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Contactless Small-Scale Movement Monitoring System 
Using Software Defined Radio for Early Diagnosis of 

COVID-19  

Abstract—The exponential growth of the novel coronavirus 
disease (N-COVID-19) has affected millions of people already and it is 
obvious that this crisis is global. This situation has enforced 
scientific researchers to gather their efforts to contain the virus. In 
this pandemic situation, health monitoring and human movements 
are getting significant consideration in the field of healthcare and as 
a result, it has emerged as a key area of interest in recent times. This 
requires a contactless sensing platform for detection of COVID-19 
symptoms along with containment of virus spread by limiting and 
monitoring human movements. In this paper, a platform is proposed 
for the detection of COVID-19 symptoms like irregular breathing and 
coughing in addition to monitoring human movements using 
Software Defined Radio (SDR) technology. This platform uses 
Channel Frequency Response (CFR) to record the minute changes in 
Orthogonal Frequency Division Multiplexing (OFDM) subcarriers due 
to any human motion over the wireless channel. In this initial research, the capabilities of the platform are analyzed by 
detecting hand movement, coughing, and breathing. This platform faithfully captures normal, slow, and fast breathing 
at a rate of 20, 10, and 28 breaths per minute respectively using different methods such as zero-cross detection, peak 
detection, and Fourier transformation. The results show that all three methods successfully record breathing rate. The 
proposed platform is portable, flexible, and has multifunctional capabilities. This platform can be exploited for other 
human body movements and health abnormalities by further classification using artificial intelligence. 

Index Terms—CFR; COVID-19; OFDM; SDR; USRP, Breathing rate measurement 

I. INTRODUCTION

N the past few years, viruses are spreading by human-to-

human interaction, and COVID-19 is one of the deadly 

viruses. The exponential growth of COVID-19 isolates the 

whole human society. The competent authorities are taking the 

necessary steps to contain the COVID-19. Limitation of 

activities is not a viable solution because this may cause a 
shortage of food and other necessities of life. Researchers, 

 “This work was supported by Zayed Health Center at UAE University 
under Fund code G00003476.” “This work was supported in parts by 

EPSRC grant number EP/T021063/1 and EP/R511705/1.” “This work 
was also funded by Taif University Research Supporting, Project 
number (TURSP-2020/277), Taif university. Taif, Saudi Arabia. 

Mubashir Rehman and Raza Ali Shah are with Department of Electrical 
Engineering, HITEC University, Taxila 47080, Pakistan. (Email: 18-phd-
ee-002@student.hitecuni.edu.pk, raza.ali.shah@hitecuni.edu.pk) 

Muhammad Bilal Khan is with the School of Electronic Engineering, 
Xidian University, Xi’an 710071, China (Email: bilal@stu.xidian.edu.cn) 
Najah AbuAli is with the Faculty of Information Technology in the United 

Arab Emirates University (UAEU), UAE (E-mail: najah@uaeu.ac.ae). 
Abdullah Alhumaidi Alotaibi is with the Department of Science and 
Technology, college of Ranyah, Taif University, P.O. Box 11099, Taif 

21944, Saudi Arabia. (E-mail: a.alhumaidi@tu.edu.sa) 
Turke Althobaiti is with the Faculty of Science, Northern Border 
University, Arar 91431, Saudi Arabia. (E-mail: 

Turke.althobaiti@nbu.edu.sa) 

doctors, and scientists all over the world are involved in 

diagnosis methods, vaccine development, and promising 

solutions to contain the spread of COVID-19. In this regard, 

human movements and health issues are getting considerable 

attention in the field of healthcare. Human movement 

recognition is the process of using different technologies to 

extract the features of the human movement [1]. It can be used 

for the monitoring of patients and vulnerable people such as the 

elderly or children. It can also be used to forecast and prevent 
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many chronic diseases. The method for detecting vital signs can 

be used for monitoring and diagnosis of different medical 

issues. However, capturing information for human movements 

and health monitoring is still challenging. Many diverse 

technologies have been proposed from industry and academia 
sectors. These technologies are mainly divided into two 

categories, contact and contactless. Contact with body-based 

technology is considered as monitoring through wearable 

sensors that include the use of wearable devices such as 

smartphones or smartwatches having accelerometers sensors, 

which can provide the information to physicians. Contactless 

technologies are camera-based or Radio Frequency (RF) based.  

Camera-based monitoring includes the use of images or videos 

for human monitoring while RF-based technology uses changes 

in Wireless Channel State Information (WCSI) caused by 

human body motions. RF sensing-based technologies include 

Wi-Fi, radar, and SDR.  
All these technologies have a tradeoff between advantages 

and limitations. Like, wearable sensors can be considered as an 

efficient technique as a source of rich information relating to 

human movement monitoring and health issues. Although 

wearable sensors are appropriate for normal situations, they are 

not a viable solution in pandemics and can become a cause of 

spreading viruses because of their direct interaction with the 

human body. The patients may also forget to wear wearable 

sensors. Some patients may interact with people with skin 

diseases, and infants are also discouraged from wearing such 

sensors [2]. Similarly, camera-based human monitoring 
technologies developed in [3] provides good results, but 

difficult to be installed in bedrooms and bathrooms due to 

privacy concerns. These technologies also fail in the monitoring 

of blind spots. In the case of Wi-Fi sensing, it is easily available 

and low cost but having limitations like flexibility and 

portability. On the other hand, radar technology is widely used 

in military resources, shows advantages such as accurate 

localization, coverage, and vital signs monitoring, but has 

various limitations like infrastructure deployment, spectrum 

licensing, and cost of equipment [4]. SDR offers a better 

solution in terms of cost and performance, as it provides 

flexible, cost-effective, and portable solutions, due to its 
software-based modification without changing the hardware 

[5]. The SDR-based platform can not only be used for human 

activity monitoring, but it can also be a viable solution for 

numerous health issues due to its scalable, and flexible 

hardware [6]. This platform offers a simple framework for 

experimentation rather than developing complex systems for 

functionality testing. Contactless technologies for monitoring 

human movements and health work in a contactless way and 

maybe one of the solutions for containing the spread of viruses. 

This technology is still in the initial stages of the research and 

needs further investigation to meet the challenges of the 
wireless channel and become a promising solution to monitor 

human movements and health.   

A. Contributions and Novelty 

In this research, Universal Software-defined Radio 

Peripheral (USRP) and LabVIEW are used as SDR platform to 

build a dataset of the WCSI from human movements. The 
research work contributes to the development of a contactless 

sensing platform for the detection of COVID-19 symptoms 

using SDR technology. This research will help in the 

containment of spreading the virus by monitoring human 

activities and early diagnosis of COVID symptoms such as 

breathing and coughing. The SDR technology provides 

flexibility, portability, multifunctionality, and a low-cost 
solution.          

This platform can successfully detect large-scale movements 

like hand waving and small-scale movements like breathing and 

coughing. In addition, breathing rate measurement is validated 

by three different methods for normal, slow, and fast breathing. 

These three methods include zero-cross detection, peak 

detection, and Fourier transformation.   

II. LITERATURE REVIEW 

In this section, various contactless wireless sensing-based 

technologies for human movements and health issues are 

presented.  

A. Human Movement Monitoring 

 Human activities recognition in indoor environments is 

performed by using an ambient radar sensor having a 7.8 GHz 

frequency. This platform classifies various human activities of 

individuals [7]. A low-power radar sensor is used for kitchen 

activity detection for fifteen different activities [8]. In [9], 

spectrogram image data acquired by radar is used to recognize 

and classify different falls for elderly people. 

      Using commercial Wi-Fi, [10] established a contactless 

Passive detection of moving humans with a Dynamic Speed 
(PADS) platform to identify different activities. A Through the 

Wall (TTW) presence detection system for humans is designed 

by [11], to extract CFR by using Wi-Fi signals. Wi-Fi-based 

Gesture Recognition system (Wi-GeRs) is used to observe and 

classify different hand movements by analyzing variations in 

CSI of Wi-Fi signals [12]. While [13] proposed a system to 

recognize different eating activities. Using Wi-Fi technology, a 

system is developed for User Identification System for Mobile 

Devices (UISMD) [14]. By combining the techniques of signal 

processing, edge computing, and machine learning (ML), a 

Sleep-Guardian system is developed, by using RF-based 

sensing [15]. Wi-Fi run system is developed for step estimation 
using CSI dynamics in the activity area [16].  

The SDR-based contactless system is established for 

recognizing different human actions such as running, crawling 

and standing, etc. [17]. Similarly, [18] deployed entire-home 

gesture recognition by exploiting SDR technology. The SDR-

based system is developed for hearing different human speech 

[19].  

B. Human Health Monitoring 

Passive Doppler radar platform used for human breathing 

detection and classification in [20]. Passive-Doppler radar 

platform [21] is also used to detect human movements and 

respiration. Vital signs monitoring and postures recognition 

during sleep is done using Wi-Fi signals [22]. Res-Beat 

developed for monitoring of respiration rate [23]. C-Band 

sensing techniques are used by Shah, S.A et. al for different 

health monitoring issues like tremors, breathing detection, and 

Chronic Obstructive Pulmonary Disease Warning respectively 
[24-25]. Shah, S.A et.al also developed a platform using S-band 

sensing techniques for several different health monitoring 
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problems like cerebellar dysfunction patients motion 

assessment, pill-rolling assessment, seizure episodes detection 

respectively [26-28]. The SDR platform in [29], with 

Convolutional Neural Networks (CNN) model, is developed to 

differentiate various ankle movements. Similarly, SDR 
technology is also used for classifying different human 

weightlifting activities [30]. Recently, different machine 

learning and deep learning models are being used for COVID-

19 prediction and diagnosis through radiographic imaging [31-

35]. Summary of human activities and health monitoring of 

various non-contact sensing is given in table 1. 

III. PROPOSED PLATFORM 

The proposed platform consists of host PCs, SDR devices, 

and Omni-directional antennas. Each SDR device is attached to 

a host PC via a gigabit Ethernet port and a single antenna. The 

SDR devices used for experiments are Universal Software 

Radio Peripheral (USRP) model 2922 and the software is 

Laboratory Virtual Instrument Workbench (LabVIEW). There 

are three major functional blocks of the platform which are the 

transmitter, wireless channel, and receiver as shown in figure 1. 

A. Transmitter 

Pseudorandom (PN) data bits are generated and mapped to 

Quadrature Amplitude Modulation (QAM) symbols. These 

QAM symbols are split into parallel streams. Reference data 

symbols are concatenated in each parallel frame. These 

reference symbols are useful on the receiver side to estimate the 

channel. Zeros are inserted at edges and 1 zero at DC of each 

frame. After zero paddings, Inverse Fast Fourier Transform 

(IFFT) operation is applied to convert N-points frequency 

domain signals to N-points time-domain signal. L point cyclic 
prefix is inserted by duplicating the last one-fourth points at the 

beginning for the transmission of OFDM Frame.  Now each 

frame has L+N samples. The data which is synthesized by host 

PC is sent to USRP kit through gigabit Ethernet cable using 

USRP write data block in LabVIEW. Host PC contains USRP 

driver software blocks, which are used to modify and control 

carrier frequency, In-phase, and Quadrature (IQ) rate and gain 

of the device.  
TABLE 1 

LITERATURE REVIEW SUMMARY FOR HUMAN MOVEMENTS AND HEALTH MONITORING 

Sr. # Tech. Human Movement Monitoring Health Issues Monitored 

1.  Radar Human activities recognition [7-9] Respiration symptoms monitoring [20,21] 

2. Wi-Fi 

 

 

 

 

 

 

Humans movement detection with Dynamic Speeds [10] 

Through-The-Wall Detection [11] 

Human activity and fall recognition [32] 

Gesture recognition system [12] 

Different eating activities detection [13] 

User identification system [14] 

Human monitoring during Sleep [15] 

Step estimation [16] 

Respiration symptoms monitoring [1] 

Monitoring vital signs and postures during sleep [22] 

Respiration rate monitoring [23] 

Detect tremors and breathing activity [24] 

Chronic obstructive pulmonary disease warning [25] 

Cerebellar dysfunction patients motion assessment [26] 

Pill‐rolling assessment [27] 

Seizure episodes detection [28] 

3. SDR Human activities detection [17] 

Different gesture recognition [18] 

Different human speech recognition [19] 

Fractured post-surgery ankle monitoring [29] 

Monitoring of post-surgery weightlifting activities [30] 

 

Now baseband complex signal samples are synthesized by the 

host PC and fed to the USRP-2922 at a rate of 20 MS/s over 

Gigabit Ethernet cable. The USRP hardware interpolates the 

incoming signal to 400 MS/s using a digital up-conversion 
(DUC) process and then converts the signal to analog with a 

digital-to-analog converter (DAC). The resulting analog signal 

is passed through a 20 MHz low pass filter. After that, it is 

mixed up to the specified carrier frequency. After that signal is 

passed through the transmitting amplifier, where its gain can be 

adjusted between 0-30dB. 

B. Channel 

The real-time wireless channel is considered for the 

development of the platform to monitor human movement and 

health. Wireless channel has abundant information about the 

environment. Therefore, different methods are adopted to 

extract useful information from the wireless channel in the 

literature. In this research, CFR is used for analyzing the WCSI. 

CFR is calculated by using (1): 

𝐶(𝑘) =
𝑅(𝑘)

𝑇(𝑘)
 

(1) 

Where 𝐶(𝑘) is CFR,  𝑇(𝑘) and 𝑅(𝑘) are transmitted and 

received signals in the frequency domain respectively. Since 

𝐶(𝑘) is a complex value, so we can extract the amplitude 
response given in (2): 

|C(𝑘)| =  √𝐶𝑅𝑒
2 + 𝐶𝐼𝑚

2
 

(2) 

Whereas,  𝐶𝑅𝐸 and 𝐶𝐼𝑚 are the real and imaginary part of the 

CFR. 

The CFR amplitude of single experiment E using multiple 
OFDM frames are express in the (3).  

|E| =

[
 
 
 
 
|C(𝑒𝑗𝜔)|1,1 |C(𝑒𝑗𝜔)|1,2 … |C(𝑒𝑗𝜔)|1,𝐹

|C(𝑒𝑗𝜔)|2,1 |C(𝑒𝑗𝜔)|2,2 … |C(𝑒𝑗𝜔)|2,𝐹

⋮ ⋮ … ⋮
|C(𝑒𝑗𝜔)|𝐾,1 |C(𝑒𝑗𝜔)|𝐾,2 … |C(𝑒𝑗𝜔)|𝐾,𝐹]

 
 
 
 

 

 

 

(3) 

Whereas 𝐾 is used for the total number of subcarriers, and 𝐹 

is used for the total number of OFDM frames received for a 

single E. 

C. Receiver  

The signal on the receiver side is first received by the USRP 

kit through the antenna. After this signal is passed through a 

Low Noise Amplifier (LNA) which reduces noise, then this 
signal is passed through a Drive Amplifier (DA), which is used 

to adjust the gain of the received signal. After that signal is 

mixed using a Direct Conversion Receiver (DCR) to baseband 

complex signal. This complex signal is passed through a 20 

MHz Low Pass Filter (LPF), which is then sampled by a 2-

channel, 100 MS/s, Analog-To-Digital Converter (ADC). The 

digitized complex signal follows parallel paths through a 

Digital down Conversion (DDC) process that mixes, filters, and 
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decimates the input 100 MS/s signal to a user-specified rate. 

The down-converted signal is passed to the Host PC at up to 20 

MS/s over a standard Gigabit Ethernet connection.  

The receiver host PC contains USRP driver software blocks, 

which are used to modify and control different USRP hardware 
parameters like carrier frequency, IQ rate, Gain, etc. The data 

which is received by the USRP kit via gigabit Ethernet cable is 

fetched at the receiver host PC using USRP fetch data block in 

LabVIEW. It is a USRP driver software block and used to 

receive data on the host PC. Each OFDM frame has the same L 

samples/points at the start and end of the frame as CP. This 

appearance of CP in each frame yields a correlation between a 

pair of samples that are N samples apart. Hence received signal 

is not a white process either, but because of its probabilistic 

structure, it contains information about the time offset 𝑡𝑂𝑆 and 

carrier frequency offset 𝑓𝑂𝑆. This crucial observation offers the 
opportunity for joint estimation of these two unknown offsets 

[36]. Therefore, here on the receiver side, the Van de Beek 

algorithm is used to remove offset in time and frequency [37]. 

This algorithm finds estimates of time offset 𝑡𝑂̀𝑆 and frequency 

𝑓̀𝑂𝑆   by using (4) and (5) respectively, 

 

Receiver PC Operat ion

Transmitter USRP

LPFTA Mixer DAC DUC

FFTCP 
Removal

Van de Beek 
Alogirithm

 Mag. & Phase 
Response

USRP Close 
session

USRP  
Fetch data
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LPFDDC ADC Mixer LNA
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Transmitter PC Operation

Generate 
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Symbols
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Fig 1. Proposed Platform Overview

𝑡𝑂̀𝑆   = arg  max{ |𝛾(𝑡𝑂𝑆| −  𝜌Φ(𝑡𝑂𝑆)} (4) 

𝑓̀𝑂𝑆 = −
1

2𝜋
∠𝛾(𝑡𝑂̀𝑆) 

(5) 

 𝛾(𝑡𝑂𝑆)is used to the estimate time offset 𝑡𝑂𝑆  and frequency 

offset 𝑓𝑂𝑆 . The magnitude of  𝛾(𝑡𝑂𝑆)is compensated by energy 

term Φ(𝑡𝑂𝑆),  peaks at time instant which provides 𝑡𝑂̀𝑆, while 

its phase at this time instant is proportional to 𝑓̀𝑂𝑆. Where γ(𝑡𝑂𝑆) 

is a correlation between two pairs of L samples of OFDM frame 

that are 𝑁 samples apart, Φ(𝑡𝑂𝑆) ) is energy part and 𝜌 is the 

magnitude of correlation coefficients.  

The time and frequency offset are removed along with CP 

removal from each OFDM frame. Now each OFDM frame will 

have N-points after CP removal. The FFT is then used to 

convert the time domain OFDM samples to the frequency 

domain OFDM symbol. The CFR amplitude is extracted at the 
receiver are analyzed to detect human body movements. 

IV. METHODOLOGY 

In this initial research, the amplitude response is estimated in 

the frequency domain by transmitting 1250 PN data bits. These 

bits are mapped by using 4-QAM to generate 625 symbols. 

These symbols are split into 5 parallel streams of 125 symbols. 

The 25 reference symbols are concatenated in each frame as  

TABLE 2 

HARDWARE AND SOFTWARE CONFIGURATION PARAMETERS SETTINGS 

Hardware configuration parameters settings 

Antenna Gain (Tx) 15 dB 

Antenna Gain (Rx) 30 dB 

Operating Frequency (Tx/Rx) 915 MHz 

IQ Rate (Tx/Rx) 200 kS/s 

Software configuration parameters settings 

Data PN sequence 

Bits per symbol 2  

OFDM subcarriers 256 

Data subcarriers 150 

Reference subcarriers 25 

Nulls DC subcarriers 103 

Cyclic Prefix points 64  

NFFT Points 256 

Samples per frame 320 

reference symbols. The zero paddings of 105 zeros as nulls and 

DC are added in each frame to perform 256-point IFFT. At the 
beginning of the frame, 64 symbols are inserted by duplicating 

the last 64 symbols. Now each OFDM frame size is 320 

symbols and the total size of data is 1600 symbols. The OFDM 

frames are sent at the rate of 200 frames/s to estimate the CFR 

using the USRP kit. IQ rate gain and carrier frequency 

parameters are configured in the software-defined block of the 

transmitter and the receiver is given in table 2. Van De Beek 
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algorithm is applied to locate the beginning and end of each 

frame and to remove time and frequency offsets. It also helps in 

removing the cyclic prefix to perform 256-point FFT to capture 

the amplitude response of the channel in the frequency domain. 

A. Experimental Setup 
In this research work, extensive experiments are conducted to 

evaluate the performance of this platform in detecting and 

monitoring different human body movements including human 

hand waving, coughing, and breathing. In this experimental 

setup, the first data is collected through USRPs, which are 

placed at a distance of half-meter from the subject. Each 

participant was asked to sit on a chair in relax posture. A total 

of five participants are used for data collection and each 

participant was asked to perform different human body 

movements like hand waving, coughing, and breathing. Before 

performing different activities, all subjects were given training 

and were requested to do the proper practice. This helped all 
subjects to perform these different activities efficiently. Five 

data sets are collected by each participant for these activities. 

Detail of each participant is given in table 3. 
TABLE 3 

 PARTICIPANTS DETAIL 

Sr. No. Participant 
Age 

(Years) 

Weight 

(Kg) 

Height 

(cm) 

1 Male 31 52 177 

2 Male 31 65 174 

3 Male 26 76 173 

4 Male 31 52 176 

5 Male 28 65 179 

After data collection, it is processed in different steps including 

subcarrier selection, outlier removal, and high-frequency 

elimination. In the subcarrier selection process, a group of 256 
subcarriers is obtained at the receiver for each activity. It is 

found that each subcarrier has a different amplitude because 

each subcarrier has a different sensitivity to human movement. 

To select those subcarriers which are more sensitive to human 

movement, the variance of all subcarriers is calculated and 

subcarriers with high variance are selected. After this wavelet 

filter is applied to remove any outliers in the data.  Wavelet 

filter only discards outlier from raw data but keeps sharp 

transitions. In the end, high-frequency noise components are 

eliminated and data smoothening is done through a moving 

average filter of window size 8. 
B. Human Body Movement Monitoring 

For real-time human body movement monitoring, data from 

transmitter USRP is being sent to the real-time wireless 

channel, which introduces different channel effects like 

attenuation, time shift, and frequency shift. The CFR for the 

real-time channel is given in equation (6) as: 

𝐶[𝑘] =
𝛼 𝑒−𝑗2𝜋𝑡𝑂𝑆𝑅[𝑒𝑗2𝜋(𝑓−𝛥𝑓)𝑘𝑛 /𝑁]

𝑇[𝑘]
 

(6) 

Here α denotes amplitude attenuations. 

For real-time human body movement monitoring following 

activities are considered: 

i. Hand waving movement monitoring 

In this case, CFR amplitude information is used to monitor 

human hand movement. This case is considered to test the 

platform for analysis of large-scale human body movements. 

Each subject is asked to perform hand waving twice in 28 

seconds. The changes in CFR are observed to monitor this hand 

waving activity. 

ii. Human health monitoring 

For human health monitoring, different health issues like 

human cough and different breath patterns are monitored by 

observing CFR. This case is considered to test the platform for 
analysis of small-scale human body movements.  

a. Human coughing monitoring  

For the case of human coughing, each subject is asked to do 

a voluntary cough twice in 28 seconds of activity. This analysis 

leads to detect the different types of health issues due to 

coughing.  

b. Human breath patterns monitoring  

For the case of human breathing, each subject is asked to 

perform different breathing patterns. Three types of breaths are 

considered in this research work including normal, slow, and 

fast breath. For normal breath, there are usually 12-20 breaths 

per minute (bpm) [38]. If the breath rate is less than 12 breaths 
per minute, then it is considered a slow breath. While if the 

breath is more than 20 breaths per minute then it is considered 

a fast breath. This case is also considered to test the platform 

for analysis of small-scale human body movement. 

C. Breathing Rate Measurement 
The breathing rate measurement is usually done through 

different methods including zero-cross detection, peak 

detection, and Fourier transformation [39]. To check system 

feasibility breath rate measurement is done through all these 

three methods. The breathing rate measurement detail of these 

methods is given below:  

i. Zero Cross Detection Method 

For this method, the total number of zero crossings 𝑍𝐶 are 

detected for breathing data. Breath rate for all different breath 

patterns is measured by the following equation: 

𝐵𝑟𝑒𝑎𝑡ℎ 𝑟𝑎𝑡𝑒 =  
𝑍𝐶

2
 

(7) 

ii. Peak Detection Method 

In the peak detection method, peaks are detected using 

quadratic fit. The number of peaks obtained represents the 
breath rate.  

iii. Fourier transformation 

In this method, FFT is applied and amplitude response is used 

to check the maximum frequency component 𝑓𝑚𝑎𝑥  present in 

data. On basis of 𝑓𝑚𝑎𝑥 , breath rate is measured using the 

following equation: 

𝐵𝑟𝑒𝑎𝑡ℎ 𝑟𝑎𝑡𝑒 = 𝑡 ∗ 𝑓𝑚𝑎𝑥  (8) 

 Where 𝑡 represents time in seconds for which breathing activity 
is performed. In this research work, each activity is performed 

for 28 seconds. 

V. RESULTS AND DISCUSSIONS 

The results are achieved for human body movements like 

hand waving and health issues monitoring like coughing and 

different breathing patterns. These results are used to test the 

platform for monitoring human movements and measuring the 
COVID-19 symptoms. Here CFR is used to describe effects on 

RF signal like reflection, scattering, and diffraction during 

propagation from the transmitter to the receiver.  CFR 

amplitude information for a group of subcarriers gives a unique 
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pattern to predict the channel information. Five subjects are 

asked to perform each activity but here the results of the 75th 

subcarrier of subject 3 shown for illustration purpose.  

i. Hand waving movement monitoring 

  For hand waving activity, each participant was requested to be 
seated on a chair in an easy posture and do normal breathing. 

Then the subject was requested to do hand waving movement 

at 6th and 16th second. As this activity is performed for 28 

seconds, it can be seen in figure 2 that there is an abrupt change 

in CFR due to hand waving after the 6th and 16th second. Human 

hand waving movement is considered in this research work just 

to test the detecting capabilities of the platform for large-scale 

body movements. As it can be seen from the results given in 

figure 2, this platform can faithfully detect a hand waving 

movement and it is suitable to analyze large-scale human body 

movement monitoring.  

ii. Human cough monitoring 

Now for cough monitoring each subject was requested to do 

voluntary cough at 6th and 16th second. As this activity is also 

performed for 28 seconds, an abrupt change in CFR can be seen 

in figure 3 due to coughing after the 6th and 16th second. Human 

coughing is considered to test the detecting capabilities of the 

platform for small-scale body movements. As it can be seen 

from the results given in figure 3, this platform can faithfully 

detect voluntary cough and it is suitable to analyze small-scale 

human body movement monitoring and different cough 

abnormalities. This result will help detect COVID-19 

symptoms as abnormalities in coughing can be a symptom of 
COVID-19. 

iii. Human breath monitoring 

For human breath monitoring, different breath patterns 

including normal, slow, and fast are monitored and the 

breathing rate for all these patterns is measured through three 

methods. This result will help to detect COVID-19 symptoms 

as irregular breathing is one of the common symptoms of 

COVID-19. 

a. Normal breathing 

For the case of normal breathing, the breath rate is measured 

from three different methods. The first zero-cross detection 

method is used to measure breathing rate using equation 7. As 
there is a total of 20 zero crossings in figure 4, this results in 10 

breaths in 28 seconds and approximately 20 breaths per minute 

(bpm). Now breath rate is measured from the peak detection 

method. In figure 5, there is a total of 10 peaks in 28 seconds, 

this results in 10 breaths in 28 seconds and approximately 20 

bpm. For the Fourier transformation method, 𝑓𝑚𝑎𝑥 is found as 

0.40 Hz which can be seen in figure 6. Now by using equation 

8 breathing rate is measured as 11 breaths in 28 seconds, which 

results in approximately 22 bpm. There are almost similar 

results from all three methods, which validates our system 
detecting capability.  

b. Slow breathing 

For the case of slow breathing, the same procedure is applied 

to find breath rate from three methods. The first zero-cross 

detection method is used to measure breathing rate using 

equation 7. As there is a total of 10 zero crossings in figure 7, 

this results in 5 breaths in 28 seconds and approximately 10 

breaths per minute (bpm). Now breath rate is measured from 

the peak detection method. In figure 8, there is a total of 5 peaks 

in 28 seconds, this results in 5 breaths in 28 seconds and  

 
Figure 2. Real-time CFR amplitude information for hand waving 

 
Figure 3. Real-time CFR amplitude information for coughing  

Figure 4. Breathing rate using zero-cross detection for normal 

breath 

Figure 5. Breathing rate using peak detection for normal breath 

Figure 6. Breathing rate using Fourier transform for normal 

breath 
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Figure 7. Breathing rate using zero-cross detection for slow 

breath 

Figure 8. Breathing rate using peak detection for slow breath 

Figure 9. Breathing rate using Fourier transform for slow breath 

approximately 10 bpm. For the Fourier transformation 

method, 𝑓𝑚𝑎𝑥 is found as 0. 17 Hz which can be seen in figure 

9. Now by using equation 8, the breathing rate is measured as 5 

breaths in 28 seconds, which results in approximately 10 bpm. 

There are almost similar results from all three methods, which 

validates our system detecting capability. 

c. Fast breathing 

Now for the case of fast breathing, the same procedure is 
again used to find breath rate from three different methods. The 

first zero-cross detection method is used to measure breathing 

rate using equation 7. As there is a total of 29 zero crossings in 

figure 10, this results in 14 breaths in 28 seconds and 

approximately 28 breaths per minute (bpm). Now breath rate is 

measured from the peak detection method. In figure 11, there is 

a total of 15 peaks in 28 seconds, this results in 15 breaths in 28 

seconds and approximately 30 bpm. For the Fourier 

transformation method, 𝑓𝑚𝑎𝑥 is found as 0. 48 Hz which can be 

seen in figure 12. Now by using equation 8, the breathing rate 

is measured as 14 breaths in 28 seconds, which results in 
approximately 28 bpm. There are almost similar results from all 

three methods, which validates our system detecting capability.     

The summary of breath rate measurement through all three 

methods is given in table 4. This platform can faithfully detect 

different types of breathing, which can be validated by table 4, 

as all three methods provide approximately provide same 

results. 
TABLE 4 

BREATH RATE PER MINUTE MEASUREMENT THROUGH DIFFERENT METHODS 

Sr. 

# 

Breath pattern 

type 

Zero Cross 

Detection 

Peak 

Detection 

Fourier 

Transformation 

1.  Normal breath 20 20 22 

2. Slow breath 10 10 10 

3. Fast breath 28 30 28 

Figure 10. Breathing rate using peak detection for fast breath 

Figure 11. Breathing rate using peak detection for fast breath 

Figure 12. Breathing rate using Fourier transform for fast breath 

VI. CONCLUSION 

In this research work, a contactless platform is developed for 

monitoring human movement and early diagnosis of COVID-

19 indicators and using SDR. Initially, CFR amplitude 

information is used to capture real-time channel response for 

different human body movements. The developed platform 

faithfully detects hand waving movement, coughing, and 
different breathing patterns. The system capabilities are tested 

by measuring breathing rate through zero crossings, peak 

detection, and Fourier transformation. The breathing rate is 

successfully recorded as 20, 10, and 28 breaths per minute for 

the case of normal, slow, and fast respectively. In the future, 

small-scale detection can be improved by enhancing the system 

gain.  Shortness of breath and severe coughing are the common 

and early symptoms of COVID-19. In this regard, data can be 

collected from COVID-19 affected patients using this platform 

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 24,2021 at 10:16:24 UTC from IEEE Xplore.  Restrictions apply. 



1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3077530, IEEE Sensors
Journal

8  IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

 

in a contactless manner to stop the virus spread and can further 

be investigated and classified using state of art machine and 

deep learning algorithms.  
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