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Abstract: The use of nutritional interventions for managing diabetes is one of the effective strategies 
aimed at reducing the global prevalence of the condition, which is on the rise. Almonds are the 
most consumed tree nut and they are known to be rich sources of protein, monounsaturated fatty 
acids, essential minerals, and dietary fbre. Therefore, the aim of this review was to evaluate the 
effects of almonds on gut microbiota, glycometabolism, and infammatory parameters in patients 
with type 2 diabetes. Methods: This systematic review and meta-analysis was carried out according 
to the preferred reporting items for systematic review and meta-analysis (PRISMA). EBSCOhost, 
which encompasses the Health Sciences Research Databases; Google Scholar; EMBASE; and the 
reference lists of articles were searched based on population, intervention, control, outcome, and 
study (PICOS) framework. Searches were carried out from database inception until 1 August 2021 
based on medical subject headings (MesH) and synonyms. The meta-analysis was carried out with 
the Review Manager (RevMan) 5.3 software. Results: Nine randomised studies were included in 
the systematic review and eight were used for the meta-analysis. The results would suggest that 
almond-based diets have signifcant effects in promoting the growth of short-chain fatty acid (SCFA)-
producing gut microbiota. Furthermore, the meta-analysis showed that almond-based diets were 
effective in signifcantly lowering (p < 0.05) glycated haemoglobin (HbA1c) levels and body mass 
index (BMI) in patients with type 2 diabetes. However, it was also found that the effects of almonds 
were not signifcant (p > 0.05) in relation to fasting blood glucose, 2 h postprandial blood glucose, 
infammatory markers (C-reactive protein and Tumour necrosis factor α, TNF-α), glucagon-like 
peptide-1 (GLP-1), homeostatic model assessment of insulin resistance (HOMA–IR), and fasting 
insulin. The biological mechanisms responsible for the outcomes observed in this review in relation to 
reduction in HbA1c and BMI may be based on the nutrient composition of almonds and the biological 
effects, including the high fbre content and the low glycaemic index profle. Conclusion: The fndings 
of this systematic review and meta-analysis have shown that almond-based diets may be effective in 
promoting short-chain fatty acid-producing bacteria and lowering glycated haemoglobin and body 
mass index in patients with type 2 diabetes compared with control. However, the effects of almonds 
were not signifcant (p > 0.05) with respect to fasting blood glucose, 2 h postprandial blood glucose, 
infammatory markers (C-reactive protein and TNF-α), GLP-1, HOMA–IR, and fasting insulin. 
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1. Introduction 

The use of nutritional interventions is one of the strategies for managing diabetes, 
which is on the increase worldwide. It is projected that the global prevalence of diabetes 
could reach 700 million by 2045, up by 51% from 463 million who were living with the 
condition in 2019 [1]. Over 90% of people with diabetes have type 2 diabetes, which is 
linked to lifestyle factors [2], and this has implications in terms of morbidity and mortality. 
Poor diabetes control increases the costs of healthcare as a result of potentially avoidable 
hospital treatment and drug prescription and in the UK, the total annual spending on 
patients with type 2 diabetes is expected to rise to about £2.2 billion by 2040–2050 [3,4]. 
Therefore, nutritional interventions, which are effective in terms of clinical outcomes, are 
often recommended for diabetes management [5]. In this regard, the use of nuts, including 
tree nuts, such as almond, walnut, hazelnut, cashew nuts and Brazil nuts, and groundnuts 
(mainly peanuts), which are high in unsaturated fatty acids and are rich sources of bioactive 
nutrients that have signifcant metabolic and cardiovascular health benefts, have been 
suggested [6,7]. 

Almonds are the most consumed tree nut and they are known to be rich sources 
of protein, monounsaturated fatty acids, essential minerals, and dietary fbre [6,8]. The 
role of dietary fbre in modulating gut microbiota dysbiosis and in the regulation of 
glycaemic parameters have been demonstrated in previous systematic reviews and meta-
analyses [9,10] and in randomised controlled trials [11,12]. 

1.1. Description of the Intervention 

Nuts have been part of the human diet for centuries. Nuts are included in different 
recipes and, more recently, nuts, particularly almonds, have been consumed as a healthy 
snack [13]. However, the level of consumption of nuts may vary globally, across different 
populations. Almonds are tree nuts that have a low glycaemic index, are rich in dietary 
fbre and unsaturated fatty acids, and have low carbohydrate content [6]. The macro- and 
micronutrient components of almonds, including monounsaturated fatty acids, polyun-
saturated fatty acids, fbre, vitamins, minerals, phytosterols, and polyphenols, have been 
associated with health benefts including anti-infammatory and lipid-lowering proper-
ties [6,8]. Almonds also have antioxidant properties [8]. The polyphenols and fbre content 
of almonds may be used as substrates for gut microbial growth and regulation of gut 
microbiota [8]. It has been suggested that there is an inverse relationship between the 
consumption of nuts and the risk of developing type 2 diabetes [6]. 

1.2. How This Intervention Might Work 

It has been reported that almond consumption increases satiety, decreases postprandial 
glycaemia, and regulates oxidative stress [6]. Almond consumption may also decrease 
the rate of nutrient digestion, reduce glucose response, and stimulate incretin and the 
production of glucagon-like peptide- 1 (GLP-1) [6,14]. The fermentation of the dietary 
fbre component of almonds may lead to improvement in the composition and metabolic 
products of gut microbiota, such as an increase in the prevalence of health-promoting 
bacteria and short-chain fatty acid production, including propionic, butyric, and acetic 
acid [10,15,16]. The short-chain fatty acids produced during this process have been shown 
to improve glycometabolism in patients with diabetes [10,15,17]. An almond-based low-
calorie diet has also been found to be effective in reducing weight [18], which is useful in 
promoting insulin sensitivity and regulating glycaemic control. 

1.3. Why It Is Important to Do This Review 

Incorporating almonds in well-balanced healthy diets have been shown to confer 
benefcial effects on glycaemic control in patients with type 2 diabetes [6,14,19]. However, 
it would appear that previous systematic reviews and meta-analyses in this area of research 
have either focused on the effects of tree nuts in general [20–22], on blood pressure [23], 
or on fasting blood lipids [24]. For example, Mohammadifard et al. [23], conducted a 
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systematic review and meta-analysis on the effect of tree nuts, peanuts, and soy nuts on 
blood pressure, while Blanco-Mejia et al.’s [20] review focused on the effects of tree nuts on 
metabolic syndrome. Muley et al. [21], on the other hand, evaluated the effects of tree nuts 
on glycaemic control in adults with type 2 diabetes, while Musa–Veloso et al. [24] examined 
the effects of almond consumption on fasting blood lipids. Viguinliouk et al.’s [22] review 
examined the effect of tree nuts on glycaemic control in patients with diabetes. 

However, the present systematic review and meta-analysis will complement the 
existing literature by providing evidence that focuses on the role of almonds on gut 
microbiota, glycaemic control, and infammatory markers. There are indications that 
increased markers of infammation and disequilibrium of the gut microbial community are 
associated with the dysregulation of glycaemic control and type 2 diabetes [10,25,26]. 

1.4. Aim 

To evaluate the effects of almonds on gut microbiota, glycometabolism, and infamma-
tory parameters in patients with type 2 diabetes. 

2. Methods 

This systematic review and meta-analysis was carried out according to the preferred 
reporting items for systematic review and meta-analysis (PRISMA) [27]. 

2.1. Types of Studies 

Only randomised controlled trials (RCTs) including crossover and parallel designs 
were included in this review. 

2.2. Types of Participants 

Adult participants with type 2 diabetes regardless of the existence of co-morbidities 
(e.g., obesity) were selected for the review. 

2.3. Types of Interventions 

We included RCTs comparing the provision of almonds or advice to increase almond 
consumption with a control group (no intervention or habitual diet or other types of nuts) 
also with type 2 diabetes. There was no restriction regarding the minimum and maximum 
amount of almonds consumed. RCT including multiple interventions (diet and exercise) 
were not considered. There was no restriction regarding the duration of the interventions. 

2.4. The Inclusion Criteria 

Randomised controlled trials involving participants with type 2 diabetes and aged 
18 years and over were included in this review. Studies with outcomes of interest involv-
ing gut microbiota, glycometabolism, anthropometric measurements, and infammatory 
parameters were also included in this review. 

2.5. The Exclusion Criteria 

Studies excluded were those with prediabetes; involving other tree nuts other than 
almonds, such as walnuts; involving patients with gestational diabetes, type 1 diabetes, 
and only healthy populations. Cluster randomised trials were not eligible for inclusion. 
Furthermore, studies with participants aged below 18 years and animal studies were 
excluded from this review. Pregnant and lactating women were not included. 

2.6. Types of Outcome Measures 

The following were the primary outcome measures of interest: 

• Gut microbiota; 
• Blood glucose parameters: glycated haemoglobin (HbA1c, %); 
• Infammatory markers: tumour necrosis factor α (TNF-α); high-sensitivity C-reactive 

protein (hsCRP); 
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• Body mass index (BMI) (Kg/m2). 
• Secondary outcome measures of interest: 
• Fasting blood glucose (FBG, mmol/L); 
• Postprandial blood glucose (2 h PBG, mmol/L); 
• Homeostatic model assessment of insulin resistance (HOMA–IR); 
• Glucagon-like peptide-1 (GLP-1); 
• Fasting insulin. 

2.7. Search Methods for Identifcation of Studies 

EBSCO-host (which encompasses the Health Sciences Research Databases, including 
MEDLINE, Academic Search Premier, APA PsycInfo, Psychology and Behavioural Sciences 
Collection, APA PsycArticles databases, and CINAHL Plus with Full Text), Google Scholar, 
and EMBASE were the databases searched for relevant articles. In addition, the reference 
lists of articles were also searched based on the population, intervention, control, outcome, 
and study (PICOS) framework (Table 1). Searches were carried out from database inception 
until 1st August 2021. Search terms were drawn from medical subject headings (MesH) 
and synonyms and were combined using Boolean operators (OR/AND). Two members 
of the research team (O.O. and O.O.O.) conducted the searches independently and these 
were cross-checked by the other two members of the team (X.W. and A.R.A.A). Resolution 
of differences was through discussion and consensus. Search results from databases were 
exported to EndNote (Analytics, Philadelphia, PA, USA) and de-duplicated. 

Table 1. Search terms and search strategy. 

Patient/Population Intervention Comparator Outcome 
(Primary) Study Designs Combining 

Search Terms 

Patients with 
diabetes Almonds Control Glycometabolism Randomised 

controlled trial 

Patients with 
diabetes OR type 2 

diabetes OR 
Diabetes OR 

Diabetes 
complications OR 
diabetes mellitus, 

type 2 OR 
diabetes mellitus 

Almond OR Tree, 
Almond OR 

Almond Tree OR 
Sweet Almond OR 
Almond Trees OR 

Tree Nuts OR 
Almond, Sweet 

1. Randomised 
controlled trial OR 
controlled clinical 

trial OR 
randomized OR 
placebo OR drug 

therapy OR 
randomly OR trial 

OR groups 
2. “Animals” NOT 

“Humans” 
3. 1 NOT 2 

Column 1 AND 
Column 2 AND 

Column 3 

3. Data Collection and Analysis 
3.1. Selection of Studies 

The PRISMA fow chart (Figure 1) was based on a set of inclusion and exclusion 
criteria that were used to select the studies included. 
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Figure 1. PRISMA fow chart on selection and inclusion of studies. 

3.2. Data Extraction and Management 

The data were extracted in a pre-piloted and standardised form. We extracted the 
following information: the country where the study was conducted, characteristics of 
the study population (e.g., mean age), sample size, outcome data, intervention details 
(duration) (Table 2). 

Where the fndings of more than one study were reported in one article, only the data 
from the study pertaining to patients with diabetes were included in the analysis. 

The data was extracted by one researcher (O.O.) from the articles included and the 
three other members of the research team (O.O.O., X.W., A.R.A.A) cross-checked the 
information. Final values and changes from baseline were used to compare the intervention 
group with the control group. The units of measurements for some of the parameters were 
converted to ensure the same unit of measurements for all the studies for that parameter. 
In studies reporting values in median and 1st and 3rd quartile values, these were converted 
to means and standard deviations. 

3.3. Assessment of Risk of Bias in Included Studies 

Two members of the research team (O.O. and O.O.O.) evaluated the risk of bias of 
the included studies using the domain-based risk assessment tool [28]. The results were 
cross-checked by the other two members of the team (X.W. and A.R.A.A). Allocation 
concealment, the random sequence generation, blinding of outcome assessment, blinding 
of participants and personnel, selective reporting, incomplete outcome data, and other 
biases were the domains evaluated [29]. 
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Table 2. General characteristics of included studies. 

Citation/Country of Sample Details and Type of Study Mean Age (Years) Aim Interventions ResultsStudy Duration of Study 

Bodnaruc et al. [30] 
Canada 

A randomised 
cross-over study 

7 men with type 
2 diabetes. 

Data were collected 
during two experimental 
sessions separated by a 
≥7day washout period. 

63.9 ± 2.5 
To evaluate the effects of 
almonds on postprandial 

glucose response. 

Participants completed 
2 experimental visits 

and control (white bread, 
butter, cheese) and test 
(white bread, almonds) 

diets were ingested. 

The test meal was 
associated with lower 
postprandial glycemia 

and insulinemia. 

Approximately 60 g/day 
almonds added to a 

Both almond-based and 
control diets did not 

Chen et al. [31] 
Taiwan 

A randomised cross-over 
controlled study 

40 patients with type 
2 diabetes. 

12-weeks duration. 
54.9 ± 10.5 To examine the effect of 

almonds on glycaemia 

National Cholesterol 
Education Programme 
Step II diet (NCEP II) 
compared to NCEP II 
diet alone as control 

signifcantly affect body 
weight and BMI or 

change HbA1c, fasting 
serum glucose, insulin, 
or HOMA-IR values. 

Cohen et al. [32] 
USA 

A randomised 
parallel study 

13 participants 
diagnosed with type 

2 diabetes 
Almond-based diets 

(n = 6) 
Control (n = 7) 

12-weeks duration. 

Almond group: 66 ± 3.3 
Control group: 66 ± 3.3 

To examine the impact of 
chronic almond 

ingestion on glycaemic 
control in patients with 

type 2 diabetes. 

Participants were 
randomised to almond 
group (1 oz of almonds, 
5 days/week) or cheese 
group (2 cheese sticks, 

5 days/week) 

HbA1c was the only 
blood marker that 

changed signifcantly 
between the treatment 

groups (p = 0.045). 
Chronic almond 

ingestion resulted in a 
4% reduction in BMI 

compared with control 
(p = 0.047). 

Almond group (n = 14) Almond group: Hou et al. [6] A randomised Peanut group (n = 11) 70.86 ± 8.21China controlled study 12-weeks duration. Peanut group: 68 ± 5.80 

To compare the effects of Almonds and peanuts 
peanuts and almonds Peanuts or almonds have similar effect on 
incorporated into a were incorporated into a improving fasting and 

low-carbohydrate diet low-carbohydrate diet postprandial blood 
on cardiometabolic and and both groups were glucose among patients 

infammatory compared after a with type 2 diabetes 
parameters in patients 3-month intervention. when incorporated into a 
with type 2 diabetes low-carbohydrate diet. 
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Table 2. Cont. 

Citation/Country of 
Study Type of Study Sample Details and 

Duration of Study Mean Age (Years) Aim Interventions Results 

Li et al. [33] 
Taiwan 

Randomised cross-over 
clinical trial 

20 Chinese patients with 
type 2 diabetes. 

12-weeks duration. 
58 ± 2 

To evaluate the effect of 
almond consumption on 

glycaemia in Chinese 
patients with type 

2 diabetes 

Incorporation of almonds 
into National Cholesterol 

Education Programme Step 
II diet (NCEP II) to replace 
20% of total daily calorie 

intake compared with NCEP 
II diet alone as control. 

Adding almonds into a 
healthy diet has 

benefcial effects on 
adiposity and glycaemic 

control. 

Liu et al. [34] 
Taiwan 

Lovejoy et al. [35] 
USA 

Randomised cross-over 
controlled feeding trial 

Randomized 
double-blind crossover 

design 

20 Chinese patients with 
type 2 diabetes. 

12-weeks duration. 

30 participants with type 
2 diabetes. 

16-weeks duration. 

58 ± 2 

53.8 ± 1.9 

To examine the effect of 
almond consumption on 

infammation and 
oxidative stress in 
patients with type 

2 diabetes 

To assess the effects of 
almond-enriched diets 
on insulin sensitivity in 
patients with diabetes 

Addition of almonds 
(approximately 56 g/day) 
into National Cholesterol 

Education Programme Step 
II diet (NCEP II) to replace 
20% of total daily calorie 

intake compared with NCEP 
II diet alone as control. 

The 4 diets were as follows: 
(1) high-fat, high-almond 
(HFA; 37% total fat, 10% 

from almonds); (2) low-fat, 
high-almond (LFA; 25% total 

fat, 10% from almonds); 
(3) high-fat control (HFC; 

37% total fat, 10% from the 
MUFAs from olive or canola 
oil); and (4) low-fat control 

(LFC; 25% total fat, 10% 
from olive or canola oil). The 

almond-containing diets 
provided 57–113 g 

almonds/d depending on 
the total energy level 

Adding almonds into a 
healthy diet could 

ameliorate infammation 
and oxidative stress in 

patients with type 
2 diabetes. 

Almond-enriched diets 
did not infuence 

glycaemia in patients 
with diabetes. 
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Table 2. Cont. 

Citation/Country of 
Study Type of Study Sample Details and 

Duration of Study Mean Age (Years) Aim Interventions Results 

Ren et al. [14] 
China 

Randomised controlled 
trial 

45 participants with type 
2 diabetes. 

12-weeks duration. 

LCD group: 
73.55 ± 4.99 
LFD group: 
70.48 ± 5.91 

To determine the effect 
of almond-based 

low-carbohydrate diet 
on glycometabolism, gut 
microbiota, and GLP-1 in 

patients with type 
2 diabetes. 

The intervention group 
consumed a 

low-carbohydrate diet, 
which included 56 g/day 

almonds that replaced 
150 g/day staple food, while 
the control group adopted a 

low-fat diet education 
programme. 

Almond-based LCD may 
be effective in regulating 

glycometabolism in 
patients with diabetes by 
stimulating the growth 

of SCFA-producing 
bacteria, increasing 

SCFA production and 
promoting GLP-1 

secretion. 
The almond-based LCD 
signifcantly increased 
the SCFA-producing 

bacteria Roseburia, 
Ruminococcus, and 

Eubacterium. 

The almond group Daily almond 
To evaluate if almond consumed 43 g almonds consumption in the 

Sweazea et al. [36] 
USA 

Randomised controlled 
study 

21 participants with type 
2 diabetes. 

12-weeks duration. 

Almond group: 
57.8 ± 5.6 

Control group: 
54.7 ± 8.9 

supplementation 
without further dietary 

advice improves 
glycaemic control 

5–7 times per week and to 
maintain their usual diet 
and activity pattern while 

the control group 

absence of other dietary 
or physical activity 

activities is useful in 
reducing infammation 

compared with control. maintained their usual diet in patients with 
and activity pattern. type 2 diabetes. 

Abbreviations: LCD, low-carbohydrate diet; LFD, low-fat diet; GLP-1, glucagon-like peptide-1; MUFAs, monounsaturated fats; SCFAs, short-chain fatty acid. 
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The risk assessment was conducted using the Review Manager 5.3 software (Copen-
hagen, Denmark) [28]. 

3.4. Data Analysis 

Whenever there were enough trial reporting data on the same outcome, we performed 
a meta-analysis. Continuous data were analysed as mean difference (MD) with 95% 
confdence intervals (CIs), except for the fasting insulin due to differences in the units of 
measurements of the studies included and, thus, the standardised mean difference (SMD) 
was used for the meta-analysis. Forest plots were used to depict the results of the meta-
analysis and in respect of statistical signifcance of the overall effect of the intervention, this 
was set at p < 0.05. 

Sensitivity analysis was also conducted by removing studies one by one from the 
meta-analysis to assess the level of consistency of the results. The I2 statistic expressed as 
percentage was used to measure the degree of heterogeneity of studies included [29] in 
the review. A fxed-effects model was used for the meta-analysis for all the parameters of 
interest except for the fasting insulin due to differences in the units of measurements of 
the studies included and the standardised mean difference was used for the meta-analysis. 
Whenever a substantial heterogeneity (≥50%) was observed and there were enough studies 
included in the outcome, subgroup analysis was conducted. In addition, fnal values 
and changes from baseline were used to compare the intervention group with the control 
group [29]. If 10 or more studies were included, we would have performed a funnel plot 
to assess the presence of publication bias and small study effect. The meta-analysis was 
carried out in Review Manager (RevMan) 5.3 software [28]. 

4. Results 

Nine studies were included in the systematic review and eight were used for the 
meta-analysis (Figure 1). The description and characteristics of eligible studies, including 
the type of study, details of sample, mean age, the aim of study, interventions, and results 
are outlined in Table 2. While one study was conducted in Canada [30], three each were 
conducted in Taiwan [31,33,34] and the USA [32,35,36], and two in China [6,14]. 

4.1. Evaluation of the Risk of Bias of Included Studies 

The risk of bias of included studies is shown in Figure 2a,b. All studies showed a 
low risk of bias in relation to the random sequence generation (selection bias), incomplete 
outcome data (attrition bias), and selective reporting (reporting bias). However, unclear 
risk of bias was found in relation to allocation concealment, blinding of participants and 
personnel, and blinding of outcome assessments in some of the studies [31–34,36]. 

The presentation of the results of the systematic review and meta-analysis were 
divided into. 

Gut microbiota, glycaemic control, infammatory parameters, body mass index, home-
ostatic model assessment of insulin resistance (HOMA-IR), glucagon-like peptide-1 (GLP-1), 
and fasting insulin. 

4.2. Gut Microbiota 

Only one study [14] examined the effects of almonds on gut microbiota. Ren et al. [14] 
found that the almond-based low-carbohydrate diet (LCD) signifcantly increased the short-
chain fatty acid (SCFA)-producing bacteria Roseburia, Ruminococcus, and Eubacterium. In 
particular, the LCD group had a signifcantly higher population of Roseburia (p < 0.01) at the 
genus level compared with the low-fat diet (LFD) group by the third month, and compared 
to the baseline, Eubacterium (p < 0.01) and Roseburia increased signifcantly (p < 0.05) and 
Bacteroides (p < 0.05) signifcantly decreased in the almond-based LCD group. 
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4.3. Glycaemic Control 

Chen et al. [31] did not fnd any signifcant effect with respect to change in glycated 
haemoglobin (HbA1c) and fasting serum glucose values in the almond-based and control 
diets. However, in the study by Cohen et al. [32], there was a signifcant reduction (p = 0.045) 
in HbA1c in the almond-based diet group compared with control group. Ren et al. [14] 
also showed that almond-based LCD may be effective in modulating glycometabolism in 
patients with diabetes. 

Bodnaruc et al. [30] noted that the almond-based meal was associated with lower 
postprandial glucose. According to Hou et al. [6], while the almond-based diet did improve 
fasting, postprandial blood glucose, and glycated haemoglobin in patients with type 
2 diabetes, these were not signifcantly different from the control group. Li et al. [33] 
observed that including almonds in a healthy diet led to signifcant improvement (p < 0.05) 
in glycaemic control, while Lovejoy et al. [35] showed that an almond-enriched diet had no 
signifcant effect (p > 0.05) on glycaemia in patients with diabetes. 
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With respect to the meta-analysis, the results of the effects of almonds on glucose 
control are shown in Figure 3a–d. Six studies each contributed data for the HbA1c analysis 
(almond group (gp), n = 115; control gp, n = 114) (Figure 3a; sub-group analysis, Figure 3b) 
and fasting blood glucose analysis (almond gp, n = 113; control gp, n = 111) (Figure 3c). The 
almond-based diet group experienced a signifcant reduction (p < 0.001) in HbA1c levels 
compared to the control group with a mean difference of −0.52 (95% CI: −0.58, −0.46). 
Regarding the 2-hour postprandial blood glucose levels, two studies contributed to the 
data analysis (almond gp, n = 44; control gp, n = 41) (Figure 3d). The levels of fasting blood 
glucose and 2-hour postprandial blood glucose were lower in the almond group compared 
to the control group, although the differences were not signifcant (p > 0.05). The mean 
differences were −0.03 (95% CI: −0.18, 0.11) for fasting blood glucose and −0.15 (95% CI: 
−0.44, 0.13) for postprandial blood glucose. 

The sensitivity analysis conducted by removing studies one by one from the meta-
analysis did not change the results in relation to HbA1c (p < 0.05), fasting blood glucose 
(p > 0.05), and 2 h postprandial blood glucose (p > 0.05). The sub-group analysis for HbA1c 
showed that, although there was a signifcant difference (p < 0.001) between the almond 
group and control with respect to the meta-analysis of the randomised parallel studies, the 
differences were not signifcant (p = 0.25) in relation to the cross-over studies (Figure 3b). 

4.4. Infammatory Markers 

The study by Liu et al. [34] observed that the addition of almonds into a healthy 
diet could ameliorate infammation and oxidative stress in patients with type 2 diabetes. 
Similarly, Sweazea et al. [36] noted that the daily consumption of almonds in the absence 
of other dietary or physical activity activities could be an effective approach in reducing 
infammation in patients with type 2 diabetes. 

The meta-analyses of the effects of almonds on infammatory markers are shown in 
Figure 4a,b. Three studies contributed data for the C-reactive protein analysis (almond gp, 
n = 63; control gp, n = 63) (Figure 4a) and two studies for tumour necrosis factor- α (TNF- α) 
analysis (almond gp, n = 30; control gp, n = 31) (Figure 4b). The levels of C-reactive protein 
and TNF- α were lower in the almond group compared to the control group. However, the 
differences between the two groups were not signifcant (p > 0.05), with mean differences 
of −0.54 (95% CI: −1.61, 0.53) for C-reactive protein and −16.67 (95% CI: −53.25, 19.91) for 
TNF- α respectively. The results did not change between the almond group and control 
group (p > 0.05) with respect to C-reactive protein and TNF- α following sensitivity tests. 

4.5. Body Mass Index (BMI) (Kg/m2) 

Chen et al. [31] did not fnd any signifcant effect of the almond-based diet with respect 
to body weight and BMI. In contrast, Cohen et al. [32] found that chronic almond ingestion 
resulted in a 4% reduction in BMI compared with control (p = 0.047). Six studies contributed 
to the results of the analysis for BMI (almond gp, n = 105; control gp, n = 105). 

The meta-analysis showed that the BMI was signifcantly lower (p < 0.05) in the 
almond group compared with the control group (Figure 5), with a mean difference of −0.36 
(95% CI: −0.52, −0.19). The results of the sensitivity analysis showed consistency in terms 
of the signifcant difference between the almond group and the control group, except when 
the Hou et al. [6] study was removed. 

http:tobodyweightandBMI.In
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Figure 3. The effect of almonds on (a) glycated haemoglobin (Hba1c, %), (b) Hba1c (%)—subgroup analysis; (c) fasting 
blood glucose (mmol/L); (d) 2 h postprandial blood glucose (mmol/L). 
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4.6. Homeostatic Model Assessment of Insulin Resistance (HOMA–IR) 

According to Chen et al. [31], the almond-based diet did not show a signifcant effect 
with respect to HOMA-IR compared with control. 

Three studies contributed data for HOMA-IR meta-analysis (almond gp, n = 63; control 
gp, n = 63) and the difference between the almond and control groups was not signifcant 
(p > 0.05) (Figure 6). The mean difference was −0.41 (95% CI: −1.32, 0.50). The sensitivity 
analysis did not change the results between the almond group and the control group 
(p > 0.05) in respect of HOMA–IR. 
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4.7. Glucagon-Like Peptide-1 (GLP-1) 

There was signifcant difference (p < 0.05) between the almond-based diet group 
and the control group with respect to the GLP-1 in the study by Ren et al. [14], although 
Cohen et al. [32] did not fnd any signifcant differences (p > 0.05) between the two groups. 

Regarding the GLP-1 meta-analysis, two studies contributed data (almond gp, n = 28; 
control gp, n = 30) (Figure 7). GLP-1 was higher in the almond-based diet group compared 
with control, although the difference was not statistically signifcant (mean difference: 0.65; 
95% CI: −0.16, 1.47; p-value = 0.12). The sensitivity analysis did not change the results 
between the almond group and the control group (p > 0.05) with to respect to GLP-1. 
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The biological mechanisms responsible for the outcomes observed in this review in 
relation to reduction in glycated haemoglobin and BMI may be based on the nutrient com-
position of almond and its biological effects [37]. When compared to other nuts, it has 
been reported that almonds have the highest levels of fibre, monounsaturated and poly-
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a low glycaemic index [5] and almond-based diets have been shown to modulate gut mi-
crobiota dysbiosis and promote the production of GLP-1 in patients with type 2 diabetes 
[14]. 
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4.8. Fasting Insulin 

Bodnaruc et al. [30] found that an almond-based diet was associated with lower 
insulinemia, while Chen et al. [31] did not fnd any signifcant effect with respect to 
insulin levels in the almond-based and control diets. Five studies contributed data for this 
outcome (almond gp, n = 99; control gp, n = 100) (Figure 8). It was observed that there 
was no signifcant difference between the almond-based group compared to the control 
group in relation to insulin (standardised mean difference: −0.12; 95% CI: −0.40, 0.16; 
p-value = 0.39). There was also no signifcant difference (p > 0.05) between the almond 
group and the control group following the sensitivity analysis in regards to fasting insulin. 
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meta-analysis showed that almond-based diets were effective in signifcantly lowering 
(p < 0.05) glycated haemoglobin and body mass index (BMI) in patients with type 2 diabetes. 
However, it was also found that the effects of almond-based diets were not signifcant 
(p > 0.05) in relation to fasting blood glucose, 2 h postprandial blood glucose, infammatory 
markers (C-reactive protein and TNF-α), GLP-1, HOMA–IR, and fasting insulin. 

Our fndings of the benefcial effects of almond-based diets on glycated haemoglobin 
are consistent with a previous study on almond supplementation in patients with type 
2 diabetes [19] and an earlier review on the effect of tree nuts on glycaemic control in 
patients with diabetes [22]. Similarly, our results in relation to BMI are consistent with 
the fndings of a previous study on the effect of almond consumption in the general 
population [18] and an earlier review of the effect of almonds on BMI [37]. 
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The biological mechanisms responsible for the outcomes observed in this review in 
relation to reduction in glycated haemoglobin and BMI may be based on the nutrient 
composition of almond and its biological effects [37]. When compared to other nuts, it 
has been reported that almonds have the highest levels of fbre, monounsaturated and 
polyunsaturated fats, favonoids, phytosterols, and phenolic acids [5,37]. Almonds also 
have a low glycaemic index [5] and almond-based diets have been shown to modulate 
gut microbiota dysbiosis and promote the production of GLP-1 in patients with type 
2 diabetes [14]. 

The glycaemic index (GI) of food is an important measure of the quality of the food 
and it is a refection of the digestibility of the available carbohydrates in the food compared 
with the reference food, often glucose [38]. It is a measure that ranks food based on the 
blood glucose response that they produce when ingested compared with the response to 
glucose or white wheat bread, which are reference foods [39]. Therefore, foods with low GI, 
such as almonds, usually breakdown slowly during digestion, and are slowly assimilated 
and, thus, have a slower impact on blood glucose levels and insulin response [40–42]. In a 
previous systematic review and meta-analysis, Ojo et al. [40], found that diets with low 
GI were more effective in improving glycated haemoglobin and fasting blood glucose 
compared with high-GI diets in patients with type 2 diabetes. In contrast, diets with high 
GI have been associated with type 2 diabetes and cardiovascular diseases due to their effect 
on blood glucose and insulin levels [38]. 

Due to the gradual entrance of glucose into the blood leading to reduced and more 
sustained insulin release, low-GI diets are more effective in controlling glycaemia compared 
with high GI diets [41]. In addition, low GI diets may be effective in increasing insulin 
sensitivity by reducing fuctuations in blood glucose levels and minimising insulin secretion 
over the day [41]. Based on the effectiveness of low-GI diets in controlling glycemia in 
patients with diabetes, the FAO [42] has recommended the use of a glycaemic index of 
foods along with the information about food composition in clinical applications in patients 
with diabetes. 

Apart from the potential to improve glycaemic control, it has been suggested that 
diets with low GI may be useful in reducing weight because they produce a low insulin 
response [43]. This view is based on the lipogenic effect of hyperinsulinaemia [43]. On the 
other hand, high-GI diets may elicit a higher postprandial insulin response and this may 
lead to quicker hunger response and overeating through the reduction in metabolic fuels 
in the body [43]. Increased satiety and reduced voluntary food intake has been proposed 
as another mechanism through which foods with low GI can reduce weight [43]. 

Nuts, including almonds, are rich in energy density and high in fat, therefore, the 
greater fat availability could lead to reduced gastric emptying and increased satiety [5,14]. 

Another area of interest is the high soluble fbre and unsaturated fatty acid content 
of almonds [6]. According to Huo et al. [6], unsaturated fatty acids have been reported 
to promote the movement of glucose receptors to the cell surface and this could enhance 
insulin sensitivity. The role of polyunsaturated fatty acids on insulin sensitivity may be 
based on the fatty acid composition of the cell membrane, which relies on the fatty acid 
composition of the diet and regulates insulin action [44]. Kien et al. [45] suggested that a 
possible mechanism of dietary fatty acids in reducing the risk of insulin resistance may be 
due to the presence of a high level of unsaturated fatty acids in the cell membrane that 
could infuence the physical properties, including plasticity, which promotes the movement 
of glucose receptors to the cell surface. It has also been shown that skeletal muscle insulin 
resistance due to obesity or dietary fatty acids may result from defective mitochondrial 
oxidation of fatty acids, which could lead to the accumulation of ceramides that may inhibit 
insulin signalling [45]. In addition, a high saturated fatty acid level of the membrane 
phospholipids increases insulin resistance [44]. 

Haag and Dippenaar [46] noted that the high saturated fat content of the cell mem-
brane may lead to rigid and unresponsive membranes, while membranes that are high 
in unsaturated fatty acids promote fuidity and responsiveness. Therefore, the polyun-
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saturated content and omega-3/omega-6 ratio in the muscle and fat membranes are of 
signifcant importance in the aetiology of insulin resistance [46]. Furthermore, fatty acid-
derived entities such as long chain acyl-CoA (coenzymes) may impact negatively on insulin 
mediated glucose transport and disrupt the insulin signalling cascade [46]. These fndings 
were confrmed in randomised controlled trials in overweight individuals conducted by 
Kahleova et al. [47], who found that fat quantity and quality were related to body weight 
and body composition, insulin secretion, and insulin resistance. 

Unsaturated fatty acids can also promote the effciency of β-cell function through their 
action in stimulating GLP-1 secretion [6]. The fndings of this review did reveal that an 
almond-based diet was effective in promoting the secretion of GLP-1, although this was 
not signifcant compared to the control. GLP-1 is a 30-amino-acid agent, which regulates 
glucose by stimulating insulin after ingesting a meal [32]. 

High dietary fbre in almonds can also increase gastric distension, viscosity of gastroin-
testinal tract, and slower absorption of macronutrients, including slowing the absorption of 
carbohydrates and the level of postprandial blood glucose [6]. High dietary fbre has been 
reported to promote the growth of SCFAs producing bacteria, increasing the production of 
SCFAs and promoting GLP-1 secretion [14]. 

In the study by Zhao et al. [48], it was found that the presence of greater diversity 
and abundance of fbre-promoting SCFA producers improved glycated haemoglobin levels 
in patients with type 2 diabetes through the production of glucagon-like peptide-1. The 
dietary fbre undergoes fermentation by colonic microbiota to produce SCFAs, including 
propionic, acetic, and butyric acid, which have signifcant effects on host physiology [49]. 
The SCFAs are useful in regulating the metabolic and immune system of the host as well as 
in cell proliferation [50]. However, low dietary fbre intake can cause microbiota dysbiosis, 
reduction in SCFAs production, and lead to the utilisation of less favourable substrates, 
such as proteins and fat [50,51]. The lipopolysaccharides resulting from the use of a high-
fat diet can elicit an infammatory response and contribute to the development of insulin 
resistance and type 2 diabetes [51]. 

Limitations 

One of the studies included [32] was a pilot study with a small sample size. Fur-
thermore, the number of studies included in the meta-analyses was eight or smaller in 
the different parameters. These could affect the broader application of the fndings of the 
review. Therefore, more studies are required to further explore the role of almonds in 
patients with type 2 diabetes. 

6. Conclusions 

The fndings of this systematic review and meta-analysis have shown that almond-
based diets may be effective in promoting short-chain fatty acid-producing bacteria, and 
lowering glycated haemoglobin and body mass index in patients with type 2 diabetes 
compared with control. However, the effects of almonds were not signifcant (p > 0.05) with 
respect to fasting blood glucose, 2 h postprandial blood glucose, infammatory markers 
(C-reactive protein and TNF-α), GLP-1, HOMA–IR, and fasting insulin. 
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