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Abstract 

Vehicle Heating, Ventilation and Air Conditioning (HVAC) systems aim to ensure that passengers are 
thermally comfortable. However, thermal comfort is influenced by a large number of environmental 
variables and, furthermore, thermal preferences can vary greatly between individuals due to physiological, 
behavioural and cultural factors. This means that, generally, occupants need to adjust the nominally 
“comfortable” HVAC settings in order to achieve and maintain thermal comfort. This thesis established 
that, in order to develop efficient HVAC control algorithms, there is a need to i) sense a range of variables 
beyond air temperature, and ii) adopt learning-based techniques to take into account user preferences. 
This thesis proposes a novel reinforcement learning-based HVAC controller combined with virtual 

sensing to enable energy-efficient, comfort-oriented, high-level HVAC control. 
Towards this goal, the thesis first explores which of the thermal comfort models presented in the 

literature is the most suitable for real-time use in an HVAC system. The evaluation is based on data 
gathered from experimental trials with human subjects conducted over a wide range of conditions. Nils-
son’s equivalent temperature-based model is shown to provide the highest correlation scores with the 
subjective occupant comfort data. Furthermore, Nilsson’s model has the advantage of estimating local 
(not only overall) thermal sensation and requiring only two input parameters—the clothing index and 
equivalent temperature. 
Although equivalent temperature is shown to be necessary for estimating thermal comfort, it cannot 

feasibly be measured in real-time in a manufactured vehicle . Therefore, this thesis introduces a novel 
concept, called Virtual Thermal Comfort Sensing (VTCS), a method that estimates occupant body part 
equivalent temperatures from a minimalistic set of inexpensive cabin environmental sensors. Implement-
ing VTCS within a vehicle cabin consists of two stages. First, using a mutual information-based approach, 
the set of cabin environmental sensors that correlate well with the body part equivalent temperatures is 
selected. Second, Multiple Linear Regression (MLR) is applied to infer the occupant body part equival-
ent temperatures from the selected cabin environmental sensors. MLR was selected as the most suitable 
learning method out of seven different approaches, based on the estimation accuracy provided and the 
processing time required for the estimation. The VTCS approach was evaluated using empirical data 
and provided an average Root Mean Square Error (RMSE) of 1.41 › across environmental conditions 
characterised by cabin interior temperature rates of change of up to 6 › per minute, ambient temperature 
differences up to 6 › per experimental trial, varying ambient wind, solar load and precipitation. 
Finally, this thesis proposes an innovative reinforcement learning-based controller that phrases the 

control specification in terms of an overall objective function based on the thermal comfort of the pas-
sengers and the energy consumption. The performance metric used in evaluating the controller was the 
reward—a measure quantifying how thermally comfortable the occupant is and the amount of energy 
consumed. The proposed controller was evaluated through simulation within both single-zone and multi-
zone scenarios and it exceeded the performance of a basic controller and a fuzzy logic-based controller 
by a factor of 2.15 and 1.7, respectively. These results translate into an average of 29.05% energy saving 
over 200 testing scenarios when compared to the fuzzy logic-based controller, while thermal comfort was 
achieved and maintained successfully. 
The combination of the VTCS and the reinforcement learning-based controller sets the benchmark for 

future HVAC systems aimed at delivering true occupant comfort. Furthermore, the techniques described 
in this thesis can be transferred to a wide variety of applications such as skin temperature-driven control 
or HVAC control in buildings. 
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Chapter 1 

Introduction 

Vehicle Heating, Ventilation and Air Conditioning (HVAC) systems have long held an elusive promise of 

ensuring that passengers are thermally comfortable. However, despite substantial effort into improving 

such systems, by individually controlling multiple zones within the cabin for example, they are still 

acknowledged to provide inadequate comfort in some situations. 

Firstly, current HVAC approaches are focused on set-point control of cabin environmental parameters, 

such as air temperature. However, in many circumstances, occupants need to further adjust this set-point 

in order to make themselves comfortable. This is expected, as human thermal comfort depends on other 

factors in addition to current air temperature, such as heat radiated from the instrument panel, contact 

heat from the seat or steering wheel, air flow circulating within the cabin and solar radiation [46, 59]. 

Moreover, thermal preferences can vary greatly between individuals due to physiological factors as well 

as behavioural and cultural preferences [27]. 

Secondly, set-point based HVAC approaches consume considerable energy [109, 110]. Mola [108], for 

example, argued that, in order to develop an efficient controller, one needs to estimate occupant thermal 

comfort as accurately as possible in order to determine exactly the amount of power that must be used. 

With the introduction of hybrid and electric vehicles, more energy efficient approaches to HVAC control 

are called for, potentially based on more targeted conditioning of occupied cabin areas and driven by 

an estimate of the occupants’ thermal comfort perceptions of the environment rather than set-point 

temperatures [96, 108]. Therefore, HVAC systems need to control occupant thermal comfort, not just air 

temperature or a combination of air temperature and humidity. Improving the internal efficiency of the 

HVAC system itself is another solution, however this is not part of the aim of this work. 

Two factors have inspired the work in this thesis. The first is the lack of empirical work in the area 

of thermal comfort in vehicles, a gap that must be filled in order for the state-of-the-art to progress, 

as indicated by Hoof [152]. Existing thermal comfort models provide a method for estimating occupant 

thermal comfort. However, a key difficulty with these models is that they may not produce accurate 

comfort estimates for the car cabin environment [152]. If a comfort testing methodology is to be considered 
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authoritative, the thermal comfort model used must be validated to ensure that it agrees with passenger 

opinion. However, to the author’s knowledge, there is no empirical evaluation of these models in real-world 

car cabin conditions. 

The second factor is the desire to improve the way HVAC systems are designed. The author proposes, 

therefore, an innovative approach based on virtual sensing that will greatly simplify the HVAC control 

specification by phrasing it in terms of an overall objective function based on the thermal comfort of 

the passengers. This approach constitutes an objective measure that can be used to compare controllers 

with each other and should be particularly useful for control engineers when testing improvements to the 

system. The virtual sensing and objective function approaches are built upon to produce an innovative 

solution for thermal comfort control in vehicle cabins: a reinforcement learning-based heating and cool-

ing controller is proposed and evaluated, focusing on optimising occupant thermal comfort and energy 

consumption. This type of control aims to set the benchmark for future HVAC systems. 

The rest of this chapter is organised as follows. The motivation for the work is presented in Section 1.1. 

The research methodology is discussed next in Section 1.2, followed by the research questions addressed 

by this thesis in Section 1.3. The contributions to knowledge are then presented in Section 1.4, together 

with the list of publications that have resulted from the work in this thesis in Section 1.6. Finally, 

Section 1.5 presents the thesis structure, while the contributed work is acknowledged in Section 1.7. 

1.1 Motivation 

Electric and hybrid vehicles are a rapidly growing area of development, driven by concerns regarding the 

environment and the depletion of fossil fuels. However, their range and performance are severely impacted 

by the energy consumption of traditional HVAC systems. Thus, they require that the comfort control is 

energy efficient. Moreover, ensuring thermal comfort is an important occupant safety factor, impacting, 

for example, on the driver’s attentiveness to traffic [23, 29, 33]. Significant effort has, therefore, been 

focused on researching and developing methods for intelligently controlling the HVAC unit [5, 89, 108]. 

However, ensuring efficient vehicular HVAC control is a challenging task, due to the following cabin and 

occupant related factors: 

1. Cabin 

(a) The car cabin is a transient environment [29]. Average cabin air temperature rates of change 

of up to 9 › per minute have been experienced in realistic conditions in trials performed by 

the author (as presented in Chapter 3). 
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(b) The outside environment affects the cabin in a non-uniform way [91]. 

(c) The car cabin is a non-uniform thermal environment. Large differences in temperature between 

adjacent locations within the cabin (up to 7 › between the chest and foot zones) have been 

experienced in the experimental trials conducted by the author. 

(d) Radiant heat asymmetry occurs due to the close proximity of the cabin windows, dashboard 

and walls to the occupant [29]. 

(e) Modern vehicle cabins use heated or cooled surfaces, such as seats or steering wheels that 

further impact on the occupants’ body part thermal comfort [51, 83, 119, 132]. 

2. Occupant 

(a) Thermal preferences can vary greatly between individuals due to physiological, behavioural 

and cultural factors [27]. 

(b) Pre-conditioning occupants at a particular temperature before they get into the car affects 

their perception of thermal sensation and comfort (as shown in Chapter 3, hypothesis H3.3). 

(c) Unlike in building environments, cabin occupants are fixed in position and, therefore, do not 

have the ability to make themselves more comfortable by moving to another location. This 

reduced control also affects the perception of thermal comfort. 

The traditional approach used for conditioning vehicle cabins and buildings is via the use of HVAC 

systems with control based on set-point temperatures. This type of system takes as input a desired 

set-point temperature (for example 22 ›) and the control system aims to maintain that temperature. 

This approach is not optimal, either with regards to ensuring occupant thermal comfort or in terms of 

energy efficiency [96]. 

The power consumption of the HVAC system can be reduced in a number of ways, such as by achieving 

more efficient high-level control or by improving the physical system itself. This work focuses on restating 

the task for the HVAC system as being one of maintaining occupant thermal comfort. 

Occupant thermal comfort, however, is a difficult metric to estimate and control, even more so in 

car cabin environments due to the factors previously listed. It has long been established that thermal 

comfort is influenced by a variety of factors in addition to air temperature [46, 59]. Thermal comfort is 

generally affected by three types of parameters: 

‹ Environmental parameters (such as air velocity, air temperature, relative humidity and mean radiant 

temperature). 
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‹ Physiological parameters (such as skin temperatures, core temperatures and metabolic rate). 

‹ Other parameters such as clothing thermal resistance. 

Furthermore, it has been shown that pre-conditioning, acclimatisation and personal preferences have a 

large impact on thermal comfort. Particularly, Fanger’s results show that at least 5% of a population 

will be dissatisfied for any given conditions [47]. Experimental evidence presented in this thesis and also 

reflected in prior literature [6, 18, 21, 23, 60, 81] shows that: 

1. Thermal neutrality defines the temperatures in an optimum state that guarantee overall occupant 

thermal comfort. For a given population, thermal neutrality does not occur at one particular 

air temperature value. The empirical results in this thesis show that, while a cabin average air 

temperature of 25 › produces a neutral thermal sensation for drivers in some cases, influencing 

factors caused thermal neutrality to occur within a wider range (between 19 › and 29 ›). 

2. In the case of extreme winter and summer conditions, both the occupant and the cabin are naturally 

pre-conditioned to a very low or high temperature. Perception of thermal comfort is influenced by 

these conditions and, therefore, thermal comfort is likely to be different at the same car cabin 

air temperature. Experimental results confirm that thermal neutrality occurs at different average 

cabin temperatures based on the pre-conditioning of the subject (for example, thermal neutrality 

is reached approximately 3 › lower with cold pre-conditioning). 

3. Solar loading is another factor that influences thermal comfort. Results in this thesis show that 

additional solar loading causes the thermal sensation for a given air temperature to be generally 

warmer. Also, in the case of asymmetry in the solar load, the side of the subject’s body exposed 

to solar loading was often reported as being at a lower comfort level than the unexposed side. 

The above indicates that, in order to develop efficient HVAC control algorithms, there is a need to 

1) sense more than just air temperature and 2) utilise thermal comfort estimates for cabin occupants in the 

control feedback loop. However, no mathematical model is able to satisfy the thermal comfort preferences 

of all cabin occupants. Moreover, the relationship between thermal comfort and the environmental 

variables being measured is non-linear [37]. Therefore, learning-based control is needed that fulfils the 

above capabilities. The development of such a mechanism lies at the core of this thesis. 
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1.2 Methodology 

This thesis draws from several collaborative projects between leading automotive companies (Jaguar 

Land Rover (JLR), Ricardo and Motor Industry Research Association (MIRA)) and research partners 

(Coventry University and Warwick University) aimed at introducing new, low carbon vehicle components 

and manufacturing techniques. The projects are: the Low Carbon Vehicle Technology Project (LCVTP), 

Automatic Temperature Control (ATC) and STRIVE (further detailed in Section 1.7). These collabora-

tions highlight the practical nature of the work performed by the author and its potential impact on the 

automotive industry. 

The work in this thesis followed two methodological strands. The first strand is experimental and 

is aimed at critically evaluating and selecting an optimal thermal comfort model from the literature, as 

well as developing a Virtual Thermal Comfort Sensing (VTCS) approach that estimates occupant body 

part equivalent temperature from minimalistic and inexpensive cabin environmental sensors. This work 

provides the foundation for comfort-based HVAC control. 

A significant gap exists in the literature regarding research performed using car cabin experimental 

data. Many car cabin comfort evaluations are based on simulation models and are limited by the con-

straints introduced by the simulation packages and the models used. A strength of this work, therefore, 

comes from the fact that the thermal comfort related analysis conducted is based on gathered empirical 

data—both cabin environmental sensor data and subjective occupant reports. This data was used to 

determine which existing thermal comfort model best matches the thermal comfort level of car cabin 

occupants. As described in Chapter 4, the experimental data was gathered from a number of trials 

that include both steady-state conditions and conditions normally expected while driving and in which 

subjective comfort measures were sought from human participants. 

Another use of the empirical data was to develop an in-depth understanding of the relationship 

between various cabin environmental sensors. Knowledge of these relationships was essential for the 

VTCS development. In order to develop the VTCS method, seven equivalent temperature estimation 

techniques were implemented and evaluated (see Chapter 5) based on the data collected. 

The second methodological approach is simulation-based and was used in the development of a rein-

forcement learning-based heating and cooling controller that maximises occupant thermal comfort while 

minimising the energy consumption. The concept of reinforcement learning is described in detail in Sec-

tion 2.6. Once the optimum policy is learnt through simulation, the policy can be transferred into the 

vehicle, where the controller can be fine-tuned for the real cabin and HVAC system, and additional learn-

ing of user preferences can occur. As a result, a better control policy can be achieved. The development 
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of a real-time system is, however, beyond the scope of this thesis. 

The work in this thesis uses existing statistical and machine learning techniques in order to develop 

novel paradigms in the area of vehicular thermal comfort control. As shown in this thesis, the methods 

are generic and can be used within a number of other applications, such as HVAC systems for trains, 

planes or buildings. This section provided an overview of the methodology used to develop the work 

here. In summary, to develop and evaluate the methods presented in this thesis, the author has taken an 

approach of both empirical data-based evaluation and simulation-based evaluation. 

1.3 Research questions 

As previously described, this thesis focuses on 1) the evaluation of existing thermal comfort models on 

data gathered in a variety of environmental vehicle cabin conditions, 2) the development of VTCS that 

enables cabin occupant body part equivalent temperature to be estimated and 3) the development and 

evaluation of a reinforcement learning-based HVAC control algorithm aimed at maximising the thermal 

comfort of passengers while reducing the energy consumption. There are several research questions that 

this work aims to answer, as follows: 

RQ1: Is there an existing thermal comfort model that is suitable for real-time use in an HVAC system 

and if so, which is it? 

This question pertains to whether there is a thermal comfort model in the state-of-the-art that is 

suitable for vehicular control. The four models implemented and evaluated on gathered empirical 

data are: the Predicted Mean Vote (PMV), Zhang’s model, Taniguchi’s model and Nilsson’s model. 

In order to decide the most suitable thermal comfort model, the correlation score with subjective 

occupant comfort data is taken into consideration, as well as characteristics of the model such as 

whether it can estimate local thermal comfort and the number of parameters it requires as input. 

This work is described in Section 4.3. 

RQ2: Can an optimum set of cabin environmental sensors be defined for estimating occupant body part 

equivalent temperature, given realistic constraints? 

The location and type of cabin environmental sensors that actuate the HVAC control are usually 

selected according to cost and aesthetics. These sensors, however, may not be suitable for effective 

HVAC control. A mutual information-based sensor selection technique combined with virtual 

sensing allows occupant body part equivalent temperature to be estimated and used as the basis 
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for more effective HVAC control. Therefore, the first step is to determine the feasibility of selective 

cabin sensor locations for this method and demonstrate what these locations might be. The method 

is provided in Section 5.1. 

RQ3: Which is the most suitable machine learning technique for estimating occupant body part equi-

valent temperature from a set of cabin environmental sensors? 

As stated in Section 2.3, it is not feasible to directly measure occupant body part equivalent 

temperature in vehicles. Therefore, machine learning approaches should be considered in order to 

estimate the occupant equivalent temperatures. Seven machine learning methods were implemented 

and evaluated. The criteria for selecting the best method were: i) the error between the values 

estimated and the values actually observed and ii) the processing time required for the estimation 

to be performed on an unseen data set. The latter is important to take into account given the 

real-time potential application of this methodology. This work is described in Section 5.2. 

RQ4: Is it possible to represent the state of the cabin environment in such a way that it fulfils the 

Markov Decision Process (MDP) criteria? 

This question asks whether the car cabin environment can be represented to fulfil the MDP criteria. 

In order for an environment to fulfil the MDP criteria, the representation of the state needs to be 

Markovian (that is, the state comprises all the necessary information and this information suffices 

in order to decide the next action). In general, the aim is to express the state in a compact way, so 

that the complexity of the problem is significantly reduced. Creating a compact Markovian state 

representation for this particular HVAC control algorithm is a problem discussed in Section 6.2. 

RQ5: Can a reinforcement learning-based heating and cooling control policy provide performance beyond 

the current state-of-the-art? 

This question asks whether an efficient reinforcement learning-based controller that maximises 

occupant thermal comfort while minimising the associated energy consumption can provide a better 

performance than state-of-the-art approaches. In order to compare the performance of various 

control algorithms, a performance metric has to be defined. The method of quantifying performance 

is an important design decision and for this application the basic metric of performance is the 

reward—a number quantifying the combination of how far the occupant equivalent temperature is 

from the comfortable range and how much energy is consumed. This is discussed in Chapter 6. 
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1.4 Contributions to knowledge 

In answering the research questions listed in Section 1.3, the following contributions to knowledge were 

made: 

1. The identification and evaluation (based on gathered empirical data) of the most suitable existing 

thermal comfort model to be used for vehicular heating and cooling control. This work is presented 

in Chapter 4. 

2. A method for developing VTCS to actuate the heating and cooling control. The method consists 

of: 

(a) A method that selects the optimum set of cabin environmental sensors and their associ-

ated locations for estimating occupant body part equivalent temperature. This is reported 

in Chapter 5. 

(b) An equivalent temperature estimation machine learning-based method. The method was se-

lected out of seven different methods based on accuracy and processing time. This is also 

reported in Chapter 5. 

3. A reinforcement learning-based policy design for producing an energy efficient comfort-oriented 

heating and cooling controller, which outperforms current state-of-the-art methods. This work is 

presented in Chapter 6. 

1.5 Thesis structure 

This chapter has presented an introduction to this thesis, including the motivation for the work, the 

methodology adopted, the research questions and contributions to knowledge. The rest of this thesis is 

organised as follows: 

Chapter 2 discusses relevant background literature to the topics introduced throughout this thesis. 

The chapter reviews thermal comfort in car cabins and existing thermal comfort models, introduces 

background on the equivalent temperature concept, reviews tools for measuring thermal comfort in 

car cabins, presents techniques for estimating and predicting cabin environmental parameters and 

reviews existing HVAC control systems. The chapter also presents background on reinforcement 

learning theory and related applications. 
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Chapter 3 offers an overview of the system developed within this thesis and discusses the real-time 

potential of this application. 

Chapter 4 presents empirical work in the area of vehicular thermal comfort. The chapter describes 

the experimental data used for the analysis, both cabin environmental sensor data and subjective 

occupant reports, gathered from a number of trials that include both steady-state conditions and 

conditions normally expected while driving. This data was used to answer thermal comfort related 

research questions and to determine which existing thermal comfort model best matches the thermal 

comfort level of car cabin occupants. 

Chapter 5 draws on experimental data to investigate methods of providing accurate thermal comfort 

estimates along with the use of virtual sensing in the car cabin. The chapter introduces a novel 

method, named VTCS, that estimates occupant body part equivalent temperatures from inexpens-

ive cabin environmental sensors and evaluates the method on offline real-world data sets. 

Chapter 6 proposes and evaluates a reinforcement learning-based HVAC control algorithm, an innova-

tion in the area of vehicular thermal comfort-oriented control. The algorithm is evaluated through 

simulation within two different scenarios. 

Chapter 7 concludes the work by presenting answers to research questions proposed in this chapter and 

future directions of the work. 

This thesis has three distinct, but inter-related paths , namely occupant thermal comfort, thermal comfort 

estimation and heating and cooling control algorithms. The casual reader may be interested only in 

thermal comfort models, for example. In this case, the relevant parts that should be read are in Chapters 2 

and 4, as they provide an overview of existing thermal comfort models (Chapter 2) and an evaluation of 

the existing thermal comfort models on empirical data (Chapter 4). 

For readers more interested in estimating occupant thermal comfort, Chapters 2 and 5 provide a 

description of related works (Chapter 2) and a methodology for designing a VTCS approach that estimates 

occupant body part equivalent temperatures from cabin environmental sensors (Chapter 5). 

For readers more interested in thermal comfort-based control algorithms, Chapter 2 provides an 

overview of related works. Chapter 2 also provides an overview of the reinforcement learning theory 

behind the work in this thesis. Chapter 6 presents the design, implementation and evaluation of the 

reinforcement learning-based controller. 
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1.6 Publications 

The work described in this thesis has lead to the following publications: 

Journal 

‹ Diana Hintea, James Brusey, Elena Gaura: Reinforcement Learning-based Thermal Comfort Con-

trol for Vehicle Cabins. To be submitted toApplied Thermal Engineering. 

Conference Proceedings 

‹ Diana Hintea, John Kemp, James Brusey, Elena I. Gaura, Neil Beloe: Applicability of Thermal 

Comfort Models to Car Cabin Environments. Proceedings of the 11th International Conference on 

Informatics in Control, Automation and Robotics ICINCO (1) 2014: 769–776; Austria, Vienna, 1-3 

September, 2014; ISBN: 978-989-758-039-0. 

‹ Diana Hintea, James Brusey, Elena I. Gaura, John Kemp, Neil Beloe: Comfort in Cars - Estimating 

Equivalent Temperature for Comfort Driven Heating, Ventilation and Air Conditioning (HVAC) 

Control. Proceedings of the 10th International Conference on Informatics in Control, Automation 

and Robotics ICINCO (1) 2013: 507–513; Iceland, Reykjavik, 29-31 July, 2013; ISBN: 978-989-

8565-70-9. 

‹ Diana Hintea, James Brusey, Elena I. Gaura, Neil Beloe, David Bridge: Mutual Information-

based Sensor Positioning for Car Cabin Comfort Control. Proceedings of the 15th International 

Conference on Knowledge-Based and Intelligent Information and Engineering Systems KES (3) 

2011: 483–492; Germany, Kaiserslautern, 12-14 September, 2011; ISBN: 978-3-642-23853-6. 

Patents and disclosures 

‹ Diana Hintea, James Brusey, Neil Beloe: Reinforcement Learning-based HVAC Control - in draft. 

Appendix B offers more information on the publications and technical reports. 

1.7 Acknowledgement of contributed work 

Little research is carried out in its entirety by an individual, particularly in the case of highly practical 

work such as the research presented in this thesis. This section details the contribution made by other 

researchers that have aided the work presented in this thesis. 
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Designing the occupant thermal comfort trials, detailed in Section 4.1, benefited from the expertise of 

Dr. Doug Thake within the Health and Life Sciences Faculty of Coventry University, Neil Beloe at JLR 

and Dr. David Bridge at MIRA Ltd. The data sets deriving from the trials and used to evaluate a series 

of thermal comfort models in Chapter 4 and the VTCS method in Chapter 5 were provided by Dr. John 

Kemp in the Cogent Computing Applied Research Center (CCARC). 

The evaluation of the reinforcement learning-based heating and cooling controller, detailed in Chapter 6, 

was made possible using a cabin simulation provided by Neil Beloe at JLR. The simulation was provided 

in an Microsoft Excel spreadsheet and translated into Java by the author. The Java reinforcement learn-

ing software support libraries used in the development of the algorithm were created by Dr. James Brusey, 

the Director of CCARC. 

This thesis draws from several collaborative projects between automotive companies and research 

partners with the goal of introducing innovative, low carbon vehicle components and manufacturing 

techniques. The projects are the LCVTP, ATC and STRIVE. The LCVTP was a collaborative research 

project between various research partners and automotive companies, revolutionising the way vehicles 

are powered and manufactured. The project partners included JLR, Ricardo, MIRA LTD., Tata Motors 

European Technical Centre, WMG, Zytek, and Coventry University. The LCVTP included 15 automotive 

technology development work-streams that delivered technological and socio-economic outputs benefiting 

the West Midlands Region. The £19 million project was funded by Advantage West Midlands (AWM) 

and the European Regional Development Fund (ERDF). ATC was a collaborative research project 

between CCARC and JLR aimed at developing a revised automatic temperature controller. STRIVE 

was a collaborative research project between CCARC and JLR looking into innovative approaches that 

improve the effectiveness and efficiency of heating and cooling systems in vehicles. 
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Chapter 2 

Literature Review 

The work reported in this thesis draws on domains such as thermal comfort models, tools for measuring 

thermal comfort in vehicles, machine learning techniques for estimating cabin environmental paramet-

ers, Heating, Ventilation and Air Conditioning (HVAC) control algorithms and reinforcement learning 

applications. This chapter therefore describes the state-of-the-art of these domains and its relationship 

to the work here. 

Section 2.1 gives an overview of existing thermal comfort models. The most widely used tools to 

measure thermal comfort within vehicles are summarised in Section 2.2. The concept of equivalent 

temperature is introduced in Section 2.3, along with modalities of measurement and validation within 

transient and inhomogeneous environments. Section 2.4 describes machine learning-based methods that 

are applied to estimating cabin environmental parameters. An overview of HVAC control algorithms with 

applicability both in the buildings and vehicular domains is presented in Section 2.5. Section 2.6 presents 

reinforcement learning theoretical aspects and related applications. Finally, Section 2.7 summarises the 

chapter. 

2.1 Thermal comfort models 

Thermal comfort and thermal sensation are complex parameters, depending on variables such as local air 

flow temperature [121, 166], air velocity [68, 170, 171], relative humidity [1, 3], and solar load [40, 68]. 

Extensive research has gone into developing thermal comfort models that take as input measurable 

parameters such as air temperature, mean radiant temperature or skin temperature and output a thermal 

comfort or thermal sensation index. A thermal index is a single number that represents the degree of 

thermal comfort people are perceiving. Thermal comfort models are needed in order to estimate the 

occupant thermal comfort level without requiring subjective feedback, for automatic control loops and in 

situations where you cannot place a person into the desired location. Jones [82] states that all thermal 

models have several limitations, such as: i) the model must be precisely and unequivocally defined (code 

provided), ii) the use of the model must be carefully and precisely limited to the conditions for which it 

13 
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Table 2.1: Existing thermal comfort models. 

Author Year Local or overall Environment type 
Gagge et al. [59] 
Fanger [46] 

Wyon et al. [164] 
Taniguchi et al. [147] 
Matsunaga et al. [103] 

Wang [165] 
De Dear [38] 
Nilsson [115] 

Arens et al. [7, 8] 
Zhang [172] 
Fiala et al. [52] 

1967 
1970 
1985 
1992 
1993 
1994 
1998 
2004 
2006 
2003 
2010 

Local 
Overall 
Local 
Overall 
Overall 
Overall 
Overall 

Local and overall 
Local and overall 
Local and overall 
Local and overall 

Steady-state 
Steady-state 
Steady-state 
Non-uniform 
Steady-state 
Transient 
Steady-state 

Steady-state and non-uniform 
Transient: Uniform and non-uniform 
Transient: Uniform and non-uniform 

Transient 

is validated and iii) the model is no better than the inputs provided to it. Detailed reviews of thermal 

comfort models are given in [2, 26, 41, 42, 72, 122]. 

Table 2.1 presents the thermal comfort models in the state-of-the-art. Four models are implemented 

and evaluated in this thesis, namely Fanger’s Predicted Mean Vote (PMV), Taniguchi’s model, Zhang’s 

model and Nilsson’s model (see Section 2.1.1 to Section 2.1.4). With regard to other models, Matsunaga 

et al. [103] adopted, for example, the concept of Average Equivalent Temperature (AET) in order to 

compute the PMV sensation index. The AET is a surface area-weighted value for three body parts: the 

head with a weight of 0.1, the abdomen with a weight of 0.7 and the feet with a weight of 0.2. Because 

the end product is the PMV index, the thermal comfort model of Matsunaga et al. is not evaluated in 

this thesis. 

The Berkeley advanced human thermal comfort model [7, 8] is used in multiple works [19, 57]. The 

Berkeley model uses 16 body segments (head, chest, back, pelvis, left and right lower arms, left and right 

upper arms, left and right hands, left and right lower legs, left and right thighs, and left and right feet) 

that correspond to the Berkeley thermal manikin. Each segment of the manikin integrates a clothing 

layer and four body layers (core, muscle, fat, and skin tissues). Taking into account various physiological 

mechanisms such as sweating, metabolic heat production and vasoconstruction, the model predicts human 

physiological responses to non-uniform and transient thermal environments. The advantages are that 

the model can predict more accurately the effects of thermally asymmetric environments and that the 

segmentation of the model corresponds to the UC Berkeley thermal manikin. The virtual manikin in the 

software model estimates occupant skin temperatures and Zhang’s model is further applied to calculate 

thermal sensation and thermal comfort. As this thesis is concerned with empirical results rather than 

simulation-based results, only Zhang’s model is evaluated. For the same reason, the thermal comfort 
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model developed by Fiala et al. [52] is not considered. 

Gagge et al. [59] presented a thermal comfort model suitable for low and medium activity levels—the 

Pierce two-node model. The model is based on sweating and body heat generation and splits the human 

body in two thermal nodes: the skin and the core, each with corresponding heat balance equations. 

Within this model, the human body is divided into 16 segments. Gagge et al. introduced the concept 

of effective temperature, which is a combination of air temperature and relative humidity. The model 

was validated experimentally, with some parameters set to a constant value, such as the humidity or the 

clothing insulation. Furthermore, a thermal sensation index (TSENS) is formed as a linear regression 

from the standard environment temperature parameter and the water vapour pressure at this particular 

temperature. 

The following subsections discuss the thermal comfort models evaluated in this thesis. 

2.1.1 Predicted Mean Vote 

Fanger [46, 47, 48] developed the PMV model in 1967 and to this date it is still the most widely used 

thermal comfort model. The main advantages of PMV are the standardisation of its implementation (in 

the International Organization for Standardization (ISO) and American Society of Heating, Refrigerating 

and Air-Conditioning Engineers (ASHRAE) standards) and that if some of the constituent parameters 

cannot be measured, they can be approximated without introducing a significant error in the resulting 

PMV index. However, PMV was never intended to be applied in transient, inhomogeneous conditions. 

Moreover, the state-of-the-art does not contain any validation of the model in various conditions within 

vehicular environments. 

PMV was developed based on thermo-regulation and heat balance theories. These theories are based 

on human bodies employing physiological processes in order to maintain a balance between the heat 

produced by metabolism and the heat lost from the body. The PMV index is computed using the 

following formula: � � 
PMV = 0.303 × e −0.036M + 0.028 × L (2.1) 

L = (M − W ) − H − Ec − Cr − Er (2.2) 

where L is the thermal load (that is, the difference between the internal heat production and the heat 

loss to the environment), M is the metabolic rate, W is the external work, H is the sensible heat loss, Ec 

is the heat exchange by evaporation on the skin, Er is the evaporative heat exchange in breathing and 

Cr is the heat exchange by convection in breathing. 
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Table 2.2: PMV thermal sensation index. 

-3 Cold 
-2 Cool 
-1 Slightly cool 
0 Neutral 
1 Slightly warm 
2 Warm 
3 Hot 

The remaining variables in equation (2.2) can be calculated as: 

ih 
H = 3.96 × 10−8 × fcl × 4 4

(tcl + 273) − (tr + 273) − fcl × hc × (tcl − ta) (2.3) 

Ec = 3.05 × [5.73 − 0.007 × (M − W ) − pa] − 0.42 × [(M − W ) − 58.15] (2.4) 

Cr = 0.0014 × M × (34 − ta) (2.5) 

Er = 0.0173 × M × (5.87 − pa) (2.6) 

tcl = 35.7 − 0.028 × (M − W ) − Rcl × [(M − W ) − Ec − Cr − Er] (2.7) 

hc = 

⎧ ⎪⎪⎨ ⎪⎪⎩ 

2.38 × |tcl − ta|0.25 
, for 2.38 × |tcl − ta|0.25 ≥ 12.1 ×√ 

va 
(2.8)

√ 0.25 √ 
12.1 × va, for 2.38 × |tcl − ta| < 12.1 × va ⎧ ⎪⎪⎨ ⎪⎪⎩ 

1 + 1.29 × Icl, for Icl ≤ 0.078 m2 

fcl = (2.9) 

1 + 0.645 × Icl, for Icl > 0.078 m2 

Rcl = 0.155 × Icl (2.10) 

where tcl is the average surface temperature of the clothed body (›), fcl is the clothing surface area 

factor, ta is the air temperature (›), hc is the convection heat transfer coefficient (Wm−2K−1), Icl is the 

insulating clothing value (clo), Rcl is the clothing thermal insulation (clo), va is the air velocity (ms−1) 

and tr is the mean radiant temperature (›). 

The model combines the effect of four physical variables (air velocity, mean radiant temperature, air 

temperature and relative humidity) and two personal variables (activity level and clothing insulation) 

and outputs an index that can be used to predict thermal comfort, presented in Table 2.2. 

The index corresponds to the ASHRAE thermal sensation scale and it is defined as the average thermal 

sensation felt by a large group of people in a space. Fanger validated and refined the comfort equation 
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Table 2.3: Intervals of validity for the PMV input parameters according to the ISO 7730 standard. 

Parameter 
Air temperature 

Mean radiant temperature 
Air velocity 

Relative humidity 
Clothing insulation 
Activity level 

Interval 
10–30 › 
10–40 › 

−10–1 m×s
30–70% 

2 × W−10–2 clo (0–0.31 K×m ) 
0.8–4 met (46–232 W×m−2) 

with data from previous thermal comfort studies combined with his own, with the number of participants 

summing up to approximately 1400. Fanger stated that the PMV model should be used with care for 

indexes below −2 and above +2 and that significant errors can appear in hot environments. Also, Fanger 

provides validity intervals for the input parameters of the model (shown in Table 2.3). 

Following from PMV, Fanger developed an additional index, called the Predicted Percent Dissatisfied 

(PPD). This index can be directly calculated from the PMV index and predicts the percentage of people 

who are likely to be dissatisfied with a given thermal environment. PPD is computed using: 

(−0.03353×PMV4 −0.2179×PMV2)PPD = 100 − 95 × e (2.11) 

As stated by Charles [24], a large number of researchers made efforts to prove the validity of the 

PMV model. Humphreys et al. [77] show that the accuracy of the PMV model is higher when sedentary 

activities are conducted and light clothing is used, and is lower for heavier clothing and higher activity 

levels. Schiller [137] and Oseland [123] show that the PMV model over-predicted or under-predicted the 

neutral temperature within a 2–4 › error margin, with other findings suggesting that subjects are more 

sensitive to changes in temperature than the PMV model would predict. Measurement errors (due to 

the difficulty of measuring these six parameters in field settings) and contextual assumptions (such as 

individual preferences [53, 76, 161], building differences [38, 153], outdoor climate and behavioural and 

psychological adaptation) are the main factors that can contribute to discrepancies between the thermal 

sensation of a subject and the calculated PMV index. 

Van Hoof [152] conducted a study based on Fanger’s thermal comfort model. While discussing PMV’s 

applicability to transient conditions, Van Hoof highlighted that the model is only valid for stable condi-

tions. Van Hoof concluded that there is a lack of PMV assessment in transient environments and that 

extensive research is still required. Also, body parts experience local discomfort and thermal sensation 

levels differ from each other and from the overall sensation [7, 8, 111]. Therefore, a big disadvantage of 

the PMV model is that it is unable to differentiate between thermal sensations at different body parts, 
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which would be very useful in the case of vehicular HVAC control systems. 

Despite these disadvantages, PMV is evaluated in this thesis due to its popularity and the need, as 

pointed out in the literature, for empirical evaluation. 

2.1.2 Taniguchi’s model 

Skin temperature is shown to be a good predictor of local and overall thermal sensation in the state-of-the-

art [12, 15, 17, 25, 156, 168], especially in the case of extremities such as face and hands. Taniguchi [147] 

developed a Multiple Linear Regression (MLR)-based model that relates average facial skin temperature 

and its rate of change to occupant Overall Thermal Sensation (OTS) in a vehicle environment. The 

model was developed based on a series of human subject tests and is calculated as: 

dTf
OTS = 0.81 × (Tf − 33.9) + 39.1 × (2.12)

dt 

where Tf is the face skin temperature and dTf is the face skin temperature rate of change. dt 

A significant disadvantage of this model is not taking into account that the thermal sensation of body 

segments other than the face also impacts the overall body thermal sensation. Moreover, the model 

does not allow the computation of local thermal sensation. However, it would be interesting to see 

the correlation between facial skin temperature and thermal comfort reports within a variety of trials 

and whether this model matches more accurately subjective thermal comfort than more complex skin 

temperature-based models, such as Zhang’s. 

2.1.3 Zhang’s model 

Zhang et al. [173, 174, 175] developed local and overall thermal sensation and comfort models targeted 

at transient, non-uniform conditions. The models are based on skin temperatures along with core tem-

perature, if available. A nine-point analogue scale and a six-point analogue scale (as shown in Table 2.4) 

are used for expressing thermal sensation and thermal comfort, respectively. 

Zhang et al. carried out experimental tests at UC Berkeley during January to mid August 2002, with 

subjects placed into chambers of uniform temperature and with heated or cooled air applied individually 

to 19 body areas. The tests were carried out in a climate-controlled wind tunnel, consisting of both cold 

and hot test cases and covering a temperature range of −23.3 › to 43 ›. Throughout these tests, subjects 

adjusted the HVAC settings to their preference. Skin temperature was measured at 19 locations using 

thermocouples, while core temperature was measured using an ingestible temperature device. Zhang et 
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Table 2.4: Zhang’s thermal sensation and comfort scales. 

-4 Very cold 
-3 
-2 
-1 
0 
1 
2 
3 

Cold 
Cool 

Slightly cool 
Neutral 

Slightly warm 
Warm 
Hot 

-3 
-2 
-1 
1 
2 
3 

Very uncomfortable 
Uncomfortable 

Just uncomfortable 
Just comfortable 
Comfortable 

Very comfortable 

4 Very hot 

al. stated that certain body parts, such as the back and chest, have a bigger impact on the overall thermal 

sensation, whereas others, such as hands and feet, have a smaller impact. Based on the experimentation, 

thermal sensation and comfort equations were developed using the measured skin temperature, mean skin 

temperature and core temperature, along with subjective reports. Local thermal sensation at segment i 

is calculated as: 

Ti,offset ← Ti − Ti,set (2.13) 

Tv,offset ← Tv − Tv,set (2.14) 

m = [C1,i] × [Ti,offset] − K1,i × ([Ti,offset] − [Tv,offset]) (2.15) � � 
2 

Si,static = 4 × − 1 (2.16)−m1 + e

dTi dTcore
Si,dynamic = C2,i × + C3,i × (2.17)

dt dt 

Si,local = Si,static + Si,dynamic (2.18) 

where Ti,offset is the offseted skin temperature for segment i, Tv,offset is the offseted overall skin temperat-

ure, Ti is the skin temperature for segment i, Tv is the overall skin temperature, Ti,set is the set-point skin 

temperature for segment i, Tv,set is the overall set-point skin temperature, Tcore is the core temperature, 

Si,local is the local thermal sensation for segment i, Si,static is the static thermal sensation for segment i, 

Si,dynamic is the dynamic thermal sensation for segment i and C and K are pre-established coefficients. 

The overall thermal sensation Sov is calculated as the weighted average of the local sensation for each of 

the body segments: Pn 
i wi × Si,local 

Sov = P (2.19)n 
wii 

where i is the index for the body part segment, n is the total number of body parts, Si,local is the local 
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thermal sensation for segment i and wi is the weight of segment i. 

Local thermal comfort at segment i is described by the following formula: 

� � 
C1 + C2 × Sov

Ci,local = + C4 + C5 × Sov × (Si,local + C3 × Sov ) + C6 + C7 × Sov (2.20) 
e5×(Si+[C3 ]×Sov ) + 1 

where Si,local is the local thermal sensation for segment i, Sov is the overall thermal sensation and C are 

pre-established thermal comfort coefficients. 

Zhang et al. validated the models against subjective reports. The coefficient of determination (R2) 

for the overall thermal sensation model was 0.95 and the standard deviation of residuals was 0.54. On 

the other hand, for the overall thermal comfort model the coefficient of determination was 0.89 and the 

standard deviation of the residuals was 0.78. 

Zhang’s model was developed to accommodate non-uniform conditions, however, no validation of the 

model within daily driving scenarios or other typical conditions encountered in vehicular environments 

exists in the state-of-the-art. Zhang’s model has been criticised for not including the main parameters 

contributing to thermal comfort (air velocity, air temperature and mean radiant temperature) [47, 81]. 

Luo et al. [95] also criticise the model, citing that “the mathematical model is not practicable as it 

is limited by having too many coefficients, and because of the experiment’s limitation, the regression 

analysis result cannot be assured either”. Furthermore, they criticise the body part set-point temperature 

approach of the model (Zhang et al. omit specifications related to the use of set-point temperatures). 

Cheng [26] points out that Zhang et al. focused more on cooling down body parts in warm environments 

than on warming up body parts in cool environments during the experiments. In addition, Zhang et al. 

did not vary the influence of local stimulation duration and intensity throughout their tests. 

The main advantage of Zhang’s model over PMV is its ability to determine local thermal sensation 

indexes. Even if the overall thermal sensation is neutral, some body parts can still experience discomfort, 

for example when the vent air flow is directed towards them. With the introduction of heated/cooled 

seats and steering wheels, the impact of individual body part sensation on overall thermal sensation is 

even higher due to the direct contact with these elements. 

2.1.4 Nilsson’s model 

Nilsson [115] proposed clothing independent thermal comfort zones for 18 different body parts based on 

equivalent temperatures. Equivalent temperature, as further discussed in Section 2.3, is formally defined 

as the uniform temperature of an imaginary enclosure with air velocity equal to zero in which a person will 
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Figure 2.1: Nilsson’s clothing-independent thermal sensation diagrams [115]. 

exchange the same dry heat by radiation and convection as in the actual non-uniform environment [113]. 

Equivalent temperature can be computed based on environmental parameters (air temperature, mean 

radiant temperature, air flow and clothing index) or it can be “more” directly measured with appropriate 

instruments [113]. Once equivalent temperature is calculated, the local and overall thermal sensation 

level can be estimated using the diagrams in Figure 2.1. Nilsson developed this model experimentally. 

A gap in the literature that this thesis responds to is the lack of empirical evaluation of thermal 

comfort models within vehicular environments in order to establish whether any of them is suitable for 

comfort-oriented HVAC control. According to the author’s knowledge, no empirical data-based evaluation 

of the four thermal comfort models discussed in this section exists in the state-of-the-art. These models 

are implemented and evaluated within various conditions in Chapter 3. 

2.2 Tools for measuring car cabin thermal comfort 

Various tools exist for measuring the basic climatic parameters (air temperature, mean radiant temperat-

ure and air flow), the equivalent temperature or the PMV index in vehicular environments. This section 

gives an overview of such tools and discusses their applications and limitations. 

2.2.1 Sensors measuring individual variables 

Silva [32] describes the sensors used for measuring the basic climatic parameters: air temperature, mean 

radiant temperature and air velocity. The most common choices of sensors are: 
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‹ Air temperature—measured with liquid-in-glass, pressure bulbs, bimetallic thermometers, thermo-

couples, thermistors or resistance temperature devices. 

‹ Mean radiant temperature—measured with black globe thermometers or estimated from an equation 

consisting of surrounding surface temperatures and shape factors. 

‹ Air velocity—measured using hot-wire anemometry or laser Doppler velocimeters. 

Madsen [97] highlighted the problems associated with measuring the individual parameters and using 

them as input to a formula to calculate PMV. It would be much faster, simpler and more accurate to 

have an instrument that directly measures the effect of air temperature, mean radiant temperature and 

air velocity—a thermal comfort sensor. 

2.2.2 Comfort sensors 

Madsen and Olesen [97, 98, 120] presented the notion of a “comfort meter”, together with its requirements 

in terms of size, shape, radiation properties, surface temperature and orientation. The aim of the device 

was to measure the dry heat emittance from a person to their surroundings. The instrument allowed 

setting the activity level, clothing index and the vapour pressure. 

Kumar et al. [90] addressed the issue of thermal comfort real-time assessment in buildings by devel-

oping a PMV-based thermal comfort smart sensor. Four physical parameters (humidity, temperature, 

Carbon Dioxide (CO2) and Carbon Oxide (CO)) were measured by the system and the sensors were 

selected based on several criteria (sensitivity, low cost, fast response time, high stability, low dependency 

on humidity, low power consumption, and compact size). The PMV index was computed in three dif-

ferent ways: taken from occupants’ survey, using the ISO 7730 calculation procedure, and through the 

prototype monitoring system. Results showed that the PMV computed using ISO 7730 and the proposed 

monitoring system were within 0.5 error on the thermal comfort scale but deviated significantly to that of 

the survey. Kumar et al. explained the large deviation as being due to the adaptive nature of occupants, 

which is very difficult to define and derive mathematically. They recommended carrying out a large 

number of experiments and applying the data to train a neural network. 

Lee [92] combined optical design, Micro-Electro-Mechanical Systems (MEMS) technology and wireless 

communication to build a sensor network that performs environmental thermal comfort calculation. 

Thirty eight subjects participated in experiments within a classroom, recording their thermal comfort 

index on the PMV scale. The thermal comfort index estimated by the designed system had a correlation 

of 0.95 with the subjective readings. 
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Figure 2.2: The Flatman support manikin, with the associated eight dry heat loss transducers and logger. 

An example of a commercial comfort meter is the one developed by LumaSense Technologies1 . The 

comfort sensors are placed on a support manikin called “Flatman”, used in the experimental trials 

performed in this thesis. Flatman holds up to eight INNOVA MM0057 dry heat loss transducers (shown 

in Figure 2.2) and outputs the PMV thermal comfort level as well as the equivalent temperature at eight 

locations. 

Comfort sensors that can directly measure dry heat loss and calculate equivalent temperature are 

therefore available on the market, but they are large and the use of several (6–8) is required in order 

to accurately predict thermal comfort. On the other hand, developing a bespoke sensor system that 

measures four different parameters for computing the PMV index introduces a cost and measurement 

error associated with each instrument individually. The method in this thesis accurately estimates body 

part equivalent temperature using only two basic, inexpensive sensors. 

2.2.3 Thermal manikins 

Manikins are a widely used tool within the automotive field due to the following advantages: 

1. They are suitable for investigations under harsh conditions that simulate extreme environments. 

1LumaSense Technologies The INNOVA ”Flatman” Manikin: http://www.lumasenseinc.com/EN/products/ 
thermal-comfort/flatman/the-manikin-innova-flatman.html 

http://www.lumasenseinc.com/EN/products


24 LITERATURE REVIEW 

Table 2.5: Existing thermal manikins. 

Author Year Number of sections 
Wyon et al. [164] 
Madsen et al. [100] 
Tanabe et al. [146] 
Rugh et al. [130, 131] 
Nilsson et al. [116] 

1985 
1986 
1994 
2004 
2007 

17 
16 
20 
120 
18 

2. They avoid biased subjective estimates of thermal comfort as reported by humans. 

3. They rely on the physics and biophysics of heat exchange to evaluate human thermal comfort. 

4. They can provide a reproducible, rapid and accurate simulation of the physical processes of heat 

loss to the environment. 

5. The values obtained can serve directly as input for existing thermal comfort models. 

Thermal manikins were first manufactured in the 1960’s and have developed significantly since. Manikins 

use a heating system based on electrical resistances coiled around different sections, under their “skin” 

layer. The number of manikin sections varies, reaching up to 120 for the one described by Rugh et al.. 

The manikins relevant to the work here are listed in Table 2.5. 

Wyon et al. [164] described a new method of measuring heat loss within car cabins via a full-size, 

clothed thermal manikin, Voltman. The manikin consists of 17 sections and it ensures even heat distri-

bution and rapid response to environmental changes. 

Madsen et al. [100] developed a thermal manikin at the Technical University of Denmark that measures 

clothing index values and also evaluates the indoor thermal climate. Fitted with pliable joints, the 

manikin consists of 16 sections with individual heating systems. The equivalent temperature of each 

section, together with the PMV index, can be computed based on the measured heat loss. 

Tanabe et al. [146] described a method for measuring thermal comfort in non-uniform environments 

using a thermal manikin with controlled skin surface temperature. An equivalent temperature model was 

proposed and discussed, together with a method to calculate the PMV index. The manikin, seated at 

a desk in a larger workstation, was tested in an office with a floor-supply air distribution system. Cool 

air was delivered through a floor module, while heat sources were used to simulate typical office load 

distributions and densities. Equivalent temperature was shown to be a useful tool in detecting the effects 

of asymmetries in heat sources and airflow. 

Rugh et al. [130, 131] presented the “ADAM” thermal manikin, developed by the National Renewable 

Energy Laboratory (NREL). A series of tools were developed: a thermal comfort manikin (consisting 
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of 120 separate controlled zones and capable of simulating human heating, sweating and breathing), 

a physiological model and a psychological model, together assessing thermal comfort in transient non-

homogeneous environments. Skin temperatures were estimated within 1 › Root Mean Square Error 

(RMSE), except the foot and hand, which reached errors up to 4 ›. The predicted thermal sensation for 

most body parts matched the subjective data within 1 unit on the sensation scale (−4 to 4), reaching 

up to 3 units for hands and feet, while the overall sensation matched the subjective readings within 0.5 

units RMSE. 

Nilsson et al. [116] developed a virtual thermal manikin, MANIKIN3, for use in Computational Fluid 

Dynamics (CFD) simulations. In order to have a full understanding of thermal comfort estimation, they 

looked at human subjective reports such as PMV and PPD and at manikin measurements. A computer 

model was developed based on CFD with 18 zones, with the surface temperature regulated continuously 

through an iterative process. Results illustrated that the set of equations used in the simulations agreed 

with real life measurements in different environments. The use of input data from CFD calculations 

produced reasonable results, especially in relatively homogeneous climates, such as offices, but have to 

be further tuned in order to be reliable in environments such as car cabins. 

Martinho et al. [102] evaluated equivalent temperature-based thermal comfort in a variety of condi-

tions: different air inlet settings, different air velocities and temperatures and with or without a thermal 

manikin within the car cabin model. One goal was to compare the body part equivalent temperature 

measured by the thermal manikin with the body part equivalent temperature computed from measur-

ing the basic climatic parameters (air temperature, mean radiant temperature and air velocity) using 

equation (2.24) on page 29. When the overall equivalent temperature measurements were compared, the 

difference was less than 1 › on average. However, when the individual body part equivalent temperatures 

were compared, significant differences were found (higher than 2 ›). 

Many thermal manikins have been developed for research purposes, but there are also commercial 

thermal manikins available, such as the one developed by PT Teknik2 . An optional feature of this 

manikin is the comfort meter which measures equivalent temperature, operative temperature and the 

PMV comfort level. Thermal manikins are the preferred tool for assessing thermal comfort in vehicular 

environments. However, although they are a good research tool, thermal manikins are not appropriate 

for production vehicles because of the large amount of power they require, their size and their positioning 

requirements. Therefore, suitable tools must be developed as an alternative and the work in this thesis 

fulfils this need. 

2PT Teknik Comfort: http://pt-teknik.dk/driver.html 

http://pt-teknik.dk/driver.html
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2.2.4 Infrared thermal imaging 

For the purpose of temperature measurement, particularly in locations where sensors cannot easily be 

affixed, Infrared (IR) measurements are a common choice. Even though IR cameras are a promising tool 

for evaluating the conditions of transient environments such as car cabins, few research projects have 

made use of it. 

Genno et al. [61] presented a method of measuring skin temperature using IR cameras. Their previous 

research suggested that facial skin temperature (for example, the cheeks, nose and ears) can be used to 

estimate human thermal sensation. The proposed method aimed to identify the desired body parts within 

the image using image recognition techniques so that the temperature measurement is performed only at 

the requested positions. However, no results are provided regarding the accuracy of the measurement. 

Other drawbacks include the large size of the image databases and poor reliability resulting from working 

with the image processing equipment. 

Korukcu and Cilic [88] used an IR thermal camera for estimating the facial skin temperature of a driver 

during warm-up and cool-down trials. Facial skin temperature was also measured with thermocouples in 

order to evaluate the accuracy of the IR camera approach. The two results matched within a 2 › RMSE. 

Oliveira and Moreau [121] demonstrated the impact of local air flow on thermal comfort. An IR 

camera was used to obtain subjects’ facial skin temperature distributions when different air temperatures 

and air flows were applied. Their results showed that local air flow temperature had a high impact on 

thermal comfort, whereas air flow had no significant impact. 

Sabbatini [133] developed an IR-based measurement system for real-time estimation of thermal com-

fort in buildings. The system outputs mean surface temperatures, the number of occupants (using an IR 

camera combined with image processing techniques), as well as the PMV index based on the measured 

air temperature. Experimental results in an office showed average absolute errors of around 0.4 › for the 

air temperature estimation, with a standard deviation of 0.8 › for sensor measurement uncertainties. 

The estimated PMV index is not compared to subjective reports from the office occupants. Also, the 

system was deployed in a stable environment, with air temperature values close to each other (within a 

1–2 › range). 

The method developed as part of this thesis has several advantages over the IR-based methods: i) lower 

cost, ii) less space occupied within the car cabin and iii) a small number of sensors can be used to predict 

the equivalent temperature at multiple locations, whereas more cameras would be needed to cover the 

whole human body for a more accurate prediction. 

In summary, there are a number of tools for measuring thermal comfort in vehicular environments. 
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However, they all have disadvantages when considered for real-time comfort estimation. The disadvant-

ages of measuring the basic climatic parameters individually, such as air flow, mean radiant temperature 

or humidity, for example, include the limited space available within the car cabin and the large amount of 

instrumentation needed. Moreover, it is impossible to place all the desired sensors at the exact measur-

ing point required (particularly for production vehicles). The measurement accuracy decreases if sensors 

are placed at slightly different locations due to the car cabin inhomogeneity [32]. Also, Mayer and 

Schwab [105] observed a significant difference between computing equivalent temperature from the integ-

rating parameters (air temperature, mean radiant temperature and air velocity) and measuring equivalent 

temperature using comfort meters or thermal manikins. This thesis solves these issues by presenting a 

method that estimates body equivalent temperature from a few sensors placed in convenient locations 

within the cabin. 

2.3 Equivalent temperature 

Cisternino [29] highlighted the need to develop new methods and instruments in order to estimate cabin 

thermal comfort for efficient automotive HVAC systems. The difficulty in achieving this goal lies in 

the non-uniform, transient nature of the automotive environment. Most journeys last between 15 and 30 

minutes and passengers expect well balanced air flows at a low velocity, but also short heating and cooling 

times. The issue with thermal comfort models, such as PMV, is that even when overall thermal sensation 

is neutral, passengers can still feel uncomfortable because of local cooling or heating of individual body 

parts, a situation often encountered in car cabins. New standard measuring methods have to be developed 

for this specific type of environment and one of them is the equivalent temperature. The literature shows 

that equivalent temperature correlates well with the subjective responses of passengers [105, 110, 117]. 

Equivalent temperature also encapsulates PMV’s advantage of being estimated from the basic climatic 

parameters (air temperature, mean radiant temperature and air velocity) using equation (2.24) on page 

29. 

2.3.1 Definition 

Equivalent temperature is formally defined as the uniform temperature of an imaginary enclosure with 

air velocity equal to zero in which a person will exchange the same dry heat by radiation and convection 

as in the actual non-uniform environment [134]. Nilsson et al. [114] identified a series of expressions 

for the computation of equivalent temperature, as well as several measurement methods and calibration 
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procedures for the instruments used. Equivalent temperature can be referred to as whole body equivalent 

temperature (equivalent temperature for the whole body of a person), segmental equivalent temperature 

(equivalent temperature for one single body part), directional equivalent temperature (defined as a normal 

vector to every point of the measuring plane), or omni-directional equivalent temperature (equivalent 

temperature measured all around the whole body or one body part). 

2.3.2 Calculation 

Nilsson and Homer [113] offer an overview of ways to compute equivalent temperature. Firstly, equivalent 

temperature can be determined from the equations for radiative and convective heat transfer: 

R = Fcl × fcl × hr × (ts − tr) (2.21) 

C = Fcl × fcl × hc × (ts − ta) (2.22) 

where R is the radiation heat exchange, C is the convective heat exchange, Fcl is the reduction factor for 

sensible heat exchange, fcl is the clothing surface area factor, hr is the radiation heat transfer coefficient, 

hc is the convective heat transfer coefficient, ts is the local surface temperature, tr is the mean radiant 

temperature and ta is the air temperature. 

In this case, the equivalent temperature teq can be calculated as R + C with no humidity influence. 

A different method for computing equivalent temperature is through the Resultant Surface Temperature 

(RST), as defined by Mayer [104]: 

h i 
4 4

Q = hc × (RST − ta) + εs × εa × σ × (RST + 273.2) − (tr + 273.2) (2.23) 

where Q is the body heat gain or loss, εs is the sensor emissivity, εa is the emissivity of ambient air and 

σ is the Stefan-Boltzmann constant. 

In homogeneous conditions (Q = 85 Wm−2, hc = 1.6 Wm−2K−1, εs = 0.96, εa = 0.9, σ = 5.67 × 

10−8 Wm−2K−4) equivalent temperature can be calculated as: 

teq = 1.1 × RST − 15.6 (2.24) 

An empirical equation for computing equivalent temperature (referring to sedentary conditions only, 

that is energy metabolism < 70 Wm−2) is introduced by Madsen [98, 99], taking into consideration 

http:273.2)(2.23
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the main elements that affect equivalent temperature (air temperature, mean radiant temperature, air 

velocity, and the clothing index): 

teq = 

⎧ ⎪⎪⎨ ⎪⎪⎩ 

0.5 × (ta + tr), for va ≤ 0.1 ms−1 

(2.25)√ 
0.24−0.75× va0.55 × ta + 0.45 × tr + × (36.5 − ta) , for va > 0.1 ms−1 

1+Icl 

where va is the air velocity, ta is the air temperature, tr is the mean radiant temperature and Icl is the 

clothing index factor. 

2.3.3 Measurement 

In addition to measuring the basic climatic parameters (air velocity, air temperature and mean radi-

ant temperature), together with the clothing index and then applying the above formulas, equivalent 

temperature can be measured as follows: 

‹ Using ellipsoid sensors ( also called comfort meters)—the sensor’s heat exchange corresponds to the 

total radiative and convective heat exchange. 

‹ Using heated, flat sensors—give estimates of dry heat losses. 

order to simulate the 3-dimensional human heat transfer. 

Several flat sensors are needed in 

‹ Using local discomfort meters—double-sided heated elements. The thermal asymmetry is the dif-

ference in mean heat flux between the two opposite element sides. 

‹ Using thermal manikins—a thermal manikin is the most appropriate heat flux measurement tool 

(more details are provided in Section 2.2.3). 

Holmer et al. [74] give recommendations for the equivalent temperature standard: 

1. A heated sensor measuring heat flux is required for determining equivalent temperature. Equivalent 

temperature cannot be as accurately determined from individual measurements of air temperature, 

radiant temperature and air velocity as with thermal manikins, as shown through empirical evalu-

ation. 

2. Equivalent temperature can be calculated from the heat-loss (Q), surface temperature (ts) of the 

real climate and the heat transfer coefficient (hcal) as: 

Q
ET = ts − (2.26)

hcal 

http:0.24�0.75
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3. Significant differences are introduced when measuring equivalent temperature with various instru-

ments. In realistic vehicle cabins the differences can reach up to several degrees Celsius. 

4. The most accurate equivalent temperature, according to its definition, will be obtained from meas-

urements with a thermal manikin (same shape and size as a human being, with realistic clothing 

and surface temperatures). 

5. Smaller, individual sensors can be more useful than thermal manikins in certain situations, for 

example in field testing, however, the measurement would not be as accurate. 

2.3.4 Measured equivalent temperature in comparison to subjective responses 

Several research case studies [105, 110, 117] have analysed how good the agreement between the measured 

equivalent temperature and the passengers’ subjective responses is. To summarise, Nilsson et al. [117] 

found a high correlation between equivalent temperature and thermal sensation, with correlation indexes 

between 0.86 and 0.99, based on empirical data. Also, they developed a thermal comfort model mapping 

equivalent temperatures to thermal sensation that will be further evaluated in this thesis. Also, Mayer 

and Schwab [105] concluded that equivalent temperature was highly correlated with subjective thermal 

sensation responses, with a correlation index higher than 0.82. Mola et al. [110] found a correlation index 

between the combination of equivalent temperature and head air temperature and the subjective reports 

of 0.78. Finally, Curran et al. [31] concluded that an equivalent temperature set-point of 25.5 › provides 

higher thermal comfort levels than an air temperature set-point of 25.5 ›. In what follows, their works 

are presented in more detail. 

Madsen et al. [100] used three different measurement methods for evaluating the thermal climate 

inside a car cabin, both at the driver and passenger locations: i) air temperature thermocouples at the 

foot and head level, ii) thermal comfort sensor measuring equivalent temperature and iii) a thermal 

manikin (as described in Section 2.2.3). The methods were evaluated within both steady-state and non-

steady-state conditions (such as warm-ups and cool-downs) in a wind tunnel with temperatures between 

−18 › and 40 › and with simulated solar load. Madsen’s investigation showed that it is insufficient 

to solely measure air temperature for an accurate representation of thermal comfort (that is, significant 

errors occur when the thermal sensation estimates are compared to the subjective reported sensation). 

Such errors are justified by not taking into account the solar radiation or the distribution of air coming 

from the vent. Comfort meters do not manifest this issue. Their main limitation is the measurement 
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at one point only, therefore several comfort meters would be needed for a good representation of the 

thermal environment. Madsen et al. concluded that thermal manikins are the best measuring instrument 

for equivalent temperatures. 

Nilsson et al. [117] conducted two series of experiments, involving 20 subjects and 30 different climatic 

conditions. The measurements, performed in a vehicle cabin, were taken during winter conditions at 

−20 › (corresponding to a passenger clothing index of 1.5) and during summer conditions at 30–35 › 

(corresponding to a passenger clothing index of 1.2). The subjects sat in the cabin for 60 minutes, while 

their subjective responses were recorded every 30 minutes for 16 different body parts, together with the 

overall thermal sensation. The subjects’ individual votes were averaged for each of the conditions and 

transformed into a Mean Thermal Vote (MTV) index. The scale used for MTV is the ASHRAE scale3 . 

The overall and local heat fluxes from two manikins were also continuously measured. A regression 

analysis was used to compute the matching score. The correlation coefficients for individual segments 

ranged between 0.86 to 0.99, suggesting a strong dependence between the two. Nilsson et al. also 

provided, based on the experimental trials performed, ranges of body part equivalent temperature that 

correspond to the too cold, cold, neutral, hot and too hot thermal comfort indexes for both summer and 

winter conditions, as illustrated in Figure 2.1. 

Mayer and Schwab [105] studied the correlation between subjective thermal response and measured 

equivalent temperature. A total of 50 subjects were used within the trials that consisted of 30 different 

thermal conditions. An additional goal of the trials was to observe the difference in measured equivalent 

temperature between different instruments. Seven instruments were used for measuring equivalent tem-

perature: four manikins (Nille [107], Heatman [45], Aiman [107] and Eva [113]), a local discomfort meter, 

comfort meters (placed on the Flatman support manikin) and an artificial skin device. The Flatman, with 

the six comfort meters and the local discomfort meter attached, was positioned in the right front seat, 

as were each of the other four manikins in turn. The conditions were varied with regard to parameters 

such as radiation at the head level, ventilation rate, HVAC vent inlet and outlet temperature. Mayer 

and Schwab concluded that there is a significant difference in the measured equivalent temperature with 

different instruments (up to 7 ›). Individually, the equivalent temperature measured by each instrument 

was highly correlated with the subjective responses (correlation index > 0.82 for any given combination 

of body part and instrument). 

Mola et al. [110] performed road tests with over 100 people and 30 cars in order to find the parameters 

measured within the car that correlate best with people’s judgement of thermal comfort. Performed both 

3ASHRAE 2004 Standard—Thermal Environmental Conditions for Human Occupancy: https://www.ashrae.org/ 
resources--publications/bookstore/standard-55.html 

http:https://www.ashrae.org
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during winter and summer, the trials used the following instrumentation: an EVA3 thermal manikin [124] 

continuously measuring equivalent temperature at 18 different body parts; thermocouples at each of the 

air conditioning outlets, a thermocouple on the dashboard, a thermocouple on the windshield, and a 

thermocouple at the head level; an internal and an external humidity sensor; a thermocouple measuring 

ambient temperature, and a solar meter. Within the trials, two ways of using the air conditioning unit were 

defined: pre-determined settings (only the air flow could be modified by the passengers) and free settings 

(the passengers were allowed to modify any of the settings, including temperature set-point, compressor 

status, outlet opening and position). Passengers were provided with a questionnaire, requiring votes in 

the range of 0–10 for aspects such as overall thermal quality, air distribution homogeneity, perception of 

local discomfort due to solar radiation and level of noise coming from the air conditioning system. The 

measured quantities that related best to the subjective responses of the passengers were the equivalent 

temperature measured by the thermal manikin and the air temperature measured at the head level. 

Two linear regression formulas were applied (one for the summer and one for the winter) to express the 

perceived customer index. The correlation index between the combination of equivalent temperature and 

head air temperature and the subjective reports was 78%, which Mola et al. considered reasonable. 

Curran et al. [31] provided further evidence that thermal comfort can be improved by controlling equi-

valent temperature rather than air temperature. In order to find the temperature set-point corresponding 

to maximum thermal comfort, Curran et al. placed a thermal manikin in a homogeneous environment 

varied over a range of temperatures. Curran et al. established that a value of 25.5 › maximises comfort, 

therefore this set-point was used by the authors to control both the air temperature and the equivalent 

temperature. The experimental conditions consisted of a baseline condition (no solar load, while the 

floor and wall temperatures were equal to the air temperature), along with conditions consisting of added 

solar load, cold floor, cold floor with solar load and hot floor with cold walls. Curran et al. found that 

an equivalent temperature of 25.5 › increased thermal comfort levels in all conditions, by an average of 

0.38 on a −4 to 4 scale, when compared to an air temperature set-point of 25.5 ›. 

Based on the above, the author concludes that the existing literature does not provide a suffi-

ciently detailed evaluation of the equivalent temperature-based thermal comfort estimation. Mayer and 

Schwab [105] and Nilsson et al. [117] provided a summarised evaluation of how equivalent temperature 

matched subjective sensation. Although the conditions were representative of the vehicular environment, 

the thermal sensation responses were reported only twice in the one hour interval, which may be mis-

leading in terms of overall matching accuracy. Also, Mola et al. [110] did not specify the rate at which 

the responses were reported, however the questionnaire seemed to be given one per journey. Again, this 
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is not sufficient to understand in what conditions equivalent temperature may or may not be an accurate 

predictor for thermal comfort. 

This thesis offers a more detailed evaluation of Nilsson’s equivalent temperature-based thermal comfort 

model within various environmental conditions, as presented in Section 3.3. 

2.4 Estimation methods for cabin parameters and thermal com-

fort 

Measuring all parameters required as input for thermal comfort models is difficult, either due to imprac-

ticality or due to the complexity of the models themselves. This thesis, therefore, presents a method 

of estimating equivalent temperature based on fewer measurements. Other researchers [22, 87, 95, 151] 

have previously used learning techniques in order to estimate various parameters, ranging from cabin air 

temperature to passenger thermal sensation, as discussed in this section. 

Similar to the work presented in this thesis, Mola et al. [109] developed an equivalent temperature 

estimation model for vehicular comfort-oriented HVAC control. They performed a series of trials in a 

controlled environment for developing the estimator, with a thermal manikin occupying the driver seat 

and measuring overall equivalent temperature. The cabin air temperature, HVAC outlet air temperature, 

external air temperature and mean radiant temperature were also recorded. Out of these measured 

parameters, mean radiant temperature, HVAC outlet air temperature and air velocity correlated best 

with the equivalent temperature. Based on their results, Mola et al. inferred a linear mathematical 

expression for estimating equivalent temperature. The method was only assessed qualitatively and it was 

concluded to provide successful HVAC control. A downside of this method is the fact that only one sensor 

was used to measure the cabin temperature, though different air temperature sensor locations within the 

cabin can increase the estimator’s accuracy [73]. Moreover, the data used for training and testing the 

system was gathered within trials in stable conditions, leaving open the question of how well the system 

would perform in realistic driving scenarios. 

MLRs were also used by Ibrahim et al. [78] for solar radiation estimation and by Shengxian et al. [138] 

and Wu et al. [163] for predicting indoor thermal sensation. Mehnert et al. [106], for example, estimated 

average skin temperatures from parameters such as air temperatures, mean radiant temperatures, air 

velocities, metabolic rates, rectal temperatures and partial vapour pressures. They developed linear 

relationships between these parameters and skin temperature for nude and clothed subjects and concluded 

that the models are valid for a wide range of hot and warm ambient steady-state conditions. 
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Freire et al. [55] also used a linear regression method for predicting indoor air temperature and relative 

humidity. The data used for training and validating the model was simulation-based and the RMSEs 

obtained were of 2.44 × 10−2 › and 1.05 × 10−6 for temperature and humidity, respectively. 

Adopting a different learning technique, Bin and Ke [14] presented a model to estimate the indoor 

PMV index using Least Squares Support Vector Machine (LS-SVM). The model consisted of a non-

linear relationship between thermal comfort and its influencing factors. The parameters of the model 

were tuned using the Particle Swarm [85] algorithm, and then the relations between the six parameters 

(air temperature, air velocity, mean radiant temperature, relative humidity, metabolic rate and clothing 

index) and the PMV index were learnt through training. The experimental results showed that the PMV 

index was estimated with an average absolute error of 0.028 on a −3 to +3 scale, for 200 test samples. 

Artificial Neural Network (ANN)s are also one of the most widely used machine learning techniques 

for estimation and prediction tasks. They are used in a variety of applications such as weather forecasting 

[10, 70, 101], frost prediction [129] and air temperature prediction [70, 141]. ANNs were also used to 

estimate thermal sensation from cabin environmental parameters and the details of these works are 

presented in what follows. 

Kojima [87] described an ANN-based method for estimating human thermal sensation from several 

air temperature sensors, placed at the outlets of two Air Conditioning (AC) units and on the desks of 

room occupants. Thermal sensation was reported by the subjects on the ASHRAE scale, described in 

Section 2.1, Table 2.2. The ANN works on the basis of the correlations between the thermal sensation 

and the measured air temperature values and this method is capable of using the information acquired in 

order to update the network. The method was only qualitatively validated and Kojima concluded that 

the estimated thermal sensation is in good agreement with the thermal sensation reported by subjects. 

However, the conditions were stable throughout the experimentation, causing sensations only within the 

−1.5 to +1 interval. 

Luo et al. [95] presented a fuzzy logic-based ANN for estimating thermal sensation. The model takes 

as input body part skin temperature, body core temperature and the rates of change of each and estimates 

local and overall thermal sensation. Evaluated on a range of warm and cold steady-state conditions, the 

model provided an RMSE of around 0.2 on the −4 to +4 scale. 

Castilla et al. [22] developed an ANN-based model for estimating thermal sensation from air tem-

perature, mean radiant temperature, indoor air velocity and relative humidity. The model obtained an 

RMSE of 0.0117 and 0.0079 on the −3 to +3 scale on two summer test data sets and 0.0145 and 0.0123 

on two winter test data sets. 
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Within the car cabin environment, Ueda and Taniguchi [151] developed a method for estimating 

passengers’ thermal sensation using an ANN. Thermal sensation was estimated from the cabin air 

temperature and facial skin temperature at 7 locations. A direct relationship was established between 

these parameters, instead of applying an existing thermal comfort model. Errors were within 0.5 of 

the comfort scale (−4=cold, −2=cool, 0=neutral, 2=warm, 4=hot) when compared to the passenger’s 

reported sensations. However, the experimental trials were not conclusive, with data both for training 

and testing being collected in stable conditions (cabin set-point of 25 ›), rather than conditions usually 

encountered in vehicles. 

Although ANNs are a good approach for estimating thermal comfort, they have a number of dis-

advantages. For example, they are dependent on the training process, they require a high number of 

computations and they produce poor results if the network is not trained sufficiently. 

Most estimation methods for environmental parameters or thermal sensation are designed for steady-

state conditions. The methods are expected to produce higher estimation errors when applied to a 

car cabin’s transient and non-uniform environment. As a solution, the method developed in this thesis 

estimates equivalent temperature from cheap air temperature sensors and can be used to infer passengers’ 

thermal comfort or directly as the basis for HVAC control. This type of research is mostly performed 

through simulation in the literature. When research is based on experimental data the environment is 

usually stable, with controlled cool-downs and warm-ups and no driving involved. The experimental data 

sets gathered within this thesis include a wider range of conditions and thus the evaluation of the method 

is more thorough. 

2.5 HVAC control methods 

The development of comfort-based HVAC control algorithms represents a complex issue both in the 

automotive and buildings areas. A selection of the literature related to this topic is discussed in this 

section. 

2.5.1 HVAC control in buildings 

Buildings have benefited from 40 years of extensive thermal comfort research and therefore the state-

of-the-art related to HVAC control in buildings has progressed significantly. There are fundamental 

differences between the building and vehicle environments, the latter consisting of more transient and 

inhomogeneous conditions. Despite these differences, some of the lessons learnt are transferable between 
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the HVAC control methods within these environments. The majority of controllers aim to maintain the 

PMV index within the comfortable range of ±0.5 using learning-based approaches. Hamdi et al. [66] and 

Nowak and Urbaniak [118] used fuzzy logic techniques in order to maintain the PMV level close to 0, 

while Egilegor et al. [44] and Torres and Martin [149] used ANNs to achieve the same goal. More details 

on these works are provided in the following. 

Yang and Su [167] developed an intelligent HVAC controller for buildings that maintains the PMV 

index within the ±0.5 interval. A comparison between two identical rooms was performed: one equipped 

with a conventional AC system and the second equipped with the new controller, both aiming to maintain 

an average air temperature of 26 › and humidity of 55%. By maintaining thermally comfortable PMV 

levels a total of 9.1 kWh (34.4%) energy was saved in the room equipped with the new controller. 

Egilegor et al. [44] proposed a neuro-fuzzy method that controls fan air flow rate in a house to improve 

thermal comfort. The comfort variable used was PMV and the inputs were three zone temperatures 

and humidities. The building simulation was performed using the TRNSYS simulation program. Two 

computers were running the simulation and the control program, while a data acquisition card achieved 

the exchange of information between the building and control. The control program read the temperature 

and humidity inputs provided by the simulation program and calculated the PMV index. The air flow 

rate of the fan was then set by the fuzzy module as a function of the PMV value and the mean PMV 

rate of change. The simulation results were used to train an ANN to choose the optimum offset in 

each situation for improving the performance. Egilegor et al. validated the method in three winter and 

three summer climates and the results were compared to a traditional thermostatic control. The mean 

PMV values were improved between 50% and 90% for the winter climate. On the other hand, for one 

of summer climate test, the results obtained with thermostatic control were sufficiently good and the 

presented method does not improve them. In the other two summer tests the PMV values were improved 

between 50% and 90%. 

Hamdi et al. [66] suggested the use of fuzzy modelling for minimising energy consumption while 

delivering occupant thermal comfort, with the advantage that no mathematical modelling is required for 

designing the controller. The fuzzy system evaluated the indoor thermal comfort level based on the six 

PMV inputs. If the estimated thermal comfort level was not achieved, the control algorithm would adjust 

the air temperature/velocity supplied by the HVAC system. In order to improve the occupant thermal 

comfort approximation on-line, the thermal comfort level computed was compared to the user’s actual 

thermal sensation. An advantage is that each occupant’s attributes were considered (metabolic rate and 

clothing insulation). Simulations of the environment (in TRNSYS and MATLAB) were used to verify the 
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effectiveness of the proposed system. Two conventional techniques were simulated for the same indoor 

and outdoor conditions: night setback (21.1 › between 6 am and 10 pm and 15.6 › between 10 pm and 

6 am) and constant set-point (21.1 ›) thermostat systems. The number of comfort hours were 5 for the 

conventional controller and 10 for the second, while the proposed controller offered 24 hours of thermal 

comfort. The night setback provided 14% energy saving, while the presented method saved 20% of the 

energy. 

Freire et al. [54] developed an HVAC comfort control system for buildings. PMV was used as a 

comfort index and two strategies were presented: one consisting of thermal comfort optimisation and the 

second one consisting of energy consumption minimisation while thermal comfort is maintained (PMV 

maintained within the −0.5 to +0.5 range, rather than as close to 0 as possible). The methods were 

validated through simulation, along with additional studies of how different clothing insulations and 

metabolic rates impact on the results. Two occupants were considered inside the building environment 

within the simulation, with constant clothing index and metabolic rate (0.66 and 1.20, respectively). 

The energy usage of the HVAC system was reduced from 174.7 kWh to 98.6 kWh when the energy 

minimisation control strategy was applied. 

Torres and Martin [149] presented an HVAC control technique based on modifying the set-point 

temperature of a Proportional Integral (PI) through an ANN. The objective was to keep the comfort 

level for the occupants within a predefined range (−0.5 to +0.5 on the PMV comfort scale) by only 

controlling the indoor temperature of an office space. The data set used for validation comprised the 

date and time, the geographical location (latitude, longitude and orientation) and the external weather 

variables (solar radiation, external temperature, relative humidity, wind speed and atmospheric pressure), 

obtained from a weather metering station installed in a room. The ANN was designed with one input 

layer consisting of the six parameters used for the PMV computation, and one output layer providing the 

desired temperature. Simulations were developed for validation, based on various conditions encountered 

over two consecutive days in April 2008. The described controller was compared to a conventional 

temperature controller (set-point fixed at 23 ›). The temperature controller did not maintain the PMV 

index in the acceptable range, whereas the proposed controller maintained a PMV index very close to 

zero. 

Feldmeier and Paradiso [50] developed an occupant focused thermal comfort control system. The 

system used wearable sensors to locate users within a building and to measure on-body temperature 

and humidity. Thermal comfort levels were thus inferred and used to control the AC system according 

to the needs of the occupants by using an ultra-low-power, wrist worn sensor node that allowed the 



38 LITERATURE REVIEW 

building occupants to express their thermal needs (‘hot’ and ‘cold’ buttons). A period of four weeks of 

the presented control strategy was compared in terms of energy and thermal comfort to the previous four 

weeks of standard control. Energy savings of up to 24% were achieved due to not cooling down areas 

when occupants are not present. Moreover, thermal comfort was maintained for more than of 80% of the 

time. 

Nowak and Urbaniak [118] presented fuzzy and model predictive control algorithms that minimise 

the HVAC energy consumption while keeping occupants comfortable. A simulation model of a room was 

described, including physical parameters and construction parameters. The thermal comfort assessment 

is based on PMV and PPD. Fuzzy logic-based algorithms were used in the direct control layer, while 

predictive algorithms were used in the supervisory control layer. Optimising the PMV indexes was 

achieved by minimising an objective function and maintaining the PMV index between −0.5 and +0.5. 

Results showed that the controller maintained the PMV index within the desired limit, dropping around 

0.2 on the thermal comfort scale when the energy consumption was further reduced. 

Most comfort-oriented HVAC controllers within the state-of-the-art are intended for building envir-

onments. Although they are effective, the environment is milder and more stable than the car cabin 

environment. Thus, the suitability of such algorithms within vehicles is low. The next section describes 

methods of HVAC control in vehicles. 

2.5.2 HVAC control in vehicles 

Despite the large body of literature related to comfort-based HVAC control in buildings there is limited 

literature referring to comfort-oriented HVAC systems for vehicles. 

The closest work in the state-of-the-art to this thesis belongs to Kranz [89] and his work will be, there-

fore, described in more detail. Kranz developed a thermal comfort-based control method for vehicles. He 

acknowledges the subjectivity of thermal comfort and the fact that thermal comfort models for transi-

ent environments have not yet been fully established. Kranz’s work aims to apply artificial intelligence 

methods in order to extract thermal comfort knowledge from the interaction between the passengers 

and the HVAC controls. The method has the advantages of not requiring any prior knowledge and of 

adapting to each user. The measured parameters in the car were: sun azimuth angle, ambient temper-

ature, standard deviation of the azimuth angle, sun elevation angle, standard deviation of the elevation, 

filtered ambient temperature, humidity, sun intensity, standard deviation of the sun intensity, air outlet 

temperature, cabin air temperature, driver foot and head temperature, passenger head and foot tem-

perature, dashboard temperature, vehicle speed, cabin roof temperature and standard deviation of the 



39 LITERATURE REVIEW 

vehicle speed. 

Kranz applied Principal Component Analysis (PCA) in combination with correlation analysis in order 

to reduce the dimensionality of the parameter space. Out of the above mentioned measured parameters, 

the ambient temperature, relative humidity, vehicle speed, in-cabin air temperature, dashboard temperat-

ure, sun intensity, sun azimuth angle and sun elevation angle were found to be the most relevant thermal 

comfort variables for the application. ANNs are used for predicting the blower level and flap position, 

respectively, with eight inputs each. Data was collected during spring, autumn and summer conditions 

in Southern Africa. The data set was split as 65% training data, 15% validation data and 20% test 

data. The results showed that the four different blower levels were estimated with 88.6%, 82.7%, 81.7% 

and 97.8% accuracy, respectively. The three different flap positions (corresponding to chest, head-chest 

and head) are predicted with 92.4%, 82.7% and 86.5% accuracy, respectively. Kranz concluded that the 

developed approach is a better substitute for psychological and physiological-based comfort models and 

aims to adapt to individual occupant thermal comfort preferences. 

The work in this thesis uses, similarly to Kranz’s, feature selection techniques in order to select the 

most suitable sensors for thermal comfort estimation, a mutual information-based method for the work 

here. Rather than collecting data from a variety of sensor types and selecting the most useful ones, as in 

Kranz’s case, this thesis first establishes which thermal comfort model is the most suitable from the state-

of-the-art and then finds the best sensors and corresponding best locations in order to accurately estimate 

the model’s input parameters. Also, this thesis takes the learning-based approach adopted by Kranz to 

another level, by using a reinforcement learning method that gradually learns from interacting with the 

environment an optimum control policy that maximises occupant thermal comfort while minimising the 

energy consumption. 

Different learning techniques have been adopted for thermal comfort user personalization in HVAC 

systems and, for the interested reader, the following works describe the works in more detail. 

Ichishi et al. [79, 80] proposed an HVAC system consisting in a sensor-based unit (detecting values 

relevant to environmental conditions), an operating unit controlled by the passenger in order to set the air 

conditioning state, and a control unit that learns to correct the automatic control based on user manual 

changes. A stand-by Random Access Memory (RAM) was used to store the user preference related data 

learned. The environmental conditions, such as car cabin temperature, ambient temperature and solar 

load, were measured by sensors. A target blowing temperature (TAO) at the vent was computed using 
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the following formula: 

TAO = KSET × TSET + KR × TR − KAM × TAM − KS × TS + C (2.27) 

where TSET (›) is the car cabin set temperature, TR (›) is the car cabin air temperature, TAM (›) 

is the ambient air temperature, TS is the solar load in the cabin, KS, KAM, KR and KS are coefficients 

and C is a constant. 

Goenka et al. [63] proposed a zonal HVAC system in which the pre-determined vehicle parameters are 

measured and sent to the controller. An occupant thermal comfort level was determined based on the 

sensor measurements (using thermal comfort charts, ASHRAE thermal scale, ISO 7730, the PMV index, 

the PPD index or any combination thereof). A desired level of the occupant comfort was established and 

the amount of HVAC work required to reach this level was computed. As a result, the flow rate and the 

fluid discharge temperature required were calculated. 

Pham et al. [126] stated that current adaptive controllers can generate inaccurate control because of 

atypical, too frequent or over-exaggerated occupant manual adjustments. Also, some systems are too 

slow in creating a control characteristic because of infrequent occupant manual adjustments. There is 

a need to improve the response time and accuracy of such systems. Pham et al. proposed a control 

mechanism that allows the car cabin occupant to adjust either the manual temperature or the manual 

blower knob according to their preferences. When such a manual adjustment occurred, a signal was sent 

to the heater or cooler containing information regarding the time that the adjustment occurred at and 

the magnitude of the adjustment. An environmental sensor, measuring cabin air temperature, humidity, 

solar load and/or ambient air temperature, sent a signal to the controller at the time of the manual 

adjustment. Therefore, the controller would determine the occupant’s preferred temperature and blower 

speed at those particular sensor readings and in the future it would automatically adjust the output 

based on earlier-determined user preferences. An example of a temperature learning rate used is: 

VLR = k1 × (Telapsed × k2 +ΔN × k3) (2.28) 

where VLR is the temperature learning rate, k1, k2 and k3 are constants determined during calibration, 

Telapsed corresponds to the timing signal of the adjustment and ΔN corresponds to the magnitude signal 

of the adjustment. 

Davis et al. [36, 37] suggested that fuzzy logic is a good approach in dealing with the imprecise nature 

of thermal comfort. The fuzzy logic controller proposed determined the difference between the cabin 
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temperature and the target temperature. Davis et al. defined membership functions and fuzzy rules 

between the difference signal and the control positions. The fuzzy logic-based control formula proposed 

in [36, 37] is defined as: 

FLValue = Offset−G1 ×SUN+G2 ×(SetPoint−75)+G3 ×(75−Ambient)+G4 ×(Target−InCar) (2.29) 

where the coefficients G are fuzzy output variables calculated as functions of the sensor inputs. Examples 

of heuristic rules for the blower speed can be defined as follows: 

‹ If the cabin temperature is close to the cabin set temperature, then the blower tends towards a low 

speed. 

‹ If the cabin set temperature is high, then the blower tends toward a high speed. 

‹ If the ambient temperature is very hot or very cold and the cabin temperature is close to the cabin 

set temperature, then the blower tends towards a minimum speed. 

‹ If the ambient temperature is low and the engine coolant temperature is low, then the blower tends 

towards a low speed. 

Kelly et al. [84] developed an HVAC system that learns user preferences. The values for the blower set 

temperature, blower mode and blower speed, manually selected by the driver, were stored in adaptive 

look-up tables or Cerebellar Model Articulation Controller (CMAC) neural networks [62]. The CMAC 

had an internal grid structure mapping input vectors into a single output value with stored weighting 

values deduced from an initial training data set. The table values do not need to be updated each time 

the driver performs a manual command. Instead, the new training example could be kept in a queue. 

Then, at an opportune timing, the training examples stored are submitted to the CMAC neural network 

for training. 

Wei and Dage [159] presented an intelligent automotive HVAC control system driven by the passengers’ 

thermal sensation. Previous to their research, air temperature was used as a predictor for subjective 

thermal sensation. However, newer research indicated that passengers’ skin temperatures were a better 

predictor. Their own experiments consisted of passengers sitting in an idle car during different seasons 

(winter, spring, summer) with a traditional HVAC system ensuring a comfortable set-point temperature 

within the cabin. These experiments showed that a strong correlation exists between skin temperature 

and thermal sensation. Based on this result, Wei and Dage proposed the use of a passive remote IR sensor 

(placed on the ceiling in front of each passenger) to monitor skin temperature. Seven thermal sensation 
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labels were used (very hot, hot, warm, comfortable, cool, cold and very cold), with each corresponding 

to a certain range of skin temperature values. The HVAC control system proposed therefore integrated 

physiological states into the traditional climate system and used as inputs the outside temperature, the car 

cabin air temperature and the skin temperatures of the passengers. The control was driven by a linear 

proportional equation which incorporated these parameters and aimed to maintain skin temperatures 

within the comfort range by adjusting the blower speed, blend door position, and discharge mode position. 

The results improved the performance of the traditional controller, maintaining the thermal comfort of 

the occupants within the “comfortable” to “comfortable cool” range within the summer trials and within 

the “comfortable” to “comfortable warm” range within the winter trials. 

Ueda and Taniguchi [151] previously discovered that facial skin temperature represents a good pre-

dictor for passengers’ thermal sensation. Therefore they introduced a method based on ANNs to infer 

thermal sensation from facial skin temperature and car cabin air temperature. The ANN used as in-

put the two parameter measurements during the past 30 seconds and predicted the thermal sensation 

30 seconds into the future. The thermal sensation scale used consisted of: cold, cool, neutral, warm 

and hot. The number of data points used for training was 200, and the learning was performed using 

Vogl’s method [155]. Experimental trials were performed in an environmental chamber with a vehicle 

controlled to 25 › by a conventional air conditioner. The subjects had seven thermocouples taped to 

their faces, and the mean value from the seven points was used for the prediction. Another thermocouple 

was used for measuring the interior air temperature and the subjects were required to note down their 

subjective sensation readings. The thermal sensation prediction results had a mean error of 0.5 on the 

sensation scale. The HVAC control method consisted of the following steps: the target thermal sensation 

level was set based on outside and inside environmental information, then the temperature of the face 

and compartment were measured and the thermal sensation level was predicted by the ANN. Finally, 

the air-mixed damper and the air flow strength was determined by the difference between the predicted 

thermal sensation level and the target thermal sensation level. The controller was able to maintain the 

desired thermal sensation target for the occupant. The air conditioning level changed based on the sub-

ject’s perception, treating differently subjects preconditioned at different temperatures—a major change 

compared to a conventional HVAC system controlled by air temperature alone. 

Farzaneh and Tootoonchi [49] started from the premise that a temperature feedback-based controller 

cannot achieve efficient thermal comfort control due to the complexity of thermal comfort. Farzaneh 

and Tootoonchi therefore developed a fuzzy controller that used a simplified PMV index as the feedback 

variable. An evaluation was performed and the results showed that the PMV feedback system better 
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controlled thermal comfort and energy consumption than the system with temperature feedback. The 

performance was further improved when the parameters of the fuzzy controller were optimised using a 

genetic algorithm. 

Stephen et al. [143] developed a fuzzy logic-based HVAC control mechanism for car cabins that uses 

PMV as the feedback variable. The controller performance was compared with another controller with 

solely air temperature as feedback. The results showed that the fuzzy PMV-based feedback controller 

was able to maintain the PMV level close to the 0 value, whereas the air temperature-based controller 

was not. 

The majority of the HVAC control algorithms targeted at vehicular environments are focused on 

machine learning techniques that maintain the PMV index within the neutrality interval of ±0.5 [49, 143, 

151]. Recently, through works such as Kranz’s [89], it has become clear that the future of HVAC control 

algorithms lies in personalization. Thermal comfort is a subjective measure and there is no fixed thermal 

comfort model that can match the personal preferences of individuals. As demonstrated in Chapter 3 of 

this thesis, none of the existing thermal models perfectly match the subjective responses of passengers 

in all conditions. Thus, there is a need for control algorithms that can learn user preferences. To fulfil 

this purpose, reinforcement learning is proposed as a control algorithm within this thesis, representing 

an innovation in the field of automotive control methods. 

2.6 Reinforcement learning theory and applications 

Machine learning algorithms can be grouped into three categories depending on the type of feedback 

the learner has access to. One of the categories is supervised learning, in which case for every input the 

learner is informed of the target (the correct value of the response). The learner then compares the target 

to its actual response and adjusts its internal memory so that it is more likely to reproduce the correct 

target next time it receives the same input. The second type of learning is unsupervised learning, where 

the learner receives no information about the correct output, but looks at similarities and differences 

among the input patterns. 

Reinforcement learning belongs to a third learning category. It is closer to supervised learning because 

the learner receives feedback about the appropriateness of its response from the environment. The 

difference between supervised learning and reinforcement learning is that for the former the learner is 

told exactly what the outcome should have been, while for the latter the learner is only told whether the 

behaviour is inappropriate and how inappropriate. 
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Reinforcement learning is a widely used technique for optimal control [35, 94, 169]. In this thesis, 

reinforcement learning is considered to be an appropriate mechanism for comfort-oriented HVAC control 

due to the following factors: 

1. Car cabin comfort is a non-linear problem with respect to the state of the cabin environment. 

The reason why designing comfort-oriented HVAC controllers is a challenging task is because cabin 

thermal comfort is non-linear with respect to the observable state. There is no linear formula that 

can relate occupant comfort to the measurements of various parameters within the cabin. Therefore, 

rather than using traditional linear controllers, more complex control strategies are required. Davis 

et al. [36, 37] argued the disadvantages of traditional controllers. For example, when the threshold 

engine coolant temperature is passed (on/off switch based controller) and the car is cold, the blower 

goes to its highest setting, therefore the noise level produced by the blower is very high and the 

residual cold air is blown directly to occupants’ feet. Also, crisp logic in control is not a suitable 

solution because abrupt changes in the environment are not perceived favourably by most occupants. 

Fuzzy logic is a good approach for dealing with the imprecise nature of thermal comfort [13, 37, 

49, 58, 139, 143, 148]. Membership functions and fuzzy rules can be defined, either for estimating 

the occupant thermal comfort level or for deciding the actions to be taken based on cabin sensor 

actuators. In these works, fuzzy logic controllers were found to perform better than traditional 

air temperature controllers. Fuzzy logic has, however, several disadvantages and it does not deal 

with the entire problem of ensuring occupant thermal comfort, namely it does not account for 

learning occupant preferences. Other disadvantages that can be argued are: i) it is very difficult to 

design accurate membership functions and rules (most of the time the rules are too simplified, for 

example: if the car cabin temperature is low and the sun load is low then the estimated equivalent 

temperature is low) and the control will only be as good as the defined rules; ii) the cohesion of 

the rules is not guaranteed, mismatches between the rules can occur and iii) the fuzzification and 

defuzzification operations are computationally expensive. 

2. Comfort control involves multiple inputs and multiple outputs. 

Existing car cabin HVAC control systems include sensor measurements (such as cabin air temper-

ature, ambient air temperature, humidity and solar load) for controlling occupant thermal com-

fort [37, 63]. However, the systems lack algorithms that translate these measurements to occupant 

comfort [63]. 

Neural networks are a good approach in dealing with multiple input and output control problems 
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Figure 2.3: The interaction between the agent and environment in reinforcement learning. 

and have been used in a variety of existing works [9, 22, 89, 151]. A disadvantage of neural networks 

is that in case of further online learning, retraining a neural network is a computationally expensive 

process. 

3. Personalisation of control is appropriate and desirable. 

According to Fanger, the “optimal” environmental setting, which suits the widest audience, will still 

leave 5% dissatisfied. A system that can adjust according to preferences, however, may be able to do 

better than this. Moreover, no thermal comfort model based on mathematical or physical equations 

would be able to fully satisfy all car cabin occupants. This is due to the subjectivity factor of thermal 

comfort (for example, some people are more comfortable at a warmer temperature). Learning on 

top of the controller would improve occupant comfort by adapting to individual preferences [62, 79, 

84, 126] . 

Sutton and Barto [145] provide a detailed overview of reinforcement learning. In this section, the basic 

theory behind reinforcement learning is presented, together with the associated learning algorithm used 

in this thesis. 

2.6.1 Agent-Environment interface 

The main components of a reinforcement learning problem are the agent, the environment and the reward. 

The agent is the entity that learns and makes decisions, while the environment is what the agent interacts 

with. The two entities interact continuously as follows: the agent selects an action and the environment 

responds to that action and, also, provides new situations to the agent as a result. The reward is a 

numerical value that the environment provides to the agent after each action is performed. The agent’s 

goal is to maximise the total amount of reward it receives over the long run. Figure 2.3 illustrates the 

interaction between the agent and the environment. 

The interaction between the agent and environment takes place at discrete time steps (t = 0, 1, 2, ..., N). 



46 LITERATURE REVIEW 

A set of possible states S and a set of possible actions A available in those states are defined. At each time 

step, the environment sends the agent a representation of its state st. The agent then selects an action 

at and one time step later it receives a numerical reward rt+1 as a consequence of the action selected. A 

new state of the environment will be created as a result of applying the action, st+1. Also, at each time 

step, the agent implements a policy Πt, where Πt(s, a) is the probability that at = a if st = s. The policy 

represents a mapping from the states to the probabilities of selecting each possible action. The policy 

changes as a result of the agent’s experience. 

2.6.2 Markov property and Markov Decision Processes 

In the reinforcement learning framework, the concept of “state” refers to the information available to the 

agent about its environment at that time. Roughly speaking, a state that retains all relevant information 

about the environment is said to be Markov or to have the Markov property. An example of a Markov 

state would be the current configuration of all pieces on a chess board, summarizing important information 

about the sequence of positions that led to that particular configuration. 

Formally, the Markov property for reinforcement learning is defined below. The assumption is that 

there are a finite number of states and reward values. A state has the Markov property if, given the 

current state, the probability of an action causing a transition to a state is identical to the probability 

given all previous states including the current one: 

0 0Pr {st+1 = s , rt+1 = r | st, at} = Pr {st+1 = s , rt+1 = r | st, at, rt, . . . , s1,a1, r1, s0, a0} (2.30) 

where s is the state, r is the reward and a is the action. 

Note that the number of states has an effect on the complexity of the reinforcement learning problem. 

The state should be minimised without affecting the Markov property so that the reinforcement algorithm 

can produce a solution quicker and use less memory. 

A Markov Decision Process (MDP) represents a reinforcement learning task that satisfies the Markov 

property. A finite MDP is a MDP in which the state and action spaces are finite. A finite MDP is defined 

by the state, action sets and the one-step dynamics of the environment. 

The probability of each possible next state s0, given any state and action, can be defined as: 

P a 
0 = Pr {st+1 = s 0 | st = s, at = a} (2.31)ss

The expected value of the next reward, given any current state, action and next state (s, a and s0 , 
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respectively), can be defined as: 

Ra 
0 = E {rt+1 | st = s, at = a, st+1 = s 0} (2.32)ss

2.6.3 Discounting 

Reinforcement learning aims to maximise the expected return. The expected return Rt is defined as a 

function of the reward sequence: 

Rt = rt+1 + rt+2 + rt+3 + . . . + rT (2.33) 

where T is the final time step. 

There are two types of reinforcement learning applications that we can distinguish. The first type 

takes place when the agent-environment interaction can be split into episodes (for example the rounds of 

a game). Each episode then ends in a so called terminal state and the task is reset to a starting state. 

The second type of application involves a continuous interaction between the agent and the environment. 

The latter type applies to the problem presented in this thesis, of a comfort-oriented HVAC controller. 

The concept of discounting is particularly useful in the non-episodic reinforcement learning problems 

in order to avoid the expected reward being infinite. The goal of the agent is to maximise the expected 

discounted return: 
∞X 

Rt = rt+1 + γrt+2 + γ2 rt+3 + . . . = γk rt+k+1 (2.34) 
k=0 

where γ is the discount rate (0 ≤ γ ≤ 1). 

The discount rate determines the value of future rewards: a reward that receives k time steps in the 

future is worth only γk−1 times what it would be worth if received immediately. If γ = 0 , the agent 

only aims to maximise immediate rewards, whereas as γ approaches 1, the agent takes more into account 

future rewards. 

2.6.4 Value functions and optimal value functions 

A value function is a fundamental aspect of a reinforcement learning problem and it estimates how useful 

it is for the agent to be in a certain state (value of the state) or how useful it is for the agent to perform a 

particular action in a given state (value of a state-action pair). Usefulness here corresponds to maximizing 

the total expected, discounted reward of being in that state with respect to a particular policy. 
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The value of a state s under a policy Π, denoted V Π(s), is the expected return when starting in state 

s and following the policy Π from there onwards. The value function is defined as: 

( )∞X 
γk 

k=0 

V Π(s) = EΠ {Rt | st = s} = EΠ × rt+k+1 | st = s (2.35) 

Similarly, we define the value of taking action a in state s under a policy Π, denoted QΠ(s, a), as the 

expected return starting from state s, taking the action a and following policy Π thereafter: 

( )∞X 
γkQΠ(s, a) = EΠ {Rt | st = s, at = a} = EΠ × rt+k+1 | st = s, at = a (2.36) 

k=0 

V Π is called the state-value function for policy Π, while QΠ is called the action-value function for policy 

Π. Solving a reinforcement learning problem involves finding an optimal policy, that is a policy better 

than or equal to all other policies. 

Formally defined, a policy Π is better than or equal to a policy Π0 if its expected return is greater than 
Π Π0 

or equal to that of Π0 for all states (Π ≥ Π0 if and only if V (s) ≥ V (s) for all s ∈ S). All optimal 

policies are denoted by Π? . Now the optimal state-value and the optimal action-value functions can be 

defined. 

The optimal state-value function is denoted as V ? and is defined as: 

V 
? 

(s) = max V Π(s) (2.37) 
Π 

The optimal action-value function is denoted as Q? and is defined as: 

Q?(s, a) = max QΠ(s, a) (2.38) 
Π 

Q?(s, a) = E {rt+1 + γ × V ?(st+1) | st = s, at = a} (2.39) 

2.6.5 Function approximation 

Most applications require modelling the state using continuous values, rather than discrete values cor-

responding to finite MDPs. Function approximation can be used to overcome this problem. A function 

approximation is a function that, given a state or a state-action pair, returns the utility value. The 

CMAC [4] is a function approximation method commonly used in reinforcement learning problems. The 

specific form of a CMAC used in reinforcement learning is also called “tile coding”. Tile coding represents 
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Algorithm 2.1 Linear, gradient descent Sarsa(λ) with eligibility traces. 

1. Initialise Q(s, a) arbitrarily and e(s, a) = 0, for all s ∈ S and a ∈ A. 

2. Repeat for each episode: 

(a) Initialise s with initial state of episode. 

(b) Choose a from s using policy derived from Q 

(c) Repeat for each step of episode until s0 is terminal: 

i. Take action a, observe reward r and next state s0 

ii. Choose a0 from s0 using policy derived from Q 
0iii. Update δ ← r + γ × Q(s , a0) − Q(s, a) 

iv. Update e(s, a) ← e(s, a) + 1 

v. For all s, a 

A. Q(s, a) ← Q(s, a) + α × δ × e(s, a) 

B. e(s, a) ← γ × λ × e(s, a) 

vi. s ← s0and a ← a0 

a grid and each location in that grid corresponds to a “tile”. Each tile has a weight corresponding to the 

value that the point maps to. If multiple grids are used, the sum of the weights of relevant tiles is used 

to produce the value. 

2.6.6 SARSA 

Sarsa(λ) [145] is an on-policy (that is, the policy being followed is the one being evaluated) Temporal 

Difference (TD) learning algorithm. Off-policy algorithms, on the other hand, evaluate one policy while 

following another. Sarsa(λ) is an abbreviation from the State, Action, Reward, State, Action sequence. 

The symbol λ is the decay factor used (suggesting the use of an eligibility trace). An eligibility trace 

represents a temporary record of the occurrence of an event (for example visiting a state or taking an 

action). The decay of eligibility λ, where 0 ≤ λ ≤ 1, has the following effect: when λ = 0, no credit 

is assigned to past state-action pairs, whereas when λ = 1, credit is assigned equally to all previously 

visited states. Eligibility traces can be combined with TD learning methods in order to perform a more 

efficient learning. Algorithm 2.1 reproduces the Sarsa(λ) algorithm used in this thesis. 

There are a few studies referring to the convergence of the Sarsa(λ) algorithm. Sutton [144] concludes 

that Sarsa(λ) performs well often, however it has a tendency to oscillate rather than converge. Gordon [64] 

concludes that Sarsa(0) converges to a region and it does not diverge from that region. Singh [140] proved 

convergence for tabular Sarsa(λ = 0). 

The control method presented in this thesis combines the above Sarsa(λ) algorithm and tile coding-
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based function approximation. 

2.6.7 Reinforcement learning applications in HVAC control 

Dalamagkidis et al. [35] appear to be the only authors to date looking at optimising HVAC thermal 

comfort-based control through a reinforcement learning-based technique. In their case, they looked 

at HVAC control in a building environment. They developed and simulated a reinforcement learning-

based controller using the Matlab/Simulink environment. The reward is a function of the building 

occupants’ thermal comfort, the energy consumption and the indoor air quality. The proposed controller 

was compared to a Fuzzy-PD controller and a traditional on/off controller. The results showed that, after 

a couple of simulated years of training, the reinforcement learning-based controller performed better in 

comparison to the other two controllers. 

In terms of the system’s design, two different environments were simulated: one that uses indoor air 

temperature, outdoor air temperature, relative humidity and CO2 concentration as inputs and another 

that does not include the relative humidity input. Three control variables were used: the operating status 

of the heat pump (six settings: off and high, medium and low for heating and cooling, respectively), the 

air ventilation subsystem (three modes: off, low and high) and the window control (four states: closed, 

slightly open, open and wide open). 

The reward function used is expressed as: 

Reward = −w1×TCP − w2×EP − w3 × IAQP (2.40) 

where TCP is the thermal comfort penalty, EP is the energy penalty, IAQP is the indoor air quality 

penalty and w1, w2, w3 are the weights associated with these parameters. 

kX 
TCP = ( PPD)/k (2.41) 

t=0 

kX 
EP = ( EC)/max EC (2.42) 

t=0 

kX 
IAQP = ( (1 + exp(−0.06 × (CO2 − 870)))−1)/k (2.43) 

t=0 

where EC is the energy consumption and PPD is the percent of people dissatisfied as computed by 

Fanger’s model [46]. 

http:exp(�0.06
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Dalamagkidis et al. [35] highlight an issue with regard to reinforcement learning-based controllers— 

that of sufficient exploration. Taking random actions, even during short times, is unacceptable for a 

system deployed in a real environment and Dalamagkidis et al. recommend to exhaustively train the 

controller prior deployment and allow little exploratory actions or no exploration at all afterwards. 

The work of Dalamagkidis et al. is presented in more detail due to its relevance to the work in this 

thesis. However, reinforcement learning is applied within a wide range of areas [75, 86, 94, 135]. 

2.7 Summary 

The literature surveyed here included the areas of thermal comfort models, modalities of measuring 

thermal comfort in cars, learning-based estimation methods, HVAC control algorithms in both buildings 

and vehicular environments and reinforcement learning related theory and applications. 

Automatic HVAC controllers are used in most vehicles nowadays. However, they do not offer max-

imum comfort levels, requiring user intervention often, especially at the beginning of journeys. Current 

controllers primarily use air temperature and/or humidity to actuate the control. However, the no-

tion of thermal comfort is more complex, arising from both physiological and psychological conditions. 

Moreover, current controllers have no ability to automatically differentiate between different body parts 

of the passengers, whereas it is known that thermal sensation differs considerably within different body 

parts. 

There is extensive research in the area of comfort-oriented HVAC control algorithms within the build-

ing environment, but considerably less in vehicular environments. The PMV thermal comfort model, for 

example, continues to be applied for vehicular HVAC control, despite the fact that it was not designed 

for transient environments. Also, there is a lack of empirical evaluation of thermal comfort models with 

regard to establishing whether any of them is suitable for vehicular control. 

The work developed in this thesis fills in the state of the art gaps by: 

1. Evaluating existing thermal comfort models on empirically derived car cabin data and establishing 

the most suitable model for vehicular control. 

2. Developing a Virtual Thermal Comfort Sensing (VTCS) method that estimates occupant body part 

equivalent temperatures from cabin environmental sensors. 

3. Developing and evaluating a novel method for vehicular HVAC control that outperforms the state-

of-the-art methods—a reinforcement learning-based control policy that integrates in its reward 
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thermal occupant comfort and energy consumption. 

The next chapter gives an overview of the work in this thesis, together with a discussion of a real-time 

system that could be implemented based on this work. 



Chapter 3 

Integrated HVAC System Overview 

The previous chapter described the literature surveyed, including the areas of thermal comfort models, 

modalities of measuring thermal comfort in cars, learning-based estimation methods, Heating, Ventilation 

and Air Conditioning (HVAC) control algorithms in both buildings and vehicular environments and 

reinforcement learning related theory and applications.. This chapter gives an overview of the work in 

this thesis, together with a discussion of a real-time system that could be implemented based on this 

work. 

3.1 Simulation-based system architecture 

Figure 3.1 illustrates the overall architecture of the simulation-based car cabin heating and cooling control 

system proposed in this thesis. The components of the system are the following: 

1. A one dimensional heat flux-based simulation of the car cabin environment that constitutes the 

platform for learning. 

2. A cabin state vector integrating cabin environmental variables and the parameters desired to be 

controlled (the occupant equivalent temperature and the energy consumed for the work here). 

3. A reward function scoring the desirability of the current car cabin state. The reward function takes 

as input a state and outputs a score that represents the desirability of that particular state. The re-

ward function is expressed as a sum of several component functions related of parameters to control: 

f(x) = wc × C(x) + we × E(x), where C(x) is the comfort factor, E(x) is the energy consumption 

factor, and wc, we are the weights associated with each of the factors. Other components could also 

be integrated in the function, such as window fogging. The weights associated with the components 

reflect their relative importance. 

4. A reinforcement learning technique that finds an optimal policy mapping the states of the environ-

ment to actions to be taken when those states are encountered. Sarsa(λ) is used as a reinforcement 
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Figure 3.1: Overall simulation-based system architecture. 

learning algorithm. 

5. A state/action value approximator that provides an estimate of the value of each action for that 

particular cabin state. 

The processing cycle of the system is as follows: 

1. The reinforcement learning-based controller receives an initial state of the car cabin state. 

2. The algorithm assesses the value of each possible action appropriate for that state and decides what 

action to take based on the current policy. 

3. The action is then fed back to the simulation and a new cabin state is produced as a result. 

4. The result is translated into features. For the work in this thesis the features are the passenger 

thermal comfort level (equivalent temperature) and the energy consumption. In general, however, 

additional features can be added such as air quality, screen clarity, etc. 

5. These features, together with additional raw data, such as ambient temperature or solar load, are 

integrated into the cabin state vector. 

6. Based on the cabin state vector, a numerical reward is computed as a weighted sum of its elements. 
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Figure 3.2: Potential real-time system architecture. 

7. The reinforcement learning algorithm adjusts the parameters of the value function approximator 

or, in other words, adjusts the policy used to select the actions. 

This process is then repeated. 

3.2 Potential real-time system 

Figure 3.2 shows the architecture of a potential real-time system based on the work in this thesis. Rein-

forcement learning takes a considerable number of learning cycles to learn an optimum policy, depending 

on the size and dimensionality of the state-action space. Moreover, at the start of the learning process, the 

actions are selected at random. As described in Section 2.6 on page 62, exploration is an important issue 

in reinforcement learning-based applications. Therefore, the solution consists of first learning an optimal 

policy through simulation. Then, the learnt policy would be installed within the HVAC controller. 

There are two differences between the simulation-based system and the real-time one. First, occupant 

equivalent temperature cannot be feasibly measured in a real car cabin (as motivated in Sections 2.2 and 

2.3), therefore a Virtual Thermal Comfort Sensing (VTCS) method is introduced in the loop. The role of 

the VTCS approach is to estimate occupant body part equivalent temperature from a minimal number 
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of inexpensive sensors in the cabin. Second, cabin occupants can freely override the learnt policy (by the 

adjustments they make to the vent air temperature and blower speed). As a result, user feedback is added 

as a feature of the reward function. Based on the actions performed (increasing the vent temperature, for 

example) further information is given regarding the comfort of the occupant and, therefore, the policy can 

improve accordingly. The user’s feedback is thus able to manually override the learnt policy or directly 

intervene in control. When user feedback is given, the reward function will penalise this change heavily, 

therefore encouraging a policy well suited to the specific end-user. 

The processing cycle of the system is as follows: 

1. A number of sensors measuring raw parameters (such as air temperature and solar load) are placed 

within the car cabin. Along with offering valuable information about the car cabin environment, the 

sensor data is used as input to the VTCS method in order to estimate occupant thermal comfort. A 

minimum number of sensors should be used in order to reduce the production costs and complexity 

of the HVAC system. Therefore, they have to be selected in such a way that the information they 

share with the target (occupant thermal comfort in this case) is maximised. The sensor selection is 

performed offline, prior to the vehicle manufacturing, using the mutual information-based method 

proposed in Section 5.1. 

2. Based on the cabin sensor measurements, the VTCS approach described in Section 5.2 will estimate 

occupant equivalent temperature in real-time within the cabin. 

3. The system then performs similarly to the previously described simulation-based one. The rein-

forcement learning-based controller uses the existing policy to select an appropriate action for the 

current car cabin state. This action consists in adjusting air temperature set points, blower speeds, 

air distribution flaps, etc. The low-level control system then reacts to the control actions, resulting 

in heating-up or cooling-down the cabin correspondingly. As with simulated learning, the reward 

function provides feedback to the reinforcement learning-based controller, which then updates its 

policy accordingly. The difference in updating the policy is that the user feedback is included in 

the reward function. 

For the real-time system, the following should be mentioned with regard to the flexibility of the proposed 

approach: 

1. The comfort-oriented control approach presented in this thesis is generic. If a new thermal comfort 

model is developed that reflects vehicle occupant thermal comfort more accurately, then that model 

could be easily integrated into the system. For example, if the new thermal comfort model is skin 
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temperature-based, then a VTCS method that estimates occupant body skin temperature rather 

than equivalent temperature from a set of cabin environmental sensors can be implemented. 

2. In order to redesign (tune for a particular cabin interior) the VTCS approach, a series of experi-

mental trials have to be performed, similar to the ones described in Section 4.1. In the case of a 

VTCS method that estimates occupant skin temperatures from cabin environmental sensors, skin 

temperature at multiple occupant body sites should be collected in a variety of conditions (different 

HVAC start set-points, different rates of change of the HVAC set-point), together with numerous 

cabin environmental sensor data (air flow, solar load, mean radiant temperature, air temperature 

at multiple locations within the cabin). The method presented in Chapter 4 can be used to derive 

the optimum set of sensors and their associated locations for any particular application. 

3. For the purpose of this thesis, the thermal comfort level of a single occupant was presented. However, 

the approach described here allows controlling the thermal comfort of a larger number of occupants. 

The reinforcement learning-based controller can be tuned to the preferences of each particular 

occupant and, therefore, N different control policies are generated (N = number of passengers). The 

occupant identification can be made based on in-seat weight sensors or personal Radio-Frequency 

IDentification (RFID) tags. 

This chapter gave an overview of the work in this thesis. The next chapter describes the empirical 

data gathering process, an analysis of the factors related to car cabin occupant thermal comfort and an 

evaluation of the thermal comfort models presented in this chapter using empirical data. 
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Chapter 4 

Car Cabin Environment and 

Thermal Comfort Models 

In order to develop efficient Heating, Ventilation and Air Conditioning (HVAC) control algorithms, both 

in terms of occupant comfort and energy consumption, there is a need to estimate the thermal comfort 

level of the cabin occupants in real-time [110]. Existing thermal comfort models provide the capability of 

estimating thermal comfort. A key problem is that these thermal comfort models do not produce accurate 

thermal comfort estimates for the car cabin environment [152]. Reasons for this include: the car cabin 

environment is transient and non-uniform, the outside environment affects the cabin in a non-uniform 

way, radiant heat asymmetry occurs due to the close position of dashboard, windows and walls with 

respect to the body, and finally, the passenger is fixed in position, unlike, for example, in an office [29]. 

Therefore, an important stage of this work is to establish an understanding of car cabin thermal comfort 

and how subjective occupant thermal comfort reports relate to existing thermal comfort models. 

The overarching research question this chapter poses is: Is there an existing thermal comfort model 

that is suitable for real-time use in an HVAC system and if so, which is it? 

In order to answer this question gathered experimental data was used, representing an advantage 

in comparison to other works in the literature [28, 67, 68]. The experimental data was gathered from 

a number of trials that included both steady-state conditions and conditions normally expected while 

driving and in which subjective comfort measures were sought from human participants. The main aim 

of the work was to understand the limitations and usefulness of existing thermal comfort models when 

applied to realistic car cabin data. 

Based on the analysis using empirical data, this chapter advances the state-of-the-art by: 

1. Answering several questions related to vehicular thermal sensation and comfort characteristics: 

(a) Does thermal neutrality generally correspond to a cabin air temperature set-point, such as 

22 ›? 
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(b) Does neutral thermal sensation correspond to thermal comfort? 

(c) What is the effect of occupant pre-conditioning and solar load on thermal comfort? 

(d) Do people feel more thermally comfortable when manual control is used, rather than auto-

matic? 

2. Establishing which of the four thermal comfort models (namely Predicted Mean Vote (PMV), 

Taniguchi’s model, Zhang’s model and Nilsson’s model) is a better match for cabin occupant thermal 

comfort in typical vehicular conditions. 

3. Illustrating the range of conditions in which thermal comfort models could be applied to drive 

comfort-oriented HVAC control algorithms. 

Section 4.1 describes the data gathering methodology, focusing on the instrumentation used, the parti-

cipating subjects and the range of conditions encountered in the car cabin. Section 4.2 answers several 

questions related to vehicular thermal comfort, while Section 4.3 evaluates four existing thermal comfort 

models on the gathered data. Finally, Section 3.4 summarises the chapter. 

4.1 Experimental data gathering 

There are three main strands of work that are supported by the empirical data collected: 

1. Answering questions related to vehicular thermal sensation and comfort. 

2. Evaluating existing thermal comfort models in order to establish the most suitable model for control 

(namely PMV, Taniguchi’s model, Zhang’s model and Nilsson’s model, all described in Section 2.1). 

3. The offline development and evaluation of a Virtual Thermal Comfort Sensing (VTCS) approach 

that estimates occupant body part equivalent temperature from cabin environmental sensors (presen-

ted in Chapter 4). 

The test car used for the experimental data gathering was a Jaguar XJ (2010 model year), shown in 

Figure 4.2 (left). In order to i) measure equivalent temperature for computing Nilsson’s thermal sen-

sation index and ii) calculate the PMV index, the INNOVA Flatman support manikin1, shown in Fig-

ure 4.2 (right), was placed in the front passenger seat. Throughout the experimental trials, equivalent 

temperature was measured in real-time at eight locations (corresponding to head, chest, left lower arm, 

1LumaSense Technologies The INNOVA ”Flatman” Manikin: http://www.lumasenseinc.com/EN/products/ 
thermal-comfort/flatman/the-manikin-innova-flatman.html 

http://www.lumasenseinc.com/EN/products
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Table 4.1: Areas of individual body parts and their relative weightings . 

Body segment Skin area (m2) Relative area (%) 
Head 0.180 10.3 
Chest 0.544 31.1 

Right arm 0.112 6.4 
Left arm 0.112 6.4 
Right thigh 0.200 11.4 
Left thigh 0.200 11.4 
Right foot 0.201 11.5 
Left foot 0.201 11.5 

right lower arm, left upper arm, right upper arm, thigh and calf) using dry heat loss sensors attached 

to the Flatman and connected to an INNOVA thermal comfort data logger2 . A dry heat loss transducer 

is an ellipsoidal device that thermally simulates the human body and consists of a surface temperature 

sensor and a surface heating element. The element is powered automatically to bring the surface to a 

temperature similar to that of the skin of a clothed person. The rate of power consumption needed to 

reach this temperature is used as a measurement of a person’s rate of heat loss/gain in that environment. 

The data logger then estimates individual segment equivalent temperatures from the measured dry heat 

loss values3 . The weighted overall equivalent temperature is computed based on the relative areas of the 

body parts, as presented in Table 4.1, as follows: 

nX 
ETov = wi × ETi (4.1) 

i=1 

where ETov is the overall equivalent temperature over the eight body parts, ETi is the equivalent tem-

perature for one body segment, wi is the weighting for each body segment (the corresponding relative 

area from Table 4.1 and n is the number of body segments, eight in this case). The areas and weightings 

corresponding to the body parts were taken from Flatman’s manual4 . The data logger then estimates 

the PMV thermal comfort index by replacing the air temperature and mean radiant temperature values 

with the overall equivalent temperature, while the air flow is set to 0 (as per the definition of equivalent 

temperature). The clothing index, metabolic rate and humidity values that are used by the logger to 

compute the PMV thermal comfort index are manually set within the software. In the case of the trials 

here, the settings were: metabolic value of 1.2, clothing value for the head of 0.05, clothing value for the 

2Grant Instruments (Cambridge) Ltd. Squirrel SQ2040 Series Data Loggers: http://www.grantinstruments.com/gb/ 
products/data-loggers/squirrel-sq2040-series 

3LumaSense Technologies Dry Heat Loss Transducers: http://lumasenseinc.com/EN/products/thermal-comfort/ 
t-equivalent 

4Manual of INNOVA’s Flatman Thermal Manikin: http://www.lumasenseinc.com/EN/products/thermal-comfort/ 
flatman/the-manikin-innova-flatman.html 

http://www.lumasenseinc.com/EN/products/thermal-comfort
http://lumasenseinc.com/EN/products/thermal-comfort
http://www.grantinstruments.com/gb
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upper arms of 0.15, clothing value for the lower arms of 0.0, clothing value for the chest of 0.15, clothing 

value for the thigh of 0.23, clothing value for the calf of 0.25. The overall clothing value was of 0.67 based 

on weighting each body part. These values were set to correspond to what the subjects were wearing 

(long trousers and a short-sleeved, light-coloured shirt or blouse). 

In order to compute Taniguchi’s and Zhang’s thermal sensation indexes, subject body part skin 

temperature was also measured at eight points (neck, left and right wrist, chest, left and right thigh, left 

and right calf—corresponding to the Flatman dry heat loss sensor locations) using Grant Instruments 

EUS-UU-VL2-0 thermistors5 . 

For the development and evaluation of the VTCS method (presented in Chapter 4), cabin environ-

mental parameters were also measured, as follows: 

1. Air temperature and relative humidity at six points (head, chest and feet level of the occupants, 

both on the left and right side) using type T thermocouples and Honeywell S&C HIH-5031 humidity 

6sensors . 

2. Solar loading at the driver sunroof using automotive solar sensors. A portable array on the driver 

side was used for applying the solar load. The array consisted of 16 bulbs, each rated at 150 Watts. 

The bulbs were controlled based on temperature readings from remote thermocouples mounted on 

the outside surface of the driver door. The temperature thresholds were set such that an average 

load of 455 W × m−2 was applied. This level of solar loading is consistent with that which would 

be experienced at around 9 am to 10 am on a sunny day according to data from Motor Industry 

Research Association (MIRA). 

3. Cabin air and surface temperatures at 19 points (shown in Figure 4.1) using type K thermocouples. 

4. Driver centre and outboard face vent air temperatures using type K thermocouples (shown in 

Figure 4.1). 

In order to support the work in this thesis, specifically the evaluation of selected thermal comfort models 

in the literature and the development of the VTCS method, subjective thermal comfort data was collected. 

There were a total of seven subjects (four males and three females) with ages between 24 and 56 years, 

heights between 1.57 cm and 1.78 cm, and weights between 48 kg and 78 kg, as listed in Table 4.2. The 

subject occupied the driver seat, while an observer sat in the right-hand rear passenger seat. Clothing 

5Grant Instruments (Cambridge) Ltd. Temperature and Humidity: http://www.grantinstruments.com/gb/products/ 
data-logger-accessories/temperature-and-humidity-probes.html 

6Sensirion SHT75 - Digital Humidity Sensor (RH&T): http://www.sensirion.com/en/01_humidity_sensors/06_ 
humidity_sensor_sht75.html 

http://www.sensirion.com/en/01_humidity_sensors/06
http://www.grantinstruments.com/gb/products
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17 - Row 2 Right Seat Cushion
18 - Screen Defrost Left
19 - Row 1 Discharge Outer Right 
20 - IP Top Left Centre
21 - Front Screen Left Centre
22 - Row 1 Foot Left
23 - Row 2 Foot Left
24 - Driver Seat Cushion
25 - Row 2 Foot Discharge Left 
26 - Panoramic Driver Head
27 - Row 1 Foot Discharge Left
28 - Row 2 Foot Right
29 - Row 2 Right Seat Back
30 - Screen Defrost Right 
31 - Row 1 Foot Discharge Right 
32 - Steering Wheel

1 - Row 1 Discharge Outer Left 
2 - Driver Seat Back
3 - Headliner Rear Pass Head
4 - Passenger Seat Cushion
5 - Passenger Seat Back
6 - Row 2 Foot Discharge Right
7 - Row 2 Discharge Right
8 - Panoramic Passenger Head
9 - Row 1 Discharge Inner Right
10 - Row 2 Discharge Left
11 - Front Screen Right Centre 
12 - Front Side Glass Left Centre
13 - IP Top Right Centre
14 - Row 1 Discharge Inner Left
15 - Front Side Glass Right Centre
16 - Row 1 Foot Right
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Figure 4.1: Air and surface temperature sensor locations within the car cabin. 
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Figure 4.2: Experimental data gathering. Left: Test car. Right: Flatman support manikin with dry heat 
loss sensors. 

was standardised across all experiments and subjects, consisting of long trousers and a short-sleeved, 

light-coloured shirt or blouse. 

Table 4.2: Experimental participant characteristics for trials T1, T2 and T3. 

Subject Gender Age (years) Height (cm) Weight (kg) 
1 
2 
3 
4 
5 
6 
7 

Male 
Female 
Male 
Male 
Female 
Male 
Female 

46 
37 
56 
49 
24 
26 
34 

173 
157 
166 
178 
162 
176 
160 

78 
73 
70 
75 
48 
77 
55 

Table 4.3: Experimental participant characteristics for trials T 4. 

Subject Gender Age (years) Height (cm) Weight (kg) 
1 
2 
3 
4 
5 
6 
7 

Male 
Female 
Male 
Male 
Female 
Male 
Female 

50 
51 
56 
43 
28 
26 
47 

178 
163 
166 
189 
165 
176 
150 

81 
73 
70 
85 
64 
77 
47 
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Table 4.4: Thermal sensation scale. Table 4.5: Thermal comfort scale. 

4 Very hot 3 Very uncomfortable 
3 Hot 2 Comfortable 
2 Warm 1 Just uncomfortable 
1 Slightly warm 0 Neutral 
0 Neutral -1 Just uncomfortable 
-1 Slightly cool -2 Uncomfortable 
-2 Cool -3 Very uncomfortable 
-3 Cold 
-4 Very cold 

The subjects reported their overall thermal sensation and comfort to the observer throughout the 

trials, while local thermal sensation and comfort at the head, chest and foot level was reported only 

within one set of trials. Thermal sensation and comfort were collected using the scales given in Tables 4.4 

and 4.5. 

Four types of trials (a total of 96 individual trials) were performed, corresponding to two main 

categories, as described in Sections 4.1.1 and 4.1.2. 

Technical considerations 

1. Throughout the experimental trials, the Flatman occupied the front passenger seat, while the 

subject occupied the driver seat. As a result, the conditions could have varied between the two 

locations. In order to minimise the difference in conditions for the occupant and Flatman, the 

following were ensured throughout the trials: 

(a) The centre and outer vents for the driver and the front passenger were consistent in terms of 

orientation angle. 

(b) The HVAC mode was synchronised, ensuring that vents on both sides have the same set-point 

temperature and blower speed setting. 

(c) The subjects and cabin were pre-conditioned to the same temperature. 

Additionally, the trials with controlled solar radiation were eliminated from the evaluation of two 

thermal comfort models (PMV and Nilsson’s model) due to the asymmetry of the solar array’s 

position (driver side). They were, however, used in order to analyse the effect of solar radiation on 

subjects’ thermal sensation. 

2. The Flatman lacks a dry heat loss transducer corresponding to the foot location (the closest being 

the calf sensor), whereas the subjects reported thermal comfort and sensation at the foot level. 
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The influence of this aspect on the comparison between the subjective and Flatman reports is not 

expected to be significant. 

3. For reasons of availability, the subjects who participated in trials T1, T2 and T3 are different from 

those who participated in trials T4 (see Tables 4.2 and 4.3). Therefore, the analysis is conducted 

separately on the two groups. 

4. The error associated with the Flatman’s measured equivalent temperature is ±2%, while the error 
7associated with the thermocouples measuring cabin air and surface temperature values is ±0.5 › . 

4.1.1 Controlled environment trials 

Two sets of trials, denoted T1 and T2, involved a controlled steady-state external environment (solar 

load, ambient temperature, wind) with varying HVAC control set-point. 

Variable cabin temperatures with steady state external conditions (T1) 

The purpose of these trials was to record and analyse subject thermal comfort and sensation responses 

at various temperatures. In order to determine the comfortable range of temperatures for drivers in a 

stationary vehicle, the trials were performed within an enclosed space, characterised by stable ambient 

air temperature, in order to avoid the effects of wind and sun. The subjects were pre-conditioned to 22 › 

in a separate room for 20 minutes. The test car cabin was also pre-conditioned to 22 ›. The subject 

entered the car and remained in static conditions (HVAC set-point of 22 › and air flow set on medium 

or high as per trial) for 10 minutes, reporting sensation and comfort scores after 5, 7 and 9 minutes. 

The HVAC set-point temperature was then increased by 1 › every 3 minutes until it reached 28 ›. 

During this process, the subject reported thermal sensation and comfort levels two minutes after each 

temperature change. 

The subject then left the car and was again preconditioned to 22 ›, as was the car cabin. The 

subject entered the car, again remaining in static conditions (HVAC set-point of 22 ›) for 10 minutes. 

The HVAC set-point temperature was decreased by 1 › every three minutes until it reached 16 ›. This 

procedure was performed four times per subject, with each combination of medium and high air flow and 

with and without solar loading on the driver side of the car. 

These trials are characterised by the following conditions: 1) absolute average car cabin temperature 

rates of change peaking at around 1.5 › per minute, but usually under 1 › per minute; 2) pre-conditioning 

7Grant Instruments (Cambridge) Ltd. Temperature and Humidity: http://www.grantinstruments.com/gb/products/ 
data-logger-accessories/temperature-and-humidity-probes.html 

http://www.grantinstruments.com/gb/products


67 CAR CABIN ENVIRONMENT AND THERMAL COMFORT MODELS 

Figure 4.3: HVAC set-point step changes for the warm-up and cool-down trials. 

of the cabin and subject at the same temperature; 3) no precipitation or wind effects; 4) steady ambient 

temperature between 19 › and 24 › and varying by less than 1 › within an individual trial. 

User control with steady state external conditions (T2) 

The purpose of these trials was to gain knowledge of the HVAC inputs performed by the subjects in 

order to reach a comfortable temperature, starting with several pre-conditioning temperatures. As with 

trials T1, these trials were also performed with the vehicle in an enclosed space, characterised by stable 

ambient air temperature and shielded from the wind and sun. The car cabin and the subjects were 

pre-conditioned to a neutral (22 ›), hot (28 ›), or cold (16 ›) temperature for 20 minutes prior to the 

trial. The subject entered the car and remained inside for 15 minutes, during which they were permitted 

to adjust the air conditioning at will in order to make themselves comfortable. The control adjustments 

performed were logged by the observer. These trials were performed both with and without simulated 

solar loading on the driver side of the car, with each condition tested once per subject. Thermal comfort 

and sensation were reported every two minutes. 

These trials are characterised by the following conditions: 1) absolute average car cabin temperature 

rates of change peaking at 8 › per minute; 2) pre-conditioning of the cabin and subject at the same 

temperature; 3) no precipitation or wind effects; 4) steady ambient temperature between 17 › and 25 › 

and varying by less than 1 › within an individual trial. 

The higher rates of change compared to trials T1 are due to the driver controlling the HVAC compared 

to the prescribed steps defined for T1. 
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4.1.2 Realistic driving trials 

Two sets of trials, denoted T3 and T4, were aimed at providing realistic driving scenarios for both 

short and long trips. The trials involved actual driving and thus allowed no control over the external 

environment (solar load, ambient temperature, wind). 

User control during short journeys (T3) 

The purpose of these trials was to determine whether subjects select the HVAC inputs differently when 

driving, for example if the driver tolerates a wider range of temperature. The trials consisted of subjects 

driving the test car on private roads. The car and the subjects were pre-conditioned to a neutral (22 ›), 

hot (28 ›), or cold (16 ›) temperature. The subjects entered the car and drove for 15 minutes, during 

which they were permitted to adjust the air conditioning at will in order to make themselves comfortable. 

The subjects were required to turn and change speed at frequent intervals in order to simulate daily driving 

routines. The hot and cold tests were performed twice per subject, while the neutral tests were performed 

once. Thermal comfort and sensation were reported every two minutes. The adjustments made to the 

HVAC inputs were also logged by the observer. 

These trials are characterised by the following conditions: 1) absolute average car cabin temperature 

rates of change peaking at 10 › per minute; 2) pre-conditioning of the cabin and subject at the same 

temperature; 3) uncontrolled ambient solar load and wind; 4) ambient outside temperature between 12 › 

and 28 › and varying by less than 2 › within an individual trial. 

Automatic and user control during long journeys (T4) 

The purpose of these trials was to capture comfort in a variety of conditions, clothing types and HVAC 

settings. These trials consisted of a five day road-trip throughout the UK in a Jaguar XJ (2010 model 

year). On each day there were four trials, lasting around two hours each. The trials were differentiated 

by the HVAC control mode: automatic mode at 20 ›, automatic mode at 22 ›, automatic mode at 

24 › and manual mode. The car cabin instrumentation consisted of the sensors used for the previous 

three types of trials along with an additional set of sensors: mean radiant temperature collected at 

a centre ceiling location; solar load, collected at locations corresponding to dashboard left and right; 

air temperature, collected at locations corresponding to dashboard left and right. The experimental 

conditions encountered are characterised by interior temperature rates of change of up to 6 › per minute 

and external temperature differences up to 6 › per trial, along with varying ambient wind, solar load 

and precipitation. 
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Table 4.6: Summary of the experimental conditions in all trials, with the duration given per trial. 

Type Duration (mins) Blower speed Solar load Driving Pre-conditioning Subjects 
T1 56 High or Medium Controlled No 22 › 7 
T2 15 User Controlled No 16 ›, 22 › or 28 › 7 
T3 15 User Ambient Yes 16 ›, 22 › or 28 › 6 
T4 120 User Ambient Yes None 7 

Seven subjects (three females and four males) took part in the trials, rotating within the driver, back 

left and back right passenger positions. There were three variations of upper-body clothing types for the 

subjects: light (t-shirt), medium (shirt) and heavy (jacket). The subject located in either the back right 

or back left position was also an observer who was required to collect subjective data from the driver 

every 15 minutes. Additional information referring to weather, window fogging, breaks, travel conditions 

and window opening was also recorded. Thermal sensation at the head, hands and foot level was collected 

(using the scale presented in Table 3.3), together with the overall thermal comfort score on a continuous 

scale ranging from −1 (very uncomfortable) to 1 (very comfortable). 

Table 4.6 provides a summary of the experiments performed and the number of subjects involved in 

each. 

4.1.3 Data pre-processing 

Prior to the investigation, the collected data was pre-processed as follows: 

1. Equivalent temperature and the PMV index were collected at a frequency of 0.2 Hz—the maximum 

possible frequency for the Flatman. Thermal sensation was collected at fixed intervals during the 

trips (every three minutes during trials T1, T2 and T3 and every 10 minutes during trials T4 ). 

In order to compare the two parameters the equivalent temperature corresponding to each nearest 

available thermal sensation report was used. 

2. The Flatman’s functioning includes a warming-up period (the time required for the dry heat loss 

transducers to warm-up in order to simulate the occupant skin temperature). Therefore, at the 

beginning of the first trial each day in T4, the initial data points were removed from the data set 

(until the first valid value was encountered). 

3. The data corresponding to sensors with a yield of below 70% were eliminated from the data analysis 

and method validation (front vent air temperature and front passenger right footwell). 

4. Faulty data were eliminated from the analysis. This was determined by the absolute difference 



70 CAR CABIN ENVIRONMENT AND THERMAL COMFORT MODELS 

●

●

●

●

●

20

25

30

35

40

−3 −2 −1 0 1 2 3 4
Overall Thermal Sensation

A
ve

ra
ge

 A
ir 

Te
m

pe
ra

tu
re

 (
°C

)

Figure 4.4: Overall thermal sensation versus average car cabin temperature. 

between two consecutive sensor readings higher than 2 ›. 

4.2 Car cabin thermal comfort 

This section investigates five thermal comfort related hypotheses in the literature. 

H4.1: Thermal neutrality does not generally correspond to a certain cabin air temperature set-point, such 

as 22 ›. 

In order to respond to H4.1, the cabin average air temperature ranges mapping to each thermal sensation 

index were plotted, aggregating the results from all the trials performed. Figure 4.5 shows that a thermal 

neutral sensation of 0 occurs at a range of cabin air temperature centred around 25 ›. However, the 

range extends between 19 › and 28 › depending on factors such as pre-conditioning, solar load, gender 

and subjective preferences. Figure 4.5 depicts the average cabin air temperature ranges where individual 

subjects felt thermally neutral during all trials. The figure shows that the ranges differ considerably 

amongst the seven subjects. The widest range is encountered for subject 1, between 19 › and 27 ›, 

while the narrowest range is encountered for subject 6, between 23 › and 27 ›. 

This experiment supports hypothesis H4.1. Figure 4.5 demonstrates that neutral thermal sensation 

does not occur at a certain single temperature, as traditionally assumed, but over a wide range of car 
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Figure 4.5: Neutral thermal sensation range for each of the seven subjects. 

cabin temperatures. 

This is the case for overall thermal comfort as well. Figure 4.6 presents the overall thermal comfort 

reported by the subjects versus the average air temperature across trials T1, T2 and T3. The average 

air temperature that provides maximum comfort (corresponding to scale unit 3) is 25.5 ›. However, as 

in the case of thermal sensation, comfort is achieved within a wider range of average temperatures (19 › 

to 30 ›) throughout different conditions and for different people. The same temperature also provides 

comfort values down to −1. Figure 4.7 shows the average air temperature ranges in which subjects felt 

comfortable (a comfort index of 2 corresponding to “comfortable”; the comfort index of 3 was not used 

because not all subjects reported this index within the trials). The figure shows that the ranges differ, 

like in the case of thermal sensation, amongst the seven subjects. The widest range is encountered for 

subject 5, between 23 › and 30 ›, while the narrowest range is encountered for subject 7, between 23 › 

and 27 ›. 

H4.2: Neutral thermal sensation corresponds to thermal comfort. 

The literature reports that thermal neutrality results in thermal comfort [47, 59]. This hypothesis is 

supported to an extent by the data gathered, with figure 4.8 illustrating that the thermal sensation of 0 

provides the highest average comfort levels (2 corresponding to “comfortable”). Sensation levels of −1 

(corresponding to a “slightly cool” sensation) and 1 (corresponding to a “slightly warm” sensation) also 
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Figure 4.6: Overall thermal comfort versus average car cabin temperature. 
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Figure 4.7: Comfortable range for each of the seven subjects. 
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Figure 4.8: Overall thermal sensation versus overall thermal comfort. 

provided reasonable comfort levels, averaging at 1 (corresponding to “just comfortable”). A considerable 

drop-off in comfort is encountered when thermal sensation goes beyond this range (at a thermal sensation 

level of −2 corresponding to “cool”). If the aim is to provide a comfort level of at least 0, then sensations 

between −1 and 1 would achieve this. As noted in the answer to the previous hypothesis, this can 

translate to temperatures anywhere in the 20 › to 30 › range depending on environmental conditions 

and personal preferences. 

Hypothesis H4.2 is confirmed, though with a caveat. Neutral thermal sensations can be linked to 

thermal comfort levels above 1, however, thermal comfort higher than 1 can also be experienced at 

sensations of −1 and 1. 

H4.3: Pre-conditioning a subject to a particular temperature affects the temperatures at which neutral 

thermal sensation is experienced. 

It is known that various factors influence occupant thermal comfort and sensation, with an important 

factor being pre-conditioning. If occupants are exposed to a certain temperature before entering the car 

cabin, then their perception of comfort will differ. In response to hypothesis H4.3, Figure 4.9 shows 

how occupant pre-conditioning affects the perception of thermal neutrality within trials T1. The analysis 

was performed on this type of trials because the environment was controlled and there were no external 

factors that could further affect the perception of sensation and comfort. Due to working with a discrete 
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Figure 4.9: Overall thermal sensation versus average car cabin air temperature based on two different 
types of pre-conditioning: hot and cold. 

scale, jittering (the act of adding random noise to data when plotting) is used in order to prevent groups 

of points obscuring each other. 

Both linear regression-based models are statistically significant, with the p-value being smaller than 

the threshold of 0.001. Figure 4.9 shows that, for example, the “slightly warm” sensation occurs at lower 

temperatures in case of cold pre-conditioning (as low as 21 ›). In case of hot pre-conditioning, the same 

thermal sensation index can be encountered up to 33 ›. This pattern can be observed for sensation 

indexes −1 to 2. 

Hypothesis H4.3 is confirmed—pre-conditioning a subject to a particular temperature affects the 

temperatures at which neutral thermal sensation is experienced. 

H4.4: Solar loading causes a higher thermal sensation for a given cabin average air temperature. 

Another important factor that affects thermal comfort is solar radiation. Figure 4.10 depicts how subjects 

perceive thermal sensation with and without solar load after initially being neutrally pre-conditioned at 

22 ›. The analysis was performed on trials T1, T2 and T3 that involved neutral pre-conditioning. Trials 

involving cold or hot pre-conditioning have been excluded as pre-conditioning has already been shown to 

have an impact on thermal sensation. Figure 4.10 shows that when solar load is present subjects achieve 

similar thermal sensation indexes at lower average temperatures. Both linear regression-based models 
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Figure 4.10: Overall thermal sensation versus average car cabin air temperature throughout trials that 
consist of neutral pre-conditioning. 

are statistically significant, with the p-value being smaller than the threshold of 0.001. Other conclusions 

obtained are: 

1. When no solar load was applied, participants experienced neutral thermal sensation at temperatures 

between 23.8 › and 28.1 ›. When solar loading was applied, the range was instead 19.9 › to 

27.8 ›. 

2. Without solar loading, the range of temperatures in which all subjects were experiencing thermal 

sensations between −1 and +1 was 19.9 › to 26.4 ›. When solar loading was applied, the range 

became 19.2 › to 22.7 ›. 

3. It can be seen that solar loading generally decreases the temperature at which a given thermal 

sensation level will be experienced. Furthermore, when solar loading was applied, the minimum 

temperature at which neutral sensation was experienced and the minimum temperature at which 

all subjects experienced a thermal sensation of −1 were the same. 

Hypothesis H4.4 is confirmed—solar load causes a higher thermal sensation for a given temperature. 

H4.5: Manual control provides higher thermal comfort levels than automated control, highlighting the 

need for learning-based HVAC control. 
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Figure 4.11: Overall reported comfort index by the driver against the HVAC set-point temperature. 

In order to test this hypothesis, an analysis on trials T4 was performed. The trials consisted of the 

HVAC temperature being set at 20 ›, 22 ›, 24 ›, or manually controlled by the subjects. The purpose 

of the analysis was to see whether manual control offers passengers better comfort compared to auto-

mated control at commonly used set-points. The scale of the reported comfort ranged between −1 (very 

uncomfortable) and 1 (very comfortable), with 0 being comfortable. 

Figures 4.11, 4.12 and 4.13 show the comfort level for each HVAC setting for the driver, left back 

passenger and right back passenger. As it can be observed, the manual setting offers the highest degree of 

comfort for all three passengers, with an average of 0.05 for the driver, 0.3 for the left back passenger and 

0.2 for the right back passenger. In the case of the driver and left back passenger, the HVAC set-point of 

22 › provides a thermal comfort value around 0.05 less than the manual setting, whereas for the right 

back passenger the difference is more significant—around 0.35. The HVAC set-point of 24 › provides 

the poorest comfort levels, between −0.25 and −0.4. The coldest setting, of 20 ›, provides a reasonable 

comfort level solely for the driver. 

This experiment has demonstrated that hypothesis H4.5 is true—manual control provides higher 

thermal comfort levels for car cabin occupants. 

With manual control offering the highest comfort ratings, learning-based HVAC is clearly needed 

within the automotive industry and this is a motivational aspect for the work in this thesis. In summary, 
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Figure 4.12: Overall reported comfort index by the left back passenger against the HVAC set-point 
temperature. 
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Figure 4.13: Overall reported comfort index by the right back passenger against the HVAC set-point 
temperature. 
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thermal comfort is a subjective parameter influenced by many factors including pre-conditioning and solar 

radiation, as demonstrated by the analysis presented in this section. In the next section, four thermal 

comfort models in the literature are evaluated based on the gathered data. 

4.3 Evaluation of existing thermal comfort models 

This section provides an evaluation of four thermal comfort models based on the gathered data described 

in Section 4.1. The purpose of the analysis is to establish whether they can accurately predict car 

cabin occupant thermal sensation in any of the conditions in order to be used for comfort-based HVAC 

control. For this purpose, the overall thermal sensation reports of the drivers were compared to i) the 

PMV index as computed by the Flatman, ii) Zhang’s index computed from the measured skin temperat-

ures, iii) Taniguchi’s index computed from the measured facial skin temperature and iv) Nilsson’s index 

computed from the measured average body equivalent temperature. 

The following hypotheses are formulated: 

H4.6: The PMV model matches the thermal comfort subjective reports more accurately when the en-

vironmental conditions encountered in the car cabin are stable (low cabin air temperature rates of 

change over time). 

H4.7: Zhang’s model matches the thermal comfort subjective reports more accurately than Taniguchi’s 

model due to it taking into account a higher number of body part skin temperatures. 

H4.8: Nilsson’s equivalent temperature-based thermal comfort model is the most suitable model for comfort-

oriented HVAC control. 

PMV is widely used in research for car cabin comfort-based HVAC controllers [5, 13, 20, 44, 49, 63, 

112, 143]. The reason is the simplicity of measuring air temperature and humidity, while in most cases 

the remaining parameters are estimated (for example, the mean radiant temperature is set equal to the 

air temperature). However, does PMV actually reflect the reported sensation levels of the occupants? 

Table 4.7 presents the correlation coefficient and the determination coefficient R2 between the subjective 

and experimental data for all models. The correlation coefficient quantifies the degree of correlation 

between two variables, while the R2 coefficient indicates how well data points fit the linear regression. 

The p-value for a regression gives the probability that the result is not derived by chance. For all 

results presented, the p-value is smaller than the threshold (p = 1.2e-0.09) and the results are, therefore, 

significant. 

http:1.2e-0.09
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Table 4.7: Statistic metrics between the models’ output and the reported sensation. 

Type 
PMV 

Correlation R2 
Taniguchi 

Correlation R2 
Zhang 

Correlation R2 
Nilsson 

Correlation R2 

T1 0.91 0.85 0.56 0.32 0.10 0.0001 0.93 0.86 
T2 0.76 0.57 0.03 0.001 0.50 0.25 0.77 0.59 
T3 0.78 0.61 0.15 0.02 0.60 0.35 0.79 0.62 
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Figure 4.14: Flatman’s PMV index versus overall thermal sensation reported by the subjects. 

In the case of PMV, the highest level of agreement corresponds to trials T1, with a correlation index 

of 0.91. The high correlation is somewhat expected due to the stable conditions encountered throughout 

trials T1 (interior temperature rates of change less than 1.5 › per minute, stable outside temperature 

and no wind or precipitation). The experimental data matches less accurately the subjective reports 

in trials T2 and T 3. The correlation index between the two is 0.76 for T2 and 0.78 for T3. Overall, 

Flatman’s PMV tended towards colder reports than the subjective reports. For example, for T1, subjects 

reported thermal sensations of up to 4 (corresponding to “very hot”), whereas Flatman’s PMV did not 

go beyond 3 (corresponding to “hot”). 

This experiment shows hypothesis H4.6 to be true— the PMV model matches the thermal comfort 

subjective reports more accurately when the environmental conditions encountered in the car cabin are 

stable (air temperature rates of change lower than 1.5 › per minute). 

The results indicate that PMV can be applied in vehicle cabins to infer passenger comfort within 
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a limited set of conditions, however, the model brings forward another important issue in this type of 

environment, the inability to differentiate between different parts of the body. Due to the non-uniform 

nature of the environment, the difference in thermal sensation over small distances is considerable and so 

effective HVAC control should be able to warm-up or cool-down separately the feet and head for example. 

With PMV’s accuracy limited to a narrow range of conditions, the author further investigated two skin 

temperature-based models: Taniguchi’s model and Zhang’s model. For Taniguchi’s model, as Table 4.7 

illustrates, the highest level of agreement corresponds to trials T1, with a correlation index of 0.56. In 

trials T2 and T 3, on the other hand, the match is poor, with correlation indexes of 0.03 and 0.15, 

respectively. Facial skin temperature has a higher impact on overall thermal sensation when the rate of 

change of air temperature is low (less than 1.0 › per minute), as suggested by the higher correlation for 

trials T1. As Taniguchi’s model was developed only with respect to facial skin temperature, it is further 

interesting to see if Zhang’s model improves on this by taking into consideration 8 different body parts. 

Zhang’s model was developed, like Taniguchi’s, for transient environments such as car cabins. During 

experimentation, skin temperature was sampled at only 8 sites, compared to the 19 sites specified by 

Zhang. This is justified by the fact that within real-time vehicular comfort control, it would be infeasible 

to monitor skin temperature at all locations specified by Zhang. However, in order to ensure that the 

sum of skin temperature segment weightings is 1, the weightings for the contribution of local thermal 

sensations to the overall sensation were normalised. Mean skin temperature was calculated as a proxy for 

core temperature (this approach being suggested by Zhang). The body part skin temperatures recorded 

at the beginning of each trial were used as the set-point temperatures for the body segments in the model. 

As table 4.7 shows, the correlation levels are poor: 0.10 for T1, 0.50 for T2 and 0.60 for T3. As the results 

show, for trials T1, facial skin temperature alone proved to be a better estimator than the combination 

of 8 different body parts. The performance of the two skin temperature-based models is not sufficient to 

support vehicular HVAC comfort control. 

Table 4.7 shows hypothesis H4.7 to be neither false nor true. Zhang’s model matches the thermal 

comfort subjective reports more accurately than Taniguchi’s model within two types of trials (T2 and 

T 3). However, Taniguchi’s model is more suitable than Zhang’s model for trials T1, suggesting that 

facial skin temperature is a reasonable thermal comfort predictor in stable conditions. 

In order to compute the overall thermal sensation index of Nilsson’s model, the equivalent temperature 

at 8 different body parts was averaged based on body area weightings. Once the average equivalent 

temperature was computed, the overall thermal sensation index was estimated from Figure 2.1 on page 

21, using the diagram corresponding to light clothing (the participants wore light clothing throughout 
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Figure 4.15: Zhang’s sensation index versus overall thermal sensation reported by the subjects. 
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Figure 4.16: Taniguchi’s sensation index versus overall thermal sensation reported by the subjects. 
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Figure 4.17: Nilsson’s sensation index versus overall thermal sensation reported by the subjects. 

the experiments). 

This experiment shows hypothesis H4.8 to be true—Nilsson’s equivalent temperature-based thermal 

comfort model is the most suitable for comfort-oriented HVAC control out of the four models evaluated. 

Nilsson’s model had a similar performance to the PMV model. The highest level of agreement with 

the subjective reports corresponds to trials T1, with a correlation index of 0.93. For trials T2 and 

T3, the correlation index is lower, of 0.77 and 0.79, respectively. The similar performance is somewhat 

expected, because Flatman’s PMV index is also based on the measured average equivalent temperature. 

The advantage Nilsson’s model has over PMV is that local thermal sensation can also be estimated and 

that it requires less input parameters. 

4.4 Summary 

This chapter provided insight on the complexity of occupant thermal comfort based on empirical data. 

The first step was to design experimental trials covering a wide range of conditions: with preconditioning 

of the occupants and cabin at different temperatures, with or without ambient solar load, wind and 

precipitations, with steady or varying outside ambient temperature and with different temperature rates 

of change within the cabin. Then, an investigation related to vehicular thermal sensation and comfort in 
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vehicles was performed. The main findings related to cabin thermal comfort are: 

1. Thermal neutrality does not generally correspond to a certain cabin air temperature set-point, such 

as 22 ›. 

2. Neutral thermal sensation corresponds, to a certain extent, to thermal comfort. 

3. Pre-conditioning a subject to a particular temperature affects the temperatures at which neutral 

thermal sensation is experienced. 

4. Solar loading causes a higher thermal sensation for a given cabin average air temperature. 

5. Manual control provides higher thermal comfort levels than automated control, highlighting the 

need for learning-based HVAC control. 

The chapter also evaluated four thermal comfort models, namely PMV, Taniguchi’s model, Zhang’s model 

and Nilsson’s model in a variety of conditions in order to determine which one is the most suitable for 

vehicular HVAC control. A model is considered suitable if the correlation score with the subjective reports 

is higher than 0.70 for all experimental trial types and, also, if they have additional characteristics, such 

as if they are able to estimate local (not just overall) thermal sensation. 

Based on the experimentally gathered data, the PMV index and Nilsson’s index accurately matched 

(with correlations of 0.91 and 0.93, respectively) the occupant reported thermal sensation within a limited 

set of conditions: pre-conditioning of the passenger and the cabin at the same temperature, a steady 

outside temperature and low rates of change of the interior temperature (lower than 1.5 › per minute). 

Higher interior temperature rates of change (up to 9 › per minute), ambient solar load and wind leads 

to lower correlation factors, between 0.76 and 0.79. As presented earlier in the chapter, the results are 

significant (p-value = 1.2e-0.09). 

The overall thermal sensation computed using the two skin temperature-based thermal comfort models 

(Taniguchi’s model and Zhang’s model) had a weak match with the subjective reports throughout all 

trial types (correlations between 0.10 and 0.60). Overall, based on the data gathered, the accuracy of 

these models is not sufficient to support vehicular HVAC comfort control. 

Capitalizing on the findings, Nilsson’s model is shown to be the most suitable thermal comfort model 

in the literature for vehicular comfort-oriented control. The model provided the highest correlations 

with subjective thermal sensation throughout the three trial types. An important advantage Nilsson’s 

model has over PMV is its ability to estimate local thermal sensation, which the authors see as an 

important capability for the new generation vehicular HVAC control systems. Moreover, Nilsson’s model 

http:1.2e-0.09
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only requires two input parameters, rather than six parameters in PMV’s case, some of which could not 

feasibly be determined by an automated system (for example the air flow at the occupant location). 

It is known that no thermal comfort model can provide a perfect match for what people feel. One 

reason is the subjective nature of thermal sensation and comfort in terms of how comfort is felt and, 

also, how it is reported. However, adopting Nilsson’s equivalent temperature-based model as a basis for 

estimating occupant comfort control and further integrating online learning within the car for tuning 

individual preferences would lead to a more thermally comfortable vehicular environment. 

The next chapter presents the development and evaluation of a VTCS approach that estimates occu-

pant body part equivalent temperatures from minimalistic, inexpensive cabin environmental sensors. 



Chapter 5 

Virtual Thermal Comfort Sensing 

The previous chapter presented the data gathering trials performed and established the most suitable 

thermal comfort model to be used for vehicular Heating, Ventilation and Air Conditioning (HVAC) 

control. This chapter presents the development and evaluation of a vehicular Virtual Thermal Comfort 

Sensing (VTCS) approach that estimates occupant body part equivalent temperature from a minimalistic 

set of inexpensive cabin environmental sensors. 

Virtual sensing is applied in a variety of domains [93, 142, 158, 160]. The idea behind the concept 

of vehicular VTCS is that, based on the data from a set of cabin environmental sensors, readings from 

virtual sensors are inferred. These virtual sensors are assigned to locations that are important in terms of 

estimating thermal sensation and comfort, but where real sensors cannot be placed due to reasons such 

as cost, inconvenience to the occupant, because the location is inaccessible or simply because the location 

provides no means of mounting the sensor. 

With Nilsson’s equivalent temperature-based model shown to be the most suitable thermal comfort 

model for HVAC control in the previous chapter, for the work here the virtual sensors are equivalent 

temperature sensors at eight driver body part locations (head, chest, left lower arm, left upper arm, right 

lower arm, right upper arm, thigh and calf). Although occupant equivalent temperature can be measured 

in a realistic end-user scenario, the approach is expensive, intrusive and bulky. Equivalent temperature 

can be, however, estimated from suitable cabin environmental data. The prerequisites are: i) a good 

understanding of the cabin environment and the relationships between various sensing locations within 

the cabin and ii) a machine learning-based method of estimating occupant body equivalent temperature 

in a variety of conditions based on cabin data. 

The reinforcement learning-based control algorithm presented in the next chapter benefits from the 

use of VTCS due to the following reasons: 

1. The occupant thermal comfort variable (in this case occupant equivalent temperature) needs to be 

integrated into a reward function. The reward function serves as an objective basis for comparing 

controllers. This particular aspect should be especially useful when making future improvements 

85 
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Figure 5.1: Development process for the VTCS approach. 

to the developed controller. 

2. The Markov property should be satisfied. As described in Section 2.6, the input state corresponding 

to the environment must ensure the Markov property, meaning that it has to retain all relevant 

information in order for the reinforcement learning algorithm to be applied. 

3. To reduce the dimensionality of the learning problem, with one dimension corresponding to the 

comfort estimate rather than N dimensions corresponding to the N sensor inputs. 

The VTCS-based control is innovative in the automotive field and represents a paradigm shift in the 

way HVAC control is developed. Moreover, the methods developed here are generic. They can be used 

in similar applications such as skin temperature driven control or for HVAC control in buildings. The 

method was successfully applied by the author for estimating cabin occupant skin temperature and for 

estimating building environmental sensor data at various locations in a room. 

A summary of the VTCS development process is given in Figure 5.1. First, cabin environmental data 

(in this case air temperature, surface temperature, air flow, vent temperature, vent flow, solar load and 

mean radiant temperature) is collected in experimental trials, along with data for sensors that will later be 

replaced with virtual counterparts (in this case, equivalent temperature at various body locations). Then, 

the cabin environmental sensor locations are selected that correlate well with the body part equivalent 

temperature. A mutual information-based approach is used for this purpose, as described in Section 5.1. 

After the selection is performed, a machine learning technique infers the virtual equivalent temperatures 

from the selected cabin environmental sensors. This model, along with the cabin environmental sensor 

specifications, comprises the VTCS. 

Seven learning approaches popular in the literature are investigated for the estimation of equivalent 

temperature: 

1. Multiple Linear Regression (MLR). 

2. Multilayer Perceptron (MLP). 
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3. K-Nearest Neighbour (KNN). 

4. Multivariate Adaptive Regression Splines (MARS). 

5. Radial Basis Function Network (RBF). 

6. Reduced Error Pruning Tree (REPTree). 

7. Random Forest (RF). 

The research questions this chapter poses are: 

1. Can an optimum set of cabin environmental sensors be defined for estimating occupant body part 

equivalent temperature, given realistic constraints? 

2. Which is the most suitable machine learning technique, out of the seven implemented, for estimating 

occupant body part equivalent temperature from a set of cabin environmental sensors? 

The contribution in this chapter is: 

‹ A scheme for designing a VTCS approach, integrating: 

1. A mutual information-based sensor positioning method that selects the cabin environmental 

sensors (and their corresponding locations) best correlated with occupant body part equivalent 

temperature. 

2. A machine learning algorithm for estimating equivalent temperature (selected from seven dif-

ferent methods based on the estimation error and processing time required). 

The VTCS method is developed and evaluated offline, on the real-world data sets described in Section 4.1. 

This chapter is structured as follows: Section 5.1 describes the implementation and evaluation of the 

mutual information-based sensor positioning method. Section 5.2 describes the implementation and eval-

uation of the seven machine learning algorithms for equivalent temperature estimation, while Section 5.3 

provides further analysis on the MLR-based equivalent temperature estimation. Finally, Section 5.4 

presents a summary of the work in this chapter. 

5.1 Sensor positioning through mutual information 

Common sensor positioning approaches are driven by considerations such as cost or aesthetics, which may 

impact on the performance of the HVAC system and thus on occupant thermal comfort. Methods that 
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quantify the spatial-temporal variations in the car cabin environment by using similarity measures are 

needed in order to provide accurate estimates of virtual temperatures that would drive occupant rather 

than cabin focused HVAC control algorithms. 

In the work here, the selection of the best cabin environmental sensors from those available is per-

formed via a mutual information method based on entropy values. Mutual information is a quantitative 

measurement of how much one random variable tells us about another random variable. Mutual inform-

ation is used as a feature selection technique in multiple works [11, 125, 136, 150, 157] and it performs 

similarly to a correlation analysis. Correlation measures linear relationships or monotonic relationships 

between two random variables. On the other hand, mutual information is a more general concept and 

measures the reduction of uncertainty in a random variable after observing another. Mutual informa-

tion can therefore measure non-monotonic relationships and, in general, more complicated relationships. 

Within this thesis, the variables followed a normal distribution and therefore, using a correlation meas-

ure would have sufficed. However, if a non-linear variable is added, such as a binary variable specifying 

whether a control actuator is active or a binary variable specifying whether the window is open or not, 

mutual information represents a more reliable solution. Figure 5.2 shows a graphical representation of the 

mutual information between pairs of equivalent temperatures and potential cabin environmental sensors. 

The line thickness is directly proportional to the mutual information value. 

The mutual information computation method follows the process shown in Figure 5.3 and is described 

in the following subsections. 

5.1.1 Computing marginal entropies and mutual information 

Given two sensors X and Y , let X be the equivalent temperature sensor data and Y the cabin environ-

mental sensor data. Using the entropy concept, the mutual information between the two data streams, 

I(X; Y ), is: 

I(X; Y ) = H(X) − H(X | Y ) (5.1) 

where H(X) is the marginal entropy of X and H(X | Y ) is the conditional entropy of X given Y . Using 

the conditional entropy definition, H(X | Y ) = H(Y ) − H(X, Y ), mutual information can be computed 

as: 

I(X; Y ) = H(X) − H(Y ) + H(X, Y ) (5.2) 

where H(X, Y ) is the joint entropy of X and Y . 

Both the marginal entropies and the joint entropy can be computed from the general joint entropy 
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Figure 5.2: The mutual information concept. 

Figure 5.3: Entropy-based approach for computing mutual information. 
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formula for a multivariate normal distribution: 

1 � � 
H(X1, X2, ..., Xk) = × ln (2 × π × e) k |Σ| (5.3)

2 

where k represents the number of random variables forming the distribution and Σ is the covariance 

matrix of the variables. 

5.1.2 Extending the mutual information concept for multiple cabin environ-

mental sensors 

Using several cabin environmental sensors in conjunction increases the mutual information shared with 

the equivalent temperatures, leading to a more accurate estimate of the latter. Computing the mu-

tual information from multiple cabin environmental sensors is performed similarly to the previous case. 

Given n + 1 sensors X1, ..., Xn and Y , let X1, ..., Xn be the cabin environmental sensors data and Y be 

the equivalent temperature data. Based on equation 4.1, the mutual information between the n cabin 

environmental sensors data and the equivalent temperature data is: 

The conditional entropy is: 

I (Y ; X1, ..., Xn) = H(Y ) − H (Y |X1, ..., Xn) (5.4) 

H(Y |X1, ..., Xn) = H(Y, X1, ..., Xn) − H(X1, ..., Xn) (5.5) 

where H(Y, X1, ..., Xn) is the joint entropy for the n + 1 sensors, while H(X1, ..., Xn) is the joint entropy 

for the n cabin environmental sensors. The mutual information is calculated as: 

I(Y ; X1, ..., Xn) = H(Y ) + H(X1, ..., Xn) − H(Y, X1, ..., Xn). (5.6) 

The marginal entropy H(Y ), as well as the joint entropies H(X1, ..., Xn) and H(Y, X1, ..., Xn), can be 

computed using equation (4.3). 

5.1.3 Maximizing mutual information 

If the best set of cabin environmental sensors for each body part equivalent temperature was selected then 

the total number of cabin environmental sensors to be placed within the car cabin would be relatively 
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Table 5.1: The five cabin environmental sensors sharing the highest mutual information for trials T1, T2 
and T3. 

Cabin Environmental Sensor 
Air temperature row 2 right breath 
Air temperature row 2 left breath 
Air temperature row 2 belt 
Surface temperature row 2 left seat back 
Air temperature row 1 belt 

Mutual Information 
0.88 nats 
0.82 nats 
0.80 nats 
0.78 nats 
0.76 nats 

large. Therefore, the ultimate goal is to select the subset of cabin environmental sensors that provide 

the highest mutual information over all body part equivalent temperature. For convenience, the mutual 

information is denoted here with MI. The cabin environmental sensors data which maximise: 

(MIH + MICH + MILAL + MILAR + MIUAL + MIUAR + MIT + MICA) (5.7) 

would be thus selected (Subscripts: H—head, CH—chest, LAL—lower arm left, LAR—lower arm right, 

UAL—upper arm left, UAR—upper arm right, T—thigh and CA—calf). 

5.1.4 Variable normality 

The mutual information computation method presented above, as well as some of the machine learning 

methods further used in estimating equivalent temperature, require normally distributed data as input. 

The normality of the data was, therefore, verified by applying D’agostino’s normality test [34]. The 

normality hypothesis was confirmed for all variables. 

5.1.5 Results 

The results are presented separately for trials T4 because the set of sensors used within the cabin was 

different. For trials T1, T2 and T3, Table 5.1 lists the five cabin environmental sensors that shared the 

highest mutual information with the eight equivalent temperatures. The highest mutual information, of 

0.88 nats (mutual information unit measure), was achieved with the air temperature sensor corresponding 

to the right breath level at the back row. 

Table 5.2 shows the best five pairs of cabin environmental sensors that shared the highest mutual in-

formation with the eight body part equivalent temperature. The highest mutual information, of 1.39 nats, 

was achieved between the air temperature sensor corresponding to the right breath level at the back row 

and the surface temperature at the left seat back in the back row. Overall, the five pairs of sensors 
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Table 5.2: The five pairs of cabin environmental sensors sharing the highest mutual information for trials 
T1, T2 and T3. 

Cabin Environmental Sensor Pair 
Air temperature row 2 right breath + Surface temperature row 2 left seat back 
Vent temperature driver centre + Air temperature row 2 left breath 
Air temperature row 1 left foot + Air temperature row 1 belt 
Air temperature row 2 left breath + Surface temperature row 1 passenger seat back 
Vent temperature driver centre + Air temperature row 1 left breath 

Table 5.3: The five cabin environmental sensors sharing the highest mutual information for trials T4. 

Mutual Information 
1.39 nats 
1.37 nats 
1.36 nats 
1.35 nats 
1.34 nats 

Cabin Environmental Sensor 
Mean radiant temperature 
Air temperature left seat belt left 
Air temperature right seat belt right 
Air temperature left seat belt right 
Air temperature right seat belt left 

Mutual Information 
0.79 nats 
0.48 nats 
0.47 nats 
0.41 nats 
0.40 nats 

included sensors measuring air temperature at the breath, chest or foot level of the occupants, together 

with humidities at the head or hand level, surface temperatures at the left seat back and centre vent air 

temperatures. 

As individual sensors, the surface temperature, skin temperature and humidity sensors shared low mu-

tual information values with the equivalent temperatures (as low as 0.001 nats). However, in combination 

with another sensor (usually an air temperature sensor), the mutual information increases considerably. 

The impact on the estimation accuracy when the number of cabin environmental sensors increases is 

further discussed in Section 5.2. 

For trials T4, the most important addition to the set of sensors was the mean radiant temperature, a 

parameter used to calculate equivalent temperature. Table 5.3 shows the five cabin environmental sensors 

that shared the highest mutual information with the eight body part equivalent temperature. The highest 

mutual information, of 0.79 nats, was achieved with the mean radiant temperature measured at a central 

ceiling location. 

Table 5.4 shows the five pairs of cabin environmental sensors that shared the highest mutual inform-

ation with the eight body part equivalent temperature. The highest mutual information, of 0.86 nats, 

was achieved from the mean radiant temperature measured at a central ceiling location and the air tem-

perature at the front left seat left head level. All five pairs of cabin environmental sensors included the 

mean radiant temperature as a component, suggesting the importance of including this parameter when 

estimating equivalent temperatures. 

To note, the mutual information values corresponding to trials T1, T2 and T3 cannot be compared 
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Table 5.4: The five cabin environmental sensor pairs sharing the highest mutual information for trials 
T4. 

Cabin Environmental Sensor Pair 
Mean radiant temperature + Air temperature left seat head left 
Mean radiant temperature + Solar load dashboard 
Mean radiant temperature + Air temperature right seat head right 
Mean radiant temperature + Air temperature left seat belt left 
Mean radiant temperature + Air temperature dashboard right 

Mutual Information 
0.86 nats 
0.84 nats 
0.83 nats 
0.83 nats 
0.82 nats 

to the mutual information values corresponding to trials T4 due to different sensor input data. 

5.2 Equivalent temperature estimation 

Several machine learning methods were implemented and evaluated for estimating equivalent temperature, 

namely MLR, MLP, REPTree, KNN, MARS, RBF and RF. The following hypothesis is tested: 

H5.1: MLR will outperform the other estimation approaches with regard to fast processing time, however, 

it will not be the most accurate method. 

To implement the machine learning methods the author used Python [154], the Waikato Environment 

for Knowledge Analysis (WEKA) software libraries [65] (developed at the University of Waikato and 

consisting of a collection of machine learning algorithms for data mining tasks, including tools for data 

pre-processing, classification, regression, clustering, association rules, and visualisation) and the open-

source Orange software libraries [39]. 

Cross-Validation (CV) was used to evaluate each estimator’s performance on the full set of experi-

mental data, indicating how well the algorithm generalised to unseen data. Both K-fold CV (presented 

in Algorithm 5.1) (with k = 10) and Leave-One-Trial-Out-Cross-Validation (LOTOCV) (presented in 

Algorithm 5.2) were applied. K-fold CV has the original data randomly partitioned into k subsets of 

equal size. Then, out of the k subsets, one subset is used for validating the model, while the remaining 

k = 1 subsets are used for training the model. The CV process is then repeated k times and the k 

results from the folds are averaged to produce a single estimation. On the other hand, LOTOCV has 

the original data partitioned into the 95 individual trials conducted. Then, out of the 95 trials, one 

trial is used for validating the model, while the remaining 94 trials are used for training the model. The 

LOTOCV process is then repeated 95 times and the 95 results from the folds are averaged to produce 

a single estimation. The author used LOTOCV to better cope with the tendency of autocorrelation 

for time series data and, also, with the existing trial-to-trial variation. The outputs of the estimators 

were compared to the original measured equivalent temperature and Root Mean Square Error (RMSE) 
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Algorithm 5.1 K-fold Cross-Validation process. 

1. The whole dataset is randomly partitioned into k samples of equal size. 

2. One sample out of the k is selected as the validation data. 

3. The remaining k − 1 samples are used as training data. 

4. The process is repeated k times, with each sample set used once as validation data. 

5. The k results are averaged to provide a mean error over the individual cross-validation processes. 

Algorithm 5.2 Leave-One-Trial-Out-Cross-Validation process. 

1. The whole dataset is partitioned into n individual experimental trials. 

2. One trial out of the n is selected as the validation data. 

3. The remaining n − 1 trials are used as training data. 

4. The process is repeated n times, with each trial set used once as validation data. 

5. The n results are averaged to provide a mean error over the individual cross-validation processes. 

was used as an accuracy measure. The estimation was performed using the best two sensors selected as 

described in Section 5.1 (Air temperature at row 2 right breath and Surface temperature row 2 left seat 

back). 

The following subsections provide the results for each method, followed by a summary in Section 5.2.8. 

The most suitable method selected is further analysed in Section 5.3. 

5.2.1 Multiple Linear Regression 

MLR [43] models the relationship between a response variable (the variable we want to provide an estimate 

for) and two or more explanatory variables (the variables from which the estimate is performed) by fitting 

a linear equation to the observed data. Given n + 1 observations Y, X1, ..., Xn, let Y be the response 

variable and X1, ..., Xn be the explanatory variables. The estimate of a particular response variable value 

is: 

Yi = a + b1 × X1i + b2 × X2i + ... + bn × Xni (5.8) 

where Yi is the response variable estimate, a is the intercept of the regression line, b1, ..., bn are the 

regression parameters and X1i, ..., Xni are the explanatory variables values. 
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In the regression case with one explanatory variable the estimation is performed via: 

Yi = a + b × Xi 

CovXY 
b = (5.9)

VarX 

a = Y − b × X 

where CovXY is the covariance between X and Y , VarX is the variance of X, and Y and X are the means 

of Y and X respectively. Therefore, the estimated response variable value is: 

CovXY CovXY CovXY 
Yi = Y − × X + × Xi = Y + × (Xi − X) (5.10)

VarX VarX VarX 

The covariance matrix (a matrix whose element in the i, j position is the covariance between the ith and 

jth elements of a random vector) of X and Y is: 

⎞⎛ 

Cov = ⎜⎝ 
VarX CovXY ⎟⎠ (5.11) 
CovY X VarY 

Implementation 

MLR was implemented in Python. Based on the principle described above, in the case of n regressors 

(the variables from which the prediction is performed) the covariance matrix can be partitioned as: 

⎞⎛ 

Cov = ⎜⎝ 
VarY Y CovY (X1...Xn) ⎟⎠ (5.12) 

Cov(X1 ...Xn)Y Var(X1...Xn)(X1 ...Xn) 

The estimated value is computed as: 

⎞⎞⎛⎞⎛⎛ ⎜⎜⎜⎜⎝ 

⎜⎜⎜⎜⎝ 

X1 
. . . 

⎟⎟⎟⎟⎠ 
− 

⎜⎜⎜⎜⎝ 

X1 

. . . 

⎟⎟⎟⎟⎠ 

⎟⎟⎟⎟⎠ 

�−1 
Yi = Y + CovY (X1...,X) × Cov(X1...Xn)(X1...Xn) × (5.13) 

Xn Xn 

where y1,...,yn are particular values of Y1,...,Yn, respectively. 
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Table 5.5: Equivalent temperature estimation RMSE from the best two cabin environmental sensors 
using MLR. 

Estimation RMSE 
Body part LOTOCV 10-fold CV 
Head 1.91 › 1.81 › 
Chest 1.41 › 1.42 › 

Lower arm left 1.85 › 1.78 › 
Lower arm right 1.59 › 1.49 › 
Upper arm left 1.65 › 1.61 › 
Upper arm right 1.77 › 1.70 › 

Thighs 1.30 › 1.33 › 
Calf 1.81 › 1.91 › 

Average 1.66 › 1.63 › 

Evaluation and results 

For each of the 96 separate trials in turn, data from 95 trials were used for training and the remaining 

trial data were used for testing with LOTOCV. A 10-fold CV was used as an additional evaluation 

criteria. A summary of the result of applying a MLR approach on all datasets is given in Table 5.5. The 

results of the evaluation show that the RMSE varied between 1.30 › and 1.91 › (for the thigh and 

head, respectively) when LOTOCV was applied and between 1.33 › and 1.81 › (for the thigh and head, 

respectively) when 10-fold CV was applied. 

5.2.2 Multilayer Perceptron 

MLP [71] is a feed-forward artificial neural network model that consists of multiple layers of nodes and 

maps the input data onto an appropriate output. The back-propagation technique is used for training 

the network, as presented in Algorithm 5.3. 

Implementation 

The estimator was implemented in Python using WEKA libraries. The MLP parameters were set as: 

the number of hidden layers is 2, the learning rate is 0.2, the momentum is 0.2 and the training time 

corresponds to 500 epochs. The parameters were selected based on an initial empirical investigation. 

Evaluation and results 

For each of the 96 separate trials in turn, data from 95 trials were used for training and the remaining 

trials data were used for testing with LOTOCV. A 10-fold CV was used as an additional evaluation 

criteria. A summary of the result of applying a MLP approach on all datasets is given in Table 5.6. 
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Algorithm 5.3 Back-propagation algorithm for MLP [71]. 

1. A feed-forward network with ninput inputs, nhidden hidden hidden units and noutput output units is 
created. 

2. All network weights are initialised to small random numbers. 

3. Until the terminal state is met do: 

(a) For each < x, t > within the training samples do: 

i. Input x to the network and compute ou of every unit u. 

ii. For each network output unit k, calculate its error term δk as follows: δk ← ok(1−ok)(tk − 
ok). 

iii. For each hidden unit h, calculate its error term δh as follows: δh ← oh(1 −P 
oh) k�outputs wkhδk. 

iv. Update each weight according to: wji ← wij +Δwji, where Δwji = ηδj xji. 

Table 5.6: Equivalent temperature estimation RMSE from the best two cabin environmental sensors 
using MLP. 

Estimation RMSE 
Body part LOTOCV 10-fold CV 
Head 1.87 › 2.98 › 
Chest 1.40 › 1.87 › 

Lower arm left 1.56 › 2.23 › 
Lower arm right 1.59 › 2.25 › 
Upper arm left 1.48 › 2.08 › 
Upper arm right 1.74 › 2.62 › 

Thigh 1.18 › 1.76 › 
Calf 1.48 › 2.48 › 

Average 1.53 › 2.28 › 

The results of the evaluation show that the RMSE varied between 1.40 › and 1.87 › (for the chest and 

head, respectively) when LOTOCV was applied and between 1.76 › and 2.98 › (for the thigh and head, 

respectively) when 10-fold CV was applied. 

5.2.3 K-Nearest Neighbour 

KNN [30] represents an instance-based lazy learning method considering the closest training examples in 

the feature space. The method relies in classifying an object by the majority vote of its neighbours. The 

object is assigned to the class most common amongst its k nearest neighbours, with k being a positive 

(typically small) integer. In the case of k = 1, the object is assigned to the class of the single nearest 

neighbour. The algorithm is presented in Algorithm 5.4. 
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Algorithm 5.4 KNN algorithm [30]. 

1. For each training sample < x, f(x) > add it to the list of training samples. 

2. Given a query instance xq to be classified: 

(a) Let x1, x2, . . . , xk denote the k instances from the training samples that are nearest to xq. 

(b) Return the class that represents the maximum of the k instances. 

Table 5.7: Equivalent temperature estimation RMSE from the best two cabin environmental sensors 
using KNN. 

Estimation RMSE 
Body part LOTOCV 10-fold CV 
Head 2.15 › 0.71 › 
Chest 1.52 › 0.46 › 

Lower arm left 2.08 › 0.59 › 
Lower arm right 1.87 › 0.64 › 
Upper arm left 1.76 › 0.46 › 
Upper arm right 2.00 › 0.63 › 

Thigh 1.58 › 0.42 › 
Calf 1.88 › 0.58 › 

Average 1.85 › 0.56 › 

Implementation 

The estimator was implemented in Python using the Orange software libraries. The KNN parameter 

were set as k = 5 as this is a commonly used value. 

Evaluation and results 

For each of the 96 separate trials in turn, data from 95 trials were used for training and the remaining 

trial data were used for testing with LOTOCV. A 10-fold CV was used as an additional evaluation 

criteria. A summary of the result of applying a KNN approach on all datasets is given in Table 5.7. 

The results of the evaluation show that the RMSE varied between 1.52 › and 2.15 › (for the chest and 

head, respectively) when LOTOCV was applied and between 0.42 › and 0.71 › (for the thigh and head, 

respectively) when 10-fold CV was applied. The results of the 10-fold CV are more accurate than the 

ones corresponding to LOTOCV due to over-fitting (results are not representative for unseen data) the 

model. 
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5.2.4 Multivariate Adaptive Regression Splines 

MARS [56, 69] is a non-parametric regression technique that models non-linearities and interactions 

between variables. The basis functions, together with the model parameters (estimated with the least 

squares estimation method), are combined to predict the inputs. The general model equation is written 

as: 
MX 

y = f(X) = βo + βm × hm(X) (5.14) 
m=1 

where y is the prediction as a function of the input variables X, βo is an intercept parameter and hm(X) 

are the basis functions. The algorithm searches over the space of all inputs and predictor values as well 

as interactions between variables. Throughout this search a larger number of basis functions are added 

to the model in order to maximise an overall least squares goodness-of-fit criterion. As a result of these 

operations, MARS determines the most important independent variables as well as the most significant 

interactions among them. 

Implementation 

The estimator was implemented in Python using the Orange software libraries. The MARS parameters 

were set as: the maximum degree of the terms in the model is 2 and the maximum number of terms in 

the forward pass is 10. The values were set based on an initial empirical investigation. 

Evaluation and results 

For each of the 96 separate trials in turn, data from one trial was used for training and the remaining 

95 trials used for testing with LOTOCV. A 10-fold CV was used as an additional evaluation criteria. A 

summary of the result of applying a MARS approach on all datasets is given in Table 5.8. The results 

of the evaluation show that the RMSE varied between 1.27 › and 1.70 › (for the thigh and head, 

respectively) when LOTOCV was applied and between 1.07 › and 1.55 › (for the thigh and head, 

respectively) when 10-fold CV was applied. 

5.2.5 Radial Basis Function Network 

RBF [71] is an Artificial Neural Network (ANN) that uses radial basis functions as activation functions. 

A RBF network consists of inputs, a hidden layer of basis functions and outputs. At the input of each 

neuron, the distance between the neuron centre and the input vector is calculated. The output of the 

neuron is then formed by applying the basis function to this distance. The RBF network output is formed 
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Table 5.8: Equivalent temperature estimation RMSE from the best two cabin environmental sensors 
using MARS. 

Estimation RMSE 
Body part LOTOCV 10-fold CV 
Head 1.70 › 1.55 › 
Chest 1.37 › 1.20 › 

Lower arm left 1.57 › 1.48 › 
Lower arm right 1.54 › 1.41 › 
Upper arm left 1.56 › 1.31 › 
Upper arm right 1.56 › 1.47 › 

Thigh 1.27 › 1.07 › 
Calf 1.49 › 1.31 › 

Average 1.51 › 1.35 › 

by a weighted sum of the neuron outputs and the unity bias. Usually, RBF networks are complemented 

with a linear part. This corresponds to additional direct connections from the inputs to the output 

neuron. Mathematically, the RBF network produces an output given by: 

nbX 
2 −λ2(x−ω1)2 2i iyb(θ) = g(θ, x) = wi e + wnb+1 + χ1x1 + ... + χnxn (5.15) 

i=1 

where nb is the number of neurons, each containing a basis function. The parameters of the RBF network 

consist of the positions of the basis functions ωi 
1, the inverse of the width of the basis functions λi, the 

2weights in output sum w and the parameters of the linear part χ1x1, ..., χnxn. The additional linear i 

part can be excluded if desired. 

Implementation 

The estimator was implemented in Python using WEKA libraries. The values for the RBF parameters 

were set as: the minimum standard deviation for the clusters is 0.1, the learning rate is 0.2 and the 

number of clusters for K-Means corresponds to 2 epochs. The values were set based on an initial empirical 

investigation. 

Evaluation and results 

For each of the 96 separate trials in turn, data from 95 trials were used for training and the remaining 

trial data were used for testing with LOTOCV. A 10-fold CV was used as an additional evaluation 

criteria. A summary of the result of applying a RBF approach on all datasets is given in Table 5.9. The 

results of the evaluation show that the RMSE varied between 2.93 › and 4.47 › (for the chest and 

head, respectively) when LOTOCV was applied and between 3.09 › and 4.54 › (for the thigh and head, 
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Table 5.9: Equivalent temperature estimation RMSE from the best two cabin environmental sensors 
using RBF. 

Estimation RMSE 
Body part LOTOCV 10-fold CV 
Head 4.47 › 4.54 › 
Chest 2.93 › 3.13 › 

Lower arm left 3.15 › 3.36 › 
Lower arm right 3.31 › 3.36 › 
Upper arm left 3.26 › 3.22 › 
Upper arm right 3.76 › 3.74 › 

Thigh 3.01 › 3.09 › 
Calf 3.08 › 3.48 › 

Average 3.37 › 3.49 › 

respectively) when 10-fold CV was applied. These results are worse than the ones produced by all other 

learning-based approaches. 

5.2.6 Reduced Error Pruning Tree 

REPTree [127, 162] is a fast decision tree learner that builds a regression tree using information gain 

reduction and pruning. Pruning is a technique that reduces the size of decision trees by removing 

sections of the tree that provide little power to classify instances, and, therefore, increases the detection 

rate when provided with noisy training data. Furthermore, pruning the tree speeds up the classification 

process. Generally speaking, pruning is used to find the best sub-tree of the initially grown tree with the 

minimum error for the test set. However, the number of sub-trees grows exponentially with the size of the 

initial tree. Thus, it is computationally impractical to search all sub-trees. REPTree yields a sub-optimal 

tree under the restriction that a sub-tree can only be pruned if it does not contain a sub-tree with a lower 

classification error than itself. More accurate performance can be obtained at a higher computation cost. 

Implementation 

The estimator was implemented in Python using WEKA libraries. REPTree is usually used as a classifier, 

however it allows the selection of numerical outputs and, therefore, be used as an estimator. The values 

for the parameters were set as: there is no restriction on the maximum depth, the minimum total weight 

of the instances in a leaf is 2 and the number of data folds used for pruning is 3. The values were set 

based on an initial empirical investigation. 
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Table 5.10: Equivalent temperature estimation RMSE from the best two cabin environmental sensors 
using REPTree. 

Estimation RMSE 
Body part LOTOCV 10-fold CV 
Head 2.09 › 1.91 › 
Chest 1.47 › 1.03 › 

Lower arm left 1.97 › 1.07 › 
Lower arm right 2.01 › 1.43 › 
Upper arm left 1.73 › 1.07 › 
Upper arm right 1.67 › 1.61 › 

Thigh 1.48 › 1.00 › 
Calf 1.82 › 0.99 › 

Average 1.78 › 1.26 › 

Algorithm 5.5 Breiman’s algorithm for constructing each tree in the random forests [16]. 

1. Let N be the number of training cases and M be the number of variables in the classifier. 

2. Let m be the number of input variables used to determine the decision at a node of the tree (m 
should be much less than M). 

3. Choose a training set for this tree by choosing n times with replacement from all N available training 
cases. Use the rest of the cases to estimate the error of the tree, by predicting their classes. 

4. For each node of the tree, randomly choose m variables on which to base the decision at that node. 
Calculate the best split based on these m variables in the training set. 

5. Each tree is fully grown and not pruned. 

Evaluation and results 

For each of the 96 separate trials in turn, data from 95 trials were used for training and the remaining 

trial were used for testing with LOTOCV. A 10-fold CV was used as an additional evaluation criteria. 

A summary of the result of applying a REPTree approach on all datasets is given in Table 5.10. The 

results of the evaluation show that the RMSE varied between 1.47 › and 2.09 › (for the chest and 

head, respectively) when LOTOCV was applied and between 0.99 › and 1.91 › (for the calf and head, 

respectively) when 10-fold CV was applied. The results of the 10-fold CV are significantly better than the 

ones corresponding to LOTOCV because of over-fitting (results are not representative for unseen data). 

5.2.7 Random Forest 

RF [16] is an ensemble classifier that consists of multiple decision trees and outputs the class produced 

by the largest number of individual trees. The algorithm that constructs the individual trees in the RF 

is presented in Algorithm 5.5 [16]. 
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Table 5.11: Equivalent temperature estimation RMSE from the best two cabin environmental sensors 
using RF. 

Estimation RMSE 
Body part LOTOCV 10-fold CV 
Head 1.96 › 1.45 › 
Chest 1.42 › 1.06 › 

Lower arm left 1.79 › 1.20 › 
Lower arm right 1.78 › 1.23 › 
Upper arm left 1.67 › 1.12 › 
Upper arm right 1.78 › 1.25 › 

Thigh 1.40 › 0.95 › 
Calf 1.39 › 1.20 › 

Average 1.64 › 1.18 › 

Implementation 

The estimator was implemented in Python using the Orange software libraries. The values for the RF 

parameters were set as: the number of trees in the forest is 100. 

Evaluation and results 

For each of the 96 separate trials in turn, data from 95 trials were used for training and the remaining 

trial data were used for testing with LOTOCV. A 10-fold CV was used as an additional evaluation 

criteria. A summary of the result of applying a RF approach on all datasets is given in Table 5.11. The 

results of the evaluation show that the RMSE varied between 0.95 › and 1.45 › (for the thigh and 

head, respectively) when LOTOCV was applied and between 1.40 › and 1.96 › (for the thigh and head, 

respectively) when 10-fold CV was applied. The results of the 10-fold CV are significantly better than the 

ones corresponding to LOTOCV because of over-fitting (results are not representative for unseen data). 

5.2.8 Conclusions 

Table 5.12 provides a summary of accuracies of the equivalent temperature estimation methods, together 

with the processing time required. The processing time represents the time required to perform the 

estimation on an unseen data set. Each model receives data from two cabin environmental sensors as 

input (as described in Section 5.1), summing to approximately 100,000 training instances. The results 

obtained were similar for all methods, except for RBF, with average errors ranging between 1.51 › for 

MARS and 1.85 › for KNN. RBF performed the worst, with an average RMSE over the eight equivalent 

temperatures of 3.37 ›. 

Table 5.13 shows the p-values generated through paired t-tests for each combination of models. The 



104 VIRTUAL THERMAL COMFORT SENSING 

Table 5.12: Accuracy and classification time for all equivalent temperature estimators using LOTOCV. 

Method MARS MLP MLR REPTree KNN RF RBF 
RMSE (›) 1.51 1.53 1.66 1.78 1.85 1.91 3.37 

Classification time (seconds) 3.06 18.16 0.23 7.45 64.34 59.11 4.12 

Table 5.13: P-Values for each combination of models. 

MARS MLP MLR KNN RBF REPTree RF 
MARS – 0.07 0.08 0.34 0.019 0.934 8.91e-006 
MLP 0.05 – 0.09 0.57 0.99 1.00 0.557 
MLR 0.06 0.07 – 0.65 0.72 0.99 0.039 
KNN 2.12e-008 1.56e-023 3.12e-023 – 1.48e-048 1.92e-039 3.83e-054 
RBF 5.12e-034 6.38e-043 5.10e-009 0.12 – 0.99 1.48e-048 

REPTree 6.12e-054 3.14e-034 6.82e-012 0.09 0.14 – 4.65e-009 
RF 1.12e-001 2.92e-015 4.89e-078 0.21 0.21 0.08 – 

meaning of the values is as follows: 

‹ When p ≤ 0.01 then the “column” model is significantly better (very strong confidence) than the 

“row” model. 

‹ When 0.01 < p ≤ 0.05 then the “column” model is better (strong confidence) than the “row” model. 

‹ When 0.05 < p ≤ 0.1 then the “column” is better (low confidence) than the “row” model. 

‹ When p > 0.1 then the “column” is worse (strong confidence) than the “row” model. 

In terms of estimation error, MLR is significantly better than KNN (p-value of 3.12e-023), RBF (p-value 

of 5.10e-009), REPTree (p-value of 6.82e-012) and RF (p-value of 4.89e-078). The models MLP and 

MARS are better than the MLR with low confidence (p-values of 0.08 and 0.09, respectively). However, 

the improvement of these models over MLR is of 0.13 › average RMSE. At this stage, another factor 

to be taken into consideration is the processing time. This is an important factor to consider prior 

to integrating the VTCS method within a control unit. MLR provided the fastest processing time, of 

0.23 seconds, outperforming all other methods (significance: p-value of around 2e-021 when combined 

with any of the other models). The MLR processing time was, therefore, the fastest for each individual 

trial. This evaluation has shown H5.1 to be true. The classification time for MLR was lower than for all 

other estimation techniques, while the estimation error obtained was outperformed by two models, the 

MLP and MARS. The improvement in accuracy of the latter two methods is not significant, therefore 

the MLR approach is concluded to be the most suitable estimation approach. 
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5.3 Further analysis on Multiple Linear Regression 

MLR is the most suitable equivalent temperature estimation method when taking into account both 

accuracy and processing time based on the previous results. This section provides a more detailed 

analysis of the method. The second hypothesis formulated is: 

H5.2: The number of cabin environmental sensor affects the accuracy of the equivalent temperature 

estimation. As the number of cabin environmental sensors increases, the accuracy of the estimation 

increases steadily, but with diminishing improvement. 

To test the hypothesis, the best one to five cabin environmental sensors for estimating each individual 

body part equivalent temperature were selected. The selection was performed by computing the mutual 

information between the group of sensors and the equivalent temperature of all body parts (as described 

in Section 5.1) for all possible combinations of one, two, three, four and five cabin environmental sensors. 

The best combination of sensors over the eight equivalent temperatures was: 

1. One cabin environmental sensor: Air temperature row 2 left breath with an average mutual inform-

ation of 0.85 nats over the eight body parts. 

2. Two cabin environmental sensors: Surface temperature row 2 left seat back and Air temperature 

row 2 right breath with an average mutual information of 0.98 nats over the eight body parts. 

3. Three cabin environmental sensors: Air temperature row 2 left breath, Surface temperature row 1 

passenger seat cushion and Air temperature row 1 left foot with an average mutual information of 

1.32 nats over the eight body parts. 

4. Four cabin environmental sensors: Air temperature row 1 left foot, Air temperature row 2 right 

breath, Surface temperature row 1 passenger seat back and Air temperature row 2 belt with an 

average mutual information of 1.61 nats over the eight body parts. 

5. Five cabin environmental sensors: Air temperature row 1 head, Air temperature row 1 belt, Air 

temperature row 1 right foot, Air temperature row 2 left breath and Surface temperature row 2 left 

seat back with an average mutual information of 1.75 nats over the eight body parts. 

Figure 5.4 shows how the estimation accuracy changes when the number of cabin environmental sensors 

is varied. In order to avoid a crowded figure, only four out of the eight body parts were plotted. For all 

body parts, the error decreases gradually from the case when one cabin environmental sensor is used for 

the estimation to the case when five different sensors are used for the estimation. The most significant 
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Figure 5.4: Decrease of estimated equivalent temperature RMSE when the number of cabin environmental 
sensors increases. 

improvement takes place, in case of all body parts, when the second sensor is added, e.g. from a RMSE of 

2.67 › to a RMSE of 1.30 › for the thigh. The accuracy improvement at the head level when the second 

sensor is added is of 0.03 ›, the least of any body part equivalent temperature. The accuracy does not 

improve significantly when any of the remaining cabin environmental sensors are added. This implies 

that the estimation of head equivalent temperature can be best achieved using the air temperature at the 

head level and that other input data brings little accuracy improvement beyond that. There are body 

parts for which the third sensor brings significant improvement, such as the thigh (of up to 0.3 ›). For all 

body parts, the improvement in accuracy when adding the fourth and fifth sensor is not substantial. The 

author concludes that a maximum of three cabin environmental sensors provide sufficient accuracy for 

the equivalent temperature estimation. This analysis has shown H5.2 to be true to a certain extent—the 

accuracy of the estimation increases monotonically when additional estimation source sensors are added, 

however, the increase differs from body part to body part and diminishes fully when more than four cabin 

environmental sources are used. 

Tables 5.14 and 5.15 show the estimation errors from the best one and two cabin environmental 

sensors, respectively. Here, the selection of cabin environmental sensors is optimised per body part. 

LOTOCV was used to evaluate the estimation accuracy. 
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Table 5.14: Equivalent temperature estimation results from the best cabin environmental sensor for each 
body part. 

Temperature Sensors Mutual Information Estimation RMSE 
Equivalent Air/surface 
Head Row 2 right breath 1.05 nats 2.05 › 
Chest Row 2 left seat back 0.95 nats 1.64 › 

Lower arm Row 2 left seat back 0.86 nats 1.95 › 
Upper arm Row 2 belt 0.84 nats 1.89 › 
Thigh Row 2 left seat back 1.00 nats 1.41 › 
Calf Row 2 left seat back 0.82 nats 2.02 › 

Table 5.15: Equivalent temperature estimation results from the best two cabin environmental sensors for 
each body part. 

Temperature Sensors Mutual Information Estimation RMSE 
Equivalent Air/surface 1 Air/surface 2 
Head Row 2 right breath Left upper IP 1.12 nats 1.84 › 
Chest Row 1 left foot Row 2 left seat back 1.10 nats 1.37 › 

Lower arm Row 2 left seat back Row 2 right foot 0.95 nats 1.74 › 
Upper arm Row 2 left seat back Row 1 belt 1.04 nats 1.58 › 
Thigh Row 1 right foot Row 2 left seat back 1.13 nats 1.35 › 
Calf Row 1 left foot Row 1 passenger seat cushion 1.09 nats 1.57 › 

Additional aspects of the MLR-based equivalent temperature estimation were investigated, such as 

whether the cabin environmental conditions impact on the estimation and whether integrating mean 

radiant temperature as a source sensor improves the accuracy of the estimation. The following hypotheses 

are formulated: 

H5.3: The environmental conditions affect the accuracy of the equivalent temperature estimation. When 

the cabin state is more transient (average cabin absolute temperature rates of change higher than 

1.5 › per minute), the accuracy of the estimation is lower than in steady-state conditions (average 

cabin absolute temperature rates of change lower than 1.5 › per minute). 

H5.4: Integrating mean radiant temperature as a cabin environmental sensor for the equivalent temper-

ature estimation improves the accuracy of the estimation over air or surface temperature alone. 

Table 5.16 presents the equivalent temperature estimation results based on data from the experiments 

described in Section 4.1, when the two best sensors (Surface temperature row 2 left seat back and Air 

temperature row 2 right breath) were selected. Hypothesis H5.3 is true—the lowest errors were obtained 

for trials T1, averaging at 1.01 ›, while the highest errors were obtained for trials T3, averaging at 

1.92 ›. The higher error for the driving trials (T3 ) could be due to several factors, including the reduced 

quantity of data gathered and the influence of external factors such as varying position and intensity of 
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Table 5.16: Equivalent temperature estimation RMSE from the best two cabin environmental sensors on 
different experimental sets. 

Target T1 T2 T3 Average 
Head 1.33 › 1.71 › 2.5 › 1.85 › 
Chest 0.95 › 1.38 › 1.63 › 1.32 › 

Lower arm left 1.05 › 1.59 › 2.32 › 1.65 › 
Lower arm right 1.15 › 1.67 › 1.89 › 1.57 › 
Upper arm left 0.96 › 1.92 › 2.01 › 1.63 › 
Upper arm right 0.91 › 1.54 › 1.78 › 1.41 › 

Thigh 0.53 › 1.51 › 1.63 › 1.22 › 
Calf 1.28 › 1.44 › 1.47 › 1.40 › 

Average 1.02 › 1.59 › 1.90 › 

Table 5.17: Equivalent temperature estimation RMSE from the best two cabin environmental sensors in 
trials T 4. 

Body part With MRT Without MRT Difference 
Head 1.44 › 2.69 › 1.25 › 
Chest 1.42 › 2.03 › 0.61 › 

Lower arm left 1.29 › 2.50 › 1.08 › 
Upper arm left 1.37 › 2.34 › 0.97 › 

Thigh 1.06 › 1.95 › 0.89 › 
Calf 2.08 › 2.77 › 0.69 › 

Average 1.41 › 2.38 › 0.97 › 

solar load. Also, the response of the Flatman manikin, in case of trials T2 and T3, lagged behind the 

changes the user performed on the blower speed and temperature. 

The data from trials T4 (described in Section 4.1) allow testing the validity of hypothesis H5.4. 

Equivalent temperature integrates the effect of mean radiant temperature, air temperature and air flow. 

Mean radiant temperature was measured within trials T4 and related very well to equivalent temperature. 

The pair of cabin environmental sensors providing the lowest estimation errors is the mean radiant 

temperature sensor and the air temperature sensor located at the front row right belt level. When the 

mean radiant temperature was not considered, the pair of sensors providing the lowest estimation errors 

were the air temperature sensor on the left hand side of the dashboard and the air temperature located 

at the left footwell. Table 5.17 shows the equivalent temperature estimation results in this scenario. 

The average error, when the mean radiant temperature is integrated in the cabin environmental 

sensors subset, is of 1.41 › over the eight body parts, with a minimum error of 1 › for the thigh and 

a maximum error of 2 › for the calf. On the other hand, when the mean radiant temperature is not 

integrated in the cabin environmental sensor subset, the average error is of 2.38 › over the eight body 

parts, with a minimum error of 1.95 › for the thigh and a maximum error of 2.77 › for the calf. The 
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pair integrating mean radiant temperature outperformed the other pair over all trials, with a p-value of 

1.45e-009. Hypothesis H5.4 is thus confirmed, that is the integrating mean radiant temperature as a 

cabin environmental sensor significantly improves the equivalent temperature estimation accuracy. 

Note that the VTCS approach was tested in real-time at a Jaguar Land Rover (JLR) event and the 

details are presented in Appendix A. 

5.4 Summary 

This chapter described the development and evaluation of a VTCS method that estimates occupant 

body part equivalent temperature from a minimalistic set of inexpensive cabin environmental sensors. 

Firstly, the cabin environmental sensors are selected that share the most information with the body 

part equivalent temperature. Mutual information was used to select the sensor types and corresponding 

locations. The method was applied to linear variables, but it has the potential to be further extended to 

non-linear variables. Seven different machine learning approaches were implemented for estimating body 

part equivalent temperature based on the measurements from the selected cabin environmental sensors: 

MLR, MLP, KNN, MARS, RBF, REPTree and RF. 

Most learning tehniques provided a RMSE between 1.51 › (for MARS) and 1.85 › (for KNN). 

RBF performed the worst, with an average RMSE of 3.37 ›. MLR had an average RMSE of 1.60 › 

over the eight body part equivalent temperatures and also had the fastest processing time, enabling a 

straightforward real-time implementation in a car’s engine control unit. 

The main findings related to the VTCS approach designed are: 

1. MLR outperforms all other estimation techniques with regard to fast processing time. In terms 

of accuracy, MARS and MLP improve on MLR with around 0.13 › average RMSE, however the 

improvement is not significant at the cost of a higher processing time. 

2. The number of cabin environmental sensors affects the accuracy of VTCS. As the number of 

cabin environmental sensors increases, the accuracy of VTCS increases monotonically, but with 

diminishing improvement. 

3. The environmental conditions affect the accuracy of VTCS. When the cabin state is more transient 

(average cabin absolute temperature rates of change higher than 1.5 › per minute), the accuracy of 

VTCS is lower than in steady-state conditions (average cabin absolute temperature rates of change 

lower than 1.5 ›). 
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4. Integrating mean radiant temperature as a cabin environmental source for the VTCS approach 

improves the accuracy of the equivalent temperature estimation over air or surface temperature 

alone. 

The next chapter describes the implementation of a reinforcement learning-based heating and cooling 

controller and evaluates it through simulation. 



Chapter 6 

Reinforcement Learning-based 

Heating and Cooling Controller 

The previous chapter presented the development of a Virtual Thermal Comfort Sensing (VTCS) approach 

that estimates body part equivalent temperatures from a small set of cabin environmental sensors. With 

Nilsson’s equivalent temperature-based model shown to be the most suitable thermal comfort model for 

Heating, Ventilation and Air Conditioning (HVAC) control (evaluated in Chapter 4), this chapter presents 

the development and evaluation of a reinforcement learning-based heating and cooling controller using 

the equivalent temperature as input. Two scenarios are designed and evaluated: 

1. Single-zone scenario: The goal of the controller is to maintain the occupant overall equivalent tem-

perature within a thermally neutral range, according to Nilsson’s thermal comfort model (between 

24 › and 26 › for a summer clothing index), while minimising the associated energy consumption. 

2. Multi-zone scenario: The goal of the controller is to maintain the occupant head equivalent tem-

perature within a thermally neutral range and the occupant foot equivalent temperature within a 

“slightly cool” range, according to Nilsson’s thermal comfort model (between 24 › and 26 › for 

the head and between 17 › and 19 › for the foot, respectively). 

The research questions this chapter poses are: 

1. Is it possible to represent the state of the cabin environment in such a way that it fulfils the Markov 

Decision Process (MDP) criteria? 

2. Can a reinforcement learning-based heating and cooling control policy provide performance beyond 

the current state-of-the-art? 

The contribution in this chapter is the development of a reinforcement learning-based heating and cooling 

controller that outperforms state-of-the-art controllers. This reinforcement learning-based approach is 

innovative in the automotive field and represents a paradigm shift in the way HVAC control is developed. 

111 
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Moreover, the control method can be extended to include additional HVAC control actuators, such as 

vent orientation, and to take into account additional zones. The algorithm is developed and evaluated 

offline through simulation. 

This chapter is structured as follows: Section 6.1 describes the car cabin simulation environment that 

the reinforcement learning-based controller was evaluated through. Section 6.2 describes the mapping 

of the reinforcement learning components onto the problem of occupant overall equivalent temperature 

control, while Section 6.3 provides details regarding the implementation of a fuzzy logic-based controller 

that the reinforcement learning-based controller is compared against. Section 6.4 presents the results 

obtained for the single-zone scenario, while Section 6.5 provides a sensitivity analysis for the reinforcement 

learning parameters. Section 6.6 presents the results obtained for the multi-zone scenario. Finally, 

Section 6.7 presents a summary of the work in this chapter. 

6.1 Simulation of the car cabin environment 

A simulation of the car cabin environment was implemented in order to evaluate the reinforcement 

learning-based controller proposed in this chapter. The criteria for a valid simulation are: 

1. Responding to control actions in an appropriate way. 

2. Providing a means of integrating the state variables,the actions variables, and the reward. 

3. 

The cabin simulation described in this section is a one dimensional heat flux-based model specified by 

Jaguar Land Rover (JLR) and implemented by the author in Java. The simulation fulfils the criteria 

previously stated. Figure 6.1 gives a high-level view of the simulation. Due to the nature of the model, 

there are several assumptions: 

1. There is no air leakage from the cabin. 

2. Only one dimensional heat transfers are considered. 

3. There is one main vent and its position does not change throughout the simulation. 

4. Each simulation time step corresponds to one second. 

The simulation is detailed in the remainder of this section. The update of the car cabin air temperature 

(after one second of simulation) is: 
0 Qa

T ← Ta + (6.1)a Ca × ma 
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Figure 6.1: High-level diagram of the simulation. 

where Ta is the current cabin air temperature, Ca is the specific heat capacity of air, ma is the air mass 

and Qa is the cabin heat energy sum. 

The heat sum for cabin air Qa is: 

Qa = Qi + Qconvb→a + QO − Qlg (6.2) 

where Qi is the energy input for heating, Qconvb→a is the heat energy transferred via convection from 

the block to the cabin, QO is the heat energy given off by the occupant and Qlg is the ambient loss/gain 

load. 

The input heat Qi is: 

Qi = Ca × mi × (Ti − Ta) (6.3) 

where Ca is the specific heat capacity of air, mi is the mass of air at input, Ti is the vent air temperature 

and Ta is the cabin air temperature. 

The input mass mi is: 

mi = vi × ρa × Ti (6.4) 

where vi is the volume of air at input, ρa is the air density and Ti is the vent air temperature. 

The heat energy transferred through convection between the block and the cabin air Qcb→a is: 

Qcb→a = hc × A × (Tb − Ta) (6.5) 
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where hc is the heat transfer coefficient, A is the area of the material, Tb is the block temperature and 

Ta is the cabin air temperature. 

The ambient loss Qlg is: 

Qlg = l × (Ta − To) (6.6) 

where l is the coefficient of thermal transfer loss, Ta is the cabin air temperature and To is the outside 

temperature. 

For the block temperature, the temperature update at one moment in time is: 

Qb
Tb 
0 ← Tb + (6.7)

Cs × ms 

where Tb is the block temperature, Qb is the block heat energy sum, Cs is the specific heat capacity of 

steel and ms is the mass of steel. 

The mass of steel ms is: 

ms = ρs × vs (6.8) 

where ρs is the density of steel and vs is the volume of the block structure. 

The total heat energy transferred into the block Qb is: 

Qb = Qrc→b − Qcondb→a + QR + QS (6.9) 

where Qrc→b is the heat energy transferred via radiation from the cabin to the block, Qcondb→a is the 

heat energy transferred via conduction from the block to the cabin, QR is the heat energy radiated by 

the road and QS is the heat energy absorbed from the sun. 

The heat energy transferred due to thermal radiation QS together with the heat energy transferred 

from the road QR are constants set at the beginning of the simulation. The heat energy transferred due 

to thermal radiation Qrc→b is: � � 
Qrc→b = εg × σ × A × Ta 

4 − Tb 
4 (6.10) 

where εg is the emissivity of glass, σ is the Stefan-Boltzmann constant, A is the area of the material, Ta 

is the cabin air temperature and Tb is the block air temperature. 

The energy consumed, part of the reinforcement learning reward component, is estimated within the 

simulation. When heating the cabin, the heat energy used Q is derived from the vent air temperature 
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Ti, the temperature of the air being heated Ta and the mass of the input air mi: 

Q = (Ti − Ta) × Ca × mi (6.11) 

where Ti is the vent air temperature, Ta is the cabin air temperature, Ca is the specific capacity of air 

and mi is the mass of air at input. 

When cooling the cabin, the heat energy used Q is derived similarly: 

Q = (Ta − Ti) × Ca × mi (6.12) 

The cabin temperature when recirculation is considered is: 

Tx = Ar × Ta + (1 − Ar) × To (6.13) 

where Ar is the air recirculation ratio, Ta is the cabin air temperature and To is the outside air temper-

ature. 

The simulation data was compared to the empirical data collected (described in Section 4.1). When 

the simulated average cabin air temperature was matched against the corresponding measured data, the 

Root Mean Square Error (RMSE) for the simulated temperature was between 0.86 › and 2.21 › for 

different warm-up and cool-down scenarios. 

Figure 6.2 shows the simulated average cabin temperature using equations 6.1 to 6.10 compared 

with real data from a cool-down scenario. The conditions encountered within the trial are: ambient 

temperature between 21 › and 23 ›, solar load of 655 W × m−2 and a vehicle speed of 50 mph. 

Similarly, Figure 6.3 illustrates the simulated average cabin temperature against the real data from 

a warm-up scenario. The conditions encountered within the warm-up trial are: ambient temperature 

between 21.5 › and 22.5 ›, solar load of 515 W × m−2 and a vehicle speed of 50 mph. The errors were 

higher for the warm-up scenarios, with the actual average cabin temperature heating up at a faster pace. 

The errors obtained are considered acceptable given i) that some parameters within the simulation were 

estimated, such as the block temperature, solar load and vent air flow (the air flow setting was the only 

available information and it was mapped into litres per second) and ii) the assumptions described earlier 

in this section. 
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Figure 6.2: Simulated versus measured average cabin temperature during a cool-down scenario. 
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Figure 6.3: Simulated versus measured average cabin temperature within a warm-up scenario. 
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6.2 Reinforcement learning components 

This section describes the reinforcement learning implementation. 

6.2.1 State representation 

The state of the environment is described by three variables, namely the occupant overall equivalent 

temperature Te, the block temperature Tb and the outside air temperature To. The equivalent temperature 

is computed from the air temperature, air flow and mean radiant temperature variables within the 

simulation using equation 2.24 on page 29. The air flow corresponding to the cabin occupant is not 

directly available and it is estimated here by dividing the vent air flow Vi by 10. The value was selected 

based on cabin air flow measurements in the literature. Random continuous values are assigned to the 

state variables at the beginning of each learning episode in the following ranges: 

‹ Block temperature Tb: [0,50] ›. 

‹ Outside temperature To: [0,30] ›. 

‹ Occupant equivalent temperature Te: [0,40] ›. 

The representation of the state is minimalistic and fulfils the Markov property. For this task, a state has 

the Markovian property if it specifies exactly, or makes it possible to reconstruct exactly, the thermal 

comfort level of the occupant and the energy consumed by the HVAC (the components of the reward 

function). In an idealised control system, this information would be sufficient to exactly predict the 

future thermal comfort states of the occupants, given the actions taken by the controller. In practice, 

however, it is never possible to know this information exactly because any real sensor will introduce some 

distortion and delay in its measurements. Furthermore, in any real car cabin there are always other 

effects that were not considered in the simulation, such as leakage of air, that affect the behaviour of the 

system. For the simulation here, however, the combination of occupant equivalent temperature, block 

temperature and ambient temperature is expected to give acceptable results. 

Numerous applications in reinforcement learning consist of episodic tasks, in which terminal states 

are defined. For example, if the reinforcement learning goal is for a robot to grasp an object then the 

terminal state occurs when the robot actually grasped the object. For the purpose of the comfort-oriented 

HVAC control here there is no need for a terminal state because once the optimum thermal comfort level 

is reached, the goal is to maintain it throughout the journey. 
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Tb ∈ [0, 20] › and To ∈ [0, 20] ›, for Te ≤ 20 › 
(6.14) 

Tb ∈ [20, 50] › and To 
⎪⎪⎩ ∈ [20, 30] ›, for Te > 20 › 

⎧ ⎪⎪⎨ 

As noted previously, learning starts at different randomly generated states in each iteration of the 

simulation. In order to avoid cases in which, for example, the outside air temperature is 30 › and the 

occupant equivalent temperature is 0 › (such combinations are unlikely in a real world environment), a 

set of rules has been defined as follows: 

6.2.2 Action representation 

A set of actions that can be taken by the agent is defined. The learning agent is able to control the vent 

air flow Vi, the vent air temperature Ti and the ratio of air to be recirculated Ar. For each action there 

is a discrete range of values available, as follows: 

‹ Vent air flow: Four vent air flow set-points, evenly distributed over the [0, 100] ls−1 range. The value 

of 100 ls−1 was chosen because it is a common maximum value for the vent air flow in production 

vehicles. 

‹ Vent air temperature: Five set-points, evenly distributed over the [−20,40] › range. 

‹ Recirculation: Three set-points—0 (no recirculation), 0.5 (partial recirculation) and 1 (full recircu-

lation). 

For this task there are, therefore, 61 different combinations of actions. 

6.2.3 Reward function 

The goal of the learning problem is to maintain the overall occupant equivalent temperature between 

[24, 26] › corresponding to thermal neutrality based on Nilsson’s model for summer clothing conditions. 

The reward, therefore, firstly takes into account whether the thermal comfort criteria has been satisfied. 

The reward also takes into consideration the energy consumed and the vent flow rate. By penalizing a 

large consumption of energy, the agent will learn in time to select actions that would reduce the energy 

consumed. Controlling the occupant thermal comfort and the energy consumption are the two goals 

considered within the scope of this thesis. However, the reward function can be extended to integrate 

additional goals, such as avoiding window fogging. The current reward function was developed based on 

an empirical investigation and is expressed as: 
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0 0 0 0 
R(s, a, s ) = Ri(s ) + Rc(s ) + Re(s ) (6.15) ⎧ ⎪⎪⎨ ⎪⎪⎩ 

0 

0 −1000, s is illegal 
Ri(s ) = (6.16) 

0, otherwise 

⎧ ⎪⎪⎨ ⎪⎪⎩ 

0 −1, Te ∈/ [24.0, 26.0] 
Rc(s ) = (6.17) 

0, otherwise 

0 
Re(s ) = −(Q + 2 × Vi)/1500 (6.18) 

Equation 6.16 is the part of the reward that penalises illegal states. A state is considered illegal when 

its components (occupant equivalent temperature, block temperature and outside air temperature) go 

beyond the minimum or maximum possible value. For example, if the initial randomly generated occupant 

overall equivalent temperature is assigned the maximum value and, through the random actions the agent 

selects, the equivalent temperature goes beyond this value then a high penalty should be introduced. If 

the state is legal, then no penalty is introduced. The penalty for an illegal state is large so that the 

actions leading to these illegal states are quickly eliminated as a solution. 

Equation 6.17 is the thermal comfort reward component. If the occupant equivalent temperature is 

within the desired limits, then no penalty is given, otherwise a penalty of −1 is introduced. Equation 

6.18 is the energy consumption reward component. In all circumstances, a penalty is given directly 

proportional to the amount of heat coming into the cabin Q and the vent air flow setting Vi. 

In order to reach the final reward function (illustrated in equation 6.15), a variety of approaches 

were tried to encourage learning a policy that balances well the optimisation of thermal comfort and the 

minimisation of consumed energy. If, for example, the −(Q +2 × vi) factor is divided by a value less than 

1500, then the focus will be placed on reducing the energy consumption. The lower the dividing factor 

is, the slower thermal comfort will be achieved, if achieved at all. Therefore, for production vehicles, one 

needs to decide what the focus is placed on (occupant thermal comfort or consuming little energy) and 

what the weights of these components should be based on oberving the trial and error performance. 

6.2.4 Policy 

Sarsa(λ) is used to learn the optimum policy, together with a tile coding function approximator, both de-

scribed in Section 2.6. The tile coding parameters used for this problem are presented in Table 6.1. 
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Table 6.1: Tile coding parameters used to learn the control policy. 

Variable Minimum Maximum Intervals 
Te 0 40 9 
Tb 0 50 3 
Ti −20 40 3 
Vi 1 100 3 
Ar 0 1 3 

The tile coding used to represent the action-values included 30 tiles, 10 tiles integrating variables 

(Te, Tb, Ti, Vi, Vr) and 20 tiles integrating variables (Te, Ti, Vi, Vr). The outside air temperature vari-

able To had little effect on the outcome, therefore it was left out from the tile coding process. In general, 

variables that have little effect on the performance of the learning should not be integrated in tile coding 

because the increasing dimensionality becomes computationally expensive, making the learning process 

more time consuming. The number of intervals for each variable was selected based on an initial empirical 

investigation. 

6.2.5 Parameter values 

There are a series of parameter values to be set prior to the learning process. Their role is described in 

Section 2.6 and their values were optimised for this particular application. 

1. Number of steps per episode: A maximum number of steps per learning episode has to be set since 

a behaviour may never reach the target. For this problem 1000 steps are allowed because it is higher 

than the number of steps required based on trial and error. A smaller number can be selected in 

order to speed up the learning process. 

2. Decay factor λ = 0.6: The decay of eligibility λ has the following effect: when λ = 0, no credit is 

assigned to past state-action pairs, whereas when λ = 1, credit is assigned equally to all previously 

visited states. 

3. Reward discount factor γ = 0.98: A factor of 0 will make the agent ”myopic” (or short-sighted) by 

only considering current rewards, while a factor approaching 1 will make it strive for a long-term 

high reward. 

4. Learning rate α = 0.01: A learning rate of 0 will make the agent not learn anything, while a learning 

rate of 1 would make the agent consider only the most recent information. 

5. Exploration factor: ε = 0. Epsilon greedy is a learning policy and a greedy action implies that, for 
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the current state, the agent looks at the q-values for all actions and picks the one with the highest 

value. The ε in the epsilon greedy policy is the probability that the agent picks at random one of 

the non-greedy actions. And, thus, with probability (1-ε) the agent selects the greedy action. 

A sensitivity analysis of the reinforcement learning controller’s performance based on the values of these 

parameters is provided in Section 6.5. 

6.3 Fuzzy logic-based controller 

This section discusses the implementation of a fuzzy logic-based controller as an alternative for the 

performance comparison against the reinforcement learning-based controller. 

The fuzzy logic-based controller is the most popular choice in terms of vehicular HVAC control al-

gorithms in the literature [13, 37, 49, 58, 139, 143, 148]. For the evaluation here, a fuzzy logic controller 

was implemented in Java using the JFuzzyLite library version 1.0 [128]. There were two input variables 

defined: the occupant overall equivalent temperature Te and the block temperature Tb. The two input 

variables were normalised (normalisation is defined as adjusting values measured on different scales to 

a notionally common scale) between 0 and 1 and three ranges were defined as follows: COLD between 

[0.0, 0.5], NEUTRAL between [0.5, 0.6] and HOT between [0.6, 1.0]. There were two output variables 

defined: the vent air temperature Ti and the vent flow Vi. The ranges for the output variables are 

identical to the ones in the reinforcement learning, namely [−20, 40] › for Ti and [0, 100] ls−1 for Vi. 

The vent air temperature Ti is split into three ranges as follows: LOW between [−20.0, 10.0] ›, ME-

DIUM between [10.0, 30.0] › and HIGH between [30.0, 40.0] ›. The input air flow Vi is split into three 

ranges as follows: LOW between [0.0, 30.0] ls−1, MEDIUM between [30.0, 70.0] ls−1 and HIGH between 

[70.0, 100.0] ls−1 . Theoretical details about fuzzy logic parameters are given by Rada-Vilela [128]. For 

the controller here, all input and output variables are defined as Gaussian terms (illustrated by equation 

6.19). 

(x−µ)2 /2σ2 

f(x|µ, σ) = e (6.19) 

The defuzzifier used for the output variables is the Centroid (illustrated with formula 6.20), with a radius 

of 100. 

´ 
xµ(x)dx 

(6.20) 
µ(x)dx 
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The type of terms and defuzzifier were selected based on an initial empirical evaluation. The con-

junction between the rules is computed as an algebraic product, the disjunction between the rules is 

computed as a maximum and the rule activation is computed as an algebraic product. 

In order to produce the fuzzy output values Ti and Vi, inference rules are constructed based on the 

fuzzy input values Te and Tb as follows: 

1. If Te is COLD and Tb is COLD then Ti is HIGH and Vi is HIGH. 

2. If Te is COLD and Tb is NEUTRAL then Ti is HIGH and Vi is HIGH. 

3. If Te is COLD and Tb is HOT then Ti is HIGH and Vi is MEDIUM. 

4. If Te is NEUTRAL and Tb is COLD then Ti is MEDIUM and Vi is LOW. 

5. If Te is NEUTRAL and Tb is NEUTRAL then Ti is MEDIUM and Vi is LOW. 

6. If Te is NEUTRAL and Tb is HOT then Ti is MEDIUM and Vi is LOW. 

7. If Te is HOT and Tb is COLD then Ti is LOW and Vi is MEDIUM. 

8. If Te is HOT and Tb is NEUTRAL then Ti is LOW and Vi is HIGH. 

9. If Te is HOT and Tb is HOT then Ti is LOW and Vi is HIGH. 

The rules were developed based on the works of Dalamagkidis [35] and Kelly [84]. 

The simulation described in Section 6.1 is used in order to provide an estimate of the next car cabin 

state based on the actions chosen by the fuzzy logic controller. The performance function used is the 

same as the reward function in Section 6.2.3 in order to perform a meaningful comparison of the two 

controllers. 

Generally, designing a fuzzy logic-based controller either relies on previously acquired human know-

ledge or can be derived from data. Therefore, fuzzy controllers could be further tuned by optimising the 

set of fuzzy rules (Figure 6.4). There are three popular techniques of optimising the fuzzy rules, namely 

reinforcement learning, stocchastic oprimisation, such as genetic algorithms or connectionist methods. 

Optimising the fuzzy logic-based controller, however, goes beyond the scope of this thesis. 

6.4 Results 

In this section, the performance of the reinforcement learning-based controller (described in Section 6.2) 

is compared to the performance obtained by a fuzzy logic-based controller (described in Section 6.3) and 
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RL
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Optimise 
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Figure 6.4: Reinforcement learning for optimising a fuzzy controller. 

a basic heating and cooling controller. The basic controller blows the coldest vent temperature at the 

fastest vent speed in order to cool down the cabin and blows the hottest vent temperature at the fastest 

vent speed in order to warm up the cabin. Once the comfortable temperature is reached, the controller 

maintains it by setting the air flow on a minimum value and the vent air temperature at 25 ›. This 

represents a baseline that the other controllers should be fully capable of out-performing. The fuzzy 

logic-based controller aims to maintain the overall occupant equivalent temperature between 24 › and 

26 ›. The hypothesis that can be formulated is: 

H6.1: The reinforcement learning-based controller will outperform both the basic controller and the fuzzy 

logic-based controller. 

To test this hypothesis, the relative performance during learning of the Sarsa(λ) algorithm was compared 

to that of the fuzzy logic-based controller and basic controller, shown in Figure 6.5. The reward is 

averaged over a standard set of 100 randomly generated test cases (referred to as one learning trial). The 

same set of generated test cases are used each time the performance is evaluated. The reinforcement 

learning-based controller achieves an average reward of −29.16 over 1,000,000 trials. Learning a good 

policy is achieved quickly (in around 1,500 trials) and the improvement of the policy stops after around 

150,000 trials. Learning for the SARSA(λ) algorithm, corresponding to 1,000,000 trials, completed in 35 

minutes. As illustrated by Figure 6.5, the algorithm does not converge to a precise value. This result is 

expected, as the algorithm is known to converge to a region [64]. 

Intuitively, the basic controller should have the poorest performance. Even though its behaviour 

is optimum in terms of time-to-comfort, by cooling-down or warming-up the cabin on maximum vent 

temperature and maximum flow until the desired temperature is reached, this approach is energy wasteful 

and, therefore, the energy component of the performance function is greatly penalised. The reward of 

the basic controller was −62.70. 

The fuzzy logic-based controller is expected to perform better than the basic controller in terms of 

energy consumption because the energy consumption factor was indirectly integrated in the design of the 
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Figure 6.5: Policy performance during learning for Sarsa(λ) compared to the basic and fuzzy logic-based 
controllers. 

fuzzy rules. For example, in the case of rule number 3 “If Te is COLD and Tb is HOT then Ti is HIGH and 

vi is MEDIUM”, it is taken into consideration that if the cabin block temperature is hot then the cabin 

temperature would also increase naturally and therefore the vent flow is set on medium rather than high. 

This approach improves the performance of the basic controller, however, it does not benefit from the 

reinforcement learning approach of receiving feedback. With the latter, higher energy use is proportionally 

penalised, while for the fuzzy logic approach the controller will perform based on the defined rules. The 

performance of the fuzzy logic-based controller is −50.55. The improvement is reasonable, but lower 

than expected by the author when compared to the basic controller. The reinforcement learning-based 

controller performs better due to directly including the energy consumption in its performance function 

and being able to learn an optimum policy. These results translate into an average of 27.05% energy 

saving (corresponding to 129.85 J) over 200 testing scenarios when compared to the fuzzy logic-based 

controller, while thermal comfort was achieved and maintained successfully. This analysis has shown 

H6.1 to be true. 

Figure 6.6 shows how the optimum policy is learnt by the Sarsa(λ) algorithm trial by trial, up to 

2,000 trials. Most of the learning occurs in the first 500 trials. The oscillation is present throughout the 

trials, reducing in size with the increasing number of training trials. 
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Figure 6.6: Policy performance during learning for Sarsa(λ). 

Figure 6.7 shows how the Sarsa(λ) policy controls the occupant equivalent temperature starting with 

a random state (32.7 › overall occupant equivalent temperature, 28.5 › block temperature and 30.1 › 

outside temperature). As the figure shows, the desired temperature is reached in about 6 steps (6 seconds 

for the purpose of this simulation). Then, the occupant equivalent temperature is maintained between 

the upper and lower limits of the desired interval (24 › and 26 ›). 

6.5 Sensitivity analysis 

The number of potential actions the controller can take and the value of the learning parameters (such 

as α, γ, and λ) impact on the performance of the reinforcement learning-based controller. This section 

analyses the effect of these parameters on the performance of the system. 

Figure 6.8 shows how the average reward over 1,000 trials changes with the number of vent flow set-

points available. The lowest average reward (of −65.54) accumulates when only two vent flow set-points 

are available to the agent while the highest average reward (of−31.61) accumulates when four vent flow 

set-points are available to the agent. However, the average reward is very similar between three and 

ten set-points (not all values were plotted in order to avoid crowded figures). The space of state-action 

pairs the algorithm uses grows with every possible action set-point added. Therefore, choosing a large 

http:of�31.61
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Figure 6.7: Cooling down scenario using Sarsa(λ). 

number of action set-points when the performance is not significantly increased should be avoided. With 

only two vent flow set-points available (vent flow of 0.0 and 100.0) the equivalent temperature would 

not be smooth, but with significant transitions between each step (with one step corresponding to one 

second), a case not desirable for cabin occupants. The use of 4 possible vent flow set-points was selected 

as optimum, being small enough in terms of space complexity while smoothing the transitions between 

steps (maximum 0.2 › occupant equivalent temperature rate of change). 

The outcome is similar for the vent air temperature action. Figure 6.9 shows how the average reward 

over 1,000 trials changes with the number of vent air temperature set-points available. The lowest average 

reward (of −51.23) accumulates when only two vent air temperature set-points are available to the agent 

while the highest average reward (of−31.61) accumulates when five vent air temperature set-points are 

available to the agent. Similarly with the vent flow action, the average reward shows little change 

between three and ten set-points (as observed by the author when all values were plotted). The use of 

five possible vent air temperature set-points was selected as optimum, for similar reasons with the vent 

air flow scenario. 

Figure 6.10 shows how the average reward over 1,000 trials changes with the value λ. Parameter 

λ is the decay factor with the following effect: when λ = 0 no credit is assigned to past state-action 

pairs, whereas when λ = 1 credit is assigned equally to all previously visited states. The highest reward 

http:of�31.61
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Figure 6.8: Sensitivity analysis on the number of vent air flow set-points (values of 2, 4, 6 and 8, 
respectively) on the controller’s performance over 1,000 trials. 
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Figure 6.9: Sensitivity analysis on the number of vent air temperature set-points (values of 2, 4, 6 and 8, 
respectively) on the controller’s performance over 1,000 trials. 
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Figure 6.10: Sensitivity analysis on the λ parameter (values of 0, 0.2, 0.4, 0.6, 0.8 and 1, respectively) on 
the controller’s performance over 1,000 trials. 

accumulates when λ is 0.6 (reward of −31.61), while the lowest reward accumulates when λ is 1.0 (reward 

of −41.16). However, the results showed that the average reward is close between the λ values of 0.0 

and 0.9. Therefore, it is concluded that the maximum value for λ, when equal credit is allocated to all 

previously visited states does not lead to an optimum performance, whereas all other values lead to a 

similar performance. 

The γ parameter is directly used for computing the reward, therefore an analysis based on its values is 

not useful because the smaller γ becomes, the lower the reward. A common value of 1 is usually assigned 

to γ for episodic tasks. For this task, however, based on criteria such as whether the goal is reached from 

all random starting states and how quickly the goal is reached, the most suitable value for γ (that gives 

the best performance on the criteria mentioned) is 0.98. 

Figure 6.11 shows how the average reward over 1,000 trials changes with the value of α, the learning 

rate. The learning rate controls the learning step size, that is, how fast learning takes place. A learning 

rate of 0 will make the agent not learn anything, while a learning rate of 1 would make the agent consider 

only the most recent information. The lowest reward (of −72.61) accumulates when α is 0, while the 

highest reward (of −31.61) accumulates when α is 0.01. Therefore, it is concluded that a low learning 

rate (in the 0.005–0.05 range) leads to the best performance of the controller. 

Figure 6.12 shows how the average reward over 1,000 trials changes with the value of ε, the exploration 

http:0.005�0.05
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Figure 6.11: Sensitivity analysis on the α parameter (values of 0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.7 and 1, 
respectively) on the controller’s performance over 1,000 trials. 

factor. The learning policy used here is an epsilon greedy policy, meaning that it does not always takes 

the best actions, but sometimes tries something else. The ε parameter is the probability that the agent 

picks, at random, one of the non-greedy actions. And, thus, with probability (1-ε) the agent selects the 

greedy action. For the scenario here, the highest reward (of −31.61) accumulates when ε is 0, while the 

lowest reward accumulates when ε is 1 (of −76.42). Therefore, it is concluded that less exploration leads 

to a better performance of the controller. 

Figure 6.13 shows how the average reward over 1,000 trials changes with the number of tiles used for 

the function approximation. A higher number of tiles is equivalent to a more time consuming learning 

process. The highest reward (of −31.61) accumulates when 30 tiles are used, while the lowest reward (of 

−74.47) accumulates when 80 tiles are used. Therefore, it is concluded that a large number of tiles leads 

to a worse performance of the controller, and also a longer run-time (approximately 3 times longer for 

80 tiles, compared to 30). For this reason, 30 tiles were used in the work here. 

6.6 Reinforcement learning-based multi-zone control 

Another test scenario evaluated is a reinforcement learning-based multi-zone control. Rather than con-

trolling the whole occupant equivalent temperature, the multi-zone control aims to control independently 
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Figure 6.12: Sensitivity analysis on the ε parameter (values of 0, 0.2, 0.4, 0.6, 0.8 and 1, respectively) on 
the controller’s performance over 1,000 trials. 
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Figure 6.13: Sensitivity analysis on the number of tiles (values of 10, 20, 30, 40, 60 and 80, respectively) 
on the controller’s performance over 1,000 trials. 
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two separate body parts, the head and feet of the cabin occupant. The reinforcement learning components 

are described in the following subsections. 

6.6.1 Simulation 

A simulation was created based on equations 6.1 to 6.12 with the addition of multiple zones. The 

relationship between the zones is illustrated in Figure 6.14. Two vents are considered in this simulation, 

one oriented towards the head and one oriented towards the feet, both with fixed position throughout 

the simulation. The simulation assumptions presented in the previous scenario, in Section 6.1, also apply 

for this simulation. 

6.6.2 State representation 

The state of the environment is described by four variables, namely the head equivalent temperature TH , 

the foot equivalent temperature TF , the block temperature Tb and the outside air temperature To. The 

equivalent temperature of a body part can be computed, as in the previous scenario, from the body part 

air temperature, air flow at that particular body part, mean radiant temperature at that particular body 

part and the clothing index at that particular body part. 

Random continuous values are assigned to the state variables at the beginning of each learning episode 

in the following ranges: 

‹ Head equivalent temperature TH : [0,40] ›. 

‹ Foot equivalent temperature TF : [0,40] ›. 

‹ Outside temperature To: [0,30] ›. 

‹ Block temperature Tb: [0,50] ›. 

As with the previous scenario, in order to avoid combinations of temperatures that are not likely to be 

encountered in a real environment, a set of rules similar to the one in 6.15 has been developed. 

6.6.3 Action representation 

A set of actions that can be taken by the agent is defined. The learning agent is able to control the 

head vent air flow Vh, the foot vent air flow Vf , the head vent air temperature Th, the foot vent air 

temperature Tf , and the amount of air to be recirculated Ar. For each action there is a discrete range of 

values available, as follows: 
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Figure 6.14: Multi-zonal simulation. 
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‹ Head and foot vents air flow: Three vent air flow set-points, evenly distributed over the [0, 100] ls−1 

range. 

‹ Head and foot vents air temperature: Four set-points, evenly distributed over the [−20,40] › range. 

‹ Recirculation: Three set-points: 0 (no recirculation), 0.5 (partial recirculation) and 1 (full recircu-

lation). 

For this task there are, therefore, 434 different combinations of actions. 

6.6.4 Reward 

The goal of the learning problem is to maintain the equivalent temperature of the occupant’s head 

between [24, 26] ›, corresponding to thermal neutrality based on Nilsson’s model for summer clothing 

conditions, and the foot equivalent temperature between [17, 19] ›, corresponding to the “slightly cool” 

thermal sensation based on the same model. The reward, therefore, firstly takes into account whether the 

thermal comfort criteria has been satisfied. The reward also takes into consideration the energy consumed 

and the vent flow rate. The current reward function was developed based on an empirical investigation 

and is expressed as: 

0 0 0 0 
R(s, a, s ) = Ri(s ) + Rc(s ) + Re(s ) (6.21) ⎧ ⎪⎪⎨ ⎪⎪⎩ 

0 

0 −1000, s is illegal 
Ri(s ) = (6.22) 

0, otherwise 

⎧ ⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎩ 

1, TH ∈ [24.0, 26.0] and TF ∈ [17.0, 19.0] 

0 
Rc(s ) = (6.23)0, TH ∈ [24.0, 26.0] or TF ∈ [17.0, 19.0] 

−1, otherwise 

0 
Re(s ) = −(Q + Vh + Vf )/1500 (6.24) 

Equation 6.20 is the part of the reward dealing with illegal states and shows how these illegal states are 

penalised. A state is considered illegal when its components (the head equivalent temperature, the foot 

equivalent temperature, the block temperature and the outside air temperature) go beyond the minimum 

or maximum possible value. If the state is legal, then no penalty is introduced. The penalty for an 

illegal state is large so that the actions leading to these illegal states are quickly eliminated as a solution. 
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Table 6.2: Tile coding parameters used to learn the control policy. 

Variable Minimum Maximum Intervals 
TH 0 40 9 
TF 0 40 9 
Tb 0 50 3 
Th −20 40 3 
Tf −20 40 3 
Vh 1 100 3 
Vf 1 100 3 
Ar 0 1 3 

Equation 6.21 is the thermal comfort reward component. If both body part equivalent temperatures 

(head and foot) are within the desired limits, then a reward of 1 is given. If only one of the body part 

equivalent temperatures is within the desired limits, then no penalty is given, otherwise, if none of the 

body part equivalent temperatures are within the desired range, a penalty of −1 is introduced. Equation 

6.22 is the energy consumption reward component. In all circumstances, a penalty is given directly 

proportional to the amount of heat entering the cabin Q and the two vent air flow setting, Vh and Vf . 

6.6.5 Parameter values 

As in the previous scenario, the parameter values were optimised for this particular application. 

1. Number of steps per episode: 1000. 

2. Decay factor: λ = 0.3. 

3. Reward discount factor: γ = 0.99. 

4. Learning rate: α = 0.005. 

5. Exploration factor: ε = 0. 

6.6.6 Policy 

As with the previous scenario, Sarsa(λ) is used to learn the optimum policy, together with a tile coding 

function approximator. The tile coding parameters used for this problem are presented in Table 6.2. 

The tile coding used to represent the action-values included 50 tiles, 30 tiles integrating the variables 

(TH , Th, Tf , Vh, Vf , Ar) and 20 tiles integrating the variables (TH , TF,Th, Tf , Vh, Vf , Ar). The number of 

intervals for each variable was selected based on an initial empirical investigation. 
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Figure 6.15: Policy performance during learning for Sarsa(λ) compared to the basic and fuzzy logic-based 
controllers. 

6.6.7 Results 

In this section, the performance of the reinforcement learning-based controller is compared to the perform-

ance obtained by a fuzzy logic-based controller (developed similarly to the one described in Section 6.3) 

and a basic heating and cooling controller. As in the previous scenario, the basic controller blows the 

coldest vent temperature at the fastest vent speed in order to cool down the cabin and blows the hottest 

vent temperature at the fastest vent speed in order to warm up the cabin. 

Figure 6.15 shows the relative performance of the reinforcement learning-based controller compared 

to the fuzzy logic-based controller and the basic controller. The reward is averaged over a standard set 

of 100 randomly generated test cases (referred to as one learning trial). The same set of generated test 

cases are used each time the performance is evaluated. The reinforcement learning controller achieves 

an average reward of −2.24 over 1,000,000 trials. Learning a good policy is achieved slower than for the 

previous scenario due to the more complex environment representation (in around 15,000 trials). As for 

the single-zone case, the algorithm does not converge to a particular value, but to a region. 

Intuitively, the basic controller should have the poorest performance. Even though its behaviour 

is optimum in terms of time-to-comfort, by cooling-down or warming-up the cabin on maximum vent 

temperature and maximum flow until the desired temperature is reached, this approach is energy wasteful 
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Figure 6.16: Policy performance during learning for Sarsa(λ). 

and, therefore, the energy component of the performance function is greatly penalised. The performance 

of the basic controller was of −67.85, while the performance of the fuzzy controller-based controller was 

of −32.12. 

These results translate into an average of 29.87.1% energy saving (corresponding to a 156.43 J) when 

using the reinforcement learning-based controller over 200 testing scenarios when compared to the fuzzy 

logic-based controller, while thermal comfort was achieved and maintained successfully. 

Figure 6.16 shows that the optimum policy is learnt by the Sarsa(λ) algorithm within the first 20,000 

trials. It is interesting to observe that the learning process is slower within the first 11,000 trials, followed 

by a sharp increase. The reward continues to increase gradually within the 1,000,000 trials, reaching up 

to −0.82. 

Figure 6.16 shows how the Sarsa(λ) policy controls the occupant head and foot equivalent tem-

peratures starting with a random state (38.7 › head equivalent temperature, 31.2 › foot equivalent 

temperature, 28.5 › block temperature and 30.1 › outside temperature). Then, the head and foot 

equivalent temperature are maintained between the upper and lower limits of the desired interval (24 › 

and 26 › for the head and 17 › and 19 › for the foot). 
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Figure 6.17: Cooling down scenario using Sarsa(λ). 

6.7 Summary 

This chapter described the development and evaluation of a reinforcement learning-based heating and 

cooling controller that learns an optimum policy of maintaining occupant equivalent temperature within 

thermally comfortable ranges, while minimising the energy consumption. The reinforcement learning-

based controller used the Sarsa(λ) algorithm and its parameters were optimised for this particular ap-

plication. The controller’s performance was evaluated on a one dimensional heat flux-based car cabin 

simulation and compared to the performance of two other controllers: a basic one and a fuzzy logic-based 

one. 

For the single-zone scenario, the results show that the reinforcement learning-based controller brings 

considerable performance improvement when compared to the other two controllers: an average reward of 

−29.16, compared to a reward of −62.70 achieved by the basic controller and a reward of −50.55 achieved 

by the fuzzy logic-based controller. The same takes place in the multi-zone scenario. The reinforcement 

learning-based controller maximised the reward to −2.24. The basic controller had, as in the single-zone 

scenario, the poorest performance (a reward of −67.85), while the performance of the fuzzy logic-based 

controller was a reward of−32.12. 

For the single-zone scenario the reinforcement learning-based controller saved an average of 27.05% 

energy over 200 testing scenarios when compared to the fuzzy logic-based controller, while thermal com-
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fort was achieved and maintained successfully. On the other hand, for the multi-zone scenario the 

reinforcement learning-based controller saved an average of 29.87% energy over 200 testing scenarios 

when compared to the fuzzy logic-based controller, while thermal comfort was achieved and maintained 

successfully. 

The next chapter presents an overview of the work presented in this thesis and the way the individual 

components work together. It also gives an insight into a potential real-time system that can be developed 

based on this work. 



Chapter 7 

Conclusions and Future Work 

The work in this thesis focused on developing a reinforcement learning-based Heating, Ventilation and Air 

Conditioning (HVAC) controller that maximises occupant thermal comfort while minimising energy con-

sumption. First, in order to efficiently control occupant comfort, a model relating measurable parameters, 

such as air temperature, to human thermal comfort is needed. Based on an empirical data analysis, Nils-

son’s equivalent temperature-based thermal comfort model was shown to be the most suitable model for 

vehicular comfort-oriented control due to the following reasons: 

1. The model provided high correlations with subjective thermal sensation throughout the experi-

mental trials (between 0.78 and 0.92). 

2. The model has the advantages of estimating local thermal sensation and requiring only two input 

parameters. 

In order to apply Nilsson’s thermal comfort model to actuate the HVAC controller, equivalent temperature 

has to be measured in real-time. Direct real-time measurement of equivalent temperature is, however, 

not feasible. Therefore, this thesis further focuses on an innovative way to actuate the HVAC controller— 

through a Virtual Thermal Comfort Sensing (VTCS) approach. The VTCS method estimates body part 

equivalent temperature from a minimalistic set of inexpensive cabin environmental sensors. First, VTCS 

requires a mechanism for selecting the optimal sensors and their associated locations for the estimation, 

achieved in this thesis through a mutual information-based method. Based on empirical cabin data, the 

optimal set of sensors selected were a mean radiant temperature sensor placed at a central ceiling location 

and an air temperature sensor placed in the front row at the belt level of the driver. Second, the actual 

estimation is performed using Multiple Linear Regression (MLR)—a learning approach selected as the 

most suitable out of seven different techniques examined based on two metrics: the estimation Root Mean 

Square Error (RMSE) and the processing time required for the estimation. 

The final component of this thesis consists of the high-level reinforcement learning-based HVAC con-

troller that maximises occupant thermal comfort while minimising the energy consumed. Two evaluation 

scenarios are proposed: 
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140 CONCLUSIONS AND FUTURE WORK 

1. A single-zone scenario that aims to maintain the overall equivalent temperature of a cabin occupant 

within a thermally comfortable range based on Nilsson’s thermal comfort model. 

2. A multi-zone scenario that aims to maintain the occupant head and foot equivalent temperatures 

within different ranges. 

The performance of the reinforcement learning-based controller was compared to that of a basic controller 

(blows the coldest vent temperature at the fastest vent speed in order to cool-down the cabin and blows the 

hottest vent temperature at the fastest vent speed in order to warm-up the cabin, respectively) and a fuzzy 

logic-based controller. The performance metric is the reward (a number that translates into whether the 

thermal comfort criteria is satisfied and how much energy is consumed), allowing a meaningful comparison 

between the controllers. For the single-zone scenario, the performance for the basic controller was the 

lowest (reward of −62.70). The fuzzy logic-based controller improved on this performance (reward of 

−50.55). However, the reinforcement learning-based controller managed to achieve a significantly better 

performance (reward of −29.16). 

The performance ranking from above held also for the multi-zone scenario. The reinforcement learning-

based controller achieved the highest performance (reward of −2.24). The basic controller had, as in the 

single-zone scenario, the poorest performance (a reward of −67.85), while the performance of the fuzzy 

logic-based controller, again, improved on the basic controller (reward of−32.12). 

The work presented in this thesis resulted in the following contributions to knowledge: 

1. The identification and evaluation (based on gathered empirical data) of the most suitable existing 

thermal comfort model to be used for vehicular heating and cooling control. 

2. A method for developing VTCS to actuate the heating and cooling control. The method consists 

of: 

(a) A method that selects the optimum set of cabin environmental sensors and their associated 

locations for estimating occupant body part equivalent temperature. 

(b) An equivalent temperature estimation machine learning-based method. The method was se-

lected out of seven different approaches based on accuracy and processing time. 

3. A reinforcement learning-based policy design for producing an energy efficient comfort-oriented 

heating and cooling controller, which outperforms current state-of-the-art methods. 

This chapter is structured as follows: Section 7.1 provides answers to the research questions posed in 

Chapter 1. Section 7.2 proposes future research topics. Finally, Section 7.3 concludes this thesis. 
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7.1 Answers to research questions 

This thesis has answered the following research questions: 

7.1.1 Is there an existing thermal comfort model that is suitable for real-time 

use in an HVAC system and if so, which is it? 

Yes—Nilsson’s equivalent temperature-based thermal comfort model is the most suitable model for 

comfort-oriented HVAC control. 

To answer this question, an empirical analysis was conducted investigating four existing thermal 

comfort models: Predicted Mean Vote (PMV), Zhang’s model, Taniguchi’s model and Nilsson’s model 

(all described in Section 2.1). In order to conduct this analysis, experimental data was gathered from 

a number of trials that included both steady-state conditions and conditions normally expected while 

driving and in which subjective comfort measures were sought from human participants. 

The main criteria for selecting the most suitable thermal comfort model was the correlation index 

between the model output and the subjective thermal comfort reports. Additional characteristics of the 

models are also considered. Based on the experimentally gathered data, the PMV index and Nilsson’s 

index accurately matched (with correlations of 0.91 and 0.93, respectively) the occupant reported thermal 

sensation within a limited set of conditions: pre-conditioning of the passenger and the cabin at the same 

temperature, a steady outside temperature and low rates of change of the interior temperature (lower 

than 1.5 › per minute). High cabin average temperature rates of change (up to 9 › per minute), ambient 

solar load and wind led to lower correlation factors, between 0.76 and 0.79. 

On the other hand, the overall sensation computed using the two skin temperature-based thermal 

comfort models (Taniguchi’s model and Zhang’s model) matched the subjective reports with low correl-

ation levels throughout all trial types (correlation indexes between 0.10 and 0.60). Overall, the accuracy 

of the two skin temperature-based models is not sufficient to support vehicular HVAC comfort control. 

Based on the findings, Nilsson’s model was shown to be the most suitable model for vehicular comfort-

oriented control out of the four thermal comfort models evaluated. The model matched the subjective 

reports with a correlation index similar to PMV. However, an important advantage Nilsson’s model has 

over PMV is its ability to estimate local thermal sensation, which is an important capability for the 

new generation of vehicular HVAC control systems. Moreover, Nilsson’s model only requires two input 

parameters—equivalent temperature and the clothing index—rather than six parameters in PMV’s case, 

some of which could not feasibly be determined by an automated system. 



142 CONCLUSIONS AND FUTURE WORK 

More details regarding the investigations performed are given in Section 4.3. 

7.1.2 Can an optimum set of cabin environmental sensors be defined for 

estimating occupant body part equivalent temperature, given realistic 

constraints? 

Yes—an optimum set of cabin environmental sensors for estimating occupant body part equivalent tem-

perature can be selected using a mutual information-based feature selection mechanism. 

Common sensor positioning approaches are driven by considerations such as cost or aesthetics, which 

may impact on the performance of the HVAC system and thus on occupant comfort. This thesis presented 

a generic method of improving the location of sensors in order to more accurately estimate occupant body 

part equivalent temperature and thus thermal sensation. 

In order to answer this research question, an analysis was conducted based on experimental data. 

Data was gathered from a number of trials that included both steady-state conditions and conditions 

normally expected while driving, and from both cabin environmental data and equivalent temperature 

measured by dry heat loss transducers attached to a support manikin. The selection of the best cabin 

environmental sensors from the available set is performed via a mutual information method based on 

entropy values. Two cabin environmental sensors, a mean radiant temperature sensor placed at a central 

ceiling location and an air temperature sensor located at the front row right belt level, sharing a mutual 

information of 1.56 nats with the body part equivalent temperatures, were shown to provide an average 

equivalent temperature estimation RMSE of 1.41 › in highly-transient vehicular environment conditions. 

The cabin environmental sensor selection can be optimised for a different number of passengers and for 

estimating different parameters. Also, the method can be applied in a variety of other applications. 

More details regarding this work are given in Section 5.1. 

7.1.3 Is MLR the most suitable machine learning technique for estimating 

occupant body part equivalent temperature from a set of cabin envir-

onmental sensors? 

Yes—MLR is the most suitable machine learning approach out of seven different methods examined for 

estimating occupant body part equivalent temperature. 

To answer this question, seven different machine learning approaches were implemented for estimat-

ing body part equivalent temperature based on the measurements from the selected cabin environmental 
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sensors: MLR, Multilayer Perceptron (MLP), K-Nearest Neighbour (KNN), Multivariate Adaptive Re-

gression Splines (MARS), Radial Basis Function Network (RBF), Reduced Error Pruning Tree (REPTree) 

and Random Forest (RF). Most algorithms provided a RMSE between 1.51 › (for MARS) and 1.85 › 

(for KNN). RBF performed the worst, with an average RMSE of 3.37 ›. MLR had an average RMSE of 

1.60 › over the eight body part equivalent temperatures. MLR requires the least computational power 

(after KNN) and had the fastest processing time out of the seven methods examined, a factor important 

to take into account when integrating the VTCS approach in a car’s engine control unit. 

More details regarding the investigation performed are given in Section 5.2. 

7.1.4 Is it possible to represent the state of the cabin environment in such a 

way that it fulfils the Markov Decision Process (MDP) criteria? 

Yes—the state for the car cabin environment in two different scenarios (one controlling the overall oc-

cupant equivalent temperature and one controlling occupant head and foot equivalent temperature) was 

represented such that it fulfils the MDP criteria. 

In order for an environment to fulfil the MDP criteria, the representation of the state needs to be 

Markovian (that is, the state comprises all the necessary information and this information suffices in 

order to decide the next action). In general, the aim is to express the state in a compact way, so that 

the complexity of the reinforcement learning problem is significantly reduced. 

For the scenarios presented within this thesis, it was possible to gather enough information to form a 

state signal with the Markov property that fully observed the environment. For the single-zone scenario, 

the state consisted of the occupant overall equivalent temperature, block temperature and outside air tem-

perature. For the multi-zone scenario, the state consisted of the occupant head equivalent temperature, 

occupant foot equivalent temperature, block temperature and outside temperature. 

More details regarding this work are given in Chapter 6. 

7.1.5 Can a reinforcement learning-based heating and cooling control policy 

provide performance beyond the current state-of-the-art? 

Yes—the reinforcement learning-based control policy was compared with two other controllers and it 

outperformed them with a factor of 2.15 and 1.73, respectively in simulation trials. 

To answer this question, the Sarsa(λ) algorithm was implemented and two evaluation scenarios were 

proposed: i) a single-zone scenario that aims to maintain the overall equivalent temperature of a cabin 
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occupant within a thermally comfortable range based on Nilsson’s thermal comfort model and ii) a multi-

zone scenario that aims to maintain the occupant head and foot equivalent temperatures within different 

ranges. A basic controller and a fuzzy logic-based controller were also implemented in order to provide 

a performance comparison. The performance metric used was the reward—a numerical index expressing 

whether the occupant thermal comfort criteria is achieved and the amount of energy consumed. 

For the single-zone scenario, intuitively, the basic controller should have the poorest performance. 

Even though its behaviour is optimum in terms of achieving comfort, by cooling-down or warming-up the 

cabin on maximum vent temperature and maximum flow until the desired temperature is reached, this 

approach is very energy wasteful and, therefore, the energy component of the reward function is greatly 

penalised. The reward for the basic controller was of −62.70. On the other hand, the fuzzy logic-based 

controller is expected to perform better. This approach improves over the basic controller, however, it 

does not benefit from the reinforcement learning approach of receiving feedback. The performance for the 

fuzzy logic-based controller was a reward of−50.55. The reinforcement learning algorithm, by including 

energy consumption in its reward function, managed to achieve a significantly better performance, with 

a reward of −29.16. These results translate into an average of 27.05% energy saving over 200 testing 

scenarios when compared to the fuzzy logic-based controller, while thermal comfort was achieved and 

maintained successfully. 

For the multi-zone scenario, the reinforcement learning-based controller maximised the reward to 

−2.24. The basic controller had, as in the single-zone scenario, the poorest performance (a reward of 

−67.85), while the performance of the fuzzy logic-based controller was a reward of −32.12. These results 

translate into an average of 29.87.1% energy saving over 200 testing scenarios when compared to the 

fuzzy logic-based controller, while thermal comfort was achieved and maintained successfully. 

By outperforming the fuzzy logic-based controller, which is the most used type of controller in the 

literature, the author has shown that the reinforcement learning-based controller improves the state-of-

the-art in the area of thermal comfort-oriented vehicular HVAC control. 

More details regarding this work are given in Chapter 6. 

7.2 Future work 

There are several areas of potential future work. This section presents three such areas that would 

improve the system functionality and provide additional evaluation of its performance. 
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7.2.1 Further improvement on the thermal comfort model 

The work in this thesis focused on evaluating several hypotheses related to vehicle thermal comfort and 

existing thermal comfort models. A related avenue for future work is with regard to heated/cooled 

seats and steering wheels. These are becoming more widespread and will clearly have an impact on 

local thermal sensation and comfort, which should be evaluated through empirical work. Examples of 

questions that would be interesting to answer are: 

1. Identify the separate contributions of heated seats and heated steering wheels to skin temperat-

ure, thermal sensation and time to thermal comfort after entering the vehicle at a range of cool 

temperatures in comparison to that achieved through the HVAC system alone. 

2. Identify the separate contributions of cooled seats and cooled steering wheels on skin temperat-

ure, thermal sensation and time to thermal comfort after entering the vehicle at a range of hot 

temperatures in comparison to that achieved through the HVAC system alone. 

3. Determine the optimal combination of heating and cooling actuation of seats/steering wheels re-

quired to achieve thermal comfort in the shortest possible time in hot and cold conditions, respect-

ively. 

Also, as a related issue, the deviation between the Flatman’s PMV output and the subjective responses 

may be because the subjects were in contact with the seat and the steering wheel whereas the Flatman’s 

dry heat loss sensors were not. This could be confirmed via further experimentation. 

7.2.2 Extend the VTCS approach to include additional sensor types 

The work in Chapter 4 of this thesis focused on developing a VTCS method that estimates occupant 

body part equivalent temperature from cabin environmental sensors. The method developed allows the 

selection of the optimum cabin sensors and their associated locations estimating equivalent temperatures. 

The best cabin environmental sensors were the mean radiant temperature sensor and the air temperature 

sensor located at the front row right belt level. Since equivalent temperature integrates the effect of air 

flow, future work should examine the impact of this on the estimation error and find optimal air flow 

sensor locations using the methodology presented in Chapter 4. 
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7.2.3 Extend the reinforcement learning work 

The reinforcement learning-based controller developed is dependent on the simulation of the car cabin 

environments used for learning. There is, therefore, scope for improvement beyond the work on this 

thesis. An important avenue for this improvement is designing a more complex, multiple dimensional 

simulation using a software tool such as Dymola. This would allow a more thorough evaluation of multi-

zone control. An improved simulation should also incorporate elements such as heated/cooled seats and 

steering wheels. These could be effectively controlled in order to improve comfort and minimise overall 

energy consumption. 

Also, the simulation-based controller could be integrated in progressive stages within the car cabin and 

its thermal management actuators and sensors. At this stage, the user’s feedback, in terms of manually 

overriding the learnt policy or intervening in the control, provides an additional cabin state element 

and the reward function will penalise this heavily—thus encouraging a policy well suited to the specific 

end-user. 

Another venue for future work consists in identifying a feasible time constant. A key component of the 

learning approach is the identification of the most appropriate time-scale for the system. This time-scale 

is essentially the simulation sample rate, however it will also become the cycle time for the final controller. 

If this rate is set too low (long periods between each actuation change), then the learnt system may lag 

the environmental change in a noticeable way. If the rate is set too high, then the actions will have had 

little time to take effect and the learning algorithm will have difficulty in converging on a solution. 

There are a few other questions related to the reinforcement learning-based controller that future 

work aims to answer, such as: 

1. How frequently should the reinforcement learning-based control act throughout a journey? 

2. Which is the optimal way for the controller to learn from manual user overrides? 

3. How to design the state space for a real-time use of the system in an optimal way? 

7.3 Summary 

This thesis set out to demonstrate that vehicle HVAC comfort control can be improved beyond the current 

state-of-the-art. A strength of this work comes from the fact that the thermal comfort related analysis 

conducted is based on gathered empirical data—both cabin environmental sensor data and subjective 

occupant reports. This data was used to determine that Nilsson’s equivalent temperature-based model 
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is the most suitable for vehicular HVAC control, by considering the correlation score with subjective 

occupant comfort data and additional characteristics of the models, such as ability to estimate local 

thermal sensation and number of input parameters. 

Further to selecting the most suitable thermal comfort model, the development of a VTCS method that 

estimates occupant body part equivalent temperatures is proposed. First, using a mutual information-

based approach, the subset of cabin environmental sensors that correlate well with the body part equi-

valent temperatures are selected. Second, MLR is used to infer the occupant body part equivalent 

temperatures from the selected cabin environmental sensors. The equivalent temperature estimation 

RMSE are on average around 1.41 › across environmental conditions characterised by cabin interior 

temperature rates of change of up to 6 › per minute, ambient temperature differences up to 6 › per 

experimental trial, varying ambient wind, solar load and precipitation. 

Finally, this thesis proposes an innovative reinforcement learning-based controller that phrases the 

control specification in terms of an overall objective function based on the thermal comfort of the pas-

sengers and the energy consumption. The performance metric used in evaluating the controllers was 

the reward—a measure quantifying whether occupant thermal comfort was achieved and the amount of 

energy consumed. The proposed controller was evaluated through simulation within both single-zone 

and multi-zone scenarios and it exceeded the performance of a basic controller and a fuzzy logic-based 

controller by a factor of 2.15 and 1.7, respectively. These results translate into an average of 32.5% en-

ergy saving over 100 testing scenarios when compared to the fuzzy logic-based controller, while thermal 

comfort was achieved and maintained successfully. 

The learning-based control method presented sets the benchmark for future vehicular HVAC systems. 

Furthermore, the underlying approaches can be applied to existing techniques and instantiated for a wide 

variety of applications. 
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Appendix A 

Demo 

The Virtual Thermal Comfort Sensing (VTCS) presented in Chapter 5 was tested within a real-time 

demo for a Jaguar Land Rover (JLR) TechFair, described in this Appendix. 

For the demo, the VTCS was trained with data gathered in a series of experiments performed in 

steady-state controlled conditions. The cabin locations suitable for estimation were selected prior to the 

event using the mutual information-based sensor positioning method detailed in Chapter 4. The two best 

air temperature sensor locations selected were the back seat of the back passenger and the front row left 

footwell. Two LM35CAZ air temperature sensors were placed in those particular positions and wired 

each to a TelosB sensor node. The TelosB nodes sampled every second and sent the values to another 

TelosB node that further transmitted the values to the base station laptop through a USB. Furthermore, 

the values were transmitted to another laptop that had the estimation processing and visualiser (see 

Figure A.1). Based on each of the samples coming from the two air temperature sensors in the car, the 

equivalent temperature at six locations (head, chest, lower arm, upper arm, thigh and calf) was estimated. 

A Multiple Linear Regression (MLR) equation was used for estimating the equivalent temperatures at 

the six locations. 

The Predicted Mean Vote (PMV) comfort model was applied to the estimated equivalent temperature 

values, outputting a thermal comfort index (a real number between −3 and 3). In order to assess the 

accuracy of both the equivalent temperature and PMV estimation, the INNOVA Flatman manikin was 

installed in the car cabin in the front passenger seat. The manikin was wired to a data logger that stored 

the equivalent temperatures and comfort index measured in a database format. The visualiser queries 

the database to extract the manikin values and further introduce them into the visualiser code. 

The visualiser consisted in an user interface that allows an end-user to select which equivalent tem-

perature body part target to estimate and the number of sensors to be used for the estimation (one or 

two in order to see how the accuracy of the estimation increases if two sensors are used, rather than 

one). The visualiser displayed two graphs: one showing the estimated equivalent temperature at the 

selected body part versus the equivalent temperature measured by the Flatman, the accuracy of which 
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Figure A.1: Test car and laptop with the demo visualiser. 

Figure A.2: Demo visualiser. 

is calculated using Root Mean Square Error (RMSE) and the second showing the estimated PMV index 

(overall sensation of the passenger) versus the PMV index measured by the Flatman and outputting the 

RMSE (see Figure A.2). The equivalent temperatures were estimated within 0.5 › RMSE, while the 

PMV index was estimated within 0.1 RMSE on the comfort scale (−3 to 3) throughout the day. The car 

was inside for the event and so the Air Conditioning (AC) was not used. Even though the conditions were 

rather stable (ambient temperature, changes in temperatures only due to people going inside/outside the 

car, opening doors, etc), the real-time results were promising, showing that the VTCS is a useful tool for 

deriving passenger thermal comfort. 



Appendix B 

Scripts Exemplification 

Below are some examples of coded scripts for the work presented in Chapter 5. 

B.1 Multiple Linear Regression implementation 

from learner import Learner 

from numpy import * import unittest 

def mcov(vlist): 

m = [mean(v) for v in vlist] 

l = len(vlist) 

ll = len(vlist[0]) 

cov array = zeros((l,l),dtype=float64) 

for i in range(l): 

for j in range(i,l): 

assert len(vlist[i]) == len(vlist[j]) 

z = zip(vlist[i],vlist[j]) 

cov array[i,j] = sum([(a - m[i]) * (b - m[j]) for a,b in z]) / (ll-1) 

cov array[j,i] = cov array[i,j] 

return cov array 

class GaussianLearner(Learner): 

def init (self, inputlen=1, inputnames=[]): 

self.source = [] 

for i in range(inputlen): 

self.source.append([]) 

self.targetA = [] 

self.input len = inputlen 

self.smean = [0.] * inputlen 
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def learnPairs(self, pairs): 

for s,t in pairs: 

assert len(s) == self.input len 

for i in range(self.input len): 

self.source[i].append(s[i]) 

self.targetA.append(t) 

for i in range(self.input len): 

self.smean[i] = mean(self.source[i]) 

self.smean = matrix(self.smean).T 

self.tmean = mean(self.targetA) 

a = [self.targetA] 

a.extend(self.source) 

ll = len(a) 

covar = mcov(a) 

s12 = covar[0:1,1:ll] 

s22Inv = linalg.inv(covar[1:ll,1:ll]) 

self.matr = matrix(s12) * matrix(s22Inv) 

def estimate(self, source): 

s = matrix(source).T 

self.vbl = s - self.smean 

meanCX = self.tmean + self.matr * self.vbl 

return meanCX[0,0] 

B.2 Learning process 

from optparse import OptionParser 

import csv 

import glob 

import math 

import sys 

from GaussianLearner import GaussianLearner 

methods = { ”GaussianLearner” : GaussianLearner} 
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def train test(learner, testfn, trainfn, source, target): 

global methods testf = csv.DictReader(open(testfn, ”rb”)) 

trainf = csv.DictReader(open(trainfn, ”rb”)) 

trainset = [] 

dropped rows = 0 

for row in trainf: 

ss = [row[s] for s in source] 

ts = row[target] 

if ”NA” in ss or ts == ”NA”: dropped rows += 1 

else: trainset.append(([float(s) for s in ss], float(ts))) 

learner.learnPairs(trainset) 

if (target==’eqt-d(calf)’): 

sse = 0. 

count = 0 

f = open(”temp/estim-calf.csv”,’w’) 

f.write(”real-calf,estimated-calf\n”) 

outStr=”” 

for row in testf: 

ss = [row[s] for s in source] 

ts = row[target] 

if not (”NA” in ss or ts == ”NA”): 

err = float(ts) - learner.estimate([float(s) for s in ss]) 

est = learner.estimate([float(s) for s in ss]) 

outStr=str(ts)+”,”+str(est)+”\n” 

f.write(outStr) 

sse += err * err 

count += 1 

f.close() 

return math.sqrt(sse / count) 

def run method(p, method, source, target, outf): 

result = train test(methods[method](inputlen=len(source),inputnames=source), ”temp/TestData.csv”, 

”temp/TrainData.csv”, source, target) 
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outf.writerow([method + ” ” + ’-’.join(source) + ” ” + target, result]) 

if name == ” main ”: parser = OptionParser() 

parser.add option(”-p”, ”–prefix”, default=”rows”, help=”Prefix for training and test data [default: 

rows]”) 

parser.add option(”-o”, ”–output”, default=None, help=”Output filename [required]”) 

parser.add option(”-m”, ”–method”, default=”simple”, help=”Learning method to trial [default: 

simple]”) 

parser.add option(”-x”, ”–expfile”, default=None, help=”Filename containing target and source 

sensors”) 

parser.add option(”-s”, ”–source”, default=None, help=”Comma separated list of source column 

name(s) [required]”) 

parser.add option(”-t”, ”–target”, default=None, help=”Target column name [required]”) 

(opts, args) = parser.parse args() 

if opts.expfile is None: 

assert opts.source is not None 

assert opts.target is not None 

else: 

assert opts.source is None 

assert opts.target is None 

assert opts.output is not None 

assert len(args) == 0 

outf = csv.writer(open(opts.output, ”w”)) 

outf.writerow([”method”, ”trial”, ”result”]) 

if opts.expfile is not None: 

ff = open(opts.expfile,”r”) 

for exp in ff.readlines(): 

exp = exp.rstrip() 

if exp != ” and exp[0] != ’#’: 

print ”running:”, exp 

srclist = exp.split(”,”) 

tgt = srclist.pop(0) 

run method(opts.prefix, opts.method, srclist, tgt, outf) 
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else: run method(opts.prefix, opts.method, opts.source.split(”,”), opts.target, outf) 

B.3 WEKA library integration in Python 

Makefile 

TEMPDIR = temp 

TRAINDIR = train 

TESTDIR = test 

RESULTS = results 

WEKAJAR=/home/dianah/Desktop/WorkStuff/weka-3-6-6/weka.jar 

EXP NUMS=2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30 31 32 35 36 

37 38 39 40 41 42 43 45 46 49 52 53 54 55 56 57 58 59 61 62 63 64 65 67 68 70 71 72 73 74 75 79 82 83 

85 86 88 90 91 92 93 94 95 96 

RESULTS FILES=$(foreach t,$(EXP NUMS),results/$(t).csv) 

RESULTS FILESF=$(foreach t,$(EXP NUMS),results/$(t)F.csv) 

all: $(TEMPDIR) $(RESULTS) $(RESULTS FILES) $(RESULTS FILESF) $(RESULTS)/all.csv 

$(TEMPDIR): mkdir $(TEMPDIR) 

$(RESULTS): mkdir $(RESULTS) 

$(TEMPDIR)/test %.csv: $(TESTDIR)/test %.csv reorderTest.py python reorderTest.py $< $@ 

$(TEMPDIR)/train %.csv: $(TRAINDIR)/train %.csv reorderTrain.py python reorderTrain.py $< 

$@ 

$(TEMPDIR)/test %.arff: $(TEMPDIR)/test %.csv create arff.py python create arff.py $< > $@ 

$(TEMPDIR)/train %.arff: $(TEMPDIR)/train %.csv create arff.py python create arff.py $< > $@ 

#$(TEMPDIR)/weka.model.%: $(TEMPDIR)/train %.arff # java -cp $(WEKAJAR) -Xmx1024m 

weka.classifiers.functions.MultilayerPerceptron -d $@ -L 0.2 -M 0.1 -N 20 -V 0 -S 0 -E 20 -H 3 -t $< 

#results/%.csv: $(TEMPDIR)/weka.model.% $(TEMPDIR)/test %.arff # java -cp $(WEKAJAR) 

-Xmx1024m weka.classifiers.functions.MultilayerPerceptron -l $< -T $(TEMPDIR)/test $*.arff -i > $@ 

#$(TEMPDIR)/weka.model.%: $(TEMPDIR)/train %.arff # java -cp $(WEKAJAR) -Xmx1024m 

weka.classifiers.functions.LinearRegression -d $@ -S 0 -R 1.0E-8 -t $< 

#results/%.csv: $(TEMPDIR)/weka.model.% $(TEMPDIR)/test %.arff # java -cp $(WEKAJAR) 

-Xmx1024m weka.classifiers.functions.LinearRegression -l $< -T $(TEMPDIR)/test $*.arff -i > $@ 

$(TEMPDIR)/weka.model.%: $(TEMPDIR)/train %.arff java -cp $(WEKAJAR) -Xmx1024m weka.classifiers.trees.REPT 

http:reorderTrain.py
http:reorderTrain.py
http:reorderTest.py
http:reorderTest.py
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-d $@ -M 2 -V 0.001 -N 3 -S 1 -L -1 -t $< 

results/%.csv: $(TEMPDIR)/weka.model.% $(TEMPDIR)/test %.arff java -cp $(WEKAJAR) -Xmx1024m 

weka.classifiers.trees.REPTree -l $< -T $(TEMPDIR)/test $*.arff -i > $@ 

#$(TEMPDIR)/weka.model.%: $(TEMPDIR)/train %.arff # java -cp $(WEKAJAR) -Xmx1024m 

weka.classifiers.functions.RBFNetwork -d $@ -B 2 -S 1 -R 1.0E-8 -M -1 -W 0.1 -t $< 

#results/%.csv: $(TEMPDIR)/weka.model.% $(TEMPDIR)/test %.arff # java -cp $(WEKAJAR) 

-Xmx1024m weka.classifiers.functions.RBFNetwork -l $< -T $(TEMPDIR)/test $*.arff -i > $@ 

results/%F.csv: $(RESULTS)/%.csv cleanRes.py python cleanRes.py $(RESULTS)/$*.csv > $@ 

results/all.csv: mergeAll.py python mergeAll.py $< $@ 

clean: -rm -rf $(TEMPDIR) -rm -rf $(RESULTS) 

Create file format for WEKA in Python import sys import csv 

infile = open(sys.argv[1], ’r’) csvfile = csv.reader(infile, delimiter=’,’, quotechar=’”’) 

header = csvfile.next() cols = range(len(header)) 

col names = map(header. getitem , cols) 

arff header = ”@relation estimation\n\n\n” 

for col in col names: 

arff header += ”@attribute %s real\n” % (col.replace(’ ’, ”)) arff header += ”@data” 

print arff header 

for line in csvfile: 

try: 

row = map(line. getitem , cols) 

except: 

print >> sys.stderr, ’Cols:’, cols 

print >> sys.stderr, ’Row:’, line 

print ’,’.join(row) 

infile.close() 

B.4 Computing the PMV index 

from pmv import calc pmvEqTemp 

from pmv import calc pmvAir import sys import csv 

met = 1.2 

http:mergeAll.py
http:mergeAll.py
http:cleanRes.py
http:cleanRes.py
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clo = 0.66689 

vel = 0.0 

rh = 50. 

in filename = sys.argv[1] 

infile = csv.reader(open(in filename, ’r’), delimiter=’,’, quotechar=’”’) 

header = infile.next() 

flatman nr = int(sys.argv[2]) 

mean weight est eq temp nr = int(sys.argv[3]) 

avg interior nr = int(sys.argv[4]) 

sens nr = int(sys.argv[5]) 

outfile = csv.writer(sys.stdout, delimiter=’,’, quotechar=’”’) 

outfile.writerow([”time”,”pmv-air”,”pmv-eq-temp”,”pmv-flatman”,”sensation”]) 

i = 1 

for row in infile: 

ta = float(row[avg interior nr]) 

eq = float(row[mean weight est eq temp nr]) 

pmv flatman = float(row[flatman nr]) 

sens = row[sens nr] 

pmv air = calc pmvAir(clo, ta, ta, met, vel, rh) 

pmv eq temp = calc pmvEqTemp(clo, eq, eq, met, vel, rh) 

outfile.writerow([i,pmv air,pmv eq temp,pmv flatman,sens]) 

i = i+1 
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Appendix C 

Publications, Presentations and 

Attended Conferences 

The work in this thesis has resulted in the following peer-reviewed publications, presentations, and 

technical reports. 

C.1 Conference proceedings 

Mutual Information-based Sensor Positioning for Car Cabin Comfort Control 

Diana Hintea, James Brusey, Elena Gaura, Neil Beloe and David Bridge. Mutual Information-based Sensor Positioning 

for Car Cabin Comfort Control. In Proceedings of KES 2011 , 15th international conference on Knowledge-based and in-

telligent information and engineering systems, Volume Part III, pages 483-492, Kaiserslautern, Germany, September 13-15 

2011. ISBN: 978-3-642-23853-6 521–525. 

Car cabins are transient, non-uniform thermal environments, both with respect to time and space. 

Identifying representative locations for the Heating, Ventilation and Air Conditioning (HVAC) system 

sensors is an open research problem. Common sensor positioning approaches are driven by considerations 

such as cost or aesthetics, which may impact on the performance/outputs of the HVAC system and thus 

occupants’ comfort. Based on experimental data, this paper quantifies the spacial-temporal variations in 

the cabin’s environment by using Mutual Information (MI) as a similarity measure. The overarching aim 

for the work is to find optimal (but practical) locations for sensors that: i) can produce accurate estimates 

of temperature at locations where sensors would be difficult to place, such as on an occupant’s face or 

abdomen and ii) thus, support the development of occupant rather than cabin focused HVAC control 

algorithms. When applied to experimental data from stable and hot/cold soaking scenarios, the method 

proposed successfully identified practical sensor locations which estimate face and abdomen temperatures 

of an occupant with less than 0.7 › and 0.5 › error, respectively. 
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Comfort in Cars: Estimating Equivalent Temperature for Comfort Driven Heating, Ventil-

ation and Air Conditioning (HVAC) Control 

Diana Hintea, James Brusey, Elena Gaura, John Kemp and Neil Beloe. Comfort in Cars: Estimating Equivalent Temper-

ature for Comfort Driven Heating, Ventilation and Air Conditioning (HVAC) Control. In Proceedings of ICINCO 2013, 

International Conference on Informatics in Control, Automation and Robotics, Volume I, pages 507-513, Reykjavik, Iceland, 

July 28-31, 2013. ISBN: 978-989-8565-70-9. 

Equivalent Temperature is generally considered an accurate predictor for thermal comfort in car cab-

ins. However, direct measurement of this parameter is impractical in fielded applications. The paper 

presents an empirical, multiple linear regression based approach for estimating body segment equivalent 

temperatures for car cabin occupants from different sensors within the car. Body part equivalent tem-

perature at eight segments and cabin sensor data (air temperature, surface temperature, mean radiant 

temperature, humidity and solar load) was gathered in a variety of environmental and cabin conditions. 

38 experimental hours of trials in a controlled environment and 26 experimental hours of realistic driving 

trials were used for training and evaluating the estimator’s performance. The estimation errors were on 

average between 0.5 › and 1.9 › for different body parts for trials within a controlled environment, 

while for trials in realistic driving scenarios they ranged between 1 › and 2 ›. This demonstrates that 

passenger body part equivalent temperature can be estimated using a multiple linear regression from 

environmental sensors and leads the way to comfort driven Heating, Ventilation and Air Conditioning 

control. 

Applicability of Thermal Comfort Models in Car Cabin Environments 

Diana Hintea, John Kemp, James Brusey, Elena Gaura and Neil Beloe. Applicability of Thermal Comfort Models in Car 

Cabin Environments. In Proceedings of ICINCO 2014, International Conference on Informatics in Control, Automation 

and Robotics, Volume I, pages 769-776, Vienna, Austria, September 1-3, 2014. ISBN: 978-989-758-039-0.. 

Car cabins are non-uniform and asymmetric environments in relation to both air velocity and temper-

ature. Estimating and controlling vehicle occupant thermal comfort is therefore a challenging task. This 

paper focuses on evaluating the suitability of four existing thermal comfort models, namely the Predicted 

Mean Vote (PMV), Taniguchi’s model, Zhang’s model and Nilsson’s model in a variety of car cabin con-

ditions. A series of comfort trials were performed ranging from controlled indoor trials to on-road driving 

trials. The outputs of all four models were compared to the sensation index reported by the subjects 

situated in the driver seat. The results show that PMV and Nilsson’s model are generally applicable 

for the car cabin environment, but that they are most accurate when there is a small air temperature 
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rate of change (of under 1.5 › per minute), giving correlation levels of 0.91 and 0.93 for the two models 

respectively. Taniguchi’s and Zhang’s models were found unsuitable for all conditions, with correlation 

levels ranging between 0.03 and 0.60. Nilsson’s model is recommended by the authors based on the level 

of agreement with the subjective reports, its ability to estimate both local and overall thermal sensation 

and the smaller number of input parameters. 

C.2 Technical reports 

Mutual Information-based Sensor Positioning for Car Cabin Comfort Monitoring 

Diana Hintea, James Brusey and Elena Gaura. Mutual Information-based Sensor Positioning for Car Cabin Comfort 

Monitoring. Technical Report COGENT, Coventry University, 20010. 

This report summarises work so far in developing a generic method for optimizing the sensor positions 

within a car cabin. The work is closely related to efforts in WP9.9 towards the development of effective 

HVAC control algorithms which enhance passengers and driver comfort. In this context, such a generic 

positioning method is necessary as: i) cabins present a highly variable environment, particularly with 

respect to temperature, thus sensor readings vary considerably from one point in the cabin to the next; 

ii) sensors are usually placed within the cabin as dictated by opportunity, aesthetic or cost reasons, 

thus control algorithms driven by their data might not be optimal. The initial focus of the work is on 

temperature, however the approach is applicable to other sensor modalities. 

To date, the work on this strand took a theoretic approach to potential methods definition and 

optimal method selection. Validation was performed using RadTherm cabin data to determine the mutual 

information content of pairs of cabin sensors. A key novel element in this work comes from the need, 

within the car-cabin thermal sensing problem, to estimate the temperature at the one location that will be 

difficult to directly sense: on the skin of the passenger. Indeed, it may be the case that no single feasible 

sensor location will provide accurate information about the skin temperature and that instead a number 

of sensors are needed. An advantage of this approach is that it offers the possibility of meaningfully 

comparing the information value of, say, one expensive sensor compared with two inexpensive sensors. 

Furthermore, it does so in the context of the target application of the sensors. This report covers the 

development and testing of a variety of methods of finding the mutual information or correlation associated 

with two sensor positions. The method found to be most useful is based on finding the entropy based 

on a multivariate Gaussian assumption over the two sensors. Specifically, it is assumed that probability 
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distribution for any pair of sensors is a multivariate Gaussian. 

Skin Temperature Estimation Method for Car Cabin Comfort Control 

Diana Hintea, James Brusey and Elena Gaura. Skin Temperature Estimation Method for Car Cabin Comfort Control. 

Technical Report COGENT, Coventry University, 2011. 

Car cabins are transient, non-uniform thermal environments, both with respect to time and space. 

Identifying representative locations for the Heating, Ventilation and Air Conditioning (HVAC) system 

sensors is an open research problem. Common sensor positioning approaches are driven by considerations 

such as cost or aesthetics, which may impact on the performance/outputs of the HVAC system and thus 

occupants’ comfort. Based on experimental data, this report quantifies the spacial-temporal variations in 

the cabin’s environment by using Mutual Information (MI) as a similarity measure. Accurate estimates 

of temperature at locations where sensors would be difficult to place, such as on an occupant’s face or 

abdomen, are then computed. These estimations are produced from optimal (but practical) locations for 

sensors that support the development of occupant rather than cabin focused HVAC control algorithms. 

When applied to experimental data from stable and hot/cold soaking scenarios, the method proposed 

successfully identifies practical sensor locations which estimate face and chest temperatures of an occupant 

with less than 0.7 › and 0.4 › error, respectively. 

Skin Temperature Estimation Method for Car Cabin Comfort Control 

Diana Hintea, James Brusey and Elena Gaura. Skin Temperature Estimation Method for Car Cabin Comfort Control. 

Technical Report COGENT, Coventry University, 2011. 

Car cabins are transient, non-uniform thermal environments, both with respect to time and space. 

Identifying representative locations for the HVAC system sensors is an open research problem. Common 

sensor positioning approaches are driven by considerations such as cost or aesthetics, which may impact 

on the performance / outputs of the HVAC system and thus occupants’ comfort. Based on experimental 

data, this report quantifies the spatial-temporal variations in the cabin’s environment by using MI! (MI!) 

as a similarity measure. Accurate estimates of temperature at locations where sensors would be difficult to 

place, such as on an occupant’s face or abdomen, are then computed. These estimations are produced from 

optimal (but practical) locations for sensors that support the development of occupant rather than cabin 

focused HVAC control algorithms. When applied to experimental data from two trials, the first involving 

one subject and the second involving 7 subjects, the method proposed successfully identifies practical 
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sensor locations that estimate face, chest, right hand, right thigh and right lower leg temperatures of an 

occupant with errors of 0.50 ›, 0.27 ›, 0.68 ›, 0.32 › and 0.25 ›, respectively, when the training 

and testing were performed on the same subject. On the other hand, when Leave-One-Subject-Out-

Cross-Validation (LOSOCV) was used, the method estimated the face, chest, right hand, right thigh and 

right lower leg temperatures of an occupant with errors of 1.11 ›, 0.96 ›, 1.29 ›, 0.90 › and 1.09 ›, 

respectively. 

Whole Vehicle Thermal Efficiency WS9 

James Brusey, Diana Hintea, John Kemp and Doug Thake. Skin Temperature Estimation Method for Car Cabin Comfort 

Control. Technical Report COGENT, Coventry University, 2014. 

This report describes progress on STRIVE workstream 9 for the six month period from the start 

of the project (September 2013) to date. In brief, progress has been as initially expected: a thorough 

literature search has been performed on the topic area and initial progress has been made towards setting 

up the interfaces to the machine learning algorithm to enable the use of Modelica simulation. The 

overall aim of the work is to develop a car cabin comfort control system that, through machine learning, 

is optimised to provide a balance of thermal comfort and energy efficiency in the context of a physical 

thermal management system that not only blows hot and cold air but also heats and cools various surfaces 

including seats and the steering wheel. 

C.3 Publications in progress 

Patent: Reinforcement Learning-based Vehicle Thermal Comfort Control: Diana Hintea, 

James Brusey, Elena Gaura and Neil Beloe - approved. 

Journal: Reinforcement Learning-based Thermal Comfort Control for Car Cabins: Diana 

Hintea, James Brusey and Elena Gaura - to be sumitted to Applied Thermal Engineering. 

C.4 Presentations and demos 

‹ Skin Temperature Estimation Method for Car Cabin Comfort Control (September 2014) 

– ICINCO 2014 International Conference – Vienna, Austria 

‹ Comfort in Cars - Estimating Equivalent Temperature for Comfort Driven Heating, 

Ventilation and Air Conditioning (HVAC) Control (July 2013) – ICINCO 2013 International 
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Conference – Reykjavik, Iceland 

‹ Estimating Equivalent Temperature for Comfort Driven Heating, Ventilation and Air 

Conditioning (HVAC) Control (July 2013) – Coventry University Research Symposium (won 

2nd prize at the poster section) – Coventry, UK 

‹ Comfort in Cars: Estimating Comfort from Equivalent Temperatures (September 2012) 

– Southampton, Cambridge and Coventry Research Exchange – Coventry University, UK 

‹ Estimating Equivalent Temperature for Comfort Driven Heating, Ventilation and Air 

Conditioning (HVAC) Control (July 2012) – Demo and Poster at Jaguar Land Rover TechFair 

– Coventry, UK 

‹ Comfort in Cars: Estimating Comfort from Equivalent Temperatures (May 2012) – The 

Polish-British Workshop (won best paper award) – Wroclaw, Poland 

‹ Mutual Information based Sensor Positioning for Car Cabin Comfort (September 2011) 

– KES 2011 International Conference– Kaiserslautern, Germany 

‹ Mutual Information based Sensor Positioning for Car Cabin Comfort (September 2011) 

– Southampton, Cambridge and Coventry Research Exchange – Coventry University, UK 

‹ Skin Temperature Estimation Method for Car Cabin Comfort Control (May 2011) – 

Coventry Cambridge Research Exchange – Coventry, UK 

C.5 Conferences attended 

‹ 11th International Conference on Informatics in Control, Automation and Robotics 

(ICINCO) (September 2014) – Vienna, Austria 

‹ 10th International Conference on Informatics in Control, Automation and Robotics 

(ICINCO) (July 2013) – Reykjavik, Iceland 

‹ WiSIG: Advances in Wireless Sensor Networks for Hostile Environments (May 2012) – 

Derby, UK 

‹ The Polish-British Workshop (May 2012) – Wroclaw, Poland 

‹ 15th International Conference on Knowledge-Based and Intelligent Information & En-

gineering Systems (KES) (September 2011) – Kaiserslautern, Germanys 
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‹ WiSIG: Wireless Sensing for Smart Buildings (February 2011) – Coventry University, UK 

‹ WiSIG: Sensing Technology 2010 (September 2010) – Birmingham, UK 

Selected publications follow. 



Applicability of Thermal Comfort Models to Car Cabin Environments

Diana Hintea1, John Kemp1, James Brusey1, Elena Gaura1 and Neil Beloe2
1Coventry University, Priory Lane, Coventry, CV1 5FB, UK

2Jaguar Land Rover Ltd, Abbey Road, Whitley, Coventry, CV3 4LF, UK
{hintead, aa9384, j.brusey, e.gaura}@coventry.ac.uk, nbeloe@jaguarlandrover.com

Keywords: PMV, Thermal Comfort Model, HVAC Control, Skin Temperature

Abstract: Car cabins are non-uniform and asymmetric environments in relation to both air velocity and temperature.
Estimating and controlling vehicle occupant thermal comfort is therefore a challenging task. This paper fo-
cuses on evaluating the suitability of four existing thermal comfort models, namely the Predicted Mean Vote
(PMV), Taniguchi’s model, Zhang’s model and Nilsson’s model in a variety of car cabin conditions. A series
of comfort trials were performed ranging from controlled indoor trials to on-road driving trials. The outputs
of all four models were compared to the sensation index reported by the subjects situated in the driver seat.
The results show that PMV and Nilsson’s model are generally applicable for the car cabin environment, but
that they are most accurate when there is a small air temperature rate of change (of under 1.5 °C per minute),
giving correlation levels of 0.91 and 0.93 for the two models respectively. Taniguchi’s and Zhang’s models
were found unsuitable for all conditions, with correlation levels ranging between 0.03 and 0.60. Nilsson’s
model is recommended by the authors based on the level of agreement with the subjective reports, its ability
to estimate both local and overall thermal sensation and the smaller number of input parameters.

1 Introduction

Car cabins are environments with inherent non-
uniformity and asymmetry in both air velocity and
temperature fields. Steady-state trends can be encoun-
tered for journeys in excess of 15-20 minutes, how-
ever 85% of journeys are of shorter duration (Cistern-
ino, 1999). Predicting passengers’ thermal comfort
for efficient Heating, Ventilation and Air Condition-
ing (HVAC) control is therefore a complex problem.

More than forty years after its development,
Fanger’s Predicted Mean Vote (PMV) (Fanger, 1973)
remains the most used method for assessing occu-
pant thermal comfort in a range of environments.
Although designed specifically for use in buildings,
PMV continues to drive research into vehicle HVAC
control algorithms (Ueda and Taniguchi, 2000; Busl,
2011; Farzaneh and Tootoonchi, 2008). The main
reasons are the simplicity of measuring the air tem-
perature and humidity parameters, combined with the
ability to estimate the remaining parameters within
controlled tests. Nilsson (Nilsson, 2004) proposed
thermal comfort zones for 18 different body parts and
overall based on equivalent temperatures. Nilsson’s
model uses similar parameters with PMV (air temper-
ature, air flow, mean radiant temperature and clothing

index). However, the model has the advantage of es-
timating local thermal sensation, as well as overall.

Skin temperature is shown to be a good predictor
of local and overall thermal sensation in the state of
art (Bogdan, 2011; Wang et al., 2007). Taniguchi’s
model (Taniguchi et al., 1992) was designed for ve-
hicular applications and is based on face skin tem-
perature only. Zhang’s thermal sensation and comfort
model (Zhang, 2003), on the other hand, is a more re-
cent model developed with transient, inhomogeneous
environments in mind. The model, however, has been
criticized in the literature for having too many coeffi-
cients, for the limitations of the experimentation and
for the body part set-point temperature approach (Luo
et al., 2007). Moreover, no validation of these two
skin temperature based models within daily driving
scenarios or other typical conditions encountered in
vehicular environments exists in the literature.

Considering the above, this paper evaluates PMV,
Taniguchi’s model, Zhang’s model and Nilsson’s
model on empirical data gathered in a variety of car
cabin conditions, establishing whether they are suit-
able for comfort-oriented vehicular control.

The main contributions of this paper are: 1) illus-
trating the range of conditions in which these mod-
els could be applied to drive comfort-oriented HVAC



control algorithms and 2) establishing which of the
four thermal comfort models is a better match of cabin
occupant thermal comfort in typical vehicular condi-
tions based on gathered empirical data.

The paper is structured as follows: Section 2
presents an overview of the the four thermal com-
fort models. Section 3 describes the data gathering
methodology, focusing on the instrumentation used,
the participating subjects and the range of conditions
encountered in the car cabin. Section 4 presents the
results obtained when comparing the sensation index
corresponding to the four models with the subjects’
reported sensation. Finally, Section 5 concludes the
paper.

2 Background

Based on the review provided by Chenget
al. (Cheng et al., 2012), the following thermal com-
fort models were implemented and evaluated on the
data gathered: PMV, Taniguchi’s model, Nilsson’s
model and Zhang’s model. These thermal comfort
models are reviewed in (Alahmer et al., 2011; Cheng
et al., 2012; Orosa, 2009) and discussed in the follow-
ing subsections.

With regard to other models, Matsunagaet
al. (Matsunaga et al., 1993) adopted, for example, the
concept of Average Equivalent Temperature (AET) in
order to compute the PMV sensation index. The AET
is a surface area-weighted value for three body parts:
the head with a weight of 0.1, the abdomen with a
weight of 0.7 and the feet with a weight of 0.2. Be-
cause the end product is the PMV index, this tech-
nique is not evaluated in this paper. Also, the Berke-
ley advanced human thermal comfort model (Arens
et al., 2006) is used as a cabin occupant comfort es-
timator in multiple works. The virtual manikin in the
software model estimates occupant skin temperatures
and Zhang’s model uses the latter to calculate thermal
sensation and thermal comfort. As this paper is con-
cerned with empirical results rather than simulation,
only Zhang’s model is evaluated.

2.1 Predicted Mean Vote (PMV)

Fanger (Fanger, 1970) developed the PMV model
in 1967 based on thermo-regulation and heat bal-
ance theories. These theories are based on human
bodies employing physiological processes in order
to maintain a balance between the heat produced by
metabolism and the heat lost from the body. The PMV
index provides a score that corresponds to the Ameri-
can Society of Heating, Refrigerating and Air Condi-

Table 1: PMV thermal sensation index.

3 Hot
2 Warm
1 Slightly warm
0 Neutral
-1 Slightly cool
-2 Cool
-3 Cold

tioning Engineers (ASHRAE) thermal sensation scale
shown in Table 1 and it is defined as the average
thermal sensation felt by a large group of people in
a space. The PMV model combines four physical
variables (air temperature, air velocity, mean radiant
temperature and relative humidity) and two personal
variables (clothing insulation and activity level). The
mathematical equations used to derive the PMV index
are given in the ISO 7730 standard (ISO, 2005).

Fanger validated and refined the comfort equation
with data from other previous thermal comfort studies
combined with his own, summing to approximately
1400 participants. Fanger stated that the PMV model
should be used with care for indexes below−2 and
above+2 and that significant errors can appear in hot
environments. PMV’s main advantages are the stan-
dardisation of the implementation and that if some of
the constituent parameters cannot be measured, they
can be approximated without introducing a significant
error in the outputted PMV index.

However, PMV was never intended to be
applied in transient, inhomogeneous conditions.
Van Hoof (van Hoof, 2008) discussed PMV’s applica-
bility to transient conditions, concluding that there is
a lack of PMV assessment in transient environments
and that extensive research is still required. Also,
body parts experience local discomfort and thermal
sensation levels differ from each other and from the
overall sensation (Arens et al., 2006; Nakamura et al.,
2008). With the introduction of heated/cooled seats
and steering wheels the impact on individual body
part sensation is even higher. Therefore, a big disad-
vantage of the PMV model is that it is unable to dif-
ferentiate between sensations at different body parts,
which is an important capability in the case of vehic-
ular HVAC control systems.

2.2 Taniguchi’s model

Skin temperature is shown to be a good predictor of
local and overall thermal sensation in the state of art
(Bogdan, 2011; Wang et al., 2007), especially in case
of extremities such as face and hands. Taniguchiet
al. (Taniguchi et al., 1992) developed a multiple linear
regression model relating the average facial skin tem-



perature and its rate of change to the Overall Thermal
Sensation (OTS) in a vehicle environment. The model
was proposed based on a series of human subject tests
and OTS is calculated as:

OTS= 0.81(Tf −33.9)+39.1
dTf

dt

whereTf is the face skin temperature and
dTf
dt is the

face skin temperature rate of change.
A significant disadvantage of this model is not tak-

ing into account that the thermal sensation of body
segments other than the face also impact the overall
body thermal sensation. Moreover, it does not allow
the computation of local thermal sensation.

2.3 Zhang’s model

Zhang (Zhang, 2003) developed local and over-
all thermal sensation and comfort models tar-
geted at transient, non-uniform conditions. Unlike
Taniguchi’s model, Zhang’s models are based on skin
temperatures at multiple sites along with core temper-
ature, if available. A nine point analogue scale (shown
in Table 2) is used for expressing thermal sensation.
Experimental tests were carried out at UC Berkeley,
with subjects placed into chambers of uniform tem-
perature and with heated or cooled air applied indi-
vidually to 19 separate body areas. The tests were
carried out in a climate-controlled chamber, consist-
ing of both cold and hot test cases. Throughout these
tests, subjects were allowed to adjust the HVAC set-
tings to their preference. Skin temperature was mea-
sured at 19 locations using thermocouples, while core
temperature was measured using an ingestible tem-
perature device. Local and overall sensation equa-
tions were developed, using the measured skin tem-
perature, mean skin temperature and core tempera-
ture along with subjective reports. Zhang validated
the model against subjective reports and acceptable
results were obtained. The coefficient of determina-
tion (R2) for the overall sensation model was 0.95 and
the standard deviation of residuals was 0.54.

Luo et al. (Luo et al., 2007) criticize the model,
citing that “the mathematical model is not practicable
as it is limited by having too many coefficients, and
because of the experiment’s limitation, the regression
analysis result cannot be assured either”. Further-
more, they criticize the body part set-point tempera-
ture approach of the model. Also, Chenget al. (Cheng
et al., 2012) points out that during the experiments,
they focused more on cooling local body parts in
warm environments than on warming local body parts
in cool environments. In addition, the influence of lo-
cal stimulation duration and intensity were not var-

Table 2: Zhang’s thermal sensation scale.

4 Very Hot
3 Hot
2 Warm
1 Slightly Warm
0 Neutral
-1 Slightly Cool
-2 Cool
-3 Cold
-4 Very Cold

ied in the test. Moreover, no validation of the model
within daily driving scenarios or other typical condi-
tions encountered in vehicular environments exists in
the literature. The main advantage of Zhang’s model
over PMV is its ability to determine local sensation
indexes.

2.4 Nilsson’s model

Nilsson (Nilsson, 2004) proposed clothing indepen-
dent thermal comfort zones for 18 different body parts
based on equivalent temperatures. Equivalent temper-
ature is formally defined as the uniform temperature
of an imaginary enclosure with air velocity equal to
zero in which a person will exchange the same dry
heat by radiation and convection as in the actual non-
uniform environment (Nilsson and Holmer, 2002).
Equivalent temperature can be computed based on en-
vironmental parameters such as air temperature, mean
radiant temperature, air flow and clothing index or
it can be directly measured with appropriate instru-
ments, such as dry heat loss transducers for exam-
ple (Nilsson and Holmer, 2002). Once the equivalent
temperature is calculated, the local or overall thermal
sensation level can be estimated using the diagrams
in Figure 1. Nilsson developed this model through
experimentation.

A gap in the literature that this paper responds to
is the lack of empirical evaluation of the thermal com-
fort models presented within vehicular environments
in order to establish whether any of them is suitable
for comfort-oriented HVAC control. According to the
authors’ knowledge, no empirical data based evalua-
tion of these models in vehicular environments exists
in the state of art.

3 Methodology

In order to address this lack of empirical evalua-
tion, car cabin data and subjective comfort readings
were gathered over a wide range of experimental con-



Figure 1: Nilsson’s clothing independent thermal sensationdiagrams (Nilsson, 2004).

Table 3: Subject details.

Subject Gender Age Height (cm) Weight (kg)
1 Male 46 173 78
2 Female 37 157 73
3 Male 56 166 70
4 Male 49 178 75
5 Female 24 162 48
6 Male 26 176 77
7 Female 34 160 55

ditions. This section provides a description of the par-
ticipating subjects in the comfort trials, the instrumen-
tation used and the variety of conditions encountered
throughout the trials.

3.1 Participating subjects

Seven adults (four males and three females) were se-
lected as experimental subjects. Their ages were be-
tween 24 and 56 years old, with heights between
1.57 cm and 1.78 cm and weights between 48 kg and
78 kg, as presented in Table 3. The subjects occu-
pied the driver seat and were asked by the observer
in the right-hand rear passenger seat for their overall
thermal sensation throughout the experimental trials
(as detailed in Section 3.3). The thermal sensation
scale used was the ASHRAE seven point scale (coin-
cides with the PMV scale) shown in Table 1. Cloth-
ing was standardised across all trials and subjects,
consisting of long trousers and a short-sleeved, light-
coloured shirt or blouse, corresponding to a clothing
index value of 0.7.

3.2 Measured variables

Throughout all trials, equivalent temperature was
monitored at eight locations (corresponding to head,
chest, left lower arm, right lower arm, left upper arm,
right upper arm, thigh and calf) using the INNOVA
Flatman support manikin, shown in Figure 2 (right)
and the associated INNOVA 1221 thermal comfort
data-logger. Throughout the trials, the Flatman was
positioned in the front passenger seat, continuously
calculating equivalent temperature via the dry heat
loss sensors and computing the PMV thermal sensa-
tion level. Cabin air and surface temperature data was
gathered from 19 points using type K thermocouples
and was recorded by a Grant Instruments DataTaker
DT85 data logger. Near-body air temperature and rel-
ative humidity were measured at eight points (close
to the neck, wrist, chest, thigh and calf locations)
using type T thermocouples and Honeywell S&C
HIH-5031 humidity sensors and also recorded by a
SQ2040 data-logger. Solar loading at the driver sun-
roof location was measured using automotive solar
sensors and recorded by a Grant Instruments Squirrel
SQ2040 data-logger. The driver’s center and outboard
face vent air temperatures were monitored using type
K thermocouples and recorded by the SQ2040 data-
logger. Finally, subject skin temperature was also
monitored at eight points (neck, left and right wrist,
chest, left and right thigh and left and right calf) using
Grant Instruments EUS-UU-VL2-0 thermistors and
recorded by the SQ2040 data-logger.

3.3 Experimental procedure

The trials were performed from the 8th to the 29th of
August 2011. The test car used was a Jaguar XJ (2010



Figure 2: Experimental data gathering. Left: Mean radi-
ant temperature sensor. Right: Upper body of the Flatman
thermal manikin.

model year). Three types of trials were performed,
with 78 trials in total, as described in the following
sections.

3.3.1 Variable cabin temperatures within steady
state external conditions (T1)

These trials were performed within an enclosed space
in order to eliminate wind and precipitation effects.
Both the subjects and the test car were preconditioned
for 20 minutes to 22 °C. At the outset of the experi-
ment the subject, occupying the driver seat, remained
in static conditions for 10 minutes. The temperature
was then increased by 1 °C every 3 minutes until it
reached 28 °C. The subject then left the car, which
was again conditioned to 22 °C. After the subject re-
turned, they again remained in static conditions for 10
minutes. Then the temperature was decreased by 1 °C
every 3 minutes until it reached 16 °C. The air flow
from the HVAC system was set to high or medium
settings. During the static conditions, the subject re-
ported thermal sensation and comfort at the 5, 7, and
9 minute marks and one minute before each tempera-
ture change when the HVAC set point was varied.

These trials are characterized by the following
conditions: 1) absolute average car cabin temperature
rates of change peaking at around 1.5 °C per minute,
but usually under 1 °C per minute; 2) precondition-
ing of the cabin and subject at the same temperature;
3) no precipitation or wind effects; 4) steady ambient
temperature (between 19 °C and 24 °C ) varying by
less than 1 °C within an individual trial.

3.3.2 User control with steady state external
conditions (T2)

These trials were performed within an enclosed space.
The car and the subjects were preconditioned to a neu-
tral (22 °C), hot (28 °C), or cold (16 °C) tempera-
ture. The subjects entered the car and remained inside
for 15 minutes time, during which they were permit-
ted to adjust the air conditioning at will in order to

make themselves more comfortable. The control ad-
justments they made were logged in addition to the
previously described parameters. Thermal comfort
and sensation was reported every two minutes, with
the first report being at the start of the test.

These trials are characterized by the following
conditions: 1) absolute average car cabin temperature
rates of change peaking at 8 °C per minute; 2) precon-
ditioning of the cabin and subject at the same temper-
ature; 3) no precipitation or wind effects; 4) steady
outside temperature (between 17 °C and 25 °C) vary-
ing by less than 1 °C within an individual trial.

3.3.3 User control in driving conditions (T3)

These trials are similar to the previous ones (T2), ex-
cept that the subjects drove the car on private roads
and there was no additional solar loading applied be-
yond that naturally falling on the car. Drivers were
required to turn and change speed at frequent inter-
vals in order to simulate to an extent the daily driv-
ing routine. This provided a comparison against the
baseline established in the previous type of trials, as
it was expected that the acceptable temperature range
would widen as the driver was required to concen-
trate on driving. Thermal comfort and sensation was
reported every two minutes, with the first report being
at the start of the test.

These trials are characterized by the following
conditions: 1) absolute average car cabin temperature
rates of change peaking at 10 °C per minute; 2) pre-
conditioning of the cabin and subject at the same tem-
perature; 3) ambient solar load and wind; 4) ambient
outside temperature (between 12 °C and 28 °C) vary-
ing by less than 2 °C within an individual trial.

The first set of trials were aimed at determining
the extents of passenger thermal comfort with no ex-
treme conditions, while the second set offered infor-
mation on what control adjustments were required
in order for the cabin occupants to feel comfortable
and how quickly thermal neutrality was reached. The
third set of trials aimed to capture the comfort ranges
during daily driving and therefore with the subject
less focused on their comfort. Altogether, the mul-
titude of conditions (solar load, stationary or driving,
different blower speeds, different initial temperatures)
allowed a thorough evaluation of the validity of the
selected thermal comfort models. Table 4 provides a
summary of the trials performed.

Throughout the three sets of trials, the Flatman
was positioned in the front passenger seat, with the
subject occupying the driver seat. In order to ensure a
valid comparison between the thermal sensation com-
puted/reported by the two sides the following were
ensured: 1) the front passenger vent and driver vent



Table 4: Summary of the experimental conditions in all trials.

Trial Duration (mins) Blower speed Solar load Driving Pre-conditioning Subjects
T1 56 High or Medium Controlled No 22 °C 7
T2 15 User Controlled No 16 °C, 22 °C or 28 °C 7
T3 15 User Ambient Yes 16 °C, 22 °C or 28 °C 6

had the same orientation and delivered the same set-
point temperature; 2) both the test car (with the Flat-
man inside) and the driver were preconditioned to the
same temperature prior to each trial.

4 Results

This section provides an evaluation of the four
thermal comfort models based on the gathered data
described in Section 3. The purpose is to establish
whether they can accurately predict car cabin occu-
pant thermal sensation in any of the conditions in or-
der to be used for comfort based HVAC control. For
this purpose the overall thermal sensation reports of
the drivers were compared to i) the PMV index as
computed by the Flatman, ii) Zhang’s index computed
from the measured skin temperatures, iii) Taniguchi’s
index computed from the measured facial skin tem-
perature and iv) Nilsson’s index computed from the
measured average body equivalent temperature.

PMV is widely used for car cabin comfort
based HVAC controllers (Busl, 2011; Farzaneh and
Tootoonchi, 2008). The reason is the simplicity of
estimating the PMV index. However, does PMV ac-
tually reflect the reported sensation levels of the occu-
pants? Table 5 presents the correlation coefficient and
the determination coefficientR2 between the subjec-
tive and experimental data for all models. The corre-
lation coefficient quantifies the degree of correlation
between two variables, while theR2 coefficient indi-
cates how well data points fit the linear regression.
The p-value for a regression gives the probability that
the result is not derived by chance. For all results pre-
sented, the p-value is smaller than the threshold (p <
0.001) and the results are therefore significant.

In the case of PMV, the highest level of agree-
ment corresponds to trialsT1,with a correlation index
of 0.91. The high correlation is somewhat expected
due to the stable conditions encountered throughout
trials T1 (interior temperature rates of change less
than 1.5 °C per minute, stable outside temperature
and no wind or precipitation). The experimental data
matches less accurately the subjective reports in trials
T2 andT3. The correlation index between the two is
0.76 forT2 and 0.78 forT3. Overall Flatman’s PMV
tended towards colder reports than the subjective re-

ports. For example, forT1, drivers reported thermal
sensations of up to 4 (corresponding to “very hot”),
whereas Flatman’s PMV did not go beyond 3 (corre-
sponding to “hot”).

The results indicate that PMV can be applied in
vehicle cabins to infer passenger comfort within a
limited set of conditions, however the model brings
forward another important issue in this type of envi-
ronment, the inability to differentiate between differ-
ent parts of the body. Due to the non-uniform nature
of the environment, the difference in thermal sensa-
tion over small distances is considerable and so effec-
tive HVAC control should be able to warm up or cool
down separately different body parts.

With PMV’s accuracy limited to a narrow range of
conditions, the authors further investigated two skin
temperature based models: Taniguchi’s model and
Zhang’s model. For Taniguchi’s model, as Table 5
illustrates, the highest level of agreement corresponds
to trials T1, with a correlation index of 0.56, while
in trials T2 andT3 the match is poor, with correla-
tion indexes of 0.03 and 0.15, respectively. Face skin
temperature seems to have a higher impact on over-
all thermal sensation when the rate of change of air
temperature is low (less than 1.5 °C per minute), as
suggested by the higher correlation for trialsT1. As
Taniguchi’s model was developed only with respect
to facial skin temperature, it is further interesting to
see if Zhang’s model improves on this by taking into
consideration 8 different body parts.

Zhang’s model was developed, like Taniguchi’s,
for transient environments such as car cabins. Dur-
ing experimentation, skin temperature was sampled
at only 8 sites, compared to the 19 sites specified by
Zhang. This is justified by the fact that within real-
time vehicular comfort control, it would be infeasible
to monitor skin temperature at all locations specified
by Zhang. However, in order to ensure that the sum
of skin temperature segment weights is 1, the weights
for the contribution of local thermal sensations to the
overall sensation were normalised. Mean skin tem-
perature was calculated as a proxy for core tempera-
ture (this approach being suggested by Zhang). The
body part skin temperatures recorded at the beginning
of each trial were used as the set point temperatures of
the body segments in the model. As table 5 shows, the
correlation levels are poor: 0.10 forT1, 0.50 forT2
and 0.60 forT3. As it stands, for trialsT1, facial skin



Table 5: Statistic metrics between the models’ thermal sensation index and the reported sensation.

PMV Taniguchi Zhang Nilsson
Type Correlation R2 Correlation R2 Correlation R2 Correlation R2

T1 0.91 0.85 0.56 0.32 0.10 0.0001 0.93 0.86
T2 0.76 0.57 0.03 0.001 0.50 0.25 0.77 0.59
T3 0.78 0.61 0.15 0.02 0.60 0.35 0.79 0.62

temperature alone proved to be a better estimator than
the combination of 8 different body parts. The perfor-
mance of the two skin temperature based models does
not appear to be sufficient to support vehicular HVAC
comfort control.

In order to compute the overall thermal sensation
index of Nilsson’s model, the equivalent temperature
at 8 different body parts was averaged based on body
area weights. Once the average equivalent temper-
ature is computed, the overall thermal sensation in-
dex can be found from Figure 1, using the diagram
corresponding to light clothing (the participants wore
light clothing throughout the experiments). Nilsson’s
model had a similar performance to the PMV model.
The highest level of agreement with the subjective re-
ports corresponds to trialsT1,with a correlation index
of 0.93. For trialsT2 andT3, the correlation index
is lower, of 0.77 and 0.79, respectively. The simi-
lar performance is somewhat expected, because Flat-
man’s PMV index is also based on the measured aver-
age equivalent temperature. The advantage Nilsson’s
model has over PMV is that local thermal sensation
can also be computed and used for control.

5 Conclusions and discussion

In this paper we evaluated the applicability of four
thermal comfort models, namely PMV, Taniguchi’s
model, Zhang’s model and Nilsson’s model in a range
of conditions specific to cars. A first step towards this
aim was to design experimental trials covering a wide
range of conditions: with preconditioning of the oc-
cupants and cabin at different temperatures, with or
without ambient solar load, wind and precipitations,
with steady or varying outside ambient temperature
and with different temperature rates of change within
the cabin.

Based on the experimentally gathered data, the
PMV index and Nilsson’s index accurately matched
(with correlations of 0.91 and 0.93, respectively) the
occupant reported thermal sensation within a limited
set of conditions: preconditioning of the passenger
and the cabin at the same temperature, a steady out-
side temperature and low rates of change of the in-
terior temperature (lower than 1.5 °C per minute).

Higher interior temperature rates of change (up to
9 °C per minute), ambient solar load and wind leads
to lower correlation factors, between 0.76 and 0.79.

The overall sensation computed using the two
skin temperature based thermal comfort models
(Taniguchi’s model and Zhang’s model) poorly
matched the subjective reports throughout all trial
types (correlations between 0.10 and 0.60). Overall,
the two skin temperature based models appear to have
little success and their accuracy is not sufficient to
support vehicular HVAC comfort control.

Capitalizing on our findings, Nilsson’s model is
recommended by the authors in preference to the
other three models for vehicular comfort oriented
control. The model provided similar results to PMV.
However, an important advantage Nilsson’s model
has over PMV is its ability to estimate local ther-
mal sensation, which the authors see as an impor-
tant capability for the new generation of vehicular
HVAC control systems. Moreover, Nilsson’s model
only requires two input parameters—equivalent tem-
perature and clothing index—rather than six parame-
ters in PMV’s case, some of which could not feasibly
be determined by an automated system.

The deviation between the Flatman’s PMV out-
put and the subjective responses may be because the
subjects were in contact with the seat and the steer-
ing wheel whereas the Flatman’s dry heat loss sen-
sors were not. This could be confirmed via further
experimentation. Another related avenue for future
work is in regard to heated/cooled seats and steering
wheels. These are becoming more widespread and
will clearly have an impact on thermal sensation and
comfort, which should be evaluated through empirical
work.

It is known that no thermal comfort model can
provide a perfect match for what people feel. The
description of PMV, for example, acknowledges that
any given environment will leave at least 5% of peo-
ple dissatisfied. One reason is the subjective nature of
thermal sensation and comfort in terms of how they
are felt and, also, how they are reported. However,
adopting Nilsson’s model as a basis for estimating oc-
cupant comfort control and further integrating online
learning within the car for tuning individual prefer-
ences would lead to a more thermally comfortable ve-
hicular environment.
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Abstract: Equivalent Temperature is generally considered an accurate predictor for thermal comfort in car cabins. How-
ever, direct measurement of this parameter is impractical in fielded applications. The paper presents an em-
pirical, multiple linear regression based approach for estimating body segment equivalent temperatures for car
cabin occupants from different sensors within the car. Body part equivalent temperature at eight segments and
cabin sensor data (air temperature, surface temperature, mean radiant temperature, humidity and solar load)
was gathered in a variety of environmental and cabin conditions. 38 experimental hours of trials in a con-
trolled environment and 26 experimental hours of realistic driving trials were used for training and evaluating
the estimator’s performance. The estimation errors were on average between 0.5 °C and 1.9 °C for different
body parts for trials within a controlled environment, while for trials in realistic driving scenarios they ranged
between 1 °C and 2 °C. This demonstrates that passenger body part equivalent temperature can be estimated
using a multiple linear regression from environmental sensors and leads the way to comfort driven Heating,
Ventilation and Air Conditioning control.

1 Introduction

Car buyers expect that climate control systems
will make them comfortable. In order to control com-
fort and not merely climate temperature, one must
first be able to estimate it. Estimating comfort, how-
ever, is acknowledged to be a difficult task given that
the cabin is a rapidly changing environment, non-
uniform with respect to parameters such as air tem-
perature, air velocity and solar load. Furthermore,
current Heating, Ventilation and Air Conditioning
(HVAC) systems are power hungry and thus not well
suited to electric vehicles as they may substantially
reduce the vehicle’s range.

In order to enable efficient control we need a
better understanding of the relationships between
environments and perceived comfort levels. Prior
work established that Equivalent Temperature (ET)
can be an accurate predictor for comfort (Mayer
and Schwab, 1999), (Curran et al., 2010), (Mola et
al., 2004). Dry heat loss transducers allow in-field
calculation of ET (Madsen et al., 1986), however they
are too large and costly to be used in a production car.
An alternative approach is clearly needed.

In this paper, we propose a method for estimat-
ing ET at several body locations for cabin occupants,
based on easily measured cabin variables, such as
air temperature and mean radiant temperature. The
method requires only a small number of cheap sen-
sors placed within the car and accounts for the dy-
namic nature of the cabin environment. The method
can be used to perform estimation in real-time and is
intended to lead to high performance HVAC control
systems which can be optimized for energy usage in
low carbon vehicles.

The main contributions of this paper are: 1) to
demonstrate an ET estimation method that requires
non-expensive and non-intrusive sensors, 2) optimi-
sation of the estimation method through sensor lo-
cation selection based on Mutual Information and
3) validation of the method on data gathered in a vari-
ety of conditions, from controlled trials in stable envi-
ronments to daily driving trials. Although the results
here are specific to environmental conditions found
within car cabins, the method itself is applicable to
other environments, given appropriate empirical data.

The paper is structured as follows: Section 2 re-
views related work in the area of remote estimation



of a range of parameters. Section 3 describes the ex-
perimental data sets gathered for evaluation purposes,
while Section 4 presents the multiple linear regres-
sion ET estimation method. Section 5 presents the
results obtained through training and testing the esti-
mator. Finally, Section 6 concludes the paper.

2 Related Work

Traditionally, vehicle HVAC systems control
cabin air temperature and humidity to a target set-
point. However, it has long been established that
thermal comfort is influenced by a variety of fac-
tors in addition to air temperature, such as mean ra-
diant temperature, relative air velocity, relative hu-
midity, metabolic rate and clothing thermal resis-
tance (Fanger, 1973), (Gagge et al., 1967). More-
over, it is known that occupants feel comfortable over
a range of temperatures rather than at one specific
temperature (Fanger, 1973), (ANSI/ASHRAE, 2004),
(Singh et al., 2010). Estimating the level of passen-
ger comfort allows generating the exact amount of
energy needed, instead of wasting additional energy
by warming-up or cooling-down the whole cabin to
a certain set-point temperature. It can therefore be
concluded that the traditional approach is not opti-
mal with regards to ensuring comfort and energy ef-
ficiency. This indicates that in order to develop im-
proved HVAC control algorithms, there is a need to
1) sense more than just air temperature and 2) utilise
thermal comfort estimates for cabin occupants in the
control feedback loop.

ET is formally defined as the uniform tempera-
ture of the imaginary enclosure with air velocity equal
to zero in which a person will exchange the same
dry heat by radiation and convection as in the actual
non-uniform environment (SAE Journal, 2012). In-
tuitively, ET corresponds more closely to the human
sensation of environmental temperature than air tem-
perature alone. ET is an accurate predictor for ther-
mal comfort (Mayer and Schwab, 1999), (Curran et
al., 2010), (Mola et al., 2004), which integrates the ef-
fect of air temperature, mean radiant temperature and
relative air velocity. However, its direct measurement
can be intrusive, expensive and bulky. An alternative
to measuring ET is to estimate it from measurements
made at more convenient locations.

A variety of learning based models have been cre-
ated for the remote estimation of several parameters
in different environments. Mehnert et al. (2000), for
example, used a multiple linear regression to estimate
average skin temperature from parameters such as air
temperature, mean radiant temperature, air velocity,

metabolic rate, rectal temperature and partial vapour
pressure. Buller et al. (2010) developed an estima-
tor of human core body temperature using Kalman
filters, with only heart rate as input. Lee (2007) de-
veloped an artificial neural network for car cabin air
temperature prediction from 17 inputs, such as direct
sun intensity, air temperature outside the car, outside
air velocity and ventilation temperature.

Similar to the work presented in this paper, Mola
et al. (2001) developed an ET estimation model that
can be used to control the car cabin environment. A
series of trials in a controlled environment were per-
formed to identify the estimator, during which a ther-
mal manikin occupied the driver seat and measured
overall ET. The cabin air temperature, HVAC outlet
air temperature, external air temperature and mean ra-
diant temperature were also recorded. Of these mea-
sured parameters, mean radiant temperature, HVAC
outlet air temperature and air velocity were found to
allow the best estimate of ET. A linear mathemati-
cal expression was inferred for estimating ET. The
method was only assessed qualitatively and it was
concluded to successfully drive HVAC control. A
downside of this method is the fact that only one sen-
sor was used to measure the cabin temperature, while
different air temperature sensor locations within the
cabin can increase the estimator’s accuracy (Hintea et
al., 2011). Moreover, the data used for training and
testing the system came from controlled trials, leav-
ing open the question of how well it would perform in
realistic driving scenarios.

There are several gaps in the state of the art that
this paper tries to fill: 1) using a large number of sen-
sors for data gathering as this enables optimisation of
sensor location (Hintea et al., 2011) and leads to a
more efficient estimator, 2) validating the estimator
on data gathered in a variety of conditions, not only
in stable, controlled environments and 3) quantifying
the ET estimation error for multiple occupant body
parts, rather than overall.

3 Experimental Data Gathering

The training and testing of the algorithm im-
plemented here was based on experimentally gath-
ered car cabin data within a variety of conditions.
Throughout all 113 trials, ET was monitored at eight
locations (corresponding to head, chest, left lower
arm, right lower arm, left upper arm, right upper arm,
thigh and calf) using the INNOVA Flatman thermal
manikin, shown in Figure 1 (right), positioned in the
front passenger seat of the test car. Cabin air and sur-
face temperature data was gathered using type K ther-



Figure 1: Experimental data gathering. Left: Mean radi-
ant temperature sensor. Right: Upper body of the Flatman
thermal manikin.

mocouples and was recorded by a Grant Instruments
DataTaker DT85 data logger.

Surface temperature was collected at the follow-
ing locations: left and right instrumentation panel,
steering wheel, front row passenger seat back and seat
cushion, back row left seat back and seat cushion,
left and right windscreen, front row left and right side
glazing and back row left side glazing. Air tempera-
ture was collected at the following locations: external
temperature, front row left and right headrest, front
row belt, front row left and right foot, back row left
and right headrest, back row belt, back row left and
right foot. HVAC vent discharge temperature was col-
lected at the following locations: front row left inner
face vent, front row left out face vent, back row left
face vent. A total of seven subjects (four males and
three females) occupied the driver seat in turn and an
observer occupied the rear right seat.

Four types of trials were performed corresponding
to two main categories, as described in Sections 3.1
and 3.2.

3.1 Controlled environment trials

The trials described in Sections 3.1.1 and 3.1.2 in-
volve controlling the external environment (solar
load, ambient temperature, wind) while varying the
HVAC control.

3.1.1 Variable cabin temperatures within steady
state external conditions (T1)

These trials were performed within an enclosed space,
characterized by stable ambient air temperature. Both
the subjects and the test car cabin were precondi-
tioned to 22 °C. At the outset of the experiment the
subject entered the car and remained in static con-
ditions (same HVAC set-point) for 10 minutes. The
temperature was then increased by 1 °C every 3 min-
utes until it reached 28 °C. The same trial was per-
formed with the HVAC set-point decreased by 1 °C
every 3 minutes until it reached 16 °C. The air flow
from the HVAC system was set to high or medium
settings and trials with and without simulated solar

loading on the driver side of the car were performed.
The conditions are characterized by interior tempera-
ture rates of change less than 1.5 °C per minute, sta-
ble outside temperature (less than 1 °C difference per
trial) and no wind or precipitation.

3.1.2 User control within steady state external
conditions (T2)

These trials were performed within an enclosed space,
characterized by stable ambient air temperature. The
car cabin and the subjects were preconditioned to a
neutral (22 °C), hot (28 °C), or cold (16 °C) tempera-
ture. The subjects entered the car and remained inside
for 15 minutes, during which they were permitted to
adjust the air conditioning at will in order to make
themselves more comfortable. These trials were per-
formed both with and without simulated solar loading
on the driver side of the car. Higher car cabin interior
temperature rates of change were encountered (up to
7 °C per minute) with stable outside temperature (less
than 1 °C difference per trial) and no wind or precipi-
tation.

3.2 Realistic driving trials

The trials described in Sections 3.2.1 and 3.2.2 were
aimed at providing realistic driving scenarios within
both short and long trips. They involve no control
over the external environment (solar load, ambient
temperature, wind) while varying the HVAC control.

3.2.1 User control during driving within short
trips (T3)

These trials consisted of subjects driving the test car
on private roads. The car and the subjects were pre-
conditioned to a neutral (22 °C), hot (28 °C), or cold
(16 °C) temperature. The subjects entered the car and
drove for 15 minutes, during which they were per-
mitted to adjust the air conditioning at will in order
to make themselves more comfortable. The subjects
were required to turn and change speed at frequent
intervals in order to simulate to an extent the daily
driving routine. These trials were characterized by
interior temperature rates of change of up to 6 °C per
minute and less stable outside temperature (up to 3 °C
difference per trial), alone with ambient wind, solar
load and precipitation.

3.2.2 Automatic and user control during driving
within long trips (T4)

These trials consisted of a five day road-trip through-
out the UK in a test vehicle. On each day there were



four trials, lasting around 2 hours each and differenti-
ated by the HVAC control mode: automatic mode at
20 °C, automatic mode at 22 °C, automatic mode at
24 °C and manual mode. The car cabin instrumen-
tation consisted of the sensors used for the previous
three types of trials and an additional set of sensors:
mean radiant temperature collected at a center ceiling
location, shown in Figure 1 (left); solar load, collected
at locations corresponding to dashboard left and right
and at the car centre; air temperature, collected at
locations corresponding to dashboard left and right.
The experimental conditions encountered are charac-
terized by interior temperature rates of change of up
to 5 °C per minute and external temperature differ-
ences up to 5 °C per trial, along with ambient wind,
solar load and precipitation.

Experiment types will be referred in the paper by
the T1, T2, T3 and T4 abbreviations.

4 Equivalent Temperature
Estimation Method

Data Gathering

Model training

Mutual Information
based sensor selection

In-vehicle
online validation

Data set
offline validation

Cabin sensor data

Equivalent temperature
at several body
 part locations

Figure 2: Equivalent temperature estimation method train-
ing and validation.

This section describes the method developed to es-
timate ET at different body part locations from one or
more sensors located within the cabin (shown in Fig-
ure 2). The first step of the method consists of data
gathering (described in detail in Section 3). Build-
ing an accurate ET estimation model also relies on
the selection of an appropriate set of sensors within
the car cabin. Here the sensors are selected through a

Mutual Information (MI) based method (described in
more detail in Hintea et al., 2011).

Given n sensors within the cabin, S1,S2, ...,Sn, and
Teq the ET to be estimated, the MI between them,
I(Teq;S1, ...,Sn), can be written as:

I(Teq;S1, ...,Sn) = H(Teq)−H(Teq|S1, ...,Sn).

The conditional entropy H(Teq|S1, ...,Sn) can be
computed as following:

H(Teq|S1, ...,Sn) = H(Teq,S1, ...,Sn)−H(S1, ...,Sn),

where H(Teq,S1, ...,Sn) is the joint entropy for the
n+1 sensors, while H(S1, ...,Sn) is the joint entropy
for the n sensors used for the estimation.

Finally, MI can be defined as:

I(Teq;S1, ...,Sn) =
H(Teq)+H(S1, ...,Sn)−H(Teq,S1, ...,Sn)

The group of m sensors (m = 2 within this paper)
that shares the highest MI with the ET over all body
parts is selected by maximising the MI over the eight
body parts. It should be noted that the sensor locations
selected may vary from one vehicle to another.

Multiple Linear Regression (MLR, Draper and
Smith, 1981) lies at the core of the ET estimator. The
MLR model suitable for this application can be writ-
ten as:

Teq = α0+α1S1+α2S2+ ...+αmSm, where Teq is
the body part ET being estimated, α0, ...,αm are the
regression coefficients and S1, ...,Sm are the sensors
previously selected. Training data gathered from the
experimental trials described in Section 3 is used to
compute the regression coefficients. Due to using
k-fold cross validation to evaluate the performance
of the estimator, training was performed on k-1 data
chunks of the input data set, while testing was per-
formed on the remaining data chunk. This model can
be used in a deployed system by continuously esti-
mating the Teq values from real-time measured sensor
values S1, ...,Sm.

Several other estimation methods have been ap-
plied, such as Multilayer Perceptron (Haykin, 1998),
REPTree (Witten and Frank, 2005), K-Nearest Neigh-
bour (Cover and Hart, 1967), Multivariate Adaptive
Regression Splines (Friedman, 1991), Radial Basis
Function network (Haykin, 1998) and Random For-
est (Breiman, 2001). MLR was the third in terms of
accuracy, after the Multilayer Perceptron and Multi-
variate Adaptive Regression Splines methods, how-
ever, MLR outperformed the latter in terms of model-
ing and processing time, while the extra small gain in
accuracy is not of significant impact (a lower average
error of 0.10 °C on a 5 °C to 35 °C range) .



5 Evaluation of the Method on
Experimental Data

K-fold cross validation was used to evaluate the
estimator’s performance, both on the full set of exper-
imental data and on separate sets of trials in order to
observe the best/worst scenario, indicating how well
the algorithm generalizes to unseen data. The outputs
of the estimator were compared to the original mea-
sured ET and the Root Mean Square Error (RMSE)
was used as an accuracy measure.

5.1 Controlled environment trials

The MI sensor selection procedure was performed to
determine the pair of sensors giving the lowest ET es-
timation errors over all body parts for trial sets T1 and
T2. The sensors selected were the surface temperature
sensor located at the back row left seat back and the
air temperature sensor located at the back row right
headrest level.

As Table 1 shows, the lowest estimation errors
were obtained for the trial set T1, ranging from 0.5 °C
for the thigh to 1.3 °C for the head, averaging 1 °C
over all eight body parts. The estimation errors were
higher for the trial set T2, averaging 1.5 °C and rang-
ing from 1.3 °C for the chest to 1.9 °C for the up-
per arm. The higher error for the latter could be due
to significantly higher car cabin temperature rates of
change (up to 7 °C per minute). Figures 3 and 4
show the measured versus estimated ET at the head
and thigh level within one trial of T1 and T2 (starting
from 28 °C and with the HVAC flow set on medium).

Table 1: Equivalent temperature estimation results (RMSE)
from the best two sensors in trials T1 and T2.

Equivalent Trial type
temperature T1 T2

head 1.33 °C 1.71 °C
chest 0.95 °C 1.38 °C

lower arm 1.05 °C 1.59 °C
upper arm 0.96 °C 1.92 °C

thigh 0.53 °C 1.51 °C
calf 1.28 °C 1.44 °C

average 1.02 °C 1.59 °C

5.2 Realistic driving trials

The pair of sensors corresponding to the lowest es-
timation errors for trial set T3 was the same as for T1
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Figure 3: Estimated versus measured equivalent tempera-
ture at the head and thigh level during one trial of T1.
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Figure 4: Estimated versus measured equivalent tempera-
ture at the head and thigh level during one trial of T2.

and T2. However, as Table 2 shows, the estimation er-
rors were higher than for the previous types of trials,
averaging 1.9 °C over all body parts and ranging from
1.4 °C for the calf to 2.5 °C for the head. The rea-
sons for this could be the high car cabin temperature
rates of change (up to 6 °C per minute) and variable
external conditions, such as solar load, precipitation



Table 2: Equivalent temperature estimation results (RMSE)
from the best two sensors in trials T3 and T4.

Equivalent Trial type
temperature T3 T4

head 2.5 °C 1.44 °C
chest 1.63 °C 1.42 °C

lower arm 2.32 °C 1.29 °C
upper arm 2.01 °C 1.37 °C

thigh 1.63 °C 1.06 °C
calf 1.47 °C 2.08 °C

average 1.93 °C 1.44 °C
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Figure 5: Estimated versus measured equivalent tempera-
ture at the head and thigh level during one trial of T3.

and air temperature.
Among other parameters, ET integrates the effect

of mean radiant temperature. The latter was measured
within trial set T4 and was found to relate best to ET.
The pair of sensors giving the lowest estimation errors
were the mean radiant temperature sensor and the air
temperature sensor located at the front row right belt
level. The estimation errors for T4 were lower than
for T3, most likely due to using the mean radiant tem-
perature as an estimation source. They average 1.4 °C
over all body parts, with a minimum error of 1 °C for
the thigh and a maximum error of 2 °C for the calf.
Interesting to note is that throughout most experiment
types the body parts directly exposed to the vent air
flows (head, calf and arms) were estimated with the
largest error. Figure 5 show the measured versus esti-
mated ET at the head and thigh level within one trial
of T3 (starting from 28 °C and with the HVAC flow

set on medium).
Nilsson et al. (1999) conducted empirical trials to

find the ET ranges for 16 body parts that would cor-
respond to thermal comfort. They found that both in
winter and summer conditions, the comfortable range
for each of the body parts was covering up to 7 °C (for
example, for the head the comfortable range was be-
tween 18 °C to 25 °C in the winter and between 20 °C
to 26 °C in the summer), therefore the maximum 2 °C
error introduced by the estimation method here ap-
pears to be low enough to deliver sufficient accuracy
for HVAC control.

6 Conclusion

A multiple linear regression model that estimates
equivalent temperature at several body parts of the
occupant has been derived. When applying k-fold
cross validation on trials in a controlled environment,
equivalent temperature is predicted with average er-
rors between 0.5 °C and 1.9 °C for various body parts
while using only two sensors as input previously se-
lected. On the trials in realistic driving scenarios er-
rors between 1 °C and 2 °C were achieved. The equiv-
alent temperature estimation method provides suffi-
cient accuracy for controlling the HVAC system.

Since equivalent temperature integrates the effect
of air flow, in future work we will examine the latter’s
impact on the estimation error and find optimal air
flow sensor locations.
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Abstract. Car cabins are transient, non-uniform thermal environments,
both with respect to time and space. Identifying representative locations
for the Heating, Ventilation and Air Conditioning (HVAC) system sen-
sors is an open research problem. Common sensor positioning approaches
are driven by considerations such as cost or aesthetics, which may impact
on the performance/outputs of the HVAC system and thus occupants’
comfort. Based on experimental data, this paper quantifies the spacial-
temporal variations in the cabin’s environment by using Mutual Infor-
mation (MI) as a similarity measure. The overarching aim for the work is
to find optimal (but practical) locations for sensors that: i) can produce
accurate estimates of temperature at locations where sensors would be
difficult to place, such as on an occupant’s face or abdomen and ii) thus,
support the development of occupant rather than cabin focused HVAC
control algorithms. When applied to experimental data from stable and
hot/cold soaking scenarios, the method proposed successfully identified
practical sensor locations which estimate face and abdomen temperatures
of an occupant with less than 0.7 ℃ and 0.5 ℃ error, respectively.

1 Introduction

The role of Heating, Ventilation and Air Conditioning (HVAC) in cars is to keep
passengers comfortable or, more correctly, to avoid their discomfort. Tradition-
ally, the HVAC energy budget has been generous. However, with the introduction
of electric and hybrid electric vehicles, any additional energy usage by the HVAC
system reduces the range, and thus, the usefulness of the car. Energy efficient
approaches to control are called for, potentially based on local conditioning of
occupied cabin areas and driven by occupants’ perceptions of the environment
rather than set-point temperatures.

Several novel approaches to HVAC control have been presented in the lit-
erature. Generally, such approaches are concerned with directly controlling the
comfort of the cabin occupants. Comfort is estimated by applying a model, such
as Predicted Mean Value (PMV) [3], to the cabin sensed data. The success of
such control algorithms heavily relies on an accurate representation of the sensed
phenomena at specific points, i.e in the immediate vicinity of the occupant, and
also presume the cabin environment to be relatively stable.



A parallel line of work in the domain takes advantage of enhanced under-
standing of human physiology and proposes models for estimating the occupant’s
thermal sensation and, with it, thermal comfort. Thermal sensation can be pre-
dicted either for the whole body or for individual body parts and common model
inputs are local skin temperature, mean skin temperature and core body tem-
perature, together reflecting the overall thermal state of the body. The Berkeley
Comfort Model [6] and Zhang’s Model [14] are the best empirical models to date
and are used by most advanced automotive simulators such as RadTherm [10]
for evaluating cabin environments.

Whilst expected to deliver a more accurate representation of the comfort ex-
perienced by occupants, physiological comfort models can not be directly used
for HVAC control as it is impractical to acquire the necessary inputs (i.e. skin
temperature at various points). The inputs could, however, be estimated from
suitable cabin data. The prerequisites are: i) a good understanding of the cabin
environment and the relationships between various sensing locations within the
cabin and ii) a method of estimating with sufficient accuracy human skin tem-
perature in a variety of conditions, from cabin data.

The work here proposes a Mutual Information (MI) based method as an aid
to understanding the cabin environment and the spacial relationships between
temperatures within the cabin. MI quantifies the shared informational content
between a source sensor location and a target virtual location (such as various
occupant skin sites). Within an experimental set-up which makes available not
only cabin data at multiple points, but also occupant skin temperature data,
the method allows the selection of practical cabin sensor locations best suited
for estimating skin temperatures.

The paper is structured as follows. Section 2 presents related work in the
areas of HVAC control and sensor positioning. Section 3 describes the methods
developed for calculating the MI between sensor locations within a car cabin envi-
ronment. Section 4 presents the results obtained when applying the MI methods
to experimental data and Section 5 concludes the paper.

2 Related Work

Numerous attempts exist in the literature towards developing comfort control
algorithms. Torres et al. [13] designed and implemented a neural network based
control algorithm, using a back-propagation learning method. Though good re-
sults were achieved based on a simple neural network, a disadvantage is repre-
sented by the network’s long training duration. In order to make the learning
process less time consuming, Luo et al. [7] worked on a Fuzzy Neural Network
(FNN) model for predicting clothing thermal functions, based on body core and
skin temperatures. Another fuzzy logic-based control algorithm was presented
by Stephen et al. [12]. The method simplified and converted Fanger’s [3] PMV
equations into fuzzy rules. However, the results were simulation-based and the
controller’s effectiveness was not clear from the results.



The works described above assume that the sensor data driving the control
algorithms is a perfect representation of the cabin environment. The complexity
and dynamics of the cabin are not considered. Spacial-temporal thermal vari-
ations in the cabin are however significant, as observed experimentally by the
authors here in a variety of controlled tests.

Although not specifically dealing with cabin environments, a number of works
in the literature are concerned with strategies for finding optimal sensor locations
in similar complex environments. Guestrin et al. [4] chose a MI criteria (a mea-
sure of the amount of shared information between two random variables [2,8])
and implemented a polynomial-time approximation for maximizing the MI, lead-
ing to better sensor placements. A Bayesian approach used for optimally locating
a sensor with respect to the others was described by Cameron et al. [1]. In this
method the expectations regarding the sensing environment were updated based
on the acquired sensor data and the next sensor locations were chosen by taking
into account this prior information. Shah et al. [11] dealt with the problem of
optimally positioning sensors in lumped and distributed parameter dynamic sys-
tems. The covariance of the parameter estimates was computed and the sensor
locations were found by minimizing the covariance matrix. Using the concept of
entropy, Papadimitriou et al. [9] illustrated a method for optimally locating the
sensors in a structure in order to extract from the measured data the most valu-
able information about the model’s parameters. Another entropy-based sensor
placement method was developed by Gutierrez et al. [5]. A maximum entropy
approach for selecting the corresponding probability distributions was used with
the purpose of minimizing the average detection error for fault locations.

A MI based approach has been adopted in this work and is further presented
in the next section.

3 Mutual Information-based Method

The MI computation method described here is based on finding entropies, leading
to a multivariate Gaussian assumption over the variables. The normal distribu-
tion hypothesis was confirmed by applying the D’Agostino normality test on the
experimental data sets.

A series of methods were researched towards the purpose of computing the
MI. The first belongs to the discrete case and consists of sampling the raw
data, the second one derives an approximate continuous curve that matches the
probability distribution observed in the raw data. A third method implemented
belongs to the continuous case and it consists of a numerical approximation to
the integral definition of MI. The method presented further on was selected over
the above described methods since it gave results consistent with expectations
for all experimental data.

The MI computation method contains the steps in Figure 1, described in
what follows.



Fig. 1. Flow chart of the entropy-based approach of computing the mutual information

3.1 Gathering the Experimental Data

A series of experiments were performed in a climatic wind tunnel with a state
of the art vehicle, as follows:

– Five 54 minutes long steady state experiments, each with three occupants
in the car. The car cabin air temperature was initially set to 22 ℃, and
increased by 1 ℃ per minute, towards a final temperature of 26 ℃. For the
second part of the experiment, the temperature was gradually decreased to
16 ℃, and finally brought back to 22 ℃. The car was in idle state during the
initial, middle and final parts of the experiment when the temperatures were
maintained at 22 ℃, 16 ℃ and 22 ℃, respectively and driven at a constant
speed of 50 km/h when the temperature increments were performed.

– Two warm-up experiments, each 70 minutes long. The car was initially
soaked to -18 ℃. The experiments began by setting the cabin’s thermostat
to the highest possible temperature (first experiment), and 22 ℃, respec-
tively (second experiment). There were two cabin occupants each time and
the car was driven at a constant speed of 50 km/h for the first 30 minutes,
and 100 km/h for the rest of each experiment.

The cabin and occupant sensor data was acquired with a frequency of 0.1Hz. The
sensorized occupant was in the front passenger seat for all above experiments.
4 skin sensors were used: face, upper arm, chest and abdomen. The cabin had
standard instrumentation consisting of a thermocouple harness with 32 sensors
(locations shown in Figure 2). The abbreviations used in Figure 2 are: L = left,
R = right, R1 = row containing the front seats, R2 = row containing the back
seats, while the discharge sensors are the sensors placed at the air conditioning
vent outlets.

In what follows, skin temperature is referred to as the target variable (or sim-
ply target). Similarly, the locations of sensors that can be practically considered
for HVAC control are referred to as source variables (or sources).

3.2 Computing the Marginal Entropies and the Mutual Information

Given two sensors X and Y , let X be the target location and Y the source
location. Using the entropy concept, the MI between the source and target can
be expressed as:

I(X ; Y ) = H(X) − H(X | Y ), (1)



���������	
��
���
������
����

��������
��
������
����������		�����
�
���������������
�
���������	
��
������
�
� ����
����������		�����
�
�!����������
�"�����������#	����
�$����

�����%
�	��
�&�������	
��
��'#��
��
���������������
�
������
����

��������
�
������������
������������
������
�(�
�����#	����
� �����������	
��
����
�!�������
�)�
�
�(�
*���
�"�����������	
��
���
�$����������
�&����������+�
,
������

�����%
�	���
�������������	
��
����
���������
���-����

��������	
��
��'#��
��
�����
�(�
����+�
,
����*�������
������
��		*���
������		����
�����#	����
 �����		����
����+�
,
!�����������	
��
���
"�������	
��
���
$�������
�)�
��		����
*���
&�������	
��
������
�

�

�

 
��

�$

��

��

��

��

��

��

� 

�! $

��
�!

��

�

&

��

�&

�& �"

"

��
� 

!

��

�"

��

�$

Fig. 2. Source sensor locations

where H(X), H(Y ) denote the marginal entropies of the two random variables
and H(X | Y ) is the conditional entropy of X knowing Y .

Using the conditional entropy definition, MI can be written as:

I(X ; Y ) = H(X) − H(Y ) + H(X, Y ).

Both the marginal entropies H(X), H(Y ) and the joint entropy H(X, Y ) can
be computed from the general joint entropy formula for a multivariate normal
distribution:

H(X1, X2, ..., Xk) = 1
2 ln

(
(2πe) k |Σ|

)
, (2)

where k represents the number of random variables forming the distribution
and Σ is the covariance matrix of the variables.

3.3 Extending the Mutual Information Concept for Multiple
Sources

In order to represent more accurately the point of interest, namely the target
location, computing the MI from multiple source sensors is considered.

Given three sensors X, Y and Z, let X be the target location and Y and Z
be the source locations. Based on equation 1, the MI between the two sources
and the target can be written as:



I (X ; Y, Z) = H (X) − H (X |Y, Z) .

The conditional entropy can be written as following:
H(X |Y, Z) = H(X, Y, Z) − H(Y, Z),

where H(X, Y, Z) is the joint entropy for the three sensors, while H(Y, Z) is
the joint entropy for the two sensor sources.

Finally, MI can be defined as:
I(X ; Y, Z) = H(X) + H(Y, Z) − H(X, Y, Z)

The marginal entropy H(X), as well as the multiple joint entropies (H(Y, Z)
and H(X, Y, Z)), can be computed using equation 2.

4 Evaluation of the Method on Experimental Data
4.1 Mutual Information Outcomes between a Source Sensor and a

Target Sensor
The MI values between source sensors (32 cabin locations as per Figure 2) and
two target locations (face and abdomen of the front row passenger) were cal-
culated, over the whole experimental data bank. MI values for the FACE tar-
get varied between 0.0003 and 1.05, with the highest MI obtained from the
“R2DischargeR” sensor. For the ABDOMEN target, the lowest MI value was
0.0001 and the highest 0.67, obtained from the “R2RSeatCushion” sensor. Table
1 shows a sample of source locations and their respective MI values for FACE
and ABDOMEN targets. The table also presents results for the estimation accu-
racy which would be achieved by using the respective source - target pair. (This
estimation method is presented elsewhere.)

For both target locations, as the MI values decrease, the estimation accuracy
decreases too, as expected. However, no direct relationship was observed here
between the MI value and the estimation accuracy across the two targets (Figure
3).

Figure 4 represents graphically the MI between pairs of target sensors and
potential source sensors. The line thickness is directly proportional to the MI
value.

4.2 Mutual Information Outcomes between Two Source Sensors
and a Target Sensor

Table 2 illustrates how MI changes when two source sensors are considered
jointly. The use of two source sensors resulted in higher MI values through-
out the source and target pairs considered. The highest MI value for the FACE
target was 1.19, obtained from the “R2DischargeR” and “R2FootR” combination
of sensors. For the ABDOMEN target, the highest MI value was 0.76, obtained
from the “DriverSeatCushion” and “PassengerSeatCushion” combination of sen-
sors.



Target Sensor: Face Temperature Estimation
Source Sensor MI RMSE(℃)(mean±std)
R2DischargeR 1.05 0.7±0.08

HeadlinerIntRearPassHead 0.86 0.86±0.09
SteeringWheel 0.67 1.05±0.1

R2FootR 0.64 1.06±0.16
IPTopRCentre 0.48 1.2±0.09

R1DischargeInnerL 0.37 1.4±0.14
FrontSideGlassLCentre 0.09 1.9±0.2

Target Sensor: Abdomen Temperature Estimation
Source Sensor MI RMSE(℃)(mean±std)

R2RSeatCushion 0.67 0.52±0.06
IPTopRCentre 0.61 0.55±0.06

PassengerSeatBack 0.59 0.56±0.06
PassengerSeatCushion 0.56 0.58±0.05
PanoramicDriverHead 0.36 0.72±0.06
FrontSideGlassRCentre 0.27 0.8±0.03

R1FootR 0.05 1.0±0.02
Table 1. MI results for face and abdomen selected as target sensors
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Fig. 3. MI values and their corresponding estimation accuracy
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Fig. 4. MI relations between the two target sensors and some of the source sensors

Target Sensor: Face Temperature Estimation
Source Sensor 1 Source Sensor 2 MI RMSE(℃)(mean±std)
R2DischargeR R2FootR 1.19 0.62±0.10
R2DischargeR HeadlinerIntRearPassHead 1.17 0.64±0.08
R2DischargeR R2FootL 1.16 0.66±0.09

PassengerSeatCushion HeadlinerIntRearPassHead 1.15 0.66±0.09
R2DischargeR R1FootL 1.14 0.66±0.09

Target Sensor: Abdomen Temperature Estimation
Source Sensor 1 Source Sensor 2 MI RMSE(℃)(mean±std)

DriverSeatCushion PassengerSeatCushion 0.756 0.49±0.04
R2RSeatCushion IPTopRCentre 0.683 0.524±0.06
R2RSeatCushion PassengerSeatCushion 0.683 0.526±0.06

R1DischargeOuterR R1FootL 0.682 0.527±0.04
R2FootR R2RSeatCushion 0.679 0.526±0.06

Table 2. Best five MI scores for face and abdomen selected as target sensors



5 Conclusions and Further Work

The work described a method of identifying optimal sensor locations for estimat-
ing temperature at defined target locations, such as the face or abdomen of a
cabin’s occupant. A first step towards this aim was to establish a robust method
for accurately quantifying how closely related various sensor data streams are.
The Mutual Information between sensors was found to be an appropriate mea-
sure for the application at hand.

For the face selected as target location, the “R2DischargeR” source sensor
delivered the highest MI value, leading to an estimation accuracy of 0.7 ℃. For
the abdomen selected as target location, an estimation accuracy of 0.52 ℃ was
obtained with “R2RSeatCushion” as a source sensor. The method was extended
to multiple sources in order to find combinations of sensors which lead to a better
estimation of the target sensor. The estimation accuracy was further improved
to 0.62 ℃ for the face as target with “R2DischargeR” and “R2FootR” as source
sensors. For the abdomen as target, the estimation accuracy was increased to
0.49 ℃ with “DriverSeatCushion” and “PassengerSeatCushion” as source sen-
sors.

With regard to future work, it is planned to estimate the overall comfort
of all occupants within a car cabin. Several source and target locations will be
used with the purpose of maximizing the MI among them. It is also planned to
implement a reinforcement learning HVAC algorithm used to train the system to
adjust set-points. Embedding this algorithm into the car’s HVAC system implies
that the HVAC control will gradually learn user’s preferences with the purpose
of reducing the instances of user intervention whilst maintaining the occupants’
comfort and reducing the energy consumption.
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