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Abstract 
The reuse of building components can decrease the embodied energy and greenhouse gases of 
the construction activities and help get closer to a circular economy using fewer virgin materials. 
Part of the recent efforts to promote the reuse rates includes estimating the reusability of the 
load-bearing building components to assist the stakeholders in making sound judgements of 
the reuse potentials at the end-of-life of a building and alleviate the uncertainties and perceived 
risks. This study develops probabilistic models using advanced supervised machine learning 
techniques to predict the reuse potential of structural elements at the end-of-life of a building, 
from technical, economic, and social perspectives. 

After performing a thorough literature search and identifying, analysing, and categorising the 
independent variables affecting the reusability of building structural elements, these factors 
were used to develop an online questionnaire. This questionnaire was then shared with a 
representative sample of practitioners in the construction industry, including managers, CEOs, 
architects, engineers, consultants, and deconstruction experts with previous experience in 
reusing recovered building structural components. The received questionnaires were reviewed, 
and the initial dataset was split into three separate datasets to address the technical, economic, 
and social aspects of the study. Then, the missing values were estimated, and the class 
imbalances were addressed using advanced techniques. In the next stage, and for each dataset, 
a total number of thirteen predictive models were developed in the R software using 13 
advanced supervised machine learning methods. The performance and transparency of these 
models were compared to choose the best-practice Building Structural Elements Reusability 
Predictive Models (BSE-RPMs), which provide reliable predictions. 

Random Forest (RF) models were selected as the best practice BSE-RPMs for all three datasets, 
with a considerable overall accuracy of 96%, 89%, and 94% for the technical, economic, and 
social models, respectively. Since RF models are known as black-box models, advanced 
supervised machine learning methods such as sensitivity analysis and visualisation techniques 
were employed to open the selected RF BSE-RPMs. Eventually, using advanced rule extraction 
methods, three easy-to-understand predictive models (learners) were developed for assessing 
the technical, economic, and social reusability of the load-bearing building components, with 
an overall accuracy of 85%, 82%, and 91%, respectively. 

This research has contributed to promoting the reuse of building structural elements in two 
ways. First, using advanced supervised machine learning techniques such as the Boruta method 
and recursive feature elimination technique, this research identifies and ranks the main 
reusability factors based on the experience of the stakeholders with the recovered building 
structural elements in the building sector. Second, for the first time, it develops three sets of 
easy-to-understand learners (predictive rules) that can be used by practitioners to have an 
initial assessment of the technical, economic, and social reusability of the load-bearing 
components. The developed learners can be easily used by various stakeholders and have the 
potential to promote the reuse rate of the structural elements of the existing buildings, which 
were not designed for deconstruction. These sets of rules can also encourage more 
deconstruction projects since the developers would have a better judgment about the 
reusability of the structure of an existing building at its end-of-life, which, in turn, can accelerate 
the growth of reuse markets.
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total energy sector emissions (International Energy Agency 2020). Likewise, cement, another 

ingredient of many constructions worldwide (Vitale and Arena 2017), is accountable for around 

7% of the world energy sector CO2 emissions (International Energy Agency 2020). 

Besides, construction activities produce the highest amount of waste among all other sectors 

(Defra 2019, Eurostat 2016, Clark, Jambeck, and Townsend 2006, UNEP 2015). In the UK, among 

the 223 million tons of waste generated in 2016, around 61% belonged to construction, 

demolition, and excavation activities (Defra 2019). The construction and demolition waste 

(CDW) in some parts of the world constitutes up to 40% of the total waste stream (Hoornweg 

and Bhada-Tata 2012). As an instance, CDW is accountable for around 36% of the total waste 

generated in the EU-27 (Eurostat 2020). In the OECD countries, CDW accounts for around 36% 

of the total waste generated annually (UNEP 2015). It is noteworthy that the OECD countries 

are responsible for the production of approximately 44% of the global waste (Hoornweg and 

Bhada-Tata 2012). 

In the light of the Paris Agreement and to maintain the global temperature increase well below 

two degrees Centigrade, the need to decreasing the amount of CO2 and other greenhouse gases 

(GHG) has become inevitable in all sectors (UN 2015). According to (International Finance 

Corporation 2016), 101 of the signatories of the Paris Agreement highlighted that waste is a 

crucial sector for fulfilling the targets set by the agreement. Moreover, 66 of the countries in 

the Paris Agreement confirmed that buildings are another pivotal sector for achieving the 

targets of sustainable development (International Finance Corporation 2016). Therefore, 

acknowledging the share of the construction industry in the global GDP, raw materials and 

energy consumption, and GHG production, it is evident that the building sector has a 

considerable potential to fulfil the Paris Agreement targets by improving its overall 

sustainability footprint. Since most of the embodied energy and CO2 impacts of buildings are 

related to the load-bearing systems (Kaethner and Burridge 2012), methods for extending the 

life of the structure of buildings seems promising. 

In recent years, new design and construction methods such as design for deconstruction (DfD) 

(Akinade et al. 2017, Tingley and Davison 2011), design for manufacture and assembly (DfMA) 

(Kalyun and Wodajo 2012), and Modular Construction (Thai, Ngo, and Uy 2020) are introduced 

to decrease waste and promote the reuse of the load-bearing components at the end-of-life of 

a building. However, most of the existing buildings are not designed based on the above 

techniques, which results in the generation of a considerable amount of wastes during the 

refurbishment or demolition phases (Chileshe et al. 2016, Rose and Stegemann 2018, Chileshe, 
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Rameezdeen, and Hosseini 2015). Moreover, a considerable focus of the research body is on 

the adaptive reuse of the existing buildings (Nevzat and Atakara 2015, Sfakianaki and 

Moutsatsou 2015, Tan, Shen, and Langston 2014, Sanchez and Haas 2018, Bullen 2007). While 

adaptive reuse is the most promising option to prevent waste and promote the sustainability 

of the structure of a building, in many instances, it is not practical, and the removal of a building 

at its end-of-life becomes inevitable. In this case, if the structure of the building is not recovered 

and reused, it results in the loss of valuable resources (Fujita and Iwata 2008). 

Reusing the recovered load-bearing building components in new constructions for aesthetic or 

environmental purposes has attracted different clients worldwide in the last two decades, 

which have resulted in various successful case-study projects. For instance, in 1997, the Udden 

project reused several components such as 73 concrete wall elements and 41 concrete floor 

beams recovered from buildings built in the 1960s. Moreover, in 2001, the Nya Udden project 

recovered several load-bearing building components such as 72 concrete outer-wall elements 

and 224 concrete beams from various 1970s buildings and reused them in new student 

accommodation (Addis 2006). In 2002, and in an attempt to develop an ultra-green residential 

and office complex, various reclaimed building components and materials were used in the 

construction of the Beddington Zero Energy Development, London, UK (Lazarus 2003). These 

include reclaimed, reused, and recycled building components such as steel (95% of the steel 

structure), timber for internal and external studwork, floorboards, bollards, paving slabs, and 

shuttering ply. While these projects show that the reuse of load-bearing building components 

is practical, this practice is still not mainstream due to the amplitude of prohibiting factors 

(Section 2.3.2) (for other examples of such case study buildings, please refer to (Addis 2006, 

Gorgolewski et al. 2008, Gorgolewski 2008)). 

The reuse of load-bearing building components at the end-of-life of existing buildings, and the 

factors affecting its uptake in new constructions has been the focus of research for several 

years. Researchers have identified various economic, environmental, organisational, 

regulatory, social, and technical barriers to reuse in the building sector. From an economic 

perspective, barriers such as lack of an established reuse market, additional costs, and revenue 

were among the main factors prohibiting the reuse uptake (da Rocha and Sattler 2009, 

Rameezdeen et al. 2016, Dantata, Touran, and Wang 2005, Chileshe et al. 2016). From an 

organisational aspect, factors related to the lack of infrastructure to perform deconstruction 

and reuse, lack of experienced contractors, and managerial problems such as lack of ownership 

or systems thinking are prohibiting reuse (Arif et al. 2012, Rose and Stegemann 2018, Dunant 

et al. 2018, Yeung, Walbridge, and Haas 2015). From a regulatory perspective, factors such as 
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columns, truss, etc.) have far lower environmental impacts when compared with recycled 

materials (Geyer, Jackson, and Clift 2002). For instance, when new steel sections that have 

around 60% recycled content are used, their environmental impacts are still twenty-five times 

more than reusing the equivalent reclaimed steel sections (WRAP 2008). According to (Lazarus 

2003), reusing reclaimed structural steel and timber sections can decrease the environmental 

impacts by 96% and 83%, respectively. It is primarily due to significantly lower treatment and 

reprocessing required for reusing the load-bearing building components in comparison with 

recycling (Gorgolewski et al. 2008). 

Although efforts have been made to increase the reuse rates of building structural elements in 

recent years, there are yet no signs of improvements. Contrarily, the reuse rates in the building 

sector have declined in the last two decades in countries like the UK, and only a fraction of load-

bearing components at the end-of-life of a building are reused (Addis 2006, Sansom and Avery 

2014). For instance, only 5% of the reclaimed steel sections in the UK are reused, and the 

remaining are recycled (Sansom and Avery 2014). Part of the recent efforts to promote the 

reuse rates includes predicting the reusability of the load-bearing building components to assist 

the stakeholders in making sound judgements of the reuse potentials at the end-of-life of a 

building and alleviate the uncertainties and perceived risks (Yeung, Walbridge, and Haas 2015, 

Keller et al. 2019, Fujita and Kuki 2016, Cavalli et al. 2016, Smith et al. 2013, Fujita and Masuda 

2014). However, the continuous decline in reusing the structural elements of buildings shows 

that there is a need for the development of robust interdisciplinary reusability prediction tools 

to improve the reuse rates. 

1.4 Research problem and gap in knowledge 

While the reviewed articles (Section 1.1 and Chapter 2) show that a wide range of studies has 

extensively tried to identify the barriers ahead of the widespread reuse of building structural 

elements, they did not provide any indication of the reusability of these components based on 

the identified barriers. In the lack of an evaluation material to synthesise the identified barriers, 

find the correlations between them, and estimate the reusability of the load-bearing building 

components, the reuse of these elements will not grow in the building industry. It is because 

the fragmented body of knowledge available in the literature is unable to direct the 

stakeholders to take progressive steps towards the circularity of materials in this sector. Some 

authors recognised this gap but attempted to fill it by estimating the physical properties 

(dimensional or mechanical) of the recovered building structural elements as an indication of 

their reusability and ignored the impact of other variables. In this light, determining the 
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reusability of the load-bearing building elements has introduced a new paradigm in the field of 

reuse and has been the focus of research recently (Yeung, Walbridge, and Haas 2015, Keller et 

al. 2019, Fujita and Kuki 2016, Cavalli et al. 2016, Smith et al. 2013, Fujita and Masuda 2014). 

For instance, focusing on the dimensional aspect, (Yeung, Walbridge, and Haas 2015) studied 

the impact of accurate geometric characterisation of the steel structure of a building at its end-

of-life on the decision process for reusing the structural components. The authors initially 

developed a decision-making framework to facilitate the stakeholders in identifying the reuse 

potentials for recovered building structural steel. They then presented an automated object 

recognition algorithm to identify the member cross-sections. They eventually performed a 

reliability analysis to evaluate the performance of the proposed geometric identification 

method. Based on the results of the reliability analysis, the authors proposed a semi-automatic 

geometric identification method to enable designers to integrate the reused structural 

elements in new buildings at their full capacity. 

In another study focused on determining the physical properties of the structural steel, the 

authors developed a performance evaluation procedure to estimate the mechanical properties 

of reused structural elements using non-destructive testing (NDT) (Fujita and Kuki 2016). They 

estimated the Vickers hardness using portable ultrasonic hardness testers and rebound type 

portable hardness meters. They then used the estimated values as the basis to calculate the 

mechanical properties of the reusable elements. The results of the test specimens showed good 

agreement with the standard values. 

Similarly, (Keller et al. 2019) used wireless sensors to monitor the stresses induced during the 

construction of a steel-framed building to evaluate the reusability of steel members. According 

to this study, the authors observed that the maximum measured stresses were almost half of 

the nominal yield strength, confirming that the current design practices allow the reuse of 

structural steel (see also (Farsi et al. 2020) for similar studies in different systems and 

industries). 

In a relevant study focused on estimating the mechanical properties of timber, (Cavalli et al. 

2016) developed linear regression models to predict the Modulus of Elasticity and Modulus of 

Rupture of in-use and recovered timber sections based on the NDT methods. According to this 

study, the developed models can be used to assess the reusability of timber structures on site. 

Notwithstanding, the proposed linear regression-based models are too simple to model the 

complex system described above, and the predicted values are not accurate. Therefore, the 

derived results using the linear regression models are not reliable, and considerable care should 
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be taken to use the outcomes of this study. However, this study shows the substantial potential 

of the machine learning techniques in determining the reusability of the load-bearing building 

components. 

The above studies concentrate on discovering the technical reusability of the building structure 

by focusing on one aspect, like determining the mechanical properties or dimensional details of 

potential structural components for reuse and ignored the impact of other variables. The only 

exception is a study performed by (Hradil et al. 2017), in which the authors developed an 

indicator for estimating the technical reusability of steel-framed buildings considering a 

combination of variables. These variables include the impact of disassembly technique, 

handling, availability of the earlier design documents, potential new deployment (same purpose 

or repurposing), and the need for quality and dimensional checks. In another study, the authors 

also considered the marketability of the structure and extended the index by integrating the 

economic prospect of the recovered components (Hradil, Fülöp, and Ungureanu 2019). 

Nevertheless, these two studies are limited to steel-framed industrial buildings, and the 

developed predictive method is not based on actual reused components. Moreover, they 

considered only one economic factor, ignored the impact of other variables, and did not 

consider the interdependencies between the affecting variables. 

In brief, the deficiencies of the methods used to evaluate or predict the reusability of load-

bearing building elements include: 

i. Most of these methods are focused on one aspect of reusability, which is determining 

the mechanical properties of the elements. 

ii. They are limited to a specific material. 

iii. They do not consider the economic and social reusability of the elements (as essential 

dimensions of sustainability). 

iv. Most of them are not based on real projects with reused structural components. 

v. The complexity of the interactions of the affecting variables is ignored. 

vi. None of these studies used advanced data analysis methods such as novel/advanced 

supervised machine learning techniques to reveal the sophisticated relationship 

between the variables and then predict the reusability of the elements using the 

developed probabilistic models. 

The above shortcomings and the low reuse rates of the load-bearing building elements 

emphasise the need for the development of better tools to provide a first-hand idea about the 

reusability of the structural components of the buildings. Any such tool should consider the 
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necessary data for research, a unit is observed, which is called the unit of observation. This 

entity can be similar to or different from the unit of analysis (Salkind 2010). 

This research aims to develop a reliable probabilistic model using supervised machine learning 

techniques that can predict the reuse potential of structural elements (beams, columns, slabs, 

truss, etc.) at the end-of-life of a building. For this purpose, this study collects data on the factors 

affecting the reusability of these elements. Hence, the unit of analysis of this research is the 

load-bearing building components. While this research intends to consult the reuse experts to 

quantify the reusability factors, because it is observing the reused load-bearing building 

components through the senses of the experts, its unit of observation and analysis are equal. 

Further discussion on the unit of analysis could be found in Section 4.2. 

1.8 Methodology 

The first objective of this research was to identify factors affecting the reuse of load-bearing 

building components. Various studies have attempted to identify these factors using different 

methods such as interviews (da Rocha and Sattler 2009), questionnaire surveys (Chileshe et al. 

2016), literature review (Tingley et al. 2017), etc. (see Tables 2.1 and 2.2 of Chapter 2 for a 

complete list of methods used in the literature). Moreover, most of the studies in this area are 

published after 2000, reflecting contemporary issues in the field of reuse. Therefore, the factors 

affecting the reuse of load-bearing building components can be derived from the existing body 

of knowledge. All these meant that there was no need to conduct interviews with the experts 

in this field, and a literature review could fulfil the first aim of this study. Hence, as the first step, 

a systematic literature review was performed to identify the reusability factors. Next, the results 

of the systematic review were used to develop an online questionnaire survey to fulfil the 

second objective of this research. In the next stage, the outcome of the survey was used to 

develop the BSE-RPMs. 

The above discussion reveals that since the required knowledge to develop the BSE-RPMs is 

acquirable (first and second objectives of this research); hence, the data collection and 

communication approaches embrace the realism ontology (see Section 3.2.1) (Saunders, Lewis, 

and Thornhill 2016, Burrell and Morgan 2016). Moreover, it reveals that knowledge is objective, 

and the researcher is value-free because this research uses a questionnaire survey (a 

quantitative method) for its data collection (see Section 3.2.1) (Burrell and Morgan 2016, Chilisa 

and Kawulich 2012). Likewise, this study seeks generalisations by developing BSE-RPMs; hence, 

its approach to theory development follows a deductive pattern. Therefore, this research 

follows positivism as its research philosophy (Burrell and Morgan 2016). According to Crotty 
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these data were missing completely at random, the Multiple Imputation technique was used to 

estimate the missing values. Next, and after addressing the imbalance in the datasets, a three-

stage feature selection using filter and wrapper methods was performed to identify the best 

combination of the variables to develop BSE-RPMs. This stage fulfilled the third objective of this 

research by identifying the list of independent variables required for developing the BSE-RPMs 

for each of the datasets. Then, using 70% of the data in each dataset, which was selected 

randomly, thirteen different supervised machine learning methods were employed to develop 

13 BSE-RPMs. Next, a 10-fold Cross-Validation method was used to evaluate the performance 

of the models. The results show that interpretable/transparent models such as Logistic 

Regression and Decision Trees have poor performances (Section 6.3). Therefore, the best-

practice model was selected based on their predictive performances. The result was the 

selection of random forest models for all three datasets as the best-practice models. Next, using 

sensitivity analysis and visualisation techniques, the selected black-box random forest models 

were opened to improve their transparency. Eventually, using rule extraction techniques, three 

easy-to-understand predictive models were developed that can reliably estimate the technical, 

economic, and social reusability of the load-bearing building components (4th objective). 

1.9 Novelty of research 

This research, which aimed to develop BSE-RPMs to estimate the reuse potential of the 

structural elements of a building at its end-of-life to promote the reuse rates in the building 

sector, is novel in several ways. It is the first study that uses advanced supervised machine 

learning techniques such as random forests, K-Nearest Neighbours algorithm, Gaussian 

processes, support vector machines, adaptive boosting, BART machine, etc., (Section 5.5) to 

develop models that predict the reusability of the structural elements from technical, social, 

and economic perspectives. Also, it is the first study that uses advanced machine learning 

methods to rank the factors affecting the reuse of building structural components. A look at the 

literature shows that the publications in this field limit themselves to ordinary descriptive 

statistics and ignore the possible interdependencies of the variables. This project reveals that 

the relationships between variables are not linear. Moreover, it is the first study that identifies 

the best combination of variables to develop the BSE-RPMs. Furthermore, it is the first study 

that uses sensitivity analysis and visualisation techniques to interpret the selected black-box 

best-practice BSE-RPMs. Likewise, for the first time, this research develops a set of predictive 

rules that can be used by professionals in the building sector for estimating the technical, 

economic, and social reusability of the structural components effectively. 
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This research resulted in the publication of the first systematic literature review on the factors 

affecting the reuse of the load-bearing building components. This systematic review has 

contributed to identifying, categorising, and prioritising the factors affecting the reuse of 

components of the superstructure of a building at its end-of-life. The results of this systematic 

review were used to identify the reusability factors for the development of a questionnaire 

survey to fulfil the second objective of this research. 

The easy-to-understand predictive tools developed during this research have several 

advantages, as follows. First, they can be used by any practitioner in the building sector, and 

they do not need a machine learning background. Second, they give a first-hand idea about the 

reusability of structural components by collecting the necessary data. Third, they have the 

potential to promoting reuse by increasing the reuse rates, which, in turn, can accelerate the 

growth of reuse markets. Considering the UK economy post-Brexit and the impact of the COVID-

19 outbreak on the employment rate, the results of this project can provide new job 

opportunities in the building sector in the UK. 

1.10 Scope and limitation 

The scope of a project is dictated by its aim, objectives, unit of analysis, and unit of 

generalisation. This project focuses on load-bearing building component reuse, and other types 

of reuse, such as adaptive reuse, recycling, and non-load-bearing building material reuse, are 

out of the scope of this study. While adaptive reuse is the most preferred option to prevent 

waste, because this research focuses on the management of CDW after generation (as the result 

of construction, refurbishment, and demolition/deconstruction), adaptive reuse is out of the 

scope of this study. As explained in Section 1.1, other waste treatment options such as recycling 

are energy and resource-intensive (Addis 2006, WRAP 2008); therefore, not considered in the 

scope of this study. 

The terms load-bearing building component(s) and element(s) are used interchangeably in this 

research. These are restricted to sections forming the superstructure of a building as defined 

by (BCIS 2012) that can be dismantled (through demolition, deconstruction, or selective 

demolition) and reused for the same function with minimum (or zero) treatments (Addis 2006, 

Parker and Deegan 2007). Therefore, this research does not consider substructure (foundation), 

plinth, finishes, fittings, furnishings, equipment, and services in its scope (BCIS 2012). 

As discussed in Section 1.1, new design and construction techniques such as design for 

deconstruction (DfD) (Akinade et al. 2017, Tingley and Davison 2011), design for manufacture 
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and assembly (DfMA) (Kalyun and Wodajo 2012), and Modular Construction (Thai, Ngo, and Uy 

2020) could potentially promote the reuse of load-bearing building components in the long run. 

However, existing buildings are not designed and constructed based on these methods. Since 

the focus of this research is promoting the reusability of the load-bearing components of the 

existing buildings, buildings designed and constructed using these novel techniques are out of 

the scope of this research. Therefore, the results of this research could not be used to evaluate 

the reusability of the load-bearing structural elements of such buildings. 

The most important limitation in this research is the low rate of reuse in the building sector that 

restricts access to more experts with such experience. Moreover, while the researcher tried to 

decrease error by considering a wide range of machine learning methods to develop the 

predictive models, there still might be some errors due to a missing key factor that has not been 

integrated into the questionnaire. 

Likewise, the questionnaire is developed based on a systematic literature review focused on 

the superstructure of a building. Therefore, the results of this study cannot be generalised to 

the substructures. Also, while the questionnaire was not limited to any material, the responses 

provided were restricted to timber, steel, and concrete. Hence, the developed predictive tools 

in Chapter 6 can be used to determine the reusability of timber, steel, and concrete load-

bearing building components. 

Moreover, less than 10% of the received questionnaires used demolition to recover the 

structural element, out of which only one component was reusable. The remaining elements 

were recovered using deconstruction and components specific recovery (87.5%) or were 

surplus (1.4%) or reused in-situ (1.4%). Therefore, the results of this research could not be 

extended to evaluate the reusability of components recovered through demolition. It should be 

noted that while this research focuses on the building sector, the approaches used can be 

adapted to perform similar studies in other subsectors of the construction industry, as well. 

1.11 Thesis structure 

This thesis consists of seven chapters. Chapter one introduces the background, justification for 

the study, and the gap in the knowledge, and portrays the aim and objectives of this research. 

In Chapter Two, a systematic literature review focused on the factors affecting the reuse of 

load-bearing building components is presented. Chapter three discusses the philosophical 

assumptions of the research and scrutinises the potential theoretical perspectives to identify 

the research philosophy, and eventually identifies and justifies the choices for research 
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methodologies and research methods. Chapter four deals with the data collection in this 

project. Chapter five deals with analysing the collected data using advanced supervised machine 

learning techniques such as random forests, K-Nearest Neighbours algorithm, Gaussian 

processes, support vector machines, adaptive boosting, BART machine, etc., (Section 5.5) to 

develop the BSE-RPMs. Chapter six is focused on selecting the best-practice technical, 

economic, and social BSE-RPMs and developing three easy-to-understand predictive models 

that can be used by the practitioners in the building sector to assess the reusability of the load-

bearing building components. Findings are discussed in Chapter 6 as well. And finally, Chapter 

seven concludes this research (Figure 1.2). 

 
Figure 1.2 Thesis structure. 

1.12 Key achievements 

A significant achievement of this research is the development of three easy-to-understand 

predictive tools using advanced machine learning methods that can be used by practitioners in 

the building sector to determine the technical, economic, and social reusability of the load-

bearing building components. There is only one study in this field that has tried to develop a set 
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Chapter 6 
Model selection and discussion 

Chapter 7 
Conclusion 
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of rules to estimate the technical and partially economic reusability of such components (Hradil, 

Fülöp, and Ungureanu 2019). However, this study is not based on real reused elements and is 

limited to steel-framed industrial buildings. Moreover, it considers only a limited number of 

variables for the technical reusability assessment, has only one economic variable, and ignores 

the impact of other variables. Likewise, it does not integrate any social factors in its rules and 

does not consider the interdependencies of the affecting factors. 

Another accomplishment of this research is identifying the most significant factors affecting the 

reuse of structural elements of a building and ranking them using advanced supervised machine 

learning techniques such as the Boruta method and recursive feature elimination technique. 

While other studies tried to identify and prioritise these factors using ordinary descriptive 

statistics, none used advanced machine learning techniques for this purpose. 

Another achievement of this study is the successful use of advanced supervised machine 

learning techniques such as random forests, K-Nearest Neighbours algorithm, Gaussian 

processes, support vector machines, adaptive boosting, BART machine, etc., (Section 5.5) to 

develop BSE-RPMs. No other study has ever used such methods to predict the technical, 

economic, and social reusability of the load-bearing building components. 

Finally, using the random forests method, this study developed best practice BSE-RPMs with a 

considerable overall accuracy of 96%, 89%, and 94% for the technical, economic, and social 

models, respectively. 

1.13 Chapter summary 

This chapter provided a background of the position of the construction industry in the global 

economy and discussed that this sector is not sustainable. Next, this chapter identified that 

reusing the load-bearing building components has a high potential for improving the overall 

sustainability footprint of the construction industry. This chapter then justified the need for this 

research based on the low reuse rates in the UK, and globally. The gap in the knowledge showed 

that the available reusability assessment tools are oversimplified. They are also limited to 

identifying the mechanical properties of the structural components, not considering the 

interdependencies between the variables, and ignoring important technical, economic, and 

social factors. It also showed that none of such studies used advanced data analysis methods 

such as supervised machine learning techniques to develop reusability assessment tools. 

This chapter revealed that the unit of analysis is all load-bearing building components. This 

chapter further discussed the methodology adopted in this research and explained how 
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positivism is the philosophical underpinning of the study and justified the quantitative method 

approach used for data collection and analysis. 

The novelty of the research section highlighted that it is the first study that uses advanced 

supervised machine learning techniques to develop predictive models to assess the reusability 

of the structural elements from technical, social, and economic perspectives. Also, it shows that 

this research is the first study that develops three easy-to-understand predictive tools, which 

could assist practitioners in the building sector in evaluating the technical, economic, and social 

reusability of load-bearing building components. 
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Notwithstanding, there were still some papers that were not identified during the process of 

the systematic review. For instance, (Kuehlen, Thompson, and Schultmann 2014) is a relevant 

paper, which was identified during reviewing the references of (Dunant et al. 2018). However, 

this is a conference paper, and as discussed earlier, this systematic review did not include 

conference papers and only focused on peer-reviewed journal articles. Nevertheless, a careful 

review of such conference papers revealed that they were the basis for most of the articles 

reviewed during the systematic literature review in this chapter. For instance,  the paper by 

(Kuehlen, Thompson, and Schultmann 2014) was referred to in (Dunant et al. 2017), which is 

another identified paper for review in this chapter. Another example is a CIB Report, Publication 

252 (Kibert and Chini 2000), which is cited in different articles identified during the systematic 

literature review in this chapter, such as (Huuhka et al. 2015, Shaurette 2006, Diyamandoglu 

and Fortuna 2015, Chileshe et al. 2016), among others. 

Therefore, the review of the grey literature revealed that no important journal articles were 

missing, and the located papers during the systematic literature review represent the state-of-

the-art in this field. 
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Figure 2.2 Subject area of the excluded papers during the screening process at stage 2 

2.3 Results of the systematic literature review 

Figure 2.3 shows the distribution of the papers reviewed in this chapter by the year of 

publication. According to this figure, the number of peer-reviewed journal articles has been 

increasing since 2014, which indicates an increasing focus on construction and demolition waste 

treatment through reuse. However, there is a decline in the number of publications in 2019, 

which needs further investigations to identify the root causes. 

 

Figure 2.3 Publications by year. 
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Figure 2.5 Distribution of the observed reuse drivers (eco: economic; env: environmental; org: organisational; reg: 

regulatory; soc: social; tec: technical) 

2.3.1.1 Economic drivers 

From the reviewed articles, it is observed that the potential cost savings as the result of using 

recovered building components can promote reuse. For example, according to (MacKinnon 

2000, Klang, Vikman, and Brattebø 2003, Gorgolewski et al. 2008, da Rocha and Sattler 2009, 

Dunant et al. 2017, Chileshe et al. 2018), the lower price of the reused components can 

contribute to the cost savings in the construction projects. Likewise, according to (Cooper et al. 

2016), reusing steel sections results in the purchase of fewer new steel sections. If the price for 

the reused components is attractive, the demand for them can increase (Klang, Vikman, and 

Brattebø 2003), which in the long run supports the growth of a reuse market (da Rocha and 

Sattler 2009, Tingley et al. 2017) and increases the revenue from the resale of these 

components (Klang, Vikman, and Brattebø 2003, Dantata, Touran, and Wang 2005, da Rocha 

and Sattler 2009, Dunant et al. 2017, Chileshe et al. 2018, Sea-Lim et al. 2018). Moreover, the 

increased cost of landfilling can act as a reuse driver because it increases the disposal cost of 

CDW (Dantata, Touran, and Wang 2005, Gorgolewski 2008, Chinda and Ammarapala 2016, 

Chileshe, Rameezdeen, and Hosseini 2016). By reusing the recovered building components, this 

extra cost can be decreased (Pun, Liu, and Langston 2006). However, these factors highly 

depend on the geographic location of the building, which might have an opposing effect on 

reuse. For instance, (Huang et al. 2018) report that the lower cost of landfilling is an impediment 
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2.3.1.3 Social drivers 

Factors such as society's environmental concerns (Chileshe, Rameezdeen, and Hosseini 2016), 

or the increased awareness of the full benefits of reuse among the stakeholders (MacKinnon 

2000) are identified as drivers to reuse. Nußholz et al. (2019) report recognition of reuse in the 

public debate can enhance public awareness and promote reuse.  

Besides, from a social perspective, the positive perception and willingness of the stakeholders 

such as clients (Shaurette 2006, Gorgolewski et al. 2008, Gorgolewski 2008, Arif et al. 2012, 

Sansom and Avery 2014, Dunant et al. 2017, 2018), designers (Gorgolewski et al. 2008, 

Gorgolewski 2008, Rameezdeen et al. 2016, Dunant et al. 2017, Tingley et al. 2017, Dunant et 

al. 2018), and contractors (Gorgolewski et al. 2008, Rogers 2011, Chileshe et al. 2016, Dunant 

et al. 2017, Chileshe et al. 2018) to integrate reused components into their projects are 

determining.  

Unlike new building components that can be sourced from the market with proper quality 

certificates, salvaged building components are usually not available off the shelf and cannot be 

trusted. However, according to a few articles, informality, and good relationship among the 

stakeholders is reported to overcome this challenge and promote reuse (Shaurette 2006, da 

Rocha and Sattler 2009, Chileshe et al. 2016).
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Table 2.1 Summary of reuse drivers 
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1 (MacKinnon 2000) US DR; GI; I(4); OBS 1     1        1        
2 (Sára, Antonini, and Tarantini 2001) IT CS(1); LIR    1 1                 
3 (Li, Chen, and Wong 2003) HK CS(2); S            1          
4 (Klang, Vikman, and Brattebø 2003) US CS(1); I(10); Q(10/10) 2 1 1 1                  
5 (Dantata, Touran, and Wang 2005) US CS(5); LIR 1  1    1               
6 (Pun and Liu 2006) AU TF                   1   
7 (Pun, Liu, and Langston 2006) AU CS(1)   2       1         1   
8 (Shaurette 2006) US Q(296/83)       1      1    1 1    
9 (Guy 2006) US CS(4)          1            

10 (Schultmann and Sunke 2007) DE T          1         1   
11 (Gorgolewski et al. 2008) CA AR; CS(3) 3     1   1         3 1 2 1 
12 (Gorgolewski 2008) CA AR; CS(2) 3     1   3    1     2  1 1 
13 (Tam and Tam 2008) HK CS(1); I(20)            1  1        

14 (da Rocha and Sattler 2009) BR CD; CS(1); DO(5); GM(4); 
SSI(27) 2 1 1              1     

15 (Nordby et al. 2009) NO CS(1)                     1 
16 (Dewulf et al. 2009) BE CS(1)     1                 
17 (Denhart 2010) US CS(4)   1                1   
18 (Rogers 2011) AE CS(1)        2 1 2     1   1    
19 (Forsythe 2011) AU CS(9); DO; UI   1                1   
20 (Chau et al. 2012) HK CS(13)    1 1                 
21 (Arif et al. 2012) IN CS(2); SSI(15) 1                 1    
22 (Lachimpadi et al. 2012) MY CS(8)                   1   
23 (Boyd, Stevenson, and Augenbraun 2012) US CS(2)    1                  
24 (Densley Tingley et al. 2012) GB CS(1); LIR     1     1         1   
25 (Coelho, de Brito, and Brito 2012) PT CS(15)    1     1             
26 (Aye et al. 2012) AU CS(1)    1 1     1            
27 (Elias Özkan 2012) TR AR; CS; DO(21); I       1 1              
28 (Hglmeier et al. 2013) DE CS(1)                   1   
29 (Sansom and Avery 2014) GB Q(160/32)                  1    
30 (Elias-Ozkan 2014) TR CS(2)   1 1 1     1            
31 (Pongiglione and Calderini 2014) IT AR; CS(1) 1                  1 1 1 
32 (Durão et al. 2014) PT CS(2)          1            
33 (Diyamandoglu and Fortuna 2015) US CS(1) 1 1 1 1                  
34 (Yeung, Walbridge, and Haas 2015) CA DO(4)                   1   
35 (Wu et al. 2016) CN CA             1         
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36 (Cooper et al. 2016) GB CS(2); LIR; SSI(17) 1  1                   
37 (Rameezdeen et al. 2016) AU SSI(8)                  1    
38 (Ding et al. 2016) CN CS(1); LIR; SSI(12)        1              
39 (Chileshe et al. 2016) AU LIR; Q(539/49); SSI(6)          2       1 1    
40 (Ajayi et al. 2016) GB FGI(23)                   1   
41 (Chinda and Ammarapala 2016) TH CS(2); I(6); LIR 1    1     1   1         
42 (Chileshe, Rameezdeen, and Hosseini 2016) AU LIR; SSI(8) 1         1      1      
43 (Tatiya et al. 2017) US CS(1); LIR; SI(3) 1                     
44 (Ajayi et al. 2017) GB FS; Q(200/131)        1 1             
45 (Surahman, Higashi, and Kubota 2017) ID CS(2)    1      1            
46 (Chau et al. 2017) HK CS(1)    1                  
47 (Dunant et al. 2017) GB I(30); Q(24) 1  1               3    
48 (Faleschini et al. 2017) IT CS(1)    1                  
49 (Tingley et al. 2017) GB LIR; SSI(13) 1 1  1 1  1  2 1        1    
50 (Yeung et al. 2017) CA CS(1)    1 1                 
51 (Machado, de Souza, and Veríssimo 2018) BR LIR    1                1 1 
52 (Gottsche and Kelly 2018) IE ACT(1); CS(5)   1 1      1            
53 (Gálvez-Martos et al. 2018) EU CA          1            
54 (Brütting et al. 2019) CH CS(2) 2   1                  
55 (Chileshe et al. 2018) AU Q(260/26) 1  1       2 2 2 1     1    
56 (Sea-Lim et al. 2018) TH SD   1                   
57 (Mahpour and Mortaheb 2018) IR CS(1); Q(81/81)            1          
58 (Rose and Stegemann 2018) GB CD; CS(6); DO; SSI(21)         1 1            
59 (Dunant et al. 2018) GB I(30) 2                 2    
60 (Zaman et al. 2018) NZ CS(1)    1                  
61 (Dunant et al. 2019) GB ECOM    1                  

62 (Nußholz, Nygaard Rasmussen, and Milios 
2019) 

DK CS(3); Q(3); SSI(3) 1  1 1 1    1  1  1 1    1    

63 (Brambilla et al. 2019) GB CS(1)    1                  
64 (Eberhardt, Birgisdóttir, and Birkved 2019) DK CS(1)    1                  

  Total numbers: 27 4 15 21 10 3 4 5 11 20 3 5 6 3 1 1 3 19 12 5 5 
a Country: According to ISO 3166  
b Research Method: (ACT) Action Research (n = number of case(s), if provided); (AR) Archival research (n = number of case(s), if provided); (CA) Comparative analysis; (CD) Company documentation; (CS) Case study (n = number of case(s)); (DO) Direct 
observation (n = number of case(s)); (DR) Document review; (ECOM) Economic models; (EX) Experiment; (FGI) Focused-group interview (n = number of interviewee(s)); (FS) Field study; (GI) Group Interview; (GM) Group meetings (n = number of attendant(s)); 
(I) Unspecified type Interviews (n = number of interviewee(s)); (LIR) Literature review; (OBS) Observation; (Q) Questionnaire (n = number of sent Q / m = number of completed Q); (S) Survey (i.e. empirical survey, etc.); (SD) System dynamics; (SI) Structured 
interviews (n = number of interviewee(s)); (SSI) Semi-structured interviews (n = number of interviewee(s)); (T) Theoretical study; (TF) Theoretical framework; (UI) Unstructured interview 
c The numbers in the table corresponds to the number of drivers grouped under each sub-category. 
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2.3.1.4 Environmental drivers 

One potential reuse driver is the scarcity of landfilling sites, which helps the environment by 

avoiding dumping the reusable waste into landfills (Chinda and Ammarapala 2016, Chau et al. 

2012). According to the literature, reuse can decrease the use of virgin materials and water 

consumption (Tingley et al. 2017, Sára, Antonini, and Tarantini 2001, Densley Tingley et al. 2012, 

Aye et al. 2012, Yeung et al. 2017). As mentioned in Section 1.1, because of the considerable 

advantages of reuse, components reuse can improve the environmental footprint of buildings 

worldwide. By reusing building components embodied energy and carbon of construction can 

be decreased (Klang, Vikman, and Brattebø 2003, Tingley et al. 2017, Yeung et al. 2017, Brütting 

et al. 2019) (among others). Brütting et al. (2019) show that a structure made with the reused 

steel sections have considerably lower embodied energy and CO2. In their study, the authors 

developed a discrete structural optimisation method to reuse the existing stock of the steel 

sections. They used LCA to compare the environmental impacts of conventional design with the 

proposed method (Brütting et al. 2019). 

2.3.1.5 Other drivers 

Based on the reviewed articles, deconstruction instead of demolition can enhance the 

reusability of the recovered components (Gorgolewski et al. 2008, Hglmeier et al. 2013, 

Pongiglione and Calderini 2014, Yeung, Walbridge, and Haas 2015) (among others). According 

to (Gorgolewski et al. 2008, Gorgolewski 2008, Pongiglione and Calderini 2014), the availability 

of information about the characteristics, details, certificates, and drawings of the recovered 

building components can positively contribute to increasing the reuse rates, as well. 

In projects with recovered building components, the proper estimation of the required sizes 

and lengths at the beginning of the design phase is reported to promote reuse (Gorgolewski et 

al. 2008). Some articles advise that reusing the recovered components, such as the structural 

components, to serve the same purpose (for instance, similar loads) has a positive impact on 

the success of this intervention (Gorgolewski et al. 2008, Gorgolewski 2008, Pongiglione and 

Calderini 2014). 

The environmental policies (Chileshe et al. 2018) and green building rating systems such as 

BREEAM and LEED are reported to have a positive impact on reuse rates (Shaurette 2006, 

Gorgolewski 2008). The availability of regulatory and financial incentives to encourage 

deconstruction and reuse, as well as the existence of regulations supporting these interventions 

can potentially promote reuse (Chileshe et al. 2018). However, according to the reviewed 

articles, such ordinances are currently not available (Yeung, Walbridge, and Haas 2015, Chileshe 
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three to five times higher than the time needed for the demolition of the same building. 

According to the reviewed articles, the time required for deconstruction and reuse, and the 

consequent project scheduling is one of the main barriers to reuse (MacKinnon 2000, Dantata, 

Touran, and Wang 2005, Shaurette 2006, Gorgolewski et al. 2008, Gorgolewski 2008) (among 

others). It is because there is usually a high pressure to complete construction projects as early 

as possible (Chinda and Ammarapala 2016). The tight project schedule negatively affects the 

efficient disassembly of the existing buildings and lowers the chance for the recovery of 

reusable building components (Sansom and Avery 2014). 

During the deconstruction phase, more time is required to carefully remove and sort the 

recovered building components (Gorgolewski 2008), which increases the cost of sorting 

(Rameezdeen et al. 2016). Sometimes the deconstruction time extends beyond anticipations 

because of issues such as the lack of space for the equipment, complexity of the building design, 

and the geographic location of the building (Tatiya et al. 2017). These extra charges can yield in 

higher deconstruction cost (when compared to the demolition of the same building) (Dantata, 

Touran, and Wang 2005, Chileshe, Rameezdeen, and Hosseini 2015, Yeung, Walbridge, and 

Haas 2015, Tingley et al. 2017, Rose and Stegemann 2018, Dunant et al. 2018) and eventually 

increase the price of the recovered components (Shaurette 2006, Chileshe, Rameezdeen, and 

Hosseini 2015, Rameezdeen et al. 2016, Chileshe, Rameezdeen, and Hosseini 2016, Tingley et 

al. 2017, Dunant et al. 2018). 

Another economic barrier to the BCR is the higher cost of design with the reused components 

(Gorgolewski et al. 2008, Gorgolewski 2008, Dunant et al. 2017). It is because the design team 

needs to put extra efforts to find the reused elements (Gorgolewski et al. 2008), and the design 

needs to remain as flexible as possible (Gorgolewski et al. 2008). Sometimes it is required to 

purchase the identified reused components early in the project (Gorgolewski et al. 2008, 

Gorgolewski 2008) to cope with the uncertainty about the timely availability of the desired 

elements (Gorgolewski et al. 2008, Chileshe, Rameezdeen, and Hosseini 2015). Consequently, 

this practice may raise cash flow problems and increase the overall cost of the project due to 

additional storage costs, which is another barrier to the BCR (Gorgolewski et al. 2008, 

Gorgolewski 2008, da Rocha and Sattler 2009, Yeung, Walbridge, and Haas 2015, Chinda and 

Ammarapala 2016) (among others).  

All the above explain the increased labour cost (Klang, Vikman, and Brattebø 2003, Dantata, 

Touran, and Wang 2005, Shaurette 2006, Gorgolewski et al. 2008, Rameezdeen et al. 2016, 

Chinda and Ammarapala 2016) (among others), transportation cost (Gorgolewski et al. 2008, 
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Gorgolewski 2008, da Rocha and Sattler 2009, Pongiglione and Calderini 2014, Yeung, 

Walbridge, and Haas 2015, Rameezdeen et al. 2016) (among others), and storage cost 

associated with deconstruction and reuse which are identified as barriers to the BCR in several 

articles. 

In some cases, the fabrication cost of the recovered building components might be higher than 

the fabrication cost of the new elements (Dunant et al. 2017, Tingley et al. 2017, Dunant et al. 

2018). Dunant et al. (2017) explain that because reused steel components are associated with 

existing connections, holes, stiffeners, welds, end-plates, etc., the preparation of these 

components might increase the overall cost of fabrication because of the extra time, labour and 

machinery required. Other additional charges which can increase the overall price of the 

recovered components are the cost of testing (Gorgolewski 2008, Yeung, Walbridge, and Haas 

2015, Rameezdeen et al. 2016, Tingley et al. 2017, Dunant et al. 2018), cost of treatment of the 

salvaged parts (Chini and Acquaye 2001, Huuhka and Hakanen 2015, Dunant et al. 2018), cost 

of insurance (Tingley et al. 2017), and cost of marketing for the recovered building components 

(Dantata, Touran, and Wang 2005). 

Another barrier to reuse, as reported in several articles, is the lack of an established market for 

the reused building components (Shaurette 2006, Gorgolewski et al. 2008, Gorgolewski 2008, 

Chileshe et al. 2016, Rameezdeen et al. 2016, Chinda and Ammarapala 2016, Chileshe, 

Rameezdeen, and Hosseini 2016) (among others). This factor, which is partially the outcome of 

the tight project schedules (Tatiya et al. 2017), results in the lack of sufficient supply for the 

reused components with the desired characteristics (dimension, quality, etc.) (Gorgolewski 

2008, da Rocha and Sattler 2009, Dunant et al. 2017, Tingley et al. 2017, Brütting et al. 2019, 

Rose and Stegemann 2018). According to (Dunant et al. 2018), the above restriction encourages 

the contractors to sell their reusable waste to the recycling companies regardless of their high 

quality (Sansom and Avery 2014, Huuhka and Hakanen 2015, Yeung, Walbridge, and Haas 2015, 

Tingley et al. 2017, Yeung et al. 2017). If the demand for the reused building components 

increases (Chileshe et al. 2016), the market for these products can grow sustainably. In contrast, 

lack of demand (Shaurette 2006, Rogers 2011, Huuhka and Hakanen 2015, Chileshe et al. 2016, 

Tingley et al. 2017) or uncertainty about the need for the reused components (Rose and 

Stegemann 2018) causes the scepticism about the revenue from the reused components resale 

(Yeung, Walbridge, and Haas 2015, Chileshe, Rameezdeen, and Hosseini 2016, Rose and 

Stegemann 2018, Dunant et al. 2018). All the above negatively affects the chance for the growth 

of a reuse market. With an underdeveloped reuse market, the supply chain remains 

fragmented, and the information about the supply and demand cannot be shared, which further 
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2016, Tingley et al. 2017, Rose and Stegemann 2018), there is very little chance that designers 

or contractors risk the project by introducing such components. On the other hand, according 

to (Gorgolewski 2008), if the client is motivated to use the reused building components, the 

barriers such as the unwillingness of the design team (Chileshe, Rameezdeen, and Hosseini 

2015, Rameezdeen et al. 2016) or the contractors (Gorgolewski 2008) can be handled 

effectively. Nevertheless, the inequality in the distribution of risk among the stakeholders 

(Dunant et al. 2018) can yet challenge motivated clients and architects. 

Gorgolewski (2008) argues that while choosing deconstruction to remove the existing buildings 

improves the supply of the reused components, due to the perceived economic and 

programming reasons, it is not yet a preferred option among the contractors (Gorgolewski 

2008). One reason for such reluctance is because the stakeholders are unaware of the full 

benefits of deconstruction and reuse (Gorgolewski 2008, Chileshe, Rameezdeen, and Hosseini 

2015, Huuhka and Hakanen 2015, Chileshe et al. 2016, Rameezdeen et al. 2016). As mentioned 

earlier, some of the benefits of deconstruction and reuse are cost savings and less pollution to 

the environment. Therefore, educating the stakeholders on the advantages of deconstruction 

and reuse, as identified by (Gorgolewski 2008, Chileshe, Rameezdeen, and Hosseini 2015), could 

be an effective measure to cope with some social resistance against reuse. 

2.3.2.4 Regulatory barriers 

One of the challenges ahead of reuse is that the existing regulations do not support 

deconstruction and reuse (Gorgolewski 2008, Hglmeier et al. 2013, Chileshe, Rameezdeen, and 

Hosseini 2015, Huuhka and Hakanen 2015, Huuhka et al. 2015, Chileshe et al. 2016, 

Rameezdeen et al. 2016) (among others). Rameezdeen et al. (2016) argue that bureaucracy is a 

barrier ahead of necessary approvals for deconstruction projects in South Australia. According 

to this study, even after getting approvals for deconstruction, since existing regulations do not 

allow the storage of the salvaged components and consider them as waste (Rameezdeen et al. 

2016), the reuse of the recovered components is hindered. This study suggests that 

governments should support the reuse of recovered components in the new constructions 

(Rameezdeen et al. 2016); however, in reality, it is not the case (Chileshe et al. 2016, Chileshe, 

Rameezdeen, and Hosseini 2016). Rameezdeen et al. (2016) further discuss that, while 

regulations support recycled-content products, due to the inconsistency and the lack of 

coordination among the regulatory bodies (Rameezdeen et al. 2016, Chileshe, Rameezdeen, 

and Hosseini 2016), regulatory agencies have a prohibitive approach towards deconstruction 

and reuse. It should be noted that these studies focus on the Australian construction sector, 
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and the results should be considered cautiously (Chileshe et al. 2016, Rameezdeen et al. 2016, 

Chileshe, Rameezdeen, and Hosseini 2016). 

Lack of quality certificates for the reused components can negatively affect reuse (Chini and 

Acquaye 2001). Dunant et al. (2017) explore this barrier by highlighting the need for the 

traceability of the steel sections, which is essential to certify, fabricate, and erect the segments. 

Usually, the traceability of the reused steel sections cannot be guaranteed (Dunant et al. 2017, 

Tingley et al. 2017), and in many instances, all the segments need to be tested to certify their 

properties and assure the quality. However, according to this study, in case of stricter 

requirements on CE marking (Dunant et al. 2017, Tingley et al. 2017), even the individual testing 

fails to certify the reused components. 

Lack of confidence in the quality of the reused components negatively affects reuse in new 

constructions (Shaurette 2006, Chileshe, Rameezdeen, and Hosseini 2015, Ajayi et al. 2015, 

Chileshe et al. 2016, Chileshe, Rameezdeen, and Hosseini 2016) (among others). Huang et al. 

(2018) observed that there is a negative attitude towards using recovered construction and 

demolition waste among the building construction companies because of the lack of guarantees 

for these components. According to the reviewed articles, currently, there are no standards to 

certify the quality of the reused components (Chini and Acquaye 2001, Dunant et al. 2017, 

Huang et al. 2018). Therefore, the lack of procedures to evaluate and guarantee the 

performance of reused components (Shaurette 2006, Tingley et al. 2017), and the fact that the 

existing codes, standards, and procedures do not consider BCR (Gorgolewski 2008, Huuhka and 

Hakanen 2015, Rameezdeen et al. 2016, Tingley et al. 2017) further decrease the reuse rate in 

buildings.
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Table 2.2 Summary of reuse barriers 

S
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1 (MacKinnon 2000) US DR; GI; I(4); OBS 1           1         
2 (Chini and Acquaye 2001) US EX 1        2         5   
3 (Klang, Vikman, and Brattebø 2003) US CS(1); I(10); Q(10/10) 1           1 1 1       
4 (Dantata, Touran, and Wang 2005) US CS(5); LIR 4                    
5 (Pun and Liu 2006) AU TF  3                   
6 (Pun, Liu, and Langston 2006) AU CS(1) 4 3       1  1        1  
7 (Shaurette 2006) US Q(296/83) 3 2    1 2  1   1 1        
8 (Guy 2006) US CS(4) 4        2         5 1  
9 (Gorgolewski et al. 2008) CA AR; CS(3) 8 2      1          5  1 

10 (Gorgolewski 2008) CA AR; CS(2) 6 2    1 1  2  1 3 1   2 1 5  1 
11 (da Rocha and Sattler 2009) BR CD; CS(1); DO(5); GM(4); SSI(27) 2 1       2   1 1     1   
12 (Nordby et al. 2009) NO CS(1) 2        1     1   2 1   
13 (Jaillon and Poon 2010) HK AR; CS(7); DO(7); I(35); Q(84)                 1    
14 (Rogers 2011) AE CS(1)  1                   
15 (Forsythe 2011) AU CS(9); DO; UI 3  1               1 2  
16 (Arif et al. 2012) IN CS(2); SSI(15)        2  1           
17 (Coelho, de Brito, and Brito 2012) PT CS(15)      1               
18 (Elias Özkan 2012) TR AR; CS; DO(21); I       2  1        1    
19 (Hglmeier et al. 2013) DE CS(1)         1            
20 (Gangolells et al. 2014) ES Q(658/74)      1               
21 (Sansom and Avery 2014) GB Q(160/32) 2                  1  
22 (Jaillon and Poon 2014) HK CS(2); LIR                 2    
23 (Pongiglione and Calderini 2014) IT AR; CS(1) 1                1 3   
24 (Durão et al. 2014) PT CS(2)            1    1  2   
25 (Chileshe, Rameezdeen, and Hosseini 2015) AU LIR; Q(539/49); S 4     1  1 2  1 3 1   2 1  1  
26 (Ferreira, Duarte Pinheiro, and De Brito 2015) PT CS(1); LIR                  2   
27 (Huuhka and Hakanen 2015) FI Q(11/11) 3 2  1     5  1 1 1   1 1 3 1 2 
28 (Huuhka et al. 2015) FI AR(276); LIR         1        1 2   
29 (Yeung, Walbridge, and Haas 2015) CA DO(4) 6  1   1  1  1        5 1 2 
30 (Ajayi et al. 2015) GB FGI(25); LIR             1    1    
31 (Cooper et al. 2016) GB CS(2); LIR; SSI(17) 5                    
32 (Rameezdeen et al. 2016) AU SSI(8) 9 2       5  2 1 2   4   2  
33 (Chileshe et al. 2016) AU LIR; Q(539/49); SSI(6)  2    2 1  3 2 3     1 1    
34 (Chinda and Ammarapala 2016) TH CS(2); I(6); LIR 4 1     2              
35 (Chileshe, Rameezdeen, and Hosseini 2016) AU LIR; SSI(8) 4 1 1      2 1  1 1      1  
36 (Tatiya et al. 2017) US CS(1); LIR; SI(3) 5 1               1 2 1  
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37 (Dunant et al. 2017) GB I(30); Q(24) 5 2    1 1  6   2 1  1  1    
38 (Tingley et al. 2017) GB LIR; SSI(13) 9 3 1  1    6 2 1 2 1   2 3 1 3 1 
39 (Yeung et al. 2017) CA CS(1) 2                1    
40 (Machado, de Souza, and Veríssimo 2018) BR LIR       1          1 3   
41 (Gálvez-Martos et al. 2018) EU CA  2                   
42 (Huang et al. 2018) CN CD; LIR; SSI(40) 1 1       2            
43 (Brütting et al. 2019) CH CS(2)  1                3   
44 (Sea-Lim et al. 2018) TH SD 2      1              
45 (Rose and Stegemann 2018) GB CD; CS(6); DO; SSI(21) 3 4 1    1 2 1 1  1    1 1   1 
46 (Dunant et al. 2018) GB I(30) 9 1 1   1 1 1     2  1      
47 (Mahpour 2018) IR LIR; Q(6/6)            1         
48 (Zaman et al. 2018) NZ CS(1) 1  1   1 1  1            

49 (Nußholz, Nygaard Rasmussen, and Milios 
2019) 

DK CS(3); Q(3); SSI(3) 1 3  1   1 1 2 1      1     

50 (Brambilla et al. 2019) GB CS(1)    2             1    
51 (Basta, Serror, and Marzouk 2020) EG CS(1); TF                 2 1   

   Total number: 115 40 7 4 1 11 15 9 49 9 10 20 14 2 2 15 24 50 15 8 
 a Country: According to ISO 3166  

b Research Method: (ACT) Action Research (n = number of case(s), if provided); (AR) Archival research (n = number of case(s), if provided); (CA) Comparative analysis; (CD) Company documentation; (CS) Case study (n = number of case(s)); (DO) Direct 
observation (n = number of case(s)); (DR) Document review; (ECOM) Economic models; (EX) Experiment; (FGI) Focused-group interview (n = number of interviewee(s)); (FS) Field study; (GI) Group Interview; (GM) Group meetings (n = number of 
attendant(s)); (I) Unspecified type Interviews (n = number of interviewee(s)); (LIR) Literature review; (OBS) Observation; (Q) Questionnaire (n = number of sent Q / m = number of completed Q); (S) Survey (i.e. empirical survey, etc.); (SD) System dynamics; 
(SI) Structured interviews (n = number of interviewee(s)); (SSI) Semi-structured interviews (n = number of interviewee(s)); (T) Theoretical study; (TF) Theoretical framework; (UI) Unstructured interview 
c The numbers in the table corresponds to the number of drivers grouped under each sub-category. 
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2.3.2.5 Organisational barriers 

Because deconstruction and reuse are still uncommon practices (Dunant et al. 2017, 2018), the 

number of companies with experience in deconstruction and reuse is low (Chileshe et al. 2016). 

According to the literature, the lack of skills, experience, and knowledge in deconstruction, 

salvage, and using reused components negatively affect the reuse of the building components 

(Shaurette 2006, Gorgolewski 2008, Chileshe, Rameezdeen, and Hosseini 2015, Yeung, 

Walbridge, and Haas 2015, Chileshe et al. 2016). Unlike demolition, deconstruction requires 

enough space for the storage, sorting, and treatment of the recovered building components. 

However, an inexperienced contractor cannot correctly estimate the space required for the 

storage of the recovered components after deconstruction. This lack of space for storage 

(Shaurette 2006, Gorgolewski 2008, Chinda and Ammarapala 2016, Dunant et al. 2017, Rose 

and Stegemann 2018, Dunant et al. 2018) results in the transportation and storage of the 

recovered components at a different location and would increase the overall cost of the reused 

elements.  

Lack of systems thinking (Rose and Stegemann 2018), ownership (Arif et al. 2012), and 

integration of reuse in the design process of the new projects (Rose and Stegemann 2018) are 

identified to decrease the reuse rates in the building sector. Yeung et al. (2015) highlight the 

importance of a decision-making framework in informing the contractors and the client 

regarding when alternative reuse options should be investigated. According to this study, this 

decision-making framework helps in making informed decisions about deconstruction and 

reuse and maximises the advantages of potential reuse by identifying the necessary steps to be 

taken by the stakeholders (Yeung, Walbridge, and Haas 2015). Other observed organisational 

barriers are proprietary lock-in (Tingley et al. 2017), the need for infrastructure and equipment 

to perform deconstruction (Shaurette 2006, Chileshe et al. 2016, Sea-Lim et al. 2018), and 

inconsistency in waste management practices (Arif et al. 2012). 

2.3.2.6 Environmental barriers 

While component reuse is identified as a sustainable end-of-life treatment of the 

superstructure of a building (Klang, Vikman, and Brattebø 2003, Tingley et al. 2017, Yeung et al. 

2017, Brütting et al. 2019), there are concerns regarding the adverse effects of this practice due 

to increased GHG emissions related to deconstruction activities and transportation of the 

recovered elements (Brambilla et al. 2019, Nußholz, Nygaard Rasmussen, and Milios 2019, 

Huuhka and Hakanen 2015). 
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G      - 6 3 6 2 3 4 5 0 2 3 4 2 2 2 

H       - 3 8 3 2 4 4 0 2 4 6 2 0 2 

J        - 3 4 1 2 2 0 1 3 2 2 2 3 

L         - 5 7 10 9 1 1 8 10 8 7 4 

M          - 2 3 2 0 0 4 3 2 3 3 

O           - 5 5 0 0 6 5 3 5 3 

P            - 10 1 1 7 6 5 5 4 

Q             - 1 2 5 6 4 5 3 

R              - 0 0 1 1 0 0 

S               - 0 1 0 0 0 

T                - 6 4 4 4 

U                 - 9 4 4 

V                  - 6 5 

W                   - 3 

 

Table 2.4 C-Indices of the correlation between major sub-categories. 

Seq. No Code Sub-category pair C-Index P-value 

1 PQ Perception & Risk 0.63 <0.00001* 
2 AL Cost & Compliance 0.49 0.007* 
3 BL Market & Compliance 0.45 0.006* 
4 AB Cost & Market 0.44 0.04* 
5 LP Compliance & Perception 0.40 0.004* 
6 BQ Market & Risk 0.38 0.004* 
7 LQ Compliance & Risk 0.38 0.004* 
8 AP Cost & Perception 0.36 0.02* 
9 AW Cost & Health and safety 0.35 0.001* 

10 BP Market & Perception 0.35 0.02* 
11 AQ Cost & Risk 0.34 0.007* 
12 LU Compliance & Deconstruction 0.33 0.2 
13 AV Cost & Design challenges 0.32 0.5 
14 UV Deconstruction & Design 

challenges 
0.32 0.1 

15 AH Cost & Infrastructure 0.26 0.2 
16 AU Cost & Deconstruction 0.25 0.4 

*Denotes a significant correlation (less than 0.05) 
 

The fourth highest rank belongs to cost and market with a C-Index of 0.44. It indicates that 

without a competitive price, a well-established market for reused elements is unlikely to grow. 
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Moreover, it depicts that the growth of the reused components market can help to make the 

cost of reused components more competitive. However, the correlation between these two 

sub-categories is not very significant (p-value close to 0.05). It is interesting because, in most of 

the reviewed papers, both sub-categories are repeated. It can be further interpreted that these 

two sub-categories are similar, and no special consideration for prioritising this pair is required 

as the improvement in one promotes the other one. 

From Table 2.4, it can be observed that the social, economic, and regulatory barriers co-occur 

frequently. Therefore, it seems that any further action to promote reuse should prioritise 

actions to be taken under these themes. Notwithstanding, this result is different from the initial 

observation in Figure 2.6, where the economic factors were ranked the highest, followed by the 

technical, social, regulatory, and organisational barriers. 

2.4.2 Discussion 

The observed environmental advantages of reuse indicate that this intervention is an effective 

strategy that should receive more attention to reduce the environmental footprint of the 

building sector. 

From an economic perspective, the advantages of reuse in terms of cost savings and profit are 

key drivers. According to the reviewed articles, economic barriers can be categorised into 

supply chain level, component level, and project level. At the supply chain level, in the absence 

of a mature reuse market, the sustainable supply of recovered components for use in the 

superstructure of a building is challenging. While some innovative companies such as Gamle 

Mursten in Denmark integrate deconstruction into their core business (Nußholz, Nygaard 

Rasmussen, and Milios 2019), most companies are reluctant to change their business model. 

Hence, as advised by (Dunant et al. 2018, Nußholz, Nygaard Rasmussen, and Milios 2019), close 

cooperation between construction and demolition companies can address this barrier. At the 

component and project levels, a strict financial risk assessment at the beginning of the project 

should be performed. Because this intervention is rather new, the availability of resources to 

decrease the financial risks would be helpful (Gorgolewski 2008, Tingley et al. 2017). Such 

financial incentives have the potential to promote deconstruction and reuse activities and could 

help the growth of reuse markets, and potentially make the price of the recovered elements 

more competitive (Table 2.4). 

Notwithstanding, other attempts could be made to make the cost of the recovered components 

competitive. One possible solution is following the successful example of increasing the 

landfilling tax in the UK (Defra 2007, 2019). Considering the waste hierarchy, if the cost of other 
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waste treatment options increases in favour of reuse, the additional costs due to 

deconstruction, treatment, and testing could be compensated. However, there are reports of 

illegal landfilling in reaction to the increased landfilling taxes (da Rocha and Sattler 2009, 

Rameezdeen et al. 2016). Therefore, further research in different geographical locations should 

be conducted to recognise the mechanisms leading to such behaviour and provide guidelines 

to prevent it. 

From a social perspective, the factors affecting reuse can be categorised into perception, 

awareness, and risks. Most of the discussions in the literature from a social perspective are 

focused on the perception and willingness of the stakeholders regarding reuse and are less 

focused on the advantages of reuse for the general public. Therefore, further research should 

be conducted to establish the benefits of reuse for society. Nevertheless, the negative 

perception of the stakeholders towards reuse is recognised in the literature as an impediment 

to its adoption in the building sector. Based on Table 2.4, this negative perception is associated 

with the perceived risks at different stages of projects with recovered building components as 

well as the need for compliance to the regulatory requirements and is fuelled by the concerns 

about the health and safety of the stakeholders. Therefore, steps should be taken to improve 

the perception of the stakeholders about the recovered building components. For instance, the 

development of standard test procedures to test, evaluate, and certify the recovered building 

components can positively contribute to this attempt. Such standards and guidelines can 

address the reported concerns and resistances in the construction sector against the recovered 

building components and help the growth of a reuse market by offering quality products. 

The regulatory barriers can be categorised into incentive level and compliance level, for which, 

the advantages of the availability of regulatory incentives were discussed earlier. At the policy 

level, the reported regulatory barriers highlight that the existing codes and regulations do not 

consider deconstruction and reuse, which, in the long run, inhibits the integration of the 

recovered building components in the superstructure of the buildings. Moreover, as discussed 

earlier, the existing standards only certify new components and not the recovered elements. 

According to Section 2.4.1, the capability of suppliers in offering second-hand components with 

proper quality certificates and guarantees could potentially help the growth of a reuse market 

(Table 2.4). In this regard, one possible solution is the development of new standards to certify 

recovered building components. An example of the successful development of certifying 

standards is provided by (Nußholz, Nygaard Rasmussen, and Milios 2019). In this study, the case 

study companies developed certifying standards to assure the quality of their products. 

Moreover, proper standards and procedures should be developed for the effective 
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deconstruction of the existing buildings and guide designers to integrate the recovered building 

components into the design of new buildings. Because of the variety of building designs in 

different periods and locations, proper databases for the existing buildings should be developed 

to assist such guidelines. These databases should contain the historical reports for each 

building, including the refurbishments, fire, extensions, and potential end-of-life treatment 

plans. 

According to the literature, the advantages of reuse in reducing the CDW and increasing the 

competitiveness of the firms are key organisational drivers. However, most of the companies in 

the building sector do not have enough experience in deconstruction and reuse, which results 

in following other end-of-life treatment options such as demolition and recycling. Therefore, 

companies should take necessary actions to train the workforce to improve the productivity of 

their deconstruction activities and increase the reusability of the recovered building 

components. As discussed earlier, one possible driver to encourage companies to change their 

business model is the availability of regulatory incentives. However, further research should be 

performed to analyse the driving forces, which would help companies to integrate circularity in 

their business models. 

The technical barriers can be categorised into deconstruction level, performance level, and 

health and safety level. As observed in the reviewed literature, at the deconstruction level, the 

biggest challenge to recover building components is that buildings are not designed for 

deconstruction. While innovative design techniques can address this barrier in new buildings, it 

remains a significant challenge ahead of deconstruction of the existing built stock. At the 

performance level, one of the barriers to the reuse of building components after recovery is the 

reusability of the element (due to damages, availability of information, design challenges, etc.). 

According to the definition of reuse, reusability can be defined as the extent to which the 

recovered building component in its new life could perform similarly to its earlier life. It is 

because most of the existing buildings are not designed for deconstruction, details about the 

existing buildings are unavailable, and proper guidelines and skills for effective deconstruction 

do not exist. As mentioned earlier, deconstruction can increase the reuse rate; however, there 

is no available guideline to help the practitioners to estimate the reuse potential of the building 

components before deconstruction. Therefore, further research to develop cheap and reliable 

techniques to investigate the reusability of building components is necessary. Moreover, while 

the DfD is identified as a solution to the end-of-life treatment of buildings, this design method 

is based on new building components. Hence, further research should be conducted to 

integrate the recovered building components into this design technique. At the health and 
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safety level, as observed in Table 2.4, there is a strong correlation between cost and health and 

safety requirements of a project with deconstruction and reuse. It indicates that the increased 

health and safety precautions necessary for deconstruction and reuse activities (as the result of 

the presence of hazardous materials, etc.) could potentially increase the overall cost of the 

project. 

2.5 Chapter summary 

Chapter 2 fulfilled the first objective of this research by identifying factors affecting the reuse 

of load-bearing building components through a systematic literature review. Initially, a Boolean 

search focused on peer-reviewed articles in top-tier journals was performed in Scopus to 

identify the papers for review. This stage resulted in identifying 76 journal papers. Since these 

papers are derived from top-tier construction journals, they represent the state-of-art in the 

body of knowledge. Next, these papers were scrutinised to identify the factors affecting reuse. 

In total, 57 drivers and 130 barriers were recognised in these articles. Consequently, these 

factors were classified into six major categories and twenty-three sub-categories. Then, the 

inter-dependencies between the barriers were studied by developing the correlation indices 

between the sub-categories. Results indicate that addressing the economic and social barriers 

should be prioritised. According to this chapter, the impact of barriers under perception, risk, 

compliance, and market sub-categories are very pronounced. However, perception and risk 

show the highest inter-dependency among the sub-categories of variables. This observation 

suggests that the stakeholders' perceptions are affected by the potential risks of reusing load-

bearing building components. 
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The functionalist paradigm, which represents the objectivist-regulation dimensions, deals with 

the research subject from an objectivist perspective (Burrell and Morgan 2016). It tries to 

provide rational explanations for the existing social phenomena and seeks practical solutions 

for the real-world problems within the existing structures (Burrell and Morgan 2016). Positivism 

is the dominant research philosophy of the studies within this research paradigm (Saunders, 

Lewis, and Thornhill 2016). 

The interpretive paradigm, which is a product of subjectivist-regulation dimensions, concerns 

with understanding the reality of a social entity (for example an organisation) or in general the 

social world from the perspective of its members (Burrell and Morgan 2016). Interpretivism is 

the dominant research philosophy of the studies within this research paradigm (Saunders, 

Lewis, and Thornhill 2016). 

The radical structuralist paradigm, which represents the objectivist-radical change dimensions, 

focuses on radically changing the existing social structures through analysing the human 

relationships in social entities (organisations) such as structural power relationships and 

hierarchies from an objectivist perspective (Burrell and Morgan 2016). Critical realism is the 

dominant research philosophy of the studies within this research paradigm (Saunders, Lewis, 

and Thornhill 2016). 

The radical humanist paradigm, which results from the combination of subjectivist-radical 

change dimensions, concerns radically changing the existing social structures in organisations 

such as power relationships and hierarchies, however, from a subjectivist perspective 

emphasising human consciousness (Burrell and Morgan 2016). 

Based on these discussions, the next sections introduce the above mentioned three research 

philosophies, interpretivism, critical realism, and positivism, and discuss their suitability for the 

current research. 

3.2.3 Positivism 

Positivism, which deals with what is posited (given) (Crotty 1998), seeks to explain and predict 

the social phenomena through identifying regulations and cause-and-effect interactions 

between its constituent elements (Burrell and Morgan 2016). Positivists follow the scientific 

method approach and perform their research through direct experiences (Crotty 1998) to 

achieve data and facts about the subject of study, which is uninfluenced by human 

consciousness or bias (Saunders, Lewis, and Thornhill 2016). A positivist researcher may then 
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Title Potential options Selected options 
Induction 
Retroduction (abduction) 

Research paradigm Functionalist 
Interpretive 
Radical structuralist 
Radical humanist 

Functionalist 
 

Research philosophy Positivism 
Critical realism 
Interpretivism 

Positivism 

Research methodology Experimental 
Archival and documentary 
Case study 
Survey 

Survey 

Research method Quantitative 
Qualitative 
Mixed 

Quantitative 

Data collection Structured interview 
Questionnaire 

Questionnaire 

Data analysis tools Many Statistical 
Supervised machine learning 
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technical, economic, and social reusability of these components (the dependent variables) 

through developing predictive models using advanced supervised machine learning techniques. 

Therefore, after performing a thorough literature search (including a systematic literature 

review discussed in Chapter 2), and identifying, analysing, and categorising the independent 

variables, these factors are used to develop a self-completed online questionnaire. This 

questionnaire is then shared with a representative sample of the experts discussed in Section 

4.3. Therefore, this questionnaire aims to address the second objective of this study, and as 

discussed in Section 4.1.1, to provide the required data to achieve the third objective of this 

research. 

Initially, and based on the identified independent variables, a paper-based questionnaire was 

developed, which included 125 questions. However, after several rounds of reviewing the 

questionnaire, consulting with the supervisory team, conducting a self-check (Section 4.4.3 and 

Appendix B), and finally performing a pilot study (Section 4.5), the total number of questions 

decreased to 72. 

4.4.1 Sections of the questionnaire 

This questionnaire consists of six sections and 72 questions (see Appendix C). Section A contains 

demographic questions and asks five questions about the details of the respondents and the 

years of experience in the construction sector. While the initial purpose of this section is to 

acquire a general overview of the respondents, the details will be further used as an additional 

checkpoint to evaluate the validity of the responses (Section 4.9). 

Section B deals with the structural element that the respondent used in the past and would 

complete the rest of the questionnaire by referring to it. This section contains 11 questions and 

is in two parts. Questions 1 to 6 seek the details of the reused element, and questions 7 to 11 

compare the current use of the component (or use after deconstruction) with its previous 

deployment before it was removed/deconstructed from a building. The purpose of questions 7 

to 11 is twofold. First, to understand the current application of the element and second, to 

determine the changes in its performance. 

Section C is concerned with the barriers to reuse, as identified during the literature review. This 

section intends to quantify the impact of the identified barriers on the reusability of the 

structural elements from social, economic, and technical perspectives. Further details about the 

identified barriers are available in Section 2.3.2 and Appendix A. 
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Section D contains those factors that can act as either a barrier or a driver in different 

circumstances. For instance, according to Gorgolewski et al. (2008), the purchasing price of the 

reused building components is a driver to reuse; however, according to Tingley et al. (2017) and 

Dunant et al. (2018), the cost of these elements is a barrier to reuse. Therefore, Section D lists 

the variables for which their impact on the reusability of the structural elements are unknown. 

Like Section C, this section also includes technical, social, and economic variables that affect 

reuse. 

Section E inquires the reusability of the structural element that the respondent used before and 

based on that replied to the questions in Sections B, C & D. In total, there are three questions 

in this section, which together form the dependent variables of this study. These questions aim 

to understand the respondent's evaluation of the reusability of the structural element. These 

questions are very important to achieve the third objective of this study. Through using 

advanced supervised machine learning techniques, the impact of the independent variables 

(Sections B, C, & D) on the dependent variables (Section E) would be analysed, and the best 

combination of the independent variables that can predict the reusability of the structural 

elements of a building would be developed. 

In this questionnaire, to avoid any misinterpretation by the respondent, the dependent 

variables are defined before the questions as follows: 

Technical reusability: 

The extent to which the reused structural element in its new life could perform similarly to its 

earlier life. 

Economic reusability: 

The cost savings in the project as the result of using the reused structural element when 

compared to a similar project using a new structural element with the same performance. 

Social reusability: 

The acceptance level of the stakeholders (clients, CEO, designers, construction team, occupants, 

etc.) about using the reused structural element in the new building. 

After this section, the respondents are free to add any additional comments if they wish. 

Moreover, to incentivise the respondents to answer the questionnaire (as a bonus for taking 

part), the survey encourages the respondents to provide their contact details if they wish to 

receive the results of the study upon publication. Notwithstanding, all the above is optional. 
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Section Question(s) Reason Scale 
1 2 3 4 5 

negative 
impact of 

the 
barrier 

D All To 
determine 
the effect 

of the 
variable 

Very 
negatively 

Negatively No real 
effect 

Positively Very 
Positively 

E All To 
determine 

the 
reusability 

level 

Very low Low Moderate High Very 
High 

 

4.4.3 Self-checking the questionnaire 

Before launching the online questionnaire for pilot testing, the survey was thoroughly checked 

for layout, question order, and question-wording. For this purpose, three checklists (inspired by 

Saunders et al. (2016)) were prepared and used to develop the online survey for pilot testing 

(Appendix B). The checklists contain 5, 7, and 18 questions for checking the questionnaire 

layout, questions order, and questions wording, respectively. After self-checking, the 

questionnaire was reviewed for the wording and grammatical errors by an advisor at the Centre 

for Academic Writing (CAW) at Coventry University. Upon the incorporation of the comments 

by the CAW advisor, the questionnaire was launched online for pilot testing. 

4.5 Pilot study 

One of the problems with self-completed questionnaires is that, unlike in-depth or semi-

structured interviews, it is not possible to modify or alter it after it is launched (Saunders, Lewis, 

and Thornhill 2016). Therefore, if the information necessary to address the research objectives 

are missing, or if the questionnaire or the questions are biasing or biased, the collected data 

cannot be trusted, which can cause serious risk to the project (Brace 2013). Moreover, there is 

a risk that the researcher and the respondent might interpret the questions and answers in 

different ways, which again makes the collected data unreliable (Saunders, Lewis, and Thornhill 

2016). Therefore, care should be taken in designing the questionnaire and the questions to 

ensure the validity and reliability of the responses (Saunders, Lewis, and Thornhill 2016, Brace 

2013). While, according to Section 4.4.3, self-checking using the recommended checklist by 

Saunders et al. (2016), and grammar and wording review by an expert can mitigate some of the 
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Position of the respondent Frequency Percentage (%) 
Top manager (e.g. head managers, owner of 
companies, executive managers, managing director, 
CEO, etc.) 

29 44.6 

Waste prevention specialist 1 1.5 
The above percentages are based on 65 respondents. 
 

 

Table 4.3 Type of organisation the research respondents work in 

Type of the organisation Frequency Percentage (%) 
Client 3 4.3 
Consultancy (architectural, 
structural, etc.) 

20 29 

Contractor 6 8.7 
Deconstruction/Demolition 27 39.1 
Supplier/Stockiest 5 7.2 
University/Academic 
institution 

2 2.9 

Other 6 8.7 
The above percentages are based on 69 respondents. 
 

 

Table 4.4 Years of experience of the research respondents in the construction sector 

Years of experience Frequency Percentage (%) 
6-10 24 33.3 
11-15 10 13.9 
16-20 10 13.9 
21-25 8 11.1 
26-30 9 12.5 
31-35 3 4.2 
36-40 0 0 
over 40 8 11.1 

 

4.8 Missing data analysis 

Missing values or item nonresponse in survey research happens when a respondent does not 

provide an answer to one or more questions of a questionnaire (Allison 2001, Graham 2012). 

While there are several reasons for item nonresponse in survey research (Graham 2012), the 

missing values can have a significant impact on the conclusions of the research (Graham 2009). 

It should be noted that almost all of the statistical and machine learning methods do not 

consider missing values in a dataset while analysing research data. Therefore, item nonresponse 

can decrease the statistical power of the research in testing the null hypothesis correctly. 

Moreover, it can cause bias in both the dependent (DV) and independent variables (IV), 
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4.10 Preliminary statistical analysis of the survey 

In this section, descriptive statistics are used to rank the technical (TEC dataset), economic (ECO 

dataset), and social (SOC dataset) factors based on the mean value of the variables. Descriptive 

statistics are a set of statistical approaches, including measures of central tendency (mean, 

median, mode, etc.) and measures of variability (standard deviation, variance, 

minimum/maximum, skewness, etc.), to quantitatively summarise a given data set (Field 2009, 

Bryman and Cramer 2005). 

The results of the descriptive statistics for the TEC, ECO, and SOC datasets are presented in 

Tables 4.5 to 4.7 and discussed in subsections 4.10.1, 4.10.2, and 4.10.3, respectively. While 

according to (Stevens 1946) the permissible statistics for ordinal scales (questions B7 to B11, 

Section C, D, and E of the questionnaire, See Appendix B.2) are the median and percentiles, 

other statisticians such as (Lord 1953, Labovitz 1970, Sauro and Lewis 2016) allow the use of 

statistics applicable to interval and ratio scales for ordinal values such as Likert scales used in 

this research. It is noteworthy that the latter has been adopted in this research. 

4.10.1 Descriptive statistics for TEC dataset 

Figures 4.3 to 4.8 show the distribution of the answers provided by the respondents to 

questions B1 to B6. 

 
Figure 4.3 Type of the structural element used to complete the questionnaire (question B1) 
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Figure 4.4 Material of the structural element used to complete the questionnaire (question B2) 

 

Figure 4.5 Age of building/element (question B3) 
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Figure 4.6 The recovery technique used to recover the element (question B4) 

 

Figure 4.7 The number of existing connections of the recovered element (question B5) 
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Figure 4.8 Type of the end-connections of the recovered element (question B6) 

The results of the descriptive statistics for the TEC dataset for questions B7 to B11 and Sections 

C & D of the questionnaire is available in Table 4.5. The mean, median, and standard deviations 

are developed using SPSS 25 version. According to this table, for Section C, the following barriers 

are identified as the top technical factors negatively affecting the reusability of the building 

structural components. 

1- Lack of certificates of quality for the element when acquired 

2- Damage during deconstruction/demolition 

3- Lack of standards to certify the element 

4- The potential risk associated with the structural integrity 

5- Damage due to water penetration/presence 

Moreover, for Section D of this dataset, the following are identified as the top-ranked barriers: 

1- Matching the original design with the dimensions of the reused element 

2- Changes in the design codes (BS codes to Eurocodes, etc.) 

3- CE marking 

4- Matching the original design with the strength of the reused element 

5- Presence of fire protection on the element 

58.3%

23.6%

13.9%

2.8% 1.4%
0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

Reversible
(bolts, screws,

etc.)

Mixed Permanent
(welding, cast in-

situ concrete,
etc.)

None Squared and
worked old

growth timber

Types of the end connections (joints)



89 
 

4.10.2 Descriptive statistics for ECO dataset 

On the economic dimension, Table 4.6 shows the mean, median, and standard deviations of the 

factors affecting reuse. Section C comprises only one variable; hence, the rankings were only 

performed for Section D. 

According to Section D, the purchasing price of the reused element (variable D1) is the only 

driver to reuse, and the other variables act as reuse barriers. The rankings of these barriers are 

as follows: 

1- Cost of testing 

2- Cost of insurance 

3- Storage cost 

4- Cost of refurbishment (sandblasting, treatment, etc.) 

5- Cost of design with the reused element 

4.10.3 Descriptive statistics for SOC dataset 

On the social dimension, and based on the SOC dataset, Sections C and D contain two and eight 

variables, respectively (Table 4.7). The rankings of the barriers in Section C are as follows: 

1- Potential liability risks 

2- Potential health and safety risks 

In Section D, among the eight variables, five are drivers, and three are barriers. The rankings of 

these factors are as follows: 

Top drivers: 

1- Perception of the client/top management team about the element 

2- Perception of the end-users (when it is not the client) about the element 

3- Perception of the designers about the element 

4- Visual appearance 

5- Perception of the builders/contractors about the element 

Top barriers: 

1- Changes in the health and safety regulations (fire, etc.) 

2- Perception of the stockiest about the element 

3- Perception of the regulatory authorities about the element 
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4.11 Test for significant difference 

According to Section 4.2, the unit of analysis of this study is the structural elements of a building. 

Therefore, in this section, a non-parametric test is used to evaluate if there are statistically 

significant differences between the types of structural elements (question B1) regarding the 

ordinal independent and dependent variables asked in the questionnaires. Using SPSS version 

25, the Kruskal-Wallis H test is performed on each of the TEC, ECO, and SOC databases of this 

study (Section 4.8) at a 5% significance level (Field 2009, Bryman and Cramer 2005). The results 

of these tests are discussed in subsections 4.11.1, 4.11.2, and 4.11.3, respectively. The null 

hypothesis is that there is no difference between the groups of structural elements. The 

purpose of this test is to make sure that combining the responses for all the elements for further 

analysis will not affect the overall reliability of the TEC, ECO, and SOC datasets. 

4.11.1 Kruskal-Wallis H test on TEC dataset 

The Kruskal-Wallis H test was used on the technical factors (TEC dataset) to determine if the 

type of the element affects the scores provided for the factors affecting the reusability of the 

structural components. As presented in Table 4.5, the Kruskal-Wallis H test results indicate that 

none of the p-values of the technical factors is less than 0.05 and that there is not enough 

evidence to reject the null hypothesis. It means that the TEC dataset can be safely used to 

develop BSE-RPMs, which is the fourth objective of this study (Section 1.6). 

4.11.2 Kruskal-Wallis H test on ECO dataset 

The Kruskal-Wallis H test was performed to understand whether the variables affecting the 

economic reusability of the building structural elements, measured on an ordinal scale (Section 

3.3.4), differed based on the type of the component. The results indicate that there is no 

statistical difference between the groups of the structural elements at a 95% confidence level, 

which means that the null hypothesis discussed in Section 4.11 is valid (Table 4.6). Therefore, 

using the combination of the responses for further developing the predictive models does not 

affect the overall reliability of the ECO dataset. 

4.11.3 Kruskal-Wallis H test on SOC dataset 

Like the TEC and ECO datasets, the same non-parametric test was performed on the SOC 

dataset. The results indicate that the p-value of all applicable independent variables is more 

than 0.05, which means that there is no significant difference in the independent variables 

between the various group of the structural elements (Table 4.7). In other words, the data can 

be combined and used for further development of the predictive models. 
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5.2 Oversampling 

This study comprises three datasets, and each dataset has a unique dependent variable 

(response). The responses for the TEC, ECO, and SOC datasets are the technical reusability (E1), 

economic reusability (E2), and social reusability (E3), respectively (please refer to Appendix C, 

Section C.2, for a copy of the questionnaire used in this research). E1, E2, and E3 are based on 

a five-point Likert scale (Table 4.1). This study aims to develop a model to predict the reusability 

of the structural elements of a building. Therefore, following the approach adopted by (Jang et 

al. 2015), the responses were converted to a binary scale with 0, non-reusable, and 1, reusable. 

The responses with Likert scale values of 1 to 3 are considered non-reusable (represented by 

0), and the remaining responses (Likert scale values 4 and 5) are identified as reusable 

(converted to 1). Consequently, the dependent variables are transformed from multi-scale 

responses to binary responses. While this conversion simplifies the interpretation of the results 

of the predictive models, the proposed methodology in this research can be conveniently 

generalised to multi-class response variables. Instead of relying on five points to decide if a 

component is reusable or not, the stakeholders have a straightforward basis for deciding on the 

fate of a structural element. Likewise, for a supervised machine learning method to perform 

effectively with a multi-class response, a large sample size is required. However, since the reuse 

of the load-bearing components of a building is not a widespread practice, collecting more data 

was not possible. Moreover, the uncertainties in the assessment of the reusability factors 

(features or independent variables), which is based on expert opinion, limits the effectiveness 

of a multi-scale response. 

After converting the multi-scale responses to binary values, it was observed that the new binary 

classes were considerably imbalanced. In the case of the TEC dataset, 24 elements are non-

reusable, and 48 are reusable. In the case of the ECO dataset, this imbalance changes to 22 non-

reusable and 50 reusable components. And in the case of the SOC dataset, these figures are 16 

and 56 for non-reusable and reusable elements, respectively. From the above figures, it is 

evident that the datasets are unbalanced and contain more reusable components than non-

reusable elements. Consequently, after the dataset is divided into training and testing sets, due 

to the different number of reusable and non-reusable elements in the original observations, the 

training and testing sets will also have imbalanced responses. It can be argued that the initial 

data collection could be continued to have more balanced responses; however, due to the time 

constraints, as well as the limitations explained in Sections 4.3 and 4.7, this option was not 

practical. Moreover, even if the data collection continues, since the respondents are free to 

choose any structural component with any level of reusability to complete the questionnaire, it 
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is impossible to guess the outcome of the new survey, which might end up with a similar 

imbalanced dataset. 

According to (Torgo 2016, He and Ma 2013, Fernández et al. 2018), imbalanced datasets 

negatively affect predictive methods during model development and performance assessment 

stages. One of the metrics used to assess the performance of a machine learning method is its 

accuracy in predicting correct answers (Chawla et al. 2002). When one class is dominant (due 

to the imbalance in the dataset), the predictions are inherently biased towards that, yielding an 

unrealistic accuracy (Torgo 2016). It is because the predictive methods look for the rules and 

regulations in a dataset, and imbalanced datasets make this task difficult (Torgo 2016). 

In supervised machine learning, different methods can be used to address the issues caused by 

an imbalanced dataset (He and Ma 2013, Fernández et al. 2018). These include cost-sensitive 

learning (manipulating the threshold values, etc.), pre-processing the imbalanced dataset 

(oversampling, under-sampling, SMOTE, etc.), algorithm level approaches (active learning, 

kernel modifications, etc.), and ensemble learning (cost-sensitive boosting, etc.) (Fernández et 

al. 2018). It should be noted that according to Fernández et al. (2018), there is no best strategy 

to deal with the issues caused by imbalanced datasets. For a comprehensive discussion over 

various methods to handle imbalanced datasets, please refer to (Fernández et al. 2018). 

In this study, the oversampling technique developed by Chawla et al. (2002) is employed to pre-

process the datasets and minimise the class imbalance impact. This technique is known as 

Synthetic Minority Over-sampling Technique (SMOTE). Unlike other oversampling techniques 

that rely on replacement in data space (Japkowicz 2000), SMOTE creates synthetic examples of 

the minority class in feature space using the k-nearest neighbours (KNN) algorithm (with the 

default value for k=5) without duplicating any data (Chawla et al. 2002, Bischl et al. 2016). 

In this study, following the approach adopted by (Agrawal et al. 2018, Naseriparsa and Kashani 

2013, Taft et al. 2009, Al-Bahrani, Agrawal, and Choudhary 2013), the SMOTE was performed 

on the TEC, ECO, and SOC datasets. The results of oversampling on these datasets are presented 

in Table 5.1. A comparison between the oversampled and the original datasets reveals the 

following. For the TEC dataset, the imbalance has improved from 34% (non-reusable) and 66% 

(reusable) to 50% (non-reusable) and 50% (reusable). For the ECO dataset, the imbalance has 

improved from 31% (non-reusable) and 69% (reusable) to 51% (non-reusable) and 49% 

(reusable). For the SOC dataset, the imbalance has improved from 23% (non-reusable) and 77% 

(reusable) to 53% (non-reusable) and 47% (reusable). Before developing the predictive models, 
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the oversampled datasets are split into training and testing data to assess the initial 

performance of the developed fits (Section 5.3). 

Table 5.1 Oversampled datasets 

 TEC dataset ECO dataset SOC dataset 
Non-reusable (0) 96 93 59 
Reusable (1) 96 91 53 
Total number of elements 192 184 112 

 

In this study, R package mlr (Bischl et al. 2016) is used to perform SMOTE-NC (Synthetic Minority 

Oversampling Technique for Nominal and Continuous) (Chawla et al. 2002) for each dataset 

separately. The script used to perform oversampling is available in Appendix E (Script E.2). 

5.3 Training and testing datasets 

The accuracy and interpretability of any machine learning model play an important role in 

choosing the best predictive model for the study at hand (James et al. 2017). The above two 

metrics are also used in Chapter 6 to further examine the thirteen BSE-RPMs that are developed 

in Chapter 5. In general, the machine learning methods are assessed in terms of their capability 

in predicting the responses to previously unseen data (test or out-of-sample data) (James et al. 

2017). In the current research, and as a preliminary metric, the validation set approach is 

employed for determining the performance of the developed predictive models by developing 

training and testing data for the TEC, ECO, and SOC datasets separately. The available data in 

each oversampled dataset from Section 5.2 is divided on a 70/30 basis considering 70% of the 

dataset for the training purpose and 30% for the testing purpose. Script E.3 (Appendix E) is used 

to perform the data split using the caTools package in R (Tuszynski 2020). For further details 

about the validation set approach, please refer to Section 6.2 and Chapter 5 of James et al. 

(2017). 

Table 5.2 shows the result of splitting the datasets into training and testing sets. However, 

before developing the predictive models, the available features need to be assessed to choose 

the best combination of the independent variables to generate the BSE-RPMs (Section 5.4). 

Table 5.2 Split of the oversampled data into training and testing sets 

 TEC dataset ECO dataset SOC dataset 
Train Test Total Train Test Total Train Test Total 

Non-reusable (0) 67 29 96 65 28 93 41 18 59 
Reusable (1) 67 29 96 64 27 91 37 16 53 
Total number of 
elements 134 58 192 129 55 184 78 34 112 
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5.4 Feature selection 

Feature selection is a vital stage in supervised machine learning (Torgo 2016). It includes 

selecting a subset of features (independent variables) in a dataset for efficient and optimum 

analysis of the problem at hand (Torgo 2016, Ding and Peng 2003). In supervised machine 

learning, there is always a chance that some variables are irrelevant to the response or 

redundant. In such cases, their presence negatively affects the performance of a predictive 

model. Proper feature selection results in the development of predictive models that perform 

optimally on both seen and unseen data. Therefore, feature selection focuses on identifying 

relevant features and discards irrelevant or redundant independent variables (Urbanowicz et 

al. 2018). This process fulfils the third objective of this research (Section 1.6), which is selecting 

the best combination of the identified factors to develop the BSE-RPMs. It is noteworthy that 

in the process of selecting variables, only the training datasets (Table 5.2) are considered to 

avoid inaccurate estimates of the test errors (James et al. 2017, Urbanowicz et al. 2018). 

There are three methods for selecting a subset of features (Guyon et al. 2006, Saeys, Inza, and 

Larrañaga 2007). Filter methods (or simply filters) use statistical properties of the features (like 

correlation coefficients, F-test, T-test, etc.) or information-theory based measures (such as 

mutual information, interaction information, etc.) to rank features based on their relevance to 

the response and other features (Torgo 2016, Guyon et al. 2006, McGill 1954, Iguyon and 

Elisseeff 2003). These methods can be grouped into univariate and multivariate filter methods. 

Univariate filter methods rank features only based on their relevance to the response, whereas 

multivariate filter methods consider the interaction between features as well (Guyon et al. 

2006). 

Wrappers are the second method for feature selection (Torgo 2016). In this group of 

techniques, a machine learning model is used to score subsets of features based on the 

predictive power of the method. The process of feature selection can be categorised into 

forward selection, backward elimination, and mixed selection (James et al. 2017). Forward 

selection methods start modelling with zero predictors (a base model), select features step-by-

step and evaluate the performance. Whereas, backward feature elimination methods start with 

the complete set of independent variables and look for an optimum subset of variables with 

the best performance through stepwise elimination of non-informative features (James et al. 

2017). Wrappers use cross-validation to optimise the performance of the learning method to 

select the optimum subset of variables (Guyon et al. 2006).  







105 
 

2008). The null hypothesis is that the distribution of the values of a feature is the same for the 

response classes, based on a median rank. If the p-value is significant, it rejects the null 

hypothesis. In this method, features are ranked based on the significance of their p-values. The 

closer the p-value to zero, the higher the rank of a feature. 

5.4.1.6 Minimum-redundancy-maximum-relevance (MRMR) 

MRMR is a multivariate filter method developed by Ding and Peng (2003). This method provides 

a feature set with the highest relevance to the response and the lowest collinearity among the 

independent variables. Therefore, the identified feature set is a true representative of the 

original feature space covered by the dataset. This property improves the generalisability of the 

selected feature set, and it results in the selection of a smaller number of independent variables 

with the same performance. 

5.4.1.7 oneR 

One rule (oneR) method is a univariate filter that ranks features according to their classification 

error rate. It works by developing a base model by assigning the most frequent class of the 

response as the one rule to each of the values of a feature. This model is then used to predict 

the class of the response for each feature. The feature with the lowest error rate ranks the 

highest, followed by features with higher error rates (Jamjoom 2020). 

5.4.1.8 Random forest (RF) 

This method is like the cForest importance measure (subsection 5.4.1.1). However, it uses a 

different measure to assess the importance of a feature. This method uses the Gini importance 

measure, which is the outcome of the Gini impurity index used in the RandomForest package 

(Nembrini, König, and Wright 2018, Liaw and Wiener 2002, Breiman et al. 2017). Moreover, the 

method develops decorrelated trees, which result in a considerable decrease in the variance of 

the model compared to a single decision tree. A further explanation of the RF method is 

available in Section 5.5.1.7. 

5.4.1.9 Relief 

Relief is a non-parametric multivariate filter method that ranks individual features using an 

approach based on the K-Nearest-neighbour (KNN) method (Guyon et al. 2006, Urbanowicz et 

al. 2018, Kira and Rendell 1992). In this study, the RReliefF filter through packages FSelector and 

mlr is used to rank features (Bischl et al. 2016, Romanski and Kotthoff 2018). According to 

Urbanowicz et al. (2018), this method ranks features in the context of other features. However, 
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it does not remove redundant independent variables while ranking the features (Urbanowicz et 

al. 2018). A further explanation of the KNN method is available in Section 5.5.1.1. 

5.4.1.10 Symmetrical uncertainty (SU) 

Symmetrical uncertainty (SU) is an entropy-based measure and is a variation of the gain ratio 

method. This method has one additional entropy measure in its denominator, which is the class 

entropy. The symmetrical uncertainty of an independent variable is determined by dividing 

twice the information gain of the feature by the sum of its entropy and the class entropy 

(Sarhrouni, Hammouch, and Aboutajdine 2012). In this study, the symmetrical uncertainty of 

the independent variables are used to rank features in each of the datasets through packages 

FSelector and mlr (Bischl et al. 2016, Romanski and Kotthoff 2018). 

5.4.1.11 Implementation of the features ranking methods 

A filter method produces a score for each of the features in the datasets. The higher the score 

of a predictor, the more important is the variable according to the selected filter method. 

However, the raw values produced by different filters are not having the same scale and cannot 

be compared. Therefore, after identifying the raw scores of the features using a filter method, 

these values are converted into percentage values by dividing them by the sum of the quantities 

of all variables. These percentages represent the level of importance of each feature in a ranking 

method (filter) and provide a baseline for comparing the results of different techniques. For the 

final ranking, the percentage values of all ten filter methods for each independent variable are 

summed up together to create a new metric. This new metric is then used to rank the features 

in each dataset. Tables 5.3 to 5.6 are the results of the feature ranking methods for the TEC, 

ECO, and SOC datasets, respectively.  

The listed packages in Script E.4 (Appendix E) were initially installed to perform feature ranking 

methods discussed in this section. 

In the next stage, Script E.5 (Appendix E) was used to determine the rank of the features in each 

dataset based on the discussion in Section 5.4.1. 
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Table 5.4 Percentages, and the  final ranking of features in the TEC dataset 

Var.1 cF CHIS IG GR KT MRMR oneR RF Relief SU 
% sum 
(new 

metric) 

Final 
rank 

B2 0.0% 5.1% 2.2% 5.1% 0.1% 4.0% 2.6% 1.5% 2.5% 2.3% 25.2% 9 
B3 4.6% 10.4% 9.3% 10.4% 3.4% 4.6% 3.4% 4.5% 7.4% 5.4% 63.5% 5 
B4 0.3% 9.9% 10.3% 9.9% 0.1% 4.7% 2.8% 1.0% 2.5% 11.8% 53.2% 8 
B5 6.5% 10.9% 10.2% 10.9% 0.1% 4.1% 3.4% 4.2% 1.7% 6.3% 58.1% 7 
B6 0.4% 3.6% 1.1% 3.6% 0.5% 3.2% 2.7% 1.3% 4.1% 1.0% 21.6% 12 
B7 1.4% 0.0% 0.0% 0.0% 2.6% 2.3% 2.3% 2.3% 3.3% 0.0% 14.3% 19 
B8 3.5% 0.0% 0.0% 0.0% 3.9% 3.7% 2.3% 2.8% 1.0% 0.0% 17.3% 15 
B9 0.9% 0.0% 0.0% 0.0% 0.3% 1.7% 2.3% 2.6% 2.1% 0.0% 9.9% 29 
C1 1.9% 0.0% 0.0% 0.0% 0.0% 1.3% 2.3% 3.4% 1.9% 0.0% 10.7% 27 
C2 0.7% 0.0% 0.0% 0.0% 1.7% 1.9% 2.3% 2.0% 0.6% 0.0% 9.3% 30 
C3 0.9% 0.0% 0.0% 0.0% 1.5% 2.1% 2.3% 2.2% -0.2% 0.0% 8.7% 33 
C4 0.9% 0.0% 0.0% 0.0% 0.2% 1.8% 2.3% 1.6% -0.6% 0.0% 6.2% 39 
C5 1.1% 0.0% 0.0% 0.0% 0.8% 3.6% 2.3% 2.2% 3.7% 0.0% 13.8% 20 
C6 2.5% 0.0% 0.0% 0.0% 2.5% 2.7% 2.3% 2.9% 1.4% 0.0% 14.4% 18 
C7 2.0% 0.0% 0.0% 0.0% 3.5% 1.2% 2.3% 1.8% 4.6% 0.0% 15.3% 16 
C8 0.0% 0.0% 0.0% 0.0% 0.2% 3.3% 2.3% 1.1% 1.1% 0.0% 8.0% 34 
C9 1.8% 0.0% 0.0% 0.0% 0.6% 0.5% 2.3% 2.8% 5.2% 0.0% 13.2% 22 

C10 2.3% 0.0% 0.0% 0.0% 2.0% 2.4% 2.3% 2.7% 1.9% 0.0% 13.6% 21 
C11 0.4% 0.0% 0.0% 0.0% 0.7% 1.5% 2.3% 1.1% 0.6% 0.0% 6.8% 38 
C12 1.4% 0.0% 0.0% 0.0% 0.1% 4.2% 2.3% 3.2% 1.2% 0.0% 12.4% 23 
C13 0.3% 0.0% 0.0% 0.0% 1.3% 4.5% 2.3% 1.3% 2.1% 0.0% 11.8% 24 
C14 0.9% 0.0% 0.0% 0.0% 2.6% 2.8% 2.3% 2.0% 4.4% 0.0% 15.1% 17 
C15 1.5% 0.0% 0.0% 0.0% 1.4% 2.9% 2.3% 2.3% 1.4% 0.0% 11.8% 25 
C16 6.7% 12.2% 12.9% 12.2% 8.0% 3.5% 3.6% 4.2% 4.8% 13.4% 81.4% 3 
C17 5.3% 0.0% 0.0% 0.0% 5.9% 3.1% 2.3% 3.0% 3.9% 0.0% 23.6% 10 
C18 1.7% 0.0% 0.0% 0.0% 1.8% 1.4% 2.3% 2.5% 1.0% 0.0% 10.8% 26 
C19 2.9% 0.0% 0.0% 0.0% 3.4% 0.4% 2.3% 2.5% 6.6% 0.0% 18.1% 13 
C20 2.5% 0.0% 0.0% 0.0% 3.7% 0.9% 2.3% 3.0% 5.4% 0.0% 17.7% 14 
C21 0.5% 0.0% 0.0% 0.0% 1.2% 0.1% 2.3% 2.0% 3.1% 0.0% 9.3% 31 
C25 6.6% 11.5% 11.4% 11.5% 10.0% 4.4% 3.5% 3.3% -0.4% 11.8% 73.7% 4 
C26 0.8% 0.0% 0.0% 0.0% 2.9% 0.6% 2.3% 2.4% -1.7% 0.0% 7.4% 36 
C27 7.0% 0.0% 0.0% 0.0% 6.0% 2.6% 2.3% 2.7% 1.9% 0.0% 22.4% 11 
C28 19.9% 13.3% 15.3% 13.3% 18.0% 5.0% 3.8% 6.5% 5.4% 15.1% 115.6% 1 
D18 0.4% 0.0% 0.0% 0.0% 0.1% 2.2% 2.3% 1.9% 0.8% 0.0% 7.7% 35 
D19 1.2% 0.0% 0.0% 0.0% 0.6% 0.3% 2.3% 2.3% 2.1% 0.0% 8.7% 32 
D21 -0.1% 0.0% 0.0% 0.0% 0.1% 0.8% 2.3% 1.4% 2.7% 0.0% 7.3% 37 
D22 1.3% 0.0% 0.0% 0.0% 0.2% 1.0% 2.3% 2.1% 3.7% 0.0% 10.7% 28 
D23 1.5% 10.8% 10.8% 10.8% 1.4% 3.8% 3.2% 3.4% 4.6% 12.7% 63.1% 6 
D24 5.5% 12.3% 16.6% 12.3% 6.5% 4.9% 3.3% 4.4% 2.3% 20.2% 88.2% 2 

1 The details of the features are available in a copy of the survey in Section C.2 (Appendix C) 
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Table 5.5 Raw scores, percentages, and the final ranking of features in the ECO dataset 

Var.1 Value cF CHIS IG GR KT MRMR oneR RF Relief SU 
% sum 
(new 

metric) 

Final 
rank 

C24 raw 0.064 0.422 0.093 0.422 21.777 0.917 0.496 20.973 0.120 0.136 216.2 1 % 30.6 27.1 28.8 27.1 16.3 14.1 11.8 12.4 20.9 27.2 

D1 raw 0.033 0.000 0.000 0.000 7.650 0.833 0.295 21.733 0.035 0.000 60.1 5 % 15.6 0.0 0.0 0.0 5.7 12.8 7.0 12.9 6.1 0.0 

D2 raw 0.014 0.000 0.000 0.000 13.057 0.417 0.295 11.966 -0.014 0.000 34.4 10 % 6.7 0.0 0.0 0.0 9.8 6.4 7.0 7.1 -2.6 0.0 

D3 raw 0.004 0.000 0.000 0.000 5.980 0.750 0.295 12.030 0.040 0.000 39.2 8 % 2.1 0.0 0.0 0.0 4.5 11.5 7.0 7.1 7.0 0.0 

D4 raw 0.002 0.000 0.000 0.000 2.034 0.333 0.295 9.174 0.095 0.000 36.4 9 % 0.8 0.0 0.0 0.0 1.5 5.1 7.0 5.4 16.5 0.0 

D5 raw 0.004 0.000 0.000 0.000 4.394 1.000 0.295 18.452 0.055 0.000 47.9 6 % 1.7 0.0 0.0 0.0 3.3 15.4 7.0 10.9 9.6 0.0 

D6 raw 0.003 0.355 0.070 0.355 7.820 0.250 0.426 11.197 0.025 0.119 123.4 4 % 1.6 22.8 21.6 22.8 5.9 3.8 10.1 6.6 4.3 23.7 

D7 raw 0.002 0.000 0.000 0.000 6.871 0.167 0.295 6.075 0.005 0.000 20.0 12 % 0.8 0.0 0.0 0.0 5.1 2.6 7.0 3.6 0.9 0.0 

D8 raw 0.010 0.000 0.000 0.000 11.422 0.583 0.295 11.762 0.055 0.000 45.7 7 % 4.7 0.0 0.0 0.0 8.6 9.0 7.0 7.0 9.6 0.0 

D9 raw 0.002 0.000 0.000 0.000 7.843 0.083 0.295 8.083 0.035 0.000 26.2 11 % 1.2 0.0 0.0 0.0 5.9 1.3 7.0 4.8 6.1 0.0 

D10 raw 0.036 0.387 0.078 0.387 26.697 0.500 0.473 18.424 0.025 0.117 168.6 3 % 17.1 24.9 24.2 24.9 20.0 7.7 11.2 10.9 4.3 23.4 

D25 raw 0.036 0.392 0.082 0.392 18.024 0.667 0.465 18.750 0.100 0.129 181.9 2 % 17.1 25.2 25.4 25.2 13.5 10.3 11.0 11.1 17.4 25.7 
1 The details of the features are available in a copy of the survey in Section C.2 (Appendix C) 

 

Table 5.6 Raw scores, percentages, and the final ranking of features in the SOC dataset 

Var.1 Value cF CHIS IG GR KT MRMR oneR RF Relief SU 
% sum 
(new 

metric) 

Final 
rank 

C22 raw 0.025 0.000 0.000 0.000 0.148 0.600 0.295 26.128 0.140 0.000 75.0 5 % 14.5 0.0 0.0 0.0 0.2 10.9 8.4 18.9 22.0 0.0 

C23 raw 0.023 0.380 0.094 0.380 7.569 0.900 0.410 17.871 0.030 0.180 160.6 3 % 12.9 22.9 21.8 22.9 11.2 16.4 11.7 13.0 4.7 23.2 

D11 raw 0.002 0.000 0.000 0.000 7.224 0.300 0.295 6.596 0.055 0.000 39.0 8 % 1.0 0.0 0.0 0.0 10.7 5.5 8.4 4.8 8.7 0.0 

D12 raw 0.006 0.000 0.000 0.000 7.399 0.200 0.295 8.810 0.070 0.000 43.8 7 % 3.4 0.0 0.0 0.0 11.0 3.6 8.4 6.4 11.0 0.0 

D13 raw 0.003 0.000 0.000 0.000 4.909 0.100 0.295 8.620 0.040 0.000 31.8 10 % 1.7 0.0 0.0 0.0 7.3 1.8 8.4 6.2 6.3 0.0 

D14 raw 0.090 0.455 0.113 0.455 19.956 1.000 0.474 21.681 0.115 0.184 250.9 1 % 51.2 27.4 26.1 27.4 29.6 18.2 13.5 15.7 18.1 23.7 

D15 raw 0.003 0.000 0.000 0.000 8.036 0.700 0.295 9.438 0.025 0.000 45.5 6 % 1.6 0.0 0.0 0.0 11.9 12.7 8.4 6.8 3.9 0.0 

D16 raw 0.014 0.471 0.143 0.471 5.554 0.800 0.462 17.673 0.060 0.250 187.9 2 % 7.8 28.3 33.0 28.3 8.2 14.5 13.1 12.8 9.4 32.2 

D17 raw 0.010 0.356 0.083 0.356 6.187 0.500 0.397 9.726 0.045 0.162 132.5 4 % 5.9 21.4 19.1 21.4 9.2 9.1 11.3 7.0 7.1 20.9 

D20 raw 0.000 0.000 0.000 0.000 0.350 0.400 0.295 11.411 0.055 0.000 33.0 9 % -0.1 0.0 0.0 0.0 0.5 7.3 8.4 8.3 8.7 0.0 
1 The details of the features are available in a copy of the survey in Section C.2 (Appendix C) 
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Script E.6 (Appendix E) is used to derive the results of feature selection using the Boruta method 

for each of the datasets. 

 

 
Figure 5.1 Importance of the features in the TEC dataset using the Boruta method 

 
Figure 5.2 Importance of the features in the ECO dataset using the Boruta method 
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Figure 5.3 Importance of the features in the SOC dataset using the Boruta method 

In these figures, from left to right, the blue boxes represent the minimum, mean, and maximum 

Z-statistics among the shadow features, respectively. The variable boxes in red represent 

rejected variables, those in green are the confirmed variables, and the yellow boxes are 

tentative variables. In the case of ECO and SOC datasets, the choice of maxRuns equal to 10,000 

is to make sure no feature remains undecided (tentative). However, in the case of the TEC 

dataset, after increasing this value to 30,000, the method was still unable to categorise B6 and 

C4. 

5.4.3 Variable selection using recursive feature elimination (RFE) 

At this stage, recursive feature elimination (RFE) is performed using various methods through 

the caret package in R (Kuhn 2008). The methods used include Random Forests (randomForest 

package (Liaw and Wiener 2002)), Naïve Bayes (klaR package (Weihs et al. 2005)), Decision 

Trees (Bagging; ipred package (Peters and Hothorn 2019)), and Random Forests through the 

Caret Function (caret package (Kuhn 2008)). 

RFE is a backward variable selection wrapper technique (Kuhn and Johnson 2020). Initially, a 

dedicated method is used to develop a model with all available independent variables and rank 

the features based on a measure of importance. Next, the least important feature is eliminated, 

and a new model is developed based on a smaller number of variables. Then, the remaining 
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Variable Random 
Forests 

Naïve 
Bayes 

Decision 
Trees 

(Bagging) 

Caret 
Functions 
(Random 
Forests) 

The 
Boruta 

method 
(Section 

5.4.2) 

Filters 
(Section 

5.4.1) 

Final 
decision 

C11 35 24 Rejected 33 Rejected 38  
C12 9 36 16 11 9 23 Selected 
C13 32 28 Rejected Rejected 31 24  
C14 31 16 Rejected 34 25 17  
C15 21 20 17 22 21 25 Selected 
C16 3 3 5 4 3 3 Selected 
C17 7 5 11 7 5 10 Selected 
C18 19 18 27 21 18 26 Selected 
C19 17 10 22 20 15 13 Selected 
C20 10 9 13 12 7 14 Selected 
C21 26 21 Rejected 26 28 31  
C25 6 2 6 5 4 4 Selected 
C26 25 12 Rejected 24 30 36  
C27 13 6 10 9 8 11 Selected 
C28 1 1 1 1 1 1 Selected 
D18 34 35 Rejected 31 Rejected 35  
D19 23 23 Rejected 25 26 32  
D21 36 31 Rejected 32 Rejected 37  
D22 22 30 21 18 23 28 Selected 
D23 8 19 7 8 6 6 Selected 
D24 2 4 4 6 2 2 Selected 
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Figure 5.4 Performance of the RFE and Random Forests based on the ranks of the features (TEC dataset) 
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Figure 5.5 Performance of the RFE and Naïve Bayes based on the ranks of the features (TEC dataset) 
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Figure 5.6 Performance of the RFE and Decision Trees (Bagging) based on the ranks of the features (TEC dataset) 
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Figure 5.7 Performance of the RFE and Caret Function (Random Forests) based on the ranks of the features (TEC 

dataset) 

Table 5.8 Status and rank of the variables in the ECO training dataset using the Boruta method and filters 

Variable 

The Boruta 
method 
(Section 

5.4.2) 

Filters 
(Section 

5.4.1) 

Final 
decision 

C24 1 1 Selected 
D1 4 5 Selected 
D2 8 10 Selected 
D3 6 8 Selected 
D4 11 9 Selected 
D5 5 6 Selected 
D6 7 4 Selected 
D7 12 12 Selected 
D8 9 7 Selected 
D9 10 11 Selected 

D10 2 3 Selected 
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Variable 

The Boruta 
method 
(Section 

5.4.2) 

Filters 
(Section 

5.4.1) 

Final 
decision 

D25 3 2 Selected 
 

Table 5.9 Status and rank of the variables in the SOC training dataset using the RFE method, the Boruta method, 
and filters 

Variable 

The Boruta 
method 
(Section 

5.4.2) 

Filters 
(Section 

5.4.1) 

Final 
decision 

C22 3 5 Selected 
C23 4 3 Selected 
D11 10 8 Selected 
D12 5 7 Selected 
D13 9 10 Selected 
D14 1 1 Selected 
D15 8 6 Selected 
D16 2 2 Selected 
D17 6 4 Selected 
D20 7 9 Selected 

 

5.4.4 The final list of features 

5.4.4.1 List of selected features for the TEC dataset 

A comparison between different variable selection techniques performed in Sections 5.4.1, 

5.4.2, and 5.4.3 for the TEC dataset reveals that the result of the rankings achieved from filter 

methods is slightly different from the other two techniques (Table 5.7). However, there is a 

good agreement between the Boruta method and the RFE variable selection methods. 

According to Figure 5.4, while the method selects all the available 39 variables, it can be 

observed that with as low as 19 variables, a high level of accuracy is attainable. More precisely, 

with the top 19 variables identified using RFE plus Random Forests (Table 5.7), an accuracy of 

94% is achievable, while with all 39 variables, this value improves to 96% (Figure 5.4). Similar 

trends can be observed in Figure 5.6, where the top 17 features result in an accuracy of 90%, 

which is equal to the performance of all 28 variables selected by the method. Figure 5.7 also 

shows the same trend with the top 18 variables selected by the method. Hence, referring to 

these figures, and based on Table 5.7, a list of all top variables was developed. It resulted in the 

selection of 16 variables that were common between all three RFE methods used to develop 

Figures 5.4, 5.6, and 5.7. Then, those variables that were not rejected by any of the methods 

were selected (Table 5.7), which was the result of comparing RFE methods and the Boruta 
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method. It yields in the selection of 10 more variables, resulting in a total number of 26 variables 

to be used for the development of BSE-RPMs for predicting the technical reusability of building 

structural elements. The complete list of all selected variables are as follows: B3; B5; B6; B7; B8; 

B9; C1; C2; C3; C5; C6; C9; C10; C12; C15; C16; C17; C18; C19; C20; C25; C27; C28; D22; D23; 

D24. The selected independent variables are marked in Table 5.7. 

While the rejection of B4 (the technique used to recover the element) seems counterintuitive, 

looking at the answers provided by the respondents (Figure 4.6) reveals that only less than 10% 

of the elements were recovered through demolition and the remaining were recovered using 

deconstruction (80.6%) and component-specific recovery (6.9%). The rest were reused in-situ 

(1.4%) or were surplus components (1.4%). Moreover, among the components recovered 

through demolition, only one (1) was reusable, and the remaining were non-reusable. 

Therefore, the results of this research would be limited to load-bearing building components 

recovered using deconstruction technique or its variations such as component-specific 

recovery.  

5.4.4.2 List of selected features for the ECO dataset 

For the ECO dataset, Tables 5.5 and 5.8 and Figure 5.2 show a good agreement between all the 

observations. According to Table 5.5, the least important feature is D7 (transportation cost), 

and the most affecting variable is C24 (potential financial risks). This trend is observed in Figure 

5.2 and Table 5.8. Moreover, according to Figure 5.2, all the variables are relevant. Therefore, 

all the predictors listed in Table 5.8 are considered for the development of predictive models. 

5.4.4.3 List of selected features for the SOC dataset 

Analysing the results of variable selection for the SOC dataset reveals that, according to Figure 

5.3, all the features are necessary. Therefore, all predictors listed in Table 5.9 will be considered 

for developing the predictive models for the SOC dataset. 

5.5 Models development 

The process of selecting an appropriate method for developing a predictive model using 

machine learning techniques is of ample importance because there is not a unique best model 

available for all problems (James et al. 2017). This study intends to develop BSE-RPMs to 

estimate the technical, economic, and social reusability of the structural elements at the end-

of-life of a building with the highest possible accuracy. While accuracy is a driving metric in 

choosing a model, the interpretability of the selected model plays an important role, as well 

(Guidotti et al. 2018). It is because this study intends to provide an easy-to-understand model 
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the method to split (without replacement) (James et al. 2017). The lack of replacement in this 

process makes sure that the method does not pick a specific predictor repeatedly. This 

approach is highly advantageous because it makes sure that the bagged trees remain 

uncorrelated (James et al. 2017, Murphy 2012). Whereas without this limitation, there is a high 

chance that all the developed trees become highly correlated, which results in a small 

improvement in the variance of the final model, compared to a single tree (James et al. 2017). 

It is because, in the presence of an influential independent variable, there is a high chance that 

each tree chooses that strong predictor as its root node, resulting in a similar and highly 

correlated ensemble of trees (James et al. 2017). 

The RF method uses the ensemble of bagged trees to make predictions (James et al. 2017). 

While the way every single tree predicts the class of a new observation is like the DT method 

(Section 5.5.1.6) (James et al. 2017), the RF method predicts if a new structural element is 

reusable or non-reusable based on the class label with the highest number of records. 
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Table 5.12 Summary of the results of the TEC BSE-RPMs developed (the validation set approach method) 

Predictive 
model 

Type-I 
error 

Overall 
accuracy AUC 

High-
performance 

models 
KNN1 0.03 0.85 0.95 Yes 
LR* 0.28 0.78 0.81  
LDA 0.14 0.83 0.86  
QDA 0.07 0.88 0.96 Yes 
NB 0.24 0.71 0.82  
DT 0.10 0.74 0.76  
RF2 0.00 0.91 0.98 Yes 
AB 0.07 0.81 0.93  
BM 0.07 0.78 0.91  
ANN3 0.14 0.86 0.90  
GP 0.14 0.78 0.91  
PRL 0.21 0.81 0.84  
SVM4 0.07 0.90 0.97 Yes 
* The TEC-LR BSE-RPM did not converge. Hence, this model is 
excluded from further analysis. 
Hyperparameters (calculated using 70% of the dataset that 
was selected randomly): 
1 k = 6 
2 ntree = 500, mtry = 5, nodesize = 1 
3 Size = 9, Decay = 0.09 
4 Cost = 1.601470833, Sigma = 0.047078172 

 

For the ECO dataset, KNN, RF, ANN, and SVM have the highest performance among all other 

ECO BSE-RPMs (Table 5.13). Among these models, the KNN, RF, and ANN models make no false-

positive errors. Likewise, the RF model has the highest AUC. However, it is the ANN and SVM 

models that have the highest accuracy. According to Table 5.13, none of the high-performance 

models could be ranked the highest based on the considered metrics. 

Table 5.13 Summary of the results of the ECO BSE-RPMs developed (the validation set approach method) 

Predictive 
model 

Type-I 
error 

Overall 
accuracy AUC 

High-
performance 

models 
KNN1 0.00 0.86 0.96 Yes 
LR 0.21 0.75 0.81  
LDA 0.25 0.69 0.79  
QDA 0.21 0.76 0.83  
NB 0.32 0.69 0.77  
DT 0.25 0.78 0.80  
RF2 0.00 0.86 0.98 Yes 
AB 0.04 0.82 0.94  
BM 0.00 0.84 0.90  
ANN3 0.00 0.89 0.96 Yes 
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Predictive 
model 

Type-I 
error 

Overall 
accuracy AUC 

High-
performance 

models 
GP 0.07 0.78 0.86  
PRL 0.25 0.71 0.72  
SVM4 0.07 0.89 0.95 Yes 
Hyperparameters (calculated using 70% of the dataset 
that was selected randomly): 
1 k = 5 
2 ntree = 500, mtry = 3, nodesize = 1 
3 Size = 9, Decay = 0.08 
4 Cost = 322303.3297, Sigma = 0.000226155 

 

In the case of the SOC dataset, the models with the highest performance are RF, BM, and GP 

(Table 5.14). According to Table 5.14, among the best performing models, it is the RF model 

that has the highest performance considering all three metrics. 

Table 5.14 Summary of the results of the SOC BSE-RPMs developed (the validation set approach method) 

Predictive 
model 

Type-I 
error 

Overall 
accuracy AUC 

High-
performance 

models 
KNN1 0.06 0.79 0.95  
LR 0.11 0.77 0.76  
LDA 0.11 0.74 0.77  
QDA 0.11 0.91 0.97  
NB 0.22 0.85 0.97  
DT 0.33 0.77 0.88  
RF2 0.00 0.91 0.99 Yes 
AB 0.11 0.91 0.94  
BM 0.06 0.88 0.98 Yes 
ANN3 0.11 0.88 0.92  
GP 0.06 0.85 0.96 Yes 
PRL 0.17 0.85 0.85  
SVM4 0.11 0.94 0.97  
Hyperparameters (calculated using 70% of the dataset 
that was selected randomly): 
1 k = 8 
2 ntree = 500, mtry = 3, nodesize = 1 
3 Size = 8, Decay = 0.04 
4 Cost = 1.45e9, Sigma = 0.366348636 

 

In this section, and to elaborate on the results presented in Tables 5.12 to 5.14, the best 

performing model in the TEC dataset (the RF model) is further discussed. Other results could be 

found in Appendix F. 
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is used to observe the performance of a classifier with different threshold values and to decide 

which threshold value works the best for a classifier. The Y-axis of this graph shows the 

sensitivity or true positive rate (the number of correctly classified reusable items by a model 

divided by the total number of reusable components in the test dataset), and the X-axis shows 

the false positive or Type-I error rate. Then, for different values of threshold, these two metrics 

are calculated, and a graph is drawn by connecting the identified points on the X-Y plane (James 

et al. 2017). According to this figure, the threshold value of 0.5 (Section 5.5.1) works optimally 

for the classifier; hence, no need to alter it.  

5.6 Chapter summary 

Chapter 5 was focused on fulfilling the third and fourth objectives of this study. Following the 

results of the previous chapter, the final list of the reused structural elements, including their 

independent and dependent variables, were used to develop the BSE-RPMs. Initially, and to 

avoid biased predictions, the class imbalances in all datasets were addressed using the SMOTE. 

This measure yielded synthetically increasing the sample size in all three datasets without 

duplicating the observations. In the next stage, and to achieve the third objective of this study, 

advanced machine learning methods were used to select the applicable list of variables for 

developing the predictive models. This feature selection resulted in the omission of some of the 

independent variables. It is noteworthy that even after restricting to the listed variables in 

Section 5.4.4, the observations remained unique, and this practice did not result in any 

duplications in the TEC, ECO, and SOC datasets. 

In this study, thirteen different models were used to predict the technical, economic, and social 

reusability of building structural elements in the TEC, ECO, and SOC datasets, respectively. 

These models include KNN, LR, LDA, QDA, NB, DT, RF, BM, AB, ANN, GP, PRL, and SVM. One of 

the reasons for using various parametric and non-parametric models is because there is no 

single machine learning method suitable for all types of datasets. Moreover, constraints such 

as the limited number of observations in each dataset, and unawareness of the nature of the 

relationship between the predictors and the responses brought new dimensions to the 

challenge of selecting a proper machine learning method. Therefore, it was decided to study a 

wide range of machine learning methods to develop an optimum predictive model that fulfils 

the fourth objective of this research. 

In this chapter, to develop the predictive models, the validation set approach was used. 

Therefore, each of the newly developed datasets was split into a training and testing set with a 

70/30 split ratio. Next, the training datasets were used to develop the predictive models, 
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whereas the testing datasets were used to evaluate the performance of the fitted models in 

handling unseen data. In this research, the Type-I error rate, overall accuracy, and AUC with 

acceptable threshold values of 10% (maximum), 85% (minimum), and 90% (minimum) are 

considered to compare the models' performances and identify the best-performing ones. 

According to Table 5.12 and 5.14, the TEC-RF BSE-RPM and the SOC-RF BSE-RPM are the best 

models for the TEC and SOC dataset, respectively. For the ECO dataset, both ECO-RF BSE-RPM 

and ECO-ANN BSE-RPM perform optimally. 

During the process of model development, the Logistic Regression model (LR) did not converge 

in the TEC dataset, which will be excluded from the model selection process in Chapter 6. The 

entire process of model development using the validation set approach is presented in Figure 

5.15. 
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reusable will still go through recycling or down-cycling processes, which are still far better 

solutions than landfilling. 

In this study, following Holdnack et al. (2013), a maximum threshold of 10% is considered 

acceptable for the Type I error rate. Accordingly, for the TEC dataset, KNN, QDA, RF, AB, and 

SVM BSE-RPMs are eligible candidates on this metric (Table 6.1). Regarding the economic 

reusability, only KNN and RF BSE-RPMs are within the acceptable range (Table 6.3). And 

regarding the social reusability, KNN, RF, AB, BM, GP, PRL, and SVM fulfil the maximum 

allowable Type I error rate (Table 6.5). 

6.3.1.2 Model accuracy 

The accuracy of a predictive model to correctly identifying the reusability of the recovered 

building structural elements is of pronounced importance for the designers. In this study, the 

available datasets are approximately having an equal number of reusable and non-reusable 

observations. According to Table 5.1, a baseline model based on the portion of reusable and 

non-reusable building component elements can be developed for each of the datasets. A 

baseline model assigns the most frequent response (either reusable or non-reusable) for all 

observations. The baseline model for the TEC dataset has a 50% accuracy. It is because, if it is 

used to predict the technical reusability of the elements, only half of its predictions would be 

correct (based on Table 5.1, in the TEC dataset, the number of reusable and non-reusable 

components are equal). In the case of the ECO dataset, the baseline model always predicts non-

reusable because 51% of the elements are non-reusable, yielding an accuracy of 51%. And for 

the SOC dataset, the baseline model has 53% accuracy because it always predicts non-reusable 

for every observation (53% of the elements are non-reusable). Therefore, the accuracy of the 

predictive models should be far better than the baseline models for making the best practice 

BSE-RPMs reliable. 

In this research, a minimum threshold of 85% is considered acceptable for the predictive 

models' overall accuracy (see Tables 6.1, 6.3, and 6.5). Therefore, KNN (92%), QDA (91%), RF 

(96%), AB (87%), ANN (88%), and SVM (93%) BSE-RPMs for the TEC dataset fulfil the minimum 

threshold requirements on model accuracy (Table 6.1). Regarding the BSE-RPMs developed 

based on the ECO dataset, KNN (86%), RF (89%), AB (86%), BM (86%), ANN (86%), PRL (86%) 

and SVM (87%) are the acceptable models (Table 6.3). Moreover, RF (94%) and SVM (87%) are 

the only acceptable models for the SOC dataset (Table 6.5). 
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6.3.1.3 AUC 

While the overall accuracy of a model is an essential metric to choose a classifier, it is limited to 

a fixed threshold value (in this study equal to 0.5, see Section 5.5.1), hence not comprehensive. 

To overcome this barrier, the area under the ROC curve (AUC) (Section 5.5.2.9), which portrays 

the overall performance of a classifier based on all possible threshold values (James et al. 2017), 

is considered as another metric for model selection. 

In this study, the minimum acceptable value for the AUC is set to 90% (Section 5.5.2.9). As the 

result, KNN (98%), QDA (96%), RF (100%), BM (94%), AB (95%), ANN (93%), GP (92%), and SVM 

(98%) have high performance among all BSE-RPMs developed for the TEC dataset (Table 6.1). 

Moreover, KNN (93%), RF (98%), AB (92%), BM (90%), ANN (93%), GP (91%) and SVM (91%) fulfil 

the minimum performance requirement for the ECO dataset (Table 6.3). And finally, on the SOC 

dataset, KNN (92%), QDA (91%), RF (96%), AB (91%), BM (91%), GP (92%), SVM (94%) fulfil the 

threshold requirement on the AUC (Table 6.5). 

6.3.1.4 Model transparency 

The developed models in this study cover both parametric and non-parametric methods (Table 

5.10). These models have different levels of transparency, ranging from transparent models (LR, 

LDA, DT, and PRL) to hard-to-interpret (QDA) and black-box models (KNN, NB, RF, BM, AB, ANN, 

GP, and SVM). While it is preferable to choose a transparent model, in some cases, such models 

do not yield acceptable levels of accuracy in correctly classifying reusable and non-reusable 

elements, and the selection of a black-box model becomes inevitable. In the case of the latter, 

other tools, such as the sensitivity analysis and visualisation techniques introduced by (Cortez 

and Embrechts 2013), can be used to open a black-box model and make the results transparent. 

6.3.2 Best practice BSE-RPM for the TEC dataset (TEC BSE-RPM) 

Table 6.1 reports the summary of the results of a ten-fold CV used to assess the performance 

of the BSE-RPMs of the TEC dataset. As mentioned in Section 5.5.3, the TEC Logistic Regression 

(LR) BSE-RPM did not converge. Hence, this model is not considered. 

Table 6.1 Mean values of the metrics used to assess the performance of TEC BSE-RPMs (10-fold CV method) 

Predictive 
model 

Type-I 
error 

Overall 
accuracy AUC 

KNN 0.03 0.92 0.98 
LDA 0.18 0.81 0.90 
QDA 0.09 0.91 0.96 
NB 0.28 0.72 0.82 
DT 0.29 0.71 0.73 
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6.4 Improving the transparency of the selected best-practice models 

While the selected TEC-RF BSE-RPM, ECO-RF BSE-RPM, and SOC-RF BSE-RPM models in Sections 

6.3.2, 6.3.3, and 6.3.4 have high overall accuracy, high AUC, and low Type-I error rate, they lack 

transparency. It is because random forest models are categorised under black-box methods, 

and they cannot be interpreted easily (Breiman 2001). As discussed in Section 6.3, the 

transparency of the results of the selected predictive models is essential to encourage the 

stakeholders to employ the outcome of such models for assessing the reusability of building 

structural elements at the end-of-life of a building. Therefore, when such easy-to-understand 

models are not available, it is necessary to make the results of the selected models transparent. 

In this research, two techniques are used to improve the transparency of the selected models. 

First, the sensitivity analysis and visualisation techniques suggested by Cortez and Embrechts 

(2013) are employed to identify the importance of the variables and open the black box models. 

Next, using the rule extraction method suggested by (Deng 2014) and based on the results of 

the previous technique, a set of decision rules was produced to explain the ensemble of trees 

developed in the selected RF model. While both techniques fulfil the aim of this study, the latter 

provides a simple and understandable set of rules for the stakeholders to estimate the 

reusability of building structural elements at the end-of-life of a building. 

According to Cortez and Embrechts (2013), to perform the sensitivity analysis (SA), a sensitivity 

method needs to be identified first. A sensitivity method performs by varying a given reusability 

factor from its minimum to maximum possible values while conditioning the remaining 

independent variables and observations (Cortez and Embrechts 2013). For the nominal features 

(B3 and B5), the sensitivity method alters the values of the variables based on the variable levels 

(B3 has three levels, and B5 has five levels, see Section C.2, Appendix C). For the categorical 

features, following Cortez and Embrechts (2013), the sensitivity method varies the value of the 

predictors from one to five in seven intervals (see Table 4.1 for the Likert scale used). As 

recommended by Cortez and Embrechts (2013), in this research, data-based SA (DSA) was used 

as the sensitivity method. The DSA method randomly selects several samples from the dataset 

and alters the values of an independent variable for all data points and records the responses 

while not changing other features (Cortez and Embrechts 2013). This process is performed for 

all independent variables (reusability factors) in the TEC, ECO, and SOC datasets. The sensitivity 

responses identified using the DSA method can be used to determine the feature importance 

using a sensitivity measure (Cortez and Embrechts 2013). This research uses the Average 
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Figure 6.2 Bar plot with DSA and AAD relative feature importance for the TEC dataset based on the TEC-RF BSE-RPM 

In the next stage, and to present how different values of a feature affect the technical reusability 

of building structural elements on average, a set of variable effect characteristic (VEC) curves 

are plotted for the identified fourteen variables. A VEC curve plots the average impact of 

different values of a reusability factor (X-axis) on the probability that a structural element is 

reusable (Y-axis). 

Figure 6.3 shows the sensitivity analysis of the top-four factors based on Figure 6.2. According 

to Figure 6.3, the reusability probabilities of a building's structural elements improves when the 

values of these variables increase. 
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Figure 6.3 The impact of different values the features on the reusability probabilities of the elements (sensitivity 

analysis) for D23, D24, C28, and C27 (the top-four variables in TEC-RF BSE-RPM) 

Figure 6.4 shows the impact of different values of the listed features on the technical reusability 

of building structural elements. Because B3 (age of the building) and B5 (number of existing 

connections) are nominal variables, four separate graphs are drawn for clarity. While the 

decrease in the reusability probability due to reduced effects of the damage due to post-

production modifications (variable C15) looks counterintuitive, the observed behaviour should 

not be evaluated in solitude, and the impact of the interactions with other independent 

variables needs to be considered, as well. It is noteworthy that in performing the sensitivity 

analysis for a feature, the value of other variables is not altered. Whereas, in real cases, the 

values of other variables might change due to the interdependencies of the features. The same 

applies to B5 (number of existing connections) and B3 (age of the building), as well. In the case 

of the former, it seems that by increasing the number of existing connections, the reusability 

decreases. The above observation is only correct for options three and four on the 

questionnaire survey, where the number of existing connections increases from five to ten. 

However, reusability improves for a higher number of connections, which is again 

counterintuitive. Notwithstanding, it can be concluded that while the limited number of existing 

connections is favourable, this factor cannot be considered on its own, and the interaction with 

other variables should be considered. The above fact applies to all other variables, as well. 
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Figure 6.4 The impact of different values the features on the reusability probabilities of the elements (sensitivity 

analysis) for B5, C25, B3, and C15 (TEC-RF BSE-RPM) 

 

Figure 6.5 The impact of different values the features on the reusability probabilities of the elements (sensitivity 
analysis) for B8, C6, C12, and C16 (TEC-RF BSE-RPM) 
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Figure 6.6 The impact of different values the features on the reusability probabilities of the elements (sensitivity 
analysis) for C20 and B7 (TEC-RF BSE-RPM) 

Figures 6.5 and 6.6 follow the same trend observed in Figure 6.3. However, as discussed earlier, 

none of these features should be considered independently for estimating the technical 

reusability of building structural elements. This effect can be shown by drawing the VEC curves 

while showing the range of the sensitivity at each point. For this purpose, the most suitable 

feature (D23, the mechanical properties of the component) and the least significant variable 

(B7, the future deployment of the element, identified based on a minimum 2% threshold for 

the relative importance) are plotted in Figure 6.7. According to this figure, the average VEC 

curve for B7 is nearly flat (the diamonds on the curve). Moreover, while there is a leap from 

three to four for D23, the rest of the curve remains almost flat. However, the range of the 

sensitivity is high for both variables, as shown by the box plots in Figure 6.7. The above 

observation acknowledges that the technical reusability of the structural elements of a building 

depends on the interactions between the predictors, as well (Cortez and Embrechts 2013). 
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Seq. Code Question / Options Selected 
answer 

Very high High Moderate Low Very low 

10 C27 

The negative impact of a potential problem with collateral 
warranties. 

 1 2 3 4 5 
Very high High Moderate Low Very low 

11 C28 

The negative impact of the presence of hazardous, banned or 
contaminating coatings. 

 1 2 3 4 5 
Very high High Moderate Low Very low 

12 D23 

How do you expect that matching the design of the new building 
with the strength of the recovered element affects its reusability? 

 1 2 3 4 5 
Very 

negatively Negatively No real 
effect Positively Very 

positively 

13 D24 

How do you expect that challenges in designing with the reused 
element affect its reusability? 

 1 2 3 4 5 
Very 

negatively Negatively No real 
effect Positively Very 

positively 
 

For further details about how different steps of this method perform, please refer to (Deng 

2014). Script E.24 (Appendix E) is used to extract the rules from the TEC-RF BSE-RPM. 

6.4.2 Improving the transparency of the ECO-RF BSE-RPM 

Figure 6.8 shows the results of the feature importance for the ECO-RF BSE-RPM. In this figure, 

the X-axis shows the relative importance of the variables, and the Y-axis shows the features. 

Based on Figure 6.8, all the variables are relevant and have relative importance above 0.02. This 

observation is in line with the results of the variable selection for the ECO dataset (Section 5.4). 

It results in a total number of twelve independent variables (Figure 6.8). 

In the next stage, and to present how different values of a feature affects the economic 

reusability of building structural elements on average, a set of variable effect characteristic 

(VEC) curves are plotted for all predictors. 

Figures 6.9 to 6.11 show the sensitivity analysis of the reusability factors based on Figure 6.8. 

According to these figures, in most cases, the economic reusability probabilities of a building's 

structural elements improves when the values of these variables increase. However, as 

discussed in Section 6.4.1, none of these features should be considered independently for 

estimating the economic reusability of building structural elements. 
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Figure 6.8 Bar plot with DSA and AAD relative feature importance for the ECO dataset based on the ECO-RF BSE-

RPM 

Figure 6.9 shows the sensitivity analysis of the top-four reusability factors (D10, C24, D25, D8) 

based on Figure 6.8. According to this figure, the economic reusability probabilities of a 

building's structural elements improves when the values of these variables increase from one 

(the highest negative impact) to five (the most positive effect). For the cash flow (D10), Figure 

6.9 reveals that if it is necessary to purchase the required recovered elements early on and as 

soon as they are available, it could negatively affect the project due to additional costs such as 

the need to store the components for an extended period. Regarding C24, if the reuse of load-

bearing building components reveals considerable financial risks as the result of extra efforts to 

find the required elements, changes in the original design to match with the properties of the 

recovered components, and other possible additional costs, reuse become economically 

unattractive. While a strict financial risk assessment at the beginning of any project is essential, 

the availability of financial incentives to recover and reuse building structural elements could 

overcome this barrier. Regarding the process to allocate and purchase the required components 

(D25), Figure 6.9 reveals that the increased difficulty in this process harms the economic 

reusability of the components. Eventually, Figure 6.9 shows that the increased cost of labour 

 

0.25 
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(D8) could negatively affect the reuse rates because it could increase the overall project 

expenses.  

 

Figure 6.9 The impact of different values the features on the reusability probabilities of the elements (sensitivity 
analysis) for D10, C24, D25, and D8 (the top-four variables in ECO-RF BSE-RPM) 
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Figure 6.10 The impact of different values the features on the reusability probabilities of the elements (sensitivity 
analysis) for D9, D1, D5, and D2 (ECO-RF BSE-RPM) 
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Figure 6.11 The impact of different values the features on the reusability probabilities of the elements (sensitivity 
analysis) for D3, D6, D4, and D7 (ECO-RF BSE-RPM) 

According to Figure 6.11, the higher values of D4 (cost of refurbishment) is associated with a 

decrease in the economic reusability of the structural elements of a building. However, this 

variable has the least importance among all other variables (Figure 6.8). Moreover, as discussed 

in Section 6.4.1, the interactions between variables should be considered for interpreting the 

results. Hence, to show the interdependency of the economic reusability factors, the most 

suitable feature (D10) and the least significant variable (D4) are plotted in Figure 6.12. According 

to this figure, the range of sensitivity for D4 is higher than D10 at all values. It acknowledges 

that D4 has much higher interdependency with other variables than D10. Consequently, Figure 

6.12 shows that the economic reusability of the structural elements of a building depends on 

the interactions between the predictors, as well (Cortez and Embrechts 2013). 
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Table 6.10 is developed based on the training dataset defined in Section 5.3. While the above 

set of rules provides an easy-to-understand and implement collections of conditions, it is 

essential to make sure that the resulting predictions on the unseen data satisfy the minimum 

requirements set in Section 6.3.1. Therefore, the corresponding testing dataset (unseen 

observations by the learner) was used to evaluate the performance of the learner presented in 

Table 6.10. Table 6.11 shows the results of the classifications made by this learner on the testing 

dataset (see Section 5.5.2.1). 

Table 6.11 The confusion matrix of the learner presented in Table 6.10 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 26 2 
Actual reusable (1) 8 19 

 

Based on Table 6.11, the Type-I error rate is equal to 7.1%, and the overall accuracy is equal to 

82%. Therefore, while this learner satisfies the minimum performance requirements defined in 

Section 6.3.1.1, its accuracy is slightly lower than 85%, which means it may classify an 

economically reusable component as non-reusable. Nonetheless, the learner in Table 6.10 is 

transparent and easy-to-understand and can be easily implemented in practice. 

In Table 6.10, the rules are ordered, and they should be followed sequentially to find a condition 

that matches the predictor values to determine the economic reusability of a structural 

element. According to Table 6.10, D2, D7, and D9 are not available in any of the rules. Hence, a 

practitioner may not need to collect data on these variables to use the learner. Table 6.12 

summarises the survey that the practitioners need to perform before being able to use the 

learner in Table 6.10. In Table 6.12, the variable codes (Code) are kept equal to the original 

survey (Appendix C, Section C.2) to maintain uniformity. 

Table 6.12 The required survey for assessing the economic reusability of a structural element using the learner in 
Table 6.10 

Seq. Code Question / Options Selected 
answer 

1 C24 
The negative impact of the potential financial risks. 

 1 2 3 4 5 
Very high High Moderate Low Very low 

For questions 2 to 9, please assess how do the following factors might affect the economic 
reusability of the structural element? 

2 D1 
The purchasing price / the analysis cost of an existing structure for 
reuse  

1 2 3 4 5 
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Seq. Code Question / Options Selected 
answer 

Very 
negatively Negatively No real 

effect Positively Very 
positively 

3 D3 

Cost of testing 

 1 2 3 4 5 
Very 

negatively Negatively No real 
effect Positively Very 

positively 

4 D4 

Cost of refurbishment (sandblasting, treatment, etc.) 

 1 2 3 4 5 
Very 

negatively Negatively No real 
effect Positively Very 

positively 

5 D5 

Cost of design with the reused element 

 1 2 3 4 5 
Very 

negatively Negatively No real 
effect Positively Very 

positively 

6 D6 

Storage cost 

 1 2 3 4 5 
Very 

negatively Negatively No real 
effect Positively Very 

positively 

7 D8 

Cost of labour 

 1 2 3 4 5 
Very 

negatively Negatively No real 
effect Positively Very 

positively 

8 D10 

Cash flow (need to purchase the element early, etc.) 

 1 2 3 4 5 
Very 

negatively Negatively No real 
effect Positively Very 

positively 

9 D25 

Sourcing/procurement process 

 1 2 3 4 5 
Very 

negatively Negatively No real 
effect Positively Very 

positively 
 

For further details about how different steps of this method perform, please refer to (Deng 

2014). Script E.24 (Appendix E) is used to extract the rules from the ECO-RF BSE-RPM. 

6.4.3 Improving the transparency of the SOC-RF BSE-RPM 

Figure 6.13 shows the results of the feature importance for the SOC-RF BSE-RPM. In this figure, 

the X-axis shows the relative importance of the variables, and the Y-axis shows the features. 

Based on Figure 6.13, all the variables are relevant and have relative importance above 0.02. 

This observation is in line with the results of the variable selection for the SOC dataset (Section 

5.4). It results in a total number of ten independent variables (Figure 6.13). 
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In the next stage, and to present how different values of a feature affects the social reusability 

of building structural elements on average, a set of variable effect characteristic (VEC) curves 

are plotted for all predictors (Figures 6.14 to 6.16). 

Figure 6.14 shows the sensitivity analysis of the top-four features in the SOC dataset. For D16, 

C22, and D15, the higher values of the variables are associated with an improvement in social 

reusability. Whereas for C23, this increase has a counter effect. Notwithstanding, as discussed 

in Section 6.4.1, this variable cannot determine the social reusability of a component on its own, 

and the interactions with other variables should be considered, as well. For instance, according 

to Table 6.13, C23 is positively correlated with C22 and has a negative correlation with all other 

variables. While Table 6.13 clearly shows the linear interdependencies among the variables, it 

does not mean that the real relationship between predictors is linear. The result of the 

parametric models (Table 6.5) shows that the non-linear classifiers outperform the linear 

methods, an indication that the actual relationship between the predictors and the outcome is 

non-linear. 

 
Figure 6.13 Bar plot with DSA and AAD relative feature importance for the ECO dataset based on the SOC-RF BSE-

RPM 
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Table 6.13 Correlation between features in the SOC dataset (Pearson's) 

 C23 D11 D12 D13 D14 D15 D16 D17 D20 
C22 0.563** -0.052 -0.044 -0.015 -0.091 -0.014 -0.013 0.048 -0.157 
C23 - -0.184 -0.161 -0.091 -0.21* -0.097 -0.221* -0.044 -0.15** 

D11  - 0.816** 0.645** 0.685** 0.291** 0.328** 0.520** 0.386** 

D12   - 0.704** 0.722** 0.434** 0.392** 0.535** 0.398** 

D13    - 0.649** 0.443** 0.59** 0.484** 0.534** 

D14     - 0.432** 0.334** 0.573** 0.501** 

D15      - 0.379** 0.445** 0.492** 

D16       - 0.327** 0.518** 

D17        - 0.398** 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
 

 

 
Figure 6.14 The impact of different values the features on the reusability probabilities of the elements (sensitivity 

analysis) for D16, C23, C22, and D15 (the top-four variables in SOC-RF BSE-RPM) 
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Figure 6.15 The impact of different values the features on the reusability probabilities of the elements (sensitivity 

analysis) for D14, D20, D17, and D13 (SOC-RF BSE-RPM) 

 

Figure 6.16 The impact of different values the features on the reusability probabilities of the elements (sensitivity 
analysis) for D11 and D12 (SOC-RF BSE-RPM) 
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Based on Table 6.15, there is no Type-I error, and the overall accuracy is equal to 91%. 

Therefore, this learner satisfies the minimum performance requirements defined in sections 

6.3.1.1 and 6.3.1.2. Moreover, the learner in Table 6.14 is transparent and easy-to-understand 

and can be easily implemented in practice. 

In Table 6.14, the rules are ordered, and they should be followed sequentially to find a condition 

that matches the predictor values to determine the social reusability of a structural element. 

Table 6.16 summarises the survey that the practitioners need to perform before being able to 

use the learner in Table 6.14. In Table 6.16, the variable codes (Code) are kept equal to the 

original survey (Appendix C, Section C.2) to maintain uniformity. 

Table 6.16 The required survey for assessing the social reusability of a structural element using the learner in Table 
6.14 

Seq. Code Question / Options Selected 
answer 

1 C22 

The potential liability risks related to reusing the recovered 
structural elements. 

 1 2 3 4 5 
Very high High Moderate Low Very low 

2 C23 

The potential health and safety risks related to reusing the 
recovered structural elements.  

1 2 3 4 1  
Very high High Moderate Low Very high  

For questions 3 to 10, please assess how do the following factors might affect the social 
reusability of the structural element? 

3 D11 

Perception of the client/top management team about the element 

 1 2 3 4 5 
Very 

negatively Negatively No real 
effect Positively Very 

positively 

4 D12 

Perception of the designers about the element 

 1 2 3 4 5 
Very 

negatively Negatively No real 
effect Positively Very 

positively 

5 D13 

Perception of the builders/contractors about the element 

 1 2 3 4 5 
Very 

negatively Negatively No real 
effect Positively Very 

positively 

6 D14 

Perception of the end-users (when it is not the client) about the 
element 

 1 2 3 4 5 
Very 

negatively Negatively No real 
effect Positively Very 

positively 

7 D15 

Perception of the stockist about the element 

 1 2 3 4 5 
Very 

negatively Negatively No real 
effect Positively Very 

positively 
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Figure 6.17 Instructions for using the learners developed in Tables 6.7, 6.10, and 6.14 

Figure 6.18 presents an example of using these learners for predicting the technical reusability 

of the structural elements at the end-of-life of a building. It is noteworthy that the structural 

component presented in this example is the result of a real survey that was received after the 

development of the predictive models in this study. Hence, it was not used for training or 

performance evaluation of the predictive models. This component was technically reusable 

Start 

Perform a building survey. Make a list of all the 
structural elements in the building. Identify all the 

necessary inputs to the model (Based on Tables 6.9, 
6.12 and 6.16). 

For each of the structural 
elements (or groups of similar 

components), perform the 
applicable surveys based on 
Tables 6.9, 6.12, and 6.16. 

Based on the 
applicable learners 
in Tables 6.7, 6.10, 

and 6.14, is the 
element reusable? 

Proceed 
with 
reuse 

Follow other 
waste 

treatment 
options 

End 

Yes No 
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based on the confirmation of the respondent. According to Figure 6.18, the learner predicts 

that the element is reusable, which agrees with the real status of the component. 

 
Figure 6.18 An example of using the learner presented in Table 6.7 for predicting the technical reusability of a 

timber beam 

6.6 Technical reusability factors 

Based on Figure 6.2, the most important factor affecting the reusability of the building structural 

elements is the mechanical properties of the component (D23). This observation is in line with 

the attempts of some researchers in estimating the mechanical properties of the load-bearing 

components as an indicator of reusability (Fujita and Masuda 2014, Fujita and Kuki 2016, Cavalli 

et al. 2016). 

The next important variable is the other design challenges observed by the stakeholders (D24). 

In the literature, these challenges are identified as integrating reused and new components into 

the new building (Gorgolewski 2008), need for flexibility in the design (Gorgolewski 2008), and 

overdesigned structures due to the available supply (Brütting et al. 2019). 

The third variable affecting the reusability of building structural elements is the presence of 

hazardous, banned or contaminating coatings (C28). This variable has been reported in various 

articles in the literature including (Rameezdeen et al. 2016, Tatiya et al. 2017, Tingley et al. 

A building is at its end-of-life. The developers plan to deconstruct 
the building. They decide to reuse as many structural elements in 

the new development as possible. Therefore, it is essential to 
check the technical reusability of the elements first. 

For a timber beam, the following details 
are collected using the survey in Table 9.9 

B3 = 5; B5 = 2; B7 = 5; B8 = 5; C6 = 5; C12 = 
5; C15 = 5; C16 = 3; C20 = 4; C27 = 4; C28 = 

4; D23 = 2; D24 = 3 

According to Table 6.7, rule number 10 is 
the first rule that applies to this 

component. Hence, the element is 
technically reusable. 
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2017). If such coatings are present on the structural elements, the chance for recovery and 

reuse decreases drastically. As a solution, and to overcome this barrier in new buildings, Basta 

et al. (2020) proposed a reusable fireproofing system to promote the reusability of the building 

structure. 

According to Figure 6.2, the fourth most important barrier is a potential problem with collateral 

warranties. Surprisingly, this barrier was not observed by other researchers. However, 

according to Addis (2006), issues related to the performance of the recovered structural 

element should be resolved early to avoid a problem with collateral warranties. 

6.7 Economic reusability factors 

According to Figure 6.8, the most important economic factors affecting the reusability of the 

structural components of a building is the need to purchase reused elements early in the 

project, which can have cash flow implications. This observation is in line with (Gorgolewski 

2008, Gorgolewski et al. 2008). According to Gorgolewski et al. (2008), the need to purchase 

early on requires the client to allocate resources and can increase the cost of storage. 

The second most important factor, based on Figure 6.8, is the potential financial risks. According 

to the literature (Rameezdeen et al. 2016, Pun, Liu, and Langston 2006), these potential 

financial risks might be the result of other variables such as deconstruction, transportation, and 

storage costs (Dantata, Touran, and Wang 2005, Chileshe, Rameezdeen, and Hosseini 2015, 

Yeung, Walbridge, and Haas 2015, Tingley et al. 2017, Rose and Stegemann 2018, Dunant et al. 

2018, Tatiya et al. 2017). As discussed in Section 2.4.2, a strict financial risk assessment at the 

beginning of any project with reused structural elements is then necessary. As shown in Figure 

6.9, if these risks are low, there is a higher chance for reuse. 

The third most important economic factor is the sourcing/procurement process. This factor has 

been continuously reported in the literature as one of the main factors affecting reuse (Section 

2.3.2). According to Section 2.4.2, this factor is categorised under the supply chain level, and it 

is observed that there is a significant correlation between the market and cost. If an established 

market for the reused structural elements is not available (Shaurette 2006, Gorgolewski 2008, 

Gorgolewski et al. 2008, Dunant et al. 2018), the design team need to put extra efforts to 

allocate the desired element, which in turn can increase the overall cost of the project 

(Gorgolewski et al. 2008). According to Figure 6.9, the reusability of building components 

increases if the difficulty in sourcing decreases. 
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models. The result was choosing random forest models for the technical, economic, and social 

aspects of this research (Section 6.3). 

The selected TEC-RF BSE-RPM, ECO-RF BSE-RPM, and SOC-RF BSE-RPM outperform all other 

models. However, since they are known as black boxes, they lack transparency. Therefore, to 

improve clarity, this research opened the selected black-box models in two ways (Section 6.4). 

First, the models were opened using advanced sensitivity analysis and visualisation techniques. 

Using these methods, the author identified the relative importance of the features and 

demonstrated the effect of different values of the features on the reusability of the structural 

components. Next, the author used the results of the previous stage and developed a set of 

easy-to-understand rules so that the stakeholders could use them as a guideline to identify the 

technical, economic, and social reusability of these elements. The researcher then evaluated 

the performance of the developed learners (Tables 6.7, 6.10, and 6.14) and concluded that they 

produce reliable predictions. Eventually, the author revised the original survey (Appendix C.2) 

and produced three new questionnaires that stakeholders can use to gather information for 

using the developed learners (Tables 6.9, 6.12, and 6.16 for the technical, economic, and social 

aspects of this research).  
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This research took a further step and, for the first time, developed a series of tools that can be 

used by building experts to evaluate if a structural element is reusable from technical, 

economic, and social perspectives. While these tools perform effectively on the unseen 

observations, it is essential to utilise them in real case-study construction projects to evaluate 

their accuracy in an attempt to fine-tune them as future research work. 

This research concludes that the complex interdependencies of factors affecting reuse cause a 

high level of uncertainty about the feasibility of reusing load-bearing building structural 

components, which hampers the widespread adoption of reuse. Notwithstanding, this research 

unveils that by using the probability theory foundations and combining it with advanced 

supervised machine learning methods, it is possible to develop tools that could reliably estimate 

the reusability of these elements based on affecting variables.  
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Appendix A  The complete list of reusability factors 

A.1 Reuse drivers identified during the systematic literature review (Chapter 2) 

 

Table A-1 The complete list of identified reuse drivers (Table 2.1) 

Category Sub-category Driver Reference 
(sequence 
number in 
Table 2.1) 

Economic Cost Access to finance to offset additional costs 12, 49 
Economic Cost Deconstruction costs less than demolition 43 
Economic Cost Increased cost of landfilling 5, 12, 41, 42 

Economic Cost In-situ reuse of the reused elements 
4, 11, 12, 21, 
59 

Economic Cost 
Low labour cost due to reusing the 
modules of the structural systems 54 

Economic Cost 
Low labour cost due to using custom 
plates and reusing the existing bolt holes 54 

Economic Cost Low price of new steel and scrap 59 

Economic Cost 

Lower cost of deconstruction compared to 
demolition due to low cost of manual 
labour and high demand for demolition 
products 14 

Economic Cost Lower cost of reused elements 
1, 4, 11, 14, 33, 
47, 55, 62 

Economic Cost 
Savings due to the purchase of fewer new 
steel sections 36 

Economic Cost 
Sourcing reused material from nearby 
locations 11, 31 

Economic Market 
High demand for reused building 
components 4 

Economic Market Supporting the growth of reuse market 49 
Economic Market Well-established reuse market 14, 33 

Economic 
Value for 
money 

Increased profit as the result of decreased 
CDW sent to landfill 7 

Economic 
Value for 
money 

Increased revenue from reused elements 
resale 

4, 5, 7, 14, 17, 
19, 30, 33, 36, 
47, 52, 55, 56, 
62 

Environmental 
Energy and 
GHG 

Decrease in embodied energy and carbon 
of construction 

2, 4, 20, 23, 25, 
26, 30, 33, 45, 
46, 48, 49, 50, 
51, 52, 54, 60, 
61, 62, 63, 64 

Environmental 
Preservation of 
resources 

Decrease in the amount of waste disposed 
in the landfills 20 

Environmental 
Preservation of 
resources Decrease in the use of virgin materials 

2, 16, 24, 26, 
30, 49 
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Category Sub-category Driver Reference 
(sequence 
number in 
Table 2.1) 

Social Awareness 
Increased awareness of the full benefits of 
reuse among the stakeholders 1, 13 

Social Perception 
Positive perception of contractors about 
reuse 18 

Social Sustainability 
Impact of society's environmental 
concerns 42 

Social Trust 
Informality and good relationship among 
the stakeholders can enhance reuse 8, 14, 39 

Social Willingness 
Client willingness to integrate reused 
elements 

8, 11, 12, 21, 
29, 47, 59 

Social Willingness 
Contractor willingness to integrate reused 
elements 

11, 18, 39, 47, 
55 

Social Willingness 
Design team willingness to integrate 
reused elements 

11, 12, 37, 47, 
49, 59 

Social Willingness Unique appearance of reused elements 62 

Technical Deconstruction 
Deconstruction technique can enhance 
the chance for reuse 

6, 7, 10, 11, 17, 
19, 24, 28, 31, 
34 

Technical Deconstruction 

Use of advanced construction techniques 
(e.g. pre-fabrications for installation) 
increases the reuse rate 22, 40 

Technical 
Design 
challenges 

Durability of the recovered building 
component 51 

Technical 
Design 
challenges 

Proper estimation of the required size and 
lengths at the beginning of the design 
phase 11 

Technical 
Design 
challenges 

Use of the reused structural elements to 
support similar loads 11, 12, 31 

Technical Information 

Availability of information about 
characteristics, details, certificates and 
drawings of the reused structural 
elements 

11, 12, 15, 31, 
51 
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A.2 Reuse barriers identified during the systematic literature review (Chapter 2) 

 

Table A-2 The complete list of identified reuse barriers (Table 2.2) 

Category Sub-category Driver Reference 
(sequence number 
in Table 2.2) 

Economic Cost Cost of insurance for reused materials 38 
Economic Cost Cost of marketing for reused elements 4 
Economic Cost Cost of sorting for reused elements 12, 32 

Economic Cost Cost of testing for the reused elements 
10, 29, 31, 32, 38, 
46 

Economic Cost 
Deconstruction costs more than 
demolition 

4, 8, 25, 29, 38, 
45, 46 

Economic Cost 
Extra effort by design team to find reused 
components 9, 31 

Economic Cost 
Extra effort required for 
deconstruction/reuse 9, 25, 32 

Economic Cost 
Extra time required for treatment and 
fabrication of the salvaged components 37, 46 

Economic Cost Higher cost of reused elements 
7, 25, 32, 35, 38, 
46 

Economic Cost 
Impact of access to the building on 
deconstruction cost 36 

Economic Cost 
Impact of complexity of the building 
design on deconstruction cost 36 

Economic Cost 
Impact of location of the building on 
deconstruction cost 36 

Economic Cost 

Increased cost due to the need for 
treatment/modification of the salvaged 
components 

2, 12, 15, 27, 31, 
46 

Economic Cost 
Increased cost of design with the reused 
elements 9, 10, 37 

Economic Cost 
Increased cost of fabrication of the reused 
materials 37, 38, 46 

Economic Cost Increased labour cost 

3, 4, 6, 7, 9, 32, 
34, 38, 39, 44, 45, 
46, 48 

Economic Cost Increased storage cost 
6, 8, 9, 10, 11, 29, 
31, 34, 37, 38, 46 

Economic Cost Increased transportation cost 

8, 9, 10, 11, 23, 
29, 31, 32, 34, 35, 
44, 46 

Economic Cost Lower cost of landfilling 8, 15, 32, 35, 42 

Economic Cost 
Need to purchase reused elements early 
in the project 9, 10 

Economic Cost Potential financial risks 6, 32 

Economic Cost 
Recycling is preferred to reuse due to 
market conditions 

21, 27, 29, 38, 39, 
49 
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Category Sub-category Driver Reference 
(sequence number 
in Table 2.2) 

Organisational Management 
Lack of a decision-making framework for 
reuse 29 

Organisational Management 

Lack of cooperation with demolition 
contractors to jointly recover materials 
from construction sites 49 

Organisational Management 

Lack of coordination between the owners 
of the demolition site and the new 
building 46 

Organisational Management 
Lack of integration of reuse in the design 
process of the new projects 45 

Organisational Management 
Lack of ownership due to too many 
players 16 

Organisational Management Lack of systems thinking 45 

Organisational Management 
Uncertainty about the timely availability 
of desired reused elements 9, 25 

Regulatory Compliance 
Change in the applicable design norms 
(e.g. room height, fire, stress, etc.) 8, 27 

Regulatory Compliance 
Existing codes, standards, and procedures 
do not consider component reuse 10, 27, 32, 38 

Regulatory Compliance 
Existing codes, standards, and procedures 
do not mandate component reuse 49 

Regulatory Compliance 
Existing codes, standards, and procedures 
do not mandate deconstruction 49 

Regulatory Compliance 
Existing regulations do not support 
deconstruction 32 

Regulatory Compliance Existing regulations do not support reuse 

10, 18, 19, 25, 27, 
28, 32, 33, 37, 38, 
45, 48 

Regulatory Compliance 
Inconsistency and lack of coordination 
among the regulatory bodies 32, 35 

Regulatory Compliance 
Lack of government control for effective 
implementation of existing regulations 11 

Regulatory Compliance Lack of government support 33, 35 

Regulatory Compliance 

Lack of guidance, knowledge and 
information sharing about C&DW 
management 11, 42 

Regulatory Compliance Lack of insurance for reused elements 37 

Regulatory Compliance 
Lack of quality certificates for the reused 
element 2, 6, 8, 27, 33 

Regulatory Compliance 
Lack of standardisation for reused 
components 27 

Regulatory Compliance 
Lack of standards to certify the quality of 
reused elements 

2, 7, 12, 25, 37, 
38, 42 

Regulatory Compliance 
Lack of traceability and certification for 
reused elements 37, 38 

Regulatory Compliance Need for CE marking 37, 38 

Regulatory Compliance 
PI insurance in case of using reused 
elements 37, 38 
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Category Sub-category Driver Reference 
(sequence number 
in Table 2.2) 

Regulatory Compliance 

Regulations do not allow storage of 
salvaged material and consider them as 
waste 32 

Regulatory Incentive 
Lack of incentives for component reuse in 
environmental assessment methods 38 

Regulatory Incentive Lack of incentives for waste minimisation 16 

Regulatory Incentive 
Lack of regulatory/financial incentives to 
promote deconstruction 33, 35 

Regulatory Incentive 
Lack of regulatory/financial incentives to 
promote reuse 29, 33, 38, 45, 49 

Social Awareness 
Lack of awareness about reused elements 
across the supply chain 6, 38 

Social Awareness 
Lack of awareness about the 
deconstruction risks and challenges 32, 33 

Social Awareness 
Lack of awareness of the full benefits of 
deconstruction among the stakeholders 25, 32, 33 

Social Awareness 
Lack of awareness of the full benefits of 
reuse among the stakeholders 10, 27, 33 

Social Perception 

Demolition is preferred to deconstruction 
due to the perceived economic and 
scheduling reasons. 10 

Social Perception 
Negative perception of contractors about 
reused elements 7, 10 

Social Perception 
Negative perception of the clients about 
reused elements 11, 25, 37, 45 

Social Perception 
Negative perception of the designers 
about reuse 10 

Social Perception 
Negative perception of the stakeholders 
about reused elements 

1, 3, 25, 27, 32, 
35, 37, 38, 47 

Social Perception 
Negative perception of the supervisors 
about reused elements 25 

Social Perception 
Reused structural elements are not 
visually attractive 24, 38 

Social Risk 
Inequality in the distribution of risk among 
the stakeholders 46 

Social Risk 
Lack of confidence in the quality of reused 
components 30, 35, 46 

Social Risk Liability risk due to informality and trust 11 
Social Risk Potential health and safety risks 3, 27, 32 

Social Risk 
Risks associated with reuse (liability, fear, 
etc.) 

38, 37, 25, 10, 7, 
32 

Social Sustainability 

Unsatisfactory working environment 
during the treatment of the reused 
elements 3, 12 

Social Trust 
Lack of trust to the supplier of reused 
elements 37, 46 

Social Willingness 
Construction sector inertia/resistance 
against reuse 10, 24, 32, 38, 49 
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Category Sub-category Driver Reference 
(sequence number 
in Table 2.2) 

Technical 
Design 
challenges Design with long spans 9 

Technical 
Design 
challenges 

Difference in the loading requirements of 
the old and the new buildings 9 

Technical 
Design 
challenges 

Difficulty in designing with reused 
elements 9, 23, 38, 43 

Technical 
Design 
challenges 

Difficulty in reusing the elements due to 
the short length 43 

Technical 
Design 
challenges 

Integration of the reused and new 
elements in the new structure 10, 23 

Technical 
Design 
challenges 

Lower quality of reclaimed products 
compared to new 11, 24, 36 

Technical 
Design 
challenges Need for the flexibility in the design 9, 10 

Technical 
Design 
challenges 

Old spans do not match new design 
features 27 

Technical 
Design 
challenges 

Overdesigned structures due to the 
available supply 9, 43 

Technical 
Design 
challenges 

Reused elements exposed to weather 
conditions 8, 27 

Technical 
Health and 
safety 

Additional health and safety precautions 
necessary for deconstruction and element 
recovery & reuse 

15, 21, 25, 27, 29, 
32, 35, 38 

Technical 
Health and 
safety 

Presence of fire protection on the reused 
elements 38 

Technical 
Health and 
safety 

Presence of hazardous, banned or 
contaminating coatings on the reused 
elements 6, 8, 15, 32, 36, 38 

Technical Information 

Lack of information about characteristics, 
details, certificates and drawings of the 
reused structural elements 

9, 10, 27, 29, 38, 
45 

Technical Information 
Lack of information about the remaining 
capacity of the reused structural elements 27, 29 
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Seq Question order Status 
1 Are questions at the beginning of your questionnaire more 

straightforward and ones the respondent will enjoy answering? 
Questions about attributes and behaviours are usually more 
straightforward to answer than those collecting data on opinions. 

No 

2 Are questions at the beginning of your questionnaire obviously relevant 
to the stated purpose of your questionnaire? For example, questions 
requesting contextual information may appear irrelevant. 

Yes 

3 Are questions and topics that are more complex placed towards the 
middle of your questionnaire? By this stage most respondents should Yes 

4 Are personal and sensitive questions towards the end of your 
questionnaire, and is their purpose clearly explained? On being asked 
these a respondent may refuse to answer; however, if they are at the 
end of an interviewer-completed questionnaire you will still have the rest 
of the data! 

Yes 

5 Are filter questions and routing instructions easy to follow so that there 
is a clear route through the questionnaire? 

No filter 
questions 

6 (For interviewer-completed questionnaires) Are instructions to the 
interviewer easy to follow? N/A 

7 Are questions grouped into obvious sections that will make sense to the 
respondent? Yes 

8 Have you re-examined the wording of each question and ensured it is 
consistent with its position in the questionnaire as well as with the data 
you require? 

Yes 

 

Note: I developed the 6th online revision to fulfil the requirements of the 4th question. 
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Appendix C Data collection tool 

C.1 Example of the email sent to the professionals with experience in reuse in 
buildings 

  

Content removed on data protection grounds
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Univariate Statistics  

Variables N Mean 

Std. 

Deviation 

Missing No. of Extremesa 

EM 

Meansb 

Count Percent Low High  

D14 70 3.46 1.441 2 2.8 0 0 3.46 

D15 61 2.70 1.038 11 15.3 0 2 2.81 

D16 70 3.00 1.155 2 2.8 0 0 3.02 

D17 72 3.32 1.309 0 .0 0 0 3.34 

D20 68 2.63 1.006 4 5.6 0 3 2.64 

E3 72 4.29 .956 0 .0 3 0 4.28 

B1 72   0 .0    

B2 72   0 .0    

B3 72   0 .0    

B4 72   0 .0    

B5 71   1 1.4    

B6 71   1 1.4    

a. Number of cases outside the range (Q1 - 1.5*IQR, Q3 + 1.5*IQR). 

b. Little's MCAR test: Chi-Square = 60.730, DF = 59, Sig. = .413 

 

D.4 Descriptive statistics of the received questionnaire (after estimating the 

missing values) 

Ranking of the variables is performed based on the values of the Mean. Since questions B7 to 

B11 intend to compare the current use of the element with its previous deployment, they were 

not included in the ranking. Questions in Section C act as barrier and questions in Section D can 

act as drivers or barriers depending on the value of the Mean. For instance, for values of Mean 

above 3 in Section D, the variable acts as a reuse driver. The comparison has been made in two 

stages. In Stage 1 variables are compared within their respective group (e.g., ranking is based 

on being in Section B or C or D and being a driver or a barrier). In Stage 2, which includes 

variables in Sections C & D, the variables are ranked from 1 (the lowest Mean) to the highest 

Mean. Hence, D22 in the TEC dataset with Mean equal to 2.53 has the worst impact on the 

reusability of an element and is ranked 1. 
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Table D-4 Descriptive statistics for TEC dataset (Number of observations = 72) 

Variables Mean Standard 
Error 

Median Standard 
Deviation 

Variance Role In 
group 
rank 
(Stage 
1) 

Overall 
rank 
(Stage 
2) 

B7 3.71 0.14 4.00 1.19 1.42 NA 2 N/A 
B8 3.93 0.12 4.00 1.01 1.02 NA 1 N/A 
B9 3.25 0.14 3.00 1.21 1.46 NA 3 N/A 
B10 2.31 0.09 2.00 0.76 0.58 NA 5 N/A 
B11 2.88 0.10 3.00 0.82 0.67 NA 4 N/A 
C1 2.99 0.15 3.00 1.29 1.68 Barrier 2 8 
C2 3.85 0.13 4.00 1.07 1.15 Barrier 14 19 
C3 4.26 0.15 5.00 1.24 1.55 Barrier 20 26 
C4 4.31 0.11 5.00 0.94 0.89 Barrier 21 27 
C5 4.21 0.13 5.00 1.06 1.13 Barrier 19 25 
C6 3.78 0.14 4.00 1.18 1.39 Barrier 10 16 
C7 4.19 0.13 5.00 1.12 1.26 Barrier 18 24 
C8 4.58 0.08 5.00 0.71 0.50 Barrier 24 30 
C9 3.53 0.15 4.00 1.27 1.60 Barrier 5 11 
C10 3.85 0.12 4.00 1.02 1.03 Barrier 13 20 
C11 4.42 0.11 5.00 0.95 0.89 Barrier 23 29 
C12 3.88 0.15 4.00 1.31 1.72 Barrier 16 22 
C13 4.85 0.06 5.00 0.49 0.24 Barrier 25 31 
C14 4.35 0.13 5.00 1.06 1.13 Barrier 22 28 
C15 3.76 0.13 4.00 1.08 1.17 Barrier 9 15 
C16 2.97 0.17 3.00 1.47 2.17 Barrier 1 7 
C17 3.04 0.18 3.00 1.51 2.27 Barrier 3 9 
C18 3.76 0.17 5.00 1.48 2.18 Barrier 8 14 
C19 3.81 0.17 5.00 1.47 2.16 Barrier 12 18 
C20 3.72 0.17 4.50 1.47 2.15 Barrier 7 13 
C21 3.88 0.17 5.00 1.43 2.05 Barrier 15 21 
C25 3.43 0.15 4.00 1.28 1.63 Barrier 4 10 
C26 3.79 0.13 4.00 1.11 1.24 Barrier 11 17 
C27 3.97 0.14 4.00 1.16 1.35 Barrier 17 23 
C28 3.60 0.15 4.00 1.24 1.54 Barrier 6 12 
D18 2.72 0.13 3.00 1.13 1.27 Barrier 5 5 
D19 2.63 0.13 3.00 1.11 1.22 Barrier 2 2 
D21 2.64 0.13 3.00 1.10 1.22 Barrier 3 3 
D22 2.53 0.13 3.00 1.14 1.29 Barrier 1 1 
D23 2.71 0.15 3.00 1.26 1.59 Barrier 4 4 
D24 2.79 0.13 3.00 1.10 1.21 Barrier 6 6 
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Table D-5 Descriptive statistics for ECO dataset (Number of observations = 72) 

Variable Mean Standard 
Error 

Median Standard 
Deviation 

Variance Role In 
group 
rank 
(Stage 
1) 

Overall 
rank 
(Stage 
2) 

C24 4.01 0.13 4.00 1.13 1.28 Barrier 1 12 
D1 3.68 0.15 4.00 1.27 1.60 Driver 1 11 
D2 2.69 0.11 3.00 0.96 0.92 Barrier 2 2 
D3 2.58 0.12 3.00 1.06 1.12 Barrier 1 1 
D4 2.81 0.12 3.00 1.04 1.09 Barrier 4 4 
D5 2.82 0.13 3.00 1.08 1.16 Barrier 5 5 
D6 2.78 0.14 3.00 1.21 1.47 Barrier 3 3 
D7 2.82 0.14 3.00 1.18 1.39 Barrier 6 6 
D8 2.94 0.13 3.00 1.11 1.24 Barrier 10 10 
D9 2.89 0.13 3.00 1.08 1.17 Barrier 9 9 
D10 2.86 0.14 3.00 1.15 1.33 Barrier 8 8 
D25 2.83 0.14 3.00 1.19 1.41 Barrier 7 7 

 

Table D-6 Descriptive statistics for SOC dataset (Number of observations = 72) 

Variable Mean Standard 
Error 

Median Standard 
Deviation 

Variance Role In 
group 
rank 
(Stage 
1) 

Overall 
rank 
(Stage 
2) 

C22 3.24 0.16 3.00 1.40 1.96 Barrier 1 5 
C23 3.81 0.15 4.00 1.27 1.62 Barrier 2 10 
D11 3.46 0.14 4.00 1.16 1.35 Driver 1 9 
D12 3.36 0.15 4.00 1.25 1.56 Driver 3 7 
D13 3.10 0.15 3.00 1.30 1.69 Driver 5 4 
D14 3.44 0.17 4.00 1.43 2.05 Driver 2 8 
D15 2.71 0.12 3.00 0.98 0.97 Barrier 2 2 
D16 2.97 0.14 3.00 1.15 1.32 Barrier 3 3 
D17 3.32 0.15 3.00 1.31 1.71 Driver 4 6 
D20 2.65 0.12 3.00 0.98 0.96 Barrier 1 1 
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E.4 The code to install packages required for feature selection using filter 

methods 

 

E.5 The code to rank features using filter methods 

 

E.6 The code to select features using the Boruta method 

 

>install.packages("mlr") 

>install.packages("FSelector") 

>install.packages("randomForest") 

>install.packages("party") 

>install.packages("praznik") 

>install.packages("xtable") 

>install.packages("xlsx") 

>library(mlr) 

>library(FSelector) 

>library(randomForest) 

>library(party) 

>library(praznik) 

>library(xtable) 

>library(xlsx) 

 
 

>task = makeClassifTask(data = as.data.frame(train), target = "response") 

>gfvd=generateFilterValuesData(task, method = 
c("party_cforest.importance","FSelector_chi.squared","FSelector_information
.gain","FSelector_gain.ratio","kruskal.test","praznik_MRMR","FSelector_oneR
","randomForest_importance","FSelector_relief","FSelector_symmetrical.uncer
tainty")) 

>featureScors=xtable(gfvd$data) 

>write.xlsx(featureScors, file = "featureScors.xlsx") 

>library(Boruta) 

>feature=Boruta(response~., data=train, maxRuns = 10000) 
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E.7 The code to select features using RFE technique 

 

  

library(caret) 
library(randomForest) 
library(ipred) 
library(klaR) 
# x=train1 (excluding response) 
# y=response 
#List of functions used: rfFuncs, nbFuncs, treebagFuncs, caretFuncs 

ctrl <- rfeControl(functions = (see list of functions used) 
                   method = "repeatedcv", 
                   repeats = 5, 
                   verbose = FALSE) 

Profile <- rfe(x, y, 
                 sizes = c(1:20), 
                 rfeControl = ctrl) 
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E.8 The code to install packages required for the development of the predictive 

models 

Below is the list of all required packages to develop the predictive models. After installing these 

packages, it is necessary to call the package using the library() function in R. Script E.8 (Appendix 

E) is used to call the required packages. 

Scripts E.9 to E.21 were used to develop the predictive models for the list of machine learning 

methods in Table 5.10. In these scripts, using the makeLearner() function, the class of 

learner and the type of prediction is specified. Next, using the makeClassifTask() 

function, the training and testing datasets (Section 5.3), as well as the targeting response vector 

are defined for use to fit the models and perform predictions. Then, using the 

train()function, the predictive model is developed by fitting the learner to the training 

dataset. Finally, using the predict() function, the predictions of the models on the unseen 

data are performed. 

 

 

 

 

 

library(ada) 
library(bartMachine) 
library(caret) 
library(clusterGeneration) 
library(devtools) 
library(e1071) 
library(kernlab) 
library(kknn) 
library(mlr) 
library(neuralnet) 
library(nnet) 
library(randomForest) 
library(ROCR) 
library(rpart) 
library(rpart.plot) 
library(RWeka) 
library(rJava) 
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E.9 The code to develop the KNN models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset. 

  

#Estimating the number of neighbours using the rminer package. 

>s=list(smethod="grid",search=mparheuristic("kknn",n=10),convex=0,metric="A
UC",method=c("holdout",2/3,123)) 

>model1=fit(E1C ~ ., data = train, model="kknn",task="prob",search=s) 

>print(model1@mpar) 

#Using mlr package to develop the model 

>obj_mlr_knn = makeLearner("classif.kknn", predict.type = "prob") 

obj_mlr_knn$par.set$pars$k=s #s is equal to 6, 5, or 8 for the TEC, ECO, 
and SOC, respectively 

>train1_task = makeClassifTask(data = as.data.frame(train), target) 

>model1_knn = train(obj_mlr_knn, train1_task) 

>test1_task = makeClassifTask(data = as.data.frame(test), target) 

>predTest1_knn = predict(model1_knn, test1_task, predict.type = "prob") 

>calculateConfusionMatrix(predTest1_knn) 

>ROCRpredTest1 = asROCRPrediction(predTest1_knn) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1, "tpr", "fpr") 

>plot(ROCRperfTest1, 
colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7)) 

>knn_auc = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 
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E.10 The code to develop the LR models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset. 

 

E.11 The code to develop the LDA models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset. 

  

>obj_mlr_lr = makeLearner("classif.logreg", predict.type = "prob") 

>train1_task = makeClassifTask(data = as.data.frame(train), target) 

>model1_lr = train(obj_mlr_lr, train1_task) 

>test1_task = makeClassifTask(data = as.data.frame(test), target) 

>predTest1_lr = predict(model1_lr, test1_task, predict.type = "prob") 

>calculateConfusionMatrix(predTest1_lr) 

>ROCRpredTest1 = asROCRPrediction(predTest1_lr) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1, "tpr", "fpr") 

>plot(ROCRperfTest1, 
colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7)) 

>lr_auc = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 

>obj_mlr_lda = makeLearner("classif.lda", predict.type = "prob") 

>train1_task = makeClassifTask(data = as.data.frame(train), target) 

>model1_lda = train(obj_mlr_lda, train1_task) 

>test1_task = makeClassifTask(data = as.data.frame(test), target) 

>predTest1_lda = predict(model1_lda, test1_task, predict.type = "prob") 

>calculateConfusionMatrix(predTest1_lda) 

>ROCRpredTest1 = asROCRPrediction(predTest1_lda) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1, "tpr", "fpr") 

>plot(ROCRperfTest1, 
colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7)) 

>lda_auc = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 
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E.12 The code to develop the QDA models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset. 

 

E.13 The code to develop the NB models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset. 

>obj_mlr_nb = makeLearner("classif.naiveBayes", predict.type = "prob") 

>train1_task = makeClassifTask(data = as.data.frame(train), target) 

>model1_nb = train(obj_mlr_nb, train1_task) 

>test1_task = makeClassifTask(data = as.data.frame(test), target) 

>predTest1_nb = predict(model1_nb, test1_task, predict.type = "prob") 

>calculateConfusionMatrix(predTest1_nb) 

>ROCRpredTest1 = asROCRPrediction(predTest1_nb) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1, "tpr", "fpr") 

>plot(ROCRperfTest1, 
colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7)) 

>nb_auc = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 

 >obj_mlr_qda = makeLearner("classif.qda", predict.type = "prob") 

>train1_task = makeClassifTask(data = as.data.frame(train), target) 

>model1_qda = train(obj_mlr_qda, train1_task) 

>test1_task = makeClassifTask(data = as.data.frame(test), target) 

>predTest1_qda = predict(model1_qda, test1_task, predict.type = "prob") 

>calculateConfusionMatrix(predTest1_qda) 

>ROCRpredTest1 = asROCRPrediction(predTest1_qda) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1, "tpr", "fpr") 

>plot(ROCRperfTest1, 
colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7)) 

>qda_auc = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 
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E.14 The code to develop the DT models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset. 

 

E.15 The code to develop the RF models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset. 

>obj_mlr_dt = makeLearner("classif.rpart", predict.type = "prob") 

>train1_task = makeClassifTask(data = as.data.frame(train), target) 

>model1_dt = train(obj_mlr_dt, train1_task) 

>test1_task = makeClassifTask(data = as.data.frame(test), target) 

>predTest1_dt = predict(model1_dt, test1_task, predict.type = "prob") 

>calculateConfusionMatrix(predTest1_dt) 

>ROCRpredTest1 = asROCRPrediction(predTest1_dt) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1, "tpr", "fpr") 

>plot(ROCRperfTest1, 
colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7)) 

>dt_auc = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 

>rpart.plot.version1(model1_dt$learner.model) 

 

>obj_mlr_rf = makeLearner("classif.randomForest", predict.type = "prob") 

>train1_task = makeClassifTask(data = as.data.frame(train), target) 

>model1_rf = train(obj_mlr_rf, train1_task) 

>test1_task = makeClassifTask(data = as.data.frame(test), target) 

>predTest1_rf = predict(model1_rf, test1_task, predict.type = "prob") 

>calculateConfusionMatrix(predTest1_rf) 

>ROCRpredTest1 = asROCRPrediction(predTest1_rf) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1, "tpr", "fpr") 

>plot(ROCRperfTest1, 
colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7)) 

>rf_auc = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 
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E.16 The code to develop the AB models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset. 

 

E.17 The code to develop the BM models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset. 

  

>obj_mlr_ab = makeLearner("classif.ada", predict.type = "prob") 

>train1_task = makeClassifTask(data = as.data.frame(train), target) 

>model1_ab = train(obj_mlr_ab, train1_task) 

>test1_task = makeClassifTask(data = as.data.frame(test), target) 

>predTest1_ab = predict(model1_ab, test1_task, predict.type = "prob") 

>calculateConfusionMatrix(predTest1_ab) 

>ROCRpredTest1 = asROCRPrediction(predTest1_ab) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1, "tpr", "fpr") 

>plot(ROCRperfTest1, 
colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7)) 

>ab_auc = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 

>obj_mlr_bm = makeLearner("classif.bartMachine", predict.type = "prob") 

>train1_task = makeClassifTask(data = as.data.frame(train), target) 

>model1_bm = train(obj_mlr_bm, train1_task) 

>test1_task = makeClassifTask(data = as.data.frame(test), target) 

>predTest1_bm = predict(model1_bm, test1_task, predict.type = "prob") 

>calculateConfusionMatrix(predTest1_bm) 

>ROCRpredTest1 = asROCRPrediction(predTest1_bm) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1, "tpr", "fpr") 

>plot(ROCRperfTest1, 
colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7)) 

>bm_auc = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 
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E.18 The code to develop the ANN models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset.  

The hyperparameters (size and decay) for each of the datasets are as follows: TEC (size=9, 

decay=0.09), ECO (size=9, decay=0.08), SOC (size=8, decay=0.04). For k-fold cross-validation 

(Tables 6.1 to 6.3), dataset represents the entire TEC, ECO, and SOC observations (Section 

5.2), and not the training set. 

 

#Estimating the hyperparameters using the caret package. 

>fitControl = trainControl(method = "repeatedcv",number = 10,repeats = 
5,classProbs = TRUE, summaryFunction = twoClassSummary) 

>nnetGrid <= expand.grid(size = seq(from = 1, to = 10, by = 1),decay = 
seq(from = 0, to = 0.5, by = 0.01)) 

>nnetFit = train(target ~ .,data = train,method = "nnet",metric = 
"ROC",trControl = fitControl,tuneGrid = nnetGrid,verbose = FALSE) 

#Using mlr package to develop the model 

>model1=fit(target ~ ., data = train ,model="mlpe",task="prob",size ,decay) 

>predTest1=predict(model1,newdata = test) 

>print(mmetric(test$target,predTest1,"CONF",TC=2)) 

>print(mmetric(test$target,predTest1,metric = 
c("ACC","AUC","TPR","TNR"),TC=2)) 

>print(mmetric(test$target,predTest1,"ROC",TC=2)) 

>ROCRpredTest1 = ROCR::prediction(predTest1[,2], test$target) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1,"tpr","fpr") 

>plot(ROCRperfTest1, 
colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7), main="ANN 
(TEC) Testing dataset ROC curve") 

>aucTest1 = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 

>aucTest1 

#10-fold Cross-validation for Tables 9.1, 9.2, and 9.3 

>M=crossvaldata(target ~ 
.,data=dataset,fit,predict,seed=88,model="mlpe",task="prob",size,decay) 

>print(mmetric(dataset$TEC,M$cv.fit,metric = 
c("ACC","AUC","TPR","TNR"),TC=2)) 
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E.19 The code to develop the GP models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset. 

E.20 The code to develop the PRL models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset. 

  

>obj_mlr_gp = makeLearner("classif.gausspr", predict.type = "prob") 

>train1_task = makeClassifTask(data = as.data.frame(train), target) 

>model1_gp = train(obj_mlr_gp, train1_task) 

>test1_task = makeClassifTask(data = as.data.frame(test), target) 

>predTest1_gp = predict(model1_gp, test1_task, predict.type = "prob") 

>calculateConfusionMatrix(predTest1_gp) 

>ROCRpredTest1 = asROCRPrediction(predTest1_gp) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1, "tpr", "fpr") 

>plot(ROCRperfTest1, 
colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7)) 

>gp_auc = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 

>obj_mlr_prl = makeLearner("classif.JRip", predict.type = "prob") 

>train1_task = makeClassifTask(data = as.data.frame(train), target) 

>model1_prl = train(obj_mlr_prl, train1_task) 

>test1_task = makeClassifTask(data = as.data.frame(test), target) 

>predTest1_prl = predict(model1_prl, test1_task, predict.type = "prob") 

>calculateConfusionMatrix(predTest1_prl) 

>ROCRpredTest1 = asROCRPrediction(predTest1_prl) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1, "tpr", "fpr") 

>plot(ROCRperfTest1, 
colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7)) 

>prl_auc = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 

>as.matrix(scan(text=.jcall(model1_prl$learner.model$classifier,"S", 
"toString") ,sep="\n", what="") )[-c(1:2, 20), ,drop=FALSE] 
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E.21 The code to develop the SVM models 

In makeClassifTask() function, target is replaced with target = "E1C" for the TEC 

dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC dataset. 

  

> train1_task = makeClassifTask(data = as.data.frame(train), target) 

>num_ps_Tuning = makeParamSet( 

  makeNumericParam("C", lower = -10, upper = 10, trafo = function(x) 10^x), 

  makeNumericParam("sigma", lower = -10, upper = 10, trafo = function(x) 
10^x)) 

>ctrlTuning = makeTuneControlRandom(maxit = 100L) 

>rdescTuning = makeResampleDesc("CV", iters = 10L) 

>resTuning = tuneParams("classif.ksvm", task = train1_task, resampling = 
rdescTuning, par.set = mum_ps_Tuning, control = ctrlTuning, measures = 
list(acc, setAggregation(acc, test.sd))) 

>obj_mlr_svm = setHyperPars(makeLearner("classif.ksvm", predict.type = 
"prob"), C = resTuning$x$C, sigma = resTuning$x$sigma) 

>test1_task = makeClassifTask(data = as.data.frame(test), target) 

>model1_svm = train(obj_mlr_svm, train1_task) 

>predTest1_svm = predict(model1_svm, test1_task, predict.type = "prob") 

>calculateConfusionMatrix(predTest1_svm) 

>ROCRpredTest1 = asROCRPrediction(predTest1_svm) 

>ROCRperfTest1 = ROCR::performance(ROCRpredTest1, "tpr", "fpr") 

>plot(ROCRperfTest1, 
colorize=TRUE,print.cutoffs.at=seq(0,1,0.1),text.adj=c(-0.2,1.7)) 

>svm_auc = as.numeric(ROCR::performance(ROCRpredTest1, "auc")@y.values) 
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E.22 The code to assess the performance of the BSE-RPMs using the kfCV 

method 

In makeClassifTask() function, target is replaced with target = "E1C" for the 

TEC dataset, target = "E2C" for the ECO dataset, and target = "E3C" for the SOC 

dataset. Moreover, in resample() function, learner is replaced with obj_mlr_knn (Script 

E.9), obj_mlr_lr (Script E.10), obj_mlr_lda (Script E.11), obj_mlr_qda (Script E.12), 

obj_mlr_nb (Script E.13), obj_mlr_dt (Script E.14), obj_mlr_rf (Script E.15), 

obj_mlr_bm (Script E.16), obj_mlr_ab (Script E.17), obj_mlr_ann (Script E.18), 

obj_mlr_gp (Script E.19), obj_mlr_prl (Script E.20), obj_mlr_svm (Script E.21). 

 

 

E.23 The code to perform Sensitivity Analysis and open the best-practice RF 

BSER-RPMs 

dataset2 is defined in Script E.1 

 

>task = makeClassifTask(data = as.data.frame(reuse2), target) 

>rdesc = makeResampleDesc("CV", iters = 10, predict = "both") 

>r = resample(learner, task, rdesc, measures = list(mmce, acc, fpr, fnr, 
tnr, tpr, auc)) 

>library(rminer) 

>model=fit(response ~ ., data=dataset2,model = "randomForest",task="prob") 

>dsa_imp=Importance(model,dataset2,method = "DSA",measure = "AAD") 

>list_dsa=list(runs=1,sen=t(dsa_imp$imp),sresponses=dsa_imp$sresponses) 

>mgraph(list_dsa,graph="IMP",leg=names(dataset2),col="white", 

       xval=0.0105,main = "TEC-RF BSE-RPM Variable importance levels 
(DSA)",metric="ALL", 

       axis=c(1),cex = 0.75) 
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E.24 The code to extract rules from the best-practice RF BSER-RPMs 

 

 

  

>library(inTrees) 

>library(randomForest) 

>y=train$response 

>nonvars=c("response") 

>x=train[ , !(names(train) %in% nonvars) ] 

>y=as.factor(y) 

>x=as.data.frame(x) 

>train=as.data.frame(train) 

>test=as.data.frame(test) 

>model=randomForest(x,y) 

>treeList = RF2List(model) 

>ruleExec = extractRules(treeList,x) 

>ruleExec = unique(ruleExec) 

>ruleMetric = getRuleMetric(ruleExec,x,y) 

>ruleMetric = pruneRule(ruleMetric,x,y) 

>ruleMetric = selectRuleRRF(ruleMetric,x,y) 

>learner = buildLearner(ruleMetric,x,y) 

>pred = applyLearner(learner,x) 

>read = presentRules(learner,colnames(x)) 
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Appendix F Outcome of the predictive models 

Results of the predictive models (Chapter 5, Section 5.5.3, Table 5.10) 

F.1 Predictive models on the TEC dataset 

In this section, the results of the models used to predict the technical reusability of the 

structural elements are presented. 

Table F-1 Summary of the results of the TEC BSE-RPMs developed (the validation set approach method). 

Predictive 
model 

Type-I 
error 

Type-II 
error 

Specificity Sensitivity Overall 
accuracy 

Overall 
error 
rate 

AUC 

KNN 0.03 0.28 0.97 0.72 0.85 0.15 0.95 
LR* 0.28 0.17 0.72 0.83 0.78 0.22 0.81 
LDA 0.14 0.21 0.86 0.79 0.83 0.17 0.86 
QDA 0.07 0.17 0.93 0.83 0.88 0.12 0.96 
NB 0.24 0.35 0.76 0.65 0.71 0.29 0.82 
DT 0.10 0.41 0.90 0.59 0.74 0.26 0.76 
RF 0.00 0.17 1.00 0.83 0.91 0.09 0.98 
AB 0.07 0.31 0.93 0.69 0.81 0.19 0.93 
BM 0.07 0.38 0.93 0.62 0.78 0.22 0.91 
ANN 0.14 0.14 0.86 0.86 0.86 0.14 0.90 
GP 0.14 0.31 0.86 0.69 0.78 0.22 0.91 
PRL 0.21 0.17 0.79 0.83 0.81 0.19 0.84 
SVM 0.07 0.14 0.93 0.86 0.90 0.10 0.97 
* The LR BSE-RPM did not converge. Hence, this model is excluded from further analysis. 

 

F.1.1 TEC dataset K-Nearest Neighbours (KNN) BSE-RPM 

Script E.9 (Appendix E) is used to develop the TEC K-Nearest Neighbours (KNN) BSE-RPM.  

Table F-2 The confusion matrix of the KNN BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 28 1 
Actual reusable (1) 8 21 
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Figure F-1 The ROC curve of the KNN BSE-RPM (TEC dataset) 

The AUC value for the TEC K-Nearest Neighbours (KNN) BSE-RPM is equal to 0.95.  
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F.1.2 TEC dataset Logistic Regression (LR) BSE-RPM 

Script E.10 (Appendix E) is used to develop the TEC Logistic Regression (LR) BSE-RPM. 

Table F-3 The confusion matrix of the LR BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 21 8 
Actual reusable (1) 5 24 

 

 
Figure F-2 The ROC curve of the LR BSE-RPM (TEC dataset) 

The AUC value for the TEC Logistic Regression (LR) BSE-RPM is equal to 0.81. However, the 

model for the TEC Logistic Regression (LR) BSE-RPM did not converge. Hence, this model is not 

considered during the final evaluation (Chapter 6). 
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F.1.3 TEC dataset Linear Discriminant Analysis (LDA) BSE-RPM 

Script E.11 (Appendix E) is used to develop the TEC Linear Discriminant Analysis (LDA) BSE-RPM. 

Table F-4 The confusion matrix of the LDA BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 25 4 
Actual reusable (1) 6 23 

 

 
Figure F-3 The ROC curve of the LDA BSE-RPM (TEC dataset) 

The AUC value for the TEC Linear Discriminant Analysis (LDA) BSE-RPM is equal to 0.862069. 
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F.1.4 TEC dataset Quadratic Discriminant Analysis (QDA) BSE-RPM 

Script E.12 (Appendix E) is used to develop the TEC Quadratic Discriminant Analysis (QDA) BSE-

RPM.  

Table F-5 The confusion matrix of the QDA BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 27 2 
Actual reusable (1) 5 24 

 

 

Figure F-4 The ROC curve of the QDA BSE-RPM (TEC dataset) 

The AUC value for the TEC Quadratic Discriminant Analysis (QDA) BSE-RPM is equal to 0.96. 
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F.1.5 TEC dataset Naïve Bayes (NB) BSE-RPM 

Script E.13 (Appendix E) is used to develop the TEC Naïve Bayes (NB) BSE-RPM.  

Table F-6 The confusion matrix of the NB BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 22 7 
Actual reusable (1) 10 19 

 

 
Figure F-5 The ROC curve of the NB BSE-RPM (TEC dataset) 

The AUC value for the TEC Naïve Bayes (NB) BSE-RPM is equal to 0.82. 
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F.1.6 TEC dataset Decision Trees (DT) BSE-RPM 

Script E.14 (Appendix E) is used to develop the TEC Decision Trees (DT) BSE-RPM. 

Table F-7 The confusion matrix of the DT BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 26 3 
Actual reusable (1) 12 17 

 

 
Figure F-6 The ROC curve of the DT BSE-RPM (TEC dataset) 

The AUC value for the TEC Decision Trees (DT) BSE-RPM is equal to 0.76. 
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Figure F-7 The DT BSE-RPM Model (TEC dataset) 
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F.1.7 TEC dataset Random Forests (RF) BSE-RPM 

Script E.15 (Appendix E) is used to develop the TEC Random Forests (RF) BSE-RPM.  

Table F-8 The confusion matrix of the RF BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 29 0 
Actual reusable (1) 5 24 

 

 
Figure F-8 The ROC curve of the RF BSE-RPM (TEC dataset) 

 

The AUC value for the TEC Random Forests (RF) BSE-RPM is equal to 0.98. 
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F.1.8 TEC dataset Adaptive Boosting (AB) BSE-RPM 

Script E.17 (Appendix E) is used to develop the TEC Adaptive Boosting (AB) BSE-RPM.  

Table F-9 The confusion matrix of the AB BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 27 2 
Actual reusable (1) 11 18 

 

 
Figure F-9 The ROC curve of the AB BSE-RPM (TEC dataset) 

The AUC value for the TEC Adaptive Boosting (AB) BSE-RPM is equal to 0.91. 
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F.1.9 TEC dataset Bart Machine (BM) BSE-RPM 

Script E.16 (Appendix E) is used to develop the TEC Bart Machine (BM) BSE-RPM. 

Table F-10 The confusion matrix of the BM BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 27 2 
Actual reusable (1) 9 20 

 

 
Figure F-10 The ROC curve of the BM BSE-RPM (TEC dataset) 

The AUC value for the TEC Bart Machine (BM) BSE-RPM is equal to 0.93. 
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F.1.10 TEC dataset Artificial Neural Networks (ANN) BSE-RPM 

Script E.18 (Appendix E) is used to develop the TEC Artificial Neural Networks (ANN) BSE-RPM. 

Table F-11 The confusion matrix of the ANN BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 25 4 
Actual reusable (1) 4 25 

 

 
Figure F-11 The ROC curve of the ANN BSE-RPM (TEC dataset) 

The AUC value for the TEC Artificial Neural Networks (ANN) BSE-RPM is equal to 0.90. 
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F.1.11 TEC dataset Gaussian Processes (GP) BSE-RPM 

Script E.19 (Appendix E) is used to develop the TEC Gaussian Processes (GP) BSE-RPM. 

Table F-12 The confusion matrix of the GP BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 25 4 
Actual reusable (1) 9 20 

 

 
Figure F-12 The ROC curve of the GP BSE-RPM (TEC dataset) 

The AUC value for the TEC Gaussian Processes (GP) BSE-RPM is equal to 0.91. 

  



270 
 

F.1.12 TEC dataset Propositional Rule Learner (PRL) BSE-RPM 

Script E.20 (Appendix E) is used to develop the TEC Propositional Rule Learner (PRL) BSE-RPM. 

Table F-13 The confusion matrix of the PRL BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 23 6 
Actual reusable (1) 5 24 

 

 
Figure F-13 The ROC curve of the PRL BSE-RPM (TEC dataset) 

The AUC value for the TEC Propositional Rule Learner (PRL) BSE-RPM is equal to 0.84. 

 

Table F-14 The rules set of the PRL BSE-RPM (TEC dataset) 

Rule number (to 
be considered in 
order) 

Rule Result 

1st  If: (C25 <= 3) and (C9 >= 3) and (C20 >= 2) 
and (C17 <= 4) 

Then: E1C=0 (34.0/3.0) 
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Rule number (to 
be considered in 
order) 

Rule Result 

2nd Else if: (C28 <= 3) and (C15 = 5) Then: E1C=0 (17.0/1.0) 
3rd Else if: (C6 <= 3) and (B9 <= 3) Then: E1C=0 (10.0/1.0) 
4th Else if: (B3 = 2) and (B7 <= 4) Then: E1C=0 (6.0/1.0) 
5th Else if none Then: E1C=1 (67.0/6.0) 
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F.1.13 TEC dataset Support Vector Machines (SVM) BSE-RPM 

Script E.21 (Appendix E) is used to develop the TEC Support Vector Machines (SVM) BSE-RPM. 

Table F-15 The confusion matrix of the SVM BSE-RPM (TEC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 27 2 
Actual reusable (1) 4 25 

 

 
Figure F-14 The ROC curve of the SVM BSE-RPM (TEC dataset) 

The AUC value for the TEC Support Vector Machines (SVM) BSE-RPM is equal to 0.97.  
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F.2 Predictive models on the ECO dataset 

In this section, the results of the models used to predict the economic reusability of the 

structural elements are presented. 

Table F-16 Summary of the results of the ECO BSE-RPMs developed (the validation set approach method). 

Predictive 
model 

Type-I 
error 

Type-II 
error 

Specificity Sensitivity Overall 
accuracy 

Overall 
error rate 

AUC 

KNN 0.00 0.30 1.00 0.70 0.86 0.14 0.96 
LR 0.21 0.30 0.79 0.70 0.75 0.25 0.81 
LDA 0.25 0.37 0.75 0.63 0.69 0.31 0.79 
QDA 0.21 0.26 0.79 0.74 0.76 0.24 0.83 
NB 0.32 0.30 0.68 0.70 0.69 0.31 0.77 
DT 0.25 0.19 0.75 0.81 0.78 0.22 0.80 
RF 0.00 0.30 1.00 0.70 0.86 0.14 0.98 
AB 0.04 0.33 0.96 0.67 0.82 0.18 0.94 
BM 0.00 0.33 1.00 0.67 0.84 0.16 0.90 
ANN 0.00 0.22 1.00 0.78 0.89 0.11 0.96 
GP 0.07 0.37 0.93 0.63 0.78 0.22 0.86 
PRL 0.25 0.33 0.75 0.67 0.71 0.29 0.72 
SVM 0.07 0.15 0.93 0.85 0.89 0.11 0.95 

 

F.2.1 ECO dataset K-Nearest Neighbours (KNN) BSE-RPM 

Script E.9 (Appendix E) is used to develop the ECO K-Nearest Neighbours (KNN) BSE-RPM. 

 

Table F-17 The confusion matrix of the KNN BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 28 0 
Actual reusable (1) 8 19 
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Figure F-15 The ROC curve of the KNN BSE-RPM (ECO dataset) 

The AUC value for the ECO K-Nearest Neighbours (KNN) BSE-RPM is equal to 0.96. 
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F.2.2 ECO dataset Logistic Regression (LR) BSE-RPM 

Script E.10 (Appendix E) is used to develop the ECO Logistic Regression (LR) BSE-RPM. 

Table F-18 The confusion matrix of the LR BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 22 6 
Actual reusable (1) 8 19 

 

 
Figure F-16 The ROC curve of the LR BSE-RPM (ECO dataset) 

The AUC value for the ECO Logistic Regression (LR) BSE-RPM is equal to 0.81. 
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F.2.3 ECO dataset Linear Discriminant Analysis (LDA) BSE-RPM 

Script E.11 (Appendix E) is used to develop the ECO Linear Discriminant Analysis (LDA) BSE-RPM. 

Table F-19 The confusion matrix of the LDA BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 21 7 
Actual reusable (1) 10 17 

 

 
Figure F-17 The ROC curve of the LDA BSE-RPM (ECO dataset) 

The AUC value for the ECO Linear Discriminant Analysis (LDA) BSE-RPM is equal to 0.79. 
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F.2.4 ECO dataset Quadratic Discriminant Analysis (QDA) BSE-RPM 

Script E.12 (Appendix E) is used to develop the ECO Quadratic Discriminant Analysis (QDA) BSE-

RPM. 

Table F-20 The confusion matrix of the QDA BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 22 6 
Actual reusable (1) 7 20 

 

 

Figure F-18 The ROC curve of the QDA BSE-RPM (ECO dataset) 

The AUC value for the ECO Quadratic Discriminant Analysis (QDA) BSE-RPM is equal to 0.83. 
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F.2.5 ECO dataset Naïve Bayes (NB) BSE-RPM 

Script E.13 (Appendix E) is used to develop the ECO Naïve Bayes (NB) BSE-RPM. 

Table F-21 The confusion matrix of the NB BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 19 9 
Actual reusable (1) 8 19 

 

 
Figure F-19 The ROC curve of the NB BSE-RPM (ECO dataset) 

The AUC value for the ECO Naïve Bayes (NB) BSE-RPM is equal to 0.77. 
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F.2.6 ECO dataset Decision Trees (DT) BSE-RPM 

Script E.14 (Appendix E) is used to develop the ECO Decision Trees (DT) BSE-RPM. 

Table F-22 The confusion matrix of the DT BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 21 7 
Actual reusable (1) 5 22 

 

 
Figure F-20 The ROC curve of the DT BSE-RPM (ECO dataset) 

The AUC value for the ECO Decision Trees (DT) BSE-RPM is equal to 0.80. 
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Figure F-21 The DT BSE-RPM Model (ECO dataset) 
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F.2.7 ECO dataset Random Forests (RF) BSE-RPM 

Script E.15 (Appendix E) is used to develop the ECO Random Forests (RF) BSE-RPM. 

Table F-23 The confusion matrix of the RF BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 28 0 
Actual reusable (1) 8 19 

 

 
Figure F-22 The ROC curve of the RF BSE-RPM (ECO dataset) 

The AUC value for the ECO Random Forests (RF) BSE-RPM is equal to 0.98. 
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F.2.8 ECO dataset Adaptive Boosting (AB) BSE-RPM 

Script E.17 (Appendix E) is used to develop the ECO Adaptive Boosting (AB) BSE-RPM. 

Table F-24 The confusion matrix of the AB BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 27 1 
Actual reusable (1) 9 18 

 

 
Figure F-23 The ROC curve of the AB BSE-RPM (ECO dataset) 

The AUC value for the ECO Adaptive Boosting (AB) BSE-RPM is equal to 0.94. 

  

AB (ECO) Testing dataset ROC curve

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
04

0.
23

0.
41

0.
6

0.
79

0.
98

00.1
0.2

0.3
0.4

0.5

0.6

0.70.8

0.9

1



283 
 

F.2.9 ECO dataset Bart Machine (BM) BSE-RPM 

Script E.16 (Appendix E) is used to develop the ECO Bart Machine (BM) BSE-RPM. 

Table F-25 The confusion matrix of the BM BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 28 0 
Actual reusable (1) 9 18 

 

 
Figure F-24 The ROC curve of the BM BSE-RPM (ECO dataset) 

The AUC value for the ECO Bart Machine (BM) BSE-RPM is equal to 0.90. 
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F.2.10 ECO dataset Artificial Neural Networks (ANN) BSE-RPM 

Script E.18 (Appendix E) is used to develop the ECO Artificial Neural Networks (ANN) BSE-RPM. 

Table F-26 The confusion matrix of the ANN BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 28 0 
Actual reusable (1) 6 21 

 

 
Figure F-25 The ROC curve of the ANN BSE-RPM (ECO dataset) 

The AUC value for the ECO Artificial Neural Networks (ANN) BSE-RPM is equal to 0.96. 
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F.2.11 ECO dataset Gaussian Processes (GP) BSE-RPM 

Script E.19 (Appendix E) is used to develop the ECO Gaussian Processes (GP) BSE-RPM. 

Table F-27 The confusion matrix of the GP BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 26 2 
Actual reusable (1) 10 17 

 

 
Figure F-26 The ROC curve of the GP BSE-RPM (ECO dataset) 

The AUC value for the ECO Gaussian Processes (GP) BSE-RPM is equal to 0.86. 
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F.2.12 ECO dataset Propositional Rule Learner (PRL) BSE-RPM 

Script E.20 (Appendix E) is used to develop the ECO Propositional Rule Learner (PRL) BSE-RPM. 

Table F-28 The confusion matrix of the PRL BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 21 7 
Actual reusable (1) 9 18 

 

 
Figure F-27 The ROC curve of the PRL BSE-RPM (ECO dataset) 

The AUC value for the ECO Propositional Rule Learner (PRL) BSE-RPM is equal to 0.72. 

Table F-29 The rules set of the PRL BSE-RPM (ECO dataset) 

Rule number (to 
be considered in 
order) 

Rule Result 

1st  If: (D10 >= 3) and (D25 >= 4) Then: E2C=1 (29.0/2.0) 
2nd Else if: (C24 >= 4) and (D1 >= 4) Then: E2C=1 (27.0/6.0) 
3rd Else if: (D8 >= 3) and (D10 >= 4) Then: E2C=1 (5.0/1.0) 
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Rule number (to 
be considered in 
order) 

Rule Result 

4th Else if: (D4 <= 2) and (D2 >= 3) and (C24 <= 
4) 

Then: E2C=1 (5.0/0.0) 

5th Else if none Then: E2C=0 (63.0/7.0) 
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F.2.13 ECO dataset Support Vector Machines (SVM) BSE-RPM 

Script E.21 (Appendix E) is used to develop the ECO Support Vector Machines (SVM) BSE-RPM. 

Table F-30 The confusion matrix of the SVM BSE-RPM (ECO dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 26 2 
Actual reusable (1) 4 23 

 
Figure F-28 The ROC curve of the SVM BSE-RPM (ECO dataset) 

The AUC value for the ECO Support Vector Machines (SVM) BSE-RPM is equal to 0.95.  
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F.3 Predictive models on the SOC dataset 

In this section, the results of the models used to predict the social reusability of the structural 

elements are presented. 

Table F-31 Summary of the results of the SOC BSE-RPMs developed (the validation set approach method). 

Predictive 
model 

Type-I 
error 

Type-II 
error 

Specificity Sensitivity Overall 
accuracy 

Overall 
error rate 

AUC 

KNN 0.06 0.38 0.93 0.62 0.79 0.21 0.95 
LR 0.11 0.38 0.89 0.62 0.77 0.23 0.76 
LDA 0.11 0.44 0.89 0.56 0.74 0.26 0.77 
QDA 0.11 0.06 0.89 0.94 0.91 0.09 0.97 
NB 0.22 0.06 0.78 0.94 0.85 0.15 0.97 
DT 0.33 0.13 0.67 0.87 0.77 0.23 0.88 
RF 0.00 0.19 1.00 0.81 0.91 0.09 0.99 
AB 0.11 0.06 0.89 0.94 0.91 0.09 0.94 
BM 0.06 0.19 0.94 0.81 0.88 0.12 0.98 
ANN 0.11 0.13 0.89 0.87 0.88 0.12 0.92 
GP 0.06 0.25 0.94 0.75 0.85 0.15 0.96 
PRL 0.17 0.13 0.83 0.87 0.85 0.15 0.85 
SVM 0.11 0.00 0.89 1.00 0.94 0.06 0.97 

 

F.3.1 SOC dataset K-Nearest Neighbours (KNN) BSE-RPM 

Script E.9 (Appendix E) is used to develop the SOC K-Nearest Neighbours (KNN) BSE-RPM. 

Table F-32 The confusion matrix of the KNN BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 17 1 
Actual reusable (1) 6 10 

 



290 
 

 
Figure F-29 The ROC curve of the KNN BSE-RPM (SOC dataset) 

The AUC value for the SOC K-Nearest Neighbours (KNN) BSE-RPM is equal to 0.95. 
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F.3.2 SOC dataset Logistic Regression (LR) BSE-RPM 

Script E.10 (Appendix E) is used to develop the SOC Logistic Regression (LR) BSE-RPM. 

Table F-33 The confusion matrix of the LR BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 16 2 
Actual reusable (1) 6 10 

 

 
Figure F-30 The ROC curve of the LR BSE-RPM (SOC dataset) 

The AUC value for the SOC Logistic Regression (LR) BSE-RPM is equal to 0.76. 
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F.3.3 SOC dataset Linear Discriminant Analysis (LDA) BSE-RPM 

Script E.11 (Appendix E) is used to develop the SOC Linear Discriminant Analysis (LDA) BSE-RPM. 

Table F-34 The confusion matrix of the LDA BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 16 2 
Actual reusable (1) 7 9 

 

 
Figure F-31 The ROC curve of the LDA BSE-RPM (SOC dataset) 

The AUC value for the SOC Linear Discriminant Analysis (LDA) BSE-RPM is equal to 0.77. 
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F.3.4 SOC dataset Quadratic Discriminant Analysis (QDA) BSE-RPM 

Script E.12 (Appendix E) is used to develop the SOC Quadratic Discriminant Analysis (QDA) BSE-

RPM. 

Table F-35 The confusion matrix of the QDA BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 16 2 
Actual reusable (1) 1 15 

 

 
Figure F-32 The ROC curve of the QDA BSE-RPM (SOC dataset) 

The AUC value for the SOC Quadratic Discriminant Analysis (QDA) BSE-RPM is equal to 0.97.  
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F.3.5 SOC dataset Naïve Bayes (NB) BSE-RPM 

Script E.13 (Appendix E) is used to develop the SOC Naïve Bayes (NB) BSE-RPM. 

Table F-36 The confusion matrix of the NB BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 14 4 
Actual reusable (1) 1 15 

 

 
Figure F-33 The ROC curve of the NB BSE-RPM (SOC dataset) 

The AUC value for the SOC Naïve Bayes (NB) BSE-RPM is equal to 0.97. 
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F.3.6 SOC dataset Decision Trees (DT) BSE-RPM 

Script E.14 (Appendix E) is used to develop the SOC Decision Trees (DT) BSE-RPM. 

Table F-37 The confusion matrix of the DT BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 12 6 
Actual reusable (1) 2 14 

 

 
Figure F-34 The ROC curve of the DT BSE-RPM (SOC dataset) 

The AUC value for the SOC Decision Trees (DT) BSE-RPM is equal to 0.88. 
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Figure F-35 The DT BSE-RPM Model (SOC dataset) 
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F.3.7 SOC dataset Random Forests (RF) BSE-RPM 

Script E.15 (Appendix E) is used to develop the SOC Random Forests (RF) BSE-RPM. 

Table F-38 The confusion matrix of the RF BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 18 0 
Actual reusable (1) 3 13 

 

 
Figure F-36 The ROC curve of the RF BSE-RPM (SOC dataset) 

The AUC value for the SOC Random Forests (RF) BSE-RPM is equal to 0.99. 
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F.3.8 SOC dataset Adaptive Boosting (AB) BSE-RPM 

Script E.17 (Appendix E) is used to develop the SOC Adaptive Boosting (AB) BSE-RPM. 

Table F-39 The confusion matrix of the AB BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 16 2 
Actual reusable (1) 1 15 

 

 
Figure F-37 The ROC curve of the AB BSE-RPM (SOC dataset) 

The AUC value for the SOC Adaptive Boosting (AB) BSE-RPM is equal to 0.94. 
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F.3.9 SOC dataset Bart Machine (BM) BSE-RPM 

Script E.16 (Appendix E) is used to develop the SOC Bart Machine (BM) BSE-RPM. 

Table F-40 The confusion matrix of the BM BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 17 1 
Actual reusable (1) 3 13 

 

 
Figure F-38 The ROC curve of the BM BSE-RPM (SOC dataset) 

The AUC value for the SOC Bart Machine (BM) BSE-RPM is equal to 0.98. 
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F.3.10 SOC dataset Artificial Neural Networks (ANN) BSE-RPM 

Script E.18 (Appendix E) is used to develop the SOC Artificial Neural Networks (ANN) BSE-RPM. 

Table F-41 The confusion matrix of the ANN BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 16 2 
Actual reusable (1) 2 14 

 

 
Figure F-39 The ROC curve of the ANN BSE-RPM (SOC dataset) 

The AUC value for the SOC Artificial Neural Networks (ANN) BSE-RPM is equal to 0.92. 
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F.3.11 SOC dataset Gaussian Processes (GP) BSE-RPM 

Script E.19 (Appendix E) is used to develop the SOC Gaussian Processes (GP) BSE-RPM. 

Table F-42 The confusion matrix of the GP BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 17 1 
Actual reusable (1) 4 12 

 

 
Figure F-40 The ROC curve of the GP BSE-RPM (SOC dataset) 

The AUC value for the SOC Gaussian Processes (GP) BSE-RPM is equal to 0.96. 
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F.3.12 SOC dataset Propositional Rule Learner (PRL) BSE-RPM 

Script E.20 (Appendix E) is used to develop the SOC Propositional Rule Learner (PRL) BSE-RPM. 

Table F-43 The confusion matrix of the PRL BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 15 3 
Actual reusable (1) 2 14 

 

 
Figure F-41 The ROC curve of the PRL BSE-RPM (SOC dataset) 

The AUC value for the SOC Propositional Rule Learner (PRL) BSE-RPM is equal to 0.85. 

Table F-44 The rules set of the PRL BSE-RPM (SOC dataset) 

Rule number (to 
be considered in 
order) 

Rule Result 

1st  If: (D14 >= 5) and (D17 >= 4) Then: E3C=1 (11.0/0.0) 
2nd Else if: (D20 <= 2) and (C22 <= 4) Then: E3C=1 (8.0/0.0) 
3rd Else if: (D16 >= 4) Then: E3C=1 (4.0/0.0) 
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Rule number (to 
be considered in 
order) 

Rule Result 

4th Else if: (C22 >= 4) and (D12 >= 3) Then: E3C=1 (8.0/0.0) 
5th Else if none Then: E3C=0 (47.0/6.0) 
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F.3.13 SOC dataset Support Vector Machines (SVM) BSE-RPM 

Script E.21 (Appendix E) is used to develop the SOC Support Vector Machines (SVM) BSE-RPM. 

Table F-45 The confusion matrix of the SVM BSE-RPM (SOC dataset) 

 
Predicted response values 

Non-reusable (0) Reusable (1) 
Actual non-reusable (0) 16 2 
Actual reusable (1) 0 16 

 
Figure F-42 The ROC curve of the SVM BSE-RPM (SOC dataset) 

The AUC value for the SOC Support Vector Machines (SVM) BSE-RPM is equal to 0.97.  
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G.1 Ethical Approval P88781 

 



306 
 

G.2 Ethical Approval P67530 

 

 

 


	Abstract
	Dedication



