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19 ABSTRACT 

20 Exercise can induce numerous health benefits that can reduce the risk of chronic diseases and 

21 all-cause mortality, yet a significant percentage of the population do not meet minimal 

22 physical activity guidelines. Several recent studies have shown that passive heating can 

23 induce numerous health benefits, many of which are comparable to exercise, such as 

24 improvements to cardiorespiratory fitness, vascular health, glycaemic control and chronic 

25 low-grade inflammation. As such, passive heating is emerging as a promising therapy for 

26 populations who cannot perform sustained exercise or display poor exercise adherence. There 

27 appears to be some overlap between the cellular signalling responses that are regulated by 

28 temperature and the mechanisms that underpin beneficial adaptations to exercise, but detailed 

29 comparisons have not yet been made. Therefore, the purpose of this mini review is to assess 

30 the similarities and distinctions between adaptations to passive heating and exercise. 

31 Understanding the potential shared mechanisms of action between passive heating and 

32 exercise may help to direct future studies to implement passive heating more effectively and 

33 identify differences between passive heating and exercise induced adaptations. 

34 

35 Key words: heat, therapy, exercise, health, adaptation 
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37 Introduction 

38 Physical inactivity increases the risk of several chronic diseases, such as cardiovascular 

39 disease, type 2 diabetes and obesity (4). In contrast, regular exercise elicits a variety of health 

40 benefits and attenuates traditional cardiovascular disease risk factors, including blood 

41 pressure and body weight/adiposity, as well as improved blood lipid profiles, insulin 

42 sensitivity and cardiorespiratory fitness (43). More recently, this understanding has extended 

43 to include non-traditional factors such as antiatherogenic effects propagated by functional and 

44 structural adaptations within the vasculature (18) and the anti-inflammatory effects of 

45 exercise (48). Despite the overwhelming evidence for its efficacy, exercise is typically not 

46 well adhered to, with common self-reported barriers including lack of motivation, time, poor 

47 physical fitness, and low self-esteem (53). However older, populations also avoid exercise 

48 due to an increased fear of injury and pain (35). As such, alternative or adjunct therapies 

49 capable of eliciting similar systemic health benefits have considerable clinical implications 

50 and warrant further investigation. 

51 In recent years there has been a resurgence of interest in the potential health benefits of 

52 passive heating or 'thermal therapy’, with some authors promoting heat therapy as a potential 

53 alternative to exercise for populations with physical disabilities and those who find adherence 

54 to exercise difficult (7, 26). Thus far, a range of different methods of passive heating have 

55 been used such as sauna-bathing, hot water immersion, water-perfused suits or microwave 

56 diathermy. Epidemiological studies from Finland, where sauna bathing is common, have 

57 demonstrated that regular sauna bathing and a high level of cardiorespiratory fitness (argued 

58 to be a surrogate of regular physical activity) independently reduce the risk of death by 

59 cardiovascular disease, but this risk is further reduced by a combination of high 

60 cardiorespiratory fitness and regular sauna bathing (33). If the protective effects of these 

61 therapies are complementary, it raises the question as to ‘how’ these protective effects are 
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62 conferred and to what extent these mechanisms overlap. A growing number of studies have 

63 begun to elucidate the mechanisms by which the protective effects of thermal therapy may be 

64 conferred, and the reader is directed to reviews on these topics (for example 9, 25, 28). Given 

65 that studies of passive heating are still in their relative infancy, understanding the potential 

66 shared mechanisms of action with exercise may help to direct future studies and the 

67 implementation of passive heating more effectively. In order to focus on the potential overlap 

68 of mechanisms this review will primarily draw upon literature from non-diseased populations 

69 and will only make reference to other populations where useful to do. The purpose of this 

70 mini review is to a) assess the similarity and distinctions between the cardiovascular and 

71 metabolic health benefits induced by passive heating and exercise, b) to highlight any areas 

72 by which passive heating  may lack some of the benefits of exercise and c) to discuss 

73 important areas of future study. 

74 

75 Cardiorespiratory Fitness 

76 Cardiorespiratory fitness (typically measured by maximal oxygen uptake, [VO2max]) is a 

77 strong predictor of all-cause mortality and death by cardiovascular disease (52), with  some  

78 authors suggesting that cardiorespiratory fitness is in fact a better predictor of all-cause 

79 mortality than established cardiovascular disease risk factors (44). Despite its apparent 

80 importance, a limited number of studies have reported the cardiorespiratory fitness responses 

81 to thermal therapy, but results thus far are positive,  with several studies reporting 

82 improvements of  ~2-3 mL/kg/min over 6-8 weeks (2, 24, 40).  

83 Given that the beneficial health effects of exercise are thought to be due to the diverse 

84 physiological adaptations that underpin improved cardiorespiratory fitness, the precise nature 

85 of adaptations to both passive heating and exercise should be carefully considered. Even 

86 when focussing solely on aerobic exercise, the mechanisms of adaptation are incredibly 
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87 broad, and span both the cardiovascular and musculoskeletal systems (see Figure 1). 

88 Following aerobic training in untrained populations, increases in cardiac output and stroke 

89 volume are considered to be amongst the largest contributing adaptations to improvements in 

90 cardiorespiratory fitness (50) and these adaptations are thought to be due to increases in left 

91 ventricular dimensions, increased myocardial contractility and an increased blood volume 

92 (23). There is also a wealth of evidence from the heat acclimation literature that heating 

93 induces an expansion of plasma volume (19), which contributes to enhanced 

94 cardiorespiratory fitness via subsequent increases in blood volume, cardiac filling and stroke 

95 volume (22). Somewhat surprisingly, few studies documenting increased cardiorespiratory 

96 fitness following passive heating have assessed haematological or cardiac adaptations and 

97 this warrants further consideration. Given the dearth of evidence from longitudinal studies, 

98 discussion of the acute physiological responses to passive heating and exercise may help to 

99 understand the ‘potential’ chronic adaptations. 

100 During maximal aerobic exercise cardiac output can increase by ~18-25 L/min while more 

101 modest increases up to ~10 L/min are observed when core temperature is increased ~1.5°C 

102 during passive heating using a water perfused suit (16). However, it should be noted that 

103 there will be subtle differences in the acute physiological responses dependent upon the 

104 method of heating; for example water immersion will cause an increase in hydrostatic 

105 pressure and subsequent preload (38). During exercise the increase in cardiac output 

106 primarily facilitates an increase in blood flow to the active muscle, while during passive 

107 heating a significantly greater proportion of blood is distributed to the skin to facilitate 

108 thermoregulation (10). The increase in cardiac output during heating is primarily facilitated 

109 by an increased heart rate, which has been shown to increase by ~20-40 beats·min-1 

110 depending on the duration and intensity of the heat stimulus, yet this is considerably less than 

111 that observed during moderate intensity exercise (15, 54). Furthermore, the increase in heart 

5 



     

    

   

 

    

   

      

  

      

   

        

     

 

 

   

     

  

     

     

   

      

        

    

      

         

112 rate during heating does not coincide with a concomitant increase in stroke volume, as is the 

113 case during exercise (11). As such, thermal therapy does induce some cardiac stress, albeit 

114 modest in comparison to exercise. Nevertheless, in heart failure patients, the magnitude of 

115 stimulus appears sufficient to improve cardiac function and cardiorespiratory fitness. For 

116 example, daily sauna bathing (15-20 minutes at 60°C) for 4 weeks has been shown to 

117 improve cardiorespiratory fitness in heart failure patients by ~3 mL/kg/min (40). This is 

118 similar to what is seen with moderate intensity exercise interventions in heart failure patients, 

119 but lower than the reported benefits seen with higher intensity exercise (increase of ~6 

120 mL/kg/min) (58). Perhaps more importantly for this particular cohort, Wisløff et al., only 

121 reported beneficial left ventricular remodelling and improved cardiac function in the higher 

122 intensity exercise group, suggesting that a relatively increased degree of cardiac stress may 

123 be required for subsequent beneficial cardiac adaptations. However, it remains unclear if 

124 cardiac adaptations following passive heating extend to populations without severe 

125 limitations to their cardiac function and this should be investigated further. 

126 Two recent studies in healthy populations have shown that passive heating, consisting of 

127 thrice weekly 30-50-minute sessions for 6-8 weeks, improved cardiorespiratory fitness to a 

128 similar extent (~5-8%) as time matched moderate intensity aerobic exercise (2, 24). However, 

129 cardiorespiratory fitness was not the primary outcome variable upon which the sample size 

130 was calculated in these studies and therefore larger studies are required before it can be 

131 firmly concluded that passive heating and exercise induce similar adaptations to aerobic 

132 fitness. Interestingly, Hesketh et al., reported adaptations within the skeletal muscle that 

133 likely contributed to the observed increase in cardiorespiratory fitness (as described in Figure 

134 1), but there were some differences between the response to exercise and passive heating. 

135 Specifically, passive heating enhanced muscle endothelial nitric oxide synthase (eNOS) 

136 content and capillary density to a similar extent as exercise, but only exercise enhanced 
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137 markers of mitochondrial density (24). However, the thermal stimulus employed was 

138 relatively low (40-50 min heat chamber exposure at 40°C and ~40% humidity), and in fact 

139 core temperature was not elevated by passive heating but was significantly increased by the 

140 exercise intervention. The current available evidence suggests that angiogenic adaptations to 

141 passive heating require a relatively lower heat stimulus than mitochondrial adaptations, 

142 which are not always evident (24, 32) and appear to require a more prolonged increase in 

143 intramuscular temperatures which can be achieved more easily with local than whole body 

144 heating (20). Taken together, passive heating does appear to improve cardiorespiratory fitness 

145 in healthy sedentary and diseased populations, but as with exercise, the exact nature and 

146 extent of these adaptations is likely determined by the duration, intensity, mode and location 

147 of heating. For a detailed review of the skeletal muscle adaptations to heat therapy the reader 

148 is directed to the recent review by Kim et al., (31). 

149 

150 Vascular health 

151 It is widely accepted that most cardiometabolic diseases are characterised by vascular 

152 dysfunction, which can include impaired endothelial function, arterial stiffening and 

153 increased arterial wall thickness of both peripheral and central arteries. The protective effects 

154 of exercise on the vasculature have been extensively reviewed elsewhere (18) and recent  

155 evidence suggest that thermal therapy may also elicit a range of vascular benefits (10). 

156 In response to exercise training, it is thought that there is an initial improvement in 

157 endothelial function, as measured by brachial artery flow-mediated dilation (FMD), which 

158 over time may be superseded by structural adaptations, such as an increased lumen diameter 

159 and reduced arterial wall thickness (56). Several studies have shown that passive heating can 

160 also enhance brachial artery endothelial function (2, 7, 9), however, it remains unclear 

161 whether longer-term heat therapy can elicit any structural remodelling to peripheral vessels. 

7 



     

   

    

   

       

        

    

   

    

    

     

        

 

     

  

     

    

 

     

   

  

      

     

   

162 Brunt et al., have provided the most robust evidence of systemic vascular adaptation 

163 following thermal therapy; showing improvements in peripheral artery endothelial function 

164 and compliance, alongside reductions in central artery stiffness and wall thickness. 

165 Encouragingly, this comprehensive work indicates that the magnitude of peripheral and 

166 central artery adaptations following heat therapy are comparable to those typically observed 

167 following exercise training. Indeed, Bailey demonstrated that for a similar acute increase in 

168 core temperature (0.6-0.8°C) per session, 8 weeks of passive heating elicited the same 

169 improvement in brachial artery FMD (1.7%) as continuous moderate intensity exercise 

170 training. Nevertheless, it is probable that both the magnitude and time course of adaptation 

171 will differ between peripheral and central vessels, and likely be influenced by the magnitude 

172 of heat stress. For instance, the considerable vascular adaptations reported by Brunt et al., 

173 were in response to a 90 min protocol (aiming to increase core temperature by 1.5°C), while 

174 others (2, 9) used a 30 min protocol that increased core temperature by only ~0. 6°C.  

175 Episodic increases in shear stress is an essential stimulus for enhanced endothelial function 

176 (18). Indeed, removing shear stress via the use of an inflatable cuff prevents the beneficial 

177 effects of both exercise (56) and passive heating (9) on endothelial function. Interestingly, 

178 there is evidence that an acute bout of passive heating can induce greater shear stress than 

179 dynamic exercise (55), however, this finding is likely dependent upon the individual nature of 

180 each stressor (i.e. magnitude and duration of heat stress and intensity of exercise) and direct 

181 comparisons should be carefully considered within this specific context. Shear stress  is  

182 thought to induce a cascade of signalling factors, including eNOS, VEGF, and multiple heat 

183 shock proteins (HSPs), which contribute to angiogenesis following exercise (18) and passive 

184 heating (10). Recent evidence suggests that nitric oxide appears essential to angiogenic 

185 adaptations following passive heating (7, 8), however, the role of other circulating factors 
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186 including heat shock proteins and VEGF appears less clear and indeed in some cases display 

187 distinct responses to exercise and heat (41, 42). 

188 

189 Cardiometabolic health 

190 Regular exercise elicits a range of beneficial effects on cardiometabolic health, with previous 

191 research historically focussing on improvements to classic cardiovascular risk factors, such as 

192 blood pressure, insulin sensitivity, blood lipid profiles and fat mass (43). 

193 In response to acute exercise (49) and passive heating (39) glucose tolerance is reduced, but 

194 once these interventions are repeated for several weeks, glucose tolerance is increased. One 

195 of the earliest studies of heat therapy reported daily hot water immersion (38°C – 41°C) for 3 

196 weeks reduced fasting blood glucose and glycated haemoglobin (HbA1c) (28). Several 

197 subsequent studies have since reported reductions in fasting glucose and insulin concentration 

198 (14, 25, 47), and improved glucose tolerance (for example 13, 23). Some studies have also 

199 reported beneficial changes in blood lipid profiles following heat therapy in healthy active 

200 (19) and sedentary obese populations (13) that are similar in magnitude to what is reported by 

201 large scale meta-analyses of aerobic exercise interventions (30). Relatively large-scale meta-

202 analyses including 54 randomized control trials in normotensive and hypertensive 

203 populations have shown that regular aerobic exercise chronically reduces systolic and 

204 diastolic blood pressure by 3.8 and 2.6 mmHg respectively (57). In comparison, reductions in 

205 blood pressure are also consistently reported following chronic thermal therapy. Importantly, 

206 these reductions may indeed be of a larger magnitude than is seen following exercise training, 

207 with some studies reporting decreases of systolic and diastolic blood pressure in the region of 

208 ~10 and ~5 mmHg respectively (1, 6, 13, 25). Further studies are required to investigate these 

209 potential effects in more detail and in conjunction with other complimentary therapies such as 

210 dietary and exercise interventions. 
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211 Sedentary behaviour or physical inactivity can lead to chronic low-grade inflammation, 

212 characterised by 2-4-fold elevations in inflammatory markers, such as C-reactive protein 

213 (CRP), TNF-α and IL-6, which are thought to underpin several aspects of metabolic 

214 dysfunction including insulin resistance and atherosclerosis (51). For example, TNFa has 

215 been shown to directly induce insulin resistance (29), is actively involved in the development 

216 of atherosclerotic lesions (5) and also increases the production of reactive oxygen species 

217 which are thought to play a role in endothelial dysfunction (37). Exercise can reduce chronic 

218 low-grade inflammation via a reduction in visceral fat mass and subsequent reduction in 

219 adipokine release from adipocytes and via the transient induction of an anti-inflammatory 

220 state with each bout of exercise (17). During exercise, IL-6 is released from the skeletal 

221 muscle and is thought to drive the subsequent increase in anti-inflammatory cytokines, such 

222 as IL-1Ra, IL-4 and IL-10, and reduce the resting concentration of pro-inflammatory 

223 mediators such as CRP and TNF-α (48). Multiple passive heating studies have consistently 

224 reported an increase in the circulating concentration of IL-6, while the evidence for acute 

225 elevations in other inflammatory mediators such as HSPs is somewhat equivocal (26). 

226 However, when exercise and passive heating are matched for the increase in core 

227 temperature, the increase in circulating IL-6 is 3-fold greater following exercise (15). This 

228 may be important as the modest increases in IL-6 observed during shorter bouts of exercise 

229 (30-45 min) may not be sufficient to induce downstream potent anti-inflammatory mediators 

230 such as IL-10 and IL-4 (12) which are important for improving insulin sensitivity and glucose 

231 metabolism (27). Future studies should attempt to establish an exercise dose response for a 

232 wider array of anti-inflammatory mediators. 

233 Despite some convincing epidemiological data supporting the anti-inflammatory effects of 

234 thermal therapy (34), there have been few controlled trials assessing chronic inflammatory 

235 responses to passive heating and indeed some of these were of only a short duration (~2 
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236 weeks) (25). In this regard, longer term studies should be encouraged. Generally, the most 

237 beneficial effects have been seen in diseased populations with elevated levels of chronic 

238 inflammation (14, 46), which is indeed similar to what is seen with exercise interventions (3). 

239 Interestingly, Ely et al., reported no change in body composition or BMI following passive 

240 heating, suggesting that the anti-inflammatory effects are more likely due to the transient 

241 induction of an anti-inflammatory state rather than a reduction in adipose tissue per se. 

242 In a broader context it is now widely appreciated that improvements in cardiovascular and 

243 metabolic health can be seen in the absence of changes in fat mass (21). However, weight 

244 loss remains an important goal for many who exercise and often represents a significant 

245 barrier to exercise whether this be due to low self-esteem regarding their body image or due 

246 to the perceived difficulty of exercising while being overweight  (53). From a simplistic  

247 perspective, weight loss is dependent on a deficit of energy intake versus energy expenditure 

248 and, when matched for the thermal load and duration, exercise results in ~10 times greater 

249 energy expenditure than passive heating (15). Indeed, Bailey et al., reported that 8 weeks of 

250 moderate intensity exercise reduced body weight while time matched hot water immersion 

251 did not (2). Initial evidence also suggests that gut hormone and hunger hormone responses 

252 are not altered in response to passive heating, suggesting that as an independent therapy, 

253 passive heating is likely to have minimal impact on long-term weight management (36). In 

254 populations for whom weight loss is particularly important, it may be beneficial to consider 

255 passive heating as a complimentary therapy to existing strategies of exercise and / or diet 

256 modification. 

257 

258 Conclusion and future directions 

259 There is considerable overlap between the protective effect of passive heating and exercise, 

260 with beneficial adaptations reported in cardiorespiratory fitness, vascular function and 
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261 metabolism. Yet, heating does not appear to confer all the important benefits of exercise and 

262 potentially not to the same degree in all cases (see Figure 2 for a summary). It is important to 

263 consider that our understanding of the health benefits of exercise has developed over several 

264 decades, providing considerable detail and nuance to how different populations respond to 

265 different forms of exercise, while the study of passive heating is still in its relative infancy. In 

266 this regard exercise should be considered as the primary route for maintaining and improving 

267 health. Having said this, the health benefits of passive heating have been observed in healthy 

268 sedentary and some diseased populations, supporting the supposition that passive heating 

269 may be a promising therapy in those who display poor exercise adherence. In this regard, 

270 research should continue to focus on those specific populations who may benefit most, and a 

271 wide range of populations remain unstudied. It will be hugely important to investigate the 

272 risks and potential adverse outcomes associated with passive heating. These remain relatively 

273 unexplored, but include potential heat illness, orthostatic intolerance and an increased risk of 

274 falling, especially in older individuals (28, 45). Similarly, the physiological basis of these 

275 events and any subsequent mitigating strategies should be developed as they have been with 

276 exercise. 

277 A limitation of the current comparison between passive heating and exercise is that passive 

278 heating interventions are often designed to induce the largest tolerable dose of heating and 

279 then subsequently compared to a bout of exercise. Although often similar in terms of the time 

280 required, significantly larger volumes of exercise could be tolerated (motivation and time 

281 availability notwithstanding). Future studies should also consider the perceptual stress and 

282 enjoyment of different interventions with a view to better understanding the potential impact 

283 on long-term adherence. If passive heating is to be promoted as an alternative to exercise, 

284 future studies should take a systematic approach to understanding the optimal method and 

285 dose responses for different health related adaptations. These studies should carefully 
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286 consider different durations, frequencies, intensities, mode of heating (i.e. sauna vs. water 

287 immersion) and degree of body exposure (i.e. whole-body vs. peripheral), as each factor may 

288 well impact subsequent chronic adaptations. Finally, it remains to be seen whether passive 

289 heating may be used in conjunction with exercise, either before or after, to enhance or 

290 supplement the subsequent health benefits of either intervention when performed in isolation. 

291 
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498 Figure Legends 

499 

500 Figure 1. Summary of the determinants cardiorespiratory fitness measured by of VO2max and 

501 the ‘potential’ influence of passive heating on those determinants. a-vO2diff is the difference 

502 in oxygen content between a –arterial blood and v –venous blood. 

503 Scientific illustrations produced by Servier Medical Art. 

504 

505 Figure 2. Summary of chronic adaptations to exercise and passive heating. Where evidence 

506 is indicted as ‘mixed’ this may be due different results observed dependent upon the 

507 population studied or the nature of the heating stimulus. Scientific illustrations produced by 

508 Servier Medical Art. 
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