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Efimov-DNA Phase diagram: three stranded DNA on a cubic lattice 

Somendra M. Bhattacharjee1, a) and Damien Paul Foster2, b)
 

1)Department of Physics, Ashoka University, Sonepat, 131029 India
 
2)Centre for Computational Science and Mathematical Modelling,
 

Coventry University, Coventry, UK CV1 5FB
 

We define a generalised model for three-stranded DNA consisting of two chains of 

one type and a third chain of a different type. The DNA strands are modelled 

by random walks on the three-dimensional cubic lattice with different interactions 

between two chains of the same type and two chains of different types. This model 

may be thought of as a classical analogue of the quantum three-body problem. In 

the quantum situation it is known that three identical quantum particles will form a 

triplet with an infinite tower of bound states at the point where any pair of particles 

would have zero binding energy. The phase diagram is mapped out, and the different 

phase transitions examined using finite-size scaling. We look particularly at the 

scaling of the DNA model at the equivalent Efimov point for chains up to 10000 

steps in length. We find clear evidence of several bound states in the finite-size 

scaling. We compare these states with the expected Efimov behaviour. 

a)Electronic mail: somendra.bhattacharjee@ashoka.edu.in 
b)Electronic mail: damien.foster@coventry.ac.uk 
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I. INTRODUCTION 

One of the strange results in quantum mechanics is the formation of an infinite number 

of bound states in a three-particle system when any two would have given a zero-energy 

bound state. This result goes by the name of Efimov effect1–6 . It has recently been argued 

that the classical analogue of the Efimov effect is the formation of triple-stranded DNA at 

the melting point of duplex DNA7 . In this paper we introduce a generalised three-stranded 

DNA model and examine its phase diagram using the flatPERM Monte Carlo method. Our 

model consists of a simple extension of the usual Gaussian-Chain model of DNA8 . In the 

standard DNA model, the configurations of two identical random walk chains of given length, 

joined at a common origin, are considered where the only energy comes from base-pairings 

(common-visited sites) occurring at the same contour length from the common origin along 

both chains9 . 

In our model we label the two chains from the standard model as type B, and introduce 

a third chain, which we label type A. We denote the interaction strength by dimensionless 

variables (i.e. absorbing the factor kBT into the interaction strength, where kB is the 

Boltzmann constant and T is the temperature) ε1 for a base-pairing interaction between the 

type A chain and either of the type B chains, and ε2 for base-pairing interaction between 

the two chains of type B. These are the only interactions included; there are no three-chain 

interactions other than those generated between the chains in pairs. The model is shown 

for strands of length of 14 on the square lattice in Fig 1. 

Our purpose in this paper is to examine the full phase diagram for the model defined 

through the partition function 

ZN (ε1, ε2) = g3,N (n1, n2) exp(n1ε1 + n2ε2), (1) 
Ω3,N 

where we have denoted by Ω3,N the set of configurations of three random walks of length 

N . Here, g3,N (n1, n2) is the number of configurations with exactly n1 interactions between 

the type A chain with either of the type B chains (n1 ∈ [0, 2N ]) and exactly n2 interactions 

between the chains of type B. The attractive contact energies are taken as ε1 and ε2 for 

A-B and B-B pairs. Note that the temperature has been absorbed in the definition of these 

contact energies, so that ε1,2 are dimensionless. In other words, the contact energies are 

given by kB Tε1,2. We also examine the scaling of the free-energy at the three-stranded DNA 
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1

ε

ε

2

FIG. 1. The type A chain is shown as a dashed line, whilst the type B chain are shown as solid 

lines. The only two interactions occur at equal contour distances from the common origin. All 

other contacts do not give rise to interactions. 

equivalent to the Efimov point. 

The Efimov point is located where the inter-chain interactions are the same, and at a 

value where any two chains are at the two-chain binding transition. 

II. CONNECTION BETWEEN DNA MODEL AND THE EFIMOV 

EFFECT 

The formal connection between DNA melting and the quantum problem can be estab­

lished as follows7 . Take three gaussian polymers with native base-pairing interaction, i.e., 

two monomers on two chains interact if and only if they have the same contour length index 

3




measured from a predetermined end. The Hamiltonian is
 
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:1

0.1
06

3/5
.00

59
15

3 
   2 NH 1 ∂ri(s)

H = = ds +
kBT 2 0 ∂s

i=1,2,3  N 
V (ri(s) − rj (s))ds, (2) 

0i<j

where ri(s) is the position coordinate of a monomer (or base) at contour length s. The first 

term represents the elastic energy or the connectivity of the chain as a polymer, while the 

second is the interaction between two monomers at the same contour length s (native base 

pairing of DNA). Like a Hydrogen bond, the range of interaction of V is taken to be small. 

The partition function is then given by  
Z = DR exp(−H), (3) 

where the integral represents the sum over all configurations as a path integral. 

If we now do an imaginary transformation s = it, then the partition function changes to  
G = DR exp(iS), (4a)  

with, S = dtL, (4b)   2  1 ∂ri(t)
and, L = − Vij , (4c)

2 ∂t
i=1,2,3 i<j 

as if L represents the Lagrangian of three particles with pairwise interaction Vij = V (ri(t) − 

rj (t)), with t as real time. In this path-integral representation, G now describes the quantum 

propagator of three particles with short-range, pairwise interactions. The key point in this 

exact transformation is the native base pairing of DNA (monomers with the same index) 

that got translated into the same time interaction in the quantum picture. In the N → ∞ 

limit, the groundstate energy of the quantum problem maps onto the free energy of the DNA 

problem. 

Double-stranded DNA undergoes a melting transition, as temperature is increased, or as 

the strength of the potential in Eq. (2) is changed. The melting point corresponds to the 

critical strength of the potential in the quantum problem above, in which a bound state 

occurs in a short-range potential in three dimensions. The bound state energy is related to 

the width a of the wave function, with E ∼ !2/2ma2, so that E → 0 implies a → ∞10 . 

4
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At the critical value of zero energy bound state, Efimov argued that three particles will 

produce a long-range effective interaction −1/r2 which leads to a tower of bound states with 

energies 
1 

En = γnE0, E0 < 0, where γ ≈ . (5)
(22.7)2 

This is the Efimov effect. 

The quantum fluctuations arise from the paths in the classically forbidden regions which 

are outside the potential well. In the DNA picture, these are the regions on the chains where 

the hydrogen bonds are broken by thermal fluctuations. A portion of the duplex with broken 

hydrogen bonds will be called a bubble. The bubbles are characterized by two lengths, ξ�, 

the fluctuation in the number of bonds broken, and ξ the corresponding length scale for the 

spatial size, with the relation 

ξ ∼ ξ� 
ν , (6) 

where ν is the polymer size exponent. For Gaussian polymers (random walks) ν = 1/2. 

The melting transition of the DNA at temperature T = Tc, where the hydrogen bonds of 

the duplex DNA are cooperatively broken, is described by the free energy per unit length 

kBTc
f ∼ . (7)

ξ� 

For a continuous transition, as one finds from exact solutions or from the Poland-Scheraga 

arguments, we may take f ∼ (|T − Tc|/Tc)2−α at least for T < Tc, so that ξ� ∼ (|T − 

Tc|/Tc)α−2 . This transition, like many other critical points, shows continuous scale invariance 

in the sense that under a scale transformation r → br, the free energy scales as f → b−2f 

for any b. 

Let us now consider two strands of DNA — let us call them A, B — separated by a 

distance R much larger than the hydrogen bond distance so that they do not form any 

doublet. Now we add a third chain C that can pair with both A and B with the same bond 

energy. If the temperature is close to the melting point of any pair, the large bubbles will 

allow C to make contacts with both A and B, resulting in an attraction between the latter 

two. This fluctuation induced interaction is given by an R-dependent free energy, modifying 

Eq. (7) to 
kBTc

Δf ∼ − F(R/ξ), (8)
ξ� 

5
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where the scaling function F(x) should be such that Eq.(8) makes sense for ξ�, ξ → ∞. By 

using Eq. (6), we then require F(x) ∼ x−1/ν so as to cancel ξ�. At the critical point for C, 

we then get 

1 
Δf(R) ∼ − ,

R2 
(9) 

where the gaussian chain value ν = 1/2 has been used. 

The above long-ranged inverse-square interaction is at the heart of the Efimov effect, but 

it is obtained here via the DNA mapping. For DNA, this interaction would lead to a bound 

phase of three strands at the melting point of the duplex DNA. Consequently, the three 

chain complex will melt at a temperature higher than Tc. 

There are two aspects of the Efimov effect. One is the formation of a three-particle bound 

state for potentials where two would not have formed a bound state. The second one, more 

subtle, is the formation of the Efimov tower precisely at the critical potential of zero energy 

bound-state for a pair, corresponding to the breaking of the continuous scale invariance of 

the critical point to a discrete scale invariance11,12 . 

III. PHASE DIAGRAM 

In this section we present numerical results for the phase diagram, where we examine the 

different transition lines and phases. In order to determine the phase diagram, we have used 

the flatPERM method13 to stochastically enumerate (or partially enumerate) the coefficients 

of the relevant partition functions. 

For the full model, we can define the partition function ZN through: 

ZN (ε1, ε2) = g3,N (n1, n2) exp(n1ε1 + n2ε2), (10) 
Ω3,N 

where we have denoted by Ω3,N the set of configurations of three random walks of length 

N . g3,N (n1, n2) is the number of configurations with exactly n1 interactions between the 

chain of type A with either of the type B chains (n1 ∈ [0, 2N ]) and exactly n2 interactions 

between the type B chains. 

Having good estimates of g3,N (n1, n2) then allows densities and fluctuations in energy to 

be calculated directly. Suppose we have a quantity X(n1, n2), which we also calculate during 

6
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
ε

2

0

0.2

0.4

0.6

0.8

1

1.2

ε
1

Two-boundUnbound

Three-bound

Efimov point

(2)
FIG. 2. Phase diagram in the E1-E2 plane. The dotted horizontal and vertical lines at Ec = 

1.07726... are the two-chain melting lines. The horizontal line at 0.5357... is the expected transition 

line for peeling of A from tightly bound BB pair. The solid line represents the transition to the 

three chain bound state, see text for details on the nature of the transition. The E1 = E2 line meets 

the two-chain melting lines at the Efimov point (green disk). There is a region where three chains 

are bound though no two should have been bound. This region is the Efimov-DNA region. 

the flatPERM calculation, then the average is calculated:  
n1ε1+n2ε2X(n1, n2)g3,N (n1, n2)e

(X) = Ω3,N . (11)
ZN (ε1, ε2) 

In particular, we can calculate the average number of contacts (ni) and the corresponding 

fluctuations Δi = 
N 
1 ((ni 2) − (ni)2), with i = 1, 2. 

The average number of contacts is expected to scale as8 

(ni) ∼ Nφi , (12) 

7
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where φi = 0 in the unbound phase and φi = 1 in the bound phase, and taking a potentially 

non-trivial value at the transition. This behaviour enables the setting up of a phenomeno­

logical renormalisation group method16 using the function 

log((ni)N /(ni)N ' )
ϕi,N,N ' = . (13)

log(N/N ') 

Estimates for the critical values of ε1 may be calculated looking for crossings of the ϕi,N,N ' 

keeping ε2 fixed (and the other way round). These crossings give estimates of φi at the 

transition. Logically, one uses ϕ1,N,N ' to calculate the critical values εf1(ε2) (and vice-versa). 

The solid black line in the phase diagram in Fig 2 is calculated from ϕ1,N,N/2 = ϕ1,N/2,N/4 

and the red dashed line using ϕ2,N,N/2 = ϕ2,N/2,N/4 with N = 200. 

The phase diagram consists of three distinct phase transition lines that join at a multi-

critical point and separate out three phases: unbound, two-bound and three-bound, corre­

sponding to the number of chains involved in the bound states. 

A. Unbound/Two-Bound Phase boundary 

When t1 = 0 the type A chain does not interact at all with the two type B chains, 

and the transition as ε2 is decreased is the standard two chain DNA melting transition at 
(2) (2)

ε2 = εc , where εc = 1.07726 · · · is the 2-chain binding transition8 . 

As ε1 is increased, we can view the situation of the 2-chain complex adsorbing to the type 

A chain. Whilst the number of contacts is small (φ1 = 0), the chain type B will not affect 
(2)

the two-chain binding transition, and we would expect ε2,c(ε1) = εc to remain constant 

until the third chain binds at the multicritical point. In Fig 2 the discrepancy between the 

estimated line (dashed) and expected transition is due to finite size effects. On the transition 

line we expect φ1 = 0 and φ2 = 1/2, which is consistent with the results found for chains up 

to N = 200. 

B. Two-bound/Three-bound boundary 

As ε2 → ∞, the two type B chains become tightly bound and behave as one Gaussian 

chain. Each contact with the type A chain is a double contact, and we would thus expect 
(2)

a binding transition when ε1 = εc /2. As ε2 is lowered, whilst the two type B chains 

8




    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I:1
0.1

06
3/5

.00
59

15
3

 

 0

 0.2

 0.4

 0.6

 0.8

 0.6  1  1.4  1.8

ρ1

ρ2

 (a)  ε1=0.4
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 (b)  ε1=0.6

ρ
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FIG. 3. Plots of ρ1, ρ2 vs E2 for (a) E1 = 0.4, and (b) E1 = 0.6 for chains of length 2000. In (a) we 

(2)
see the Melting of BB at Ec with decreasing E2, while A remains unbound. In (b) we see different 

(2)
melting points for BB (at Ec ), and A-BB triplet. 

remain bound, they will start containing bubbles. Now, when the type A chain comes into 

contact with the bound duplex, the number of contacts will sometimes be with one chain and 

sometimes with 2, making it harder to bind. This will have the effect of elevating the critical 
(2) (2)

temperature, or making it harder to bind, such that ε1,c(ε2) > εc /2. As the t2 → tc , the 

phase transition line merges with the 2-chain binding transition at the multi-critical point. 

Along this line we expect φ1 = 1/2, as this is a standard type binding between two random 

walks (at least for large ε2, and we see no evidence of a change in behaviour before the 

multi-critical point) and φ2 = 1, since the two type B chains are bound. This is also borne 

out by the numerical results. In Figure 3 we show the plots of ρ1 and ρ2 as a function of t2 

for two values of ε1. When ε1 = 0.4 (Fig. 3 (a)) we see that the density ρ1 remains zero, 

whilst ρ2 becomes non-zero as the phase boundary is crossed. When ε1 = 0.6 (Fig. 3 (a)) 

ρ1 becomes non-zero later than ρ2, as we cross successively the unbound/two-bound phase 

boundary and the two-bound/three-bound phase boundary. 

9




    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I:1
0.1

06
3/5

.00
59

15
3 

C. Unbound/Three-bound boundary 

We first consider the case where ε2 = 0. When ε2 = 0, the two type B chains do not see 
(2)

each other, they only see the type A chain. At the critical interaction ε1 = εc each type 

B chain binds with the chain of type A independently. This transition can be seen as two 

independent events. The chain of type A binds the other two into a triplex-bound state. 

This bound state ensures that the two chains of type B remain close to each other. The 

number of interactions n1 is the sum of the number of interactions with each of the chains 

of type B, and these contacts will be decorrelated between the two chains. It is clear then 

that (n1) ∼ N1/2, giving φ1 = 1/2. 

Estimates of φ1 and φ2 are shown in Figure 4, extrapolated by fitting to a quadratic 

function. It can be seen that φ1 could reasonably extrapolate to 1/2, and φ2 to a non-zero 

value, possibly 1/4, which is consistent with there being a bound triplet state, where the 

two type B chains are bound through the intermediary of type A chain. 

We looked at the free energy for the triplet state at this point, and found it to be the 

same form as the free energy for the two-chain DNA model at its melting point (shown in 

Fig. 7) but twice as large. 

This is interesting, since it is clear that when ε1 = ε2 the three chains are equivalent, and 
(2)

φ1 = φ2, which indicates that the point ε1 = εc , ε2 = 0 is different in nature from the rest 

of the line. This is understandable, because the type B chains are already bound by the 

type A chain, and so a small change in ε could reasonably make a big change. In Fig. 5 we 

look at the densities of the interactions ρ1 = n1/N and ρ2 = n2/N as a function of ε1 for 

ε2 = 0.6 and ε2 = 1. In both cases we can see that the two densities become non-zero at the 

same time, indicating clearly that the phase above the transition is a triplet phase. 

Fig 4 (b) shows φ1 and φ2 for ε2 = 0.7. The two φ seem as if they may reasonably give 

the same limiting value (around 0.68), which is bigger than 1/2. We compare to the plot 

with ε1 = ε2 (so φ1 = φ2 by construction). Here we seem to have a different limit, leading to 

the possibility (unverified) that φ1,2 may vary along the unbound/3-bound phase boundary. 

There is another possibility, which is that the line is weakly first order, which is the 

prediction of studies on hierarchical lattices7 . It is difficult for the length of chains considered 

to tell the difference between a smooth variation of the density, or a small jump which might 

develop only for very long chains. 
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FIG. 4. In figure (a) we show plots of φ1 and φ2 for N ≤ 200 plotted against 1/N . Figure (b) 

shows φ1 and φ2 for ε2 = 0.7 and φ = φ1 = φ2 for ε1 = ε2. 

As ε2 is increased, the type B chains will tend to bind more, which has the effect of making 

it easier for the type A chain to bind, which lowers the value of ε1 required to maintain the 

triple-bound state. Along the whole of this phase transition line, the two type B chains are 
(2)

nevertheless held together by the action of the the type A chain. This stops when ε2 = εc , 

and the B-chains can bind in their own right. This occurs at the multi-critical point. 

D. The multi-critical point 

The multi-critical point location can be identified by looking at the crossings for ϕi defined 
(2)

in Eq. 13 along the line ε2 = εc = 1.07726 · · · . The value of φ1 = 0 is expected along this 

line until the multicritical point, where it will be expected to take on a new value, indicating 

the adsorption of the type A chain to the type B chains. Likewise, the value φ2 = 1/2 is 

expected along this line, but may or may not take on a new value at the multicritical point. 

In Fig. 6 we show plots of ϕ1,2 against ε1 showing crossings at the estimated location of the 

multicritical point. We show ϕ1/2,N,N/2 for chains chains of lengths from N = 20 to N = 200 

in steps of 20. In the same figure we show the variation of the estimate for the value of ε1 
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FIG. 5. Efimov-DNA. Plots of ρ1, ρ2 vs E1 for (a) E2 = 0.6, and (b) E2 = 1.0 for chains of length 

(2)
2000. We see both BB and AB pairings at the same E1 < Ec for E2 = 0.6 (a) and E2 = 1.0 (b). 

The transition is between the unbound and the ABB triplet phases. The transition takes place in 

the region where any pair would have been in the unbound phase. 

at the multi-critical point, which we estimate to be at ε1 = 0.71(5), ε2 = 1.07726.... 

IV. FINITE-SIZE SCALING 

The distinctive feature of the Efimov effect is the occurrence of the Efimov constant that 

determines the geometric scaling of the energy levels, viz., γ in Eq. (5). Although γ is not 

universal, it is still a characteristic number for the effect, and the value Efimov determined 

for fermions is γ = (22.7)−2 . The analogy with DNA seems to provide a different way of 

having analogue behaviour, using a polymer-based Monte Carlo approach, in particular here 

we use the flatPERM method introduced by Prellberg and Krawczyk13 . 

For this purpose, we evaluated the free energy for three chains with the same interaction 
(2)

t1 = t2 = tc so that any pair would be at its critical point. The free energy has been 

evaluated for lengths up to 10,000. 
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FIG. 6. Figures (a) and (b) show plots of ϕ1/2 vs ε1. The crossings give finite-size estimates of 

the critical coupling. Figure (c) shows these estimates plotted against 1/N and Figure (d) shows 

estimates of the φ values. 
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To test the quality of the numerical data obtained from PERM, we check the nature at 
(2)

t = tc = 1.07726. In fact, the simulations done at this point will not give critical point 

data, as there is still a small shift δT �= 0 due to finite size effects. 

Let us first derive the expected two-chain and three-chain scaling behaviour in order to 

compare with our flatPERM data. 

For a contact interaction, V (ri(t) − rj (t)) = v0δ(ri(t) − rj (t)), v0 < 0 in Eq. (2), standard 

dimensional analysis tells us [s] = [L]2, and [v0] = [L]d−2, where [L] denotes the dimension 

of length. For d > 2, the two chain melting is described by a Renormalization group fixed 

point u ∗ = 2πε, where ε = 2 − d and u is the renormalized dimensionless coupling constant 

with the bare value u0 = v0Lε . In d = 3, the melting point is the unstable fixed point 

u ∗ = −2π (t = −1). At this fixed point, we associate the exponent for length ξ as 

1 
ξ ∼ |ΔT |−φ , φ = , (14)

|ε|
v0−vcwhere ΔT = 
vc 

is the deviation from the melting point, so that in d = 3, 

ξ� ∼ |ΔT |−2 . (15) 

Here ξ is the length in space while ξ� is along the chain (number of bases). 

The partition function is that of two or three interacting chains, free at one end but tied 

together at the other. This configuration goes by the name of ”survival” partition functions 

of “vicious walkers”. At the unstable fixed point, the behaviour of the finite length p-chain 

partition function is of the form 
(p) N N−ψpZN ∼ µ , (16) 

where the exponent ψp is given by14 

ψp = ηp/2, (17)⎧
 ⎨
 ε for p = 2, (exact)
ηp = . (18)⎩ 3ε + 3 ln(3/4) ε2 + O(ε3) for p = 3, 

We now use it for d = 3, i.e., ε = −1. At this fixed point, we find ψ2 = −1/2, for two chains 

at the melting point. For the critical contribution to the three-chain free energy, a direct 

sum gives ψ3 = −1.9315 which we approximate as −2. 

Combining Eqs. (15) and (18), the scaling for a small δT is (see also Ref8) 

(2)
ZN ∼ (2d)2N N1/2 G(δT N1/2), (19) 
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For a small fixed δT, G(x) ≈ a ' + b ' x. Therefore, with µ = 2d (for a random walk on a 

d-dimensional cubic lattice), we have   
(2)

Z(2) NF ≡ ln
µ2N

≈ a + |ψ2| ln N + bN1/2 . (20)N 

For the three chain case, the critical point contribution to the free energy   
(3)

Z(3) NF ≡ ln
µ3N

≈ a3 + |ψ3| ln N + b3N
1/2 , (21)N 

without the Efimov effect. The Efimov tower (Eq. (5)) would lead to a different class of 

terms of the type 

Fefi ∼ N |E0| + cj e 
−Nkj , (22) 

where kj ’s come from the energy gaps of the tower. The absolute sign for E0 is required 

because we are actually writing the expression for ln Z. Combining the two different contri­

butions we have a form 

F (3) = f3N + |ψ3| ln N + b3N
1/2 + a3 + cj exp(−Nkj ). (23)N 

(2) (3)
Note that, even though FN has no O(N) term, a linear term in FN with f3 > 0 is a 

signature of the Efimov effect. 

We use this RG based formula to fit numerically calculated free energy. 

V. COMPARISON WITH FLATPERM DATA 

We determined the free energies of the 2-chain and the 3-chain systems at the two chain 
(2)

melting point tc = 1.07726) for lengths up to 10,000 for 108 iterations 

Fig. 7 shows a good fit of Eq. 3 to the critical point data, with parameters as noted in 

the caption. The good fit is an assurance of the good quality of data. 

Armed with the success for two chains, we try to fit to equation 23. The best fit to the 

data was provided by the following form: 

F3 = f3N + 2 ln N + b3N
0.5 + a3, (24) 

−kN −γkN −γ2kN −γ3kN δF = c0e + c1e + c2e + c3e . (25) 

with f3, a3, b3 and the ci as fitting parameters to the free energy data for three chains at εc. 
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FIG. 7. Length dependence of the critical point free energy for two chains. RG functional form, 

Eq. 20, (solid line) fits the data from PERM evaluated at E = 1.07726 (blue dots), with a = 

0.280464, b = 0.00292. 

A fit to F3, given by Eq. 24, with reduced χ2 = 0.053 gave f3 = 0.26182, b3 = 

−0.14524, a3 = −7.9429 with errors in the last digit, as estimated by the fitting program 

of GNUPLOT. Fitting to F3 + δF (Eqs. 24, 25) gives a fit with the parameters reported 

in Table I. The two fits are shown in Fig. 8. To see the difference in fit, we need to look 

at short chain lengths, and the exponential terms are required to ensure a good fit with a 

γ ≈ 0.107. 

f3 b3 a3 c0 c1 

0.261660 -0.121678 -8.781304 4.012730 2.78526 

c2 c3 γ k 

4.165424 2.727346 0.107447 2.036299 

TABLE I. Best fit parameters, which lead to the fit shown in Fig 8. 

Whilst caution should always be taken to not over-interpret a numerical fit, this fit seems 
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FIG. 8. Length dependence of 3-chain free energy. The circles are the finite-size data points 

obtained for the free energy. The dashed (green) line is a fitting using Eq. (24) whilst the solid 

(red) line is found by fitting to F3 + δF . 
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to indicate convincingly the existence of at least three bound states, but the energy gaps, 

determined by δEi = γik does not fit the Efimov tower prediction, where we would have 

expected δEi = (1 − γi)f3, so whilst we confirm that we have multiple bound states in the 

three-bound phase, where any two chains would not be bound, we do not confirm the Efimov 

tower. This could be either an indication that the behaviour is different, or rather the finite 

walk aspect of our investigation does not allow us to see all the possible bound states. We 

will pick up this point in the discussion. 

VI. DISCUSSION 

In this article we presented results for the DNA analogue of Efimov-type scaling consisting 

of three-stranded DNA modelled by three random walkers starting from a common origin, 

and interacting only when two walks meet an equal number of steps from the origin, and 

the generalised model is studied for its phase diagram in ε1 and ε2. 

At the equivalent point to the Efimov point (ε1 = ε2 = 1.07726) we find three bound 

states, and excellent fitting to the free energy from length 0 to 10000, but these states don’t 

follow the Efimov tower structure expected. Whilst the different energy states give the finite-

size scaling behaviour of our system, it is not guaranteed that all will contribute. In the 

quantum system, our calculation would be equivalent to looking at the short-time evolution 

of the particles from a specific initial state, rather than a study of the time-evolution operator 

in general, which would be stationary in time. In the quantum system, we are looking at 

the eigenvalues of the time evolution operator, which in our case would correspond to a 

transfer matrix which adds a step to each of the DNA molecules. This can be seen as three 

interacting partially directed walks in 3+1 dimensions. In a future work we will look at this 

transfer matrix to see if it is possible to extract the eigenvalue structure directly. 

DATA AVAILABILITY 

The data that support the findings of this study are available from the corresponding 

author upon reasonable request. 
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