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Abstract—The Xilinx Artix-7 family of FPGAs has a peak 
DSP performance of approximately 1 TMAC/s. This paper 
describes a floating point FIR bandpass filter instantiation on an 
Artix-7 with up to 192 million taps, updated at up to 2 MHz, 
delivering an equivalent performance of up to 384 TMAC/s, 
while using only one third of the DSP resources on the FPGA. 
This has been achieved using Prism signal processing, a new 
recursive FIR filtering technique. Filter design is simple; a PC 
host HMI facilitates the immediate creation of new filter 
implementations. Examples of experimental results are provided. 

Keywords—Artix-7, FPGA, Recursive FIR filtering, bandpass 
filtering, Prism signal processing. 

I. INTRODUCTION  

Since their first inception, Finite Impulse Response (FIR) 
filters have been viewed as inherently non-recursive 
calculations. FIR filters are normally formulated as discrete 
convolutions of the form: 

ሾ݊ሿݕ ൌ 	∑ ܾ௜ ∙ ሾ݊ݔ െ ݅ሿே
௜ୀ଴              (1) 

Here the filter of order N generates an output sequence y[n] 
from the sum of products of the filter coefficients bi and the 
window of the N+1most recent filter input values x[n – i]. The 
calculation is non-recursive as the coefficients are positional: 
on the next time-step equation (1) must be repeated in full 
over the shifted data window. 

Convolution calculations similar to (1) are so common in 
digital signal processing (DSP) that the multiply and 
accumulate (MAC) operation is a widely used metric of device 
performance. For example, eqn (1) describes a calculation 
requiring N+1 MACs. To achieve real time throughput at a 
sample rate of f Hz for an FIR filter of order N requires a 
computational performance of f  (N + 1) MAC/s. The largest 
device in the Artix-7 FPGA family, the XC7A200T, has a 
nominal DSP performance of 929 GMAC/s (1 GMAC = 109 
MACs) [1, 2]. This performance calculation assumes all of the 
740 DSP ‘slices’ in the FPGA operate in parallel. In practice 
such performance is not necessarily achieved for any specific 
application, due to unavoidable inefficiencies entailed in the 
details of the implementation.  

Various approaches are reported in the literature for 
developing recursive FIR filters, typically using specific 
mathematical structures which support efficient computation. 
These include: adapting IIR filters to approximate FIR 
behaviour [3, 4], for example the switching and resetting of 
multiple IIR filters [5]; the Cascade Integrator Comb [6, 7], 
which cascades the moving average filter (the only ‘naturally’ 
recursive FIR filter); and the construction of piecewise 
polynomial approximations to the impulse response [8-11]. 

In this paper we describe a recursive FIR bandpass filter 
application implemented on an Artix-7 which achieves the 
equivalent of up to 384 TMAC/s (3.84 x 1014 MAC/s) i.e. 
approximately 400 times faster than the nominal performance, 
and using floating point rather than fixed point arithmetic. The 
implementation is not optimal – for example only around 1/3 
of the DSP slices is used – and further performance 
improvements are undoubtedly possible. The calculation is 
organized as a single bandpass filter, operating on ADC data 
sampled at up to 2 MHz. The high MAC performance is 
achieved via a high filter order (up to 192 million). The key to 
making this possible is Prism Signal Processing (PSP) [12], a 
new type of FIR filter which is fully recursive i.e. the 
computational effort is independent of the filter length. Our 
performance claim is therefore of equivalence, based on the 
computational load required to deliver a conventional non-
recursive FIR filter of the same order and update rate. 

The bandpass filter consists of a chain of six Prisms. The 
design of each Prism is straightforward, once its required 
parameters values are known. A simple higher level 
calculation maps the desired bandpass filter characteristics 
(central frequency, bandwidth) onto the corresponding 
parameters for each Prism in the chain. An HMI on the host 
computer enables new bandpass filters to be designed and 
implemented on the FPGA instantly.  

The paper is organized as follows. Section II gives a brief 
overview of PSP and the design calculation for the bandpass 
filter. Section III describes the FPGA-based implementation of 
the bandpass filtering demonstrator, while Section IV gives 
experimental results obtained from the system, including 
results for a 192 million order, 384 TMAC/s filter.  



 

 

 

 

 

 

 

 

Fig. 1. Prism structure generating a single output Gs
h. 

II. PRISM BANDPASS FILTERING 

The Prism (Fig. 1) is an FIR filter generating one or two 
outputs. Its properties are defined by its characteristic 
frequency m and harmonic number h [12]. Structurally, the 
Prism consists of four or six integration blocks, where the 
input to each is multiplied by a sine or cosine function with 
frequency mh Hz and integrated over the period 1/m s to 
generate the block output. This calculation can be performed 
recursively [12], as the final Prism outputs are independent of 
the instantaneous phase of the sinusoidal modulation 
functions. In the Prism, the equivalent of filter coefficients are 
linearly spaced sine and cosine values, so that, for desired 
values of m and h, the design calculation is straightforward. 

A companion paper to this conference provides more 
background on the Prism and sets out the theory of how a 
bandpass filter can be constructed using a chain of six single 
output Prisms, arranged as three pairs (Fig. 2). A Prism-based 
Recursive Signal Tracker (RST) [13] may be used to calculate 
the frequency, amplitude and/or phase of the filtered signal. 
Given the desired bandwidth b and central frequency c, simple 
rules are used to calculate the corresponding values of m and h 
for each of the six Prisms. Fig. 3 shows how the relative gain 
of the bandpass filter varies with distance from c, where the 
gain at c ± b/2 Hz is  -3 dB. 

III. DEMONSTRATION SYSTEM 

The demonstration system consists of a PC hosting an 
Innovative Integration Inc XA-160M module [14]; this has 
dual 16 bit ADCs and DACs, an Artix-7 XC7A200T FPGA 
and a 4 lane PCIe link to the host. Input is provided by a dual 
channel signal generator: one channel provides the sinusoidal 
signal to be tracked, while the second provides an interference 
signal, such as white noise or a sinusoid with an adjacent 
frequency. The host PC controls the bandpass filter design, 
filter operation, and data storage of experimental results. 
 

 

 

 

 
Fig. 2. Bandpass filter from three pairs of single output Prisms, and a Prism-

based tracker generating frequency, amplitude and phase estimates.  
 

 

 

 

 

 

 

 

 

Fig. 4 outlines the arrangement. The XA-160M card 
samples the two inputs separately (so they can be recorded 
individually) but then sums the digitized values and feeds the 
sum into the six Prism filter. One disadvantage of the Prism 
compared with a conventional FIR filter is its relatively high 
memory requirements. Given a sampling rate fs and Prism 
parameter m, and defining l = fs/m, from Fig 1 it can be 
deduced that approximately 8l storage locations are required 
for each Prism, as follows: sine and cosine vectors of length l, 
and a shifting window of l product values for each of the six 
integration stages; this is in addition to a relatively small 
number of totalizers, control variables etc. Viewed as a 
conventional FIR filter, however, the equivalent order of the 
Prism is only 2l (consider the concatenation of the two layers 
of integration blocks in Fig. 1). To achieve a balance between 
precision and execution speed in the FPGA, the sine/cosine 
and product vectors are stored as 32 bit floating point values, 
while the totalizers are 64 bit floating point values. 

To facilitate the creation of long bandpass filters, the data 
needed for each filtering Prism is held in the 8 Gbyte RAM of 
the host PC. This arrangement is one of the limiting factors on 
total system data throughput ( ~ 2M samples/s). The faster 1 
Gbyte RAM on the XA-160M card is currently used for 
buffering of PCIe transfers; higher throughput, especially for 
smaller filters, may be possible with a different arrangement. 

 

Fig. 3. Frequency response of bandpass filter formed from three Prism pairs. 
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Fig. 4. FPGA-based implementation of bandpass filtering. 

The functionality of the tracker in Fig. 2 (used to generate 
frequency, phase and amplitude values from the filter output) 
is split between the Prism and host PC. As explained in [13], 
the RST consists of a dual output Prism (here instantiated 
within the FPGA), and further calculations based on the Prism 
outputs. As the latter include calls to trigonometric and square 
root functions, here these are carried out on the host PC. 

Prism algorithms previously coded in C++ were used as 
the basis for the FPGA coding in VHDL. The logic 
development tool Vivado ™ includes a simulator enabling the 
VHDL code to be debugged by comparing outputs with the 
C++ code. Table 1 shows the Artix-7 resource usage for the 
FPGA design, which includes the 6 + 1 Prisms and the 
interfaces to the ADCs, host, and host memory interfaces. 
Note that less than 30% of the DSP48 slices are currently 
used, so there is scope for further design improvements, for 
example introducing additional pipelining to improve data 
throughput. 

Fig. 5 shows a section of the PC HMI: a new filter design 
can be created by supplying the desired central and bandpass 
frequencies. The corresponding values of m and h for each of 
the Prisms are calculated and downloaded to the bandpass 

TABLE I.  ARTIX-7 XC7A200T RESOURCE UTILIZATION 

Resource 
 

Available 
Utilization 

Quantity % 

LUT 133800 59087 44.16 

LUTRAM 46200 3169 6.86 

FF 267600 102832 38.43 

BRAM 365 144.50 39.59 

DSP 740 218 29.46 

IO 386 283 73.32 

GT 8 8 100.00 

BUGF 32 16 50.00 

MMCM 10 4 40.00 

PLL 10 1 10.00 

PCIe 1 1 100.00 

 

Fig. 5. Section of PC host HMI interface.  

filter on the FPGA, along with the linearly spaced sine and 
cosine values for the modulation functions.   
  

IV. EXPERIMENTAL RESULTS 

A series of tests have been carried out to evaluate the 
performance of the Prism-based bandpass filtering system. 
The signal generator used was an Agilent 33522B Waveform 
Generator; a reference clock signal was shared between the 
Agilent and the test system to ensure timing consistency. 

The first set of two tests had the following common 
characteristics: a sample rate of 2 MHz, a central frequency of 
5000 Hz, and a passband of 0.02 Hz. This results in a 
bandpass filter of order 192 million, and an equivalent DSP 
performance of 384 TMAC/s. 

In both experiments, the frequency component to be 
tracked is at 5000 Hz, with an amplitude of 1 mV zero-peak. 
In the first experiment, the interference signal, which is added 
to the desired signal, is at 5000.1 Hz (i.e. at a distance 5b from 
the central frequency, c) and has an amplitude of 1 V zero-
peak i.e. 1000 times greater than the adjacent signal 
component to be tracked. Fig. 6 shows the frequency spectrum 
of the combined input signal around the central frequency 
5000 Hz; the two adjacent frequency components with their 
respective amplitudes are clearly discernable. 

Fig. 7 shows the frequency spectrum of the bandpass 
filtered signal. The noise floor, which in Fig. 6 is steady at 
around 1e-5 V, has dropped to around 1e-8 V at a distance of  
0.5 Hz or greater from c. As intended, the interfering signal at 
5000.1 Hz has been effectively attenuated, leaving the desired 
signal component at 5000Hz as the highest peak. Fig. 8 shows 
the amplitude calculated by the RST which remains with 5% 
of its nominal value of 1 mV.  

Figs. 9, 10 and 11 are similar plots for the second test 
using b = 0.02 Hz, where the interference signal is white noise 
with an amplitude of 0.5 V and a bandwidth of 10 MHz. The 
plots show a ± 10Hz region around the central frequency. The 
high noise floor (Fig. 9) is readily suppressed by the filter (Fig 
10), with the amplitude approaching 1e-16 V at a distance of 
10 Hz from the central frequency. Amplitude tracking based 
on the filter output (Fig. 11) yields similar results to those 
from the previous example (Fig 8). 

While this first pair of examples demonstrates a very 
narrow passband filter and high DSP performance, the 
dynamic response of the filter is of the order of 100 seconds, 
which limits the system’s ability to demonstrate successful 
tracking of changes in component parameter values. 
Accordingly, a second pair of examples is presented which is  



 
Fig. 6. Spectrum of input signal; components at 5000 Hz and 5000.1 Hz. 

 

Fig. 7. Filtered signal: 5000.1 Hz component has been attenuated. 

 
Fig. 8. Amplitude value calculated by tracker from filtered signal. 

 

Fig. 9.  Spectrum of input signal; component at 5000 Hz with white noise. 

 
Fig. 10. Spectrum of filtered signal; white noise has been attenuated. 

 
Fig. 11. Amplitude value calculated by tracker from filtered signal. 

 



 
Fig. 12. Spectrum of input signal; components at 5000 Hz and 5000.5 Hz. 

 
Fig. 13. Filtered signal: 5000.5 Hz component has been attenuated. 

 
Fig. 14. Tracking amplitude step changes in filtered signal. 

 

 
Fig. 15. Spectrum of input signal; component at 5000 Hz with white noise. 

 
Fig. 16. Spectrum of filtered signal; white noise has been attenuated. 

 
Fig. 17. Tracking amplitude step changes in filtered signal. 

  

 



similar to the first pair, but where the filter bandwidth is 
extended so that step changes in the amplitude of the tracked 
signal component can be tracked. 

In the second pair of tests, the sampling rate remains 2 
MHz and the bandpass central frequency c remains 5000 Hz, 
but the bandwidth b is increased to 0.1 Hz. The corresponding 
filter order is 38 million samples, so the equivalent DSP 
performance is 76 TMAC/s. 

In the first of these tests, the amplitude of the 5000 Hz 
frequency component steps between 2.5 mV and 5 mV every 
20 s, while the interference component is at 5000.5 Hz (i.e. 5b 
away) with a fixed amplitude of 1 V. Fig. 12 shows the 
spectrum of the input signal, which has additional peaks at 
intervals of 0.05 Hz due to the period of the amplitude step 
changes. The spectrum of the filter output (Fig. 13) shows that 
the frequency component at 5000.5 Hz has been significantly 
attenuated. Finally, in Fig. 14 the tracker output shows the 
amplitude step changes every 20s. 

The second test once more uses 1 V of white noise, while 
the 5000 Hz component steps between 10 mV and 20 mV 
every 20s. Figs. 15 and 16 show the spectra of the input signal 
and filter output respectively, while Fig. 17 demonstrates that 
the step changes in the 5000 Hz signal are successfully 
tracked.  

V. SUMMARY 

 This paper has described an implementation of a Prism-
based bandpass filter demonstrator using an FPGA card and a 
PC host. Filters with orders as high as 192 million can be 
designed in real time and instantiated on the FPGA. 
Experimental results using a signal generator demonstrate that 
the bandpass filters are effective in isolating desired signal 
components and removing unwanted components. While the 
Artix-7 FPGA DSP performance is rated at less than 1 
TMAC/s, the recursive FIR Prism-based filters achieve an 
equivalent DSP performance of up to 384 TMAC/s, using only 
a fraction of the resources of the FPGA. 

There is significant scope for improving the performance 
described in this paper. In particular, it is desirable to increase 

the throughput of the filter implementation so that faster 
sampling rates can be used. Most obviously this can be 
achieved by using more FPGA resources, and providing 
access to faster memory resources.  
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