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Abstract: The paper aims to study a multi-period maximal covering location problem with the 
configuration of different types of facilities, as an extension of the classical maximal covering location 
problem (MCLP). The proposed model can have applications such as locating disaster relief facilities, 
hospitals, and chain supermarkets. The facilities are supposed to be comprised of various units, 
called the modules. The modules have different sizes and can transfer between facilities during the 
planning horizon according to demand variation. Both the facilities and modules are capacitated 
as a real-life fact. To solve the problem, two upper bounds—(LR1) and (LR2)—and Lagrangian 
decomposition (LD) are developed. Two lower bounds are computed from feasible solutions obtained 
from (LR1), (LR2), and (LD) and a novel heuristic algorithm. The results demonstrate that the LD 
method combined with the lower bound obtained from the developed heuristic method (LD-HLB) 
shows better performance and is preferred to solve both small- and large-scale problems in terms of 
bound tightness and efficiency especially for solving large-scale problems. The upper bounds and 
lower bounds generated by the solution procedures can be used as the profit approximation by the 
managerial executives in their decision-making process. 

Keywords: maximal covering location problem; capacitated facility; modularity; multi-period; 
Lagrangian decomposition heuristic 

1. Introduction 

The maximal covering location problem (MCLP), introduced by Church and Rev­
elle [1] maximizes the demands covered by the specified number of facilities to be located. 
MCLP has a wide range of applications in locating public facilities—such as health care 
facilities, police stations, schools, and fire stations, etc.—but it can also be used in locating 
private sector facilities such as warehouses, distribution centers, chain supermarkets, etc. 
Developing a model for each of the applications with the specific real situation, resulted 
in various extensions developed for the covering models since their introduction. The 
hierarchical MCLP [2,3], probabilistic MCLP [4,5] MCLP in competitive environments [6], 
large-scale dynamic MCLP [7], continuous MCLP for natural disasters [8], and maximal 
hub location problem [9] are some examples among the vast literature of the MCLP. The 
growing attention and interest in covering location problems are due to their applications. 
However, the developed models are far from real-world problems and there is still much 
work to do [10]. Farahani et al. [11] suggested the areas that could be considered for further 
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research, such as having different facilities and capacitated facilities. In the current paper 
by considering modular capacitated facilities, we attempt to modify a closer model to 
real-world problems such as disaster relief service location problems. 

Disaster relief services have been receiving global attention due to the scarcity of 
resources, accountability concerns, and the potential opportunities provided by advances 
in global information technologies [12]. One of the solutions to overcome the scarcity 
of resources is modularization. Modularization of services in the case of disaster can be 
interpreted as what the World Vision International is doing, i.e., relief supplies are stored 
in four locations globally, and can be immediately shipped anywhere in the world [13]. 
Furthermore, using mobile housing structures—such as temporary and portable offices, 
shelters, restrooms, warehouses, etc.—even modularization of the facilities is possible. 
These mobile structures are commonly used now and result in fast construction that is 
profoundly essential in a disaster situation like the Chinese government action caused by 
COVID-19 in building the Wuhan city 1000 bed hospital in 10 days utilizing the prefabri­
cated constructions [14]. In modular facilities, the mobile structures can move to the other 
areas when their mission is finished and it can result in total cost reduction because of 
the reusability of modules in other situations like the unique solution Japan has decided 
to offer praying rooms during the 2020 Olympic games [15]. Attempting to optimize the 
module assignment decision, it increases flexibility [16], reduces the costs and as a result 
increases sustainability. The rescue missions [17], temporary housing [18], and goods 
distribution [19] in a disaster situation are more or less investigated in the literature, but 
addressing the service providing facilities in a modular and dynamic framework remains 
as a research gap that this gap is fulfilled in the current study. 

In this paper, another extension of the MCLP is presented that mainly concentrates on 
the structure of the facilities to be located. Almost all facilities are composed of different 
units and departments, which provide a special kind of services or products called modules 
of facilities. In real examples of hospital application, facilities are hospital location and 
modules are ambulances, operating rooms and staff members over time horizon. In the 
disaster relief centers, facility is the location of centers and the modules are tents, waters, 
foods, etc. In the supermarkets, facility is the location of supermarkets and the modules 
are hot food shelf, beverage shelf, cold product shelf, etc. In a practical setting, e-commerce 
companies adopt different pricing policies over different time periods under different 
demand forecasts. Those real-world problems and demand variation in different time 
periods necessitate to develop a multi-period model that optimizes the objective value 
in different time periods looking for optimal solutions for assigning the modules to the 
facilities and allocating the demand points to the modules. The proposed mathematical 
model in this paper locates the capacitated facilities at the beginning of the planning 
horizon and then in each time period, assigns the optimum number of capacitated modules 
to the facilities with the objective of maximizing the covered demands and minimizing 
the module assignment cost. Modularization of the facilities provides the opportunity 
to develop more cost and energy-efficient smart facilities. One of the main applications 
of this model is for a disaster relief situation in which government is the decision maker. 
The service request of demand points is not the same in all disasters and depends on 
many factors such as the severity of the disaster. Demand fluctuation can be reflected by 
having the multi-period planning model. In this application, the facilities are the disaster 
relief centers, the modules can be ambulances, trucks, helicopters, first aid units, food 
providing units, sleeping tents, shower rooms, etc. and the demand points are the residents 
or residential areas affected by the disaster and having service requests. The locations of a 
limited number of disaster relief facilities are first determined and having the assumption 
that each disaster is happening in one of the time periods of the planning horizon, the 
modules are assigned to the located facilities. The modules are capacitated and they have 
different sizes. The optimal number and size of each module’s kind that should be assigned 
to the relief centers are determined by the model in order to have maximized allocated and 
covered demand points. After terminating the mission of modules in one of the affected 



Appl. Sci. 2021, 11, 397	 3 of 22 

areas in one period, in the next period the modules can be transferred to the other affected 
area to provide service there. 

Other applications of this model can be in locating and service providing of chain 
convenient stores as the facilities and decision maker is the operation planning department. 
There are many product categories available in these stores that can be assumed as the 
modules and customers are the demand points. Most of the time, there is no need to 
provide all kinds of products in all stores when there might be not enough demand for 
them in different seasons. According to our model, the predefined stores can be located 
using the developed model at the beginning of the planning horizon. Afterwards, according 
to the demand variation in different areas and time periods, the optimal number and size 
of modules are assigned to the located stores. The objective of maximizing the covered 
demands from one hand, and minimizing the cost of module assignments on the other 
hand creates a good balance between service quality and cost management. 

The mathematical model of the multi-period modular capacitated maximal covering 
location problem (MMCMCLP) is a mixed integer linear programming model. The objective 
is to maximize the profit that is obtained from the income of covering demand points and 
the cost of module assignment. Accordingly, three kinds of decisions are determined by 
MMCMCLP as: 

•	 Location of the predefined number of facilities; 
•	 Type and number of each module assigned to the located facilities in each time period 

during the planning horizon; 
•	 Percentage of allocated demands of points to the assigned modules in each time 

period. 

The small-size test instances can be solved to optimality using general solvers such as 
CPLEX. As the size of the problems increases, this solver is unable to solve the problems. 
To overcome this difficulty, a Lagrangian decomposition-based algorithm is developed 
that obtains an upper value and lower value for the optimal objective value, for which the 
decision makers can be assured that their profit is a value between the generated bounds 
and will not exceed these values. For MMCMCLP that is a maximization problem, the 
Lagrangian relaxation (LR) can generate an upper bound on the optimal objective value. 
Furthermore, many possible relaxations have been examined to figure out the relaxation 
of which constraints yields to the most time-efficient subproblem. In order to be able to 
provide sufficient evaluations on the possible methods, two procedures are proposed. In 
both approaches, the upper bounds are calculated by using two different sets of relaxed 
constraints and a decomposed problem. We also have developed two procedures to obtain 
a lower bound for the optimal objective value of the proposed model. In the first approach, 
the lower bound is computed by generating feasible solutions. In the second procedure, 
the lower bound is obtained from a developed heuristic method that locates the predefined 
number of facilities according to the criteria of more capacity and coverage of demands. 
Afterward, a sufficient number of modules with lower cost and more capacity would 
be assigned to the located facilities to maximize the number of allocated demands. Two 
relaxation problems and a decomposed problem provide three different upper bounds, 
which in addition to two lower bounds obtained from constructed feasible solutions and a 
heuristic method provide various bounds. The best method is the one that can produce the 
tightest upper and lower bounds, for which the bounds obtained from different approaches 
are analyzed to investigate the tightest bounds to select the best method. 

The main contributions and innovations of this study are summarized as follows: 

•	 We propose a new model called multi-period modular capacitated maximal covering 
location problem, which in addition to the facility location decisions, it determines 
module assignment and demand allocation decisions in different periods of the plan­
ning horizon. 

•	 The configuration of the facilities using the modularity concept results in having three-
level facilities. Different size of modules (first level) along with having a different kind 
of modules (second level) makes it possible to have different facilities (third level). 
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•	 An efficient Lagrangian decomposition-based method is developed to derive the 
upper bound. Furthermore, two different lower bounds are developed and compared 
to synthesize the proposed Lagrangian decomposition (LD) method. 

•	 Different upper bounds and lower bounds from various approaches are compared 
to evaluate the efficiency and tightness of the bounds. Our findings approve the 
superiority of the bounds obtained from Lagrangian decomposition-based (upper 
bound) and heuristic method (lower bound) over large-scale instances. 

•	 Sensitivity analysis for the problem is conducted to investigate the validity of the 
proposed model under different parameters. 

The remainder of the paper is organized as follows. Section 2 reviews the related 
studies. The mathematical model for the MMCMCLP is provided in Section 3. In Section 4, 
the solution approach to obtain Lagrangian upper bound integrated with a heuristic 
method to achieve the lower bound of the problem is proposed. Then numerical examples 
are analyzed in Section 5 and finally, conclusions are discussed in Section 6. 

2. Literature Review 

This section surveys the current literature of this study regarding the three major 
topics as MCLP, modular location problem, and Lagrangian relaxation method. 

2.1. MCLP 

In the basic formulation of the maximal covering location problem, there is no limita­
tion for the capacity of the located facilities and they are formulated for a single time period. 
Uncapacitated facility means that service by each facility can be provided limitless as long 
as the recipients are within the coverage standard. However, in most of the real-world 
applications of covering problems, considering capacity limitations for facilities is a more 
realistic assumption. Most facilities have limits on service capabilities due to physical, 
political, structural, regional, and other reasons [20]. 

Another restrictive assumption of basic covering location problems is considering 
the planning through the time horizon called multi-period or dynamic models. So-called 
dynamic location models consider a multi-period operating context where the demand 
varies between different time periods [21]. In multi-period MCLP, decision makers are 
interested in finding the optimal way of locating a definite number of facilities in different 
periods. The application of multi-period MCLP can be found in locating emergency 
service centers in populated regions that on-road accidents may happen and the number 
of facilities to be located may fluctuate between different periods of time because of daily 
traffic, weather situation, etc. Moreover, each opened facility at the beginning of a time 
period can be closed at the end of that time period in a multi-period MCLP [22]. In this 
regard, Marin et al. [23] addressed a general discrete covering location model in which they 
considered a finite planning horizon that is partitioned into several time-periods. Because 
the time periods are not necessarily of the same length and in each period, it is allowed 
that multiple facilities/equipment can be opened or closed in each location at some cost. 
Furthermore, Marin et al. [23] assumed that each demand point should be covered by 
at least a specific number of facilities and coverage lower than the minimum threshold 
undergoes a time-dependent penalty cost. These features of the studied problem result in a 
different way of demand point allocations to the facilities in each time period. 

Bagherinejad and Shoeib [24] studied a multi-period maximal covering location prob­
lem in which the total number of facilities that have to be opened, is located gradually 
over time. From this perspective, their model is an implicitly dynamic model. Another 
characteristic of their developed model is the dynamic capacity for each of the located 
facilities. As the application of their model is locating ambulances in emergency bases, 
locating a different number of ambulances in each time period makes it possible to set 
different levels of capacities in each time period. Vatsa and Jayaswal [25] developed the 
multi-period capacitated maximal covering problem considering uncertainties in server 
availability. Their problem addressed allocating doctors to non-operational primary health 
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centers and as the population that needs to be served by the facilities was changing over 
time, they studied their problem in different time periods. 

2.2. Modular Location Problem 

Modularity is a strategy recognized by academia and the industry and plays an 
important role in the development of sustainable systems [26]. Modularity is also one 
of the newest concepts in location problems. One can classify the models which use the 
concept of modularity in two categories: 

(1) Modularity which happens in points. For instance, Correia and Melo [27] presented 
a multi-period facility location problem with modular capacity adjustments and flexible 
demand fulfillment. In their model, customers were divided according to their sensitivity 
to delivery lead times. They also proposed two mixed integer linear programming for­
mulations and provided an extensive numerical study on randomly generated data with 
different demand patterns. More recently, Allman and Zhang [28] addressed a modular 
facility location problem with application in the chemical industry in a way that modules 
assignment should be conducted considering the fact that one module product is necessary 
for the operation of the next module. In addition to this consideration, Allman and Zhang’s 
model is capable of assigning modules with different capacities. Silva et al. [29] studied a 
dynamic facility location problem with modular capacities as an extension of well-known 
location-allocation problem with capacity expansions possibilities that can be performed 
via a finite set of projects, and modules are represented as capacity blocks in facilities. As 
the problem is studied in a finite time horizon of discrete periods and module relocation 
costs are not considered, the modules can easily close in one facility and open in other one 
in each time period to optimize the objective demand points allocations. 

(2) Modularity that happens in arcs. Tanash et al. [30] presented two mixed integer 
programming formulations, a flow-based and a path-based formulation for the modular 
hub location problem. Their problem formulated the flow-dependent transportation costs 
using modular arc costs and then they compared the models using linear programming 
relaxation bounds. Mikić et al. [31] addressed a capacitated modular single assignment hub 
location problem having modular link capacities between nodes and hubs. They also solved 
the proposed model with an extension of existing neighborhood structures called a general 
variable neighborhood search. In a similar attempt, Fard and Alfandari [32] investigated 
the trade-offs between the stepwise cost function and its linear approximation for the 
modular hub location problem. The modularity in their work arose from the transportation 
costs depicted as a stepwise function of the number of vehicles that had a significant cost 
reduction, which could not be properly measured by using a simple linear cost function. 

According to the models described above, the MMCMCLP considers the modularity 
that happens in the arcs. There has not been any problem that focuses exclusively on 
modularity in maximal covering location problem. In addition, MMCMCLP is considered 
in a dynamic environment and capacitated facilities are located while their corresponding 
modules with suitable sizes are assigned to the facilities in each period. 

2.3. Lagrangian Relaxation 

During the last decade, various publications appeared using heuristics and meta-
heuristics to solve the MCLP. Lagrangian relaxation (LR) is one of these heuristics which 
has been used by many researchers to find bounds for different problems. For example, 
Correia and Captivo [33] developed a Lagrangian heuristic for their modular capacitated 
location problem. There have been many other papers that used the LR-based algorithms 
to solve their models. Table 1 reviews the most important models in the area. There 
are various trends in using Lagrangian heuristics: applying LR just for producing lower 
bound, proposing heuristics for computing of both lower and upper bounds, using a 
fixed upper bound and try to propose lower bound heuristic and decomposing the main 
problem into sub-problems and then applying the mentioned procedures. Table 1 shows 
the most important papers related to the procedure used in this paper. From Table 1, it can 
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be concluded that most researchers have proposed heuristics for both lower and upper 
bounds. 

Table 1. Investigated studies using different approaches of Lagrangian relaxation method. 

Authors Problem Approach Decom. Just LB Both LB and UB 

Ayala et al. [39] Resource-constrained 
modular scheduling LR  

Nishi et al. [37] Hybrid flowshop 
scheduling problem LR with cuts   

Nishi et al. [38] Automated guided vehicles 
routing problem LR with Petri nets   

Yang, Chen and Chu [40] 
Large scale new variant of 

capacitated clustering 
problem 

LR approach with two 
phases of dual 
optimization

  

Litvinchev and Ozuna [41] Two-stage capacitated 
facility location problem 

Lagrangian heuristic 
producing feasible 

solutions
 

Diabat et al. [42] Multi-echelon joint 
inventory-location problem 

Improved LR-based 
heuristics    

Gendron et al. [43] 

Two-level uncapacitated 
facility location problem 
with single-assignment 

constraints 

Lagrangian-Based 
Branch-and-Bound 

Algorithm
  

Marin et al. [23] Multi-period stochastic 
covering location problems 

LR based algorithm for 
high quality feasible 

solutions
  

Rafie-Majd et al. [44] 

Three-echelon supply chain 
integrating 

inventory-location-routing 
problem under uncertainty 

LR  

Hamdan and Diabat [35] 
Multi-objective and 

stochastic blood supply 
chain 

Lagrangian heuristic  

Fathollahi-Fard et al. [34] 
Coordinated water supply 
and wastewater collection 
network design problem 

Adaptive Lagrangian 
relaxation-based 

algorithm
 

Zhang et al. [36] Train rescheduling and track 
emergency maintenance 

Lagrangian-based 
decomposition  

Current research 
Dynamic modular 

capacitated maximal 
covering location problem 

Lagrangian 
decomposition heuristic   

Fathollahi-Fard et al. [34] has used an adaptive LR method to solve the problem of 
water supply and wastewater collection network design as a minimization problem to 
address the drought problem of Urmia lake in Iran. The adaptive LR solves the relaxed 
problem and its solution is accepted as the lower bound. Afterward, to obtain the feasible 
solution as the upper bound the solutions for continuous variables of the relaxed problem 
are fixed and used as parameters and the binary variables are modified in a way that the 
feasibility of the solution is approved. The Lagrangian multiplier is then updated and the 
procedure is repeated until the last defined iteration. Similarly, Hamdan and Diabat [35] 
used LR method to solve the multi-objective model for a stochastic blood supply chain 
that was reformulated as a single objective and robust model before utilizing LR. The LR 
method developed by Hamdan and Diabat [35] relaxed one of the constraints and the 
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solution for this relaxed problem was set as the lower bound. To convert the infeasible 
solutions to feasible solutions and obtain the upper bound they used a heuristic method. 
In addition, Zhang et al. [36] developed a Lagrangian-based decomposition algorithm 
for train rescheduling and track emergency maintenance problem that happens under 
a rolling horizon framework. To overcome the difficulty of solving the complex model, 
they decomposed the original problem in two sub-problems and computed the LR for 
each problem in a parallel procedure. As their proposed model is a collaborative real-time 
optimization model, the developed Lagrangian-based decomposition method could reduce 
the computation effort for the real-time implementation, and realized online feedback 
correction. Nishi et al. [37,38] addressed the LR with cut for hybrid flowshop scheduling 
problems and the LR with Petri nets for routing problems for AGVs. 

3. Problem Definition 
3.1. Multi-Period Modular Capacitated Maximal Covering Location Problem (MMCMCLP) 

Suppose we are going to locate some facilities (like hospitals or disaster relief centers) 
in a city. Because of capital limitation, only a limited number of p facilities are going to be 
established that aim to cover the maximum number of demands. After defining the location 
of the facilities, according to the demand requests at each time period from each module, 
the assignment of modules and their proper size would be determined to maximize the 
total coverage amount minus the cost of establishing modules. 

The modules of the facility have four main properties: 

•	 Each module comes in different sizes. It can be chosen from different sizes to increase 
the service quality offered to demand points to overcome the service shortages or 
having idle units. 

•	 The modules are portable and they can be transferred among the facilities when there 
is more request in another facility. The transferability is an important specification 
of modularity design that yields to flexibility in the system and reduces costs. The 
portability of most modules helps to provide a good level of service to demand points 
without having to provide more modules. 

•	 As there are no constraints on the number of modules to be assigned to facilities, 
more of them can be established in the coming periods (if there is increasing demand) 
as expansion plans to have more coverage of demand points. The number and the 
location of the facilities after the decisions are made would be fixed for all time periods, 
but there is no such limitation for modules. 

•	 Each size of the modules has a known lower and upper-level service capacity for 
which, the total number of allocated points should be between this lower and upper 
level capacity. On the other hand, the total number of demands allocated to all kinds 
of modules cannot exceed each facility’s capacity. 

3.2. Mathematical Formulation 

In the developed model, it is assumed that the coverage of points obeys the gradual 
coverage rule in which by increasing the distance from full coverage radius (S) the coverage     
value reduces using a partial coverage function as f dij that 0 < f dij < 1. The proposed 
MMCMCLP can be formulated as a mixed integer linear programming (MILP) problem in 
the following way. 

Consider the following indices, parameters and decision variables: 
Sets and Parameters: 
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i ∈ I The index and set of potential facilities. 
j ∈ J The index and set of demand points. 
l ∈ L The index and set of modules. 
kl ∈ Kl The index and set of size indices for module l (l ∈ L). 
t ∈ T The index and set of time periods. 
S The maximum full coverage distance. 
S1 The maximum partial coverage distance (S1 > S). 
dij Distance, traveling time or cost between facility i and demand point j. 
gij The level of coverage provided by the facility i to the demand point j. 

 ⎧ ⎪⎨ 1 i f dij ≤ S
 

f dij i f S < dij ≤ S1
 
 

=gij ⎪⎩ 0 S1 < dij 

    
f dij Partial coverage function, where 0 < f dij < 1. 

ajlt The demand of point j from the service of module l in period t. 
blkl 

The lower level of capacity for module l with the size indices of kl . 
Blkl 

The upper level of capacity for module l with the size indices of kl . 
αj The profit gained by coverage of demand point j. 
βi The capacity of facility i. 
hilkl t The cost of establishing module l with size indices kl at facility i at period t. 
p The number of facilities to be located. 

Decision variables: 
vi Binary variable which equals 1 if a facility is located at point i.
 
yilkl t Binary variable which equals 1 if module l with size indices of kl is sited at facility i at period t.
 
xijlt Coverage amount of demand point j from module l of facility i at period t.
 

Then, the proposed model is as follows: 

(MMCMCLP) 
Max ∑ ∑ ∑ ∑ αj gijajlt xijlt − ∑ ∑ ∑ ∑ hilkl tyilkl t 

i∈I j∈J l∈L t∈T i∈I l∈L kl ∈Kl t∈T 

(1) 

∑ yilkl t ≤ vi ∀i, l, t (2) 
kl ∈Kl 

∑ xijlt ≤ 1 ∀j, l, t (3) 
i∈I 

∑ ajltxijlt ≥ ∑ blkl 
yilkl t ∀i, l, t (4) 

j∈J kl ∈Kl 

∑ ajlt xijlt ≤ ∑ Blkl 
yilkl t ∀i, l, t (5) 

j∈J kl ∈Kl 

∑ ∑ ajltxijlt ≤ βivi ∀i, t (6) 
l∈L j∈J 

∑ vi ≤ p (7) 
i∈I 

yilkl t ∈ {0, 1}, vi ∈ {0, 1}, xijlt ≥ 0 ∀i, j, l, kl , t (8) 

The objective function (1) seeks to maximize the profit gained from the covered 
allocated demands while simultaneously minimizing the total cost of assigning the modules. 
It should be noted that the parameter αj is used to avoid having a bi-objective function 
structure. Constraints (2) ensure that if there not exists an established facility at site i, no 
module is allowed to be sited there and only one size of each module can be sited in a 
facility. Constraints (3) imply that the total coverage of each demand point from all the 
facilities can be at most 1. Constraints (4) and (5) imply both, that if the module of size 



  

Appl. Sci. 2021, 11, 397 9 of 22 

kl is opened at facility i, the maximum and minimum capacity of that module cannot be 
exceeded. These constraints are also the allocation constraints for demand points that 
state the coverage of a point xijlt is forbidden unless there is any size of module l sited 
at facility i in period t. Constraint (6) implies that all demands allocated to modules in 
an opened facility i should not exceed its capacity. Constraint (7) ensures that the total 
number of located facilities should be at most p. Constraint (8) imposes the ranges of 
decision variables. 

As the MCLP is NP-hard [45], MMCMCLP would also belong to the category of 
NP-hard problems. Therefore, it is not possible to find a solution in a reasonable time for 
large dimensions of the problem for which in the next section, the solution procedures are 
indicated to solve real-world size problems. 

4. Solution Procedure 

There are three methods namely exhaustive enumeration, mathematical programming, 
and heuristic approaches to solve the location problems. Heuristic approaches can solve 
large size problems, but do not guarantee to reach an optimal solution [46]. Lagrangian 
relaxation-based heuristics have also been applied to many combinatorial optimization 
problems [47]. The quality of the solution is controlled by the upper and lower bounds 
provided by the LR procedure. Geoffrion and Bride [48] as one of the pioneers in studying 
LR to solve facility location problems, obtained theoretic and geometric insights relating 
the value of an LR to the usual linear programming relaxation (LPR). Their results show 
that LR yields a great improvement over LPR at only a small additional computational 
cost and cutting-planes far superior to Gomory fractional cuts. They also suggested a 
similar in-depth analysis of LR applied to other important classes of problems as the one is 
performed in this paper. 

Pirkul and Schilling [49] have studied the capacitated MCLP in which the facilities 
can provide either a primal service for demand points or back-up service. To solve their 
integer linear programming model, they applied the LR method by relaxing the demand 
(primary and back-up) allocation constraints and proposed a heuristic method to construct 
a feasible solution from the subgradient method. 

In this section, different possible relaxations for MMCMCLP and solving procedure 
for each possible relaxation are presented. In addition, a heuristic algorithm, to obtain the 
lower bound, is presented in the last subsection. For each proposed relaxed problem, two 
approaches will be used to solve it. In the first approach, the lower bound can be obtained 
and updated in iterations using feasible solutions and in the second approach, the lower 
bound would be obtained from the heuristic method. 

4.1. Upper Bounds 
4.1.1. LR1 

There are several Lagrangian relaxations for MMCMCLP. By using this procedure, 
a hard problem is converted into a relatively easy one by relaxing sets of complicated 
constraints. After testing possible combinations of constraints to be relaxed, in the first 
relaxation problem (LR1) the set of constraints (3)–(5) have been chosen to be relaxed. 
Let µjlt ≥ 0 ∀ j, l, t, λilt ≥ 0 ∀ i, l, t, γilt ≥ 0 ∀i, l, t, be the multipliers associated with 
constraint set (3)–(5), respectively. Then, the Lagrangian problem LR1 is defined as: 

(LR1) 

ZLR1 = Max ∑ ∑ ∑ ∑ αjgijajltxijlt − ∑ ∑ ∑ ∑ hilkl tyilkl t 
i∈I j∈J l∈L t∈T i∈I l∈L kl ∈Kl t∈T 

+ ∑ ∑ ∑ ∑ µjlt 1 − xijlt + ∑ ∑ ∑ λilt( ∑ ajlt xijlt − ∑ blkyilkl t ) (9)
i∈I j∈J l∈L t∈T i∈I l∈L t∈T j∈J kl ∈Kl 

+ ∑ ∑ ∑ γilt( ∑ Blkyilkl t − ∑ ajlt xijlt) 
i∈I l∈L t∈T kl ∈Kl j∈J 

Subject to (2), (6)–(8). 
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The objective function of the problem LR1, ZLR1, provides an upper bound on the 
objective function of the MMCMCLP for µjlt ≥ 0 ∀j, l, t, λilt ≥ 0 ∀i, l, t, γilt ≥ 0 ∀i, l, t. 

4.1.2. LR2 

Another possible combination of constraints to be relaxed is the set of constraints (3) 
and (6). Let ζ jlt ≥ 0 ∀j, l, t and χit ≥ 0 ∀ i, t be the multipliers associated with constraint 
set (3) and (6), respectively. Then the Lagrangian relaxation problem, LR2 is defined as: 

(LR2) 

ZLR2 = Max	 ∑ ∑ ∑ ∑ αjgijajltxijlt − ∑ ∑ ∑ ∑ hilkl tyilkl t + ∑ ∑ ∑ ζ jlt 1 − ∑ xijlt 
i∈I j∈J l∈L t∈T i∈I l∈L t∈T j∈J l∈L t∈T i∈Ikl ∈Kl	 (10) 

+ ∑ ∑ χit(βivi − ∑ ∑ ajlt xijlt)
 
i∈I t∈T j∈J l∈L
 

Subject to (2), (4), (5), (7), and (8). 
The objective function of the problem LR2, ZLR2, provides an upper bound on the 

objective function of the MMCMCLP for ζ jlt ≥ 0 ∀j, l, t, and χit ≥ 0 ∀i, t. 

4.1.3. Lagrangian Decomposition (LD) 

When the Lagrangian multipliers ζ jlt and χit are fixed, the relaxed model can be 
decomposed into two subproblems. The first (SubP1) determines the facility locations. 
After solving this problem, the set of locations would be categorized as Io ∈ I that refers to 
the located and opened facilities and INo ∈ I that would be the set of locations that there is 
not opened facilities in them and we have I = Io ∪ INo and Io ∩ INo = ∅. For Io ∈ I the 
second subproblem is defined as (SubP2) that assigns modules to each opened facility and 
allocates the demand points to the modules. SubP1 and Subp2 are as follows: 

(SubP1) 
(11)ZLD1 = Max	 ∑ ∑ χit βivi 

i∈I t∈T 

Subject to (7) and (8). 

(SubP2) 
(12)ZLD2 = Max ∑ ∑ ∑ ( ∑ (αjgijajlt − ζ jlt − χitajlt ) xijlt − ∑ hilkl tyilkl t ) + ∑ ∑ ∑ ζ jlt 

i∈Io l∈L t∈T j∈J kl ∈Kl j∈J l∈L t∈T 

Subject to (2), (4), (5), and (8). 
As the constraints (3) are relaxed there is no restricting constraint for the amount of 

coverage for demand points and they can have any positive value. The valid inequality 
(13) is added to SubP2 (as well as to LR1 and LR2), which is a redundant constraint for 
the primal MMCMCLP. The SubP2 is solved with the addition of (13) to obtain results for 
variables yilkl t and xijlt. An interesting feature of the SubP2 is that this problem can be 
decomposed and solved for each i ∈ Io, l, t. 

xijlt ≤ ∑ yilkl t ∀i ∈ Io, j, l, t 
kl ∈Kl 

We use the subgradient method to compute ZLD = ZLD1 + ZLD2. 

4.2. Lower Bounds 

We develop two lower bound procedures for MMCMCLP. The first one uses the 
solutions obtained from LR1, LR2, and LD and constructs a feasible solution as the lower 
bound. The second lower bound procedure is a novel heuristic method. 
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4.2.1. Lower Bound from Feasible Solutions 

ZLB is the lower bound to the MMCMCLP that can be calculated by fixing the variables 
vτ and yτ in constraints (3)–(6) and calculating the objective function (1) at the τthi ilkl t 
iteration and solving the problem by a branch and bound (B&B) procedure using a general-
purpose solver. 

4.2.2. Lower Bound Heuristic on MMCMCLP 

In this section, a heuristic method to obtain the lower bound for the MMCMCLP 
is presented. This heuristic method produces feasible solutions that can be used as an 
approximation for the optimal value of the MMCMCLP. It is important to note that due 
to the computational simplicity of the proposed heuristic method, it can be used as an 
independent method to obtain a feasible approximate solution on the optimal objective 
value of MMCMCLP when the computational resources are limited. At Step 1, the heuristic 
starts with locating p facilities out of i possible points using the criteria of more capacity 
(with weight factor w1) and the more coverage provided with each i point (with weight 
factor w2). Using weight factors, one can determine the importance of cost or coverage in 
locating facilities. After finding the location of the p facilities, the decisions for the module 
assignment will be fulfilled at Step 2. At Step 2, the algorithm considers the potential of 
each size of each module to be assigned to the p located facilities using parameter ϕiplt. 
At Step 3, the demand points are sorted by the possible income that they can provide 
from each located facility ip and module l at time period t. At Step 4, the sorted income of 
demand points from modules is augmented in parameter πipt until it reaches the capacity 
of the located facilities in each time period. On the other hand, the sorted income of the 
demand points will be augmented in parameter σiplt for each located facility ip and each 
module l at each time period t, until it reaches the capacity of the module l. At the final 
step, using the income from the covered demands and the calculated cost of the assigned 
modules, the objective value can be obtained. In contrary to the mathematical model of the 
MMCMCLP that capacity constraints impose computational difficulty, these constraints 
play a positive role in the quality of the solution obtained by the heuristic method. The 
detailed algorithm is shown as follows (Algorithm 1): 

Algorithm 1: The Heuristic Solution Method for MMCMCLP. 

Step 1. Choose the largest p values of δi = w1 βi + w2 ∑ gij ajlt. ip is the set of i that provides p 
j,l,t 

maximum values of δi and put the related vi∈ip 
= 1, otherwise vi = 0. 

Step 2. Calculate ϕip lt = maxk Blk/hiplkl t for each ip, l, k, t.   
If ϕip lt ≥ maxl,kl 

Blkl 
/meanip ,l,kl ,thiplkl t , assign the module l to the located facility ip at time 

period t in variable yiplkl t = 1, otherwise yiplkl t = 0. Calculate ∑ hiplkl tyiplkl t. 
ip lkl t 

Step 3. Sort γip jlt = gip j ajlt with respect to j for each ip, l, t. Set πipt = 0 and σip lt = 0. 
Step 4. For each ip, t, iterate πipt ← πipt + γip jlt until πipt ≤ βip 

vip 
. For each ip, l, t, iterate 

σip lt ← σip lt + γip jlt until σip lt ≤ ∑ Blkl 
yiplkl t. For the demand points j involved in the iterations 

kl 

put xip jlt = 1, for others xip jlt = 0. 
Step 5. ZHLB = ∑ αj gip j ajlt xip jlt − ∑ hiplkl tyiplkl t. 

ip jlt ip lkl t 

4.3. Sub-Gradiant Method 

In each iteration of the LR method, the upper bound is updated according to the rules 
0mentioned in the following. Assume µ ilt and χ0 

it are the initial multiplier jlt, ζ
0 
jlt λ0 

ilt, γ
0 

vectors, a sequence of multipliers can be updated by using the subgradiant method at 
iteration τ. θτ is the value of the step size parameter at iteration τ (0 < θτ ≤ 2) and the 
solution procedure for LR1 is summarized as follows (Algorithm 2): 
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Algorithm 2: LR1-LB 
0Step0. Put UB = +∞ , LB = −∞, τ = 0 µ = 0 ∀ j, l, t, λ0 = 0 ∀ i, l, t, γ0 = 0 ∀i, l, t, θτ = 2.jlt jlt jlt 

Step1. Solve the problem LR1. Put τ = τ + 1. Find the optimal values for variables and calculate
 
ZLR1.
 
Step2. Using a feasible solution of the problem MMCMCLP (Section 4.2.1), Calculate ZLB.
 
Step3. Update the upper and lower bounds. If ZLB > LB, then put LB = ZLB. If ZLR1 < UB,
 
then put UB = ZLR1.
 
Step 4 Update the step size parameter. If there was no improvement in upper bound for the past
 
b iterations then put θτ = ρθτ in which 0 < ρ < 1.
 
Step5. Check the termination conditions. Stop, if one of the following conditions holds.
 
UB−LB
 

UB ≤ 0.01 or,τ = 80. 
Step6. Update Lagrangian multipliers and go to Step 1. 

τThe same procedure is used to solve LR2, except that instead of multipliers µjlt, λ
τ 
ilt, 

and γτ 
jlt and χit 

τ will be used and instead of LR1, LR2 should be solved in ilt the multipliers ζτ 

each iteration. Accordingly, to solve LD the same procedure as LR2 would be used except 
that instead of LR2 first ZLD1 then ZLD2 will be solved to calculate ZLD in order to be used 
as the upper bound. 

For the case the lower bound is obtained from the heuristic method and to save space, 
in the following the procedure for LD is described and for LR1 and LR2 the procedure 
would be the same. The only difference would be the multipliers used and the problems to 
be solved in steps 0 and 1, respectively. 

The solution procedure for LD using the heuristic method to obtain the lower bound 
ZLB is summarized as follows (Algorithm 3): 

Algorithm 3: LD-HLB 

Step 0. Put UB = +∞, τ = 0, ζ0 = 0 ∀ j, l, t, χ0 = 0 ∀ i, t, θτ = 2.jlt it 
Step 1. Solve the problem SubP1. Obtain Io and solve SubP2 for Io. Put τ = τ + 1 Find the 
optimal values for variables and calculate. ZLD = ZLD1 + ZLD2. 
Step 2. Update the upper bound. If ZLD < UB then put UB = ZLD. 
Step 3. Update the step size parameter. If there was no improvement in upper bound for the past 
b iterations then put θτ = ρθτ in which 0 < ρ < 1. 
Step 4. Check the termination conditions. Stop, if one of the following conditions holds. 
UB−ZHLB ≤ 0.01 or τ = 80.UB 
Step5. Update Lagrangian multipliers and go to Step 1. 

5. Numerical Experiments 
5.1. Model Validation 
5.1.1. Illustrative Example 

To guarantee the validity of the proposed model, some test instances are generated. In 
all instances, the number of points is 50 and the number of potential locations of facilities 
is 10. The problems are studied for two time periods, three kinds of modules with three 
possible sizes. The coordination and demands of points are generated randomly between 
(0, 1000) and (0, 5), respectively and p = 3. For the illustrative example, the cost of module 
assignment and capacity of facilities have been generated using uniform function between 
(20, 40) and (60, 80), respectively. The objective function value for this example is 76.2 and 
39% of the total points’ demand was covered. Figure 1 shows the schematic location of 
facilities and the module assignment arrangement in two periods studied for this example. 
Three modules of the red triangle have been moved to the other facility in the second time 
period as the demand values change in order to cover more demands. An example of this 
kind of module can be the ambulances that are dispatched to the other aid center in the 
second period of the relief operation. Having an illustrative example, the case study of the 
humanitarian logistics problem in Japan by [50] is solved using the MMCMCLP model. 
As mentioned in the assumptions of the model and as a real-life fact, when a disaster hits 
a region the modules dispatch to that area to provide service for demands requests until 
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the end of the period and in the next period as the new disaster occurs, they leave toward 
the newly affected area for the new mission. In the case study in [50], the threat scenarios 
are designed having three time periods and disaster hits the south-central (R1) of Japan in 
the first time period, the second disaster occurs in the north-central part (R2) in the second 
time period and in the third period, it is the central part (R3) that is affected by a disaster 
and needs the modules assignment. Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 22 
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Figure 1. Illustrative example to depict the modules assignment and facilities location. 

Solving the problem with MMCMCLP, the solution of the problem for these threats 
the first area (R1) affected by the disaster could be covered 65.8%, the coverage for the 
second area (R2) was 49.6% and in the last affected area (R3) the coverage of demand points 
was 82.7%. The decisions of locating facilities are determined before disasters happen and 
when a disaster happens in any region, the government or any responsible organization can 
dispatch the limited modules (trucks, helicopters, medical services, mobile kitchens, shelter 
tents, etc.) to the located facilities to start service operations there. When the modules 
fulfill their operations, they can be dispatched to be assigned to the other facilities of other 
affected regions according to the demand requests. 

5.1.2. Sensitivity Analysis for the Capacity of Facilities 

There are two kinds of capacity constraints in the model, one related to the module 
capacity and the other for the facility capacity that are very important constraints to shape 
the feasible region. The parameter values for βi should be selected reasonably. The values 
all parameters are fixed and the values of βi change from large values to small values as 
Table 2. The results show that up to the interval of (80, 100) the objective values are fixed 
at 85.8 and the objective value starts decreasing for the small values, which means the 
capacity constraints of the facilities become active afterward. In this regard, the number 
of the assigned modules and the covered demands decrease as well. Figure 2 depicts the 
results for various capacities of facilities to provide a schematic evaluation. For all test 
problems, the column “Obj” contains the objective values. The column “Y” shows the total 
number of all modules ‘kinds allocated to facilities in all time periods and the column “X” 
contains the total number of covered demands. 

Table 2. Computational results for different values of facility capacity. 

# βi Obj Y X 

1 (260,300) 85.81 11 135.6 
2 (160,200) 85.81 11 136.22 
3 (100,120) 85.81 11 135.14 
4 (80,100) 85.81 11 135.46 
5 (60,80) 76.26 10 124.24 
6 (50,70) 65.6 8 95.53 
7 (40,60) 63.5 6 70.6 
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5.1.3. Sensitivity Analysis for the Number of Facilities to be Located 

Another parameter that has an effect on the value of the objective function is the 
number of facilities to be located. It is expected that having more facilities, more demand 
points would be covered. By increasing the number of facilities, we expect the objective 
value would increase as well. Table 3 shows the results when there are changes in the 
number of facilities to be located. If the number of located facilities is less, then the number 
of the covered demands and the assigned modules would be less. These values would 
increase by augmenting the number of located facilities as shown in Table 3. On the other 
hand, for the modules assigned to the facilities, by having more located facilities the 
model assigns more modules to the facilities and as a result, more demand points would 
be covered. Figure 3 illustrates the values for the objective function, the number of the 
assigned modules and the covered demand points. 

Table 3. Computational results to observe the effect of the increasing number of located facilities. 

# βi hilklt P Obj Y X 

8 (60,80) 20,40 2 52.9 7 88.9 
9 (60,80) 20,40 3 76.2 10 124.2 
10 (60,80) 20,40 4 94.8 11 133.3 
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5.1.4. Sensitivity Analysis for the Cost of Module Assignment 

Another important parameter that influences the results is the cost of the modules 
assignment to the facilities. Table 4 shows the effects of changing the module assignment 
cost. According to the results, as the cost of module assignment is increasing, while other 
parameters are fixed, fewer modules would be decided to allocate to the facilities and 
relatively the objective function values decrease. Having a fewer number of modules, the 
number of covered demand points also decreases. Figure 4, depicts the results of Table 4. 
These results validate the correctness of the proposed model. 



Appl. Sci. 2021, 11, 397 15 of 22 

Table 4. Computational results for the effect of the increasing module assignment cost. 

# βi hilklt P Obj Y X 

11 (60,80) 10,30 3 191.3 12 146.2 
12 (60,80) 20,40 3 85.81 11 136.2 
13 (60,80) 30,50 3 13.5 3 32.3 
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5.2. Comparison with the Conventional Methods 

In this section, some numerical examples are generated and tested to analyze the 

model performance as well as the solution approaches. The coordination of the points in 

the test problems is randomly generated using a uniform distribution between [0, 1000]. 

Demands of points are randomly generated, using a uniform distribution between [1, 5]. 

It is assumed that modules 1 and 4 have three sizes while there are two sizes for modules 

2 and 3. Costs of establishing modules are randomly generated using a uniform distribu-

tion between [40, 60]. The parameter 𝛼𝑗 is fixed to 1 for all points. The parameter 𝑝𝑖𝑗 is 

considered as 

𝑔𝑖𝑗 =

{
 
 

 
 

1 𝑖𝑓 𝑑𝑖𝑗 ≤ 300 

0.75 𝑖𝑓 300 < 𝑑𝑖𝑗 ≤ 400

0.5 𝑖𝑓 400 < 𝑑𝑖𝑗 ≤ 500

0.25 𝑖𝑓 500 < 𝑑𝑖𝑗 ≤ 600 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

  

The problems are solved using GAMS (CPLEX solver) software (25.1) on a PC with a 

1.6-GHz Core i5-8250U CPU and 8 GB of RAM running Windows 10 (64 bit). Table 5 con-

tains the information for the rest of the parameters. Furthermore, parameter 𝜌 = 0.4 

showed better performances for the test problems. Problem instances 1–8 are categorized 

as small size problems, based on the capability of CPLEX in solving these problems. Prob-

lem instances 9–20 with demand points more than 300 and candidate location of facilities 

more than 50, belong to the large-scale problems category in this study, for which CPLEX 

could not solve these problems and only bounds from different approaches are available 

for these problems. The maximum iteration to stop all algorithms is set for 40 iterations 

for large scale problem. 

Two optimality gaps for the obtained upper bounds and lower bounds are calculated. 

For the problem sizes that the optimal value is available, the upper bound optimality gap 

and lower bound optimality gap are reported under columns “UO-gap” and “LO-gap”, 
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Figure 4. Results of the sensitivity analysis for the module assignment cost. 

5.2. Comparison with the Conventional Methods 

In this section, some numerical examples are generated and tested to analyze the model 
performance as well as the solution approaches. The coordination of the points in the test 
problems is randomly generated using a uniform distribution between [0, 1000]. Demands 
of points are randomly generated, using a uniform distribution between [1, 5]. It is assumed 
that modules 1 and 4 have three sizes while there are two sizes for modules 2 and 3. Costs 
of establishing modules are randomly generated using a uniform distribution between 
[40, 60]. The parameter αj is fixed to 1 for all points. The parameter pij is considered as ⎧ 

1 i f dij ≤ 300⎪⎪⎪⎪⎪⎪ 0.75 i f 300 < dij ≤ 400⎨ 
gij = 0.5 i f 400 < dij ≤ 500 ⎪⎪⎪⎪⎪⎪ 0.25 i f 500 < dij ≤ 600 ⎩ 

0 otherwise 

The problems are solved using GAMS (CPLEX solver) software (25.1) on a PC with 
a 1.6-GHz Core i5-8250U CPU and 8 GB of RAM running Windows 10 (64 bit). Table 5 
contains the information for the rest of the parameters. Furthermore, parameter ρ = 0.4 
showed better performances for the test problems. Problem instances 1–8 are categorized as 
small size problems, based on the capability of CPLEX in solving these problems. Problem 
instances 9–20 with demand points more than 300 and candidate location of facilities more 
than 50, belong to the large-scale problems category in this study, for which CPLEX could 
not solve these problems and only bounds from different approaches are available for these 
problems. The maximum iteration to stop all algorithms is set for 40 iterations for large 
scale problem. 

Table 5. Parameter values for the test instances. 

# i j t l βi p 

1–4 
5–8 

9–12 
13–16 
17–20 

10 
30 
50 
70 

100 

100 
300 
500 
700 

1000 

2,3 
2,3 
3,4 
3,4 
3,4 

3,4 
3,4 
3,4 
3,4 
3,4 

(80,100) 
(150,180) 
(200,300) 
(250,350) 
(300,400) 

3 
12 
20 
25 
35 
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Two optimality gaps for the obtained upper bounds and lower bounds are calculated. 
For the problem sizes that the optimal value is available, the upper bound optimality gap 
and lower bound optimality gap are reported under columns “UO-gap” and “LO-gap”, 
respectively and calculated as 

(Upper bound − Optimal value)
upper bound optimality gap = 

Optimal value 

(Optimal value − Lower bound)
lower bound optimality gap = 

Lower bound 

5.2.1. Effectiveness of the Heuristic Method 

To evaluate the efficiency of the proposed heuristic method procedure for the test 
examples that the optimal value is available, the optimality gap is calculated and reported 
in Table 6. The computational time for all test problems solved with the heuristic method 
is less than one second, which is the reason the tables do not contain the computational 
time for the heuristic method. The maximum optimality gap is 0.137 while the average 
optimality gap is 0.065, which indicates that the heuristic method is able to produce efficient 
feasible values for the optimal values of MMCMCLP. The satisfactory performance of the 
heuristic method for small size problems approves its capability to be used for larger size 
problems. 

Table 6. Computational results to compare CPLEX and the heuristic method. 

CPLEX Heuristic 
# 

Obj Time HLB LO-Gap 

1 56 1 55 0.018 
2 71 2 69 0.029 
3 85 2 80 0.063 
4 114 2 114 0 
5 1838 333 1617 0.137 
6 2030 338 1819 0.116 
7 2847 1002 2574 0.106 
8 3056 503 2906 0.052 

Average 0.065 

5.2.2. Bounds Provided by LR1, LR2, and LD for Small Size Problems 

To evaluate the efficiency of the proposed solving procedures, we follow three ap­
proaches and solve numerical instances for each procedure. Figure 5 shows the structure of 
our conducted experiments. For each of the three relaxation schemes explained earlier, the 
relaxed problems are solved using the lower bound computed by the heuristic method and 
the lower bound of the feasible solution method as ZLB. Tables 7–9 contain the results for 
these two approaches for small size problems for the proposed LR1, LR2, and LD. 
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Table 7. Computational results to compare the CPLEX and LR 1 for small size instances. 

# 
CPLEX Heuristic LR1-HLB LR1-LB 

Obj Time HLB UB Time UO-Gap LB UB Time LO-Gap UO-Gap 
1 56 1 55 80 37 0.429 47 75 67 0.191 0.339 
2 71 2 69 97 50 0.366 68 94 89 0.044 0.324 
3 85 2 80 108 51 0.271 80 110 85 0.063 0.294 
4 114 2 114 177 54 0.553 101 168 97 0.129 0.474 
5 1838 333 1617 2139 173 0.164 1649 2162 284 0.115 0.176 
6 2030 338 1819 2312 242 0.139 1588 2465 504 0.278 0.214 
7 2847 1002 2574 3289 262 0.155 2301 3402 560 0.237 0.195 
8 3056 503 2906 3496 409 0.144 2367 3540 734 0.291 0.158 
Average 159 0.277 302 0.169 0.272 

Table 8. Computational results to compare CPLEX and LR2 for small size instances. 

# 
CPLEX Heuristic LR2-HLB LR2-LB 

Obj Time HLB UB Time UO-Gap LB UB Time LO-Gap UO-Gap 
1 56 1 55 72 30 0.286 36 72 40 0.56 0.286 
2 71 2 69 98 33 0.380 69 98 49 0.03 0.380 
3 85 2 80 109 40 0.282 47 109 52 0.81 0.282 
4 114 2 114 151 59 0.325 68 117 93 0.676 0.026 
5 1838 333 1617 2232 190 0.214 1764 2232 372 0.04 0.214 
6 2030 338 1819 2388 267 0.176 1907 2388 513 0.06 0.176 
7 2847 1002 2574 3394 280 0.192 2634 3393 578 0.08 0.192 
8 3056 503 2906 3600 372 0.178 2894 3600 574 0.06 0.178 
Average 158 0.254 283 0.289 0.217 

Table 9. Computational results to compare CPLEX and LD for small size instances. 

# 
CPLEX Heuristic LD-HLB LD-LB 

Obj Time HLB UB Time UO-Gap LB UB Time LO-Gap UO-Gap 
1 56 1 55 52 1 −0.071 24 51 77 1.333 −0.089 
2 71 2 69 80 51 0.127 - 80 51 0.127 
3 85 2 80 99 51 0.165 46 102 61 0.848 0.200 
4 114 2 114 128 52 0.123 33 134 60 2.455 0.175 
5 1838 333 1617 2120 148 0.153 1586 2122 333 0.159 0.155 
6 2030 338 1819 2280 177 0.123 1755 2280 242 0.157 0.123 
7 2847 1002 2574 3193 296 0.122 2317 3190 257 0.229 0.120 
8 3056 503 2906 3456 275 0.131 2632 3456 453 0.161 0.131 
Average 131 0.135 191 0.763 0.147 

As shown from Figure 5, for LR1 that produces an upper bound, two lower bounds 
can be generated using Sections 4.2.1 and 4.2.2. The first one uses the solutions of LR1 to 
produce a feasible solution called LR1-LB and the other lower bound is obtained from the 
heuristic method called LR1-HLB. LR1 is using LB as described sub-gradient method in 
Section 4.3 (Algorithm 2, Step 2) and heuristic method (Algorithm3, Step 4 as it is a fixed 
value obtained from the heuristic method). These explanations also hold for LR2 and LD. 
At first, the proposed Lagrangian relaxation method in Section 4.2.1 is utilized and the 
lower bound is obtained by the B&B method. The results for this approach are included 
under the column “LR1-LB” in Table 7. The upper bound, lower bound using the B&B 
method and the elapsed time in seconds for all approaches are reported under columns 
“UB”, “LB”, and “Time”, respectively. In the second approach, the problem LR1 is solved 
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by substituting the heuristic lower bound and compute the upper bounds. The results for 
this approach are reported under column “LR1-HLB” in Table 7. Tables 8 and 9 illustrate 
the same results for LR2 and LD respectively. 

In Table 7, the upper bounds obtained with LR1-LB are almost the same as LR1-HLB 
but computational time is less in LR1-HLB for all cases. Similarly, comparing the upper 
bounds and the computational times for LR2, this fact holds as well. LR2-LB and LR2-HLB 
obtain the same upper bounds (except in instance 4) while the computational performance 
of LR2-HLB is better than LR2-LB. The average value for “UO-gap” does not show a very 
significant difference for LR1-LB and LR1-HLB. For LD, LD-HLB has a little bit better 
performance regarding the upper bounds quality and the computational effort is better for 
all cases. Regarding the computational time, the procedure using the lower bound of the 
heuristic method is superior in all problems. 

According to the results of Tables 7–9, it seems that for LR1, LR2 and LD both methods 
can obtain the same upper bounds but the computational time of HLB procedure is less. 
The last row of each table contains the average values of the upper bound and lower bound 
optimality gaps. These average values can be used to evaluate the performance of the 
conducted approaches on the obtained bounds. Among all the methods, the heuristic 
method produces a tighter lower bound with the average amount of 0.065 (Table 6), but 
among LR1, LR2, and LD the performance of the LR1 has superiority to the others with the 
average lower bound optimality gap (LO-gap) equal to 0.169. On the contrary, LD has the 
best performance regarding the upper bound optimality gap. The upper bound optimality 
gaps of both approaches for LD are better than LR1 and LR2. In addition, in LD the upper 
bound obtained from the first approach—i.e., the heuristic lower bound (LD-HLB)—could 
generate better bounds. 

More test problems with larger size have been solved using the proposed methods. A 
mentioned earlier CPLEX was able to solve problems up to 300 points. Therefore, for the 
test problems in this section, there are no optimal solutions to be used for the evaluation of 
the bounds. To be able to measure the tightness of the bounds produced for large problems 
we use the bounds duality gap as 

(Upper bound − Lower bound)
duality gap = 

Lower bound 

The column under ‘Gap’ includes the calculated duality gaps for the studied test 
instances. 

The first approach i.e., calculating the lower bound using feasible solutions by ZLB, 
has been utilized to solve large test instances. Table 10 includes the computational results 
for LR1, LR2, and LD. According to Table 10, LD and LR2 were not able to find feasible 
solutions as the lower bound for most of the problems. The reason for this fact can be 
because of the decomposition structure that LD uses to obtain the variables. Although LD 
did not have good performance to produce lower bounds for some problems, it should 
be highlighted that the upper bounds computed with LD are less than LR1 and LR2 for 
almost all problems (except for instance numbers 14 and 16). Similarly comparing the 
lower bounds, it is apparent that LR2 can produce higher values for lower bounds and 
the tightness of the bounds calculated using the gap is also better in LR2. Regarding 
the computational time, LR1 has relatively less computational time, especially for larger 
instances but LR1 is not generating good bounds. Between LR2 and LD that obtain the best 
bounds, the average computational time is the best in LD-LB. 



Appl. Sci. 2021, 11, 397 19 of 22 

Table 10. Calculation results to compare the bounds for LR1, LR2, and LD. 

# 
LR1 LR2 LD 

LB UB Time Gap LB UB Time Gap LB UB Time Gap 
9 2476 

10 2653 
11 2122 
12 3453 
13 7047 
14 6088 
15 7808 
16 6616 
17 11,110 
18 11,345 
19 14,002 
20 17,823 

Average 

14,072 
13,937 
18,532 
18,746 
21,305 
21,228 
28,253 
29,053 
41,389 
41,046 
54,636 
54,471 

183 
361 
205 
317 
404 
766 
543 
844 
711 

1784 
1329 
2101 
795 

4.68 
4.25 
7.73 
4.43 
2.02 
2.49 
2.62 
3.39 
2.73 
2.62 
2.90 
2.06 
3.5 

9832 11,630 672 
9095 11,806 2640 

- 15,282 930 
12,310 16,000 1301 

- 19,036 1941 
12,534 19,117 1898 

- 25,545 2157 
18,372 26,282 2815 

- 37,517 4466 
- 37,768 8020 
- 50,177 4759 
- 50,043 21,466 

4422 

0.18 
0.30 

-
0.30 

-
0.53 

-
0.43 

-
-
-
-

0.34 

9147 11,013 
- 11,102 
- 14,429 

11,134 15,141 
- 17,748 

8007 20,443 
- 23,953 

12,742 30,472 
- 35,123 
- 35,970 
- 46,720 
- 47,399 

2356 
693 
713 
790 

1620 
287 

1548 
229 

4818 
5243 
4870 
6919 
2507 

0.20 
-
-

0.36 
-

1.55 
-

1.39 
-
-
-
-

0.87 

Table 11 shows the results for LR1, LR2, and LD when the fixed lower bound obtained 
from the heuristic method is used in the solving procedure. The computational effort for LD 
is considerably lower compared to LR1 and LR2. Between LR1 and LR2, the computational 
time is relatively less for LR2. Similarly, the performance of LD to produce better upper 
bounds is obvious from the average duality gap that is 0.3 for LD, while these values are 
0.37 and 0.41 for LR1 and LR2. 

Table 11. Computational results for fixed lower bound method for LR1, LR2, and LD. 

# 
Heuristic LR1 LR2 LD 
HLB UB Time Gap UB Time Gap UB Time Gap 

9 7945 11,673 3703 0.47 11,617 585 0.46 11,118 451 0.40 
10 10,237 11,870 4817 0.16 11,808 787 0.15 11,095 775 0.08 
11 11,403 15,334 7016 0.34 15,283 617 0.34 14,368 582 0.26 
12 13,817 16,029 8161 0.16 16,106 1093 0.17 15,056 765 0.09 
13 12,358 18,935 7390 0.53 19,307 1151 0.56 17,699 969 0.43 
14 16,096 19,191 8972 0.19 19,139 2555 0.19 18,060 1190 0.12 
15 17,682 25,212 8859 0.43 25,100 1694 0.42 24,113 1294 0.36 
16 23,590 26,289 21,429 0.11 26,295 2450 0.11 25,669 1847 0.09 
17 20,740 41,389 1638 1.00 37,524 4354 0.81 35,143 2841 0.69 
18 29,857 37,806 37,381 0.27 37,758 5418 0.26 35,937 4811 0.20 
19 29,623 54,646 1295 0.84 49,827 5344 0.68 46,749 3890 0.58 
20 37,469 54,471 5145 0.45 50,039 7414 0.34 47,354 5567 0.26 

Average 9650 0.41 2788 0.37 2081 0.3 

To summarize the results obtained from the conducted tests, Table 12 is generated. 
For all test problems, the best obtained lower bound and the best obtained upper bound 
together with the methods that they are computed, are extracted. According to Table 12, 
HLB and LR2-LB could produce best lower bounds (except for the test problem #3). From 
19 test problems, HLB could obtain the best lower bounds for 14 problems while LR2-LB 
obtained the best lower bound for four problems (in case #2, they obtain the same result). 
This fact approves the efficiency of the proposed heuristic method to compute feasible 
solutions as the lower bound of the problems. Regarding the upper bound, the competition 
is mainly between LD-HLB and LD-LB (except for two test problems 1 and 4). In particular, 
this fact approves that the best upper bounds are obtained from the LD problem. From 
18 test problems, LD-HLB could produce best upper bounds for 10 problems, the upper 
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bounds of two studied approaches are equal for 3 problems and LD-LB was superior only 
in 5 cases. According to the results, we suggest using HLB to compute lower bounds 
and LD-HLB to compute the upper bounds. The GAMS source codes of MMCMCLP are 
available at https://github.com/Alizadehroqayeh/MMCMCLP. 

Table 12. Best lower bound and upper bound values and methods. 

Best LB Best UB 
# 

LB Method UB Method 

1 55 HLB 72 LR2-LB = LR2-HLB 
2 69 HLB = LR2-LB 80 LD-HLB = LD-LB 
3 80 HLB = LR1-LB 99 LD-HLB 
4 114 HLB 117 LR2-LB 
5 1764 LR2-LB 2120 LD-HLB 
6 1907 LR2-LB 2280 LD-HLB = LD-LB 
7 2634 LR2-LB 3190 LD-LB 
8 2906 HLB 3456 LD-HLB = LD-LB 
9 9832 LR2-LB 11,013 LD-LB 

10 10,237 HLB 11,095 LD-HLB 
11 11,403 HLB 14,368 LD-HLB 
12 13,817 HLB 15,056 LD-HLB 
13 12,464 HLB 17,699 LD-HLB 
14 16,096 HLB 18,060 LD-HLB 
15 17,682 HLB 23,953 LD-LB 
16 23,590 HLB 25,669 LD-HLB 
17 20,740 HLB 35,123 LD-LB 
18 29,857 HLB 35,937 LD-HLB 
19 29,623 HLB 46,720 LD-LB 
20 37,469 HLB 47,354 LD-HLB 

6. Conclusions 

In this paper, a new extension of the maximal covering location problem is presented, 
which has some important features such as the possibility of having different facilities that 
are composed of capacitated modules, the possibility of choosing between the different size 
of modules commensurate to demanded services, capacity constraints for facilities, multi-
periodic demands for points, and gradual coverage for facilities. The proposed model has 
many applications such as locating the facilities in post-disaster situations, supermarkets, 
and hospitals. The idea of using the modularity concept for the facilities resulted in less 
cost, more flexibility, and it can provide sustainability from environmental and economic 
aspects. A mathematical model has been proposed for MMCMCLP, which can fit different 
real-life problem characteristics. Our conducted sensitivity analysis approves the accuracy 
of the proposed model as it can generate logical solutions by investigating various changes 
of parameters. 

After examining the possible relaxations for the MMCMCLP, different methods are 
proposed to solve the relaxed and decomposed problems and obtained various upper and 
lower bounds. Accordingly, a heuristic method is proposed that is able to generate higher 
lower bounds for the optimal solutions. Although the CPLEX could just solve problems 
up to 300 demand points, the proposed solution procedures were capable of producing 
bounds with up to 1000 demand points and 100 potential facilities and beyond. Our results 
indicate that although common LR problems can still generate upper bounds for complex 
problems like MMCMCLP, Lagrangian decomposition-based approach combined with the 
lower bound obtained from developed heuristic methods shows better performance and is 
preferred to solve for both small- and large-scale problems. 

The most important barrier over-performing MMCMCLP for the real application men­
tioned as disaster relief facility location, hospitals is data insufficiency for the parameters 
of demands, capacities and costs. To resolve these barriers there is a need to have access 
to data sets and also applying well-defined demand prediction methods. In addition, a 

https://github.com/Alizadehroqayeh/MMCMCLP
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possible future study could be compared using various matheuristics/metaheuristics for 
this problem, studying the probability of failure and breakdown of modules in different 
time periods and considering the variable radius coverage for facilities. 
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