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Abstract— Objective: Catheters and wires are used extensively 

in cardiac catheterization procedures. Detecting their positions in 
fluoroscopic X-ray images is important for several clinical 
applications such as motion compensation and co-registration 
between 2D and 3D imaging modalities. Detecting the complete 
length of a catheter or wire object as well as electrode positions on 
the catheter or wire is a challenging task. Method: In this paper, 
an automatic detection framework for catheters and wires is 
developed. It is based on path reconstruction from image tensors, 
which are eigen direction vectors generated from a multiscale 
vessel enhancement filter. A catheter or a wire object is detected 
as the smooth path along those eigen direction vectors. 
Furthermore, a real-time tracking method based on a template 
generated from the detection method was developed. Results: The 
proposed framework was tested on a total of 7,754 X-ray images.  
Detection errors for catheters and guidewires are 0.56 ± 0.28 mm 
and 0.68 ± 0.33 mm, respectively. The proposed framework was 
also tested and validated in two clinical applications. For motion 
compensation using catheter tracking, the 2D target registration 
errors (TRE) of 1.8 mm ± 0.9 mm was achieved. For co-
registration between 2D X-ray images and 3D models from MRI 
images, a TRE of 2.3 ± 0.9 mm was achieved. Conclusion: A novel 
and fully automatic detection framework and its clinical 
applications are developed. Significance: The proposed 
framework can be applied to improve the accuracy of image-
guidance systems for cardiac catheterization procedures. 
 

Index Terms— Cardiac catheterization procedures, Motion 
correction, Wire detection, Catheter detection, Image-guided 
intervention, Electrophysiology 
 

I. INTRODUCTION 
inimally-invasive cardiac interventional procedures 

such as the treatment of heart failure, structural heart 
disease and cardiac electrophysiology (EP) procedures are 
usually guided using X-ray fluoroscopy. The procedures 
generally involve catheters and wires, which are made from 
high density materials, and so are visible in the X-ray images. 
However, soft tissues have poor contrast under X-ray. To aid 
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navigation and overcome the lack of soft tissue contrast, three-
dimensional (3D) roadmaps can be overlaid onto X-ray images 
to add anatomical information. 3D roadmaps can be generated 
from pre-procedural computed tomography (CT) images [1]-[3] 
and magnetic resonance (MR) images [4] [5]. Modern cardiac 
interventional X-ray systems can also perform rotational X-ray 
angiography, which can be used to form 3D roadmaps for 
guiding procedures [6][7]. Detecting the position of catheters or 
wires in X-ray images is important for several clinical 
applications. For example, a major limitation of 3D 
roadmapping technologies is that overlaid models remain static 
and do not move with the patient’s respiratory and cardiac 
motions. Using the position of a catheter or a wire object which 
is inserted into the narrow blood vessels (e.g. coronary sinus) 
of the heart will help compensate the motions of the heart as the 
catheter or wire moves together with the heart. Catheter or wire-
based motion compensation can largely reduce the two-
dimensional (2D) registration error as, in some cases, 
respiratory motion can cause a two-dimensional (2D) 
registration error of over 14 mm [8]. For co-registration 
between a 2D X-ray image and 3D roadmap, an automatic 
registration method could be developed if the position of a 
catheter or a wire object inside the narrow blood vessel is 
detected. The automatic method will use the centerline of the 
detected object to align with the centerline of the narrow blood 
vessel models in the roadmaps. Moreover, localizing wires and 
catheters can facilitate optimal collimation [9]. Collimators 
control the field of view by using thick blades to block part of 
the X-ray radiation leaving the source to the patient. Detecting 
the locations of wires or catheters can automatically narrow 
down the region of interest.  

For wire and catheter detection and tracking, the majority of 
work is only focused on tracking which requires manual 
initialization or pre-defined models. Pre-defined geometric 
models were used in [10][11] to track the lasso catheter and a 
deformed B-spline model was implemented to track guidewires 
in X-ray image [12]. Recently, several machine learning-based 
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detection and tracking methods were developed. Yatziv et al. 
[13] presented a catheter detection method based on cascade 
classifiers. Although their method achieved 3.97% detection 
failure rate, it only detected the catheter tip electrode and could 
fail when a thicker lasso catheter was nearby. Zhou et al. [14] 
utilized a fast attention recurrent network to detect the endpoint 
of the guidewire tip, and Ambrosini et al. [15] used a 
convolutional neural network to detect guide catheters in liver 
catheterization procedures. Wu et al. [16] proposed a learning-
based approach to temporally track and detect catheter 
electrodes in fluoroscopy sequences, but it only tracks 
electrodes and requires manual initialization. Very few 
detection methods have been published to fully automatically 
localize the positions of both catheters and wire objects as well 
as electrode positions on the catheter or wire. Ma et al. [17] [18] 
have developed a detection method based on blob detection and 
a vessel filter. However, these methods only work on catheters 
with electrodes or very rigid wires. The success rate of these 
methods will be reduced when the target object is overlapping 
with other wires. Navab et al. [19] applied a machine learning 
approach on randomly generated deformable models to extract 
wire objects. However, this was not tested on cases where wires 
have a sudden and large deformation movement. 

All these existing methods do not meet all requirements of 
our clinical applications. In addition, we are not aiming to 
design and implement a computational framework to compete 
with existing methods. Instead, we are focusing on the 
requirements of our applications to deliver the necessary 
performance and accuracy. The requirements are (1) no manual 
initialization, (2) real-time tracking speed, (3) landmark 
(electrode) tracking on the catheter and (4) tracking the full-
length of catheters or wire objects. This is to facilitate automatic 
co-registration between 2D and 3D imaging modalities so that 
there are enough geometric data available for registration. If 
only electrodes on the catheter were tracked, the positions of 
electrodes can only generate part of geometric data of the target 
catheter (from the catheter-tip electrode to the proximate 
electrode). Therefore, tracking the whole length of the target 
catheter will provide more geometric data. 

In this paper, we propose a novel catheter and wire detection 
and tracking framework, which is fully automatic and can be 
used in several clinical applications. It is clinically robust and 
has minimal interference with the routine clinical workflow. 
For detection, a multiscale vessel enhancement filter is applied 
to the X-ray image, which generates eigen direction vectors in 
the areas of the wire-like objects. The catheter or wire object is 
detected as a smooth path constructed by using a tensor path 
reconstruction algorithm. Image tensors at each pixel in the 
image can be expressed by eigenvalues (λ1, λ2) and eigenvectors 
(v1, v2). An image tensor is considered as isotropic when its 
eigenvalues are nearly equal (λ1 ≈ λ2) and as anisotropic when 
they are significantly different in magnitude (λ1 > λ2). For an 
anisotropic pixel, its v1 is recognized as the principal 
eigenvector, which is used to determine the possible wire 
direction at that point. A complete catheter or wire object 
therefore can be reconstructed by analyzing the tensor field in 
the image. To improve the success rate, the similarity scores are 

calculated among detected objects in the first 5 frames of the 
video stream. The detected object with the highest score is 
selected as the tracking template. As for both motion 
compensation and co-registration between 2D and 3D imaging 
modalities, a static catheter or wire object is required so that it 
remains stationary except for respiratory and cardiac motions. 
Therefore, the tracking method only has to find the 
reconstructed path with a similar shape to the tracking template.  

For the application of motion compensation, the coronary 
sinus (CS) catheter is used, as the CS catheter is widely used in 
cardiac catheterization procedures and it remains stationary 
most of the time during the procedure. According to [8], the 
majority of the motion of the heart caused by respiratory motion 
is translational, and the majority of the translational motion of 
the heart is in the superior-inferior direction (head to foot 
direction). Although a 2D translational motion model is less 
accurate than more comprehensive motion models such as 
patient specific affine motion models, it does not require 
additional patient specific data and lengthy computation, and it 
can be used in any cardiac procedure. Therefore, we developed 
2D landmark tracking on a CS catheter to correct the respiratory 
motion. The landmark is an electrode which is clearly visible in 
X-ray images and it can be reliably tracked even at very low 
radiation doses [20]. For the application of automatic co-
registration between 2D and 3D imaging modalities, a wire or 
a catheter in narrow blood vessel is used. For example, a CS 
catheter is used as the registration object in cardiac 
electrophysiological (EP) procedures, where it is inserted into 
the narrow coronary sinus.  

The main contribution of this manuscript is the novel catheter 
and wire tracking framework and its clinical applications. The 
framework was tested on a large clinical data set and validated 
in two clinical applications. 

II. IMAGE ACQUISITION AND IMAGE OVERLAY 
Image-guided cardiac catheterization procedures were 

carried out using a mono-plane flat-panel cardiac X-ray system 
at St. Thomas’ Hospital, London. A total of 108 image 
sequences (8,364 images) were acquired in 39 different clinical 
cases. 19 patients (a total of 3521 images were acquired) 
underwent ablation procedures for the treatment of atrial 
fibrillation (AF), and for each patient anatomical imaging was 
performed prior to the procedure. 13 of these patients 
underwent cardiac MRI (Philips Achieva) and 6 patients 
underwent CT imaging (Philips Brilliance). 15 of the other 
cases (2117 images) were from cardiac resynchronization 
therapy (CRT) procedures. The remaining 5 cases (2726 
images) were from cardiac catheterization procedures for 
treating congenital heart defects (CHD).  

A. Imaging protocol 
For patients undergoing MRI, a high resolution free-

breathing whole heart MRI scan was acquired (3D balanced 
TFE, respiratory gated at end-expiration, cardiac triggered and 
gated at late diastole).  

For patients undergoing CT, a retrospectively-gated CT 
acquisition was performed under end-inspiratory breath-hold 
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and the 80% R-R interval reconstruction was used for 
subsequent processing. 

The image segmentation was performed using a shape 
model-based automatic segmentation algorithm for CT [21] and 
for MR [22]. The 3D anatomical models can be derived from 
segmented 3D image data and will be used in fluoroscopy 
overlay. 

B. Fluoroscopy overlay 
The interventional guidance platform was a prototype offline 

2D-3D overlay software. The software allowed the registration 
of pre-procedural MR/CT-derived anatomical models onto an 
X-ray fluoroscopy sequence. This was done manually through 
multiple-view X-ray images. As the guidance platform also 
received the synchronized positions of the C-arm and X-ray 
table with the X-ray fluoroscopy sequence, alignment between 
pre-procedural anatomical models and X-ray images was then 
maintained irrespective of changes in the system geometry. 

III. METHODS 

A. Tensor-based catheter and wire detection method  
The proposed detection method is divided into three steps. 1) 

Creating a tensor field using a multiscale vessel enhancement 
filter. 2) Performing fibre detection according to the tensor 
field. 3) Reconstructing the wire path by analyzing fibres found. 
Figure 1 gives the overall workflow for detecting catheters and 
wires. 

 

Fig. 1.  Catheter and wire detection workflow 
 

1) Creating a tensor field 
In order to create a tensor field in the X-ray images, a 

multiscale vessel enhancement filter [23] is used to calculate 
the eigenvalues and eigenvectors on wire-like structures in the 
image. This involves three steps. Firstly, the image is smoothed 
by applying a Gaussian kernel of the appropriate scale s. The 
smoothed image 𝐿(𝑋, 𝑠)	is computed as 𝐿(𝑋, 𝑠) = 𝐿(𝑋) ∗
𝐺(𝑋, 𝑠), where * is the convolution operator, 𝐺(𝑋, 𝑠) is the 
Gaussian kernel and 𝐿(𝑋) is the input image. Step 2 is to form 
and decompose the 2 x 2 Hessian matrix at every image pixel. 
The Hessian matrix 𝐻!,#  is defined as 

𝐻!,# = ,
𝐿$$(𝑋, 𝑠) 𝐿$%(𝑋, 𝑠)
𝐿%$(𝑋, 𝑠) 𝐿%%(𝑋, 𝑠)

-                               (1) 

where 𝐿$%(𝑋, 𝑠) =
&
&$
( &
&%
𝐿(𝑋, 𝑠)), and the other terms are 

defined similarly. The final step is to extract both eigenvalues 
and eigenvectors by decomposing the Hessian matrix 𝐻!,#. In 
order to reduce computational complexity for the following 
path reconstruction and achieve real-time detection speed, the 
image is binarized using Otsu’s method [24], after applying the 
vessel enhancement filter. Otsu’s method is a non-parametrized 
and adaptive algorithm as it automatically determines the 
thresholding level based on minimizing the intra-class variance. 
Otsu’s method has previously been used together with a vessel 
enhancement filter for coronary sinus segmentation on X-ray 
images [25]. In this way, eigenvalues are set to zero for the areas 
outside the binarized wire-like structures and they will be 
excluded from the path reconstruction algorithm. Otsu 
thresholding greatly reduces the search-space of the wire-path 
reconstruction algorithm. For example, in figure 2, the 
remaining tensors is only 7.2% of all tensors after applying Otsu 
thresholding. The wire path reconstruction algorithm can be 
repeated several times in order to extract multiple wire-like 
objects and ignore the short ones like the ultrasound probe and 
bone structures. Further to reduce the computational load, 
eigenvalues and eigenvectors are only sampled every 4 pixels 
in each direction, so that only a small percentage (less than 
6.25%) of all eigenvalues and eigenvectors will participate in 
the path reconstruction algorithm. Figure 2 gives an example of 
creating the tensor field.  

 

  
                      (a)                                            (b) 

  
                      (c)                                              (d) 
Fig. 2.  (a) The original X-ray image. (b)  Image after applying the vessel 
enhancement filter. (c) Image after binarization using Otsu’s method. (d) The 
tensor field. Green dots are the eigenvectors excluded from participating in the 
path reconstruction algorithm. Red lines are the directions of the eigenvectors. 
 

The vessel enhancement filter not only can increase the 
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visibility of wire-like structures in the image but also can detect 
the position of catheter electrodes. As 𝐻!,# is a 2 x 2 matrix, 
there are two eigenvalues (𝜆', 𝜆() and two eigenvectors at every 
image pixel.  To classify any local structures in the image, the 
ratio between two eigenvalues 𝑅 = 𝜆' 𝜆(⁄  is calculated. If 𝑅 ≈
1, detected structures will be blob-like structures (electrodes). 
Otherwise, they will be wire-like structures.  

The image tensor 𝐷 at each pixel is defined by 

𝐷 = [𝑣' 𝑣(] 7
𝜆' 0
0 𝜆(

9 :
𝑣'
𝑣(;                                   (2) 

where 𝜆' ≥ 𝜆( ≥ 0. The two unit column vectors 𝑣' and 𝑣( are 
the corresponding orthogonal eigenvectors. The eigenvector 𝑣' 
is called the principal eigenvector which is associated with the 
larger eigenvalue 𝜆'. By definition, the image tensor D is a 2	by 
2 symmetric positive semi-definite real matrix. The 
dissimilarity between two image tensors 𝐷(𝑋)) and 𝐷(𝑋*) can 
be quantitatively described using a distance function. For 
example, the Euclidean distance between two image tensors is 
given by 
𝑑+ >𝐷(𝑋)), 𝐷?𝑋*@A = B𝐷(𝑋)) − 𝐷?𝑋*@B                    (3) 

where ‖𝐴‖ = F𝑡𝑟𝑎𝑐𝑒(𝐴,𝐴) is the Euclidean norm (also known 
as the Frobenius norm). It is more natural to choose non-
Euclidean distance functions (such as the root Euclidean 
distances) due to the positive semi-definiteness of tensor data 
[26][27]. 
 
An anisotropy measure is a useful tool to capture the 
directionality of 𝐷. An	image	tensor	is	anisotropic	if	𝜆' ≫
𝜆(	and it is isotropic if 𝜆' = 𝜆(. For example, an Anisotropy 
Index (AI) of D can be defined by  

𝐴𝐼(𝐷) =
-([(0!123)"5(0"123)"]

-0!
"50"

"
                                   (4)  

where �̅� = (λ' + λ()/2 . 𝐴𝐼(𝐷) ranges from 0 for fully 
isotropic to 1 for fully anisotropic. To reduce the computational 
cost of equation (4), as it will be calculated for every tensor in 
the image, it can be simplified to  
𝐴𝐼(𝐷) = 2!12"

-0!
"50"

"
                                                    (5) 

 
2) Fibre detection 

Given a tensor field 𝐷(𝑋'), 𝐷(𝑋(), … . , 𝐷(𝑋7)	where 𝑁 is the 
total number of pixels in an image, the algorithm to track wire 
sections is illustrated below  

1. Start from a seed pixel 𝑋8	with AI value greater than 
threshold T1 and search for a wire along both sides of 
its principal eigenvector 𝑣'(𝑋8); 

2. Take 𝑣' at X0 as the current wire search direction and 
pixel; 

3. Calculate the angles θ between 𝑣'(𝑋8)	  and the offset 
vectors 𝑣9::#;< , which are the centre connections from 
𝑣' to each adjacent pixel respectively, then sort the 
results in ascending order;   

4. Find the adjacent pixels whose θ is less than the 
tolerance threshold T2; 

5. Compare the tensor similarity between X0 and the 
adjacent pixels found in step 4 by calculating root 
Euclidean distance; 

6. Find the most similar neighbour pixel Xn to the current 
pixel along the wire. If no satisfactory pixel is found, 
go to step 11; 

7. Check the AI at Xn. If it is less than the threshold T1, 
go to step 11; 

8. Calculate the inner product of 𝑣'(𝑋8	) and the 
principal eigenvector 𝑣'(𝑋=	) at Xn. Swap the sign of 
𝑣'(𝑋=	)  if the result is negative; 

9. Check the turning angle between 𝑣'(𝑋8	)  and 𝑣'(𝑋=	), 
if it is greater than threshold T3, go to step 11; 

10. Assign Xn to X0, assign 𝑣'(𝑋=	)  to 𝑣'(𝑋8	), and go to 
step 2; 

11. Restart the search from the original pixel X0, swap the 
sign of 𝑣'(𝑋8	) at X0, and perform detection in the 
reverse direction from step 2 again. If detection has 
been completed for both directions of the seed pixel, 
go to step 12; 

12. The fibre detection is completed by combining the 
detection results of both directions from the seed point 
together.  

13. If all seed pixels have been processed, stop, otherwise 
go to step 1. 

 
Here, 𝑇' = 0.0001. 𝑇( = 40 and it is the tolerance angle for 

fibre tracking.  𝑇> = 45 and it is the turning angle for fibre 
tracking. 𝑇', 𝑇(and  𝑇> are optimized in the training dataset and 
those values are fixed for testing all image sequences. For step 
(7), when a catheter is crossing itself, the wire tracking 
algorithm could either continue or stop, which depends on the 
actual tensor data. In the scenario of stopping, the wire can be 
reconnected to its remaining part according to the algorithm of 
“Reconstructing whole wire path”. 

 
3) Reconstructing whole wire path 

Based on the fibres found in the image, the complete path of 
a catheter or a wire can be reconstructed. The wire path 
reconstruction algorithm connects fibres found in Step 2 to 
construct a long wire. This can be repeated several times in 
order to extract multiple wire objects. 

The algorithm is listed as follows: 
1. Sort all the fibres according to length in descending 

order; 
2. Start from the longest fibre, assume it is part of the final 

wire W, and add its ID into merge list MList; 
3. Find the next fibre f if it is not in MList and then calculate 

the distances and link directions between the 2 endpoints 
of W and 2 endpoints of f, respectively;     

4. If the distance is less than Range threshold R1, the angle 
between W and f is less than Direction threshold R2, and 
the link angle between W and f is less than Link 
threshold R3, then merge f into W. Add f ID into MList; 

5. Repeat step 3 until all fibres have been processed; 
6. Smooth W by removing obtuse angle connections. 
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Our method can not handle the sharp link angle (angle <90) 
between W and f. In some angles of X-ray system, a smooth 
guidewire could be projected as a sharp-turning wire object. In 
this case, the path reconstruction algorithm will stop at the 
location of the sharp turning. 𝑅' = 25 and it is the distance 
range for connecting broken fibres.  𝑅( = 30 and it is the 
turning angle for connecting broken fibres.  𝑅> = 30 and it is 
the angle between the linking line and 2 broken fibres. 
R!, R"and  R# are optimized in the training dataset and 
those values are fixed for testing all image sequences. The 
threshold 𝑅( is for verifying the turning angle between the two 
wires W and f. Reconnection will be abandoned if the turning 
angle is greater than 𝑅(. 

B. The tracking methods for clinical applications 
 

1) Motion compensation application 
For the motion compensation application, electrode catheters 

are the ideal target objects as they have several electrodes which 
are highly visible in X-ray images. The position of an electrode 
can be used to drive 3D roadmaps to follow the respiratory and 
cardiac motions in X-ray images. To track the positions of 
electrodes, we used a by-product of the vessel enhancement 
filter: electrode (blob) positions can be detected as image pixels 
where the ratio between two eigenvalues is close to 1.0 (𝜆' ≈
𝜆(). The vessel enhancement filter is used for creating a tensor 
field (described in section III.A(1)) and enabling blob detection 
adds no additional computational cost for the filter as the 
eigenvalues are always computed inside the filter. An example 
of blob detection can be found in figure 3. 

 

   
    (a)                                            (b) 

Fig. 3.  Blob detection result. (a) Image after applying the vessel enhancement 
filter. (b) Blob positions (red crosses). The threshold for 𝜆!/𝜆" is 0.8 and 𝐷#$% 
is 13 pixels. 
 
In cardiac catheterization procedures, coronary sinus (CS) 
catheters are often used as diagnostic catheters and the most 
commonly used CS catheters are the 10-electrode or 4-electrode 
catheter. The presence of electrodes was the unique feature that 
was used to separate the CS catheter from other catheters, 
instruments and ECG leads. A combination of wire detection 
and the electrode pattern provides a robust way to detect the CS 
catheter inside X-ray images. The detection workflow for 10-
electrode CS catheter is as follows: 
(1)  Run the tensor-based wire detection method. In the step of 
tensor field creation, blob detection is performed using the 
vessel enhancement filter (no addition computational cost). 
(2) Cluster blobs on the detected wire based on the maximum 
distance 𝐷?@$. 𝐷?@$ is defined as twice the length of the 
distance 𝐷A@B between two neighbouring electrodes. 𝐷A@B was 

obtained by physical measurement of a CS catheter and it is 5 
mm or 13 pixels based on a pixel to mm ratio of 0.385. 
(3) Detect the CS catheter as the wire with a cluster of 9 or more 
blobs (electrodes). The reason for using 9 instead of 10 blobs as 
the threshold is to accommodate some cases of missed blob 
detection in the tip of the catheter where two electrodes are 
close to each other. 
 
Our method can work with the 4-electrode CS catheter or other 
types of catheters as long as the catheter has electrodes. Finally, 
the 2D position of the proximal electrode of the CS catheter was 
used for the motion compensation application. The reason for 
choosing the proximal electrode is that it has less cardiac cycle 
motion and has lower detection errors than the catheter-tip 
electrode (because of occasionally overlapping with the second 
electrode). In order to reduce the computation cost, a tracking 
method is used. To generate a tracking template, the error scores 
are calculated among detected objects in the first 5 frames of 
video stream. The error score is defined as the sum of error 
Euclidean distances between two detected objects after the two 
objects are registered using iterative closest point (ICP). The 
detected object in one frame and other detected objects in other 
4 frames were registered using ICP and the sum of all error 
scores were calculated. Repeat the process for all 5 frames. The 
one with the lowest score (sum) will be chosen as the tracking 
template. After the template is obtained, in the subsequent 
frames, a simplified version of the wire reconstruction 
algorithm is used to find a target object with a similar shape to 
the tracking template. The simplified algorithm starts with the 
selecting one of the detected fibres which is closed to the image 
boundaries and also close to the tracking template. As all 
catheters are inserted from blood vessels in the arms, legs or 
neck into the heart and the catheter inserting point is outside the 
field of view of X-ray images when the procedure focuses on 
the heart area, the end of the catheter will appear on one of 
image edges on X-ray images. The rest of the catheter can then 
be reconstructed by selecting detected fibres with the minimum 
angle difference and the minimum distance to the tracking 
template. Figure 4 illustrates an example. The angle difference 
is defined as the angle between the tangent vector from the 
template and the tangent vector from the tracked object.  
 

 
Fig. 4.  Wire reconstruction using the tracking template. Red crosses are the 
detected blob positions. Yellow lines are the detected wire or catheter. The 
green line is the tracking template.  
 

2) 2D-3D registration application 
For the registration application, a catheter or guidewire was 

used to align 3D models with an X-ray image automatically. 
The method was implemented in a prototype overlay platform. 

Angle 
difference 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2021.3102670, IEEE
Transactions on Biomedical Engineering

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

6 

During the procedure, the MR/CT-derived 3D model was 
imported and overlaid on the live X-ray image to guide the 
cardiologist. To register the 3D model with the 2D X-ray image, 
the transformation matrix (𝑇?9C;D_<9_!F@%) needs to be 
calculated. It consists of a rigid body transformation matrix 
𝑇F)A)C and a projection matrix 𝑇BF9*. 
𝑇?9C;D_<9_!F@% = 𝑇BF9*𝑇F)A)C                               (6) 

 
𝑇BF9* 	transforms from 3D X-ray C-arm space to 2D X-ray 
image space. This can be calculated by using the intrinsic 
parameters of the X-ray system [28].		𝑇F)A)C transforms from 3D 
model space (MR or CT image space) to 3D X-ray C-arm space. 
It can be defined as  
𝑇F)A)C = 𝑇?9C;D_<9_G;C𝑇G;C_<9_H@F?                      (7) 
 

 
Fig. 5.  Illustration of translations and in-plane rotation on the X-ray bed.  
 
𝑇G;C_<9_H@F? transforms from 3D X-ray bed space to 3D X-ray 
C-arm space. It can be calculated using positions and 
orientations of the X-ray bed and C-arm, which are tracked in 
real-time in our system. 𝑇?9C;D_<9_G;C transforms from 3D 
model space to 3D X-ray bed space. If the X-ray bed is aligned 
with the bed in the MR or CT scanner, 𝑇?9C;D_<9_G;C can be 
calculated using parameters in the DICOM header of the MR or 
CT images. In reality, because the way that the patient lies in 
the MR/CT bed may be different to the X-ray bed, a correction 
transformation should be done in the registration pipeline. The 
majority of corrections transformations are small translations 
and in-plane rotation on the bed. Figure 5 gives an illustration. 
In our X-ray system, 𝑇BF9* is generated by the system software. 
To maintain the accuracy of 𝑇BF9*, the X-ray system are 
calibrated every few years by a service engineer and the 
accuracy is well below 1mm. 𝑇G;C_<9_H@F? is also provided by 
the system software in real-time and they are generated by using 
position sensors in C-arm and patient bed. Again, the accuracy 
is well below 1mm. The accuracy of 𝑇?9C;D_<9_G;C depends on 
how patient lies on X-ray bed and 𝑇?9C;D_<9_G;C can be corrected 
using our automatic 2D-3D registration method. 

To automatically calculate the small translations and in-plane 
rotation, a catheter or guidewire was used to match with the 
centerline of the narrow blood vessel. First, a 3D thinning 
method for binary images is used to extract the center pixels of 
a blood vessel [29] from the result of segmentation of the 
targeted heart vessels. The target heart vessel is normally 
coronary sinus (CS) as it is a narrow blood vessel. CS is 
segmented manually by a clinician. Then a spline curve is fitted 
to the center pixels to create a smooth centerline. Finally, the 
detected catheter or guidewire which is located inside the 

targeted heart vessel is registered with the smoothed centerline 
of the projected targeted heart vessel using ICP. The electrode 
catheter could be recognized automatically if there are more 
than one catheters presented in the image. For examples, the CS 
catheter which is normally inserted into CS can be recognized 
by the pattern of electrodes. The alignment of catheter or 
guidewire with the centerline of the blood vessel are not limited 
to the CS catheter and other catheter or rigid wire can be used 
as long as it has sufficient length within the blood vessel.  

Aligning a catheter or guidewire with the centerline of a 
narrow blood vessel in a single X-ray image does not provide 
an accurate 2D-3D registration. Ideally, biplane images from a 
biplane X-ray system should be used as biplane images are 
acquired at the same time and they do not have respiratory or 
cardiac motion phase differences. However, the majority of 
interventional cardiology X-ray systems are mono-plane 
systems. Therefore, a motion gating method [30] was used to 
find a pair of images in similar respiratory and cardiac cycle 
motion phases from two short X-ray fluoroscopic image 
sequences, which are acquired from two different angle views 
using a mono-plane X-ray system. Typically, one is the 
posteroanterior (PA) view and the other is the left/right anterior 
oblique (LAO/RAO) view. We refer to this pair of images also 
as the biplane X-ray images. Aligning a detected catheter or 
guidewire with the centerline of a narrow blood vessel in the 
biplane X-ray images provides a 2D-3D registration. 

IV. RESULTS 
108 image sequences (8,364 images) were acquired in 39 

different clinical cases using a mono-plane X-ray system. The 
frame size of each sequence is 512×512, with pixel sizes 
between 0.368 mm and 0.433 mm. The images acquired during 
the EP procedures contains between one catheter to four 
catheters and the average number of catheters is two. 610 
training images from 8 image sequences were used for 
obtaining the optimal values for  𝑇', 𝑇(and  𝑇> as well as 
R', R(and  R>. The remaining 7754 images were used for 
evaluation and validation. Among the validation images, 3221 
images are from AF procedures which always has a CS catheter 
in the field-of-view. 

To establish ground truth for evaluation, electrode catheters 
and guidewires were manually annotated by a clinical expert. 
An annotated object starts from the edge of the image and ends 
at its tip. The detection or tracking precision is defined as the 
average of the shortest distances from points on a detected or 
tracked object to the corresponding annotated object.  

A. Evaluation of catheter and wire detection 
For the technique to be acceptable in clinical practice, failed 

detections are considered to be the ones where any points on the 
detected object have larger errors than a preset threshold (e.g., 
a threshold of 2.5mm (around 6 image pixels) [31] is used in 
this evaluation), which corresponds to the size of the smallest 
target structures for cardiac catheterization procedures. Overall, 
detection errors for catheter and guidewires are 0.56 ± 0.28 mm 
and 0.68 ± 0.33 mm, respectively, and success rates of 91.4% 
and 86.3% were achieved. The success rate is defined as: 
success rate = 1.0 – failure rate. The detection errors were 
calculated using all (7,754) validation images. The number of 

Translations 

In-plane 
Rotation 
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points for error measurements range from 11 to 46 depending 
on the length of the detected object and the points are the 
position of tensors. The detection errors are presented in table 
1.  
 

Method Case Type Speed Errors 
(mm) 

Errors 
(pixels) 

Our method EP Catheter 11 FPS 0.41±0.22 1.1±0.6 
Our method CRT Catheter 

+ wire 
11 FPS 0.64±0.24 1.6±0.6 

Our method CHD Catheter 
+ wire 

11 FPS 0.76±0.56 1.8±1.3 

Chen [12] CRT Wire N/A 0.47±0.31 2.2±1.5 
Yatziv [13] EP Catheter 10 FPS N/A 3.0 ± 4.2 
Wu [16] EP Catheter 5 FPS 0.5 to 0.76 N/A 
Ambrosini 
[15] 

Liver Catheter 
+ wire 

8 FPS 0.2 to 0.9 N/A 

      
Table 1.  Detection errors among different procedures as well as comparison to 
other state-of-the-art methods.  
 

The detection method is robust even when angiography was 
present nearby. The reason for robust wire reconstruction is 
mainly because the angiography was filtered out by the vessel 
enhancement filter. Figure 7 give an example. The maximum 
errors in CRT and CHD cases are much higher than in the EP 
cases. This is because the catheter or guidewire tracking is 
distracted by a nearby wire object, and some catheters used in 
CRT and CHD do not have electrodes, which make them less 
distinguishable from other wire objects. Figure 8 gives 
examples of failure cases for detections. Both figure 7 and 8 has 
one guiding catheter and one guidewire. The guiding catheter is 
used for injecting contrast agent. 

  
                      (a)                                             (b) 

  
                      (c)                                             (d)  

 
(e) 

Fig. 7.  The detection result in a CRT case with angiography present. (a) 
Original image. (b) Image after applying vessel filter. (c) Image after applying 
binarization. (d) All detected fibres showing in color lines. Based on anatomical 
information, the two fibres at the top (light blue and purple) are discarded. 
(e)The yellow line and blue line are the detected wire objects. 
 

  
                        (a)                                           (b)  

  
                      (c)                                             (d)  
Fig. 8.  A detection failure in a CRT case. (a) Original image. (b) All detected 
fibres showing in color lines. (c) The yellow line is the detected wire. The 
failure is caused by a nearby wire object. (d) The yellow line and blue line are 
detected wire objects. 

 
Overall, tracking errors for catheters and guidewires are 0.41 

± 0.23 mm and 0.58 ± 0.29 mm, respectively, and success rates 
of 98.3% and 90.2% were achieved. The definition of tracking 
errors is the same as the definition of detection errors. The 
success tracking rate is defined as ratio between the number of 
success tracking cases and total number of tracking cases. As 
we are tracking using a tracking template, tracking is more 
robust compared with detection.  The rate for obtaining a 
correct (valid) template is very high as the target catheter or 
guidewire is stationary and only moves with respiratory and 
cardiac motions. The success rate for tracking the template is 
100%, 100% and 95% in EP, CRT and CHD cases respectively. 
A success tracking template is defined as all its points have an 
error less than 2.5mm compared with the manual annotation. 
The success tracking rate is defined as the percentage of 
successful tracking templates. Currently, the proposed 
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framework has achieved a frame rate of up to 11 frames per 
second (FPS) in detection and 16 FPS in tracking. The 
performance was evaluated on an Intel Core i7 2.9 GHz laptop 
with a single-threaded CPU implementation.  

The tracking errors for both proximal electrode and catheter 
tip electrode of a CS catheter was given in table 2. 

 
Electrode Case Errors (mm) Errors (pixels) 
Catheter tip EP 0.52±0.27 1.4±0.7 
Proximal EP 0.43±0.22 1.2±0.6 

Table 2.  Tracking errors of proximal electrode and catheter tip electrode for a 
CS catheter.  

B. Validation of motion compensation  
A lasso catheter is often used in EP procedures. The lasso 

catheter is normally placed inside the pulmonary veins (PV) to 
be used as a mapping or measurement catheter. 18 out of 56 
image sequences recorded in the EP cases had a lasso catheter 
which remained stable in one of the PVs throughout the whole 
image sequence. Therefore, it can be used for validation of 
accuracy of motion compensation using CS catheter tracking. 
The 2D translational motion of the proximal electrode of the CS 
catheter was applied to the 2D position of the lasso catheter tip 
electrode. This acts as a surrogate for the position of the PVs, 
since it is rigidly placed within these structures during the 
procedure. The target registration error (TRE) was computed as 
the distance error between this predicted position of the lasso 
catheter tip electrode and the actual position of the lasso 
catheter tip electrode in the X-ray image. Figure 9 gives an 
example. The positions of the lasso catheter tip were manually 
annotated by a clinical expert. TRE before motion correction 
was 4.5 ± 1.6 mm and after applying motion compensation 
using a CS catheter TRE dropped to 1.8 ± 0.9 mm. The TRE 
was calculated at the catheter tip electrode on 721 images (14 
image sequences and 10 patients). Table 3 summarizes the 
accuracy and motion recovery of motion compensation 
validation using a lasso catheter.  

 
 Case Errors (mm) Errors (pixels) 
Before correction EP 4.5±1.6 12.1±4.3 
After correction EP 1.8±0.9 4.8±2.4 
Motion recovered 41%~71% 
Table 3. TRE before and after motion correction using lasso catheter 

validation. 
 

  
                    (a)                                               (b) 
Fig. 9.  Example of motion compensation validation using the lasso catheter. 
(a)(b) The green cross is the tracked proximal electrode of CS catheter. The red 
cross is the manually annotated position of lasso catheter tip electrode. (b) The 
white cross is the predict position of lasso catheter tip electrode. 

C. Validation of 2D-3D registration  
For validating 2D-3D registration using a CS catheter, two 2D 

B-spline curves were used to annotate the border of the left 
atrium roof (LAR) (shown in figure 10f) in the X-ray 
angiography and the 3D LA model. The TRE was defined as 
the average 2D distance between the two B-spline curves. TRE 
for 2D-3D registration are 2.3 ± 0.9 mm. Validation was on 5 
image sequences (49 image frames from 3 EP cases were used) 
which had left atrium angiography. The ICP residual error is 
0.53 ± 0.21 mm. Not all image frames in each sequence are used 
as angiography is only clearly visible on some of image frames. 
Table 4 summarizes the accuracy of 2D-3D registration 
validation using LAR.  

 

Table 4. The ICP residual errors and TRE for LAR validation. 
 

  
                       (a)                                             (b) 

  
                      (c)                                            (d) 

  
                     (e)                                              (f) 
Fig. 10.  Example of an automatic 2D-3D registration and validation. The 
selection of the target CS catheter (two CS catheters in the image) is 
automatically based on anatomical information. (a) Original image. (b) CS 
catheter tracking result. (c) 2D-3D registration result (LAO 2 acquisition angle). 
Orange object is the 3D model of CS created from the segmentation of the 
whole heart MRI images.  (d) 2D-3D registration result (LAO 27). (e) Left 

Images Case ICP Errors 
(mm) 

Errors (mm) Errors (pixels) 

49 EP 0.53 ± 0.21 2.3±0.9 6.2±2.4 
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Atrium (blue color) and CS (orange color) overlay. (f) Manual annotation (10-
point B-spline curve) of the LAR used in validating 2D-3D registration 
methods.  

V. DISCUSSION AND CONCLUSION 
This paper presents a robust real-time catheter and guidewire 

tracking framework and its novel clinical applications. It 
utilizes image tensors to reconstruct the path of a catheter or a 
guidewire which provide a robust tracking template. With 
automatic pattern detection on an electrode catheter, the target 
object was automatically detected without any user interaction 
even when there were multiple catheters presented in the image. 
With a tracking speed of 16 FPS, the framework can be used for 
real-time motion compensation, as the average maximum frame 
rate for modern intervention X-ray systems is 15 FPS. Using 
the 2D position of the proximal electrode of a CS catheter can 
recover up to 71% of respiratory motion, which is a similar 
result compared with [32]. This was compared against the static 
roadmap and the percentage of motion recovered is calculated 
as 

 
Our solution is not limited to the CS catheter and it could use 

any wire inserted into heart vessels or chambers as long as it 
remains stationary and only moves with respiratory and cardiac 
motions. The proposed framework can be also used for 
automatic 2D-3D registration between 3D anatomical models 
and live X-ray images.  The only requirement for this clinical 
application is the 3D model of the CS, which could be obtained 
from a 3D whole-heart MRI scan. The current MRI acquisition 
protocol of whole-heart images requires the patient to hold their 
breath for 10 to 20 seconds. Most patients can hold their breath 
for the required time period but majority of the CRT patients 
cannot. Therefore, with motion artifacts presented in image data 
from CRT patients, an accurate CS segmentation is sometimes 
not possible. The 2D-3D registration method was therefore only 

tested on image data from EP cases. Automatic registration and 
motion compensation methods could be applied together 
throughout the procedure to correct bulk patient motions as well 
as respiratory motions. 

Existing state-of-the-art methods track either only electrodes 
or only the partial or full length of a catheter or guidewire. Some 
existing methods requires manual initialization or a prior 
model. To the best of our knowledge, none of existing methods 
fulfills all our requirements for our novel clinical applications. 
On the other hand, our framework can track both catheter and 
guidewire in real-time and it also detect electrode positions on 
the catheter. Finally, the full length of a catheter or guidewire is 
tracked. All features of our framework enable it to be used in 
motion compensation as well as automatic co-registration 
between 2D X-ray images and the 3D roadmap.  

With the rise of robot-assisted intervention in the near future, 
automatic tracking of surgical and interventional tools has 
become an important part of the robotic system. For example, 
in robot-assisted cardiovascular surgery, real-time localization 
of the tip of the catheters or guidewires in the X-ray image could 
facilitate force-feedback in robotic controls to avoid damaging 
blood vessel walls. If the proposed framework integrates more 
image or object classifiers, there will be wider applications in 
computer or robot assisted interventions.      
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