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Wireless Channel Modelling for Identifying Six
Types of Respiratory Patterns with SDR Sensing

and Deep Multilayer Perceptron
Umer Saeed, Syed Yaseen Shah, Adnan Zahid, Jawad Ahmad, Senior Member, IEEE , Muhammad Ali

Imran, Senior Member, IEEE , Qammer H. Abbasi, Senior Member, IEEE , Syed Aziz Shah

Abstract— Contactless or non-invasive technology has a significant
impact on healthcare applications such as the prediction of COVID-
19 symptoms. Non-invasive methods are essential especially during
the COVID-19 pandemic as they minimise the burden on health-
care personnel. One notable symptom of COVID-19 infection is a
rapid respiratory rate, which requires constant real-time monitor-
ing of respiratory patterns. In this paper, Software Defined Radio
(SDR) based Radio-Frequency sensing technique and supervised
machine learning algorithm is employed to provide a platform for
detecting and monitoring various respiratory: eupnea, biot, bradyp-
nea, sighing, tachypnea, and kussmaul. The variations in Channel
State Information produced by human respiratory were utilised
to identify distinct respiratory patterns using fine-grained Orthogonal Frequency-Division Multiplexing signals. The
proposed platform based on the SDR and the Deep Multilayer Perceptron classifier exhibits the ability to effectively detect
and classify the afore-mentioned distinct respiratory with an accuracy of up to 99%. Moreover, the effectiveness of the
proposed scheme in terms of diagnosis accuracy, precision, recall, F1-score, and confusion matrix is demonstrated by
comparison with a state-of-the-art machine learning classifier: Random Forest.

Index Terms— COVID-19, Abnormal Respiratory, Non-invasive, USRP, CSI, Software Defined Radio, Neural Network

I. INTRODUCTION

COVID-19 or COrona VIrus Disease’19 has infected mil-
lions of people globally, and with the recent emergence

of new variants in distinct parts of the world, the vaccine’s
effectiveness is at utmost concern. COVID-19 has been linked
to more than 3 million deaths, according to the recent figure by
World Health Organization (WHO) - https://covid19.
who.int. Fever, flu, ageusia, cough, and lungs failure due to
respiratory disorders are the most common symptoms of the
virus, which spreads primarily by human-to-human contact.
Governments all over the world are seeking to stop the epi-
demic from spreading by imposing frequent lockdowns, which
is wreaking havoc on the economy and private businesses [1].

The novel variants of COVID-19 are directly targeting
human lungs, consequently resulting severe damage towards
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the respiration. The average human respiratory rate for an
adult at rest is between 12 and 20 breaths per minute, and
it is irregular if it is less than 12 breaths per minute or
more than 20 breaths per minute [2]. Respiratory rate that
are abnormal may be sluggish, shallow, rapid, intense, or a
hybrid of these. Figure 1 depicts the six diverse human respi-
ratory or breathing patterns: eupnea, biot, bradypnea, sighing,
tachypnea, and kussmaul. Eupnea is a regular respiratory with
a normal rhythm and frequency caused by a healthy lifestyle,
while biot is an intense respiratory with slow intervals of
no breaths engendering by spinal meningitis or concussion
(head injury). Bradypnea is a sluggish and shallow respiratory
resulting from concussion, sleeping pills, stroke, or metabolic
disorder. Sighing is respiratory stressed by recurrent intense
breaths due to dyspnea, dizziness, or nervousness. Tachypnea
is the opposite of bradypnea described as rapid and shallow
respiratory as a result of anxiety, fever, stun, or exercise.
Lastly, kussmaul is an intense and rapid respiratory pattern
by virtue of diabetic ketoacidosis, metabolic acidosis, or renal
failure. Table I lists the descriptions and causes of the various
human respiratory patterns.

As described earlier, one of the key symptoms of the novel
coronavirus is irregular or abnormal respiratory caused by the
virus attack on lungs. It is of utmost significance to detect and
identify the abnormal respiratory at the earliest stages in order
to safeguard human lives. This paper focuses on the detec-

https://covid19.who.int
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Fig. 1: Sample plots of distinct human respiratory.

TABLE I: Definition and distinct causes of human respiratory

Respiratory
Type

Definition Distinct Causes

Eupnea Normal and healthy respiratory Nutritious diet
Healthy living

Biot Intense respiratory with progressive
breathless intervals

Concussion
Spinal meningitis

Bradypnea Sluggish and shallow respiratory

Concussion
Sleeping Drugs
Stroke
Metabolic disorder

Sighing Respiratory punctuated by repeated
intense breathe

Dyspnea
Giddiness
Anxiety

Tachypnea Rapid and shallow respiratory

Anxiety
Fever
Shock
Workout

Kussmaul Rapid and intense respiratory
Diabetic ketoacidosis
Metabolic acidosis
Renal failure

tion and diagnosis of abnormal human respiratory owing on
COVID-19 through reliable non-contact wireless techniques
merged with intelligent artificial intelligence algorithms. The
advancement of universal, contactless, and wireless sensor
technology to track everyday activities is gaining popularity
everyday. Recently, various methods for monitoring human
health and vital signs such as heart rate, have been established.
Smart watches, portable sensors, Doppler RADAR, ultra-
wideband RADAR, and frequency modulated carriers are some
of the examples of it.

The rest of this paper is structured as follows: Section
II provides a recent literature review towards non-invasive
technology. In Section III, the details regarding proposed
platform is provided. Section IV presents the experimental
results and analysis. Finally, Section V provides concluding
remarks.

II. LITERATURE REVIEW

In this section, we have discussed distinct literature about
non-invasive or non-contact sensing technologies and how they
were utilised to detect and monitor various human activities

and health conditions including symptoms of COVID-19 such
as abnormal respiratory and heart rate.

A. Activity Monitoring using Non-invasive Technology

Authors in [3] utilised an ambient RADAR sensor to
recognise various human activities in interior spaces and this
system was able to classify a wide range of human activities. In
[4], authors acquired RADAR spectrogram data to distinguish
and categorise different types of falls in elderly humans. In
[5], for fifteen distinct operations in the kitchen environment,
a low powered RADAR sensor was employed. Authors in
[6] developed a non-invasive passive detection system on a
dynamic speed platform to recognise diverse human activities
using commercial Wi-Fi. In [7]–[10], authors built a “Through
the Wall” presence detection device for people that uses Wi-
Fi signals to extract channel frequency response. A Wi-Fi-
based gesture recognition system was designed that analyses
fluctuations in Channel State Information (CSI) of Wi-Fi
signals to monitor and identify distinct hand movements [11].

In [12], authors presented a methodology for identifying
various eating activities utilising Wi-Fi signals, while the
authors [13] developed a system for user identification for
mobile devices utilising Wi-Fi technology. Using RF-based
sensing, authors in [14] constructed a sleep guardian platform
by integrating signal processing, machine learning, and edge
computing. In [15], a Wi-Fi run system is built in the activity
area for step estimation utilising CSI dynamics, whereas a
Software Defined Radio (SDR) based non-contact system was
created in [16] to recognise various human actions like stand-
ing, running, crawling, and so forth. Moreover, the authors in
[17] generated a scheme based on SDR technology to hear
various types of human speech, whilst [18] employed SDR
technique to implement a whole house gesture recognition
system.

B. Health Monitoring using Non-invasive Technology

Authors in [19] employed the passive doppler RADAR de-
vice to detect and classify distinct human respiration. Similarly
in [20], human respiratory detection scheme was designed
using a passive Doppler RADAR platform. In [21], Wi-Fi
signals are used to monitor vital signs and recognise distinct
body positions while sleeping. Authors in [22] and [23]
employed the C-Band sensing techniques for various health
monitoring concerns such as respiratory detection, tremor, and
chronic obstructive pulmonary disease warning, whereas in
[24] Res-Beat scheme was developed to track the rate of
respiration.

In [25]–[27], authors developed a system based on S-
band sensing techniques for a variety of health monitoring
concerns, including seizure episode identification, cerebellar
dysfunction patients’ mobility evaluation, and pill rolling eval-
uation. Authors in [28] exploited the SDR-based technology
to categorise various human exercising activities. Recently, in
several literature, various machine/deep learning algorithms
have been effectively applied to predict and diagnose COVID-
19 symptoms using “Radio-graphic Imaging” [29]–[33].
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III. PROPOSED SCHEME

A. System Model

The scheme designed for this research work is made up
of desktops that are utilised to run the SDR software in
Laboratory Virtual Instrument Workbench (LabVIEW). The
Universal Software Radio Peripheral (USRP) model “2922”
is employed for SDR technology’s general Radio-Frequency
(RF) capabilities and omni-directional antennas for CSI cap-
ture. By observing small-scale motions in the wireless channel
and obtaining fine-grained CSI, our system is able to recognise
and categorise distinct respiratory patterns. The transmitter’s
RF signal travels via many multipaths to reach the receiver
in an interior environment. This signal comprises data on
environmental variables. The environment here is defined
as the physical space that contains human aspects such as
human postures, respiratory patterns, as well as environmental
characteristics [35].

When a human is present in physical space, the reflection
or diffraction of signals from its body creates a supplemen-
tary channel. As a result, the influence of human movement
(either small or big) is recorded on the signal propagation
and reported in the form of CSI on the received signals.
Subsequently, the data from CSI can be utilised to identify
distinct respiratory patterns. The USRP transmitter continually
emits wireless signals with a certain frequency and the USRP
receiver, on the other hand, receives these transmitted signals.
Meanwhile, respiratory activity causes a minute deviation in
the chest and abdomen, resulting in a shift in the signal
propagation route recorded by the received signals in the CSI
form. As illustrated in Figure 2, this non-invasive SDR-based
scheme consists of three key functional blocks: the transmitter,
radio or wireless channel, and receiver.

1) Transmitter: The transmitter is made up of two parts:
the desktop and the USRP device. Pseudo random data bits
are generated in the transmitter and transferred to quadrature
amplitude modulation symbols or signs. These signs are then
separated into two streams. In each parallel framework, ref-
erence data signs are concatenated. These reference signs are
useful for the channel estimate on the receiver side. Every
framework has zeros at the borders and one zero at DC.
The Inverse Fast Fourier Transform (IFFT) function is used
to convert frequency-domain signals into time-domain signals
after zero padding. Each framework at the starting has a Cyclic
Prefix (CP), which is created by replicating the last one-
fourth point. This addition of CP will aid in the elimination of
frequency and time offset at the receiver side. The synthesised
data from the host desktop is transferred to the USRP device
at a rate of “20 MS/s” over gigabit ethernet. The USRP uses a
Digital Up Conversion (DUC) to convert the incoming signal
to “400 MS/s”, and then uses a digital-to-analog converter to
transform the signals into analogue. The resulting analogue
signal is blended up to the specified carrier frequency after
passing through a low pass filter with a “20 MHz” bandwidth.
This signal is then sent to an amplifier transmit, where the
strength can be assorted from 0 to 30 dB. The signal is then
broadcasted using an omni-directional antenna.

TABLE II: Human subjects information who participated in
experiment

No. Gender Age Weight
(Kg)

Height
(cm)

Physique
Type

1 Male 28 65 179 Ectomorph
2 Male 26 76 173 Endomorph
3 Male 31 52 176 Endomorph
4 Male 31 65 174 Endomorph
5 Male 31 52 177 Ectomorph

2) Radio Channel: In this part of the scheme, an indoor
radio channel is employed to gather information on distinct
respiratory patterns due to minute human motions while
breathing. The multi-path signals created by human body
motions in between the two omni-direction antennas comprise
the CSI signal.

3) Receiver: The signal is initially obtained by the USRP
equipment through the omni-directional antenna on the receiv-
ing side. After passing this signal via a Low Noise Amplifier
(LNA) to minimise the noise factor, it is then routed via a
Drive Amplifier (DA) to alter the gain. The resulting signal is
blended into a base-band complex signal utilising the Direct
Conversion Receiver (DCR). The signal is then sampled at
“100 MS/s” by a two channel analog-to-digital converter after
passing through a Low Pass Filter (LPF) with a “20 MHz”
bandwidth. This digitised complex signal is subsequently sent
to a Digital Down Converter (DDC), which mixes, filters,
and decimates it to a user-specified rate. Finally, at up to
“20 MS/s”, this down-converted signal is delivered to the
host desktop via gigabit ethernet connection. The receiver
host desktop not only eliminates CP from each framework,
but also utilises the “Van de Beek” algorithm to eliminate
frequency and time offset. The Fast Fourier Transform (FFT)
is used to transform the time domain Orthogonal Frequency-
Division Multiplexing (OFDM) instances into frequency do-
main OFDM instances once the CP is removed from each
framework. The frequency domain signal’s amplitude response
is then extracted to determine distinct patterns of respiration.

B. Diagnosis Approach
The primary steps involved in the abnormal respiratory

diagnosis approach are shown in Figure 3 and are explained
as follows.

1) Data Acquisition: The data on respiration were collected
in a laboratory setting, which illustration is presented in Figure
3. The experimental setup consists of two USRP (NI-2922),
with a spacing of one metre between the USRP device and
the human participant. Each participant was instructed to sit
in a relaxed position with the least body movements. Both
USRP devices are parallel to the participant’s abdomen and
situated at the same height. Table II lists the details of each of
the five individuals who were instructed to practise different
respiratory patterns.

Participant were instructed to do each respiratory pattern
appropriately as per medical instructions before respiratory
information was acquired. Each human subject in this study
was instructed to perform six different respiratory: eupnea,
biot, bradypnea, sighing, tachypnea, and kussmaul. A total
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Fig. 2: Illustration of proposed SDR-based non-invasive scheme for abnormal respiratory diagnosis [34].

of 150 experiments are conducted for six distinct respiratory
patterns and lastly, six datasets are obtained from five human
participants. Participants performed each respiratory activity
for thirty seconds. To assure and obtain a greater degree of
precision, comprehensive experiments are carried out.

2) Data Wrangling: After data acquisition, the data were
processed in order to eliminate unwanted noise and extract
important respiratory features. The obtained OFDM signal
is exploited for fine-grained CSI extraction at the receiver
end. The amplitude and phase frequency responses from the
obtained OFDM signal can be acquired. However, only the
amplitude frequency response is employed for further pro-
cessing in this study. The respiratory activity is identified by
following the acquisition of the amplitude frequency response
for each respiratory activity. If the amplitude response closely
resembles the real respiratory rate, it is approved; otherwise, it
is rejected, and the individual is requested to repeat the respi-
ratory pattern more effectively. The number of subcarriers, as
well as the number of OFDM samples, are displayed in this
amplitude response. The number of OFDM samples received
is determined by a variety of parameters, including the amount
of time it takes to complete each respiratory activity.

a) Subcarrier Selection: For each respiratory activity, the
receiver acquires a set of 256 subcarriers. It is noted that
the amplitude of every subcarrier reveals distinct sensitivity
to respiratory patterns. To improve respiratory activity recog-
nition, any subcarriers that are less sensitive to respiratory
activity have to be removed. The variance of subcarriers
is determined, and on this basis, all subcarriers with lower
sensitivity to respiratory activity are eliminated, as shown in
the data wrangling block of Figure 3.

b) Outliers Removal: Wavelet filtering is applied after
subcarrier selection. As illustrated in the second block of the
data wrangling process in Figure 3, the wavelet filter not only
eliminates outliers from the raw data but also preserves crisp
transitions. Soft heuristic threshold is used for wavelet filtering
with scaled noise parameters with detail coefficients at level

4 using wavelet Symlets-5 (sym5).
c) Refined Data: A moving average filter with window

size 8 is employed to refine the data further and eliminate
high frequency noise not caused by respiratory activity, as
depicted in Figure 3. Various respiratory patterns can easily be
identified after conducting the afore-mentioned data wrangling
processes.

3) Deep Multilayer Perceptron Classifier: After distinct lay-
ers of data processing and respiratory features extraction, at
last the data were trained by Deep Multilayer Perceptron
(DMLP) classifier. The DMLP is a supervised deep learning
technique where a feedforward artificial neural network pro-
duces a number of outputs from a set of inputs. Several layers
of input neurons are linked as a directed graph between both
the input and output layers of the DMLP. Backpropagation
technique is utilised by DMLP classifier in order to train the
network. Substantially, a neural network linking several layers
of a directed graph is a multilayer perceptron, meaning that
the signal flows one way across the neurons. Each neuron
has a nonlinear activation function besides the input neurons.
The DMLP is commonly used to address problems that need
supervised learning approach such as speech recognition,
machine translation, image recognition, and anomaly detection
[36]–[41].

IV. SIMULATION RESULTS AND ANALYSIS

A. Respiratory Data
This section provides a detailed description about each

respiratory pattern utilising SDR-based RF sensing. Five sep-
arate participants conducted each respiratory activity and each
individual knew the features of all breath patterns through
sufficient instructions and training before doing these diverse
respiratory tasks. For a few times, each participant has been
instructed to practise these patterns of respiratory and the
outcomes for six distinct respiratory patterns are then achieved.
In order to evaluate these respiratory patterns, the CSI am-
plitude response is utilised. Figure 4 displays the findings
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Fig. 3: Framework of the applied model for abnormal respi-
ratory diagnosis.

for six distinct respiratory activities and the amplitude of
respiratory patterns in all subcarriers. Due to every activity
across 3500 OFDM samples, changes in amplitude reaction are
achieved. The outcome of each type of respiratory is discussed
as follows.

a) Eupnea: Eupnea is a normal pace of respiratory and
adults normally have 12-20 breaths per minute in the case
of eupnea. The participants were asked to breathe properly

and at a regular pace in order to obtain eupnea respiratory
pattern. Figure 4(a) shows that there are 10 breaths each half-
minute, which corresponds to the respiratory patterns depicted
in Figure 1(a).

b) Biot: Biot is a deep respiratory practice that alternates
with intervals of no respiration. The participants were asked to
practise and perform this respiratory pattern and Figure 4(b)
shows that deep respiratory were followed by breathless inter-
vals, which corresponds to the respiratory patterns depicted in
Figure 1(b).

c) Bradypnea: The bradypnea is a type of respiratory that
is sluggish and shallow. The participants were asked to breathe
more slowly than usual in order to acquire this respiratory.
Figure 4(c) shows that six breaths were taken every thirty
seconds, which corresponds to the respiratory patterns depicted
in Figure 1(c).

d) Sighing: Sighing is a type of respiratory pattern that
includes numerous intense breaths. To acquire a sighing res-
piratory, the normal respiratory was disrupted by many intense
breaths, as indicated in Figure 4(d), which corresponds to the
respiratory patterns depicted in Figure 1(d).

e) Tachypnea: Tachypnea is characterised by rapid and
shallow respiration process. The participants were instructed to
breathe quicker than typical in order to obtain this respiratory
pattern. Figure 4(e) shows that thirteen breaths were taken
every thirty seconds, which corresponds to the respiratory
patterns depicted in Figure 1(e).

f) Kussmaul: The kussmaul is a respiratory that is both
quick and deep. The rapid and intense breaths can be noted
in Figure 4(f), which corresponds to the respiratory patterns
depicted in Figure 1(f).

B. Results

We have recruited healthy participants with various age
range and ask them to mimic the particular six breathing pat-
tern, which were efficiently detected by the proposed model.
Each respiratory dataset consisted of 3650×3500 observations
or data points. Considering the six above-mentioned respira-
tory classes, the final dataset were composed of 6×3650×3500
data points. In each respiratory class, 50% of the data samples
were used to train the machine learning classifier, whereas
25% of the data samples were used for validation purposes
and remaining 25% for testing. In this work, a multi-class
classification technique was adopted to classify (or diagnose)
each respiratory and the data samples were labelled accord-
ingly.

To execute the simulations, the DMLP algorithm used in this
study was programmed in Python. The “Grid Search Cross-
Validation” methodology was adopted for the validation part
of the dataset in order to optimize the hyperparameters for
DMLP. This methodology uses the principles of fit and score
to discover the appropriate parameters for training machine
learning models. These parameters are provided in Table
III. Moreover, using a single performance assessment metric
for machine learning models is often not regarded as best
practise. Hence, to evaluate the performance of the algorithms,
five different metrics were used: confusion matrix, precision,
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Fig. 4: Extracted patterns of distinct human respiratory: (a) Eupnea (b) Biot (c) Bradypnea (d) Sighing (e) Tachypnea (f)
Kussmaul [42].

TABLE III: Parameters obtained by the cross-validation tech-
nique for training the DMLP classifier

Algorithm Hyperparameters

Deep Multilayer Perceptron

hidden layer sizes = 100
max iteration = 400
solver = lbfgs
activation = identity
learning rate = constant

recall, f1-score/f-measure, and diagnosis accuracy [43] (see
Equation 1, 2, 3, 4).

Diagnosis
Accuracy

=
Number of respiratory diagnosed

Total number of respiratory
(1)

F1− score = 2×
(
Recall × Precision

Recall + Precision

)
(2)

Precision =
True Positives

Predicted Positives
(3)

Recall =
True Positives

Actual Positives
(4)

In this work, we exploited two distinct machine learning
classifiers: Deep Multilayer Perceptron (DMLP) and Random
Forest (RF). The reason to choose two various classifiers is
to evaluate the performance on different respiratory. Although
DMLP achieved a slightly higher accuracy than RF, never-
theless both classifiers almost performed the same. Table IV
shows the overall accuracy accomplished by the DMLP and
the RF.

Moreover, Figure 5 exhibits the confusion matrix for diverse
respiratory classifications. As can be seen in Figure 5(a),
DMLP has only 12 misclassifications of eupnea with biot

TABLE IV: Overall accuracy achieved by the DMLP and the
RF classifier for six various respiratory classes

Classifier Overall Accuracy
Deep Multilayer Perceptron 99%
Random Forest 98%

respiratory class, whereas the biot class has merely 19 misclas-
sified points with eupnea and 5 with bradypnea. This is due
to the fact that these classes have highly similar structure than
other classes. Rest of the classes such as bradypnea, sighing,
tachypnea, and kussmaul have either 1 or 2 misclassified
points, therefore resulting in accuracy up to 99%. Furthermore,
Figure 5(b) demonstrates the performance of RF classifier. As
can be noted, RF has slightly higher misclassified points than
DMLP, nevertheless, RF resulted in accuracy up to 98%.

In Figure 6, the performance of DMLP and RF in terms of
precision, recall, and f1-score is revealed on six different res-
piratory classes: eupnea, biot, bradypnea, sighing, tachypnea,
and kussmaul. As shown in Figure 6(a), DMLP attained 98%
precision for eupnea, 99% for biot and bradypnea, 100% for
sighing, tachypnea, and kussmaul. In terms of recall, DMLP
attained 99% for eupnea, 97% for biot, and 100% for bradyp-
nea, sighing, tachypnea, and kussmaul. In the case of f1-score,
DMLP attained 98% for eupnea and biot, whereas 100% for
bradypnea, sighing, tachypnea, and kussmaul. Furthermore, in
Figure 6(b), performance of RF classifier can be noted. In
the context of precision, RF obtained 95% performance for
eupnea, 97% for biot, 98% for bradypnea, 100% for sighing
and kussmaul, and 99% for tachypnea. In terms of recall, RF
obtained 97% for eupnea and biot, 98% for bradypnea, 99%
for sighing and kussmaul, and 100% for tachypnea. In the case
of f1-score, RF obtained 96% performance for eupnea, 97%
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Fig. 5: Confusion matrix of six distinct respiratory classifica-
tion: (a) Deep Multilayer Perceptron and (b) Random Forest.

for biot, 98% for bradypnea, 99% for sighing and kussmaul,
whereas 100% for tachypnea.

C. Future Work
There are certain limitations associated with this study,

which we aim to overcome in the future research work. We
would consider more realistic environment and conduct exper-
iments in noisy environment and in different body postures.
Furthermore, the proposed scheme can be utilised for a single
subject at a time in a static and controlled environment. Apart
from that, the experiments were not conducted on real COVID-
19 infected patients due to several concerns. As a result, the fu-
ture recommendations would be to add respiratory patterns of
several subjects in a non-static environment, employing more
advanced algorithms and utilising the SDR-based platform’s
versatility. Moreover, real-time data acquisition of COVID-19
infected patients shall be carried out in order to construct a
more realistic model. Other than that, more respiratory patterns
such as ataxic and cheynestokes shall be explored to enhance
the system’s reliability.

V. CONCLUSION

While in the midst of the COVID-pandemic, non-invasive
strategies help minimise the burden on healthcare profession-
als, as well as require the least amount of involvement from

(a)

(b)

Fig. 6: Precision, recall, and f1-score comparison for indi-
vidual respiratory class on: (a) Deep Multilayer Perceptron
Classifier and (b) Random Forest Classifier.

affected individuals. Studies on recently diagnosed patients
show that a COVID-19 infection affects respiratory or breath-
ing patterns differently in comparison to flu or a cold. In
some cases, COVID-19 infection is marked by an accelerated
respiratory rate and that calls for constant monitoring of
respiratory patterns. In this paper, a non-invasive or contactless
SDR-based platform merged with intelligent machine learning
algorithms is proposed. The system is designed for the detec-
tion and monitoring of primarily six distinct human respiratory
patterns including normal and abnormal such as eupnea, biot,
bradypnea, sighing, tachypnea, and kussmaul. The respiratory
data employed for this study were acquired from five different
subjects. Using fine-grained OFDM signals, the fluctuations
in CSI caused by human respiration were used to detect
distinct respiratory patterns. Then, using the Deep Multilayer
Perceptron classifier, these respiratory patterns were effectively
classified attaining accuracy of up to 99%. As a result, it can
be stated that SDR-based Radio-Frequency sensing is a viable
approach in an indoor setting for detecting and classifying
several respiratory patterns linked to various illnesses, whether
COVID-19 infection or any other disease.
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