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We also find that if subsidies are used without reserves to smooth returns, then shareholders’ 

wealth is destroyed in the long term for 77% of banks in our sample. This finding supports the 
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1. Introduction 

Islamic banks source a majority of their retail funds using Profit-Sharing Investment Accounts 

(PSIAs). According to Sundararajan (2011), 60% of Islamic bank funding is from PSIAs. The 

nearest perceived equivalent to investment accounts are interest-bearing time deposits (Archer 

and Karim, 2009). However, PSIAs are not bank liabilities, although they are sometimes 

presented as such in the financial statements of Islamic banks. Instead, PSIAs are equity 

investments in which investment account holders’ (IAHs) capital is invested in return-bearing 

assets managed (and originated) by the Islamic bank. In return for its funds’ management role, 

the bank shares ex-ante uncertain profits with account holders, and this is a major source of 

revenue for Islamic banks (Archer and Karim, 2006). 

The objective of this paper is to determine the value created for shareholders from PSIAs. 

Whilst conventional deposits have been valued (Hutchison and Pennacchi, 1996; Jarrow and 

Van Deventer, 1998; Sheehan, 2013), the valuation of PSIAs has not been reported. As a result, 

it has also not been possible to enumerate the monetary impact on shareholders’ wealth of 

smoothing cash returns paid to PSIAs, and in particular, to say whether this destroys 

shareholders’ wealth if funded by bank equity. 

To clarify, Islamic banks do not pay the contractual share of profits earned in each accrual 

period over to investment account holders (“investors”) automatically. Instead, cash returns to 

investors may be adjusted ex-post so that banks remain competitive relative to a conventional 

deposit rate benchmark and thereby avoid account withdrawals (Sundararajan, 2007; Farook 

et al., 2012; Aysan et al., 2018). Capital applied to smooth returns is sourced from either a 

reserve funded jointly by shareholders and investors (the Profit Equalisation Reserve, PER), a 

reserve funded solely by investors (the Investment Risk Reserve, IRR), or by donating part of 

the profits attributable to shareholders (hereafter “subsidies”). If shareholders’ equity is used 

for returns’ smoothing (via PER and/or subsidies), then the benefits of using equity need to 
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outweigh the corresponding opportunity cost, namely the returns generated for shareholders by 

the investment of bank equity in positive NPV projects. To determine the intrinsic value of 

PSIAs (i.e. without smoothing), and to investigate the overall impact of PSIAs on shareholders’ 

wealth when returns’ smoothing is funded by shareholders’ equity, we develop a theoretical 

model of PSIAs. The model uses a contingent-claims approach, in which PSIA value is an 

expectation of the bank’s discounted share of future profits in respect of an ex-ante uncertain 

future account volume. There are two state variables. These are a stochastic rate of return on 

underlying assets, and a stochastic conventional deposit rate. Together with a pre-defined 

profit-sharing ratio, these state variables define the relative return, i.e. return on investment 

accounts relative to conventional deposit rates. In turn, the relative return drives changes in 

investment account volume to capture account retention and switching behaviour. 

This paper is a timely addition to the literature, informing both practitioners and academics. 

Since 2005 there has been a pronounced increase in M&A activity for Islamic banks, some of 

which has involved conventional banks (see Appendix A - cumulative deal volume and 

cumulative dollar value of completed mergers and acquisitions for Islamic banks from 1984 to 

2019). Total completed mergers and acquisitions (by value) of Islamic banks in the period from 

2010-2019 was approximately double that of the period 2000-2010. Increased consolidation 

activity highlights the need for a model of PSIA value for M&A due diligence to determine the 

fair value of Islamic banks and corresponding purchased goodwill.   

Our paper makes several significant contributions. First, we develop for the first time an 

explicit formula for PSIA value. Second, we quantify PSIA values for a sample of 52 Islamic 

banks from 13 countries, and rank the importance of PSIA value-drivers to infer how bank 

policies may be steered to higher value creation for shareholders. Third, we evaluate the long-

term impact on shareholders’ wealth when returns’ smoothing is funded by shareholders’ 

equity. 
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The results of our analyses are compelling. We find a substantial variation in PSIA values both 

within each country and across countries. PSIAs range in value from single digits to just over 

60% of account size. This wide variation confirms a need to accurately reflect the value of 

PSIAs through their response to changes in relative returns if shares are to be reliably fair 

valued. Furthermore, the variation in PSIA values between banks is driven first by differences 

in the return on IAH assets, then, in decreasing order of importance, the bank’s (weighted-

average) cost of capital, investment account profit-sharing ratios, investment account decay 

rates, and finally, investment account growth rates. These findings inform bank policy – they 

imply that preventing account withdrawal by smoothing returns creates less value than 

originating high-quality assets in the first instance. This conclusion is also corroborated by our 

analysis of subsidies policies, wherein we show that subsidies policies – if used alone to smooth 

returns without the application of reserves – destroy long-term shareholder value in 77% of 

banks in our sample. This finding corroborates the practice of using reserves in preference to 

subsidies to smooth returns paid to investment account holders (Archer and Karim, 2006). 

The rest of the paper is arranged as follows. Section 2 reviews the literature. Section 3 

formulates a model of PSIAs from which an explicit formula for PSIA valuation is derived. 

Section 4 enumerates PSIA values for banks in our sample data set and determines a rank order 

of PSIA value-drivers. Section 5 applies our PSIA model to investigate the impact of returns’ 

smoothing on shareholder value creation. Section 6 concludes the paper. 

2. Review of the related literature 

Conventional deposits create shareholder value due to economic rents generated by paying a 

return to depositors less than that of an equivalent-risk investment opportunity (Hutchison and 

Pennacchi, 1996; Jarrow and Van Deventer, 1998; Sheehan, 2013). The economic rent for 

conventional deposits equals a treasury rate minus the rate paid to depositors, since 
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government-backed deposit insurance schemes essentially render conventional deposits risk-

free loans to the bank. 

In contrast to conventional deposits, profit-sharing investment accounts are equity contracts 

with no guarantee of returns. Ex-ante uncertain profits generated from underlying assets funded 

by investors’ capital (after provisions) are divided between the bank as managing agent 

(mudharib), and investment account holders (rab-al-mal). Additionally, the bank originates 

and manages a pool of (banking book) assets in the ordinary course of its business, a portion 

of which is assigned to PSIAs. Consequently, bank shareholders and investors are co-invested 

in the same pool of “commingled” assets (with shareholders also invested in other assets, e.g. 

fixed assets, solely funded by the bank) (Sundararajan, 2007; Farook et al., 2012). 

The impact on shareholders’ wealth due to PSIAs is from both the bank’s contractual share of 

profits (hereafter “intrinsic” value) and the returns’ management schemes it uses to administer 

cash returns to account holders1. In regards to the former, the addition to shareholders’ wealth 

is the capitalised value of a future stream of ex-ante uncertain fee income linked to asset 

performance. This financial claim closely resembles performance-based fees earned by fund 

managers for exceeding a pre-defined hurdle rate (see, for example, Goetzmann et al., 2003; 

Hodder et al., 2007). The fee mechanism of mutual funds acts in the same way as the leveraged 

call option embedded within PSIAs. The option in PSIAs confers the contractual right of 

shareholders to a share of profits, with no obligation to bear losses. The call option has a strike 

rate of zero (akin to the hurdle rate of a fund), and a leverage ratio equal to the bank’s profit-

sharing ratio. 

The second impact on shareholders’ wealth under consideration arises from returns’ 

smoothing. In a “dual-banking” system (for example, in Bahrain and Malaysia), Islamic banks 

1 Other more indirect effects also arise. For example, PSIAs require Islamic banks to hold more capital, which 

reduces the bank’s financing capacity, and in turn, the generation of earnings (see Baldwin et al. 2019). 
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operate alongside conventional banks and compete in the same market for retail funds. Since 

contractual returns to account holders are uncertain, they may fall below conventional deposit 

rates (so-called “rate of return risk”, see Aysan et al., 2018). Due to the opportunity cost of 

remaining invested, some account holders withdraw their funds and switch to a higher-yielding 

alternative (for switching between conventional banks, see Diamond, 1971; Hutchison and 

Pennacchi, 1996; Vives, 2001). Consequently, Islamic banks ameliorate this withdrawal risk 

by administering (smoothing) cash returns paid to investors so as to shadow conventional 

deposit rates (Sundararajan, 2007 and 2008; Chong and Liu, 2009; Toumi et al., 2018). Implicit 

evidence of this returns’ smoothing is reported in several studies. For example, Sundararajan 

(2007) finds that cash returns paid to IAHs are uncorrelated with returns generated by assets 

which underlie PSIAs. Additionally, a positive association between cash returns paid to IAHs 

and conventional deposit rates has been shown for Islamic banks in Malaysia, as reported by 

Chong and Liu (2009). 

The impact of PSIAs on shareholders’ wealth, excluding related effects of smoothing, was first 

reported in a seminal study on the capital structure of Islamic banks by Al-Deehani et al. 

(1999). Based on a small sample of 12 banks, the authors find empirical evidence that an 

increase in investment accounts increases the market value of Islamic banks. However, an 

important limitation of the study is to exclude any consideration of displaced commercial risk 

(DCR). DCR arises if shareholders subsidise cash returns to PSIAs by foregoing part, or all, of 

their contractual profit share, if assets underlying PSIAs underperform (Archer and Karim, 

2006). In essence, DCR is a transference of asset risk from investment account holders to 

shareholders conditioned on the willingness of banks to subsidise PSIA returns when required, 

for example, if there is no available PER or IRR to make up shortfalls in contractual returns. 

Archer and Karim (2006) state that whilst subsidies reduce shareholders’ wealth, for 

shareholders and investment account holders collectively, DCR itself is net utility-enhancing. 
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This is because DCR efficiently reallocates risk between two classes of investors, each with 

different wealth and risk diversification capabilities. Subsequent to Archer and Karim (2006), 

only a small number of studies offer some insight into the relationship between PSIAs and 

shareholders’ wealth. Shubber and Alzafiri (2008) find a strong positive correlation between 

PSIA volume and bank market value, albeit using a very small sample of banks over a short 

period (5-years). Other studies only indirectly relate PSIAs to shareholders’ wealth through 

their impact on bank earnings and /or bank risk-taking (see Rosly and Zaini, 2008; Kyzy et al., 

2012; Hamza and Saadaoui, 2013; Alhammadi et al., 2018). To the best of our knowledge, no 

studies since Archer and Karim (2006) meaningfully address our research question. We aim to 

fill this important gap by deriving the intrinsic value of PSIAs and evaluating the impact of 

returns’ smoothing practices on shareholders’ wealth. 

3. PSIA valuation 

In this section, we derive an explicit formula for PSIA value. We also calculate the account 

values for a sample of banks and determine an empirical rank order of PSIA value-drivers. 

3.1 Valuation approach 

Our concern is the intrinsic value of the bank’s interest in PSIAs. By this, we mean the bank’s 

share, as agent (mudharib) for IAHs2, of the expected value of discounted future profits earned 

before any transfers to/from reserves or the payment of subsidies. This point is essential to our 

approach. We derive PSIA value as if only contractual returns are paid to IAHs. By valuing 

PSIAs in the absence of an ex-post adjustment of cash returns, the value derived excludes both 

the incremental impact on future account volumes, as well as any costs to the bank, of 

discretionary transfers to/from IAHs. This approach is also useful because we then use the 

2 This valuation ignores any other benefits or costs to the bank flowing from its provision of PSIAs, e.g. scale 

benefits that increase market access to originate assets. 
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intrinsic value as a basis for evaluating the financial impact of mechanisms used by Islamic 

banks to shadow benchmark deposit rates (Section 4). 

In common with models in the conventional deposit valuation literature (Hutchison and 

Pennacchi, 1996; Jarrow and Van Deventer, 1998; Sheehan, 2013), we use a contingent-claims 

approach. In other words, we specify ex-ante uncertain state variables whose future values 

determine cash flows arising from PSIAs. However, in contrast to using only one state variable 

for valuation purposes (which is a treasury yield in the literature last cited), we use two state 

variables, being the return on assets (which underlie PSIAs) and a benchmark conventional 

deposit rate.  

From amongst the deposit valuation literature, the model of Jarrow and Van Deventer (1998) 

is closest to our own. The authors provide an arbitrage-free valuation of deposits in a stochastic 

interest rate environment with a normally distributed (exogenous) deposit rate. Analytic 

solutions are derived in continuous time under an assumed deposit demand function. However, 

unlike Jarrow and Van Deventer (1998), we do not assume the existence of a (unique) risk-

neutral probability measure to take expectations (Cox and Ross, 1976; Harrison and Kreps, 

1979). This is because a risk-neutral valuation of investment accounts requires the existence of 

traded securities which are perfectly correlated to the risk-drivers of PSIA value (being the 

return on commingled assets and the conventional deposit rate). Further, it would also need to 

be possible, in theory at least, to use these traded securities to construct the set of financial 

claims arising from PSIAs (i.e. to replicate PSIAs). However, Islamic finance prohibits both 

the trading of receivables for a price other than nominal receivable amount, and the short-

selling of securities. These prohibitions mean that even if perfectly correlated securities could 

be found, it would not be possible to trade them to hedge investment accounts. 

To value the bank’s interest in PSIAs, we instead use real-world probabilities, and a risk-

adjusted discount rate (i.e. risk-free rate plus risk premium) to calculate present values. The 
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risk premium for the PSIA discount rate should recognise the following: first, from the bank’s 

capital structure perspective, PSIAs are an unfunded claim on the returns of assets which 

underlie investment accounts; second, PSIA risk to the bank derives from unexpected changes 

in underlying asset returns and account volumes. In the absence of literature on the appropriate 

discount rate to use, we do not elaborate further on this point. We turn to each bank’s weighted 

average cost of capital as a proxy for its PSIA discount rate.3 

3.2 Theoretical PSIA valuation 

In this section, we derive a theoretical valuation of PSIAs. Detailed proofs are in Appendix B. 

3.2.1 The Model 

We assume a positive relationship between PSIA volume and contractual returns relative to a 

conventional deposit rate benchmark (i.e. contractual spread). This is supported empirically in 

Ergeç and Arsalan (2013) and Akhtar et al. (2017) amongst others. The main source of 

valuation difficulty in our model is that PSIA volume changes are random as each state variable 

is governed by a stochastic process. To simplify, and without loss of generality, we consider 

there to be only one PSIA tenor and one corresponding benchmark deposit rate. We study the 

total PSIA balance so that new accounts implicitly replace closed accounts. 

The time 𝑡 contractual spread, 𝑆𝑡, is defined by 

𝑆𝑡 = 𝜃𝑅𝑡 − 𝑟𝑡 (1) 

where 𝜃 is the pre-defined (i.e. contractual) IAH profit-sharing ratio (assumed constant), 𝑅𝑡 is 

the (time 𝑡) return on IAH assets, and 𝑟𝑡 is the (time 𝑡) conventional deposit rate benchmark. 

3 A discussion of WACC for Islamic banks is provided by Al-Deehani et al. (1999). The authors state that PSIAs 

are equity accounts and do not impact the financial risk to shareholders. However, this treatment ignores displaced 

commercial risk, and trivializes the complexity of PSIAs, which are, in effect, a hybrid of debt and equity due to 

returns’ smoothing (see Baldwin et al., 2019). A more accurate treatment of WACC for Islamic banks which 

encapsulates the debt-equity hybrid characteristic of PSIAs awaits further research. 
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The contractual spread is the excess of the contractual return, 𝜃𝑅𝑡, over the deposit rate, 𝑟𝑡, and 

can take both positive and negative values. 

We next define a process governing changes in investment account volume at time 𝑡, 𝑉𝑡. There 

are (at least) two possible models we can choose. In the spirit of an economic definition of 

demand elasticity, we could specify 𝑑𝑙𝑛𝑉𝑡 = 𝜑𝑑𝑆𝑡, i.e. a constant (or possibly time-varying) 

demand elasticity, 𝜑 (> 0), equal to the proportional change in account volume per unit change 

in contractual spread. However, this formulation implies that account volume only changes if 

there is a change in the contractual spread and that if the contractual spread took a constant 

positive (or negative) value, investment account volume would remain unchanged. This is 

counter-intuitive since account switching is based on the opportunity cost of remaining 

invested (Diamond, 1971; Hutchison and Pennacchi, 1996; Vives, 2001). Instead, therefore, 

we stipulate that investment account volume grows whilst the contractual spread is positive, or 

decays whilst it is negative (i.e. a binary occupation-time model of changes in account volume), 

with possibly different rates of growth and decay. 

For ease of exposition, we assume that if only contractual returns are paid to IAHs (i.e. if cash 

returns to IAHs equal contractual returns), then changes in account volume depend on how 

much time the contractual return, 𝜃𝑅𝑡, is either above or below the benchmark deposit rate, 𝑟𝑡 

(i.e. for how long the contractual spread, 𝑆𝑡, is positive or negative). Then4 

𝑑𝑉𝑡 
= −𝛾1{𝑆𝑡<0}𝑑𝑡 + 𝜂1{𝑆𝑡≥0}𝑑𝑡 

𝑉𝑡 (2) 

where 𝑉𝑡 ≔ 𝑉(𝑅𝑡, 𝑟𝑡) is the time 𝑡 PSIA volume, 𝛾 is the PSIA decay rate, 𝜂 is the PSIA growth 

rate, and 1{𝑋} is the indicator function (zero if condition 𝑋 is false; 1 if condition 𝑋 is true). 

4 We could further stipulate an accelerating, instead of constant, growth rate and decay rate for values of the 
𝑑𝑉𝑡contractual spread progressively further away from zero, i.e. = 𝛾1{𝑆𝑡<0}𝑆𝑡𝑑𝑡 + 𝜂1{𝑆𝑡≥0}𝑆𝑡𝑑𝑡. However, whilst 
𝑉𝑡 

solvable, this model formulation provides little additional insight to compensate for its extra complexity, A 

solution for the value of PSIAs using this formulation is available upon request. 
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Eqn. (2) is a continuous-time5 occupation-time model. It states that the proportional change in 

PSIA volume per unit time is a constant −𝛾, or 𝜂, depending on whether the contractual spread 

is negative or positive respectively. In this (binary) model, the absolute size of the contractual 

spread does not influence the size of the proportional change in PSIA volume, only whether 

the contractual spread is positive or negative. It is also noteworthy that whilst the growth rate 

(𝜂) and decay rate (𝛾) depict volume sensitivity to contractual spread in our model, their 

empirical values are from volume sensitivity to cash spread (i.e. cash returns minus benchmark 

deposit rate). This is because in practice, it is cash returns which are paid to IAHs.6 

We next specify normal distributions for our state variables, the return on assets (ROA) and 

the conventional deposit rate, as follows: 

𝑑𝑅𝑡 = 𝜇𝑅𝑑𝑡 + 𝜎𝑅𝑑𝐵𝑅 (3) 

𝑑𝑟𝑡 = 𝜇𝑟𝑑𝑡 + 𝜎𝑟𝑑𝐵𝑟 (4) 

where 𝜇𝑅 is the ROA drift rate, 𝜎𝑅 is the standard deviation of changes in ROA, 𝐵𝑅 is a 

Brownian motion for shocks to ROA, 𝜇𝑟 is the conventional deposit rate drift rate, 𝜎𝑟 is the 

standard deviation of changes in the deposit rate, and 𝐵𝑟 is a Brownian motion for shocks to 

the conventional deposit rate. 𝐵𝑅 and 𝐵𝑟 are correlated Brownian motions for which 𝑑𝐵𝑅𝑑𝐵𝑟 = 

𝜌𝑑𝑡. Combining (1), (3), and (4), changes in the contractual spread are given by 

𝑑𝑆𝑡 = (𝜃𝜇𝑅 − 𝜇𝑟)𝑑𝑡 + 𝜃𝜎𝑅𝑑𝐵𝑅 − 𝜎𝑟𝑑𝐵𝑟 (5) 

Our explanation of the model now requires a note on the assumption of normal distributions 

for our state variables, being the return on commingled assets, 𝑅𝑡, and the conventional deposit 

5 A continuous time model is chosen instead of a discrete-time model for analytic tractability. 
6 The formulation of volume dynamics in Eqn. (2) lends itself to a VaR measure of liquidity risk. If C is the 

𝑉𝑇confidence level, then the VaR level of liquidity risk, Y, over horizon T, is given by solving 𝐶 = 𝑃𝑟 (𝑙𝑛 < 𝑌). 
𝑉0 

If the contractual spread follows a Brownian motion (as in (5)) with zero drift and initial value, it may be shown 

(using the mathematics of Brownian motion, see Akahori, 1995) that PSIA liquidity VaR equals 
𝜋(1−𝐶)

(𝜂−(𝜂+𝛾)𝑠𝑖𝑛 )𝑇𝑉0 (1 − 𝑒 2 ). 
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rate, 𝑟𝑡. The return on assets is indeed a variable for which negative values are possible (as may 

arise, for example, due to obligor defaults). That the conventional deposit rate changes 

continuously7 and can take negative values is less defensible if considered in isolation of the 

overall model (a negative deposit rate may be thought of as a custodianship fee for safeguarding 

depositors’ funds). However, it is the contractual spread (as defined in (1)) which is of primary 

relevance to our PSIA model, and not the return on assets or conventional deposit rate in 

isolation of each other. The contractual spread may indeed take both positive and negative 

values depending on whether contractual returns are (resp.) above or below the conventional 

deposit rate benchmark8. Lastly, assuming normally distributed state variables allows us to 

invoke the Feynman-Kac Theorem (Janson and Tysk (2006)) from which we derive an explicit 

formula for PSIA value. 

We now state the value to the bank9, denoted Λ, of an investment (by IAHs) in a profit-sharing 

investment account. Since the bank shares income, but not losses,10 in perpetuity11 

∞ (6)
𝑒−𝜔𝑡Λ = (1 − 𝜃)𝐸 [∫ max(0, 𝑅𝑡)𝑉𝑡(𝑅𝑡, 𝑟𝑡)𝑑𝑡 |𝑅0, 𝑆0] 

0 

where the expectation is taken using a physical (i.e. real-world) probability measure for cash 

flows received by the bank from PSIAs in perpetuity, conditioned on the initial values of the 

return on assets (𝑅0) and contractual spread (𝑆0). 𝜔 is the continuously compounded risk-

adjusted discount rate. 

7 Deposit rates are administered by banks, change intermittently, and exhibit jumps (Fan and Johannson, 2010). 
8 We applied the Jarque-Bera test to our sample data to evaluate whether the normal distribution could be used 

(see Section 3.3 for a description of our data sample). The null hypothesis, that the normal distribution describes 

the cash spread, cannot be rejected at the 1% significance level. 
9 It may be noted that valuing PSIAs as the expected value of discounted future income streams earned from the 

bank’s funds’ management role (as per Eqn. (6)) is also an approach firmly embedded within the literature on the 

valuation of stakeholder interests in fund investments (e.g. Ferguson and Leistikow (2001), Goetzmann et al. 

(2003)). 
10 Income is shared continuously in our model of PSIAs. In practice, distributions of accrued income are made on 

a monthly basis, i.e. in discrete time. 
11 Valuing the future income stream in perpetuity is consistent with the definition of purchased goodwill, in that 

acquired shares are priced on a going concern basis. 
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3.2.2 PSIA valuation model solution 

Integrating (2), using 1{𝑆𝑡<0}+1{𝑆𝑡≥0} = 1, and defining 𝛼 = 𝜔 + 𝛾 and 𝛽 = −(𝜂 + 𝛾), we 

restate (6) as 

∞ 

𝑒−𝛼𝑡 1{𝑆𝑠≥0}𝑑𝑠 (7)Λ = (1 − 𝜃)𝑉0𝐸 [∫ max(0, 𝑅𝑡)𝑒−𝛽 ∫0
𝑡 

𝑑𝑡 |𝑅0, 𝑆0] 
0 

where 𝑉0 is the initial account volume. 

Applying the Feynman-Kac Theorem (Janson and Tysk (2006)), the expectation in (7) is the 

solution to an elliptical second-order partial differential equation (PDE). Solving the PDE 

subject to initial values of the ROA, 𝑅0, and the contractual spread, 𝑆0, we derive the PSIA 

value per unit initial account volume 

(1 − 𝜃)𝑅0 𝜂 + 𝛾 𝑘1 (8)
Λ = (1 + 𝑒−𝑘2𝑆0) , 𝑆0 ≥ 0 

𝜔 − 𝜂 𝜔 + 𝛾 𝑘2 − 𝑘1 

(1 − 𝜃)𝑅0 𝜂 + 𝛾 𝑘2 (9)
Λ = (1 + 𝑒−𝑘1𝑆0) , 𝑆0 < 0 

𝜔 + 𝛾 𝜔 − 𝜂 𝑘2 − 𝑘1 

16(𝜔+𝛾) 16(𝜔−𝜂)
−Γ−√Γ2+ −Γ+√Γ2+ 

𝜎𝑟
2(1−𝜌2) 𝜎𝑟

2(1−𝜌2) 2 
where 𝑘1 = (< 0), 𝑘2 = (> 0), Γ = (𝜇𝑅 + 

4 4 𝜎𝑅𝜎𝑟√1−𝜌2 

(𝜇𝑟𝜎𝑅 − 𝜌𝜇𝑅𝜎𝑟)𝜎𝑟√1 − 𝜌2), and 𝑅0 > 0 (by assumption). 

Proof: See Appendix B 

It is noteworthy that the value to the bank of a unit investment in PSIAs given by (8) and (9) 

reduces to a particularly simple form for the special case in which the initial contractual spread, 

𝑆0, is zero, and for which there is no drift in ROA nor conventional deposit rate (such that the 

expected changes in ROA and deposit rate are both zero). 

Setting 𝑆0 = 0, and 𝜇𝑅 = 𝜇𝑟 = 0, the PSIA value in (8) and (9) with regularity constraint 𝜔 > 

𝜂 becomes 
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(1 − 𝜃)𝑅0 (10)
Λ = 

√𝜔 − 𝜂√𝜔 + 𝛾 

(10) is instantly recognisable if we set 𝜂 = 𝛾 = 0, i.e. the non-stochastic case in which the 

PSIA volume growth and decay rates are zero. Then, the value to the bank of a unit investment 

(1−𝜃)𝑅0in PSIAs is , which is the value of a constant cash flow, (1 − 𝜃)𝑅0, received in 
𝜔 

perpetuity discounted at rate 𝜔. The regularity constraint 𝜔 > 𝜂 for (10) comes from the 

requirement that cash flows do not grow faster than the rate at which they are discounted 

(otherwise the valuation is unbounded). This constraint is reminiscent of the requirement that 

dividends do not grow faster than the discount rate in the Gordon growth model applied to 

value dividend-paying equities (Gordon, 1962). 

3.3 Empirical PSIA valuation 

We next apply the valuation formulae (8) and (9) to determine the value of PSIAs for each 

bank in our sample. A majority of our data set consists of all available quarterly financial 

statements for a sample of 52 Islamic banks in 13 countries from Dec 2003 to Dec 2018 (being 

balance sheet, income statement, cash flow statement, and key financial ratios). The sample 

includes all Islamic retail banks in the Fitch and Eikon databases. The data set excludes Islamic 

windows12 (see Appendix C for the sample country distribution). We estimate values for the 

following parameters: (1) investment account decay rate () and growth rate (); (2) the drift 

rate (R) and standard deviation (R) of ROA; (3) the drift rate (r) and standard deviation (r) 

for the conventional deposit rate benchmark; (4) the correlation () between the ROA of each 

bank and the conventional deposit rate benchmark; and (5) the weighted average cost of capital 

() for each bank. The resulting investment account values (as a percentage of face value, or 

12 Islamic windows involve conventional banks offering Islamic financial products. Such banks are regulated in 

accordance with rules ordinarily applied to conventional banks. 
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equivalently, invested capital) are presented in Figure 1 for each bank in order of increasing 

value. 

Figure 1: The value of investment accounts for each bank 

Figure 1 partitions sample banks according to whether their PSIA value is less than 1% of 

account face value, between 1% and 20% of account face value, or above 20% of account face 

value. All values are in the range 0% to 66% of face value, and the average account value is 

12%. The range in values we calculate for PSIAs may be compared to the range in values to 

conventional banks reported for savings accounts by Sheehan (2013), being from -3% to 41% 

of face value. Additionally, the average value of the investment accounts is within a corridor 

of representative values for the capitalised value of performance fees from hedge fund 

management reported in Goetzmann et al. (2003), being 10% to 20% of the amount invested. 

One of the most striking characteristics of our results is the broad range in PSIA values of 

banks in our sample. This dispersion is from two factors: firstly, the numerical values for each 

bank of the parameters invoked by the theoretical model; secondly, the sensitivity of the 

account value formulae ((8) and (9)) to each parameter. To assess the influence of each input 
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parameter on the dispersion of empirical PSIA values, we run two methods for the sensitivity 

analysis. 

In the first method, we proceed as follows: (1) recalculate the value of investment accounts for 

each bank using the original parameter values except for one, which is the average value of the 

parameter across all banks in the sample; (2) repeat step (1) for each input parameter; (3) 

calculate the difference between the maximum account value and the minimum account value 

for banks in the sample for steps (1) and (2); (4) rank the input parameter according to the 

width of the PSIA value range (maximum value minus minimum value). 

For the second method, we follow a similar procedure, except this time, the starting point is to 

make all of the parameter values the same for each bank (being the sample average) except for 

one, which, for each bank, is given its actual value. Again, we perform this step for each 

parameter, determining the range in investment account values, and ranking the parameters in 

order of their impact on dispersion. 

Both methods show that the order of importance to the dispersion of PSIA values for banks in 

our sample is ROA first, then in decreasing order of importance, WACC, profit-sharing ratio, 

decay rate, and growth rate. Table 3-1 provides the width of the range in PSIA values using the 

first method.13 

Table 3-1: dispersion analyses on the input parameters 

ROA WACC PSR Decay Rate Growth Rate 

0.282 0.175 0.048 0.041 0.028 

This finding provides insight into how Islamic banks should approach value creation through 

investment account management policies. Banks in our sample are more highly differentiated 

by return on IAH assets than profit-sharing ratios and investment account growth or decay 

rates. This indicates that returns’ smoothing policies aimed at manipulating account volumes 

13 Results for the second method are available upon request. 
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play a lesser role in importance to shareholder value creation than those focused on the 

origination of high-quality assets in the first instance (i.e. those with higher risk-adjusted 

returns). 

4. The Impact of Smoothing 

Invoking the PSIA valuation framework developed in Section 3, we now turn to the impact of 

smoothing on shareholders’ wealth. 

4.1 Returns’ smoothing schemes 

Islamic banks (except in Malaysia) use two reserves to smooth returns paid to account holders. 

These are the Profit Equalisation Reserve (PER) and the Investment Risk Reserve (IRR) 

(Farook et al., 2012). The PER is an appropriation of the gross returns of IAH assets, prior to 

deduction of the bank’s profit share, and is therefore within the equity of both shareholders and 

investors. Due to Shari’a restrictions, the bank cannot make up IAH losses using its own 

capital. Therefore, the bank’s share of PER can be used to make up shortfalls in IAH returns, 

but not losses. IAH losses can be made whole using the IAH’s share of PER, and/or the IRR, 

which is created by appropriations from the contractual returns due to investors after all other 

deductions (i.e. allocations to PER, provisions, and the bank’s profit share). The IRR can also 

be used to make up shortfalls in IAH returns if needed (e.g. if the PER is zero). 

Islamic banks may also subsidise returns paid to account holders from shareholders’ equity by 

donating part of the bank’s profit share to investors. However, the PER and IRR are intended 

to mitigate the need for subsidies. In other words, subsidies are only used in practice if reserves 

are insufficient to smooth account holders’ returns (Archer and Karim, 2009). 
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4.2 Impact of smoothing on shareholders’ wealth 

The impact of smoothing on shareholders’ wealth may be understood as follows. First, 

irrespective of the source of funds used for smoothing, if an ex-post increase in cash returns 

over and above the contractual profit share of investors results in more closely shadowing or 

exceeding the benchmark conventional deposit rate, account volume is increased. In turn, this 

increases the bank’s future earnings, and hence, creates shareholder wealth. Second, an 

opportunity cost to the bank only arises in respect of smoothing when funded by bank equity 

that could otherwise be invested in positive NPV projects. The shareholders’ portion of the 

PER, and all of the subsidies, are within the equity of shareholders. However, there is an 

important distinction between each type of appropriation of bank equity. The drawdown of 

PER does not result in a permanent depletion of bank equity if it is subsequently replenished 

by compensating asset returns (bank equity is of course initially depleted when the PER is first 

established). In contrast, subsidies are a donation of bank equity to investors, and are therefore 

a permanent appropriation of shareholders’ funds without subsequent renewal. Taken in 

isolation of the associated benefit (of increased future earnings due to higher account volumes) 

accruing to shareholders, subsidies reduce shareholders’ wealth. Third, the use of smoothing 

reserves funded by investors (the investors’ portion of PER and all of the IRR) neither directly 

creates nor destroys shareholders’ wealth. This is because these reserves are accumulated in 

periods when contractual returns exceed the benchmark deposit rate, and released in periods 

when the opposite is true. The accumulation/withdrawal of these reserves leads to an 

intertemporal redistribution of returns paid to account holders from within their own equity. 

Consequently, there is no net increase or decrease in account volume over time, and no net 

direct14 impact on shareholders’ wealth. As highlighted in Archer and Karim (2006), the 

14 An indirect increase in shareholders’ wealth may arise from application of these reserves. For example, if the 

application of the reserves lowers the volatility of returns paid to investment account holders, then risk-averse 
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preferential use of reserves which are within the equity of account holders to smooth returns 

indirectly creates wealth for shareholders only by mitigating the need to use bank equity to 

achieve the same objectives. 

4.3 Net impact of subsidies 

Because reserves have no direct net impact on shareholders’ wealth (as explained in Section 

4.2), our focus is the net impact of subsidies. Consider the following bank policy applied in 

perpetuity: 

Subsidies policy 

In the event of shortfalls in contractual returns, the bank reduces its profit share to pay a cash 

return equal to the conventional deposit rate benchmark, but pays the contractual return 

otherwise. 

The subsidies policy is applied to make up contractual return shortfalls (but not losses) in the 

absence of reserves (e.g. if reserves are not permitted, as is the case in Malaysia since 2013, or 

available reserves are zero). The subsidies policy means that the bank provides a floor to cash 

returns paid to investors equal to the conventional deposit rate of return. Application of the 

subsidies policy permits investment accounts to grow but not to decay. 

To evaluate the impact of subsidies on shareholders’ wealth, we apply the PSIA model 

developed earlier in the paper. Under the subsidies policy, the bank pays subsidies to prevent 

account shrinkage in time 𝑡 to 𝑡 + 𝑑𝑡 equal to 

−𝑉𝑡𝑚𝑖𝑛(𝑆𝑡, 0)𝑑𝑡 (11) 

where 𝑆𝑡 is again the contractual spread. The subsidy in (11) is the PSIA volume, 𝑉𝑡, multiplied 

by the contractual spread, 𝑆𝑡 (if negative, i.e. if the contractual return is below the conventional 

account holders will benefit. This may promulgate account retention and attract new capital from which the bank 

earns a future share of profits. 
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deposit rate benchmark). Payment of the subsidy means account holders receive a cash return 

equal to the conventional deposit rate benchmark when the contractual spread is negative, and 

this prevents a decrease in account volume. However, when the contractual spread is positive, 

no subsidy is paid. Hence, the change in account volume is given by 

𝑑𝑉𝑡 (12) 
= 𝜂1{𝑆𝑡≥0}𝑑𝑡 

𝑉𝑡 

From (11), the lifetime cost of subsidies (i.e. the cost over all time) is 

∞ (13)
−𝐸 [∫ 𝑒−𝜔𝑡𝑉𝑡𝑚𝑖𝑛(𝑆𝑡, 0)𝑑𝑡|𝑅0, 𝑆0] 

0 

where 𝑉𝑡 is given by integrating (12). The benefit of paying subsidies is to retain accounts from 

which the bank then receives additional earnings. The additional earnings in time 𝑡 to 𝑡 + 𝑑𝑡 

are 

(𝑉𝑡 − 𝑉0)(1 − 𝜃)𝑅𝑡𝑑𝑡 (14) 

where 𝑉𝑡 is the account volume realised by implementing the subsidies policy, 𝑉0 is the initial 

account volume, and (1 − 𝜃)𝑅𝑡𝑑𝑡 is the earnings of the bank (per unit account volume) from 

its share of asset returns in the interval 𝑑𝑡. 

Therefore, the lifetime benefit of paying subsidies is 

∞ (15)
𝐸 [∫ 𝑒−𝜔𝑡(𝑉𝑡 − 𝑉0)(1 − 𝜃)𝑅𝑡𝑑𝑡 |𝑅0, 𝑆0] 

0 

Hence, a subsidies policy is value-creating for shareholders (in expectation) if 

∞ (16)
𝐸 [∫ 𝑒−𝜔𝑡((𝑉𝑡 − 𝑉0)(1 − 𝜃)𝑅𝑡 + 𝑉𝑡𝑚𝑖𝑛(𝑆𝑡, 0))𝑑𝑡|𝑅0, 𝑆0] > 0 

0 

The left-hand side of (16) reduces to the following expressions (see Appendix D for proof): 

𝑒𝑘4𝑆0(1 − 𝜃)𝑅0 𝜂 𝑘3 (1 − 𝜃)𝑅0 (17) 
(1 + 𝑒−𝑘2𝑆0) − + , 𝑆0 ≥ 0 

𝜔 − 𝜂 𝜔 𝑘2 − 𝑘3 𝜔 𝜔(𝑘4 − 𝑘5) 

𝑒𝑘4𝑆0(1 − 𝜃)𝑅0 𝜂 𝑘2 (18) 
( 𝑒−𝑘3𝑆0) + , 𝑆0 < 0 

𝜔 𝜔 − 𝜂 𝑘2 − 𝑘3 𝜔(𝑘4 − 𝑘5) 
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16(𝜔−𝜂) 16𝜔 
−Γ+√Γ2+ −Γ−√Γ2+ 

𝜎𝑟
2(1−𝜌2) 𝜎𝑟

2(1−𝜌2)
where 𝑘2 = (> 0), 𝑘3 = (< 0), 𝑘4 = 

4 4 

−𝜇𝑆−√𝜇𝑆
2+2𝜎𝑆

2(𝜔−𝜂) −𝜇𝑆+√𝜇𝑆
2+2𝜎𝑆

2𝜔 2 
2 (< 0), 𝑘5 = 2 (> 0), Γ = (𝜇𝑅 + (𝜇𝑟𝜎𝑅 − 

𝜎𝑆 𝜎𝑆 𝜎𝑅𝜎𝑟√1−𝜌2 

𝜌𝜇𝑅𝜎𝑟)𝜎𝑟√1 − 𝜌2), and 𝑅0 > 0 (by assumption). 

Using the results of our estimations for the numerical value of the parameters in (17) and (18), 

we find that only 12 out of 52, i.e. 23%, of banks in our sample create long-term shareholder 

value by following the subsidies policy. 

Further insight is available with some simplifying assumptions. For zero initial contractual 

spread and zero drifts,(17) and (18) reduce to the requirement (see Appendix D) that 

(1 − 𝜃)𝑅0 𝜎𝑆 (19)
− > 0 

√𝜔 − 𝜂 √2𝜂 

In other words, the growth rate, 𝜂, must exceed a threshold value 𝜂𝑐 , i.e. 

2 (20)
−𝜎𝑆

2 + 𝜎𝑆√𝜎𝑆
2 + 8(1 − 𝜃)2𝑅0 𝜔 

𝜂 > 𝜂𝑐 = 24(1 − 𝜃)2𝑅0 

This result indicates that the benefit of subsidies outweighs their costs provided accounts grow 

sufficiently quickly in response to increases in the cash spread.  

We can also interpret the inequality in (20) from a different perspective. For a given level of 

account growth rate, 𝜂, the risk-adjusted return earned by the bank from PSIAs must exceed a 

threshold value if the subsidies policy is to result in shareholder wealth creation, i.e. 

(21)(1 − 𝜃)𝑅0 𝜔 − 𝜂 

𝜎𝑆 
> √ 

2𝜂2 

The left-hand side of (21) is the risk-adjusted return for the bank from its share of profits. From 

(21), the higher the rate of growth, 𝜂, the smaller the right-hand side becomes, and the easier 
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this inequality is to satisfy. We also observe that accounts which provide lower risk-adjusted 

returns may still be value-creating, as long as they grow rapidly enough when the cash spread 

is positive. 

5 Concluding remarks 

In this paper, we derive an explicit formula for the value of profit-sharing investment accounts 

using probabilistic tools common to the derivatives pricing literature. We then apply the 

formula to value PSIAs for a sample of 52 banks in 13 countries, and determine an empirical 

rank order of PSIA value-drivers. We also enumerate the impact on shareholders’ wealth of 

returns’ smoothing schemes to the extent funded by shareholders’ equity. 

We find that PSIA values are broadly dispersed within each country and across countries. PSIA 

values exceed 60% of face value in some banks, whilst they are barely above zero in others. 

This dispersion is first attributed to differences in the return on assets underlying investment 

accounts, and then, in decreasing order of importance, to the bank’s (weighted-average) cost 

of capital, profit-sharing ratio, account decay rate, and finally, account growth rate. In other 

words, PSIA values for banks in our sample are most differentiated by the return on assets 

which underlie them. The policy implication is that returns’ smoothing aimed at maintaining 

competitive rates of return to avoid account withdrawals is less important to shareholder value 

creation than the origination of high-quality assets in the first instance (i.e. those with higher 

risk-adjusted returns).  

We also find that if smoothing uses subsidies without reserves (for example if reserves are 

depleted or not permitted), then long-term shareholder value is destroyed in 77% of banks in 

our sample. This is because for these banks, the transfer of shareholder capital to make up 

contractual return shortfalls relative to conventional benchmark rates is not adequately 

compensated by a share of future profits from investment accounts subsequently retained. 
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Our study has several limitations. First, investors are motivated in our model by monetary 

returns alone, whereas religious observance may restrict switching to conventional banks. 

Second, conventional deposit rates change continuously in our model, whereas, in reality, 

deposit rates are “sticky” (i.e. change infrequently and exhibit jumps). Third, we assume a 

symmetric distribution to describe the return on assets which underlie investment accounts. 

However, assets underlying investment accounts inevitably include receivables, which have 

asymmetric return distributions. 

By providing a model used to derive an explicit formula for PSIA value for the first time, this 

paper opens up several new directions for future research. One line of enquiry is the potential 

over- or under-payment for shares acquired in Islamic banking M&A transactions. Our model 

can be applied to complement industry valuation methods to increase the level of precision in 

calculating the fair value of equity, and in turn, determining the value of purchased goodwill. 
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Appendix A: Merger and Acquisition activity 

Figure A.1: Cumulative Islamic banking and financial 

services mergers and acquisitions 1984-2019 
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Appendix B: Derivation of PSIA Value 

We wish to evaluate 

∞ 

𝐸 [∫ 𝑒−𝛼𝑡𝑚𝑎𝑥(0, 𝑅𝑡)𝑒−𝛽 ∫0
𝑡

1{𝑆𝑠≥0}𝑑𝑠𝑑𝑡 |𝑅0, 𝑆0] (𝐵1) 
0 

The Feynman-Kac Theorem in 2-dimensions (Janson and Tysk (2006)) states that if 

𝑊(𝑅𝑡, 𝑆𝑡) ≥ 0, and 

0 𝑊(𝑅𝑠,𝑆𝑠)𝑑𝑠𝑢(𝑡, 𝑅0, 𝑆0) = 𝐸 [𝑓(𝑅𝑡, 𝑆𝑡)𝑒− ∫
𝑡 

|𝑅0, 𝑆0] (𝐵2) 

then 𝑢(𝑡, 𝑅0, 𝑆0) satisfies 

𝜕𝑢 
= 𝐺𝑢 − 𝑊𝑢 (𝐵3) 

𝜕𝑡 

where 

𝑑𝑅𝑡 = 𝜇𝑅𝑑𝑡 + 𝜎𝑅𝑅𝑑�̃�𝑅 + 𝜎𝑅𝑆𝑑�̃�𝑆 (𝐵4) 
𝑑𝑆𝑡 = 𝜇𝑆𝑑𝑡 + 𝜎𝑆𝑅𝑑�̃�𝑅 + 𝜎𝑆𝑆𝑑�̃�𝑆 (𝐵5) 

𝑑�̃�𝑅 and 𝑑�̃�𝑅 are orthogonal Brownian motions, i.e. 𝑑�̃�𝑅𝑑�̃�𝑆 = 0, and the operator 𝐺(. ) is 

defined by 

1 𝜕2 𝜕2 1 2 𝜕2 𝜕
2)𝐺 ≡ (𝜎𝑅𝑅

2 + 𝜎𝑅𝑆 2 + (𝜎𝑅𝑅𝜎𝑆𝑅 + 𝜎𝑅𝑆𝜎𝑆𝑆) + (𝜎𝑆𝑅
2 + 𝜎𝑆𝑆 ) 2 + 𝜇𝑅2 𝜕𝑅0 𝜕𝑅0𝜕𝑆0 2 𝜕𝑆0 𝜕𝑅0 

𝜕 
+ 𝜇𝑆 (𝐵6) 

𝜕𝑆0 

The derivation of PSIA value from (B1) is in 4 steps: 

1. Orthogonalisation of processes for 𝑅𝑡 and 𝑆𝑡. 

2. Application of the Feynman-Kac Theorem 

3. Transformation of the resulting PDE into its canonical form 

4. Solution to the canonical form PDE 

1. Orthogonalisation 

We first transform the system of stochastic equations for which 𝑑𝐵𝑅𝑑𝐵𝑟 = 𝜌 and 

𝑑𝑅𝑡 = 𝜇𝑅𝑑𝑡 + 𝜎𝑅𝑑𝐵𝑅 (𝐵7) 
𝑑𝑆𝑡 = (𝜃𝜇𝑅 − 𝜇𝑟)𝑑𝑡 + 𝜃𝜎𝑅𝑑𝐵𝑅 − 𝜎𝑟𝑑𝐵𝑟 (𝐵8) 

into a transformed system in which 𝑑�̃�𝑅𝑑�̃�𝑟 = 0 so that we can write 
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𝑑𝑅𝑡 = 𝜇𝑅𝑑𝑡 + 𝑋𝑑�̃� (𝐵9) 𝑅 

𝑑𝑆𝑡 = (𝜃𝜇𝑅 − 𝜇𝑟)𝑑𝑡 + 𝑌𝑑�̃�𝑅 + 𝑍𝑑�̃�𝑟 (𝐵10) 

where 𝑋, 𝑌, and 𝑍 are constants which preserve the variance of 𝑑𝑅𝑡, the variance of 𝑑𝑆𝑡, and 

the covariance of 𝑑𝑅𝑡 and 𝑑𝑆𝑡, i.e. 

𝐶𝑜𝑣(𝑑𝑅𝑡, 𝑑𝑆𝑡) = 𝜃𝜎𝑅
2 − 𝜌𝜎𝑟𝜎𝑅 = 𝑋𝑌 (𝐵11) 

𝐶𝑜𝑣(𝑑𝑅𝑡, 𝑑𝑅𝑡) = 𝜎𝑅
2 = 𝑋2 (𝐵12) 

𝐶𝑜𝑣(𝑑𝑆𝑡, 𝑑𝑆𝑡) = 𝜃2𝜎𝑅
2 − 2𝜃𝜌𝜎𝑟𝜎𝑅 + 𝜎𝑟

2 = 𝑌2 + 𝑍2 (𝐵13) 

(B11) to (B13) are solved to give 

𝑋 = 𝜎𝑅 (𝐵14) 
𝑌 = 𝜃𝜎𝑅 − 𝜌𝜎𝑟 (𝐵15) 

𝑍 = 𝜎𝑟√(1 − 𝜌2) (𝐵16) 

i.e. we use independent Brownian motions 𝑑�̃�𝑅 and 𝑑�̃�𝑟 with 

𝑑𝑅𝑡 = 𝜇𝑅𝑑𝑡 + 𝜎𝑅𝑑�̃� (𝐵17) 𝑅 

𝑑𝑆𝑡 = (𝜃𝜇𝑅 − 𝜇𝑟)𝑑𝑡 + (𝜃𝜎𝑅 − 𝜌𝜎𝑟)𝑑�̃�𝑅 + 𝜎𝑟√(1 − 𝜌2)𝑑�̃�𝑟 (𝐵18) 

2. Application of the Feynman-Kac Theorem 

Comparing (B17) and (B18) to (B4) and (B5) gives 

𝜎𝑅𝑅 = 𝜎𝑅 (𝐵19) 
𝜎𝑅𝑆 = 0 (𝐵20) 

𝜎𝑆𝑅 = 𝜃𝜎𝑅 − 𝜌𝜎𝑟 (𝐵21) 

𝜎𝑆𝑆 = 𝜎𝑟√(1 − 𝜌2) (𝐵22) 

Substituting (B19) to (B22) into (B4) and (B5), invoking (B2), and specifying 𝑓(𝑅𝑡, 𝑆𝑡) = 

𝑚𝑎𝑥(0, 𝑅𝑡) and 𝑊(𝑅𝑡, 𝑆𝑡) = 𝛽1[𝑆𝑡≥0] in (B3), gives 

𝜕𝑢 1 
2 𝜕2𝑢 𝜕2𝑢 1 𝜕2𝑢 𝜕𝑢 

= 𝜎𝑅 + (𝜃𝜎𝑅
2 − 𝜌𝜎𝑅𝜎𝑟) + (𝜃2𝜎𝑅

2 − 2𝜃𝜌𝜎𝑅𝜎𝑟 + 𝜎𝑟
2) 

2 + 𝜇𝑅2𝜕𝑡 2 𝜕𝑅0 𝜕𝑅0𝜕𝑆0 2 𝜕𝑅0 𝜕𝑅0 
𝜕𝑢 

+ (𝜃𝜇𝑅 − 𝜇𝑟) − 𝛽1[𝑆0≥0]𝑢 (𝐵23) 
𝜕𝑆0 

Next, define the Laplace transform of 𝑢(𝑡, 𝑅0, 𝑆0) s.t. 

∞ ∞ 

𝑔(𝑅0, 𝑆0) ≡ ∫ 𝑒−𝛼𝑡𝑢(𝑡, 𝑅0, 𝑆0)𝑑𝑡 = 𝐸 [∫ 𝑒−𝛼𝑡𝑚𝑎𝑥(0, 𝑅𝑡)𝑒−𝛽 ∫0

𝑡
1[𝑆𝑠≥0]𝑑𝑠 𝑑𝑡|𝑅0, 𝑆0] (𝐵24) 

0 0 
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0 

Taking the Laplace transform of (B23), the left-hand side (using integrating by parts) becomes 

∞ 𝜕𝑢 
𝑒−𝛼𝑡 ∫ 𝑑𝑡 = −𝑢(0, 𝑅0, 𝑆0) + 𝛼𝑔(𝑅0, 𝑆0) = −𝑚𝑎𝑥(0, 𝑅0) + 𝛼𝑔(𝑅0, 𝑆0) (𝐵25) 

𝜕𝑡 

Substituting (B25) into (B23) for 𝑅0 > 0 gives the PDE for 𝑔(𝑅0, 𝑆0), 

1 
2 𝜕2𝑔 𝜕2𝑔 1 𝜕2𝑔 

𝛼𝑔 = 𝑅0 + 𝜎𝑅 + (𝜃𝜎𝑅
2 − 𝜌𝜎𝑅𝜎𝑟) + (𝜃2𝜎𝑅

2 − 2𝜃𝜌𝜎𝑅𝜎𝑟 + 𝜎𝑟
2)

2 22 𝜕𝑅0 𝜕𝑅0𝜕𝑆0 2 𝜕𝑆0 
𝜕𝑔 𝜕𝑔 

+ 𝜇𝑅 + (𝜃𝜇𝑅 − 𝜇𝑟) − 𝛽1[𝑆0≥0]𝑔 (𝐵26) 
𝜕𝑅0 𝜕𝑆0 

3. Reducing the PDE to its canonical form 

Rearranging (B26), and simplifying differential notation, gives 

𝐴𝑔𝑅0𝑅0 
+ 𝐵𝑔𝑅0𝑆0 

+ 𝐶𝑔𝑆0𝑆0 
+ 𝐷𝑔𝑅0 

+ 𝐸𝑔𝑆0 
+ 𝐹𝑔 = 𝐺(𝑅0, 𝑆0) (𝐵27) 

where 
1 

𝐴 = 𝜎𝑅
2 (𝐵28) 

2 
𝐵 = 𝜃𝜎𝑅

2 − 𝜌𝜎𝑅𝜎𝑟 (𝐵29) 
1 2 

𝐶 = (𝜃2𝜎𝑅
2 − 2𝜃𝜌𝜎𝑅𝜎𝑟 + 𝜎𝑟 ) (𝐵30) 

2 
𝐷 = 𝜇𝑅 (𝐵31) 

𝐸 = 𝜃𝜇𝑅 − 𝜇𝑟 (𝐵32) 
𝐹 = −(𝛼 + 𝛽), 𝑖𝑓𝑆0 ≥ 0, 𝑒𝑙𝑠𝑒 − 𝛼 (𝐵33) 

𝐺(𝑅0, 𝑆0) = −𝑅0 (𝐵34) 

The discriminant of the PDE (B27) is 

2∆= 𝐵2 − 4𝐴𝐶 = −(1 − 𝜌2)𝜎𝑅
2𝜎𝑟 (𝐵35) 

For imperfectly correlated ROA and deposit rate, i.e. |𝜌| < 1, 

∆= 𝐵2 − 4𝐴𝐶 < 0 (𝐵36) 

i.e. the PDE (B27) is elliptical. We therefore look for the following canonical form in 

transformed variables 𝑝 and 𝑞 which eliminates the second-order cross-differential term, i.e. 

𝑔𝑝𝑝+𝑔𝑞𝑞 + 𝐷∗𝑔𝑝 + 𝐸∗𝑔𝑞 + 𝐹∗𝑔 = 𝐻∗𝐺(𝑝, 𝑞) (𝐵37) 

Transformation from (B27) to (B37) follows by defining 
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𝐵 
𝑝 = 𝑅0 − 𝑆02𝐴 

(𝐵38) 

Further, 

√4𝐴𝐶 − 𝐵2 

𝑞 = 𝑅02𝐴 

𝐵
(𝐷 − 𝐸) 2𝐵𝐷 − 4𝐴𝐸 2𝐴 𝐷∗ = = 
4𝐴𝐶 − 𝐵2 4𝐴𝐶 − 𝐵2 

(𝐵39) 

(𝐵40) 

4𝐴 

𝐸∗ = 

√4𝐴𝐶 − 𝐵2 
(𝐷 )2𝐴 

4𝐴𝐶 − 𝐵2 = 
2𝐷 

√4𝐴𝐶 − 𝐵2 
(𝐵41) 

4𝐴 

𝐹∗ = 
4𝐴𝐹 

4𝐴𝐶 − 𝐵2 (𝐵42) 

𝐻∗ = 
4𝐴 

4𝐴𝐶 − 𝐵2 (𝐵43) 

4. Solving the canonical form PDE 

First consider 𝑆0 < 0. The homogeneous version of PDE (B37) is 

𝑔𝑝𝑝+𝑔𝑞𝑞 + 𝐷∗𝑔𝑝 + 𝐸∗𝑔𝑞 + 𝐹∗𝑔 = 0 (𝐵44) 

Substituting 𝑔(𝑝, 𝑞) = 𝑒𝑘(𝑝+𝑞) into (B44), where 𝑘 is a real-valued constant, gives 

2𝑘2 + (𝐷∗ + 𝐸∗)𝑘 + 𝐹∗ = 0 (𝐵45) 
from which 

−(𝐷∗+𝐸∗)−√(𝐷∗+𝐸∗)2−8𝐹∗ ′ −(𝐷∗+𝐸∗)+√(𝐷∗+𝐸∗)2−8𝐹∗ 
𝑘1 = (< 0), 𝑘1 = (> 0) 

4 4 

For constants 𝐿 and 𝑀, the complementary function is 

′ (𝑝+𝑞)𝑔𝐶(𝑝, 𝑞) = 𝐿𝑒𝑘1(𝑝+𝑞) + 𝑀𝑒𝑘1 (𝐵46) 

The particular integral of (B37) is 

𝜎𝑅
𝑔𝑃𝐼(𝑝, 𝑞) = 𝑞 

𝛼𝜎𝑟 
(𝐵47) 

Therefore, the general solution to (B37) is 

𝜎𝑅′ (𝑝+𝑞)𝑔(𝑝, 𝑞) = 𝐿𝑒𝑘1(𝑝+𝑞) + 𝑀𝑒𝑘1 + 𝑞 
𝛼𝜎𝑟 

(𝐵48) 

i.e. 
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𝜎𝑟 𝜎𝑟𝑘1((𝜃+ )𝑅0−𝑆0) 𝑘1
′((𝜃+ )𝑅0−𝑆0) 𝜎𝑅𝜎𝑅 𝜎𝑅𝑔(𝑅0, 𝑆0) = 𝐿𝑒 + 𝑀𝑒 + 𝑞, 𝑆0 < 0 (𝐵49) 

𝛼𝜎𝑟 

′ 
But for bounded solutions to 𝑔(𝑅0, 𝑆0) in (B49), given 𝑘1 < 0 and 𝑘1 > 0, we require 𝑀 = 0. 

Hence, 

𝜎𝑟𝑘1((𝜃+ )𝑅0−𝑆0) 𝑅0𝜎𝑅𝑔(𝑅0, 𝑆0) = 𝐿𝑒 + , 𝑆0 < 0 (𝐵50) 
𝛼 

Similarly, 

𝜎𝑟𝑘2((𝜃+ )𝑅0−𝑆0) 𝑅0𝜎𝑅𝑔(𝑅0, 𝑆0) = 𝑁𝑒 + , 𝑆0 ≥ 0 (𝐵51) 
𝛼 + 𝛽 

16𝛼 16(𝛼+𝛽)
−(𝐷∗+𝐸∗)−√(𝐷∗+𝐸∗)2+ −(𝐷∗+𝐸∗)+√(𝐷∗+𝐸∗)2+ 

𝜎𝑟
2(1−𝜌2) 𝜎𝑟

2(1−𝜌2)
where 𝑘1 = (< 0), 𝑘2 = (> 0). 

4 4 

We now derive values for 𝐿 and 𝑁. For continuity of 𝑔(𝑅0, 𝑆0) at 𝑆0 = 0, we require 

𝜎𝑟 𝜎𝑟𝑘1(𝜃+ )𝑅0 𝑅0 𝑘2(𝜃+ )𝑅0 𝑅0
𝐿𝑒 𝜎𝑅 + = 𝑁𝑒 𝜎𝑅 + (𝐵52) 

𝛼 𝛼 + 𝛽 

𝜕𝑔(𝑅0,𝑆0)
Additionally, for continuity of at 𝑆0 = 0, we require 

𝜕𝑆0 

𝜎𝑟 𝜎𝑟𝑘1(𝜃+ )𝑅0 𝑘2(𝜃+ )𝑅0−𝐿𝑘1𝑒 𝜎𝑅 = −𝑁𝑘2𝑒 𝜎𝑅 (𝐵53) 

After algebraic manipulation, 𝑔(𝑅0, 𝑆0) is given by 

1 𝛽 𝑘1
(1 − 𝑒−𝑘2𝑆0) , 𝑆0 ≥ 0 (𝐵54) 

𝛼 + 𝛽 𝛼 𝑘2 − 𝑘1 

1 𝛽 𝑘2
(1 − 𝑒−𝑘1𝑆0) , 𝑆0 < 0 (𝐵55) 

𝛼 𝛼 + 𝛽 𝑘2 − 𝑘1 

where 

16𝛼 16(𝛼+𝛽)
−Γ−√Γ2+ −Γ+√Γ2+ 

𝜎𝑟
2(1−𝜌2) 𝜎𝑟

2(1−𝜌2)
𝑘1 = (< 0), 𝑘2 = (> 0) (𝐵56) 

4 4 

2 
Γ = (𝜇𝑅 + (𝜇𝑟𝜎𝑅 − 𝜌𝜇𝑅𝜎𝑟)𝜎𝑟√1 − 𝜌2) (𝐵57) 

𝜎𝑅𝜎𝑟√1 − 𝜌2 

𝛼 = 𝜔 + 𝛾 (𝐵58) 
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𝛽 = −(𝜂 + 𝛾) (𝐵59) 

Substituting (B58) and (B59) into (B54) and (B55), the result follows. 
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Appendix C: Sample country distribution 

Country Number of Banks 

Bahrain 3 

Bangladesh 8 

Egypt 3 

Indonesia 6 

Iraq 1 

Jordan 3 

Kuwait 4 

Oman 2 

Pakistan 7 

Palestine 2 

Qatar 3 

Saudi Arabia 5 

UAE 5 

Total 52 
Source: Fitch and Eikon databases. 
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Appendix D: Lifetime value of subsidies policy 

We wish to evaluate 

∞ 

𝐸𝑅0,𝑆0
[∫ 𝑒−𝜔𝑡((𝑉𝑡 − 𝑉0)(1 − 𝜃)𝑅𝑡 + 𝑉𝑡𝑚𝑖𝑛(𝑆𝑡, 0))𝑑𝑡 ] (D1) 

0 

This can be re-stated 

𝐼1 − 𝐼2 + 𝐼3 (D2) 

where 

∞ 

𝐼1 = (1 − 𝜃)𝐸𝑅0,𝑆0 
[∫ 𝑒−𝜔𝑡𝑉𝑡𝑅𝑡𝑑𝑡] (D3) 

0 

∞ 

𝐼2 = (1 − 𝜃)𝑉0𝐸𝑅0 
[∫ 𝑒−𝜔𝑡𝑅𝑡𝑑𝑡] (D4) 

0 

∞ 

𝐼3 = 𝐸𝑆0 
[∫ 𝑒−𝜔𝑡𝑉𝑡𝑚𝑖𝑛(𝑆𝑡, 0)𝑑𝑡] (D5) 

0 

1) Value of 𝑰𝟏 

𝐼1 is the value of PSIAs which can only grow and not decay, i.e. for which 𝛾 = 0. From (8) 

and (9), 

(1 − 𝜃)𝑉0𝑅0 𝜂 𝑘3
I1 = (1 + 𝑒−𝑘2𝑆0) , 𝑆0 ≥ 0 (D6) 

𝜔 − 𝜂 𝜔 𝑘2 − 𝑘3 

(1 − 𝜃)𝑉0𝑅0 𝜂 𝑘2
I1 = (1 + 𝑒−𝑘3𝑆0) , 𝑆0 < 0 (D7) 

𝜔 𝜔 − 𝜂 𝑘2 − 𝑘3 

16(𝜔−𝜂) 16𝜔 
−Γ+√Γ2+ −Γ−√Γ2+ 

𝜎𝑟
2(1−𝜌2) 𝜎𝑟

2(1−𝜌2) 2 
where 𝑘2 = (> 0), 𝑘3 = (< 0), Γ = (𝜇𝑅 + 

4 4 𝜎𝑅𝜎𝑟√1−𝜌2 

(𝜇𝑟𝜎𝑅 − 𝜌𝜇𝑅𝜎𝑟)𝜎𝑟√1 − 𝜌2), and 𝑅0 > 0 (by assumption). 

2) Value of 𝑰𝟐 
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The value of 𝐼2 also follows from the value of PSIAs ((8) and (9)). We set both the growth and 

decay rates equal to zero for constant volume, so that 

(1 − 𝜃)𝑉0𝑅0
I2 = (D8) 

𝜔 

3) Value of 𝑰𝟑 

∞ 

𝐼3 = 𝐸𝑆0
[∫ 𝑒−𝜔𝑡𝑉𝑡𝑚𝑖𝑛(𝑆𝑡, 0)𝑑𝑡] (D9) 

0 

𝑑𝑉𝑡Using = 𝜂1{𝑆𝑡≥0}𝑑𝑡, this reduces to 
𝑉𝑡 

∞ 

𝐼3 = 𝑉0𝐸𝑆0
[∫ 𝑒−𝜔𝑡𝑚𝑖𝑛(𝑆𝑡, 0)𝑒∫0

𝑡
𝜂1{𝑆𝑠≥0}𝑑𝑠𝑑𝑡] (D10) 

0 

This expectation is conditioned directly on 𝑆0 but not on 𝑅0, and is solved using the 1-

dimensional version of the Feynman-Kac Theorem. Define 

𝑡 
𝑊(𝑆𝑠)𝑑𝑠𝑧(𝑡, 𝑆0) = 𝐸𝑆0

[𝑓(𝑆𝑡)𝑒− ∫0 ] (D11) 

where 𝑓(𝑆𝑡) = 𝑚𝑖𝑛(𝑆𝑡, 0), and 𝑊(𝑆𝑡) = −𝜂1{𝑆𝑠≥0} 

Then 𝑧(𝑡, 𝑆0) satisfies 

𝜕𝑧 1 
2

𝜕2 𝜕 
= ( 𝜎𝑆 + 𝜇𝑆 ) 𝑧 + 𝜂1{𝑆0≥0}𝑧 (D12) 2𝜕𝑡 2 𝜕𝑆0 𝜕𝑆0 

Next, define the Laplace transform of 𝑧(𝑡, 𝑆0) s.t. 

∞ ∞ 𝑡 
𝜂1{𝑆𝑠≥0}𝑑𝑠𝑔(𝑆0) ≡ ∫ 𝑒−𝜔𝑡𝑧(𝑡, 𝑆0)𝑑𝑡 = 𝐸𝑆0

[∫ 𝑒−𝜔𝑡𝑚𝑖𝑛(𝑆𝑡, 0)𝑒∫0 𝑑𝑡 ] (D13) 
0 0 

Taking the Laplace transform of the P.D.E., the left-hand side equals 

∞ 𝜕𝑧 
𝑒−𝜔𝑡 ∫ 𝑑𝑡 = −𝑧(0, 𝑆0) + 𝜔𝑔(𝑆0) = −𝑚𝑖𝑛(𝑆0, 0) + 𝜔𝑔(𝑆0) (D14) 

𝜕𝑡0 

Therefore, 

1 
2 𝜕2𝑔 𝜕𝑔 

−𝑚𝑖𝑛(𝑆0, 0) + 𝜔𝑔 = + 𝜇𝑆 + 𝜂1{𝑆0≥0}𝑔 (D15) 𝜎𝑆 22 𝜕𝑆0 𝜕𝑆0 
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i.e. 

1 
2 𝜕2𝑔 𝜕𝑔 

𝜎𝑆 + 𝜇𝑆 − (𝜔 − 𝜂)𝑔 = 0, 𝑆0 ≥ 0 (D16) 22 𝜕𝑆0 𝜕𝑆0 

1 
2 𝜕2𝑔 𝜕𝑔 

𝜎𝑆 2 + 𝜇𝑆 − 𝜔𝑔 = −𝑆0, 𝑆0 < 0 (D17) 
2 𝜕𝑆0 𝜕𝑆0 

1 
For 𝑆0 ≥ 0, substitute 𝑔 = 𝐶𝑒𝑘4𝑆0 where 𝑘4 < 0 for bounded solutions and solves 𝜎𝑆

2𝑘2 + 
2 

−𝜇𝑆−√𝜇𝑆
2+2𝜎𝑆

2(𝜔−𝜂)
𝜇𝑆𝑘 − (𝜔 − 𝜂) = 0, so that 𝑘4 = (< 0) (assuming 𝜔 > 𝜂).

𝜎𝑆
2 

For 𝑆0 < 0, substitute 𝑔𝑐 = 𝐷𝑒𝑘5𝑆0 where 𝑘5 > 0 for bounded solutions and solves 
1 −𝜇𝑆+√𝜇𝑆

2+2𝜎𝑆
2𝜔

𝜎𝑆
2𝑘2 + 𝜇𝑆𝑘 − 𝜔 = 0 (for the homogenous equation), so that 𝑘5 = 2 (> 0). 

2 𝜎𝑆 
𝑆0The particular integral is 𝑔𝑃𝐼 = , and the general solution for 𝑆0 < 0 is therefore 𝑔 = 𝑔𝑐 + 
𝜔 

𝑔𝑃𝐼 = 𝐷𝑒𝑘5𝑆0 + 
𝑆0 . 
𝜔 

𝜕𝑔 
The constants 𝐶 and 𝐷 are solved using continuity in 𝑔 and at 𝑆0 = 0. This requires 

𝜕𝑆0 

𝐶 = 𝐷 (D18) 

and 
1 

𝐶𝑘4 = 𝐷𝑘5 + (D19) 
𝜔 

Therefore, 
1 

𝐶 = 𝐷 = (D20) 
𝜔(𝑘4 − 𝑘5) 

Hence, 
𝑉0

𝐼3 = 𝑒𝑘4𝑆0, 𝑆0 ≥ 0 (D21) 
𝜔(𝑘4 − 𝑘5) 

and 

1 𝑆0
𝑒𝑘5𝑆0 +𝐼3 = 𝑉0 ( ) , 𝑆0 < 0 (D22) 

𝜔(𝑘4 − 𝑘5) 𝜔 

The lifetime value of the subsidies policy, given by 𝐼1 − 𝐼2 + 𝐼3, is therefore 

(1 − 𝜃)𝑉0𝑅0 𝜂 𝑘3 (1 − 𝜃)𝑉0𝑅0 𝑉0
(1 + 𝑒−𝑘2𝑆0) − + 𝑒𝑘4𝑆0, 𝑆0 ≥ 0 (D23) 

𝜔 − 𝜂 𝜔 𝑘2 − 𝑘3 𝜔 𝜔(𝑘4 − 𝑘5) 

(1 − 𝜃)𝑉0𝑅0 𝜂 𝑘2 𝑉0
( 𝑒−𝑘3𝑆0) + 𝑒𝑘4𝑆0, 𝑆0 < 0 (D24) 

𝜔 𝜔 − 𝜂 𝑘2 − 𝑘3 𝜔(𝑘4 − 𝑘5) 
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16(𝜔−𝜂) 16𝜔 
−Γ+√Γ2+ −Γ−√Γ2+ 

𝜎𝑟
2(1−𝜌2) 𝜎𝑟

2(1−𝜌2)
where 𝑘2 = (> 0), 𝑘3 = (< 0), 𝑘4 = 

4 4 

−𝜇𝑆−√𝜇𝑆
2+2𝜎𝑆

2(𝜔−𝜂) −𝜇𝑆+√𝜇𝑆
2+2𝜎𝑆

2𝜔 2 
2 (< 0), 𝑘5 = 2 (> 0), Γ = (𝜇𝑅 + 

𝜎𝑆 𝜎𝑆 𝜎𝑅𝜎𝑟√1−𝜌2 

(𝜇𝑟𝜎𝑅 − 𝜌𝜇𝑅𝜎𝑟)𝜎𝑟√1 − 𝜌2), and 𝑅0 > 0 (by assumption). 

Note that for 𝑆0 = 0 and zero drift, the inequality, 𝐼1 − 𝐼2 + 𝐼3 > 0 becomes 

(1 − 𝜃)𝑅0 (1 − 𝜃)𝑅0 𝜎𝑆
− − > 0 (D25) 

√𝜔 − 𝜂√𝜔 𝜔 √2𝜔(√𝜔 + √𝜔 − 𝜂) 

√𝜔 − √𝜔 − 𝜂 𝜎𝑆(√𝜔 − √𝜔 − 𝜂)
(1 − 𝜃)𝑅0 ( ) − > 0 (D26) 

√𝜔 − 𝜂 √2𝜂 

As √𝜔 − √𝜔 − 𝜂 > 0, the inequality reduces to 

(1 − 𝜃)𝑅0 𝜎𝑆
− > 0 (D27) 

√𝜔 − 𝜂 √2𝜂 

𝜕 (1−𝜃)𝑅0 𝜎𝑆Further, since ( − ) > 0, we can define a critical value of account growth, 𝜂𝑐, for 
𝜕𝜂 √𝜔−𝜂 √2𝜂

which 𝜂 > 𝜂𝑐 creates shareholder value, and 𝜂 < 𝜂𝑐 destroys shareholder value. 

(1 − 𝜃)𝑅0 

√𝜔 − 𝜂𝑐 

− 
𝜎𝑆 

√2𝜂𝑐 

= 0 (D28) 

then 

22(1 − 𝜃)2𝑅0 𝜂𝑐
2 + 𝜎𝑆

2𝜂𝑐 − 𝜔𝜎𝑆
2 = 0 (D29) 

2−𝜎𝑆
2 + 𝜎𝑆√𝜎𝑆

2 + 8(1 − 𝜃)2𝑅0 𝜔 
𝜂𝑐 = 2 (D30) 

4(1 − 𝜃)2𝑅0 
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