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Abstract

High-resolution direct numerical simulations (DNS) have been performed to study the tur-
bulent shear flow of an electrically conducting fluid in a cylindrical container. The flow is
driven by an annular azimuthal Lorentz force induced by the interaction between the radial
electric currents (I) injected through a large number of small electrodes placed in the bottom
wall and the magnetic field (B) imposed in the axial direction. All the numerical parameters,
including the geometry of the container, the value of the external electric currents and the
strength of the magnetic fields, are set to be in line with the experiment performed by
[sadek & Moreau| (2002) (J. Fluid Mech. 456, 137-159). Firstly, maintaining the Hartmann
layers in the laminar regime, three dimensional simulations are carried out to reproduce some
of the experimental observations, such as the global angular momentum and the velocity pro-
files. In this regime, the variation laws of the wall shear stresses, the energy spectra and the
visualizations of the flow structures near the side wall indicate the presence of separation or
turbulence within the side wall layers, even though the current injection electrodes are far
from the side wall. Furthermore, a parametric analysis of the flow also reveals that the Ek-
man recirculations have significant influence on the vortex size, the free shear layer, and the
global dissipation. Second, we recover the scaling laws of the cutoff scale that separate the
large quasi-two-dimensional scales from the small three-dimensional ones (Sommeria & Moreau|
J. Fluid Mech. 118, 507-518), and thus establish their validity in sheared MHD tur-
bulence. Furthermore, we find that three-componentality are and the three-dimensionality
appear concurrently and that both the two-dimensional cutoff frequency and the mean energy
associated to the axial component of velocity scale with Ny, respectively as 0.063N37 and
0.126 N, %92

1 Introduction

In this paper, we apply the three-dimensional (3D) direct numerical simulations (DNS) to study
the flow of an electrically conducting incompressible fluid in a cylindrical container, popularly
known as MATUR (MAgnetohydrodynamics TURbulence), designed to investigate the quasi-two-
dimensional (Q2D) turbulence (Alboussiere et al.[1999) in the presence of external magnetic fields
(MHD). MATUR is shown in Fig. [1} where the magnetic field is applied along the axial direction.
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For such a laboratory scale configuration, the magnetic Reynolds number is much smaller than
unity (here, R, = pmoUoL = 0.007, where u,, denotes the magnetic permeability of vacuum, o
is the electrical conductivity, Uy = 0.1 m/s and L = 0.01 m are the typical characteristic velocity
and the characteristic length scale, respectively), then the induced magnetic field b is much smaller
than the imposed one B (b ~ R, B < B), and the Lorentz force acting on the flow is obtained
as Frorent. = J X B, where j denotes the electric current density (Roberts, |1967)). If the magnetic
field is strong enough, velocity variations along the field lines are damped by the Lorentz force and
the flow tends to be Q2D.

This tendency was observed in several experiments. [Kolesnikov & Tsinober| (1974) and David-
son| (1997 stated that this evolution towards a quasi-two-dimensional regime was a consequence
of the invariance of the angular momentum component parallel to the magnetic field, when its
perpendicular components decay exponentially (~ eo Bt/ ). [Eckert et al| (2001) conducted an
experiment on MHD turbulence in a sodium channel flow exposed to a transverse magnetic field,
and the measured turbulence intensity and energy spectra were found to exhibit a spectral slope
varying with the magnetic interaction parameter (N = o B2L/pUy) from a kE~5/3 law for N < 1
and to a the exponent a minimum of —4 for N ~ 120. For the MHD turbulent shear flows, |[Kljukin
& Kolesnikov| (1989) performed the very first experiments, in which the mean velocity distribution
and correlations of velocity fluctuations were provided, but data concerning the energy spectra and
the development of coherent structures fed by the energy transfer towards the large scales was not
available.

In order to better understand the elementary properties of the Q2D turbulent shear flows and
check the validation of theoretical work (Sommeria & Moreau| (1982))), |Alboussiere et al.| (1999)
and |Pothérat et al|(2000) carried out experimental and theoretical studies on the Q2D turbulent
shear flows, where the transport of a scalar quantity and the free surface effect were considered,
using the MATUR equipment. [Messadek & Moreau| (2002) further provided experiment data on
the MHD turbulent shear flows in a wide range of Ha and Re, and highlighted the important
role of the Hartmann layers where the Joule effect and viscosity dissipate most of the kinetic
energy. Recently, [Stelzer et al.|(2015b) built a new experimental device called ZUCCHINI (ZUrich
Cylindrical CHannel INstability Investigation), which, as MATUR, featured a free shear layer at
the edge of inner disk electrode. Combining it with finite element simulations (based on a 2D
axisymmetric model), they studied the instabilities of the free shear layer and identified several
flow regimes characterized by the nature of the instabilities of the Kelvin-Helmholtz type (Stelzer
et al), 2015a). Based on the FLOWCUBE platform, a more homogeneous type of turbulence
between Hartmann walls was produced from the destabilisation of vortex arrays (Klein & Pothérat,
(2010); [Pothérat & Klein| (2014)); [Baker et al.| (2018])). These authors focused on the transition

between 3D and Q2D turbulence. In particular, the cut-off length scale lAi (~ Ntl/ 3, where

N, =

oB%a (a)2 1)

on Z

is the true interaction parameter) first theorised by [Sommeria & Moreau| (1982)), that separate 3D
from Q2D fluctuations were obtained experimentally, as well as the evidences of inverse and direct
energy cascades in 3D magnetohydrodynamic turbulence.

However, a major disadvantage of experimental approaches is that the liquid metal used for
their high electrical conductivity is non-transparent. Although the velocity fields can be measured
by ultrasonic Doppler velocimetry or potential probe techniques, more complete information, e.g
the distribution of the flow fields and the electromagnetic quantities, are rather difficult to ob-
tain. Therefore, numerical simulations, which can complement the experimental measurements,
have been developed recently to study MHD turbulence. Taking advantage of the Q2D property
of the MHD flows in case of high N and Ha, several simplified effective 2D models have been
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developed by averaging the full Navier-Stokes equations along the direction of the magnetic fields.
The advantages of using these 2D models are evident, not only to save the costs compared to a
full 3D numerical approach, but also to provide accurate results where 3D numerical solutions
cannot fully resolve the boundary layer in case of high Ha. |Sommeria & Moreaul (1982)) derived
a two-dimensional model (denoted as SM82 hereafter) based on the simple exponential profile of
Hartmann layers. It gave good results in the flow regime where inertia is small but failed to de-
scribe flows where strong rotation induces secondary flows, such as Ekman pumping. The 2D model
developed by [Pothérat et al.| (2000) (denoted as PSM hereafter), accounting for some 3D effects,
gave more accurate prediction in the Q2D flows. With PSM, both of the velocity profiles and the
global angular momentum measurements from MATUR (Pothérat et al.l 2005)) were reproduced,
and it was proved that the local and global Ekman recirculations altered the shape of the flow
significantly as well as the global dissipation. However, both the SM82 model and the PSM model
break down if the Hartmann layer becomes turbulent, where the flow may still remain quasi-two-
dimensional but the boundary layer friction is altered. |Pothérat & Schweitzer| (2011]) established an
alternative shallow water model specifically for this case, and recovered experimentally measured
velocity profiles and global momentum in this regime.

In mainly azimuthal flows such as in a toroidal containers, the dynamics of the side wall layer and
the free shear layer near the injected electrodes on the flow is complex because of rotation effects.
Even when the Hartmann layers are stable, significant flow alterations may occur, including non-
trivial 3D effects (Tabeling & Chabreriel [1981)), which could not be observed easily in experiments
or with any Q2D model. It has been proven that turbulence may remain localized in a layer near
the outer cylinder wall prior to transition happening in Hartmann layers as indicated by [Zhao
& Zikanov| (2012), who conducted a series of 3D DNS of MHD turbulence flows in a toroidal
duct. In addition, for cases with lower values of Hartmann number and higher values of Reynolds
number, three-dimensionality would be more pronounced, even within the Hartmann — Bodewadt
layers, which have been studied theoretically by |[Davidson & Pothérat| (2002) and Moresco &
Alboussiere| (2003). All of these discoveries encourage us to perform 3D DNS on the flows in
MATUR configuration (corresponding to the realistic experiment of Messadek & Moreau| (2002)).
Besides reproducing the results obtained in the experiments, theories and Q2D simulations, we
focus on answering the following questions in the present work.

1. Does the separation or turbulence emerge within the side wall layer when the electrodes are
far away from the side wall and while the Hartmann layer remains laminar?

2. What causes the angular momentum dissipation in regimes where the Hartmann layer is
laminar?

3. How much and what type of three-dimensionality subsists in sheared MHD turbulence at
high Ha? In particular,

(a) How much energy subsists in the secondary flow?

(b) Is there a cutoff lengthscale between quasi-2D and 3D lengthscales in sheared turbulence
too?

However, two factors restrict the investigated range of Reynolds number and Hartmann number
in the present DNS studies. One is the computing resource, because very fine grids are required
to capture the small-scale turbulent structure and to resolve the thin Hartmann boundary layers.
Another is the lack of robust computational schemes capable of dealing with nonlinear unsteady
high-Ha flows. In particular, when non-orthogonal grids are used, extra non-orthogonal correction
schemes are required. By applying Large eddy simulations (Kobayashi), [2006, |2008|), Re could be
somewhat increased, but the resolution requirements for the Hartmann layers remained essentially
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the same as those in DNS, since no reliably accurate wall function models were known for the
case of turbulent flows. Here, the problem of inadequate computational resources is overcome by
employing massively parallel computing. As for the numerical method, we apply the finite volume
method based on the consistent and conservative scheme developed by [Ni et al.| (2007, which can
be used to accurately simulate MHD flows at a high Hartmann number. Therefore, the Hartmann
number is allowed to vary from 55 to 792 (magnetic fields change from 0.2083 T to 3 T) while
the Reynolds number also varies from 4792 to 31944 (total current density change from 3 A to 20
A). In such parameter spaces, turbulence is well established while the Hartmann layers remain
laminar. Simulations are performed on the full three-dimensional domain and, for comparison with
previous work, with the PSM model in the 2D-average plane.

The layout of the paper is as follows: In §[2] a short description of the physical model underlying
this work and the flow conditions in the MATUR cell are given. Particular attention is given to
the modifications dealing with the electrical conductive wall and the injected current density. The
numerical algorithm and the detailed computational grid study are also presented in this part. The
main properties of the MHD turbulence are described and discussed in § [3] including the general
aspect of the flow, the secondary flows, the properties of the free shear layer and side wall layer,
the global angular momentum as well as three dimensionality. Finally, we offer concluding remarks

in §[

2 Problem statement and formulation

2.1 Flow configuration and mathematical formulation

The physical model of MATUR is shown in Fig It is a cylindrical container (radius 79 = 0.11
m, depth a = 0.01 m, with ~ distinguishing the dimensional quantity from their dimensionless
counterpart), in which the bottom and the upper walls are electrically insulating while the vertical
walls are conducting. Electric currents are injected at the bottom of the container through a
large number of point-electrodes spread along a concentric ring parallel with the vertical wall. As
indicated by Messadek & Moreau| (2002), a continuous electrode ring would induce a strong local
damping in the flows, and thus, a series of discrete point-electrodes are positioned to reduce this
unwanted effect. The concentric circles are located at 7. = 0.054 m or 7. = 0.093 m, respectively.
In the present study, only 7. = 0.054 m is considered. The container is filled with mercury, and
exposed to a constant homogeneous vertical magnetic field parallel to the axis of MATUR. The
injected currents leave the fluid through the vertical wall, to induce radial electric current that give
rise to an azimuthal force on the fluid in the annulus between the electrode circle and the outer
wall. The material properties of the fluid at room temperature, such as the mass density p, the
kinematic viscosity v and the electrical conductivity o, are assumed constant (p = 1.3529 x 10%
kg/m3, v = 1.1257 x 1077 m?/s and ¢ = 1.055 x 105 S/m). An external homogeneous magnetic
field of amplitude B is applied along the axial direction. At a low magnetic Reynolds number, the
full system of the induction equation and the Navier-Stokes equations for an incompressible fluid
can be approximated to the first order O(Rm). Thus, the non-dimensional magnetohydrodynamic
equations governing the flow can be written as (Roberts, [1967])

V"U:O, (2)

ov 1 :
S+ (0 V)o = —Vp+ —Av+ N(j x e.), (3)
j = _VSDJV_/U X ez, (4)

V.j=0. (5)
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//Ziquid metal

Current injection electrodes

Figure 1: Sketch of the experimental set up. A typical electric circuit including one of the point-
electrodes mounted flush at the bottom Hartmann layer is represented.

where the variables j, ¢, v, p denote the current density, the electric potential, the velocity and
the pressure, respectively. Here, lengths are scaled by a, the velocity by a scale Uy to be specified
shortly, and the current by o BUy. The typical scales for the other variables are as follows: pUg
for the pressure, UyBa for the electrical potential, a/Uy for time. The Hartmann number Ha and
the interaction parameter N are defined as

o oB?%a

Ha=Ba,/—, N= , 6
pv pUo (6)

and the Reynolds number is given as Re = Ha?/N. In the present work, all these non-dimensional
numbers are based on the thickness of the container a. For this experiment, an approximate
azimuthal velocity can be derived from the theory in|Sommeria & Moreau| (1982)). Indeed,
derived an approximate expression for the z-averaged azimuthal velocity in the inviscid
laminar, axisymmetric Q2D regime, using a Dirac delta function centred at the electrodes r = r,
to describe the injected current jy,, where the integral is equal to the total injected current I:
Jw =1/2mr.o(r —re).

I
U98M82(r) = Seryep Te <1 <Tp, (7)
USM82(p)y =0, r<re.
and U§M82 = (0. Based on this, we choose the velocity scale as Uy = W. Finally, velocity

fluctuations are defined as v/ = v — (v).

The boundary conditions for v and ¢ are as follows. For the velocity, we apply standard no-slip
conditions at all walls. As for the electric potential, we impose perfectly conducting side walls and
perfectly insulating Hartmann walls except for the locations where the electrodes are located, i.e.:
at the top wall,

v=0, J,0=0 at z=1 (top wall), (8)
at the surface of point electrodes located at the bottom wall:
I
v=0, 0, at z=0 9)

Y= A _o2BU,
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at bottom wall, outside point electrode surfaces:
v=0, J,p=0 at z=0 (10)

at the lateral wall (BC1),
v=0, ¢=0 at r=rg (11)

Here, 128 points-electrodes (0.001 m diameter and 0.00165 m apart) are uniformly distributed
along a circle located at r, at the bottom wall. The surface of each point-electrode contains 102
cells with those on the periphery cut by the electrode edge. The area A,., which appears in the
boundary condition of @D, is the total area of the small electrodes. Note that we do not need an
extra forcing term in to drive the flow because the injected current from the bottom electrodes
interacts with the magnetic field, and generates Lorentz force that drives the flow. The current
circulate inside the mercury, as shown in figure [I} and leaves the domain at the vertical wall.
Moreover, because of the perfectly conducting properties of the wall, the electrical potential across
the wall can be regarded as a constant, and set to zero in .

2.2 Numerical algorithm and validation

The direct numerical simulations of the governing equations are performed based on the finite
volume approach. For the pressure—velocity coupling, a second-order temporal accurate pressure-
correction algorithm has been used. Based on a consistent and conservative scheme (Ni et al.,2007)),
the electrical potential Poisson equation is then solved to obtain ¢. The detailed process within
each time step could be split into: a) obtain a predicted velocity by solving the momentum equation
with pressure from the previous iteration; b) calculate the predicted velocity fluxes which are used
as the source term of the pressure difference Poisson equation, which will be solved to obtain the
pressure difference; then apply the updated pressure difference to update the velocity and pressure;
¢) solve the Poisson equation for the electric potential to get the electrical potential, which is used
to calculate the current density fluxes on cell faces with the consistent and conservative scheme.
Then the current density at each cell centre is reconstructed through a conservative interpolation
j = V- (jr) with r the position vector; d) calculate the Lorentz force Frorent> = J X €, at the cell
centre based on the reconstructed current density, which is used as the source term of momentum
equation of next time step. Step (b) is iterated 3 times before solving the electrical potential
Poisson equation.

The central scheme is applied for all convective-term approximations. All inviscid terms and the
pressure gradient are approximated with a second-order accuracy. A second order implicit Euler
method is used for time integration. In order to guarantee a robust solution for unsteady flows and
make the temporal cutoff frequency match the spatial cutoff frequency, the present simulations are
run with a constant time step which satisfies the Courant-Friedrichs-Lewy condition.

A Preconditioned Bi-Conjugate Gradient solver (PBiCG) applicable to asymmetric matrices
has been used for the solution of the velocity-pressure coupling equation, together with a Diagonal-
Incomplete LU (DILU) decomposition for preconditioning. The pre-conditioned conjugate gradient
(PCG) iterative solver with a diagonal incomplete Cholesky (DIC) pre-conditioner, which deals
with symmetric matrices, has been applied for the solution of pressure and electric potential equa-
tions. Note that for all the iterative solutions, velocity, pressure and electric potential, a constant
convergence criterion of 107 is used.

In order to verify the accuracy of our numerical code, the classic Hunt’s flow has been simulated
for comparison with the analytical solution (Hunt 1965). Herein, the parameters are set to Re =
100, Ha = 5000, and the conductance ratio of C,, = oty /orLs is set to 0.01. As illustrated
in figure 2] the velocity matches well with Hunt’s analytical result, especially within the thin
boundary layer from z = 0.8 to z = 1. Moreover, the calculated pressure gradient matches well
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[ —— Analytical solution
i . Numerical solution

(a)

Figure 2: The typical ?M-shape” velocity profile of Hunt’s case (a) and the comparison of the
numerical result with Hunt’s analytical solution (b) for Ha = 5000.
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Figure 3: The radial distribution of the mean azimuthal velocity (a) and the rms of velocity

fluctuations (b) for BC1 and BC2 at Ha = 66 and Re = 15972.
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with the analytical pressure gradient, with a relative discrepancy lower than 0.08% based on an
error estimation of |(VP)AEL§;_)EKW'[)N“W |

In addition, it should be noted that the boundary condition of a perfectly conducting side
wall which we used in all simulations (7 denoted as BC1) is not entirely consistent with the
real experiment where the total current was imposed through the lateral wall. The experimental

conditions would be represented by replacing by the electric boundary condition

1

v =0, 8r<p:—m at r =rg, (12)
denoted as BC2, and where Ag;qe is the surface area of the side wall. For this reason, we conducted
two further validation steps for Ha = 66 and Re = 15972. Firstly, we compared the total current
through the side wall with the total injected current I based on BC1. The relative error of 0.3%
implies that the applied boundary condition is reasonable. We also compared a simulation with
BC1 to one where an homogeneous current is imposed across the outer side wall (figure 3). The
maximum relative errors on the mean azimuthal velocity and the rms of the fluctuations along
radial direction between the two boundary conditions are less than 0.8% and 3%, respectively.
This indicates that the choice of either BC1 or BC2 does not have any significant impact on the
resulting flow field and that both are compatible with good conservation of charge.

As a further validation, the numerical solutions of the average azimuthal velocity (Up)y and
the time and space average of the angular momentum, L., are also compared with the results
produced by the Q2D model, as shown in Table Here, U;, (1 = 0,1, z) represents individual
velocity components averaged over time in a quasi-steady state, (-);, (i = 0,r,z) represents the
average along the specific direction (Hartmann layers are excluded), and

I 1
Lam)e =7 [ Liamdvat, (Luamby = 7 [ roatris, (13)
0 Q

where Vg = 2772 is the non-dimensional volume of the computational domain, (-)y is the volume
average and v; is the instantaneous velocity. According to the theory of [Sommeria & Moreau
(1982), an approximate global angular momentum can be derived (Pothérat et al., 2000), under
the assumption of axisymmetry, i.e.

<

— I 2
L =  (1--£
SME2 7 UnUsar/pro ( re

Across the range of considered parameters, the maximum relative errors of (vg)e ./USM82(r)
and (Ligm)t/Lsmse are less than 2.1%, indicating that the DNS results are reliable. Moreover, we
also conducted an extensive grid sensitivity study, the results of which are presented in the next
section.

)- (14)

2.3 Grid details

Due to the localisation of the Lorentz force within r € [5.4,11], the fluid rotates around the axis
of the container, and a free shear layer forms at » = 5.4. In order to capture more precise flow
information, highly refined grid resolution are required in both of the free shear layer and the
outer wall side layer. Note that the unstructured computational grids are made of hexahedra and
prisms in the present study, and the grid details in case of Ha = 792 and Re = 15972 are used
for illustration. In the radial direction, N, = 864 grid points are generated, 30 (resp. 25) of which
are devoted to the side wall (resp. free shear) layer located at r = 11 (r = 5.4). These points
are distributed within the layer according to a geometric ratio of v, = 1.1 starting at r = 11
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N, Ny, Ng, 750  7Ha  (vg)g  JUM(r 2)  (Lijam)e/Lsmse

Gl 168 10 12 36.3 786.8 0.980 0.979
G2 188 10 12 364 788.9 0.984 0.981
G3 208 20 20 37.3 805.5 0.996 0.997
G4 258 20 25 374 8084 0.998 0.999
G5 300 25 30 375 809.3 0.998 0.999

Table 1: Grid sensitivity study, Ng,., Ngpn denote the grid points within the Hartmann layer and
side wall layer, respectively. 75" tHa (L;,.%,/Lsnse and (vg)g /U5 M82(r, 2) at r = 9.6, z = 0.5,
which results from the different grids, are compared in case of Ha = 792, Re = 15972.

and r = 5.4 with an initial interval of Ar,,;, &~ 0.0011, while the largest step (in the middle of
the container) is Arp,q, ~ 0.023. The azimuthal direction uses Ny = 4096 uniformly spaced grid
points and the axial direction uses N, = 300 non-uniformly spaced grid points. Note that to fully
resolve the Hartmann layer along the axial direction, 25 uniformly spaced grid points are devoted
to each layer and a smooth transition is set toward the core region where a coarser grid resolution
is sufficient. Grid points are spread according to a geometric sequence of ratio v, = 1.1 starting at
2z~ Ha 'and z ~ 1—Ha"'. The point nearest to the Hartmann walls is located Az, = 5x107°
away from them, and the largest step is Azmas =~ 1.2 x 1072,
In order to assess the quality of the grids, wall coordinates are introduced

rt = ReShr, 2T = Reflez, (15)

where

Re" = V RerSh,  Refl® = / RerHa, (16)

81)9 Ha - 81}9 8119
TASh / / _ Hde, T 2TAHa / /

z=0 0z

Here, TSh, 7Ha denote the associated dimensionless forms of the mean stress at the side wall
and Hartmann wall, respectively. T is the time interval for average, Ag, = 227 and Ay, = 1217.
Hence, the value of the smallest wall-normal grid step in the Ar™ units varies from 0.08 (see
Table. The respective variation in the Azt units is from 0.18 (see Table . Moreover, the
simulated results show that the highest velocity occurs at r ~ 7.04, where the azimuthal grid step
A0 =~ 0.011 is sufficiently small. Meanwhile, in order to ensure that the full range of the dissipative
scales is resolved, the smallest turbulent scales (lmin and ") predicted by [Pothérat & Dymkoul

max

)dtds. (17)

z=1

(2010) are used to evaluate the grids quality. The adopted grids indicate lm'; ~ (.74, Almm ~ (.83
(The smallest scales are estimated according to the turbulent Reynolds number, Re; = ULVS L).
Here, Sy, is the size of the large scales, which is evaluated from the profiles of RMS of relative
azimuthal velocity fluctuations (see figure 8(a) of [Pothérat & Schweitzer| (2011)), and Uy, is the
velocity of the large scales, which is calculated according to Uy, = ([ vividv)/?,i = (0,r, z), where
v denotes the velocity fluctuations. The sizes of smallest scales according to [Pothérat & Dymkou
(2010)) for all cases are listed in Table

In addition, the grid independence studies are also conducted on the numerical case of Ha = 792
and Re = 15972. Note that not only the grid sizes, but also the grid points along the z-direction,
within the Hartmann layer and within the side wall layer are tested. The time averaged wall stress
75h rHa the time averaged angular momentum (Ljq, )¢ and the time-space average azimuthal
velocity (vg)g ., at ¥ = 9.6, z = 0.5 are presented in Table

For Ha = 792, Re = 15972, (7)) and are not strictly valid since the flow is not axisymmetric
but remain sufficiently accurate to roughly assess the accuracy of the simulations.
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Figure 4: Comparison of (vg)g . between experiment (symbols), present numeric (solid lines), 2D
numeric based on PSM model(dashed dot lines) and US™82(r) (dashed lines) for cases at Ha = 792,
Re = 15972 (a) , and Ha = 792, Re = 31944 (b). The dashed line depicts an algebraic law r~!

(predicted by Eqn. (7).

All the simulations are stopped when the total angular momentum of the flow is statistically
steady, i.e. after 3ty,, where

tia = tra/(a/Up) and tie = a*/(vHa) (18)

denote the non-dimensional and dimensional Hartmann damping times, respectively. Average and
RMS quantities are then evaluated over a time interval of 4ty,, and the computed values of these
parameters are compared to evaluate the grid resolution within the Hartmann layer and side wall
layer. Evidently, the results are very close to each other, even with the worst spatial resolution,
as shown in Table[l] Firstly, the reliability and the accuracy of the DNS results are confirmed by
a difference of less than 2.1% between the present results and the solutions predicted by and
. Moreover, grid-independent solutions are also achieved with the grids under consideration.
For example, less than 3.2% difference is found for all the predicted values on the coarsest grid
and the finest grid, and this discrepancy is even further reduced when the two finest grids are
compared. Hence, one can conclude that grid G5 is sufficiently fine to simulate the flow in the
case of Ha = 792 and Re = 15972. The mesh is, however, further refined when 3D effects become
significant, e.g. in the case of Ha = 55 and Re = 15972.

For different numerical cases, the dimensionless time steps used in the computations are altered
according to the parameters applied in simulation, such that At = 5.0 x 107° for (Ha, Re) =
(264,4791), 5.5 x 107° for (Ha, Re) = (264,31944) and 1.6 x 1075 for all other cases. The values
are determined by the limits of numerical stability, which highly depends on the viscous term and
the convective term of the momentum equations at high Re. In addition, higher Re or Ha demand
smaller time steps because of the higher azimuthal velocity and the thinner Hartmann layers.

3 Results and discussion

3.1 Validation of velocity profile at Ha > 1 and N > 1

As far as the authors know, it is the very first attempt to reproduce the MATUR experiment
by performing 3D direct numerical simulations, and hence as a necessary validation procedure, a
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detailed comparison with the available experimental results need to be carried out. In addition,
since the PSM model can deal with the cases when Ha > 1 and N; = N(rg/a)? > 1, some
numerical cases falling into this space are also investigated for validation. However, note that
this model becomes imprecise when either of the parameters, Ha or N, become of the order of 1,
(N, = N(7p/a) is the interaction parameter based on the horizontal scale), which, again, stresses
the importance of conducting 3D direct numerical simulations.

The predictions of the mean azimuthal velocities from different approaches, denoted by (vg)¢.,
are plotted in figure Clearly, a good agreement is found between the experimental results,
the numerical data and the laminar theoretical prediction. In the outer region r. < r < rg, the
maximum relative discrepancy between the results of DNS and experiment is less than 6.7% (8.5%)

DNS ex
in the case of Re = 15972 (Re = 31944) based on an error estimation of W The
0 t

maximum relative discrepancy between the results of DNS and the PSM model is less than 1.0%
DNS PSM
(2.9%) in the case of Re = 15972 (Re = 31944) based on an error estimation of \2e_t—{vo )ell2

(g™ ell2

In particular, the velocities exhibit the characteristic feature that they increase sharply across the
free shear layer (r = r.) due to the current injection. Accordingly, the shear layer separates the
flow into an outer and inner regions. Moreover, from both of the experimental and the numerical
data, the downward trend of the azimuthal velocity in regions between the injected electrodes
and the vertical wall follow the expected scaling law of (vg)g . ~ r~!, as predicted by , and
which reflects the geometrical spreading of the radial forcing current in the Hartmann layer, i.e.
jr ~ (47r) =1 (see figure [5fc)).

A typical instantaneous distribution of vy obtained numerically over a radial cross-section § = 0
for moderate forcing current is shown in figure (a). Under a strong magnetic field, the velocity
gradient along the magnetic field lines is remarkably damped, except in the Hartmann layers where
an exponential profile subsists. The detailed velocity distribution in the Hartmann layer is shown
in figure f|(b), and a good agreement is observed between the present numerical results and the
exact solution, given as vy = v§°"®(1—exp(Haz)), with v§°™ indicating the azimuthal velocity in the
core flow. It also demonstrates that the thickness of the Hartmann layer at » = 7.5 and r = 9 is the
same. Besides, figure c) reveals that the vertical profiles of radial current density within the top
and bottom Hartmann layers collapse with each other, implying that the electric current intensity
I injected at the electrodes divides in two equal parts between the two symmetric Hartmann layers.
In addition, the the radial current density is much higher near the Hartmann wall, so the Joule
dissipation mainly takes place in the thin Hartmann layers, in line with the laminar Hartmann
layer theory. Therefore, the annular fluid domain located between the selected circular electrodes
and the cathode (5.4 < r < 11) is driven in the azimuthal direction by the Lorentz force, while
the central fluid domain (r < 5.4) is entrained by friction within the free shear layer. Interestingly,
the current density at the upper wall stands a little lower than at the bottom wall, showing that
despite the excellent agreement between PSM and experimental data, the flow is ever so slightly
three-dimensional.

In the following part, the evolution of the large structures and the spectral analysis are dis-
cussed. Subsequently, we study the secondary flow induced by Ekman pumping. We also investigate
the characteristics of the free shear layer and the side wall layer before presenting the turbulent
statistics, global angular momentum and three-dimensionality.

3.2 General behaviour of the flow

The different cases investigated are listed in Table [2| where the dimensionless parameter R(=
Re/Ha) represents the Reynolds number scaled on the thickness of the Hartmann layer. According
to the experiments of Moresco & Alboussiere| (2004)), the flow within the Hartmann layer becomes

turbulent when R > 380, in which case the DNS will require enormous computational resources.
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Figure 5: (@) The distribution of the instantaneous azimuthal velocity and current streamlines on
plane 8 = 0 at Ha = 264, Re = 15972. (b) The vertical profiles of the instantaneous azimuthal
velocity within the bottom Hartmann layer along r = 7.5 and r = 9. (¢) the distribution of radial
current density both across top Hartmann layer and bottom Hartmann layer along r = 7.5 and
r = 9, where the origin of the distribution along r = 9 is shifted to n = 0.02, where n is the

wall normal coordinate i.e.

for the bottom wall, n = z, and for the top wall n = 1 — z and

vg°"(r) = (vg(r,0, z = 0.03,t)(9,+. Here vy is averaged in time and 6.

Ha

Re

N,

R
Imin(x1072)
[min(x1072)

264 528
4792 15972
158.9  190.6
18.2 30.3
3.95 3.05
1.92 1.31

792
15972
428.9

20.2

3.10

1.45

792 264 264 132 110 99 80 66
31944 15972 31944 15972 15972 15972 15972 15972
2145 417 23.9 11.9 8.3 6.7 4.4 3.0

40.4 60.5 121.0 121.0 145.2 161.3 199.6 242.0
2.52 2.91 2.45 2.88 2.84 2.81 2.77 2.71
1.34 1.22 1.12 1.10 1.08 1.01 0.96 0.92

Table 2: Non-dimensional parameters in cases calculated numerically.

95
15972
2.1
290.4
2.67
0.89
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Therefore, only cases with R < 380 are considered in this paper. Furthermore, five of the relevant
interaction parameters scaled on the horizontal length IV,, are at the order of unity, aiming to study
the three dimensionality of the flows.

In the calculations, the electrical current is injected at ¢ = 0 when the fluid is at rest and
remains constant during the whole simulation, following the actual experimental procedure. For
different electrical current intensities, the flow goes through a sequence of evolution and reaches
different equilibrium and quasi-equilibrium states presented on figure [f} We shall now give an
overall view of the numerical results, while more details of the evolution and local quantities will
be reported later.

For R < 121, the evolution of the flow is qualitatively similar to that found for 249 < R < 1122
in two-dimensional simulations of MATUR, (Pothérat & Schweitzer},2011). In this work, the current
was injected at the same location as in the present work, and there was no separation of the side
layer, but the Hartmann layer was modelled as turbulent for R > 380. The flow contains five or
six relatively stable vortices rotating around the z axis in near-solid body rotation. They mainly
remain localized near the free shear layer once generated there, as shown in figure @(a). Thus, the
velocity fluctuations in the inner region and the annular outer region are of much lower intensity,
and the azimuthal velocity contours reveal that the wall side layer and the Hartmann layer are
stable. Besides the low value of R, part of the reason for the stability of the side layer is that these
large vorticity structures remain distant from it, and little interaction between them takes place.
However, the thickness of the side wall layer is still smaller than the scaling for a straight duct
(Ha~'/?), due to the recirculations induced by Ekman pumping, a point we will analyse in detail
in § Since Most of the large vortices remain near the centre of the domain, highly turbulent
fluctuations are induced there. By contrast, the velocity fluctuations in the annular region are
much weaker, especially near the side wall. It is the tail of the vortices that causes the velocity
fluctuations there, as it is stretched and conveyed outwards. The induced flow in the outer region
therefore exhibits long azimuthal vorticity streaks and much lower fluctuation intensity than in the
inner region.

For R > 121 small scale three-dimensional turbulence appears in the side layer. The onset of
three-dimensional turbulence within R < 121 is consistent with the value of 138 reported by |Zhao &
Zikanov| (2012)), albeit a little lower. The difference in curvature of the external wall (a/7 = 1/9 in
MATUR and a/7y = 1/5 (in our notations) in |[Zhao & Zikanov| (2012)), suggests that recirculations
may be more important in the latter than the former. Since their effect is rather stabilising, this
could explain the lower value detected here.

For R > 145.2, the size of the large structures increases, leading to highly turbulent fluctuations
in both the inner and the outer regions. Accordingly, long azimuthal vorticity streaks of relatively
high intensity exist in the outer region that induce instabilities within the wall side layer. Con-
currently, the wall side boundary layer separates from the wall, suggesting that separation results
from the fluctuations in the outer region, as observed previously observed by [Pothérat & Schweitzer
(2011). For Ha = 55, Re = 15972 (R = 290), Ekman recirculations are strong, the Hartmann layer
is relatively thick so the centripetal radial velocity in the Hartmann layer is relatively strong (see
figure . Thus, in the vicinity of a free shear layer, figure @(f) conveys that the azimuthal velocity
near the Hartmann layer is higher than in the core. Within the side wall layer, one can observe
the dramatic variation of the azimuthal velocity and vertical velocity (see figure [[a)) along the
magnetic field lines besides the separation of the layer.

Finally, in the examples shown here, three dimensional effects are only noticeable within the
shear layer for R > 121 (Ha=132, Re = 15972, this is in fact better seen from the analysis of the
vertical velocity in the side layer in section . By contrast, for R ~ 290 (Ha = 55, Re = 15972),
weak three-dimensionality, where flow patterns are topologically identical but less intense near the
top wall, exists outside the shear layer (see figure[7b), (c)). The presence of three-dimensionality,
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Figure 6: Typical snapshots of equilibrium or quasi-equilibrium states obtained from numerical
simulations. Contours of the magnitude of the vorticity on plane z = 0.5 (left column), contours of
instantaneous azimuthal velocity on plane § = 0 (right column). (a), (b) Ha = 792, Re = 15972.
(¢), (d) Ha = 264, Re = 31944. (e), (f) Ha = 55, Re = 15972. The velocity are normalised with
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Figure 7: Snapshots of velocity contours for Ha = 55, Re = 15972. (a) Distributions of axial
velocity v,in the plane § = 0 (near the side wall). (b) Distribution of vorticity in the plane near
the top Hartmann wall at z = 0.8. (c¢) Distribution of vorticity in the plane near the bottom
Hartmann wall at z = 0.2. Note that the contour levels for vorticity and v, are chosen so as to
enhance the visibility of turbulent flow structures.

however, is controlled by the true interaction parameter at the scale of the considered structure.
A consequence is that inertia-induced three-dimensionality is expected to appear in a parallel
layers of thickness 6 ~ aH a~1/2 when the local turnover time d)/Uo becomes smaller than the
two-dimensionalisation time at that scale pa?/ UB2(5ﬁ, i.e. when the Reynolds number based on
the parallel layer thickness R| = Ud| /v exceeds unity. By contrast, since the separation of the
wall-side layer is induced by the tail of large two-dimensional structures, which is mostly quasi-two
dimensional, it can be expected to be controlled by R.

3.3 Detailed evolution of the flow

For flows without boundary layer separation, the parameters Ha = 132, Re = 15972 are chosen
to illustrate the typical evolution process. According to the variation of the azimuthal velocity
signals, as shown in figure a), three different stages can be distinguished before the flow reaches
its final quasi-equilibrium state. The acceleration of the fluid in a laminar regime corresponds to
stage 1. After a short time, the laminar shear layer at r = 5.4 becomes visible as the external
annular region 5.4 < r < 11 is driven in rotation by the Lorentz force.

Pothérat et al.| (2005)) estimated the stability threshold for this layer as Re/v/Ha < 2.5, implying
that the circular free shear layer becomes linearly unstable when the Reynolds number based on
its thickness exceeds the threshold of 2.5. For all injected current intensities considered here, this
critical value on the azimuthal velocity is reached very quickly. Then the circular free shear is
subject to a Kelvin-Helmholtz instability, which breaks it up into small vortices (t/tg, = 0.6,
figure @(a)). This process defines stage 2. The detailed evolution of the vortices along the axial
direction, w,, is presented in figure [0] These vortices merge into larger structures very soon after
their inception (/ty, = 1.334, 2.075, 3.261[0[b-d)). They become distorted because of the shear.
As shown in figure a)7 the velocity at two representative locations keeps increasing during this
stage. The amplitude of velocity oscillation at » = 8.5 being larger than that at » = 9.6, the
turbulent structures exert a weaker influence in the region far from the electrodes.

Stage 3 corresponds to the quasi-equilibrium state of the flow, which, at this point, cycles
through a recurring sequence. First, large structures progressively loose intensity and elongate
along the free layer (t/tg, = 5.5). Second, these segments break up again and give birth to
several smaller vortex structures (¢/tg, = 5.662), which interact with each other and merge into
bigger structures (t/tg, = 5.825). Subsequently, a small number of large structures are formed
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Figure 8: (a)Typical instantaneous azimuthal velocity signals vs. time at (6.85,0,0.5) and
(9.6,0,0.5) at Ha = 132, Re = 15972. The solid lines denote the numerical results and the
dashed lines denote the theoretical value derived by Messadek & Moreaul (2002), i.e. USM®2(r,t) =
Tl \/a_py(l exp(—3 )) (b) Corresponding power density spectra at point (5.4,0,0.5) within
the free shear layer.

vt, =0.6 vt, =1.334 vt, =2.075

v, =5.5 vt, =5.662 vt, =5.825

tt,=3.261
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Figure 9: Evolution of the flow with time at Ha = 132, Re = 15972. The distribution of the axial
vortex structures, w,, on plane z = 0.5.
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Figure 10: (a)The average side wall shear stress signals variation with time in case of Ha = 55,
Re = 15972 and Ha = 132, Re = 15972. (b)-(f) Contours of the magnitude of the vorticity on
plane z = 0.5 at different time at Ha = 55, Re = 15972.

(t/tga = 5.988). The cycle of this recurring sequence is consistent with the base frequency of
velocity signals (f1 = 2.26) shown in figure b).

As R is increased, the most striking feature is the appearance of separation and turbulence
within the side wall layer. Figure a) shows the evolution of the mean shear stress on the side
wall 79", with a sudden increase of 7°" between t; and t5 for Ha = 55, Re = 15972. In this interval,
the increase of 75" can be ascribed to the random turbulent fluctuations, seen more in detail in
section From to (figure|10c)), vorticity streaks attached to the vortices generated at the free
shear layer start reaching out to the outer side layer, and incur local variations of its thickness.
At t3 (figure d)), these variations have become severe to the point of incurring boundary layer
separation. The decrease of 75" at t, shown in figure [10{(a), confirms the occurrence of separation
at the wall side layer. This is consistent with the visualizations of the vortex structures shown in
figure ). For Ha = 132 and Re = 15972, by contrast, the evolution of 75" is rather smooth
and no brutal change in shear stress is observed, indicating the absence of separation. Moreover,
the evolution of case at Ha = 55, Re = 15972 in the later stage (ts, t4, t5) is similar to that of
case at Ha = 132, Re = 15972, which goes through the same recurring sequence.

3.4 Spectral analysis

The power density spectra of several typical cases are analysed in this section shown in figure[TI] To
calculate of the average, we employ 60 probes, uniformly distributed along the angular direction,
and take the average of the measured signal as v(f) = g5¥v;(t). Spectra are obtained using
Welch’s averaged periodogram method, while a Hamming window was applied to each overlapping
segment of data. Additionally, spatial energy spectra can be deducted from these spectra by taking
advantage of the large average azimuthal velocity and using Taylor’s hypothesis, 27 f = (Up)ok.
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Figure 11: Frequency spectra obtained from velocity time-series. For reference, the power laws
f=32, f75/3 and f3, denoted with dash-dot line, are also shown. Solid lines correspond to spectra
filtered using Bezier spline (red), time-series of azimuthal velocity time-series at point (r = 6.85,
z = 0.5, green (within the free shear layer)), axial velocity at point (r = 6.85, z = 0.5, red), axial
velocity at point (r =10.98 (b) 10.95 (¢) , z=0.5, blue (within the side wall layer)). azimuthal
velocity at point (r =10.95, z = 0.5), (a) Ha = 528, Re = 15972 (R = 30.3) (b) Ha = 264,
Re = 31944 (R = 121), (¢) Ha = 55, Re = 15972 (R = 290.4), (d) The separation frequency of
the spectra slops f~%/3 and f~2 and the forcing scales for different R.
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For R = 30.3, the spectrum of vg(t) exhibits an expected strong peak at a fundamental fre-
quency corresponding to the passage of the large structures through the measuring probes. The
other noticeable peaks represent the harmonic and sub-harmonic frequencies, as shown in figure
(a). The scaling of the spectrum in the inertial region obeys scales as f~32. According to |[Eckert
et al.| (2001)), the spectral exponent in duct flow turbulence for N ~ 39.0 relevant to this case is
about -3.5, which is consistent with our findings, despite the difference in the geometries of these
two types of turbulent shear flows.

When R = 121, the peak of the base frequency in the spectra of azimuthal velocity fluctuations
can still be observed (see figure b)), and thus the large structures continue to rotate around
the axis. The spectrum in the inertial region can be separated into two parts, with a transition
frequency firtra =~ 20. For fitra < 20, the power spectral density scales as f~°/2, while fi trq >
20, is scales as f~3. By applying the Taylor’s hypothesis, we find the corresponding azimuthal
wavenumber of ki ~ 1.10. This value is in accordance with the results of Messadek & Moreau
(2002), i.e. kir ~ 1 cm~!. The authors claimed that the split spectrum arises as the result of weak
Joule dissipation. The spectrum of v, (t) within the free shear layer exhibits axial flow that is of
much lower energy than the other two components, confirming that the turbulence is dominated
by its 2D horizontal components.

For R = 290.4, the spectra exhibit different features (see figure [[Ifc)). In the region of the
free shear layer, the f~2 (high frequencies) and the f~%/3 (low frequencies) power laws are still
distinguishable on the azimuthal velocity. The transition frequency, fi.tg, =~ 46, is higher but
the corresponding non-dimensional wavenumber almost remains the same, k¢ ~ 1.09. Within the
side wall layer, by contrast, the power density spectra of azimuthal velocity (orange line) and axial
velocity (blue line) in the inertial region, exhibit a scaling of the form f~5/3,

The apparent constance of k. prompts us to compare the transition frequency and the forcing
scale for cases of R > 121. As illustrated in figure (d), the scaling law for the transition frequency
with R follows fitge ~ 0.16R. Since in all cases, k ~ 1, the separation between the two slopes
may simply result from the forcing geometry. In this case, the separation between k~%/3 and k=3
may reflect the usual 2D split between an inverse energy cascade and a direct enstrophy cascade,
as already found in MHD flows by |Sommeria] (1986). In this case, k;. may be interpreted as the
forcing scale, at which the mean flow transfers energy to the mean flow (Alexakis & Biferale, [2018)).

3.5 Secondary flow

Pothérat et al.| (2000) showed that the recirculations induced by Ekman pumping significantly
influence the flow. They can be identified by looking at the variations of the velocity profile
in figure @(e). Although the PSM model already provides a good understanding on the Ekman
pumping effect, the detailed flow information across the fluid layer and the structures on the plane
parallel to the magnetic fields remain unexplored. This is one of the motivations for carrying out
3D DNS.

The streamlines of the average fluid velocity shown in figure b) reveal that the Ekman
pumping induces a centripetal flow (i.e. away from the side wall) in the Hartmann layers and a
centrifugal flow (i.e. towards the side wall) in the core. In addition, the streamlines are almost
symmetric with respect to the centre plane z = 0.5 and the recirculations consist of two symmetrical
cells. Due to mass conservation, the mass fluxes in the axial direction match the radial ones.
Therefore, two strong vertical jets emerge within the wall side layer because of the decreased
boundary thickness. They flow upwards to the top Hartmann layer or downwards to the bottom
Hartmann layer, where they pass through a section that is further reduced, since Hartmann layers
are thinner than wall side layers. This further enhances the intensity of radial jets driven in the
Hartmann layer, as shown in figure a). They then turn to towards the core in the much wider
region near the electrodes, into much weaker axial flows than those within the side layer, as shown
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Figure 12: The distribution of mean radial velocity (a), and mean axial velocity, mean streamlines
(b) on plane §# = 0 at Ha = 80, Re = 15972.

in figure b). This mechanism explains that recirculations are stronger within the free shear layer
and the side wall layer. Ekman pumping incurs a net centrifugal transport of angular momentum
as the velocity is smaller in the Hartmann layer. This has two consequences: a squeeze of the
side wall layer and an increased dissipation at the side wall layer when these recirculations are
important.

Pothérat et al| (2000) have derived the analytical expression for the vertical velocity at the
interface between the Hartmann layer and the core,

A

s I (7 A | (19)
Here, u™ denotes the velocity at the edge of the Hartmann layer and the subscript | denotes the
vector projection in the direction perpendicular to the magnetic field. Under the assumptions of
PSM, any vertical component of velocity is associated to recirculations, whether local or global.
Therefore, to assess the limits of the PSM approach, we compare the energies associated to the
vertical velocity component obtained with DNS at Re = 15972 to the energy obtained from ,
distinguishing energies E7* and E! associated to the average flow and to the fluctuations. The
DNS results show that < E™ >~ Ha 5% and < E, >y~ Ha 57 (see figure c), bearing in
mind that Re is kept constant in these scalings). Values of E, obtained by integrating from
the results of PSM simulations follow the same scaling even for values of NV as low as NV ~ 0.19
(Ha = 55) where the model is expected to break down. This indicates that PSM predicts the
global recirculations associated to the mean flow very accurately. The energy associated to the
fluctuations predicted by PSM, by contrast, only matches DNS precisely for N > 1 (Ha 2 126.4).
Below that point, PSM underestimates E’, considerably. The origin of the discrepancy can be found
in the radial profiles of vertical velocity fluctuations (figure [13((a), figure b)): the discrepancy
between the profiles obtained with PSM and DNS is exclusively concentrated in the free shear layer
and the wall side layer. More specifically, while this discrepancy grows continuously as Ha decreases
but remains moderate in the shear layer, the two profiles brutally depart from one another in the
wall side layer for Ha = 55, when small scale turbulent fluctuations appear. Since the profiles of
(u2)1/2 obtained with either PSM or DNS match everywhere else, even at for N < 0.19, it can
be concluded that PSM remains robust at predicting both global and local recirculation down to
N <1, but breaks down when small scale turbulent fluctuations not driven by Ekman pumping
appear.

Figure d) shows the detailed evolution of E,. One can see that after the injection of the
electrical current density at ¢/ty, = 0, part of the energy is converted to the kinetic energy along
the magnetic field lines, which quickly results in a maximum E,. After that, F, tends to decrease
until a constant time-averaged value is reached. E, reaches a lower constant value when stronger
magnetic fields are imposed for flows initialised in turbulent states. Since the entire secondary flow
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Figure 13: Comparison of the rms (root mean square) of the fluctuations of the vertical velocity
(uf™s(r,0,2)) along the radial direction near the side wall layer with Re = 15972 (a) near the
current injection position r = r. (b) near the side wall. Values were averaged along 6 and z. (c¢)
Average part B = [(u.)?dv and fluctuating part E, = [(u,)?dv of the energy in the z— velocity

component (d) Evolution of E., where E, = E™ + E.. Re is fixed at 15972 for all 4 figures.
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Figure 14: (a) Radial profiles of (Up)g,.. (b) Log-log plots of the free turbulent shear layer
thickness 0 and the large scale vortex size dyortes-

transits through thin parallel layers, some residual axial flows are always observed within these
boundary layers. Therefore, E, always stabilises at a non-zero constant value in all the numerical
cases, even though it is very small at Ha = 528 (E, < 10~%). Interestingly, the walls have opposite
effects on the energy in the third component, depending on whether it is driven by recirculations
or turbulence: Here the residual value of F, being mostly due to Ekman pumping, it is driven by
friction at the Hartmann walls. On the other hand, when turbulence freely decays in the presence
of solid Hartmann walls, the energy in the third component associated to random fluctuations
vanishes (in the sense that E./E — 0 as t — oo, (Pothérat & Kornet} [2015)). In unbounded
or periodic domains, by contrast turbulence decays to a state where E,/E = 1/2
[Schumann|, [1976)).

3.6 Boundary layers

One of the main purposes of the experimental study conducted by [Messadek & Moreau| (2002)) was
to investigate the thickness of the free shear layer when turbulence is well established. Figure[14(a)
shows the radial distribution of the mean azimuthal velocity, from which the thickness of the free
shear layer could be estimated. As mentioned in section the free shear layer develops quickly
to an unstable state as soon as the current is injected. Therefore, a fraction of the momentum is
conveyed from the annulus to the inner region and the boundary layer thickness increases visibly.
The resulting entrainment of the fluid in the inner domain is characterized by a lower maximum
value of Uy compared to that predicted by the laminar theory. For the annulus region, the (non-
dimensional) value of (ug)g, . increases with Ha and decreases with Re due to different Ekman
pumping effects. To be more specific, at moderate Ha, either increasing Re or decreasing Ha
enhances the recirculations, and thus the energy dissipation is expected to grow. Conversely, for
the inner region, the radial transfer of the momentum associated with recirculations set the fluid in
rotation. Thus, the value of (ug)g, .+ in that region increases when recirculations become stronger.
In other words, the thickness of the free shear layer increases when the Ekman pumping effect
becomes stronger, which is opposite to their effect on the laminar side layer (H a~V/ ).

We now use the mean azimuthal velocity profiles within a wide parameter spaces of {Re, Ha}
to determine the thickness of the shear layer d¢, which is defined as,

AUy

o5 = (dU/dr)maz

(20)
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Figure 15: Variations of the wall side layer thickness dgw against parameter ¢ = ReHa%/?
(Pothérat et all |2000) for Re = 15972 (red), Re = 31944 (green) and Re = 4792 (black). Full
circles: boundary layer in laminar state, full squares: attached boundary layer with 3D turbulence,
hollow squares: separated boundary layer.

Here, AUy = Upmaz — Usmin, Usmin = 0 and Ugmae is the mean velocity value at the intersection
of the maximum slope and the mean velocity profile predicted by the laminar theory @ As
suggested by Messadek & Moreau| (2002)), the layer thickness é¢ depends on both Re and Ha
according to the relation

5 = C(R)"™ (21)

As shown in figure b), the best fit from our data yields Cy ~ 0.44 and n ~ 2.3 respectively,
which is consistent with the values obtained by [Messadek & Moreau| (2002)). The maximum rel-
ative error between the fitting curve and the calculation data is lower than 5.1%. Moreover, for
(Ha, Re) = (792,15972), the layer thickness from numerical simulation, §; ~ 1.64, agrees well
with the experiment one, §y ~ 1.61. This scaling is very different from the theoretical laminar one
(0f=H a~'/2 independent of Re) and reflects the role of two-dimensional inertia, measured by R,
in determining the thickness of the free shear layer. In addition, the size of large scales estimated
from the velocity fluctuations (see [Pothérat et al.| (2005)) is also shown. Here, Ry, represents the
Reynolds number based on the velocity and the size of the large vortices and he size of the large
vortices is estimated from the profiles of rms of azimuthal velocity fluctuations. As shown in figure
14b), their size follows a very similar scaling to the size of the boundary layer §, ~ 0.57R%* with
a maximum relative discrepancy to that law lower than 5.6%.

Unlike the free shear layer, the structure of the wall side layer was not experimentally acces-
sible. Three-dimensional simulations make it possible to examine how its thickness varies against
parameter C' = ReHa 3/, which (Pothérat et al), [2000) identified as the governing parameter
when secondary flows dominate. The thickness dsw was defined as the distance from the wall to
the point where the velocity magnitude reaches 90% of U(,SW, where UQSW is the velocity value at
the intersection of the minimum slope and the mean azimuthal velocity profile. The results are
reported on Figure For low values of C|, recirculations are weak and dgw is expected to scale
as dsw ~ Ha~'/2. As C increases, recirculations become more prominent and dgw approaches the
theoretical scaling of dgwv ~ C~1. The picture changes slightly before (in the sense of increasing C)
three-dimensional turbulence appears in the boundary layer: the thickness suddenly increases to
settle on a larger scaling characterised by dsw =~ 0.074(R6Ha*3/2)’0'42. More simulations would
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Figure 16: Variations of the global average angular momentum (L;q.,):/Lsars2 versus R. Region
with R > 380 (Moresco & Alboussiere, 2004) is defined as regime where turbulence formed within
the Hartmann layer. Region with 145.2 < R < 290.4 is defined as flows with turbulence emerging
within the side layer. Region with R < 121 is corresponding to flows without separation of side
layer.

be needed to confirm that C remains the relevant parameter in this regime (though the continued
prominence of the secondary flows would suggest this may be the case) and to confirm the expo-
nent of Re in this scaling. Interestingly, boundary layer separation has little visible impact on the
scaling of dgw, most likely because of the small ratio of the surface where it occurs to the total
surface of the wall.

3.7 Angular momentum and wall shear stress

For a first estimate the the global angular momentum, we note that most of the viscous and Joule
dissipation takes place within the Hartmann layer for Q2D flows under a strong magnetic field.
Since the most intense part of the flow occurs in the outer annulus where the driving force acts,
the contribution of the inner region to the total angular momentum can be neglected to derive the
simple expression from the theory of Sommeria & Moreau| (1982) for the elementary case of a
steady inertialess flow. Note that in this case, the Hartmann layers remain laminar and inertialess.
This implies that the angular momentum varies linearly with I and is independent of B.

The values of L4, obtained from the present numerical results (circle open symbols) are plotted
in figure along with the values of the angular momentum measured in MATUR, (Messadek &
Moreau, [2002) and predicted with PSM model (triangular open symbols). All the data reported
in this figure is normalised by the value Lgyss2 predicted with the theoretical expression , the
dashed line corresponds to the theoretical prediction derived by [Pothérat & Schweitzer| (2011) for
turbulent Hartmann layers and the square symbols denote the experimental data. As shown in
figure the experimental values, the results of PSM model and our numerical values collapse
well into a single curve, which can be divided into three different zones demarcated by changes
in slope around R ~ 121 and R ~ 380. When R < 121, the numerical values (DNS and PSM)
are almost equal to unity, which matches the SM82 linear approximation closely. For R > 380,
the experimental values fall to significantly lower values than the linear prediction as would be
expected when turbulence arises within the Hartmann layers. However, they match well with
the values predicted with the simplified axisymmetric model derived by |Pothérat & Schweitzer
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Figure 17: Space and time-averaged wall friction over the entire range of Ha investigated and
for (Re = 15972): circle full symbols denote wall stress at Hartmann wall and circle opened
symbols denote wall stress on the side wall For comparison, theories for laminar flows (dashed and
dashed-dot line) and results of the PSM model (gradient opened symbols) are shown too.

(2011)), which supposes that the Hartmann layers are turbulent. When 121 < R < 380, a relatively
large discrepancy can be observed between the numerical values (or experimental values) and the
theoretical value of SM82 or theoretical value derived by [Pothérat & Schweitzer| (2011]).
An explanation for this intermediate range was provided by [Pothérat et al.| (2000]), who modified
the equation for L4, from the SM82 theory to account for the dissipation in the side layers,
dLlam _ 2Llam

=F-8, , 22
dt tHa (22)

where F denotes the global electric forcing and S, (~ 75") denotes the viscous dissipation at the
side wall layer. At a small forcing, the corresponding viscous effect on the angular momentum
is negligible in comparison with the Hartmann friction. Thus, the DNS and PSM results are
consistent with the values predicted with the theoretical expression when R < 121. By
contrast, significant differences emerge between the numerical values and the SM82 theory when
121 < R < 380, since in this range, the viscous dissipation at the side wall layer cannot be ignored
any more. Because the side wall layer is squeezed by the strong Ekman pumping recirculations, the
side wall layer becomes thin, which results in significant increase of velocity gradient and the global
dissipation. The present numerical results confirm this conclusion well when R € [145.2,290.4], for
which these recirculations are significant.

The DNS enable us to go a step further and examine in detail how the wall shear stress is
affected three-dimensional effects. The variation of the wall stresses (rHe, 75h) with Ha are
shown in figure The values of wall stress are different on the Hartmann walls and side walls.
As shown in figure all the shear stresses on the Hartmann walls collapse well into a single
curve (laminar solution, 7H#¢ ~ 2Ha/Re), even when Ha = 55, which indicates that the Hartmann
layers remain laminar for all the cases considered in this work. However, for the side wall shear
stresses, the values gradually depart from the laminar solution as Ha decreases (Ha < 132). To
understand the role played by recirculation in this phenomenon, all the cases are rerun with PSM
model, as well as additional cases with higher Ha (1056, or 1320, or 1584). When Ha > 264, one
can see that the results of DNS match well with that of 2D simulations, but they are noticeably
higher than the straight duct laminar wall stresses because of the recirculations induced by Ekman
pumping. For cases with Ha < 132, the recirculations become more and more significant as Ha
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Figure 18: (a) Evolution of the global angular momentum with time. (b) Transient time obtained
numerically after switching on the forcing on a fluid at rest versus the non-dimensional parameter
N2/3Ha'/3.

decreases, which results in an increased squeezing of the side wall layer. Therefore, the values
of 75" obtained from PSM simulations are higher than those predicted by the scaling law for a
straight laminar Shercliff layer. However, DNS values of 75" are still significantly higher than the
ones from the PSM for Ha < 132. This coincides with the observation that PSM cannot capture
the small-scale turbulence within the side layers in this range of parameters and further indicates
that the dissipation it incurs dominates even the enhanced dissipation due to the squeezing of the
side layer by secondary flows. In summary, the DNS confirm that the Hartmann layer remains
laminar for cases with R < 290.4. When 121 < R < 290.4, the discrepancy between the numerical
results and the theoretical results is associated with either the strong squeezing of the side wall
layer or turbulence within side wall layer.

Finally, we compare the time variations of the mean angular momentum for different Re and
Ha, shown in figure [1§(a). For the same Ha, one can see that the amplitude of the oscillations of
the angular momentum in the quasi-steady-state increase with Re, due to the increasingly turbulent
nature of the flow. Furthermore, the transient time (¢,5) for the system to reach the quasi-steady
state from the fluid being at rest decreases with Re (we estimate this time by measuring the slope
of the Ljgm(t) curve near equilibrium in a log-log diagram, as in [Pothérat et al.| (2005)). This
too is associated with global dissipation, which is significantly increased by the strong Ekman
pumping at higher Re, shortening the transient time. For a given Re, the variation trend with Ha
is opposite, reflecting the damping of recirculations by the Lorentz force. This effect is quantified in
Figure [L§|(b), which shows the variation of the transient time with the combined non-dimensional
parameter N2/3Hal/3 = Ha®?/Re?/3, with a scaling t,s/tp, ~ 1.736(N?/3Ha'/?)%467 with a
maximum relative error between the fitting curve and the numerical data of 9.1%. While t4s/tH,
is governed by the same parameter as predicted by PSM, the scaling exponent of 0.467 stands much
lower than the value of 1, indicated in [Pothérat et al.| (2005). Since a lower exponent is indicative
of a higher level of dissipation, this discrepancy may be attributed to the dissipation incurred by
3D turbulence in the side layers that the PSM model cannot account for.



L. Chen et al. DNS of MATUR

0.1 —=s3570p

lpooa! @-o--o. | = [------- r=6.85,bottom

Ly ~a — r=5.4,top
—————————t r=5.4,bottom

005 | ——— r=4.5top

005555

Figure 19: The results of case with Ha = 55, Re = 15972. (a) Radial profile of correlation C". (b)
The azimuthal velocity fluctuation signals of six different points in the top and bottom Hartmann
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ug + 0.03 (ug — 0.03). (¢) The azimuthal velocity fluctuations signals of three different points in
the side wall layer variation with time, along » = 10.8.

3.8 Three dimensionality

According to [Pothérat & Klein| (2014) and Baker et al| (2015)), the dimensionality of a struc-
ture in a channel of gap a is determined by the ratio I,/a. Here [, is the momentum diffusion
length along B by the Lorentz force. This diffusion process takes place in a typical diffusion time
Top(lL) = 7;(1./11)?, where 7; = p/oB? is the Joule dissipation time. Hence, [, can be estimated

as (Sommeria & Moreau, [1982)
(L) =11v/N(1L), (23)

where N (I, u(l1)) = 0B?l; /pu(l,), is a scale-dependent interaction parameter and u(l ) is the
velocity associated to a fluid structure of size of I;. I./a > 1 indicates that the Lorentz force
diffuses its momentum over a distance much greater than a, and that the considered structure is
consequently quasi-two dimensional.

However, the separation of the side wall may produce complex 3D structures in the case of Ha =
55, Re = 15972. Therefore, the correlation between Vr(r,6,t) and Vp(r, 6,t) measured at locations
within either Hartmann layers exactly aligned with the magnetic field lines (i.e. respectively at
z = zp (with zp = 0.008 < 1/Ha) and z = 1 — zp, but at the same coordinates (r,6)) is used to
assess the three dimensionality of the flow (Klein & Pothérat}, 2010)). Here, Vr(r,0,t) and V(r,0,t)
represent the azimuthal velocity fluctuations. The correlation function is defined as

% Vr(r,0,t)Vi(r,0,t)
¢ (r0) =20 . (24)

T7
Vi(r,0,t)
t=0

where T'7 is the duration of the recorded signals. Considering the symmetry of the problem, we
shall analyse the radial dependence of this correlation through C'(r) = (¢/(r,0))s. For Ha =
55, Re = 15972, the correlation profile of C’(r) in figure [I9(a) indicates that the flow is very
close to quasi-2D in most regions, where correlation C’ is almost unity. This is also demonstrated
on figure b), which shows that the instantaneous azimuthal velocity signals away from the
shear layers near the top and bottom Hartmann layers are near identical for the same position
(r,0). At r = r, by contrast, the signals slightly differ, so the correlation C' is slightly lower
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Figure 20: Power density spectra calculated from instantaneous azimuthal velocity signals acquired
at locations near the free shear layer inside the top (red line) and bottom (green line) Hartmann
layers for different magnetic interaction parameters. (a) Ha = 66, Re = 15972. (b) Ha = 264, Re =
31944. (c) Ha = 264, Re = 15972.

than unity (0.832). At this location, the signals are mostly identical except for a slightly higher
amplitude of the bottom signal and short burst where the signals are weakly correlated. The
difference in amplitude reflects weak three-dimensionality, as defined by |Klein & Pothérat| (2010)),
in the sense that flow near the top and bottom are identical in topology but differ in intensity.
The short bursts, by contrast, indicate strong three-dimensionality where topologies are no more
identical. The bursts correspond to the passage of coherent structures. Hence, the overall picture
is that while the free shear layer itself and the larger structures responsible for the lower frequency
oscillations are only weakly three-dimensional, the smaller coherent structures that navigate along
it can exhibit strong three-dimensionality.

Figure (c) confirms that strongly three-dimensionality emerge within the side wall layer,
where the signals recorded at all three monitored depths differ noticeably. This is consistent with
the distribution of azimuthal velocity within the side layer shown in figure @(f), where the flows
on different transverse plane are not topologically equivalent any more, because of the presence of
small scale three-dimensional turbulence there.

To further characterise the scale-dependence of three-dimensionality near the electrodes, we
analyse the spectra obtained from the velocity signals near the top and bottom Hartmann layers,
as shown in figure[20] For Ha = 66, Re = 15972 and Ha = 264, Re = 31944, pairs of energy spectra
obtained near top and bottom Hartmann walls reveal that the higher frequencies carry significantly
less energy in the vicinity of the top wall than that near the bottom wall, which is a clear evidence
of three-dimensionality. By contrast, lower frequencies almost carry the same amount of energy.
According to the theory of Sommeria & Moreau| (1982)) and the experiments of [Baker et al.|(2018)),
a cutoff scale k. (corresponding to f. here) separating the quasi-two-dimensional structures from
the three-dimensional structures can be identified. Here, the velocity signals, averaged over the
azimuthal direction, were taken within the free shear layer, so as to minimise the influence of the
side walls, i.e. r = r.. For the details about the calculation of f., the readers are referred to
Pothérat & Klein| (2014). When N, decreases, f. decreases as three dimensionality contaminates
larger and larger scales, as shown in figure (a,b). For Ha = 264 and Re = 15972, fluctuations
within the free shear layer are quasi-two dimensional over the entire spectral range (see figure
20)c)). The variations of the azimuthally averaged cut-off frequency (f.)g(IN;) are represented in
figure a)7 and reveal that the variations of (f.)s across all investigated cases collapse onto a
single curve, and therefore that (f.)y is determined by N; with a scaling law

(f.)o ~ 0.063N?-37. (25)

This general law gives a clear estimate for the minimum frequency of vortices that are affected by
3D inertial effects. Additionally, we obtain the minimum transverse wavenumber of 3D vortices,
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Figure 21: (a) The azimuthal averages of f., separating Q2D large structures from the small 3D
ones, normalised by Uy/a. (b) Radial profiles of azimuthal averages of f., when Ha = 55, Re =
15972 and Ha = 66, Re = 15972.

(ke)g =~ 0.396N237 by applying Taylor’s hypothesis, taking advantage of the strong azimuthal
flow component. This law is the first numerical confirmation of the original theoretical law given
by |Sommeria & Moreaul (1982), k. ~ Ntl/B, following Baker et al| (2018)’s recent experimental
confirmation. It is also interesting to note that while this law applies to homogeneous and sheared
turbulence alike, the corresponding scaling law for the cutoff frequency differs from the power
law with exponent ~ 2/3 found in turbulence with weak average flow (Klein & Pothérat] [2010).

Given the spatially inhomogeneous nature of the flow in the radial direction, the question
arises as to where three-dimensionality is preferentially found. An answer is provided by the
spatial distribution of the azimuthally averaged variations of the cutoff frequency (f.)g along r,
shown in figure b). (fe)e clearly drops at the locus of the free shear layer and the side wall
layer. On the other hand, it remains much higher outside of these regions. Hence, structures are
quasi-two-dimensional over a greater range of scales, down to smaller ones outside the shear layers
and three-dimensional turbulence appears concentrated in the side layer and to a slightly lower
extent, to the free shear layer. This suggests that three-dimensionality arises out of direct energy
transfer from the mean shear flow to scales at the scale of the shear layers (§) or lower. This is
supported by the argument that the high level of energy imparted to them by the shear makes
the turnover time at this scale (~ 6/(Up(r)), with r = r, or r = R for the free shear and side
layers respectively) significantly smaller than the two-dimensionalisation time (~ (6B2/p)(a/d)?).
Indeed, the ratio of former to the latter expresses as N(&/a)?, which is significantly smaller than
unity in both cases.

Conversely, away from the shear layers, the mean flow does not inject energy into the small
scales. Since the recent experiments on MHD turbulence without a strong mean flow of [Baker et al.
(2018) suggest that even in the presence of moderate three-dimensionality, the energy cascades
upscale, the flow is dominated by larger vortices for which two-dimensionalisation is more efficient.
Unlike in these experiments, however, the presence of vorticity streaks in the wake of these vortices
suggests that an additional transfer mechanism less favourable to large scales may be at play in
the outer region of MATUR.
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Figure 22: The distribution of the average relative turbulent intensity (u,u. ) . ¢ with (f.)s, when
Re = 15972, for the different radial values of {f.)¢ shown on figure 2I|(b).

3.9 Componentality

To understand the occurrence of the third component velocity fluctuations not driven by global
Ekman pumping, we show instantaneous distributions of axial velocities in the cross-section 6 =
0 (see figure a)). One can see that the turbulent fluctuations are localized within the layer
near the side wall. Moreover, this three-dimensionality contaminates the entire height of the
vessel, from the bottom to the top of the Hartmann layers. As conveyed in figure b,c), the
distributions of instantaneous vertical velocity (including intensity and topological structure) are
different on the plane near the top wall (z = 0.8) and near the bottom wall (z = 0.2). This further
confirms that the wall side layer is the region where practically all strong three-dimensionality
is concentrated. Since the same regions characterise the appearance of three-dimensionality and
three-componentality, the question of how the two are linked naturally arises. To gain insight into
it, we have sought a relationship between the local energy in the fluctuations of the third velocity
component (u?); . g and the cutoff frequency, which provides a measure of three-dimensionality
across the turbulent spectrum. These quantities for several cases are plotted on figure The
collapse of the data into a single curve shows that the degree of the two-dimensionality of the
energy spectrum is tightly linked to the amount of energy in the third component. (u?); .
is therefore solely determined by the true interaction parameter IV; and follows a simple power
law, d.e. (u2); .0 = 2 x 1077(f.),;>*%°. The maximum relative error between the fitting curve
and the numerical data is lower than 2.2%. As such, as increasing the magnetic field drives the
flow towards a quasi-two-dimensional, two-component state, both the transitions to the quasi-
two-dimensional state and to the two-component state are progressive and controlled by the true
interaction parameters through scalings f. ~ 0.063N37, and (u?); . 4 ~ 0.126 x 10~"N,; %92, Tt is
noteworthy that this scaling implies a different dependence on Ha (u?); . 9 ~ Ha=*%* than that
for B! = nR2a((u?); . ¢)» ~ Ha=57¢. Since the two quantities only differ though radial averaging,
the difference can be understood by noticing that if fluctuations are confined to a thin radial region
of thickness d3p then E. ~ mR?a(d3p/R)(uw2)t.2.0.65,, Where the subscript d3p indicates averaging
over that region. Under this assumption, it would follow that d3p/R ~ Ha =32 (finding the scaling
with Re would require extra simulations over a wider range of its values). The corresponding region
is much thinner than the free shear layer and the wall side layer (see section 3.6). However the
radial profiles of vertical velocity fluctuations (Fig. suggest that a sharp peak of vertical
velocity fluctuations develops within the later, that would explain this scaling. This suggests that
the dominant contribution to the three-component turbulence in the regimes explored in this paper
arises out of a very thin region of thickness within the wall side layer.
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4 Conclusions

The present study reports three-dimensional direct numerical simulations of electrically driven
MHD turbulent shear flows in the MATUR experiment (Messadek & Moreau, [2002). The numerical
results, which are obtained in a configuration where current is injected far from side walls (at a
radius of r. = 5.4) and in regimes where the Hartmann layers remain laminar (18.2 < R < 290.4),
provide accurate solutions in excellent agreement, not only with the experimental data, but also
with the 2D PSM model and other theoretical approaches. Crucially, the DNS, provide access to
the detail of the three-dimensional dynamics. This enabled us to identify the location and the
nature of three-dimensional structures, and the role they play in the overall flow dynamics.

The simulations reproduce typical flow features observed in the experiment and predicted by
the theories. The velocity field is dominated by a limited number of large coherent structures
formed at the unstable shear layer. Their dynamics and the inner structure of the layers led us
to identify two changes in behaviour when the ratio of two-dimensional inertia to the Lorentz
force R = Re/Ha was varied: from R ~ 121, small scale turbulence appears in the wall side
layer, a value that is consistent with previous findings in other configurations with curved walls
(Zhao & Zikanovl [2012)). For R > 145.2, that layer separates from the wall, most likely under
the influence fluctuations induced by the large vortices in the outer region. The thickness dgw of
the wall side layers follows a sequence following these changes of regime: in the laminar regime, it
converges to the asymptotic scaling dgw ~ (ReH a®/ 2)~1 theoretically predicted by [Pothérat et al.
(2000), but becomes much thicker with a scaling of dsw ~ (ReHa=3/2)7942 following the onset of
three-dimensional turbulence.

In addition,the energy spectra exhibit a significant dependence on R: for 18.2 < R < 60.5,
the turbulent spectrum possesses an inertial range with a E(f) ~ f~3 power law. For R > 121,
inertia plays a greater role, the spectra show a transition frequency between low frequency ranges
where E(f) ~ f~5/3 and high frequency ranges E(f) ~ f~2, similar to the split between inverse
energy and direct enstrophy cascades found in quasi-2D MHD flows by |Sommeria) (1986). The
dynamics of the free shear layer seen in the experiments was also recovered as DNS showed that
the thickness of the free shear layer varies nearly as the vortex size does (scaling as R'/?3 and
RIL/ 2'4, respectively).

Detailed analysis of the secondary flow confirmed the phenomenology identified by [Pothérat
et al.| (2000} |2005) whereby for N < 1, the global recirculation associated to the main azimuthal
flow induces a flux of angular momentum towards the wall side layer. The ensuing thinning of
that layer is responsible for an increased dissipation. The intensity of the recirculation matches
closely the PSM prediction. At statistical equilibrium, the energy associated to average axial flow
component was found to scale as E™ ~ Ha %% both in PSM and the DNS, confirming that it is
driven by this main recirculation. The energy associated to the fluctuating part of this component
was on the other hand underestimated by PSM compared to the DNS for N < 1. The discrepancy
originates in the small scale turbulence produced in the wall side layer. This effect was found
to incur a significant increase in wall shear stress and in turn a reduction in the global angular
momentum, a phenomenon that previous theories could not capture. The extra dissipation is also
a possible cause for the shortened transient time observed when the flow is initiated at rest.

A major benefit of the 3D DNS was to afford a detailed scrutiny of the three-dimensional effects.
The main source of three-dimensionality was found in the small-scale turbulence fed by the mean
shear in the free shear layer and the wall side layer. Outside of these regions, turbulent spectra
still exhibit a high frequency range of three-dimensional structures and a low frequency range of
quasi-two dimensional ones, as predicted by [Sommeria & Moreaul (1982) and found in turbulence
driven by a crystal of vortices (Klein & Pothérat} [2010). As in this case, the frequency separating
these two ranges scales with the true interaction parameter Ny, albeit with a different exponent
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as f ~ N3 instead of f ~ N2/3. The difference is due to the presence of a strong background
flow and when converted into wavenumbers, both experiments exhibit the same cutoff scaling of
ke ~ Ntl/3 (Baker et al.l |2018), as predicted by [Sommeria & Moreau| (1982). This results shows
that the existence of a cutoff wavelength separating three and quasi-two dimensional turbulent
fluctuations extends to sheared turbulence. As such, this result and the associated scaling can be
expected to hold in a wider class of flows including duct flows.

Simultaneous access to all three velocity components further enabled us to establish a link
between the local dimensionality of the turbulence (measured by the cutoff frequency f.) and its
componentality, measured by the energy in the axial component of the velocity fluctuations. While
the latter decreases monotonically with the former, and both are controlled by the true interaction
parameter through simple power laws (u/2); , g ~ 0.126Nt_0'92 and (f.)p ~ 0.063N?-37. Unlike for
the dimensionality scaling (f.), no prediction exists for the dimensionality scaling ((u2); ..4), so
this raises the question of its applicability to other types of quasi-static MHD turbulence, beyond
shear flow turbulence or even beyond this particular experiment. The question is all the more
relevant as in the regime explored here, three-component turbulence was found almost exclusively
within a very thin region of the wall side layer. As such, a further step in understanding the link
between componentality and dimensionality could target flows where three-dimensional turbulence
is more broadly distributed.

The authors acknowledge the support from NSFC under Grants 51636009, #51606183 and
CAS under Grants §XDB22040201, 1QYZDJ-SSW-SLHO014. The authors also greatly appreciate
the anonymous reviewers for their comments, which significantly helped to improve the manuscript.

Declaration of Interests. The authors report no conflict of interest.

References

ALBOUSSIERE, T, USPENSKI, V & MOREAU, R 1999 Quasi-two-dimensional mhd turbulent shear
layers. Experimental Thermal and Fluid Science 20, 19-24.

ALEXAKIS, A. & BIFERALE, L. 2018 Cascades and transitions in turbulent flows. Physics Reports
767-769, 1-101.

BAKER, NATHANIEL T, POTHERAT, ALBAN & DAVOUST, LAURENT 2015 Dimensionality, sec-
ondary flows and helicity in low-rm mhd vortices. Journal of Fluid Mechanics 779, 325-350.
BAKER, NATHANIEL T, POTHERAT, ALBAN, DAvOUST, LAURENT & DEBRAY, FRANCOIS 2018
Inverse and direct energy cascades in three-dimensional magnetohydrodynamic turbulence at

low magnetic reynolds number. Physical review letters 120 (22), 224502.

Davipson, PA 1997 The role of angular momentum in the magnetic damping of turbulence.
Journal of Fluid Mechanics 336, 123-150.

DavIDSON, PA & POTHERAT, A 2002 A note on bodewadt—hartmann layers. European Journal
of Mechanics-B/Fluids 21 (5), 545-559.

ECKERT, S, GERBETH, G, WITKE, W & LANGENBRUNNER, H 2001 Mhd turbulence measure-
ments in a sodium channel flow exposed to a transverse magnetic field. International journal of
heat and fluid flow 22 (3), 358-364.

KLEIN, R & POTHERAT, ALBAN 2010 Appearance of three dimensionality in wall-bounded mhd
flows. Physical review letters 104 (3), 034502.

KriukiN, A, A & KOLESNIKOV, YU. B 1989 Liquid Metal Magnetohydrodynamics, , vol. 10.
Kluwer.



L. Chen et al. DNS of MATUR

KoBavasHi, HirRoMmicHI 2006 Large eddy simulation of magnetohydrodynamic turbulent channel
flows with local subgrid-scale model based on coherent structures. Physics of Fluids 18 (4),
045107.

KoBAvasHI, HirRoMICHI 2008 Large eddy simulation of magnetohydrodynamic turbulent duct
flows. Physics of Fluids 20 (1), 015102.

KoLEsNIKOV, YU B & TSINOBER, AB 1974 Experimental investigation of two-dimensional tur-
bulence behind a grid. Fluid Dynamics 9 (4), 621-624.

MESSADEK, KARIM & MOREAU, RENE 2002 An experimental investigation of MHD quasi-two-
dimensional turbulent shear flows. Journal of Fluid Mechanics 456, 137-159.

MorraTT, H. K. 1967 On the suppression of turbulence by a uniform magnetic field. Journal of
Fluid Mechanics 28 (3), 571-592.

MORESCO, P & ALBOUSSIERE, T 2003 Weakly nonlinear stability of Hartmann boundary layers.
European Journal of Mechanics-B/Fluids 22 (4), 345-353.

MORESCO, PABLO & ALBOUSSIERE, THIERRY 2004 Experimental study of the instability of the
hartmann layer. Journal of Fluid Mechanics 504, 167-181.

N1, MiNG-J1u, MUNIPALLI, RAMAKANTH, HUANG, PETER, MORLEY, NEIL B & ABDOU, MoO-
HAMED A 2007 A current density conservative scheme for incompressible MHD flows at a low
magnetic Reynolds number. part ii: On an arbitrary collocated mesh. Journal of Computational
Physics 227 (1), 205-228.

POTHERAT, ALBAN & DyMKOU, VITALI 2010 Direct numerical simulations of low-Rm MHD
turbulence based on the least dissipative modes. Journal of Fluid Mechanics 655, 174-197.

POTHERAT, ALBAN & KLEIN, Rico 2014 Why, how and when MHD turbulence at low Rm
becomes three-dimensional. Journal of Fluid Mechanics 761, 168-205.

PoTHERAT, A. & KORNET, K. 2015 The decay of wall-bounded MHD turbulence between walls,
at low Rm. Journal of Fluid Mechanics 683, 605—636.

POTHERAT, ALBAN & SCHWEITZER, JEAN-PHILIPPE 2011 A shallow water model for magneto-
hydrodynamic flows with turbulent Hartmann layers. Physics of Fluids 23 (5), 055108.

POTHERAT, A, SOMMERIA, J & MOREAU, R 2000 An effective two-dimensional model for mhd
flows with transverse magnetic field. Journal of Fluid Mechanics 424, 75-100.

POTHERAT, ALBAN, SOMMERIA, JOEL & MOREAU, RENE 2005 Numerical simulations of an
effective two-dimensional model for flows with a transverse magnetic field. Journal of Fluid
Mechanics 534, 115-143.

ROBERTS, PAUL HARRY 1967 An introduction to magnetohydrodynamics, , vol. 6. Longmans Lon-
don.

SCHUMANN, U. 1976 Numerical simulation of the transition from three- to two-dimensional tur-
bulence under a uniform magnetic field. Journal of Fluid Mechanics 74 (1), 31-58.

SOMMERIA, JOEL 1986 Experimental study of the two-dimensional inverse energy cascade in a
square box. Journal of Fluid Mechanics 170, 139-168.

SOMMERIA, JOEL & MOREAU, RENE 1982 Why, how, and when, MHD turbulence becomes two-
dimensional. Journal of Fluid Mechanics 118, 507-518.

STELZER, ZACHARIAS, CEBRON, DAVID, MIRALLES, SOPHIE, VANTIEGHEM, STIIN, NOIR,
JEROME, SCARFE, PETER & JACKSON, ANDREW 2015a¢ Experimental and numerical study
of electrically driven magnetohydrodynamic flow in a modified cylindrical annulus. i. base flow.
Physics of Fluids 27 (7), 077101.

STELZER, ZACHARIAS, MIRALLES, SOPHIE, CEBRON, DAVID, NOIR, JEROME, VANTIEGHEM,
STIIN & JACKSON, ANDREW 20150 Experimental and numerical study of electrically driven
magnetohydrodynamic flow in a modified cylindrical annulus. ii. instabilities. Physics of Fluids
27 (8), 084108.

TABELING, P & CHABRERIE, JP 1981 Magnetohydrodynamic Taylor vortex flow under a trans-



L. Chen et al. DNS of MATUR

verse pressure gradient. Physics of Fluids 24 (3), 406-412.

ZHAO, YURONG & ZIKANOV, OLEG 2012 Instabilities and turbulence in magnetohydrodynamic
flow in a toroidal duct prior to transition in Hartmann layers. Journal of Fluid Mechanics 692,
288-316.

183,1 Bot



	generic
	2102.01721
	1 Introduction
	2 Problem statement and formulation
	2.1 Flow configuration and mathematical formulation
	2.2 Numerical algorithm and validation
	2.3 Grid details

	3 Results and discussion
	3.1 Validation of velocity profile at Ha1 and N1
	3.2 General behaviour of the flow
	3.3 Detailed evolution of the flow
	3.4 Spectral analysis
	3.5 Secondary flow
	3.6 Boundary layers
	3.7 Angular momentum and wall shear stress
	3.8 Three dimensionality
	3.9 Componentality

	4 Conclusions


