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Abstract — In this paper, a vertical device structure 
and its process flow are proposed for fabrication of 
Gallium Nitride Trench Field Effect Transistors 
(GaNTT). A TCAD model is developed to capture effect 
of bulk and interface traps on the electrical performance 
of fully vertical Gallium Nitride devices on a Silicon 
Carbide substrate (GaN-on-SiC). The simulation results 
show a promising specific on-resistance of 𝑹𝒔𝒑,𝒐𝒏 = 
𝟏. 𝟒𝒎𝜴 ∙ 𝒄𝒎𝟐 and a blocking voltage of 𝑩𝑽 = 𝟓𝟒𝟎𝑽 at 
VGS=0V for a GaN drift thickness of 4 µm. 

Keywords—GaN, Trench, FETs, TCAD. 

I. INTRODUCTION 

Gallium Nitride (GaN) lateral devices [1-10] have been 
proliferating the power electronics industry. For power
conversion applications, GaN vertical devices with reduced 
chip area are preferred over lateral GaN HEMT devices since 
blocking voltage can be scaled independently of the chip area 
and high value threshold voltages can be achieved. These will
lead to a higher power density and more compact sized 
system. However, growing a few microns of GaN on a foreign
substrate and achieving a high quality p-type doping in GaN 
remain challenging. 

To make vertical GaN devices feasible, they need to be 
grown on a foreign substrate. Silicon (Si) is a cost effective
option, but it has a large lattice mismatch with GaN (17%), 
similar to Sapphire (16%) [11]. Therefore, the resulting GaN-
on-Si and GaN-on-Sapphire will feature a high density of 
Threading Dislocations (TDs), degrading the thermal 
conductivity of the epi-layers and affecting reliability of such 
devices [12], [13]. Diamond has been considered an emerging
substrate featuring a reduced lattice mismatch of 11% to GaN, 
yet expensive with a considerable mismatch, enough to 
encourage high TDs density formation [14]. Silicon Carbide 
(SiC) has the same Wurtzite-hexagonal crystal structure with 
GaN, which largely reduces the lattice mismatch (3.4%) 
between the materials. Thus, GaN-on-SiC structure can be a 
more promising solution to enhance performance of 
vertically-structured gallium nitride devices [15]. 

For commercial success, there needs to be compelling
reasons to use GaN on SiC instead of equivalent vertical SiC 
devices. It is worth considering that currently cost of thick
GaN epi is more than the thick SiC epi needed for SiC devices 
with similar blocking capabilities. 

The selection of a foreign substrate for GaN also comes 
with limitations on the process of activating dopants. The 
selective area doping in GaN is considered a major processing 
challenge and a key enabling step for vertical Field Effect 
Transistors (FETs) [16]. 

Although GaN begins to decompose at around 840οC [17], 
it is relatively easy to accomplish n-type conduction by 
activating Silicon atoms at a post-annealing temperature lower
than 1150οC by utilizing Si3N4 or AlN protective capping 
layers [18]. On the other hand, the activation of p-type dopants
in GaN requires a thermal budget of more than 1300οC to 
remove the largely induced damages caused by the Mg ions
and to move these impurities to proper lattice sites to 
substitute for Ga [18]. The utilisation of the Si3N4 or AlN 
protective capping layers during high temperature annealing 
process has not been successful for p-type doping due to
crystallisation making their subsequent removal an issue [19]. 
Therefore, choosing a proper protective layer is essential [20]. 

The Multicycle Rapid Thermal Annealing (MRTA) 
method has been reported in the literature to achieve a high 
Mg activation ratio of 8%, yet it requires a specially treated
system which is not easily scalable [21]. Currently, it is 
considered difficult to make good ohmic contacts on a p-GaN 
[22]. Furthermore, the challenge of activating Mg for p-type 
conductivity is more pronounced in the case of GaN-on-Si
where the melting point of Silicon limits the post- annealing 
temperatures. 

The GaN vertical trench Metal-Oxide-Semiconductor 
FET (MOSFET), combining normally-off operation with a 
low on-resistance, is an appealing technology for power 
conversion applications. 

In [19], a fully vertical gate-trench GaN-on-Si power 
MOSFET is reported with 6.6μm thick GaN drift on top of a
6-inch Silicon substrate delivering a blocking voltage of 
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BV=520V and specific on-resistance (𝑅BA,EC) of 5𝑚𝛺 ∙ 𝑐𝑚). 
A similar device in [10], with the same voltage class 
demonstrates 𝑅BA,EC = 9.5𝑚𝛺 ∙ 𝑐𝑚) , an indication of the 
questionable GaN-on-Si material quality. A thicker GaN-on-
Sapphire epi-layer of 9 μm is utilized in [21] for the fabrication 
of an in-situ Oxide GaN interlayer-based vertical trench 
MOSFET (OG-FET) with 990V breakdown voltage and 
𝑅BA,EC = 2.6𝑚𝛺 ∙ 𝑐𝑚). For the 600V class, a vertical trench 
MOSFET based on 8μm thick GaN-on-GaN drift exhibited 
𝑅BA,EC = 6.4𝑚𝛺 ∙ 𝑐𝑚) [22]. Similarly, in [23], a freestanding 
1.8𝑚𝛺 ∙ 𝑐𝑚) vertical trench MOSFET based on a 13μm thick 
drift obtained by homo-epitaxy (GaN-on-GaN) has been 
demonstrated for 1.2kV class operation. 

In this paper, a vertical device structure and its process
flow are proposed for fabrication of Gallium Nitride Trench 
Field Effect Transistors (GaNTT), exploiting the GaN-on-SiC
potential. The electrical performance of proposed device is 
predicted by developing a physical TCAD model employing
state-of-the-art material parameters [24], [25] and detailed 
trap profiles for a gallium nitride epitaxy on silicon carbide 
substrate. The simulation results predicts a blocking voltage 
of 𝐵𝑉 = 540𝑉 at the off-state (VGS=0V) with promising on-
state characteristics, threshold voltage 𝑉F? = 5.5𝑉 and 
specific on resistance of 𝑅EC,BA = 1.4𝑚𝛺 ∙ 𝑐𝑚). 

II. GANTT DEVICE STRUCTURE AND SIMULATION MODEL 

We target design and specification of vertical GaN trench 
MOSFETs for 200-600V class applications to grow AlxGa1-
xN layers on top of an n-type SiC substrate by MOCVD. The
n-type GaN (n-GaN) is achieved by Silicon (Si) dopants and 
p-type GaN (p-GaN) is realized using Magnesium (Mg) 
atoms. 

The designed wafer stack comprises 20nm n+GaN 
(10(0𝑐𝑚1*), 200nm n-GaN (5 × 10(/𝑐𝑚1*), 400nm p-GaN 
(2 × 10(.𝑐𝑚1*), 4μm n-GaN (2 × 10(-𝑐𝑚1*), 1μm n+GaN 
(10(0𝑐𝑚1*) and 1μm buffer layers grown respectively on a 
SiC substrate (see Fig.1(a)). 

The process flow for fully vertical GaNTTs is illustrated
in Fig. 1. The process features 1μm deep vertical gate trenches 
achieved with deployment of a SiO2 hard mask (see Fig.1(b))
to realise 90 degrees side walls. The gate oxide is deposited 
(see Fig.1(c)). The gate metal deposition forms 1μm overlaps
on each side of the trench (see Fig.1(d)) to enhance the design 
credibility against potential misalignments. Although this 
introduces an additional parasitic capacitance element, its
effect is mitigated by the thick (400nm) SiO2 hard mask layer. 
The hard mask is selectively removed to allow source metal 
deposition (see Fig.1(e)). The 2μm source trench (see Fig.1(f)) 
is formed to realize the p-body diode and source metal is 
deposited (see Fig.1(g)). Finally, substrate is thinned and drain 
metal is deposited (see Fig.1(h)). 

The GaNTT device process architecture is innovative 
through the incorporation of a new contact concept forming
Ohmic and Schottky contacts simultaneously. This will 
improve device performance by minimising threshold voltage 
fluctuations. 

Simulations are time- and cost-efficient way of analysing
and predicting performance of new device designs. A TCAD 
model will enable a more accurate prediction of device 
performance via the Finite Element analysis. Therefore, we 
developed an advanced TCAD model to simulate a GaNTT 

n+ GaN
&

n GaN
&

p GaN
&

n+ GaN
&
buffer
&

(a) 
n- GaN 

SiC substrate 

Hard Mask (SiO2) 

GATE TRENCH 
(b) 

(c) 

Gate Oxide 

1μm 1μm 

(d) 

GATE METALLIZATION 

Gate Metal 

4μm 
10μm 

(e) 

SOURCE OPENING 

2μm 

Source Metal 

(f) 

SOURCE TRENCH 

(g) 

SOURCE METALLIZATION 

(h) 

gate 

source 

gate 

drain 

Fig. 1: GaNTT process flow: (a) wafer as grown, (b) gate trench formation, 
(c) gate oxide deposition, (d) gate metal deposition, (e) source contact 
opening, (f) p-body diode opening, (g) source metallization, (h) substrate 
thinning and drain metal deposition. 

using drift-diffusion transport model, SRH and Auger 
recombination models, Fermi-Dirac statistics and material 
parameter values imported to simulation models from the 
literature [24], [25]. The self-heating effects have been 
neglected. 

We incorporated defects and interface states in our 
simulation according to previously reported traps in n-GaN 
and p-GaN layers and fixed charges existing at the interface 
of GaN and SiO2 layers. 



     
          

    
      

       
         

    
    

         
      

  

         
   

        
        

       
     
        

      
  

 

  
 

       
        

     
   

       
      

       
       

     
      

    
    

      

      
         
        
           
       

        
   

      
      

   

        
      

     
  

        
     

 
  

       
    

   

       
       

    
     

      
       

      
     

   

     
   

           
         

       
 

   

         
        

    
       

        
  

      
  	  	   

       
       

      
       

    

       
       

      
         

    

   
      

      
    

     
  

 

        
         

     

 
 

 
  

	  
 

 
  

	  
 

 
  

	  
 

  
 

 
  

	   
 

 
  

	   
 

 
  

	   
 

 

In n-GaN bulk layer two electron traps (ET) are 
considered. One is located at ET1 = 𝐸2 − 0.6𝑒𝑉 with a capture 
cross-section of 𝜎 = 5 × 101(,𝑐𝑚) . Its density DET1 is a 
function of Silicon doping level [26]. Therefore, we consider
𝐷4:( = 8 × 10(+𝑐𝑚1* [27] in the drift region. Another trap 
level is located at ET2 = 𝐸2 − 1𝑒𝑉 with a capture cross section 
of 𝜎 = 101(*𝑐𝑚) and a density of 𝐷4:) = 2 × 10(+𝑐𝑚1* 

and has been attributed to point defect complexes decorating 
dislocations [28]. The modelled ET1 and ET2 correspond to 
very prominent bulk centres in n-GaN and their density has 
been associated with the density of extensive defects. 

The density of the formed TDs in GaN-on-SiC has been 
determined to be 𝑁33 = 10(/𝑐𝑚1), the least defective case 
for GaN grown on a foreign substrate [11], [29]. Utilizing (1), 
where c stands for the GaN lattice constant in c-axis, 𝑁33 (in
𝑐𝑚1) ) is translated to volume concentration 𝑁F (in 𝑐𝑚1* ) 
[30], [31]. Substituting the 𝑁33 = 10(/𝑐𝑚1) for the GaN-on-
SiC, the resulting 𝑁F value matches the sum of the two 
modelled electron trap densities in n-GaN ( 𝐷4:( + 𝐷4:) ) 
considered in our model. 

𝑁F = 𝑁33⁄𝑐 (1) 

In n-GaN bulk layer, hole traps (HT) are also modelled. 
One is located at EHT1 = 𝐸; + 0.95𝑒𝑉 with capture cross 
section of 𝜎 = 2 × 101(*𝑐𝑚) which has been linked with 
doubly negatively charged Gallium (Ga) vacancy complexes 
with Silicon (𝑉5< − 𝑆𝑖). Its density DHT1 increases with the 
Silicon doping level. Therefore, we consider 𝐷6:( = 
1.6𝑥10(,𝑐𝑚1* [32] in the drift layer. Another trap level is 
located at EHT2= 𝐸; + 1.1𝑒𝑉 with capture cross section of 
𝜎 = 5 × 101()𝑐𝑚) and density of 𝐷6:) = 4 × 10(,𝑐𝑚1* 

[32]. The HT2 is associated with the 𝑉5< − 𝑂 defect and 
considered as a dominant trap in n-GaN demonstrates much 
higher thermal stability compared to the 𝑉5< − 𝑆𝑖 complexes, 
modelled as HT1 in this work. 

In p-GaN bulk layer, two hole traps are modelled in this 
work. One is located at EHT3 = 𝐸; + 0.45𝑒𝑉 with capture 
cross section of 𝜎 = 2.1 × 10−15𝑐𝑚2. It is a common deep 
centre in Mg doped GaN grown by MOCVD and has been 
linked with native Nitrogen (N) vacancies (𝑉8) [33] . Another 
trap level is located at EHT4 = 𝐸; + 0.88𝑒𝑉 with capture cross 
section of 𝜎 = 7.5 × 10−14𝑐𝑚2 . It has been ascribed to 
carbon on nitrogen sites (𝐶8) [34]. The densities of the HT3 
and HT4 have been estimated as 2% and 20% of the GaNTT 
doping levels correspondingly [35], [36]. 

Further to the bulk traps, interface states at the GaN/SiO2 
are included in the model [37]. These states demonstrate an 
acceptor-like or donor-like behavior. The acceptor-like states
are considered neutral when they are occupied by a hole, 
whilst they become negatively charged when ionized by
capturing an electron. On the contrary, donor-like states are 
neutral when occupied by an electron and they become 
positively charged when ionized by capturing a hole. In 
particular, for n-channel MOS devices, the acceptor-like states
are significant as they are considered responsible for the 
scattering of free carriers. 

The interface states at the GaN/SiO2 are modelled in this 
work comprising acceptor-like states with energy intervals
close to the conduction band (EC) and donor-like states with 
energy intervals close to the valence band (EV). The modelled 

Table I. Modelled Gaussian distributions of donor like and 
acceptor like states at the interface of GaN and SiO2 layers. 

GaN/SiO2 Density (cm-2) Energetic Distribution 

A
cc
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r-
lik

e
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1×1012 
Uniform Band 
#('& 
c = 0.15𝑒𝑉,𝐸 %"

𝐸!%$0.3𝑒𝑉 

5×1011 
Uniform Band 
#('& 
c = 0.35𝑒𝑉 ,𝐸 %"

𝐸!%$0.1𝑒𝑉 

1×1011 
Uniform Band 
#('& 
c = 0.5𝑒𝑉 ,𝐸 %"

𝐸!%$ = 0.2𝑒𝑉 

D
on

or
-li

ke
st

at
es

 

1×1012 
Uniform Band 
#('& 

 = 0.1𝑒𝑉 ,𝐸 %"

𝐸!%$ = 0.2𝑒𝑉 

5×1011 
Uniform Band 
#('& 

 = 0.3𝑒𝑉 ,𝐸 %"

𝐸!%$ = 0.2𝑒𝑉 

2×1011 
Uniform Band 
#('& 

 = 0.5𝑒𝑉 ,𝐸 %"

𝐸!%$ = 0.2𝑒𝑉 

distributions of both acceptor- and donor-like states are 
presented in Table I [38]. These states are spatially located at 
the interface and modeled with a Gaussian distribution. The 
listed 𝐸7@= and 𝐸9@> levels represent the mean and sigma 
properties of each distribution. 

The fixed charge (FC) at the interface between the GaN
and the SiO2 could be either positive or negative depending on 
whether the oxide is grown on the N- or the Ga-polar face. 
Assuming the SiO2 is grown on Ga-polar GaN surface, a 
positive dielectric FCs is also modelled at the GaN/SiO2 as a 
design variable with density values ranging 1 × 10() − 
2 × 10()𝑐𝑚1) [39], [40]. 

On account of the challenging activation of the acceptor
dopants in GaN, relatively low Mg doping concentrations are 
considered for the GaNTT device, namely 1 × 10(. − 
2.2 × 10(.𝑐𝑚1*. In turn, given the fixed thickness of the p-
GaN layer, this could contribute to a reduced channel 
resistance. 

Two gate metals were investigated with workfunction 
values of 𝑊𝐹1 = 4.53 𝑒𝑉 and 𝑊𝐹2 = 5.15 𝑒𝑉 , for 
Molybdenum (Mo) and Nickel (Ni) contacts. Simulation 
results for Nickel is presented in this paper. 

Simulated GaNTT doping profile is illustrated in Fig. 2. 
To improve the simulation runtime, SiC substrate contribution 
is incorporated as an additive resistance to the drain electrode. 

To capture effect of traps on electrical performance of the 
GaNTT device, meshing is carefully defined. The mesh is
finer around the channel and coarser in other areas, as shown 
in Fig. 3. Finally, a proper area factor value was determined to 
emulate the 100μm width of the single cell device. 

III. RESULTS AND DISCUSSION 

The proposed GaNTT design is verified through cell 
simulations using TCAD toolkit. The developed model is 
utilized to predict and improve the electrical performance of a 
fully vertical device including current levels, threshold 
voltage, blocking voltage capability and specific on-
resistance. 
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5x105
1x106
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Simulations suggest that high p-GaN doping leads to 
further improvement in reverse characteristics of the p-body 
diode. However, this could be compromised by the 
challenging activation of Mg dopants for p-type conductivity 
in GaN. 

Increasing the FCs density value at the GaN/SiO2 interface 
degrades the blocking capabilities for a particular p-GaN 
doping level. A gate metal with larger workfunction mitigates 
this effect in the expense of a larger 𝑉F? value. 

Simulations reveal that a thinner gate oxide is a more 
beneficial choice towards reducing the effect from the FCs and 
the ionized traps at the GaN/SiO2. 

Fig. 4 is IV transfer characteristics of the fully vertical
GaNTT device at VDS=0.5V with 4µm drift region showing a 
normally-off device with threshold voltage of 𝑉F? = 5.5𝑉 at 
which resistive p-GaN becomes conductive through 
generation of an inversion layer. The inversion layer forms a 
continuous path between the source and drain contacts. 

Fig. 5 is output IV characteristics of the simulated fully
vertical GaNTT with 5.6 µm of gallium nitride epi layers on 
top of a 1µm buffer at different gate biases with the steps of 
2V from VGS=4V to VGS=14V. 

The GaNTT design with oxide thickness of 𝑡BG = 60𝑛𝑚, 
p-body doping of 𝑁7> = 2.2 × 10(.𝑐𝑚1* and Nickel as gate 
metal exhibits promising on-state characteristics with a 
specific on-resistance of 𝑅EC,BA = 1.4𝑚𝛺 ∙ 𝑐𝑚) at 𝑉5 = 
10𝑉. 

avalanche was not reached at the simulations, the breakdown 
voltage is considered to be the 𝑉39 at which the reverse current 
of is observed. Simulation with a higher fixed charge density 
of FC = 2 × 10()𝑐𝑚1) led to reduced blocking voltage 
capability at 𝐵𝑉 = 420𝑉. 

Fig. 7 is forward blocking performance compared to 
measurements from two similar fully vertical GaN-on-Si 
trench MOSFETs. The observed difference in the leakage 
current could be attributed to the better quality of the GaN-on-
SiC material considered in the GaNTT device model. 

GaNTT simulation with 
FC 1.5x1012 cm-2 

Fig. 4: Predicted transfer characteristics of GaNTT design with oxide 
thickness of 60nm employing Nickel for gate metal and fixed charge of 
FC = 1.5 × 10�
𝑐𝑚 
between GaN and SiO2 interface. 

Fig. 6 is simulated electric field distribution of the 
proposed GaNTT device at breakdown when a reverse current 
of 𝐼D = 101+ 𝐴⁄𝜇𝑚)is reached. 

For the forward blocking operation, the proposed GaNTT 
design exhibited blocking capabilities of BV = 540𝑉 at 
reverse current of 𝐼D = 101+ 𝐴⁄𝜇𝑚) for a moderate fixed 
charge density of 1.5 × 10()𝑐𝑚1) . Since the onset of 

GATE 
SOURCE 

DRAIN Doping Concentration (cm-3) 
-2.2x1017 1x10193x1012 7x1016-1.5x1015 

SOURCE 

Fig. 2: Doping profile in GaNTT device modelled using TCAD toolkit. 
SiC substrate contribution during on-state is included as an additive 
resistance value at the drain electrode. 

Doping Concentration (cm-3) 

-2.2x1017 

1x1019 

3x1012 
7x1016 

-1.5x1015

G
AT

E
 

Fig. 3: A fine meshing profile defined to optimise simulation runtime 
and capture effect of traps incorporated in model. 

VG=14V 

VG=12V 

VG=10V 

VG=8V 

VG=6V VG=4V 

Fig. 5: Predicted family of curves for proposed GaNTT design with oxide 
thickness of 60nm employing Nickel for gate metal and interface state of 
FC = 1.5 × 10�
𝑐𝑚 
between GaN and SiO 

Fig. 6: Electric field distribution of proposed GaNTT design modelled at
𝑉!" = 540𝑉 and VGS=0V with Nickel as gate metal considering fixed 
interface charge of FC = 1.5 × 10�
𝑐𝑚 
between GaN and SiO2. The 
potential lines are superimposed in black, whilst depletion region is in 
white. 

http:VDS=0.5V
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Fig.7: Predicted blocking voltage of proposed GaNTT design with GaN 
and SiO2 interface charge of FC = 1.5 × 10�
𝑐𝑚 
 compared to 
measured datasets A [19] and B [20]. 

IV. CONCLUSSIONS 

In this paper, we presented a methodology for simulation 
of vertical gallium nitride field effect transistors and 
developed an advanced TCAD model to reflect the current
state-of-the-art GaN-on-SiC technology. The model was 
utilized to predict the electrical performance of the proposed 
trenched device. Although highly p-type doped gallium nitride 
remains a challenge, simulations predict a promising and 
scalable device performance for 600V class applications with 
a practical doping level of 2 × 10(.𝑐𝑚1* . In addition, 
blocking voltage found to be dependent on the charge density 
at the interface of GaN and SiO2 layers. 
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