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Abstract: We consider a recently introduced generalization of the Ising model in which individual 
spin strength can vary. The model is intended for analysis of ordering in systems comprising agents 
which, although matching in their binarity (i.e., maintaining the iconic Ising features of ‘+’ or ‘−’, 
‘up’ or ‘down’, ‘yes’ or ‘no’), differ in their strength. To investigate the interplay between variable 
properties of nodes and interactions between them, we study the model on a complex network where 
both the spin strength and degree distributions are governed by power laws. We show that in the 
annealed network approximation, thermodynamic functions of the model are self-averaging and we 
obtain an exact solution for the partition function. This allows us derive the leading temperature and 
feld dependencies of thermodynamic functions, their critical behavior, and logarithmic corrections 
at the interface of different phases. We fnd the delicate interplay of the two power laws leads to new 
universality classes. 

Keywords: Ising model; scale-free network; self-averaging; steepest descent 

1. Introduction 

It is almost futile, and perhaps impossible, to comprehensively list the advances in 
understanding of various phenomena in physics and beyond that were achieved due to 
the Ising model. Excellent reviews of the one-hundred year history of the model [1–6] 
are supplemented by discussions in other papers of this Special Issue. This paper has 
been written for the Special Issue of Entropy ’Ising Model: Recent Developments and Exotic 
Applications’. We think it is therefore more benefcial to open our paper with two frst-hand 
accounts that concern Ernst Ising, the person and the model. The frst of these is of a 
historical nature and concerns another body of work by the present authors and their 
colleagues. The second, rather methodological account, will bring us closer to the subject 
of studies of new physics presented in this paper. 

For a quarter of a century, the Ising lectures have facilitated the emergence of different 
initiatives, both spontaneously and by design, that both review and advance Ising model-
related research [7]. This workshop started in Lviv (Ukraine) in 1997 with ’traditional’ 
statistical physics and has recently broadened its scope to encompass a more general 
context of complex systems. The lectures became the subject of a review series [8–13] and 
gradually the workshop gave rise to various research projects centered around the Ising 
model and its history. Historical documents collected to date, and displayed publicly with 
permission of Ernst Ising’s family, include his dissertation [14] and its shortened version 
which was published in Hamburg in 1924 [15]. They also include memoirs of Ernst’s wife, 
Johanna (Jane) Ising [16], as well as a recent publication that includes memoirs of their son 
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Thomas [17]. It was through this collaborative atmosphere of the workshop, and in the 
context of a broader L4 Collaboration in Statistical Physics of Complex Systems [18], that 
the problem considered below emerged. 

As mentioned, the second remark brings us closer to the scientifc subject of this paper; 
it concerns a special feature which made the Ising model so popular for descriptions of 
collective behavior in multitudes of systems. In its original form, as presented in Ising’s 
thesis, this feature is binarity—representation of the state of an agent as from a pair of 
binary oppositions. It is to a large extent due to this feature that the model has been (and 
we believe will continue to be) applied in almost all felds where binarity plays a core 
role [17,19,20]. Some generalizations of the Ising model lose this feature. An example 
is the q-state Potts model [21,22] which keeps the discrete symmetry of the Ising model, 
generalizing it from Z2 to Zq. As a result, although each agent (spin) can take on only a 
fnite number of states, the binarity is lost for any q 6= 2. Another popular generalization, 
the O(m)-symmetrical model [23,24], enables an infnite number of states for a single agent 
because the symmetry is continuous at m 6= 1. 

Here, we address ordering phenomena in systems of agents that are not necessarily 
physical in nature with the special role that is played by spin models in complex networks 
in mind [20,25]. Recently, we have suggested another generalization of the Ising model 
that tackles such circumstances by keeping binarity of the Ising model but relaxing the 
condition of fxed spin length on each site [26]. Within the model, the length of each spin is 
considered as a quenched random variable with a given distribution function and hence 
the observables are calculated by the usual Gibbs averaging over the (up and down) spin 
confgurations as well as over the random spin length distribution. The model is related to 
(but differs from) other spin models that are used to study the impact of structural disorder 
on collective behavior [27–34] and it may be useful in analysis of ordering in magnetic or 
ferroelectric systems of particles with polydisperse elementary moments [35,36]. Another 
obvious feld of applicability of this model is understanding peculiarities of ordering 
processes in systems containing agents that, although being of binary character (‘+’ or ‘−’, 
‘up’ or ‘down’, ‘yes’ or ‘no’), differ in strength of expression [37,38]. 

An example is illustrated in Figure 1. The structure of the network is used to model 
the underlying interactions in a system of interest, be they of specifc chemical, biological, 
social, or economic origin. In a recent short communication [26], we reported on the 
peculiarities of the generalized Ising model when the random spin length is governed by a 
power-law decaying distribution function. We obtained an exact solution for this model on 
complete and Erdős-Rény graphs as well as commented on the phase diagram of this model 
on an annealed scale-free network. The analytic solution for this last case has never been 
displayed to date and is a subject of this paper. The rest of the paper is organized as follows. 
In Section 2, we formulate the model and demonstrate that the partition function of the 
model possesses an important feature: it is self-averaging. This fact essentially facilitates 
calculations of thermodynamic functions as displayed in Section 3. We apply the steepest 
descent method to get exact results on the thermodynamic limit. We also analyze the phase 
diagram and show how an interplay between two different power laws, one governing the 
network structure and another one governing spin properties, defnes universal features of 
critical behavior. Conclusions and outlook are given in Section 4 and asymptotic estimates 
for the integrals that enter thermodynamic functions are derived in Appendix A. 

http:limit.We
http:function.We
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Figure 1. Ising model with varying spin length (strength) as a model for a social phenomenon. Each 
individual is represented as a complex network node of a given degree ki (i.e., a number of persons 
connected to it via social links) and given strength Si. One may consider spreading of positive (spins 
up) and negative (spins down) emotions in a social network. 

2. Model 

Well-studied generalizations of the Ising model include the m-vector [23,24] and the 
Potts [21,22] model. Instead of a discreet scalar variable σi = ±1, the former considers 
a classical vector variable ~σi that can point in any direction in an m-dimensional space. 
The Potts model, on the other hand, maintains discrete variables, but relaxes the number 
of single-site spin states. Here, we consider another generalization of the Ising model. 
The new model preserves the binary character of the spin variables but allows them to 
change their absolute value in a continuous and random manner [26]. To achieve this, we 
endow the spins with ‘strength’ that can vary through a random variable S with a given 
probability distribution function q(S). Below, we consider the case where this distribution 
function is characterized by a power-law decay: 

S−µq(S) = cµ , Smin ≤ S ≤ Smax, (1) 

with the normalization constant cµ and µ > 2 to ensure finiteness of the mean strength hSi 
at Smax → ∞. As mentioned in the Introduction, the model mimics inhomogeneities in 
many-particle (multi-agent) systems of different natures, that may range from polydisperse 
magnets or ferroelectrics [27–36] to various complex social or economical systems [37,38]. In 
turn, the choice of the distribution function in the form of a power law allows both to proceed 
with analytic calculations as well as to gain access to various regimes of polydispersity by 
tuning exponent µ. 

Considering the critical behavior of a spin system on a complex network, special 
attention has been paid to scale-free networks, which are characterized by a power-law 
decay of a node degree distribution function: 

p(K) = cλK−λ , Kmin ≤ K ≤ Kmax, (2) 
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where p(K) is the probability that any given node has degree (number of links) K, cλ is a 
normalization constant, and λ > 2. It is well established by now that the Ising model on 
a scale-free network has a non-trivial critical behavior: depending on the value of λ, it is 
characterized by different critical exponents [39–41]. For example, when λ > 5, the critical 
exponents coincide with the mean-feld ones observed for regular lattices. In the region 
3 < λ < 5, the exponents become λ dependent. When λ = 5, logarithmic corrections to 
scaling appear. 

Below, we consider a generalized Ising model with varying spin strength on a scale-
free network. Doing so, we analyze how an interplay of power laws (1) and (2)—the frst 
governing network structure and the second governing agents’ strengths—impacts critical 
behavior. To proceed, we frst formulate the annealed network approximation we will be 
dealing with. 

2.1. Ising Model on an Annealed Network 

Following Refs. [42–45], we defne an annealed network as an ensemble of networks of 
N nodes each, with a given degree arrangement {K} = (K1, K2, ..., KN), maximally random 
under the constraint that their degree distribution is a given one. The linkage between 
nodes is taken to fuctuate for each fxed sequence {K}. Therefore, in the spirit of the 
concept of annealed disorder [46], the partition function is to be averaged with respect to 
these fuctuations. This is different from quenched disorder, when for each fxed sequence 
{K} network links are fxed too and therefore the free energy is averaged. In this latter case, 
the confgurational model serves as a counterpart of the annealed network (see, e.g., [47]). 

To construct an annealed network of N nodes, one assigns to each node i a random 
variable (label) ki taken from the distribution p(k) and the probability of a link between 
two nodes is defned as: 

kikjpij = 
Nhki + O(1/N2) , (3) 

with hki = N 
1 ∑l kl . One can show that the value of the random variable ki indicates the 

expected value of the node degree: EKi = ∑j pij = ki whereas its distribution p(k) defnes 
node degree distribution p(K). 

In the presence of a homogeneous external magnetic feld H, the Hamiltonian of the 
(usual) Ising model on an annealed network reads: 

H = − 
1 

Jijσiσj − H ∑ σi , σi = ±1, (4)
2 ∑ 

i 6=j i 

where the second sum spans all N network nodes, the frst is over all their pairs and Jij is an 
adjacency matrix with matrix elements equal to J if nodes are connected and 0 otherwise: � 

J, pij ,Jij = (5)
0, 1− pij . 

For the fxed sequence of random variables {k} = (k1, ......, kN ), the partition function is 
obtained by averaging with respect to random annealed links {J}: 

ZN ({k}) = hSp e−βHi{J} , (6)σ

where 
Spσ(. . . ) = ∏ ∑ (. . . ) , (7) 

i σi=±1 

β = T−1 is the inverse temperature and the averaging over links reads, cf. Equation (5): h i 
h(. . . )i{J} = ∏ (. . . )Jij =J pij + (. . . )Jij =0(1− pij) . (8) 

i<j 
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In turn, obtained after averaging over random linking, the partition function ZN ({k}) 
depends on the particular choice of random variable (label) sequence {k}. Recall that this 
sequence was taken as a fxed one, i.e., quenched. Therefore, the observable free energy FN 

is to be obtained by averaging the sequence-dependent free energies FN ({k}) as: 

FN = hFN ({k})i{k} = −T ∑∏ 
i ki 

p(ki) ln ZN ({k}) . (9) 

It is worth mentioning here another prominent feature of the annealed network: as we 
will explicitly show below, the partition function ZN ({k}) is self-averaging, i.e., it does not 
depend on a particular choice of {k}: ZN ({k}) ≡ ZN . This leads to an obvious relation: 

FN = −T ∏ ∑ 
ki 

p(ki) ln ZN = −T ln ZN , (10) 
i 

which means that the free energy is a self-averaged quantity too and avoids averaging of 
the logarithm of partition function, facilitating calculations on annealed networks. 

2.2. Ising Model with Random Spin Length on an Annealed Network 

The model we consider in this study [26] relaxes the restriction on the fxed spin length 
in the Hamiltonian (4). Similar to the Ising model, we preserve the binary character of spin 
variables keeping global Z2 symmetry of the whole system, however, we allow each spin 
to change its absolute value in a continuous and random fashion. Namely, we endow the 
spins σi with ’strengths’ which vary from site to site through a random variable |σi| ≡ Si. 
The Hamiltonian of the model reads: 

1
∑ JijSiSj − H ∑H = − Si , Si = ±Si , (11)

2 i 6=j i 

where all notations are as in Equation (4) and Si are independent identically distributed 
(i.i.d.) random variables with a given distribution function q(S) each. The Hamiltonian (11) 
can be equivalently rewritten in terms of usual Ising spins of unit length, choosing variables 
Si = σiSi: 

1
∑ JijSiSjσiσj − H ∑H = − Siσi , σi = ±1 , (12)

2 i 6=j i 

We consider the case when the sequence {S} = (Smin, ...,Smax ) is maximally random 
under the constraint that their distribution is a given one. For the fxed sequence of random 
variables {k} (that defne network linkage) and {S} (that defne local spin strength), the 
partition function is obtained by averaging with respect to random annealed links {J}, cf. 
Equation (6): 

ZN ({k}, {S}) = hSp e−βHi{J} , (13)σ

with the trace defned in (7). 
Generally speaking, after the trace over spins has been taken, the partition function 

also remains dependent on the (randomly distributed) spin strengths {S}, as explicitly 
denoted in Equation (13). However, in the next subsection, we show that in the case of 
annealed networks, the partition function ZN ({k}, {S}) is a self-averaging quantity both 
with respect to random variables k and S (ZN ({k}, {S}) = ZN). Therefore, for the free 
energy, similar to (10), one obtains: 

FN = −T ∑∏ p(ki)∑ q(Si) ln ZN ({k}, {S}) = −T ln ZN . (14) 
i ki Si 

Our task now is to proceed in deriving the partition function of the Ising model with 
varying spin length S on an annealed scale-free network when distributions of the random 
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variables q(S), p(k) follow power-law behavior (1), (2). In the course of derivation, we 
arrive at the conclusion about its self-averaging properties. 

2.3. Self-Averaging 

Substituting into (12) the adjacency matrix (5) and averaging over spin confgurations, 
we obtain: � � 

ZN ({k}, {S}) = Spσ eβH ∑i Si σi ∏(pije 
β
2 
J ∑i 6=j Si Sj σi σj + 1− pij) . (15) 

i<j 

Taking into account that the spin product in (15) can attain only two values (σiσj = ±1), we 
can make use of the equality 

1 ε
f (Kε) = [ f (K) + f (−K)] + [ f (K) − f (−K)], ε = ±1, (16)

2 2

to obtain the partition function (15) in case ε ≡ σiσj, K ≡ βJSiSj: � � � 
ZN ({k}, {S}) = SpS eβH ∑i Si σi ∏ [cosh(βJSiSj) + σiσj sinh(βJSiSj) − 1]pij + 1 . (17) 

i<j 

Simplifying the expression for the partition function, one arrives at: � � 
ZN ({k}, {S}) = Sp eβH ∑i Siσi ∏ eln(aij +bijσi σj) (18)σ 

i<j 

with 
aij = 1− pij + pij cosh(βJSiSj), bij = pij sinh(βJSiSj). (19) 

Making use of the equality (16) to represent ln(aij + bijσiσj) in (18), we obtain for the 
partition function: � � 

2 ∑i 6=j dij σi σj +βH ∑i Si σiZN ({k}, {S}) = ∏ cijSpσ e 
1 

, (20) 
i<j 

with q aij + bij cij = aij 
2 − bij

2 , dij = ln . (21)
aij − bij 

The latter coeffcients implicitly depend on pij via (19). Substituting these dependencies 
into (21), one obtains: q

cij = 1− 2pij + 2p2 
ij + 2(1− pij) cosh(βJSiSj), (22) 

βJSi Sj1− pij + pijedij = ln . (23)−βJSi Sj1− pij + pije

Substituting pij into the expression for the partition function (20) and evaluating dij (23) 
in the thermodynamic limit N → ∞ (i.e., in the limit of small pij ), 

βJSi Sj1− pij + pijedij = ln ' pij βJSiSj, (24)−βJSi Sj1− pij + pije

we get: � kikjSiSjσiσj 
� 

ZN ({k}, {S}) = Sp exp βJ ∑ + βH ∑ Siσi . (25)σ Nhkii<j i 
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Now the interaction term in (25) attains a separable form and one can apply Stratonovich– 
Hubbard transformation to take the trace over spins σi exactly and to obtain the following 
expression for the partition function: 

+∞Z � −NhkiTx2 � 
ZN ({k}, {S}) = exp + ∑ ln cosh[Si(xki + H/T)] dx . (26) 

−∞ 2J i 

In this and all other partition function integral representations, we omit the prefactors 
that are irrelevant for our analysis. As long as the functional dependence on the random 
variables Si, ki in (26) is of the unary type, it is convenient to pass from sums over nodes 
i to sums over the random variables ki, Si with a given distribution function p(k), q(S). 
Considering the random variables to be continuous, one arrives at: 

kmax Smax Z kmax 
Z Smax 

∑ f (ki,Si) = N ∑ ∑ p(k)q(S) f (k,S) = N p(k)q(S) f (k,S)dkdS . (27) 
i kmin Sminkmin Smin 

For an infnite system, we put kmax = Smax → ∞ and, without a loss of generality, we 
choose the lower bonds equal to kmin = Smin = 2 and J = 1. Note, that the peculiarities 
of the critical behavior we are interested in are caused by the behavior at kmax,Smax → ∞. 
Although it is more natural to choose the lower integration bond equal to unity, scale-free 
networks with kmin = 1 do not possess a spanning cluster for λ > λc (with λc = 3.48 for 
discrete node degree distribution and λc = 4 for the continuous one) [48–50]. We avoid 
this restriction by choosing kmin = 2. To have expressions symmetric in k,S , we choose 
Smin = 2 too. Now it is straightforward to see that the partition function ZN ({S}, {k}) 
does not depend on random variables k and S and is self-averaging: 

Z +∞ Z ∞ Z ∞ �� −NhkiTx2 
ZN ({k}, {S}) ≡ ZN = exp + N p(k)q(S) ln cosh[S(kx + H/T)]dkdS dx . (28) 

−∞ 2 2 2 

As one can see from Equation (28), the self-averaging property is quite general and 
concerns any form of distributions p(k), q(S). Below, we use this expression to analyze 
thermodynamics in the case when these distributions attain power-law forms (1), (2). 

3. Thermodynamic Functions 

It is convenient to pass in Equation (28) to integration over positive values of x and to 
present the partition function as Z +∞ −hkix2T h � Z ∞ Z ∞ Skx � 

ZN = e 2N exp N p(k)q(S) ln cosh( + S H/T)dkdL + 
0 2 2 N � Z ∞ Z ∞ �i −Skx 

exp N p(k)q(S) ln cosh( + S H/T)dkdS dx . (29)
2 2 N 

Being interested in the leading asymptotics of the partition function at N → ∞ and 
keeping the frst leading term in H, we present the expression (29) in the following form: Z h i+∞ −hkix2T 

ZN = e 2N exp(I+ (x)) + exp(I− (x)) dx , (30)λ,µ λ,µ0 

with � λ+µ−2h � ix 2 hS2ihki
Iλ
± 
,µ(x) = N cλcµ N

Iλ,µ(ε) ± 
TN 

xH (31) 

where Z ∞ Z ∞ ln cosh(kS)
Iλ,µ(ε) = 

kλSµ dSdk (32) 
ε ε 

and we have substituted distributions q(S), p(k) in power-law forms (1) and (2). The lower q 
xintegration bound ε = 2 N tends to zero, when N → ∞. The asymptotic expansions 
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of the integral (32) at small ε (large N) are evaluated in the Appendix. Substituting 
these expansions at different values of parameters λ, µ into Equation (30), we arrive at 
corresponding expressions for the partition function that is evaluated at large N by the 
steepest descent method. The fnal expression for the partition function reads: Z +∞ −NΦe µ,λ(x) dx , (33)ZN = 

0 

where 
hkix2T λ+µ−2 √ hS2ihki

Φµ,λ(x) = − cµcλx 2 Iλ,µ( x) − xH (34)
2 T 

and the linear term in H originates from the large N asymptotics of the hyperbolic cosine 
in Equations (30) and (31). 

Now it is straightforward to write for the Helmholtz free energy FN (T, H) per node: 

f (T, H) = lim FN (H, T)/N = −T lim ln ZN /N = TΦµ,λ(m) (35)
N→∞ N→∞ 

with m being the coordinate of function Φµ,λ(x) minimum: 

d Φµ,λ(x) d2 Φµ,λ(x)
|x=m = 0, |x=m > 0 . (36)

d x d x2 

The resulting free energy is symmetric upon an interchange of indices µ ↔ λ. Therefore, 
below, we give the corresponding expressions for two cases: µ > λ and µ = λ. For the frst 
case, µ > λ, an asymptotic of the free energy at small m is governed by the lower value of 
the exponents, i.e., by λ. Keeping the leading terms, we arrive at: 

mH ' 

⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

cµcλiλ mλ−1 hkiT 22 < λ < 3 : − + ,µ−λ 2 m
cµc3 i3 1 hkiT 2λ = 3 : m2 ln 1 + cµc3m2( + 2(µ−3)2 ) + 2 m ,2(µ−3) m 3−µ

hS2ihki hki cµcλiλ 
2 (T − T0)m2 − mλ−1Φµ,λ(m) + 3 < λ < 5 : (37),µ−λT hki c5cµ 1 i5 4λ = 5 : 2 (T − T0)m2 − m4 ln 1 + c5cµ( µ−5 )m ,12(µ−5) m 12(µ−5)2 − 
hki cµ cλ 4λ > 5 : 2 (T − T0)m2 + m ,12(λ−5)(µ−5) 

with 
cµcλ hk2ihS2i

T0 = = , (38)hki(λ − 3)(µ − 3) 23−µ23−λhki R ∞ R ∞where hS2i = 2 S
2q(S)dS , hk2i = 2 k2p(k)dk, the distribution functions q(S), p(k) are 

given by Equations (1) and (2), and we have taken into account that Smin = kmin = 2 (see 
explanation below Equation (27)). The coeffcients iµ are listed in the Appendix and cµ, cλ 

are normalizing factors of the distribution functions (1), (2). 
For the case λ = µ, the leading behavior at small m reads: 

mH ' 

⎧ ⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎩ 

2 2 hkiT 22 < µ < 3 : −c iµmµ−1 ln 1 − c3iµ,µmµ−1 + ,µ m 2 m
2 hkiT 2 2µ = 3 : −i3c 2 ln 1 + [ − c ,3m m 2 3i3,3]m

hS2ihki hki 23 < µ < 5 : 2 (T − T0)m2 − c iµmµ−1 ln 1 
µ mΦµ,µ (39)(m) + , 

T 2hki c
µ = 5 : 2 (T − T0)m2 − 5 4(ln 1 )2 − i5c2 4 ln 1 ,24 m m 5m m 

hki µ 
2

4c
µ > 5 : 2 (T − T0)m2 + ,12(µ−5)2 m

with the notations explained above. The signs of the coeffcients iµ,λ do not matter in our 
analysis. 
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The estimates obtained above for the free energy asymptotics (37), (39) give one access 
to the thermodynamic properties of the system of interest. As we will see below, parameters 
µ and λ play a crucial role in governing the onset of ordering and defne the universality 
class of the generalized Ising model on a scale-free network. Before proceeding in analyzing 
these expressions, it is instructive to recall the main peculiarities of the critical behavior 
of two models, where each of these parameters has been considered separately: these are 
the Ising model on a scale-free network with a node-degree distribution (2) [39,40,51] and 
the generalized Ising model with a power-law spin strength distribution (1) on a complete 
graph [26]. As is well established by now, the Ising model on a scale-free network remains 
ordered at any fnite temperature at low values of the node-degree distribution exponent 

m ∼ T1/(λ−3)2 < λ ≤ 3. The order parameter decays with temperature as a power law
at 2 < µ < 3. The decay is exponential for λ = 3: m ∼ e−bT . With a further increase in 
λ, a second order phase transition occurs for λ > 3 at fnite T = T0 and H = 0: m = 0 at 
the high-temperature phase, whereas the order parameter emerges as m ∼ τ1/(λ−3) in the 
vicinity of the transition point at H = 0 with τ = |T − T0|/T0. The power-law temperature 
behavior of the order parameter attains its usual mean-feld value only when λ exceeds 

m ∼ τ1/2fve: , λ > 5. Logarithmic correction to scaling appears at marginal λ = 5: 
m ∼ τ1/2| ln τ|−1/2. The phase diagram described above is sketched in Figure 2a. A similar 
picture is observed when one analyzes the generalized Ising model with a power-law spin 
strength distribution on a complete graph, i.e., when, in the spirit of the Kac model [52–58], 
each graph node is connected to all other nodes. As has been demonstrated in Ref. [26], 
the role of the global parameter is played in this case by the spin strength distribution 
exponent µ. In turn, we summarize the behavior of the order parameter m for different 
values of µ in Figure 2c. 
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Figure 2. Phase diagram of the generalized Ising model with power-law distributed spin strength 
on a scale-free network (b) is compared with those for the Ising model on a scale-free network 
(a) and generalized Ising model with power-law distributed spin strength on a complete graph (c). 
Asymptotics of the order parameter in different regions of µ, λ are shown explicitly. Corresponding 
asymptotics at marginal values of µ, λ (lines and points in the plot) are summarized in Table 1. 
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Now, with the free energy asymptotics for the generalized Ising model on a scale-free 
network (37), (39) at hand, we are in a position to analyze the interplay of two parameters: 
the frst one governing individual spin strength (µ) and the second one governing its 
connectivity (λ), on the emergent critical behavior. Temperature behavior of the order 
parameter and the phase diagram that originate from this analysis are shown in Table 1 
and in Figure 2b. The behavior is controlled by the parameter (λ or µ) with the smaller 
value. When at least one of the parameters (λ or µ) is less than three, the system remains 
ordered at any fnite temperature and the order parameter decays as a power-law function 
of T: 

m ' 

⎧ ⎪⎪⎨ ⎪⎪⎩ 

1 
2 < (µ, λ) < 3; µ > λ : T λ−3 , 

2 < (µ, λ) < 3; µ = λ : T λ−
1

3 , (40) 
1 

2 < (µ, λ) < 3; µ < λ : T µ−3 . 

When either λ or µ equals three, and the other one is larger than three, m decays expo-
nentially. A second order phase transition occurs when both λ, µ > 3. Depending on the 
values of λ, µ, the order parameter is characterized by different asymptotics. In the region 
3 < µ < 5 (µ < λ), the critical exponents are µ dependent, and in region 3 < λ < 5 (µ > λ), 
they are λ dependent and logarithmic corrections appear in these regions at λ = µ: 

m ' 

⎧ ⎪⎪⎨ ⎪⎪⎩ 

1 
3 < (µ, λ) < 5; µ > λ : τ λ−3 , 

3 < (µ, λ) < 5; µ = λ : (τ| ln τ|−1) λ−
1

3 , (41) 
1 

3 < (µ, λ) < 5; µ < λ : µ−3τ . 

Logarithmic corrections to scaling, however, of different values, also appear when λ = 5 or 
µ = 5. We discuss these corrections in more detail later. 

Table 1. Temperature behavior of the order parameter m at different values of µ and λ. The 
asymptotic is governed by the smaller parameter from the pair (µ, λ). 

2 < λ < 3 λ = 3 3 < λ < 5 λ = 5 λ > 5 
1 1 1 1

2 < µ < 3 Equation (40) T µ−3 T µ−3 T µ−3 T µ−3 

e−bT e−bT e−bT e−bTµ = 3 T λ−
1

3 

1 1 1 
e−bT3 < µ < 5 T λ−3 Equation (41) τ µ−3 τ µ−3 

1 1 1 1 e−bTµ = 5 T λ−3 τ λ−3 τ 2 | ln τ|−1 τ 2 | ln τ|− 2
1 

1 1 1 1 e−bTµ > 5 T λ−3 τ λ−3 τ 2 | ln τ|− 12 τ 2 

The phase diagram in Figure 2b visualizes the behavior discussed above. There, 
we show different regions in the λ − µ plane that are characterized by different critical 
behaviors. The last is governed by the distribution with a ’fatter’ tail (smaller value from 
the pair λ, µ). It is instructive to compare this diagram with those of Figure 2a,c. Indeed, 
when one of the exponents in Figure 2b is larger than fve (very fast decay of one of the 
distributions (1) or (2)), the resulting diagram does not depend on this exponent any more. 
One may speak about degeneracy of the critical behavior with respect to this exponent and 
about reduction of the phase diagram Figure 2b to one of its corresponding counterparts, as 
shown in Figure 2a,c. Interesting new phenomena emerge along the lines of the diagram in 
Figure 2b, that separate regions with different asymptotics of the order parameter. Usually, 
changes in the power law asymptotics of thermodynamic observables are accompanied 
by logarithmic correction-to-scaling exponents (see, e.g., [59] and references therein). For 
d-dimensional lattices, such corrections appear at upper critical dimensions, and for the 
scale-free networks they are known to accompany the leading asymptotics at λ = 5. In our 
analysis, we complete the picture by observing the lines in the λ − µ plane, where such 
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corrections appear. Furthermore, new scaling laws are observed at the intersection of these 
lines, as further outlined below. 

To proceed with the analysis of critical behavior, we obtain expressions for the other 
thermodynamic functions in the vicinity of the second order phase transition that occurs 
for µ, λ > 3 at T = T0, H = 0. In particular, besides the order parameter, we evaluate 
the leading critical exponents for the isothermal susceptibility χT , specifc heat cH , and 
magnetocaloric coeffcient mT (the magnetocaloric coeffcient is defned by the mixed 
derivative of the free energy over magnetic feld and temperature, mT = −T(∂m/∂T)H): 

m ∼ τβ , χT ∼ τ−γ , cH ∼ τ−α , mT ∼ τ−ω , at H = 0 . (42) 

m ∼ H1/δ , χT ∼ H−γc , cH ∼ H−αc , mT ∼ H−ωc , at τ = 0 . (43) 

We also fnd the logarithmic terms that appear at marginal values of λ, µ and defne the 
logarithmic correction exponents for each of the above quantities: 

ˆ ˆΘ ΘcA ∼ τΘ| ln τ| , H = 0 . A ∼ HΘc | ln H| , τ = 0 , (44) 

where A is one of the thermodynamic functions (43), Θ is the critical exponent, and Θ̂ is a 
corresponding logarithmic correction exponent. Values of the leading critical exponents 
for thermodynamic functions (42) and (43) are summarized in Table 2. The corresponding 
logarithmic corrections to scaling exponents are collected in Table 3. 

Table 2. Critical indices of the generalized model with power-law distributed spin strength on an 
annealed scale-free network in different regions of the phase diagram Figure 2b. Line 4: 3 < (λ, µ) < 
5, λ = µ; region III: 3 < µ < 5, µ < λ; region IV: 3 < λ < 5, λ < µ; region V: λ, µ ≥ 5. 

α αc γ γc β δ ω ωc 

Line 4 (µ = λ) 
Region III 
Region IV 

Region V, Lines 5–6, B 

λ−5 
λ−3 
λ−5 
λ−3 
µ−5 
µ−3 
0 

λ−5 
λ−2 
λ−5 
λ−2 
µ−5 
µ−2 
0 

1 
1 
1 
1 

λ−3 
λ−2 
λ−3 
λ−2 
µ−3 
µ−2 
2/3 

1 
λ−3 

1 
λ−3 

1 
µ−3 
1/2 

λ − 2 
λ − 2 
µ − 2 

3 

λ−4 
λ−3 
λ−4 
λ−3 
µ−4 
µ−3 
1/2 

λ−4 
λ−2 
λ−4 
λ−2 
µ−4 
µ−2 
1/3 

Similar to the case of scale-free networks, the logarithmic corrections to scaling appear 
at λ = 5, µ > 5, and µ = 5, λ > 5, along Lines 5 and 6 in Figure 2b. The values of 
the logarithmic correction exponents coincide with those for the usual Ising model on a 
scale-free network [39–41]. However, two new types of logarithmic corrections emerge in 
the model under consideration: in region 3 < (λ = µ) < 5 (line 4 in Figure 2b ) as well as 
at λ = µ = 5 (point B). For λ = µ = 5, all logarithmic correction exponents are twice as 
large in comparison with those for the Ising model on a scale-free network at λ = 5. In the 
region 3 < (λ = µ) < 5, all logarithmic correction exponents are λ dependent. All of them 
obey the scaling relations for logarithmic corrections [60–62]. 

Table 3. Logarithmic correction exponents of the generalized model with power-law distributed spin 
strength on an annealed scale-free network in different regions. Exponents for lines 5–6 coincide with 
those found previously [39–41]. Here, we fnd two new sets of exponents that govern logarithmic 
corrections along line 4 and in point B. 

α̂ α̂c γ̂ γ̂c β̂ δ̂ ω̂ ω̂c 

3 3 λ−3 1 1 − λ−4 −2 λ−4Line 4 (µ = λ) − − 0 − − −λ−2 λ−2 2(λ−2) λ−3 λ−2 λ−3 λ−2 
Point B −2 −2 0 −2/3 −1 −2/3 −1 −4/3 

Lines 5–6 −1 −1 0 −1/3 −1/2 −1/3 −1/2 −2/3 
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4. Conclusions and Outlook 

The effects of structural disorder on the onset of magnetic ordering in regular (lattice) 
systems is of mainstream interest in the modern theory of phase transitions and critical 
phenomena [8–13]. It is well established by now that even a weak dilution by non-magnetic 
components may lead to crucial changes in the behavior of magnetically ordered systems. 
If such a dilution is implemented in a quenched fashion, changes in the universality class 
of the Ising model [34] are governed by the Harris criterion [63]. Annealed dilution, on 
the other hand, causes changes in the Ising model critical exponents via Fisher renormal-
ization [64,65]. Another textbook example of structural disorder is given by frustrations 
that may be implemented in the lattice Ising model by (quenched) competing ferro- and 
anti-ferromagnetic interactions and they are known to cause the spin-glass phase [32,33]. 

The generalized Ising model we consider here relaxes the usual condition of a fxed 
spin length (spin strength) and considers it as a quenched random variable with a given 
probability distribution. In the particular case where this random variable is 1 with 
probability p and 0 with probability 1 − p, one arrives at the familiar quenched diluted Ising 
model. In this study we consider, however, another, richer case, whereby the random spin 
strength obeys a power-law distribution (1) governed by the exponent µ. The model mimics 
polydispersity in magnetic moments of elementary interacting spins. Being interested in 
possible applications of such a model in the broad area of complex system science, we have 
analyzed its behavior on an annealed scale-free network. In doing so, we make use of two 
advantages: the annealed network approximation leads to self-averaging properties of 
thermodynamic functions and the scale-free behavior of the node-degree distribution (2) 
allows us to study competition of power laws (1), (2) in defning critical behavior. 

As appeared in the course of our study, the model under consideration possesses a 
number of interesting unexpected features. Some of them are summarized in Figure 2b 
and Tables 1–3. The phase diagram of Figure 2b is accompanied by two others, Figure 2a,c, 
that correspond to the usual Iisng model on a scale-free network (a) and to the generalized 
Ising model with the power-law distributed spin strength in the complete graph (c). As 
one can see from this sketch, the diagram is symmetric under µ ↔ λ interchange. This 
means that both factors (i.e., node connectivity and individual spin strength) infuence 
criticality in a similar fashion. Moreover, the corresponding asymptotics are governed 
by the smaller of the pair of parameters (µ, λ): the ’fatter’ tail of the distribution function 
wins the competition in defning universality class! For very low values 2 < (µ, λ) ≤ 3, 
the system remains ordered at any fnite temperature. In turn, the second order phase 
transition regime (µ, λ > 3) is characterized by three different sets of critical exponents (see 
Table 2). 

Peculiar phenomena emerge in the regions with µ = λ, where the changes in critical 
exponent µ or λ dependencies occur. As one observes from Table 1, such changes are 
accompanied by an emergence of logarithmic corrections in the form of Equation (44). The 
values of the logarithmic correction exponents are summarized in Table 3. It is instructive 
to compare this phenomenon with what happens to the critical behavior in d-dimensional 
Euclidean space. There, a special role is played by a concept of an upper critical dimension 
du. By defnition, this is the space dimension above which the universality class is trivially 
defned by the mean-feld behavior [66]. A special type of logarithmic corrections to 
scaling appears at the upper critical dimension (see [59]). For the scale-free networks, the 
logarithmic corrections were known to appear at λ = 5, where leading exponents attain 
their mean-feld values [39–41]. Similar corrections also emerge for the generalized Ising 
model with the power-law distributed spin strength on the complete graph at µ = 5 [26]. 
For the model considered here, these corrections (observed before at single points in 
Figure 2a,c) are now observed throughout along lines 5, 6 in Figure 2b. The crossing point 
of these lines, point B in Figure 2, is characterized by a new values of logarithmic corrections. 
Moreover, another new set of logarithmic corrections appears at 3 < µ = λ < 5. 
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Appendix A 

In the Appendix, we evaluate integrals that enter formulas (31) and (34). In particular, 
we are interested in the behavior at small ε of the following integrals: Z ∞ 

Iµ(ε) = dx 
x
1 
µ ln cosh x, (A1) 

ε Z ∞ Z ∞ 1
Iλ,µ(ε) = dx dy ln cosh(xy), (A2)

xλyµ
ε ε 

We will consider the region where λ, µ > 2. 

Integral Iµ(ε) 

Let us frst consider integral (A1). At 2 < µ < 3, it does not diverge for ε → 0, 
therefore its leading behavior in this limit can be evaluated by numerical integration: 

Iµ(ε) = iµ + O(ε), (A3) 

with Z ∞ 
iµ = dx 

x
1 
µ ln cosh x, 2 < µ < 3 . (A4)

0 

Numerical values of this and further constants iµ are plotted as a function of µ in Figure A1. 
With a further increase in µ, frst, the logarithmic singularity appears at µ = 3. It can be 
singled out, leading to: 

I3(ε) = − 
ln ε 

+ i3 + O(ε2), (A5)
2 

where i3 = 0.64525. 
For µ > 3, to single out the leading singularities of the function under integration at 

small x, we integrate twice by parts, resulting in: 

ε3−µε1−µ ln cosh ε ε2−µ tanh ε
Iµ(ε) = − + − + iµ(ε), (A6)

1− µ (1− µ)(2− µ) (1− µ)(2− µ)(3− µ) 

with Z ∞ 
iµ(ε) = 

1 
dx x2−µ(tanh x)2. (A7)

(µ − 1)(2− µ) ε 
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Further analysis depends on the value of µ. In the region 3 < µ < 5, the integral on the 
right-hand side of Equation (A7) converges at ε → 0 and its leading asymptotics can be 
evaluated numerically. So, keeping the leading behavior of the frst three terms in (A6) 
results in: 

ε3−µ 
Iµ(ε) = + iµ + O(ε), 3 < µ < 5, (A8)

2(µ − 3) 

with Z ∞ 
iµ = 

1 
dx x2−µ(tanh x)2. (A9)

(µ − 1)(2− µ) 0 

Logarithmic singularity appears in (A7) at µ = 5, leading to: 

Iµ(ε) = ε−2/4− (ln ε)/12 + i5 + O(ε), (A10) 

with i5 = −0.11309. 

Figure A1. Dependence of constants iµ in Equations (A3) and (A8), (A11) on µ. 

For higher values of µ, analysis can be performed in a similar fashion. In particular, 
for 5 < µ < 7, again integrating twice by parts, one extracts a power-law singularity from 
the integral (A7): 

ε3−µ ε5−µ 
Iµ(ε) = − + iµ + O(ε) , 5 < µ < 7 , (A11)

2(µ − 3) 12(µ − 5) 

with h Z ∞ 
iµ = 

2 
dx x3−µ(tanh x)3 − 

(µ − 1)(2− µ)(3− µ) 0 Z ∞ i1 
dx x4−µ(tanh x)2 . (A12)

4− µ 0 
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Summarizing the above derived expressions for the leading behavior of the integral (A1) 
at small ε, we obtain the following useful formula: 

Iµ(ε) − iµ ' 

⎧ ⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎩ 

O(ε), 2 < µ < 3 , 
−(ln ε)/2 + O(ε2), µ = 3 , 
ε3−µ/(2(µ − 3)) + O(ε), 3 < µ < 5 , (A13) 
ε−2/4− (ln ε)/12 + O(ε), µ = 5 , 
ε3−µ/(2(µ − 3)) − ε5−µ/(12(µ − 5)) + O(ε), 5 < µ < 7 . 

Constants iµ for different µ can be evaluated numerically using formulas (A4), (A9) 
and (A12). Their dependence on µ is shown in Figure A1. They can be also checked against 
analogous constants evaluated in Ref. [45] using different integral representations. 

Integral Iλ,µ(ε). 

To single out leading singularities of the integral Iλ,µ(ε) at small ε, we differenti-
ate Equation (A2) with respect to ε. Due to the fundamental theorem of calculus, the 
result reads: 

d Iλ,µ(ε) 
= −ελ−µ−1 Iλ(ε

2) − εµ−λ−1 Iµ(ε
2) , (A14)

d ε 

where the asymptotic behavior of the integrals in the r.h.s. of Equation (A14) is defned by 
Equation (A13) provided the substitution ε → ε2. Consequently, the asymptotic behavior of 
Jλ,µ(ε) is obtained by integrating Equation (A14) with respect to ε. In particular, at λ = µ, 
Equation (A14) reduces to 

d Iλ,λ(ε) = −2 ε−1 Iλ(ε
2) , (A15)

d ε 

and one readily obtains: 

Iλ,λ(ε) − iλ,λ + 2iλ ln ε ' 

⎧ ⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎩ 

O(ε2), 2 < λ < 3 , 
(ln ε)2/2 + O(ε4), λ = 3 , 

ε6−2λ 

2(λ−3)2 + O(ε2), 3 < λ < 5 , (A16) 
ε−4/8 + (ln ε)2/6 + O(ε2), λ = 5 , 

ε6−2λ ε10−2λ 
5 < λ < 7 .2(λ−3)2 − 12(λ−5)2 + O(ε2), 

Constants iλ have been defned above and numerical values of the integration constants 
iλ,λ are not necessary for our analysis. 

Noting that integral (A2) is symmetric with respect to interchange of its indices, 

Iλ,µ(ε) = Iµ,λ(ε), 

it is enough to make a further evaluation in the region µ > λ. The resulting expressions 
read: 

• 2 < λ < 3: 

Iλ,µ(ε) − iλ,µ = 

⎧ ⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎩ 

iλ 
ε
µ

λ

−
−

λ

µ 
+ O(ελ−µ+2), 2 < µ < 3 , 

ln εiλ 
ελ−3 

+ ε3−λ + O(ελ−1), µ = 3 ,3−λ 3−λ 
ελ−µ ε6−λ−µ 

+ O(ελ−µ+2),iλ − 3 < µ < 5 ,µ−λ 2(6−λ−µ)(µ−3) (A17) 
ελ−5 ε1−λ

iλ − + O(ελ−3), µ = 5 ,5−λ 4(1−λ) 
ελ−µ ε6−λ−µ

iλ − + O(ελ−µ+2), 5 < µ < 7 . µ−λ 2(6−λ−µ)(µ−3) 

• λ = 3: 

http:integralsinther.h.s.of
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Iλ,µ(ε) − iλ,µ = 

⎧ ⎪⎪⎨ ⎪⎪⎩ 

ε3−µ i3 1ln ε − ε3−µ[ + 2(µ−3)2 ] + O(εµ−1, ε7−µ), 3 < µ < 5 ,3−µ 3−µ 

ε−2[i3/2− 1/8] − ε−2ln ε/2 + O(ε2), µ = 5 , (A18) 
ε3−µ i3 1ln ε − ε3−µ[ + 2(µ−3)2 ] + O(ε7−µ), 5 < µ < 7 .3−µ 3−µ 

• 3 < λ < 5: 

Iλ,µ(ε) − iλ,µ = 

⎧ ⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎩ 

ελ−µ ε6−λ−µ
iλ + + O(ελ−µ+2), 3 < µ < 5 ,µ−λ 2(λ−3)(µ−3) 

ελ−5 ε1−λ
iλ + + O(ελ−3), µ = 5 ,5−λ 4(λ−3) 

ελ−µ ε6−λ−µ
iλ + − µ−λ 2(λ−3)(µ−3) 

ε10−λ−µ 
+ O(ελ−µ+2), 5 < µ < 7 .12(10−λ−µ)(µ−5) 

(A19) 

• λ = 5, 5 < µ < 7: 

ε5−µ ε1−µ 
Iλ,µ(ε) − i5,µ = ln ε − ε5−µ[ 

i5 + 
1 

] + + O(ε7−µ). (A20)
6(5− µ) 5− µ 12(µ − 5)2 4(µ − 3) 

• 5 < λ < 7, 5 < µ < 7: 

εµ−λ ε6−λ−µ ε10−λ−µ 
Iλ,µ(ε) − iλ,µ = iλ + − + O(ελ−µ+2). (A21)

λ − µ 2(λ − 3)(µ − 3) 12(λ − 5)(µ − 5) 

Asymptotic estimates (A17)–(A21) together with (A16) are used in the study to obtain 
expressions for the free energy of the model. 
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