
 

 

 
 

 
 

 
       

 
    

   
     

    
      

     
 

 

  
  

 
  

 
            
          

        
            
       

 
  

   
   

    
    

  
 

    
    

   
  

 

EnSuRe: Energy & Accuracy Aware 
Fault-tolerant Scheduling on Real-time 
Heterogeneous Systems 

Saha, S., Adetomi, A., Zhai, X., Kasap, S., Ehsan, S., Arslan, T. & 
McDonald-Maier, K. 

Author post-print (accepted) deposited by Coventry University’s Repository 

Original citation & hyperlink: 

Saha, S, Adetomi, A, Zhai, X, Kasap, S, Ehsan, S, Arslan, T & McDonald-Maier, K 2021, 
EnSuRe: Energy & Accuracy Aware Fault-tolerant Scheduling on Real-time 
Heterogeneous Systems. in 2021 IEEE 27th International Symposium on On-Line 
Testing and Robust System Design (IOLTS). IEEE, 2021 IEEE 27th International 
Symposium on On-Line Testing and Robust System Design , Torino, Italy, 28/06/21. 
https://dx.doi.org/10.1109/iolts52814.2021.9486707 

DOI 10.1109/iolts52814.2021.9486707 
ISBN 9781665433709 

Publisher: IEEE 

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must 
be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works. 

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright 
owners. A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. This item cannot be reproduced or quoted extensively 
from without first obtaining permission in writing from the copyright holder(s). The 
content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the copyright holders. 

This document is the author’s post-print version, incorporating any revisions agreed during 
the peer-review process. Some differences between the published version and this version 
may remain and you are advised to consult the published version if you wish to cite from 
it. 

https://dx.doi.org/10.1109/iolts52814.2021.9486707


EnSuRe: Energy & Accuracy Aware Fault-tolerant
 
Scheduling on Real-time Heterogeneous Systems
 

Sangeet Saha1, Adewale Adetomi2, Xiaojun Zhai1, Server Kasap3, Shoaib Ehsan1, Tughrul Arslan2,1Klaus McDonald-Maier 
1Embedded and Intelligent Systems Laboratory, University of Essex, UK 

2Ewireless Research Group, School of Engineering, University of Edinburgh, UK 
3School of Computing, Electronics and Maths, Coventry University, UK 

{1sangeet.saha, 1xzhai, 1sehsan, 1kdm }@essex.ac.uk, {2Adewale.Adetomi, 2T.Arslan}@ed.ac.uk , 3server.kasap@coventry.ac.uk 

Abstract—Energy efficient scheduling of real-time applications 
without violating real-time constraint has recently become an 
active research domain. Execution-time of contemporary real-
time tasks can individually be divided into: i. execution of 
the mandatory part within the deadline to obtain a result of 
acceptable quality, followed by ii. a partial/complete execution of 
the optional part to improve accuracy of the initially obtained 
result. Since the mandatory part has stringent timing constraint, 
provision must be made against any possible run-time fault 
during execution. In this paper, we propose an energy efficient 
real-time scheduling strategy called EnSuRe, which (i) employs 
a “time-partitoning” based strategy for executing real-time tasks 
on primary processors, having low power consumption. The 
allocation seeks to enhance the accuracy of a task maintaining 
the deadline and (ii) provides reliability against a fixed number of 
transient faults by selectively executing backup tasks on backup 
processor, with high power consumption. Dynamic Power Man
agement was employed to improve the energy efficiency of the 
overall systems. Simulation results reveal that EnSuRe consumes 
nearly 25% less energy, compared to existing techniques, while 
satisfying the fault tolerance requirements. EnSuRe is also able 
to achieve 75% system accuracy with 50% system utilisation. 
Further, the obtained simulation outcomes are validated on 
benchmark tasks via a fault injection framework on Xilinx ZYNQ 
APSoC heterogeneous dual core platform. 

Index Terms—Heterogeneous processors, Real-time systems, 
Fault-tolerant scheduling, Energy efficiency 

I. INTRODUCTION 

In real-time computing, correctness does not only depend 
on the precision of the results, but also on time at which these 
are produced. For such critical systems, approximated results 
obtained within the deadline are preferable over the accurate 
results generated after this deadline. Utilising approximate 
computation approaches, a real-time task can be decomposed 
into a mandatory part, followed by an optional part [1]. The 
mandatory part must be executed entirely in order to produce 
an acceptable result within a deadline, while the optional part 
will be executed for further refinement of the generated result 
and to provide a higher accuracy of the applications executed. 

However, as the mandatory parts have timing constraint, 
provisions must be made against faults. While executing a 
task, a processor can often be plagued by either permanent or 
transient [2] faults. Transient faults are result from factors such 
as electromagnetic interference or nuclear radiation. Transient 
fault causes an error in the output of a single task. In order to 

handle these faults, typically tasks are re-executed on a backup 
processor to deliver the correct result [2]. 

However, such re-execution of tasks introduces an energy 
overhead. Power/energy constraints for real-time systems are 
particularly important, as these devices often depend upon 
restricted power source such as batteries [2]. To incorporate 
energy-aware execution of tasks, two main techniques are 
widely adopted i.e. i.) Dynamic Voltage Scaling (DVFS) tech
nique which trade offs between processor speed and power 
dissipation [3] and ii.) Dynamic Power Management (DPM), 
which keeps idle system components in low-power sleep states 
to preserve power [4]. Recently, we are increasingly witnessing 
use of heterogeneous (asymmetric) multicore systems, where 
processing units with different power/performance reside on 
the same chip, to improve the energy efficiency of the system. 
ARM’s big little systems, Xilinx ZYNQ platform are the 
examples of such heterogeneous systems [5], [6]. 

In real-time scheduling, recently the authors in [7], [8], 
[9], have studied the combined problem of minimizing en
ergy consumption while providing fault tolerance guarantees. 
However, these studies are limited to either uniprocessor 
systems or homogeneous multiprocessors. For heterogeneous 
systems, the authors in [2], [4], [10], have employed standby 
sparing and primary/backup techniques to provide energy 
aware fault tolerant solutions. However these works consider 
hard real-time tasks, not emerging approximation based real-
time tasks. Moreover, all of these studies employ standard 
scheduling scheme like Earliest-Deadline- First (EDF) and 
Earliest-Deadline-Late (EDL) scheduling policies. The authors 
also made a strict assumption that all tasks share a fixed and 
common deadline. In modern safety critical systems, such 
assumption is no longer generally valid, because based upon 
their respective criticality, individual tasks must have unique 
deadlines. Thus, the proposed techniques may perform poorly 
on multiprocessor system, where multiple tasks require to 
complete execution requirements within multiple deadlines. 

We propose EnSuRe, an energy and accuracy aware reliable 
scheduling strategy for real-time tasks executing on heteroge
neous multiprocessor system. To the best of our knowledge, 
EnSuRe is the first scheduling mechanism which considers 
“energy and accuracy” simultaneously to incorporate fault 
tolerance on a heterogeneous system. The major contributions 

mailto:3server.kasap@coventry.ac.uk
mailto:2T.Arslan}@ed.ac.uk
http:essex.ac.uk


of EnSuRe are summarized as follows: 
•	 EnSuRe employs a “time-partioning” based task allo

cation strategy which can effectively allocate tasks on 
multiprocessor platform based on distinct deadlines. This 
strategy maintains proportional fairness, while executing 
task’s mandatory parts and utilises available slack periods 
by executing task’s optional parts to enhance accuracy. 

•	 EnSuRe tolerates a fixed number of faults [11]. Upon 
detection of a fault, EnSuRe attempts to re-execute the 
backup tasks within dynamically adjustable slots, such 
that the deadline of the task remains satisfied and utili
sation of the higher power consuming backup processor 
can be minimised. 

•	 Simulation based experiments with benchmark tasks re
veal that EnSuRe consumes 25% less energy as compared 
to the existing techniques. 

•	 EnSuRe has also been implemented on heterogeneous 
ZYNQ APSoC platforms with a fault injection frame
work. Obtained simulation trends are validated using 
benchmark task set. 

II. SYSTEM MODEL AND ASSUMPTIONS 

A. Platform and Task Model 

In [12], the authors showed multiple cores can be parti
tioned as primary and backup cores. The adopted architecture 
model in EnSuRe consists of a high-performance (HP) backup 
core with high power consumption, and two relatively low 
performance (LP) primary core with low power consumption. 
We consider a real-time application (A), which consists of 
a set of n real-time tasks T = {T1, T2, ..., Tn}. Each task 
Ti (1 ≤ i ≤ n) is logically decomposed into a mandatory 
part, with execution requirement of Mi to be finished within 
deadline, di and an optional part with an execution requirement 
of Oi. 

In a heterogeneous system, as different cores are operating 
at different frequencies, the same task may require different 
execution times on each of these cores. Assuming both the 
cores are operating at their highest frequencies (denoted by 
fLP , fHP , respectively), we define the temporal resourcemax max

T HP demand of a task on HP core as by the tuple <i 
MHP , OHP , di > and similarly, for LP core, this will be i i 
denoted as follows: T LP : < MLP , OLP , di >.i i i 

B. Power Model 

Power consumption of a processor can be divided in two 
parts, i. static power consumption (idle power) and ii. dynamic 
power consumption. Let us assume, P owLP and P owHP 

idle idle 
denote the static power consumption of LP and HP cores, 
respectively. If a processor executes task Ti, then the dynamic 
power consumption can be measured as Pi(f) = aif3 + αi, 
where ai indicates the switching capacitance, f denotes the 
processing frequency , and αi is the frequency-independent 
power consumption [10]. EnSuRe employs the Dynamic 
Power Management (DPM) technique on both cores to min
imize the energy consumption. Hence, as soon as EnSuRe 
finds any idle core, it attempts to bring the core into a low 

power state through DPM. However, during this transition 
period, a certain amount of energy and time are consumed. For 
simulation purposes, we assume these factors are negligible. 
However, for implementation on ZYNQ platform this issue 
has been considered. The total energy consumption within a 
scheduling length is calculated by summing up the energy 
consumption of each indvidual core. 

C. Fault and recovery Model 

EnSuRe utilizes both cores for fault recovery. The LP cores 
will be used as primary core where tasks will be executed 
by default and the HP core will be treated as backup core, 
which will only be activated to re-execute any faulty tasks of 
primary processor. Hence, each task Ti will have two versions 
i.e. primary copy (to be executed on LP cores) and backup 
copy (to be executed on HP core). Like existing fault tolerant 
mechanisms, we also assume that the fault detection overhead 
has been incorporated into the WCETs of tasks [2], faults are 
detected at the end of a task’s mandatory part and optional 
part execution through the sanity (or consistency ) checks (e.g. 
parity or signature checks) [3]. 

It has been assumed that mandatory portion of primary 
version of each task suffers from one transient fault in the 
scheduling window (defined in later Section). 

D. Problem description 

Given a set of real-time tasks to be executed on a hetero
geneous multiprocessor system, devise a scheduling strategy 
such that 1) Total k number of faults are tolerated within the 
scheduling window 2) All tasks meet their respective deadlines 
3) System accuracy is enhanced and 4) Strategy remains 
energy efficient. 

III. PROPOSED APPROACH: EnSuRe 

A. Schedule generation phase 

EnSuRe employs a time-partitioning based scheduling ap
proach for a set of n real-time tasks A = {T1, T2, . . . , Tn}
on the multiprocessor system. The technique maintains time 
denoted by the deadlines of the tasks. The difference between 
any two consecutive deadlines (say, the ηth and (η − 1)th task 
deadline) is referred to as “time-window” TWη and TWLη 

denote the length of the ηth time-window TWη and can be 
calculated using equation 1: 

TWLη = dη − dη−1	 (1) 

Each task Ti in A has a stipulated execution rate demand 
defined by its weight, wti = Mi , where Mi denotes the di 

mandatory execution requirement and di denotes its deadline. 
For any time-window (TWη) of duration TWLη , each task Tj 

is allocated a workload-quota (Quη time-slots) proportional to j 
its weight that can be calculated as: 

Quη
j = (rwtj × TWLη l) ∀Tj ∈ A (2) 

It is noted that within a time-window (say, TWη), as all 
the available primary core(s) will operate in parallel, the total 
system-wide capacity for that time-window is: TWLη ×mpri, 



where mpri is the number of available primary core. In 
order to obtain a feasible schedule, this system-wide capacity 
must compensate the sum of workload-quota of all tasks, i.e. un η( Qu ). Thus, a necessary condition for scheduling to be j=1 j 
feasible within TWη is: 

n 
Quj

η ≤ TWLη × mpri (3) 
j=1 

EnSuRe selects tasks and attempts to allocate them starting 
from the first primary core, as per their workload-quota (Quη).j 
However, the combined sum of task workload-quota in the 
core should be less than the time slice interval TWLη . The 

ηavailable slack AS of the ith primary core for the ηth time-i 
window after finishing the allotted workload-quota can be 
calculated as: 

n 
ASi

η = TWLη − Quj
η (4) 

j=1 

According to our strategy, this available slack will be 
utilized for the execution of optional portion of tasks so that 
the system accuracy can be enhanced. In order to allocate 
the optional portion of tasks within a time-window, we have 
defined a factor called “Urgency Factor (UF)”, the urgency 
factor (UFi) of task Ti can thus be defined as: 

slack UFi = di − t (5) 

where tslack denotes the time instant where the slack time 
starts within a time-window. After calculating the UFi value 
for each task within the time-window, we will store tasks 
based on their UF value in ascending order. Hence, it can be 
noted that tasks with a closer deadline will be selected first. 
This will increase the probability that within a deadline a task 
will complete the entire mandatory portion and will attempt to 
maximise the execution of optional parts to enhance accuracy. 

B. Implication of the time-partitioning strategy of EnSuRe 

In [12], the authors employed EDF scheduling scheme two 
schedule primary version of tasks on two primary processors. 
However, in such scenario, a time-partitioned approach pro
vides better resource utilisation than existing EDF scheduling. 
We will now exhibit the efficacy of time-partitioning strategy 
via an example. 

Let us consider 3 periodic real-time tasks {T1, T2, T3} with 
9 9 4weights , , . Now, we will try to schedule these tasks 10 10 20 

using EDF and EnSuRe, respectively on two main processors 
(denoted as V1 and V2). EDF will consider tasks with the 
earliest deadlines and it can be observed in Figure 1, EDF 
allocates T1 and T2, as they both share an earliest deadline of 
10. So T3 can be activated the earliest at the 9th time-unit. 
However, this will leave one processor empty which can thus 
be utilised for optional part execution. It can also be observed 
that the remaining 3 units of T3 can not be completed by the 
20th time-unit because T1 and T2 will again appear at 10 and 
consume (9+9)= 18 units. Thus, T3 will miss its deadline. 

On the other hand, EnSuRe maintains proportional fairness 
inside each time-window. We can develop the entire schedule 

Algorithm 1: EnSuRe 
Input: Temporal parameters of tasks ∈ A and 

time-windows; 
Output: Generate fault-tolerant schedule for the application 
for each time-window TWη do 

/***** For primary core(s), Schedule generation 
*********/ 

Calculate Quj
η for each task using Equation 2; 

if equation 3 NOT satisfied then RETURN; 
while A  = NULL do 

Execute task Tj in the primary core(s) for Quη
j 

time; Remove Tj from A if Quη
j == 0; 

Determine Available Slack (ASj
η ) using Equation 4; 

Calculate UFj for each task Tj using Equation 5; 
Store the UF values in ascending order in set U ; 
while ASi

η  = NULL OR U  = NULL do 
Execute optional portion of Tj ∈ U ; 

/***** For backup core, fault handling *********/ 
If Tasks are schedulable then 
Create backup list in non-increasing order of Mi

HP ; 
for first k tasks in backup do do 

BES = BES + Mi
HP ; 

BST= TWLη - BES; 
Reserve BES unit of slots on HP from BST instant; 

Fig. 1: EDF based schedule 

into two time-windows. In each time-window EnSuRe will 
execute tasks as per their allotted work-load quota and properly 
utilising resources. The feasible schedule with EnSuRe has 
been shown in Figure 2. It can be observed that all tasks can 
be successfully scheduled by EnSuRe. 

V
1

V
2

T
1

T
2

T
1

T
2

T
2

T
3

T
2

T
3

0 9 10

0 8 10

Time-window 1
Time-window 2

19 20

18 20

Fig. 2: Time-partition based schedule (EnSuRe) 

C. Fault handling phase 

After scheduling, EnSuRe creates a list called “backup” in 
non-increasing order of MHP . As EnSuRe needs to handle i 
only k number of faults, it reserves an execution slot on HP for 
possible backup task execution. We termed this slot as “BES 
(Backup Execution Slot)”. BES contains the execution slot for 
the k tasks (from the beginning) in backup list as per their 
MHP 

i . Then EnSuRe decides when to activate this “BES” slot 



inside a time-window. Thus, the “BST (Backup Start Time)” 
is calculated. The concept behind this BST calculation is to 
activate the BES slot on the HP as late as possible, in order 
to save energy. 
Dynamic Adjustment of BES: when a mandatory portion 
of a primary task finishes its execution, the fault detection 
mechanism is executed. If it is found that the task is executed 
with zero error, then the result is committed. This in turn, 
removes the task from the backup list. Hence, as soon as 
a primary task completes successfully, the size of the“BES” 
slots on the HP core reduces dynamically. The backup tasks 
will only be executed, if a fault is detected on LP primary 
core. Algorithm 1 shows the pseudocode of EnSuRe . 

IV. ILLUSTRATION WITH EXAMPLE 

Let us assume a system consisting of a set of four real-
time tasks T1, T2, T3 and T4 to be executed on a LP 
primary core and a HP backup core. As shown in [3], this 
system is characterized by assuming, fLP = 0:8; fHP = max max 

HP 1.0, αHP 1.0; P LP = 0.02; P HP = 0.05, a = = 0.1,idle idle i i 
LP 0.3, αLPa = = 0.03. The task’s parameters on the LP i i 

primary cores are as follows: T LP = < 12, 6, 60 >, T LP = 1	 2 
< 14, 6, 60 >, T LP = < 15, 10, 90 >, T LP = < 18, 10, 90 >.3	 4 
The length of the first time-window is TWL1 = 60 (earliest 
task deadline = 60). The length of the second time-window 
becomes TWL2 = 90 − 60 = 30. In this example, we have 
illustrated the task allocation performed by EnSuRe for the 
first time-window only. In the first time-window, the workload-
quota for each task can be determined by equation 2 and T1 

through T4 will have workload-quota as: Qu1 = Qu1 = 12,1 4 
Qu1 = 14, Qu1 = 10, respectively. It can be observed that 2 3 
Equation 3 is satisfied. Figure 3 shows the schedule generated 
by EnSuRe in time-window TW1. After the allotment, we can 
observe that the LP core has an available slack (AS) of 12 
time unit. 

Fig. 3: Allocation of tasks on LP primary processor 

Now, EnSuRe allocates optional parts of tasks T1 and T2, 
respectively as show in Figure 4. 

Fig. 4: Allocation of optional parts utilising slack 

The task’s parameters on the HP secondary cores are as 
follows: T HP = < 8, 4, 60 >, T HP = < 10, 4, 60 >, T HP 

1 2	 3 
= < 12, 6, 90 >, and T HP = < 14, 6, 90 >. Let us assume, 4 
K = 2 i.e two faults to be tolerated, In the backup list, tasks 
will be stored in non-increasing order based on their Mi value 

, MHP , MHP , MHP and backup can be denoted as: {MHP	 }.4 3 2 1 
As k = 2, EnSuRe will reserve backup slot (BES) of units of 
26 units (execution requirements in worst case), as shown in 
Figure 5. This configuration consumes energy of 80.8 mJ . 

It can be observed that if EnSuRe uses the HP core as 
primary and the LP core as spare, then for this task set EnSuRe 
would consume 84.37 mJ . As EnSuRe always attempts to 
fully utilise the primary processor to increase the accuracy 
and thus, HP will remain fully occupied. 

Fig. 5: Backup slot adjustment on HP spare core 

V. EXPERIMENTS AN ANALYSIS 

A. Experimental Setup 

Performance evaluation of the proposed EnSuRe has been 
carried out through a comprehensive set of simulation based 
experiments considering, real-time tasks and fault injection 
framework. Normalized Energy Consumption (NEC) and Nor
malized Achieved Accuracy (NAA) have been used for evalua
tion. NAA can be defined as the ratio between total executed 
optional portion and total available optional portions for all 
tasks. The simulated architecture is using a high-performance 
core with normalized frequency fHP = 1.0 and a low-power max 
core with normalized frequency fLP varying in the range max 
[0.6; 0.9], as shown in [3].
 
Task’s Characteristic: The ranges of the mandatory portion
 
Mi and the optional portion Oi are obtained from [1]. Tasks
 
can consume between 4 × 107 and 6 × 108 clock cycles.
 

MiThe weights (wti = di 
) of the tasks have been taken from 

normal distribution with standard deviation σwt = 0.1 and 
two different values of mean, µwt = 0.1, µwt = 0.2. Task 
deadlines have also been generated from a normal distribution. 
Given the tasks weights, we can obtain the total workload of 
the system (SysWL) by summing up the weights of all the 
tasks. Given the system workload, the total system utilisation 
(Sysuti) can be derived by: 

SysWL 
Sysuti = × 100% (6) 

mpri 

For a given the system utilisation (Sysuti), the average number 
Sysuti×mpri of tasks (ρ) can be achieved as:ρ = For simula100×µwt 

tion, we have generated various types of data sets by setting 
different values for the following parameters: 

1)	 Average individual task weight: It has been obtained by 
the mean of the distribution from which task weights have 
been generated. Two values of µwt, 0.1 and 0.2 have been 
considered. 

2) System Utilisation	 Sysuti: We have varied the system 
utilisation Sysuti value from 40% to 90%. 

3) Number of faults k: k has been varied in the range [1,5]. 
In heterogeneous systems, a particular task may consme 

different execution times and power based on the processor 



 0

 10

 20

 30

 40

 50

 60

 70

K=2 K=3 K=4 K=5

N
E

C
 (

%
)

Ensure
Slowerp

 0

 10

 20

 30

 40

 50

 60

 70

Sysuti=40% Sysuti=50% Sysuti=60% Sysuti=70% Sysuti=80% Sysuti=90%

N
E

C
 (

%
)

Ensure
Slowerp
LTF
TBLS

 30

 40

 50

 60

 70

 80

Sysuti=50 Sysuti=60 Sysuti=70 Sysuti=80

N
A

A
 (

%
)

µ
ωτ

 = 0.1
µ

ωτ
=0.2

(a) Impact of number of faults (b) Impact of system-utilisation (c) NAA (%) varying µwt 

Fig. 6: Performance of EnSuRe 

characteristics. Hence, as shown in [3], we define a time-
CLP 

iscaling factor tscalei = 
CHP , and a power-scaling factor 

i 
P LP 

ipscalei = 
P HP for each task Ti. The values of tscalei and 

pscalei are 
i 
randomly generated within the ranges 1.4 ≤ 

tscalei ≤ 2.3 and 1.4 ≤ 1/(tscalei × pscalei) ≤ 2.1 

B. Results and Analysis 

1) Evaluating the impact of k: Figure 6(a) exhibits how 
energy consumption varies with increasing number of faults. 
Here, fHP = 1.0 and fLP = 0.8 and Sysuti remains fixed max max 
at 70% on the power-efficient LP core and average individual 
weight remains µwt = 0.1. As per the trends in Figure 6(a), 
it can be concluded that the higher the number of faults, 
the higher is the energy consumption for EnSuRe. However, 
SlowerP [10] consumes a fixed energy consumption. This 
behavior of SlowerP can be argued by the fact that irrespective 
number of faults, this strategy keeps a backup space for all 
tasks. In contrast, for EnSuRe as k increases the BES also 
increases which in turn increases overall power consumption. 

2) Evaluating the impact of utilisation: Figure 6(b) shows 
how the energy consumption varies with respect to varying 
system utilisation. The number of faults set as k = 4. It 
may be observed from Figure 6(b) that with the increasing 
system utilisation, the energy consumption also increases for 
both EnSuRe and SlowerP provided the individual task weight 
remains the same. This is because for a given µwt, higher 
values of Sysuti result in a higher number of tasks (ρ),uρ ηresulting in the LHS ( Qu ) of equation 3 to become j=1 j 
larger. Due to this, the probability of failure of the condition 
(equation 3) increases for a given number of faults. Higher task 
number also reduce the idle times of both cores and hence, 
results in higher energy consumption. However, in all system 
utilization, EnSuRe outperforms SlowerP. This is because, 
EnSuRe reserves a fixed amount of backup slots on HP core 
based on k, while on other hand SlowerP employs a rigid 
strategy by reserving backup slots for each task. 

We have further compared EnSuRe with two existing strate
gies “LTF” and “TBLS” as proposed in [3]. “LTF” means 

largest task first, as it can be observed tasks with higher exe
cution length is given higher priority thus, in order to maintain 
deadline, the HP core is also used for primary execution which 
leads to high energy consumption. “TBLS” is threshold based 
list scheduling, in this technique tasks will be allocated to LP 
core upto a certain utilisation and then it will be allocated to 
HP core. Similarly, in this technique, the HP core is completely 
utilised for primary as well as backup execution and thus, 
it consumes higher energy. It can be observed that in case 
of highest system utilisation (Sysuti=90%), EnSuRe consume 
25% less energy than “TBLS”. 

From Figure 6(c), EnSuRe is able to achieve 75% accuracy 
when Sysuti is 50%. However, as the utilisation increases the 
slack in primary core(s) decreases and thus, NAA decreases 
with the increase in Sysuti. It has to be noted that for a Sysuti, 
if the average individual task weight (µwt) varies from 0.1 to 
0.2, the NAA remains comparable. This phenomena exhibits 
the robustness of EnSuRe irrespective of task’s weight. The 
“time-partioning” is the key reason behind such robustness be
cause within each time-window “EnSuRe” maintains fairness 
by executing tasks based on work-load quota. 

VI. HARDWARE IMPLEMENTATION 

A. Architectural Setup 

We have implemented EnSuRe on a heterogeneous system 
on a Xilinx Zynq-7000 All-Programmable SoC [13], with 
Arm Cortex-A9 CPU in the Processing System (PS) side, 
which serves as the HP core; and FPGA fabric in the Pro
grammable Logic (PL) side, which is used to implement the 
LP core and other system components. Figure 7 shows the 
diagrammatic representation of the proposed architecture. The 
LP core utilised a TMR MicroBlaze. The Memory Arbiter 
is a combination of AXI memory interconnects interfacing 
an AXI CDMA module with a DDR memory, the LP core, 
and the HP core. The Mailbox and Mutex are for coordi
nating communication and signalling between the HP and 
LP subsystems. Specifically, the Mailbox is for transactional 
communication between the HP and LP while the Mutex is 
used to prevent conflict in access to shared resources. The 



Fig. 7: The ZYNQ test-bed 

signalling of switch-over from LP to HP core is via interrupts. 
For power management, we implement a Dynamic Power 
Manager (DPM) that is able to control the power consumption 
of the system dynamically. The backup subsystem is always 
held in a low-power state by dynamically scaling down the 
CPU frequency and clock-gating system modules. This is a 
software-driven solution that requires setting register values 
in the PS. A processor reset (watchdog-triggered reset) is then 
used to force the processor to exit from the standby condition. 
The host PC executes the EnSuRe algorithm. 

B. Fault Injection and Detection Framework 

The fault injection framework needed to confirm the in
tegrity of the TMR MicroBlaze Subsystem relies on the 
TMR Inject IP core. Fault injection is actually carried out by 
injecting a different instruction at a certain instruction address 
of one of the three processors. This causes a mismatch among 
the processors and such mismatch is detected by a TMR 
comparator. To inject a fault in one of the three processors, 
the software writes the instruction, address and CPU ID to the 
TMR Inject core. We then check that the expected comparator 
mismatch has occurred by reading the TMR Manager First 
Failing Register at address offset 0x04. We prevent the TMR 
Manager from mitigating the injected fault by writing to the 
TMR Manager Comparison Mask Register. The framework is 
shown in Figure 8. 

Fig. 8: Fault injection and detection 

C. Resource consumption 

The architecture is implemented on the ZedBoard, which 
is a Znyq-7000 board with the XC7Z020-CLG484-1 chip. 
The entire architecture utilizes 38.94% of the available FPGA 
slices. Table I gives the resource utilisation in the architecture. 

TABLE I: Resource Utilisation of key components 

Module Utilisation (%) Utilisation (%) 
Flip Flops LUTs Flip Flops LUTs 

TMR MicroBlaze 
Mutex 

Mailbox 

9496 
92 
263 

15049 
74 

4.14 

8.92 
0.091 
0.19 

28.37 
0.14 
0.49 

Total 9787 15431 9.20 29.01 

D. Energy consumption 

We have created synthetic tasks from MiBench bench
mark [1]. The execution times for HP core and LP core are 
measured for ARM core (freq: 650 MHz) and MicroBlaze core 
(freq: 100 MHz). We have evaluated the EnSuRe by injecting 
(k = 3) faults.The average scheduling length is taken as 30000 
ms and we executed the simulations 5 times by injecting the 
faults at arbitrary positions in the scheduling length. The final 
value is calculated from the average of these obtained values. 
Based on the power report of Vivado tool, ARM works as 
the secondary core and with the aid of DPM, ARM cores 
are powered down by reducing their frequency of operation 
to 50 MHz and consumes 0.420 watt. However, the primary 
MicroBlaze operates at 100 MHz and consumes 0.123 watt. 
Table II shows the energy consumption of EnSuRe and Slow
erP for the entire scheduling length. It can be observed that 
the results obtained through software simulation are aligned 
with the hardware implementation outcomes. 

TABLE II: Enrgy Consumption in Joule 

Avg. number of tasks EnSuRe SlowerP 
8 7.83 11.26 
12 9.68 14.57 
16 13.58 17.84 

VII. CONCLUSION 

In this paper, we have presented a fault-tolerant scheduling 
strategy, EnSuRe for real time tasks executing on a heteroge
neous cores. We presented “time-partitioned” based scheduling 
scheme for allocation and execution of tasks to the available 
primary processor such that tasks could meet their deadlines 
and accuracy can also be enhanced. Next, our proposed intel
ligent technique to dynamically adjust the backup execution 
slot on spare processor, provides less energy consumption 
and tolerance against fixed number of transient faults. As 
per the obtained simulation behavior, it can be argued that 
EnSuRe can be employed for energy efficient operation and the 
simulation outcomes were further validated on ZYNQ APSoC 
heterogeneous systems with benchmark tasks. 

REFERENCES 

[1]	 L. Mo, A. Kritikakou, and O. Sentieys, “Approximation-aware task 
deployment on asymmetric multicore processors,” in 2019 Design, 
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 
2019, pp. 1513–1518. 

[2]	 Y. Guo, D. Zhu, H. Aydin, J.-J. Han, and L. T. Yang, “Exploiting 
primary/backup mechanism for energy efficiency in dependable real-
time systems,” Journal of Systems Architecture, vol. 78, pp. 68–80, 2017. 



[3] A. Roy, H. Aydin, and D. Zhu, “Energy-efficient fault tolerance for 
real-time tasks with precedence constraints on heterogeneous multicore 
systems,” in 2019 Tenth International Green and Sustainable Computing 
Conference (IGSC). IEEE, 2019, pp. 1–8. 

[4] P.	 P. Nair, R. Devaraj, and A. Sarkar, “Fest: Fault-tolerant energy-
aware scheduling on two-core heterogeneous platform,” in 2018 8th 
International Symposium on Embedded Computing and System Design 
(ISED). IEEE, 2018, pp. 63–68. 

[5] A. Majumder, S. Saha, and A. Chakrabarti, “Task allocation strategies 
for fpga based heterogeneous system on chip,” in IFIP International 
Conference on Computer Information Systems and Industrial Manage
ment. Springer, 2017, pp. 341–353. 

[6] J. Zhou, K. Cao, P. Cong, T. Wei, M. Chen, G. Zhang, J. Yan, and 
Y. Ma, “Reliability and temperature constrained task scheduling for 
makespan minimization on heterogeneous multi-core platforms,” Journal 
of Systems and Software, vol. 133, pp. 1–16, 2017. 

[7] M. A. Haque, H. Aydin, and D. Zhu, “On reliability management 
of energy-aware real-time systems through task replication,” IEEE 
Transactions on Parallel and Distributed Systems, vol. 28, no. 3, pp. 
813–825, 2016. 

[8] M. Fan, Q. Han, and X. Yang, “Energy minimization for on-line real-
time scheduling with reliability awareness,” Journal of Systems and 
Software, vol. 127, pp. 168–176, 2017. 

[9] B. Zhao, H. Aydin, and D. Zhu, “Energy management under general 
task-level reliability constraints,” in 2012 IEEE 18th Real Time and 
Embedded Technology and Applications Symposium. IEEE, 2012, pp. 
285–294. 

[10] A. Roy, H. Aydin, and D. Zhu, “Energy-aware standby-sparing on het
erogeneous multicore systems,” in 2017 54th ACM/EDAC/IEEE Design 
Automation Conference (DAC). IEEE, 2017, pp. 1–6. 

[11] R. M. Pathan, “Real-time scheduling algorithm for safety-critical sys
tems on faulty multicore environments,” Real-Time Systems, vol. 53, 
no. 1, pp. 45–81, 2017. 

[12] Y. Guo, D. Zhu, and H. Aydin, “Generalized standby-sparing techniques 
for energy-efficient fault tolerance in multiprocessor real-time systems,” 
in 2013 IEEE 19th International Conference on Embedded and Real-
Time Computing Systems and Applications. IEEE, 2013, pp. 62–71. 

[13] L. Crockett, D. Northcote, C. Ramsay, F. Robinson, and R. Stewart, Ex
ploring Zynq MPSoC: With PYNQ and Machine Learning Applications, 
2019. 


	EnSuRe cs
	EnSuRe_IOLTS (2)

