. However, a considerable material entrapment inside the 

shoulder was observed which emphasises the need for further investigation into effective 

coating techniques. 

◼ Both Tool 2 and 3 experienced a failure on the transition radius on the probe component due 

to cyclic rotating-bending stresses. Additional to the recommendations presented in the 

previous point, improvements to the fabrication route, component design and tolerances 

could potentially increase tool life expectancy.  

RFSSW of AA2024-T3 and AA7075-T6 in the presence of an aerospace grade sealant was 

performed for all tool material and design variants. This specimen variant was used to determine 
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the impact of an interfacial sealant on the tool performance and weld properties. From the 

present investigation the following conclusions can be drawn: 

◼ Fully consolidated welds were produced for both alloys using all tool variants. Similar 

microstructure to the bare condition was observed, with more noticeable surface oxides at 

the centre of the stir zone due to reduced plastic deformation in this area.  

◼ The disparity between the RFSSW shear strength values of Tool 1 and 2 suggests that a correct 

choice of tool material is imperative to maximise the weld mechanical performance. 

However, the threaded shoulder design produced stronger welds for the same tool material. 

◼ The presence of an interfacial sealant improved the shear strength of AA7075-T6 welds 

performed with all tool variants, maintaining the same trend observed for the bare condition. 

The explanation for this improvement is analogous to the reason presented in Chapter 3. 

◼ The same trend observed for the bare conditions was not observed for the welds with 

interfacial sealant on AA2024-T3. Despite the similar behaviour under lap shear conditions, 

welds produced with Tool 1 and 3 displayed an increase in shear strength, whilst no 

improvement was noticed for welds performed with Tool 2.  
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Thesis conclusions and recommendations for further research  

 

 

This chapter presents a summary of the work performed in this thesis as well as the main 

conclusions of each chapter. Finally, based on the knowledge gathered from this work, several 

research topics are recommended for further investigation.  
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 Thesis Summary   

Based on the findings and recommendations from Chapter 2, the aim of this thesis was to further 

understand the relationship between RFSSW tool design and material with the mechanical 

performance and microstructural features of the joint produced.  

In Chapter 3, a design of experiments approach was used to investigate the effect of RFSSW 

process parameters on the mechanical performance and microstructure of AA2024-T3, AA5754-

H24 and AA7075-T6. In addition to this topic, the impact of an interfacial sealant on RFSSW joints 

was also investigated. Furthermore, fatigue testing and residual stress measurements were 

performed on all alloys. The results suggest that plunge depth had the greatest impact on weld 

mechanical strength on all alloys tested, while welding conditions promoting lower heat input 

tended to improve the shear strength. The use of sealant did not affect the weld cycle and 

increased the shear strength of the specimen by preventing out-of-plane bending. The peak 

residual stress was measured at the centre of the spot-weld and its value to be dependent on the 

nature of the alloy as well as the number of spot-welds in the specimen. 

In Chapter 4, various tool material and surface modification combinations were selected to 

determine the most promising tool material candidates for RFSSW based on industrially relevant 

criteria (e.g. process repeatability, tool life, joint mechanical properties). In this investigation, five 

tool material and surface modification combinations were tested under RFSSW service 

conditions. M42 high speed steel without surface modifications was determined to be a suitable 

RFSSW tool material candidate due to a consistent performance under service conditions, low 

surface wear and cost-effective solution. This tool material was used to manufacture RFSSW tools 

to test in Chapter 5  

In Chapter 5, the effect of different tool materials and geometries on the mechanical 

performance was investigated. Three RFSSW tools made from different combinations of tool 

materials and designs were used to produce lap shear testing specimens. Shear strength results 

showed that on all alloys the addition of an external groove feature on the shoulder component 

led to an improvement of the mechanical strength of the weld, with and without the presence of 

an interfacial sealant. This design also produced bigger weld areas. The use of M42 high speed 

steel material on a simple RFSSW tool design showed to have a detrimental effect on the 

mechanical performance, leading to the conclusion that tool material should be regarded as a 

key design consideration to maximise weld performance.  
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This thesis contributed to the further development of RFSSW, establishing both a theoretical and 

technical basis for new researchers or industrial users searching for alternative single point joining 

methods. The results from this research are novel and have significant, practical implications to 

aid further industrial development and implementation of RFSSW.  

 Recommendations for Further Research 

The research that has been described in this thesis contributed significantly to expand the 

knowledge of RFSSW process. Despite this knowledge advancement, many research topics 

remain to be addressed. Using this thesis as a baseline for further research, further research into 

the previously and newly identified research topics will facilitate the industrialisation of the 

RFSSW process. 

Some recommended areas for future work are: 

◼ Further research on tool designs and materials: In the course of this investigation, a limited 

selection of tool materials and designs were investigated. The outcome of the investigation 

highlighted the potential for further research in this field, with various tool materials, coatings 

and designs to explore. The outcome from further research in this field as well as a more in-

depth analysis of the fatigue cycle for each tool set, could lead to improvements on weld 

mechanical performance as well as a better understanding of the material flow on different 

tool materials and designs. Furthermore, an increase in tool life expectancy and the 

development of more cost-effective tooling solutions could be achieved, which would 

provide crucial data for preventive maintenance and process control. 

◼ Development of further mechanical performance data: The outcome of the testing 

performed in Chapter 5 confirmed that the tool material and design used in RFSSW influence 

the weld mechanical and microstructural properties. Understanding the effect of different 

tool materials and designs on the joint mechanical performance will require further 

mechanical testing, performed under service conditions, along with residual stress 

measurements. The outcome of this research would provide the data to predict failure loads 

along with the locations in a component under service conditions. Predicting fracture modes 

as well as modelling the stress distribution in large assemblies would also allow design 

engineers to better design components.  

◼ Extended testing on samples with sealant: The investigation conducted in Chapter 3 provided 

a deeper understanding of the weld properties than in Chapter 5, as mentioned in the 
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previous point. However, more conclusive results on the residual stress distribution are 

required. This can be addressed by  comparison with other residual stress measurement 

techniques. A further understanding of the impact of residual stress distribution on the joint 

performance is also a key topic of study to expand the current understanding of the RFSSW 

process. Further studies into the corrosion behaviour of bare and samples with sealant are 

also pertinent to better understand and improve the RFSSW process. The effect of interfacial 

sealant in the residual stress distribution of a multiple spot-weld component is also a topic of 

industrial relevance. 

◼ Compare with established technologies: When assessing the suitability of the RFSSW process 

to replace traditional processes used in industry (e.g. spot-welding and fastening processes), 

it is vital to compare the mechanical performance results following the same standards. 

However, the information from the standards generally provides a minimum threshold and 

(to the best of the author’s knowledge) a study directly comparing the aforementioned 

technologies using the same material and procedures has not been published. Such a study 

would provide a benchmark of mechanical performance, as well as an analysis on the 

advantages and shortcomings of each technology. 

◼ RFSSW on anodised materials: Oxide films formed by anodizing processes produce materials 

that have better mechanical performance, as well as, improved corrosion and abrasion 

resistance. This is a common practice in the aerospace industry since that aircraft structures 

operate in extremely variable environmental conditions. However, the oxide layer produced 

during anodizing can generate defects in the weld if not dispersed effectively. The same 

principle applies to other corrosion protection treatments such as paints. Future work in this 

area could consider the effect of different tool designs aimed at promoting a more even 

dispersion of these films, without a detrimental effect on the joint mechanical performance.   
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 - Reported RFSSW material combinations 

Table A1 - Similar material combinations successfully welded/joined by RFSSW. 

Material properties Process parameters 
LSS 

[kN] 
Reference Base 

material 
Thickness 

[mm] 

Overlapped area 

[mm2] 

Surface 

treatments 

Shoulder 

geometry 

Probe 

geometry 

Rotation speed 

[rev/min] 

Plunge Depth 

[mm] 

Welding time 

[s] 

Aluminium - 2XXX series 

AA 2024-T3 2.00 46x60 
Alclad 

(100µm) 

9 mm 

threaded 

5.2 mm 

grooved 

1900 (plunge) 

1700 (retract) 
2.5 3.8 9.0 ± 1.90 

da Silva et al. 

(2007-A) 

AA 2024-T3 2.00 46x60 
Alclad 

(100µm) 

9 mm 

threaded 

5.2 mm 

grooved 
1900 2.5 4.8 10.68±0.66 

Tier et al. 

(2008) 

AA 2024-T3 2.00 46x60 n/a 
9 mm 

threaded 

6 mm 

grooved 
1900 2.5 6.8 10.3±0.1 

Amancio-Filho 

et al. (2011-B) 

AA 2024-T4 
1.5 (top) 

2.0 (bottom) 
50x60 Alclad 

9 mm 

threaded 

5 mm 

grooved 

1000 

800 (Dwell ST2) 
1.8 6 9.25±0.1 Li et al. (2016) 

AA 2198-T8 1.6 46x35 n/a 
9 mm 

threaded 

6 mm 

grooved 
1500 2.8 3 7.95±0.35 

de Castro et al. 

(2018-A) 

Aluminium - 5XXX series 

AA 5042-O 1.5 50x60 n/a 
9 mm 

threaded 

5.2 mm 

grooved 
900 1.55 2.04 6.31±0.16 

Tier et al. 

(2013) 

AA 5083-O 2 40x30 n/a 
9 mm 

threaded 

5.2 mm 

grooved 
2300 2.4 3.5 7.72 Xu et al. (2018) 

Aluminium - 6XXX series 

AA 6061-T4 2 40x40 n/a 
9 mm 

threaded 

5 mm 

grooved 
1500 2.2 4 7.12 

Shen et al. 

(2014) 

AA 6181-T4 1.7 45x60 n/a 
9 mm 

threaded 

5.2 mm 

grooved 
2400 1.75 3 6.8±0.17 

Rosendo et al. 

(2015) 

AA 6061-T6 2 25x25 n/a 
9 mm 

threaded 

5 mm 

grooved 
1500 2 2.1 9.1±0.24 

Cao et al. 

(2016) 

AA 6061-T6 2 25x25 n/a 
9 mm 

threaded 

5.3 mm 

grooved 
1500 2.5 n/a 7.98 

Zhou et al. 

(2018) 

Aluminium - 7XXX series 

AA 7075-T6 2 40x40 n/a 
9 mm 

threaded 

5 mm 

grooved 
1500 n/a 4 7.03 

Shen et al. 

(2013) 

AA 7075-T6 0.8 25x25 Alclad 
9 mm 

threaded 

6 mm 

grooved 
2100 1.1 3.5 4.7 

Shen et al. 

(2014) 
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AA 7050-T76 2 46x60 n/a 
9 mm 

threaded 

6 mm 

grooved 
2600 2.6 2.2 11.27±0.33 

Effertz et al. 

(2016) 

AA 7075-T6 
1.6 (top) 

0.8 (bottom) 
30x20 n/a 

9 mm 

threaded 

5.2 mm 

grooved 
2400 1.5 3.5 7.58 

Kubit et al 

(2018-A) 

AA 7075-T6 0.8 30x30 n/a 
9 mm 

threaded 

5.2 mm 

grooved 
3000 1.7 2.5 6.48 

Kubit et al 

(2018-B) 

AA 7075-T6 
1.6 (top) 

0.8 (bottom) 
n/a 

Alclad 

(100µm) 

9 mm 

threaded 

5.2 mm 

grooved 
2000 1.7 2 (PT) 5.87 

Andres et al. 

(2018) 

Aluminium - AlMgSc Alloys 

KO 8542 1.6 25.4x25.4 n/a 
9 mm 

threaded 

6 mm 

grooved 
1000 1.4 1 (PT) 9.34 ± 0.23 

Lage et al. 

(2018) 

Magnesium alloys 

AZ31-H24 2 46x60 n/a 
9 mm 

threaded 

6 mm 

grooved 
3000 3 n/a 4.74 ± 0.19 

Campanelli et 

al. (2012) 

Polymers and reinforced polymers 

CF-Polyethylenimine 2 n/a n/a 
9 mm 

threaded 

6 mm 

grooved 
1200 2.2 n/a 1.6 

Huang et al. 

(2018) 

PMMA 3 25x25 n/a n/a n/a 500 4 5.5 (8.3 ± 1.2) MPa 
Oliveira et al. 

(2012) 
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Table A2 - Dissimilar material combinations successfully welded/joined by RFSSW. 

Material properties Process parameters 
LSS 
[kN] 

Reference Top sheet 
material 

Bottom sheet 
material 

Thickness 
[mm] 

Overlapped area 
[mm2] 

Surface 
treatments 

Shoulder 
geometry 

Probe 
geometry 

Rotation speed 
[rev/min] 

Plunge 
Depth [mm] 

Welding time 
[s] 

AA 7075-T6 AA 2024-T3 
1.27 (Top) 

1.6 (Bottom) 
38x40 n/a 

7 mm 
featureless 

4 mm 
featureless 

1400 1.56 n/a 6.33±0.14 
Boldsaikhan et 

al. (2016) 

AA 6061-T6 AA 7075-T6 3 50x50 N/A 
9 mm 

threaded 
5 mm  

grooved 
1600 3.6 n/a 12.89 

Liu, Yang and 
Yan (2018) 

AA 6082-T6 PA6-GF30 
2 (Top) 

10 (Bottom) 
30x30 n/a 

9 mm 
threaded 

6.4 mm  
grooved 

3100 0.8 n/a 3.71 
Montag and 
Wulfsberg 

(2014) 

AA 5083 Cu-DHP 2 n/a n/a 
9 mm 

threaded 
6 mm  

grooved 
1200 2 n/a 6.72 

Cardillo et al. 
(2018) 

AA AA6181-
T4 

Carbon steel 
1 (Top) 

1.2 (Bottom) 
30x30 

Zn Coating 
(steel) 

6 mm 
featureless 

3.5 mm 
featureless 

1600 0.7 n/a 3.5 
Fukada et al. 

(2013) 

AA 6061-T7 DP600 1.5 n/a 

Without Zn 
coating 

n/a n/a 
900 1.45 8 6.58±0.16 

Verestegui et 
al. (2015) 

With Zn coating 1500 1.3 4 6.36±0.19 

Al-Mg-Mn 
alloy 

HSLA-GI 
3 (Top) 

2 (Bottom) 
n/a 

Zn Coating 
(steel) 

9 mm 
threaded 

6 mm  
grooved 

1600 2.8 4 7.8 
Suhuddin et al. 

(2017) 

AA 5754-H24 AZ31 2 n/a n/a 
9 mm 

threaded 
6 mm  

grooved 
1900 1.8 4 n/a 

Suhuddin et al. 
(2014) 

AA 6181-T4 Ti6Al4V 1.5 25.4x25.4 n/a 
9 mm 

threaded 
6.4 mm  
grooved 

2500 1.4 n/a 
6.449 ± 

0.55 
Plaine et al. 

(2015) 

AA 5754 Ti6Al4V 
2 (Top) 

2.5 (Bottom) 
25.4x25.4 n/a 

9 mm 
threaded 

6.4 mm  
grooved 

2000 1.8 2 7.4 
Plaine et al. 

(2016) 

AZ31-O 

PPS-GF 
2 (Top) 

8 (Bottom) 
n/a Mechanical 

abrasion before 
welding 

9 mm 
threaded 

6 mm  
grooved 

3000 

0.25 8 

2.3 
Amancio-Filho 
et al. (2011-A) 

PPS-CF 
2 (Top) 

2.1 (Bottom) 
n/a 1950 1.5 

ZEK100 DP600-GI 
1.53 (Top) 
1 (Bottom) 

25x25 
Acetone 

cleaning before 
welding 

10 mm 
threaded 

6.3 mm  
grooved 

1800 1.5 3 4.7 
Chen et al. 

(2015) 

PA6 CF-PA66 
4 (Top) 

2 (Bottom) 
25.4x25.4 n/a n/a n/a 1500 3.8 8 2.2 

Goncalves et al. 
(2016) 
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 - Drawings of RFSSW tool components 

 

Figure A0.1 - Technical drawing of the RFSSW clamp component. 
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Figure A0.2 - Technical drawing of the RFSSW probe component. 
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Figure A0.3 - Technical drawing of the RFSSW featureless shoulder component. (Tool 2) 
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Figure A0.4 - Technical drawing of the RFSSW threaded shoulder component. (Tool 3) 
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