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Critical Behaviour of Magnetic Polymers in Two and Three Dimensions 
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We explore the critical behaviour of two and three dimensional lattice models of polymers in dilute 
solution where the monomers carry a magnetic moment which interacts ferromagnetically with near­
neighbour monomers. Specifically, the model explored consists of a self-avoiding walk on a square 
or cubic lattice with Ising spins on the visited sites. In three dimensions we confirm and extend 
previous numerical work, showing clearly the first-order character of both the magnetic transition 
and polymer collapse, which happen together. We present results for the first time in two dimensions, 
where the transition is seen to be continuous. Finite-size scaling is used to extract estimates for the 
critical exponents and transition temperature in the absence of an external magnetic field. 

I. INTRODUCTION 

Self-avoiding walk models on lattices have been used 
for several decades as good models for polymers in so­
lution [1]. Short-ranged interactions between nearest­
neighbour visited lattice sites are introduced to mimic 
the effects of solvent quality, and other interactions may 
be introduced to account for other effects. Canonically, 
if the interactions are short-ranged and the walks studied 
in their infinite length limit, there should exist a univer­
sality where the critical behaviour is insensitive to details 
of the model [2–4]. An early indication that things are 
not so simple arose in the study of the two-dimensional 
O(n → 0) model introduced by Blöte and Nienhuis [5], 
more recently known under the title of Vertex Interact­
ing Self-Avoiding Walk [6–9]. They found that in this 
model, despite having short-ranged interactions, corre­
sponding to non-crossing doubly-visited sites, the critical 
exponents were not the same as those found previously 
for the interacting self-avoiding walk (ISAW). This lack 
of universality is due to a fractal dimension for the walk 
which equals that of the lattice, giving rise to a critical 
point with a first-order character [6, 10]. 
In the models described above, the walks are neutral 

and non-magnetic. In this paper we look at the crit­
ical behaviour of polymers where each monomer has a 
magnetic moment (spin) which may be either “up” or 

∗ ab5651@coventry.ac.uk 
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“down”. The walk is modelled by a self-avoiding walk on 
a square (2d) or cubic (3d) lattice and the spins sit on 
the occupied lattice sites and interact via the standard 
Ferromagnetic Ising Hamiltonian (Figure 1). The spins 
interact with all spins that are on adjacent sites (includ­
ing along the walk). The only energy taken into account 
is this Ising interaction energy, however the entropy will 
be the sum of the spin entropy and the walk configura­
tional entropy. This model was introduced by Garel et 
al [11] and studied in three dimensions. 

σ=+1 σ=−1

FIG. 1. magnetic walk model in two dimensions 

Magnetic polymers have been used as models to under­
stand epigenomic microphase separation in proteins in 
the cell nucleus[12–14], although the model used a three-
state Potts model, rather than an Ising model as used 
here. The equilibrium model was able to reproduce some 
of the results seen in the in-vivo experiments, but it was 
shown that it was necessary to consider non-equilibrium 
effects to understand the behaviour in the cell. 

mailto:ab5651@coventry.ac.uk
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Possible experimental realisations of polymers with 
magnetic monomer-monomer interactions include mag­
netic filaments where magnetic nano-particles (ferromag­
netic or paramagnetic) are cross-linked by polymers to 
form linear structures[15]. The magnetic particles can 
be considered equivalent to the monomers in a poly­
mer and the cross-linking polymers as the bonds which 
bind them together. One experimental realisation in­
volves “biotemplating”, which involves bioengineering 
flagellar filaments from Salmonella bacteria to contain 
magnetic nano particles[16]. Inspired by biological flag­
ellar and cilia, artificial cilia have been constructed using 
thermoresponsive phase transitions of magnetic nanopar­
ticles decorated with polymers leading to an ordered 
assembly[17]. 
The partition function for a walk of length N is ⎛ ⎞     
ZN = exp ⎝βJ σiσj + βh σi

⎠ , (1) 
ΩN {σi=±1} (i,j) i 

where ΩN is the set of self-avoiding walks of length N , 
σi = ±1 are the two-state Ising spins, and as usual (i, j) 
indicates that the sum is over pairs of spins which are 
nearest-neighbour on the lattice, J is the spin-spin in­
teraction energy, h is a magnetic field and β = 1/kT as 
usual (with k the Boltzmann constant). In what follows 
we will set J/k = 1. 
It is important to be clear that equilibrium is defined 

by a minimisation of the free energy 

F = EIsing − T (SIsing + SSAW), (2) 

In other words, the polymer configurations and the spin 
states are both fluctuating quantities in thermal equilib­
rium. There have been many studies where either one 
or the other are frozen, i.e. the spin configuration is 
quenched and the walk configurations studied [18] or the 
self-avoiding walk configuration is quenched, and the be­
haviour of the Ising model on the resulting fractal stud­
ied [19–21], but the current situation has been much less 
studied. The model described here was introduced by 
Garel, Orland and Orlandini [11] and studied by both 
Mean-Field Theory (MFT) and Multiple Markov Chain 
Monte-Carlo[22, 23] in 3d. The MFT suggested that at 
low magnetic fields there is a simultaneous first-order 
magnetic and collapse transition. In the limit of infi­
nite magnetic field, the model is simply the usual ISAW 
model, where the transition is tricritical [2], and this ex­
tends into a line of tricritical transitions as h is low­
ered. The first-order and tricritical lines are separated 
by a multicritical point. Their numerical results tend to 

support the MFT picture. The main evidence for the 
behaviour at h = 0 was a rapid variation of the mag­
netisation and radius of gyration as the transition was 
approached, and linear scaling of the specific heat as an 
indicator of the first order transition. 
Another related model was studied by Luo and cowork­

ers [24–29] in zero external magnetic field in 3d on the 
cubic lattice. In this case they allowed the bonds to fluc­
tuate in length, but pairs of spins only interacted if they 
were nearest-neighbours, either along the chain, or not. 
Luo concluded that the transition was critical, and gave 
an estimate of the critical temperature and some expo­
nents [28]. 
In this paper we revisit the three-dimensional model 

and investigate the two-dimensional model using a vari­
ant of the Pruned-Enriched Rosenbluth Method (PERM) 
[30] known as flatPERM [31] to stochastically enumerate 
the number of configurations as a function of the number 
of magnetic energy indexed by ni below, and the mag­
netisation indexed by ns from which we can construct 
the partition function, given by   ni,max N+1  1 
ZN = cN,ni,ns exp (ni + hns) ,

T 
ni=−ni,min ns =−N−1 

(3) 
where ni = (i,j) σiσj is the difference between the num­

ber of satisfied nearest-neighbour bonds and the number  N
of unsatisfied bonds and ns = i=0 σi the difference be­
tween the number of up spins and the number of down 
spins. The coefficient cN,ni,ns is the number of walks of 
length N with ni and ns fixed. 

The internal energy (E) and the square magnetisation 
(M2) can be directly calculated (the magnetisation is 
expected to be zero on average at all temperatures by 
symmetry). As we will also be interested in the fourth 
order Binder cumulant [32], we will also need to calculate 
(M4). These averages can be calculated in the usual way 
using the expressions    1 1x(Ex) = ni cN,ni,ns exp (ni + hns) , (4)

ZN T 
ni,ns    

x(Mx) = 1 
ns cN,ni,ns exp

1
(ni + hns) . (5)

ZN T 
ni,ns 

The fourth-order Binder cumulant is defined as [33, 34] 

(M4)
Um = 1 − . (6)

3(M2)2 

As the number of spins tends to infinity, Um → 0 from 
above for T > Tc and Um → 2/3 from below for T < Tc, 
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at Tc, Um → U∗, which is a unique number related to 
geometry and boundary conditions, and so not univer­
sal [35, 36]. Crossings of the Binder cumulant are indica­
tive of a phase transition [33]. 
A phase transition is also indicated, typically, by a 

divergence of the specific heat defined through: 

1 ∂E ∂2f 
C = = , (7)

N ∂T ∂T 2 

where f is the free energy per spin. This leads 
to the l expression the specific heat,alternative forx 

1C = (E2) − (E)2 . Finite-size estimates of theNT 2 

transition temperature can be obtained from the peaks 
of C. 
Any other quantity can be calculated if the table of val­

ues is accumulated as the configurations are enumerated. 
Here we have calculated the radius of gyration squared 

1 1 
Rg 

2 = rN,ni,ns exp (ni + hns) , (8)
ZN T 

ni,ns 

where 

2 
rN,ni ,ns = (r i − (r i)) (9) 

i∈ΩN,ni,ns 

and i labels the chain in the set ΩN,ni,ns of walks of 
length N with ni and ns fixed. The average is done over 
the positions of the N + 1 occupied sites of chain i. 
In order to look at longer chain lengths, we can define 

partial partition functions for fixed ni, but incorporating 
the magnetic field: 

N+1 
h 

Ceff 
N,ni 

= cN,ni,ns exp − ns . (10)
T 

ns =−N +1 

Everything proceeds as before, but M2 , M4 and |M |
need to be accumulated in the same way as R2 to en-g 
able weighted averages to be calculated later. 

II. SCALING RELATIONS 

In polymer physics, the exponents have slightly differ­
ent interpretations and sometimes expressions than for 
the Ising model, and in this model there is a risk of 
confusion between the two. In this section we take the 
opportunity to recall the relevant finite-scaling relations 
which will be used to identify the transition points and 
the critical exponent estimates, since we are working in 

the fixed length ensemble, and not the usual fixed lattice 
size ensemble. 
If we cast the problem on an infinite lattice, and control 

the length of the walk through a fugacity K, the partition 
function would be given by: 

∞ 

Z = KN ZN . (11) 
N=0 

The (average) length of the walk is governed by K, and 
(N) ∼ (Kc − K)−1 for K ≤ Kc. The free energy per 
lattice site for K ≤ Kc is 0, which is a reflection of 
the fractal nature of the walk. As a result one uses the 
free-energy per monomer instead, and the correct scal­
ing expression for the singular part of the free energy per 
monomer (and hence spin) is 

fs = b−dH f̃(kby1 , tby2 , hbyh ), (12) 

where b is the linear scaling factor, and where the Haus­
dorff dimension of the walk is dH ≤ d. The {yi} are the 
scaling dimensions [37]. We have defined reduced dimen­
sionless variables k = (Kc − K)/Kc and t = (Tc − T )/Tc. 
Typically, we identify dH = y1 = 1/ν, where ν is the 
geometric exponent given by 

R ∼ Nν . (13) 

R is any typical linear dimension of the walk, e.g. radius 
of gyration, end-to-end distance or hydrodynamic radius. 
Taking two derivatives with respect to t, and then set­

ting tby2 constant gives: 

y1/y2−2 ∼ t−αC ∼ t , (14) 

where we have used dH = y1. Defining the crossover 
exponent φ = y2/y1, leads to the relation α = 2 − 1/φ, 
relevant for polymer models [38]. The exponent φ is the 
crossover exponent. 
In order to introduce the finite-size scaling relations we 

need, we identify the relevant scale factor as the radius t 
N1/y1of gyration r = (R2), or alternatively Nν = .g

Fixing N corresponds to fixing k, and using (12), we find 
the tricritical scaling expression: 

fs = N−1f̃(kN, tNφ, hNΔ) = N−1Φ(tNφ, hNΔ), (15) 

where Δ = yh/y1. 
Fixing tNφ = xmax, the value giving the maximum of 

C, and differentiating twice fs again with respect to t, 
gives 

∼ N−1+2φ ∼ Nαφ ∼ N 
α 

2−αCmax and (16) 

t ∼ N−φ , (17) 
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for sufficiently large N . 
For a first-order transition, we expect Cmax to scale 

with the volume, which here is N , leading to α = 1 at the 
first-order transition expected in three dimensions and 
h = 0. This is what was observed by Garel et al. [11], 
and is confirmed here. At the standard collapse tran­
sition (relevant for larger h), α = 0 with logarithmic 
corrections [4, 39]. 
We will also use the scaling behaviours oft 

1 m = (M2) and r = (R2).N+1 g

For the magnetisation, we expect either 

m ∼ (Tc − T )β (18) 

if the transition is critical, or a jump in m if first-order. 
The usual finite-size scaling for the ferromagnetic transi­
tion would be 

1 (M2) = L−2β/ν2 M̃(tLy2 ). (19)
(N + 1)2 

The relevant length scale is again L = r = aNν , and so: 

m = N−βφ m̃(tNφ). (20) 

Assuming the scaling behaviour for r and m from 
Eqs. (13) and (20), we can define scaling functions 

log (rN /rN 1 )
ϕRg = , (21)

log (N/N ') 

log (mN /mN 1 )
ϕm = . 

log (N/N ') 

Crossings of these functions give estimates of the Tc [40], 
which are expected to converge to the correct value as 
N → ∞. Also, as N → ∞, the values of these functions 
give ϕRg → ν and ϕm → −βφ. 

Another useful tool to use for estimating critical tem­
peratures and, in the case of polymers, the exponent φ is 
to look at the behaviour of the dominant complex zero 
of the partition function [9, 41–43]. The dominant zero 
is the one which, in the thermodynamic limit, will pinch 
the positive real axis at the transition temperature. The 
real and imaginary parts of the zero behave, including 
the leading order and first correction to scaling, as 

Tr = Tc + N−φAr(x)(1 + N−ωBr(x)), (22) 

Ti = N−φAi(x)(1 + N−ω Bi(x)). (23) 

The exponent ω corresponds to the leading correction­
to-scaling exponent. The scaling functions Ar,i(x) and 
Br,i(x) are analytic functions of x = tNφ . In practice, 

we will calculate the zeros in terms of the relevant Boltz­
mann weights, for example τ = exp(1/T ), as the flat-
PERM method gives us a polynomial in τ . The complex 
zeros of this polynomial are then calculated using the 
MPsolve package [44, 45]. 

The scaling form (22) will apply to all the finite-size 
estimates of temperature for suitably chosen scaling func­
tions A(x), B(x) [46]. If ω < φ, then the leading correc­
tion will come from setting x = 0 into A and B, but 
otherwise it might be necessary to consider a Taylor ex­
pansion of A and B. Using the definition of x = tNφ and 
rearranging gives: 

TN = Tc + a1N
−φ + a2N

−2φ 

+ b1N
−ω−φ + b2N

−ω−2φ · · · (24) 

III. RESULTS 

One of the advantages of the flatPERM stochastic enu­
meration method is that you calculate the coefficients of 
the series expansion in terms of the dependent variables 
1/T and h̃ = h/T . This means that you can plot quan­
tities of interest as functions of these parameters, and 
not simply isolated points as in traditional Monte-Carlo 
methods, including those used by Garel et al in Ref [11]. 
There is a price to be paid, however, which is that the 
more dependent variables you keep track of, the slower 
the method is to converge, and the shorter the maximal 
chain length attainable in practical times. It is there­
fore useful to take cuts at fixed values of h̃, to be able 
to explore longer chains. Here we both do simulations 
keeping track of ni and ns and, with h=0, keeping track 
of only ni. The longest chains we consider are of length 
N = 600 in 3d and N = 1000 in 2d. Typically we looked 
at ten independent runs of about 107 tours each. The 
ten different runs were used to ensure that the results 
had converged, and the final results used a series that 
was an average over the 10 sets. 

A. Three-dimensional magnetic self-avoiding walks 

The Binder cumulant is shown in Figure 2. It displays 
a characteristic negative spike, indicative of a first-order 
transition [32]. 
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FIG. 2. Binder cumulant plotted for h = 0 in 3d for N = 50 
to N = 600 in steps of 50. 

We calculated the different finite-size estimates of the 
transition temperature using several methods: Nightin­
gale phenomenological renormalisation group [40] with 
the scaling relations (21), looking at the maximum of 
the specific heat and the real part of the leading complex 
partition function zero. We also used the minimum of Um 

as an indicator of the transition temperature (the bottom 
of the spike). These estimates are shown in Figure 3. 

For a first order transition, we expect, to leading order, 
the finite sized estimates TN to scale with N−1, in other 
words we might expect a scaling form similar to that in 
Eq. (24) with φ = 1. Looking at leading order terms, 
we found that the estimated values for Tc depended very 
weakly on ω, and in particular setting ω = −1 gave a 
similar order of accuracy in the results. A similar week 
dependance is found in the case of the adsorption tran­
sition in self-avoiding walks [43, 47, 48]. In particular, 
Taylor and Luettmer-Strathmann [43] chose a quadratic 
fit in order to take into account the correction to scaling. 
In Figure 3 we show quadratic fits to the estimates cor­
responding to larger values of N . We varied the range 
of N values to obtain a good fit over the widest range of 
values. The estimates of Tc from such an extrapolation 
range from 1.89 to 1.92. 

FIG. 3. Finite-size estimates of the critical temperature de­
rived from crossings of ϕRg , ϕm, Cmax and the minimum of 
Um, as well as the locus of the dominant zero of the partition 
function as a function of 1/N . The solid lines are quadratic 
fits using the larger values of N , which corresponds to choos­
ing the correction to scaling exponent ω = 1. 
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FIG. 4. Estimates of the critical temperature for h = 0 by 
extrapolation of τr as τi → 0 where τ = exp(1/T ). Points 
fitted using ω = 0.001 (solid line) and ω = 1 (dashed line). 
The limiting values of τr found where τc = 1.698 and τc = 
1.712 respectively, or Tc = 1.89 and Tc = 1.86 respectively. 

As an alternative method, we also looked at the locus 
of the leading complex zero in the complex plane [49–51]. 
In Figure 4 we plot the zeros in terms of the Boltzmann 
weight τ = exp(1/T ). Expanding τr as a function of 
powers of N−φ , and using τi ∝ N−φ , we can look at 
fitting τr as a polynomial in τi to extrapolate to τi → 0. 
In Figure 4 we used the two leading terms with ω = 0.001 
and ω = 1 (i.e. a quadratic equation in N−1). The 
value of ω = 0.001 was chosen as it gave the best fit 
of most of the points in the plot. We also set ω = 1 
and took as many terms in Eqn. (24) as needed to fit all 
the points. This gave us a quartic polynomial in N−1 . 
Extrapolations using these three approximation methods 
gave τc = 1.698 (ω = 0.001), τc = 1.712 (ω = 1) and 
τc = 1.707 (quartic fit), or estimates of the transition 
temperatures of Tc = 1.89, Tc = 1.86 and Tc = 1.87 
respectively. 
To confirm these exponents, we have defined the re­

duced temperature as 

Tc − T 
t = 

Tc 

and plotted CN /N against tN and r2/N against tN . The 
best collapse at t = 0 was achieved with Tc = 1.9. These 

curves are shown in Figures 5 and 6. It is curious that the 
scaling of C and Um indicate clearly a first-order tran­
sition with φ = 1, whilst the scaling radius of gyration 
seems to indicate ν = 1/2, as with the usual tricritical 
collapse. 
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−10 0 10 20 30 40

C
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FIG. 5. Scaled specific heat C/N plotted against the scaled 
reduced temperature tN with Tc = 1.9 and sizes from N = 
500 to N = 600 in steps of 10. 
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FIG. 6. Scaled radius of gyration (R2 
g )/N against scaled re­

duced temperature tNwith Tc = 1.9 and sizes from N = 500 
to 600 in steps of 10. 

To investigate this further, we looked at the probabil­
ity distributions for different temperatures (or β = 1/T ). 
In order to calculate the probability distribution for M 
(Figure 7) we need the full histogram in ni and ns, and 
were limited to 200, whilst we also looked at the probabil­
ity distribution for the energy (expressed as ni/(3N)) for 
N = 600. For the magnetisation, we can clearly see the 
coexistence of three phases at β = 0.59 or T = 1.69, and 
in the energy distribution we can see clearly the coexis­
tence of two phases, one with a small number of contacts 
and one with a larger number of contacts, which we inter­
pret as swollen and collapsed phases. This latter explains 
the three peaks in the magnetisation: when the walk is 
extended, the Ising model is essentially one dimensional, 
and cannot order, giving a zero average magnetisation, 
whilst when the walk collapses, the support is three di­
mensional, and the Ising model is already in the mag­
netised phase. The tip-over point in energy occurs for 
β between 0.52 and 0.53 (T = 1.92 and T = 1.88) for 
N = 600. Note that the lower temperature for the mag­
netisation is mainly because of the smaller size of walk 
considered. It remains interesting to note, that whilst 
the collapse transition as well as the magnetic transi­
tion occur together, the average radius of gyration, taken 
across the two co-existing phases, still gives an exponent 
ν = 1/2 for the radius of gyration. 

FIG. 7. Probability distributions of M for β from 0.5 to 0.6 in 
steps of 0.01 for N = 200. The plots would put the transition 
at about β = 0.51, or T = 1.96. 
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FIG. 8. Probability distributions of ni for β from 0..55 to 0.56 
in steps of 0.001 for h = 0 for N = 600. The peaks crossover 
in height between 0.552 and β = 0.553, or T = 1.80 and 1.81 
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B. Two-dimensional magnetic self-avoiding walks 

In Figure 9 we show the Binder cumulant for h = 0 in 
two dimensions. This shows the form expected for a con­
tinuous phase transition, with the absence of the spike 
seen in the 3 dimensional case. To explore this further, 
we look at the probability distribution p(M), where M is 
the magnetisation, for different values of β = 1/T . The 
peaks show clearly the two phase region for β > 0.835, 
and the one phase region for β < 0.835. When β = 0.835 
the profile is essentially flat without the three peak struc­
ture seen in the 3d case (Figure 7). The probability dis­
tribution of the energy (not shown) also shows no evi­
dence of coexistence between low-temperature and high-
temperature phases. We conclude that the transition at 
h = 0 is continuous in 2d, unlike what was observed in 
three dimensions. This leads us to conclude that the 
transition will be around T = 1/0.835 ≈ 1.2. 
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FIG. 10. p(M), the probability distribution for 5 different 
values of β. β = 0.8, 0, 82, 0.835, 0.84 and 0.86 for N = 200. 
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FIG. 9. Binder 4th order cumulant as a function of T for sizes 
up to N = 1000. 
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linear fits in N−φ to the data set (ϕm and ϕRg ) or the large N 
values where the curves are approximately linear. The dashed 
line is a quadratic fits in N−φ to the larger N values for χ in 
N−φ with φ = 0.689. 

Estimates of the transition temperature are calculated 
and shown in Figure 11 using various methods: phe­
nomenological renormalisation group, using the finite-
size scaling forms of different quantities such as ϕm and 
ϕRg ; crossings of Um and the location of the peaks of C 
and the magnetic susceptibility χ, defined through 

1 l x 
χ = (M2) − (|M |)2 . (25)

TN 

We can gain an idea of the crossover exponent by look­
ing at the scaling of the imaginary part of the complex 
Boltzmann weight τ = exp(−1/T ), calculated from the 
leading zero of the partition function ZN as before. This 
is expected to behave as τi ∼ N−φ, which leads to an 
estimate of φ ≈ 0.689. This estimate is found by fitting 
the ln τi vs ln N for large N (ln N > 6). Varying the 
slope of the fitted line around this value gives a range 
of acceptable values of around φ = 0.7 ± 0.03. The best 
fits in this section were found using φ = 0.689 for the 
finite sizes we have here. The finite-sized estimates are 
fitted by quadratics in tNφ, except the estimates from 
the peaks of χN , which were fitted with a cubic. The 

corresponding lines are also shown in Figure 11. Using 
φ = 0.689, the fits give extrapolated temperatures lead­
ing to Tc = 1.199 ± 0.003. 

0.45
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0.65

0.7

0.75

0.8

0.45 0.5 0.55 0.6

m
(t

N
)

1
Nβφ

ϕm Um

FIG. 12. Magnetisation calculated at the finite-size esti­
mate of the critical temperature from the crossings of ϕm 

and the Binder Cumulant plotted as a function of N−βφ with 
βφ = 1/8. 

Figure 12 shows the magnetisation calculated at the 
estimates of Tc for both crossings of ϕm and Um. The 
solid lines are plotted using a form mN = AN−1/8, and 
the fit to the curve is very good. A direct calculation of 
the βφ estimates from the crossings of ϕm give results 
consistent with βφ = 1/8. It is curious that βφ should 
be so close to the exact value of β = 1/8 for the two-
dimensional Ising model. 
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FIG. 13. Scaled magnetisation mNβφ with βφ = 1/8, φ = 
0.689 and Tc = 1.201 with N from 500 to 1000 in steps of 10. 

We further check on the exponents by looking at the 
data collapse of the magnetisation curves, shown in Fig­
ure 13. We obtain good collapse of the data using 
βφ = 1/8, φ = 0.689 and Tc = 1.201. 

Figure 14 shows the unnormalised density calculated at 
the finite size estimates of Tc plotted against N1−2ν with 
ν = 0.585. The exponent 1−2ν is chosen by finding a best 
fit of the log − log curve of ρc against N for large enough 
N . The fit is seen to be good, with ν = 0.585 ± 0.01, 
slightly higher than the usual collapse transition value of 
ν = 4/7 ≈ 0.5714 · · · . A direct calculation of νN from 
the crossings of ϕRg gives a cloud of estimates, which 
converge as N increases. The convergence is consistent 
with either ν = 4/7 or ν = 0.585. 

FIG. 14. The value of the un-normalised density ρc = N/(R2)g 

measured at the crossing value of ϕRg and ϕm for N, N/2 and 
N/2, N/4 as well as at the crossings of Um for N and N/2. 

N−0.17The estimates are plotted as a function of N1−2ν = , 
or ν = 0.585. 
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In Figure 15 we plot the magnetic susceptibility, which 
shows peaks growing and approaching the critical tem­
perature Tc ≈ 1.2. In Figure 16 we plot the log of χmax 

against log N , and fit to a straight line to get an esti­
mate of γφ. We find γφ = 0.905 from the fit, but this 
could drop a little. We fitted the portion of the line 
from ln N = 6, and the asymptotic slope might be a lit­
tle steeper. Taking the expression of φ = 0.689 would 
give γ = 1.31. Using the higher and lower limits of 
φ = 0.69 ± 0.02 leads to γ = 1.31 ± 0.03. In the same fig­
ure, we plot ln Cmax against ln N . Likewise, fitting with 
a straight line gives αφ = 0.365. Using α = 2 − 1/φ, we 
find φ = 0.683, which confirms the value of φ found from 
the complex partition function zeros, and α = 0.54±0.01. 

Since we have the full set of effective coefficients Ceff 
N,ni 

up to N = 1000, we can look at the cut-off grand-
canonical partition functions 

N 

ZN = KlZl. (26) 
l=0 

N here is the maximum length taken into account in 
the cut-off partition function. The canonical partition 
function is expected to scale like 

N Nγpol−1ZN ∼ µ , (27) 

where γpol is the polymer entropic exponent, not the 
exponent related to the magnetic susceptibility, defined 
above. The naming convention comes from the iden­
tification of the walk configurations in Z, the grand-
canonical partition function, as the graphs coming from 
the high-temperature expansion of the susceptibility of 
the O(n = 0) spin model [5]. 
Substituting into Eqn. (26) gives the grand-canonical 

scaling behaviour 

− K)−γpol Z ∼ (Kc . (28) 

Using the scaling of average length with K, which is now 
limited by the cut-off in length, gives the finite-size scal­
ing relation: 

Z ∼ N−γpol . (29) 

We can define a phenomenological scaling function   
ZNln ZN/2

= . (30)ϕγpol ln 2 

The crossings of these functions will give estimates of 
both γpol and Kc. Figure 17 shows, for each value of 
T shown in the critical region, the estimated γ(T ) cal­
culated from the crossings of ϕγpol for N/(N/2) with 
(N/2)/(N/4) plotted for different values of N in the crit­
ical region. Intersections of these estimates will further 
pick out estimates for T N . Looking at the intersections c 
and extrapolating leads to an estimate of Tc ≈ 1.202. 
This can be examined further by fixing the expected crit­
ical temperature, and looking at the estimate of γpol as 
a function of length. If we are at the critical tempera­
ture, the exponent value is expected to be linear in N 
for large N , from the linearity of k = (Kc − K)/N in 
N . If we are off the critical temperature, but close, the 
smaller sizes will be in the critical region, but as the 
length increases, this region becomes smaller, and the 
walk is subject to crossover effects, pulling the estimate 
off linearity. This is shown in Figure 18, where the best 
fit to a linear line up to N = 1000 is Tc = 1.2025, which 
is a little higher than found with a canonical analysis 
above, but still within the expected error bars. This gives 
γpol = 1.1255 ± 0.003, which is a little smaller than the 
exact value of γpol = 8/7 ≈ 1.143 at the standard collapse 
transition, but fairly close to it. 

IV. DISCUSSION 

In this paper we have revisited the three-dimensional 
magnetic polymer, realised by a chain of Ising spins along 

http:0.54�0.01
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the backbone of a fluctuating walk, with the Ising en­
ergy as the sole interaction energy. We have produced 
improved numerical results, which clearly show the na­
ture of the first-order simultaneous collapse and magnetic 
transition. Both appear to be first order, but the average 
radius of gyration still scales as Rg ∼ N1/2, rather then 
Rg ∼ N1/3 as expected for a dense walk. The mean-field 
theory of Garel et al. [11] predicts a first-order transition 
for small h, becoming the standard collapse transition for 
larger h. They claim that the first-order transition exists 
for finite, non-zero, magnetic field, based on the scaling 
of the specific heat. We find similar results, but when 
we look at the probability distribution of both m and 
ni, even with h/T = 0.1, there is only a marginal sign 
of the possible existence of a finite-size first-order transi­
tion. The question of a finite h first-order transition is, 
in our mind, still open. 

This MFT does not restrict the model to a single walk, 
and equally applies to a “gas” of walks, and it might 
be interesting to see how removing the restriction of a 
single walk affects the behaviour in both two and three 

dimensions. 
When the three-dimensional model is changed to in­

troduce more fluctuations, such as the fluctuating bond 
model studied by Luo [28], the first-order gives way to a 
second-order transition. If we reexamine their scaling re­
lations, and realise that they should have used φ and not 
1/ν in their scaling relations, we reinterpret their results 
as being φ = 1, β ≈ 1/3, to be compared with the three 
dimensional Ising value of β ≈ 0.326. In two dimensions, 
fluctuations are also more important, and again, we see 
a second-order transition. Interestingly, whilst we find a 
value of φ ≈ 0.69  1, the magnetic transition is char­= 
acterised by the an exponent βφ = 1/8, to be compared 
with β = 1/8 for the usual transition. This warrants 
further investigation. 
In two dimensions, we could find no evidence that there 

is a magnetic transition for h  0, and it would seem = 
likely that for h  0 the transition is the usual collapse = 
transition. The geometric and entropic exponents found 
for the walk with h = 0, ν and γpol, are close to, but 
not the same as, the usual θ-point exponent values. This 
discrepancy could be due to finite-size effects. 
To summarise the results presented: 

Tc α φ γ ν γpol 
2d 1.199 ± 0.003 0.54 ± 0.01 0.69 ± 0.02 1.31 ± 0.03 0.585 ± 0.01 1.1255 ± 0.0003 

3d 1.90 ± 0.02 1 1 – 1/2 – 

In the model presented here, the magnetic and col­
lapse transitions occur together. It is simple to imagine 
a model where these two transitions, with different order 
parameters, might occur separately, which might give in­
teresting additional critical behaviours. 
Recently a dynamic HP model has been studied in two 

dimensions [52]. This model is similar in that both the 
H/P state of each monomer and the conformation are dy­
namic variables. The main difference with the work here 
is that there is not an interaction along the chain, only 

between non-consecutive nearest-neighbour monomers of 
type P. They found that the collapse transition here was 
in the standard θ universality class. 
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