

384 TMAC/s FIR filtering on an Artix-7 FPGA
using Prism signal processing

John Owen and Manus Henry

Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:
Owen, J. and Henry, M., 2018, October. 384 TMAC/s FIR filtering on an Artix-7 FPGA using
Prism signal processing. In IECON 2018-44th Annual Conference of the IEEE Industrial
Electronics Society (pp. 2659-2664). IEEE.
https://dx.doi.org/10.1109/IECON.2018.8591619
DOI 10.1109/IECON.2018.8591619

Publisher: IEEE

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

https://doi.org/10.1109/IECON.2018.8591619
https://doi.org/10.1109/IECON.2018.8591619

384 TMAC/s FIR filtering on an Artix-7 FPGA
using Prism signal processing

John Owena
aEntegra Solutions Ltd

Guildford, GU1 1YH, UK.
john.owen@entegra.co.uk

Manus Henryb,c
bDepartment of Engineering Science

University of Oxford
Oxford, OX1 3PJ, UK.

manus.henry@eng.ox.ac.uk

cSchool of Electrical Engineering and Computer Science
South Ural State University

Chelyabinsk, Russia

Abstract—The Xilinx Artix-7 family of FPGAs has a peak
DSP performance of approximately 1 TMAC/s. This paper
describes a floating point FIR bandpass filter instantiation on an
Artix-7 with up to 192 million taps, updated at up to 2 MHz,
delivering an equivalent performance of up to 384 TMAC/s,
while using only one third of the DSP resources on the FPGA.
This has been achieved using Prism signal processing, a new
recursive FIR filtering technique. Filter design is simple; a PC
host HMI facilitates the immediate creation of new filter
implementations. Examples of experimental results are provided.

Keywords—Artix-7, FPGA, Recursive FIR filtering, bandpass
filtering, Prism signal processing.

I. INTRODUCTION

Since their first inception, Finite Impulse Response (FIR)
filters have been viewed as inherently non-recursive
calculations. FIR filters are normally formulated as discrete
convolutions of the form:

ሾ݊ሿݕ ൌ 	∑ ܾ௜ ∙ ሾ݊ݔ െ ݅ሿே
௜ୀ଴ (1)

Here the filter of order N generates an output sequence y[n]
from the sum of products of the filter coefficients bi and the
window of the N+1most recent filter input values x[n – i]. The
calculation is non-recursive as the coefficients are positional:
on the next time-step equation (1) must be repeated in full
over the shifted data window.

Convolution calculations similar to (1) are so common in
digital signal processing (DSP) that the multiply and
accumulate (MAC) operation is a widely used metric of device
performance. For example, eqn (1) describes a calculation
requiring N+1 MACs. To achieve real time throughput at a
sample rate of f Hz for an FIR filter of order N requires a
computational performance of f  (N + 1) MAC/s. The largest
device in the Artix-7 FPGA family, the XC7A200T, has a
nominal DSP performance of 929 GMAC/s (1 GMAC = 109
MACs) [1, 2]. This performance calculation assumes all of the
740 DSP ‘slices’ in the FPGA operate in parallel. In practice
such performance is not necessarily achieved for any specific
application, due to unavoidable inefficiencies entailed in the
details of the implementation.

Various approaches are reported in the literature for
developing recursive FIR filters, typically using specific
mathematical structures which support efficient computation.
These include: adapting IIR filters to approximate FIR
behaviour [3, 4], for example the switching and resetting of
multiple IIR filters [5]; the Cascade Integrator Comb [6, 7],
which cascades the moving average filter (the only ‘naturally’
recursive FIR filter); and the construction of piecewise
polynomial approximations to the impulse response [8-11].

In this paper we describe a recursive FIR bandpass filter
application implemented on an Artix-7 which achieves the
equivalent of up to 384 TMAC/s (3.84 x 1014 MAC/s) i.e.
approximately 400 times faster than the nominal performance,
and using floating point rather than fixed point arithmetic. The
implementation is not optimal – for example only around 1/3
of the DSP slices is used – and further performance
improvements are undoubtedly possible. The calculation is
organized as a single bandpass filter, operating on ADC data
sampled at up to 2 MHz. The high MAC performance is
achieved via a high filter order (up to 192 million). The key to
making this possible is Prism Signal Processing (PSP) [12], a
new type of FIR filter which is fully recursive i.e. the
computational effort is independent of the filter length. Our
performance claim is therefore of equivalence, based on the
computational load required to deliver a conventional non-
recursive FIR filter of the same order and update rate.

The bandpass filter consists of a chain of six Prisms. The
design of each Prism is straightforward, once its required
parameters values are known. A simple higher level
calculation maps the desired bandpass filter characteristics
(central frequency, bandwidth) onto the corresponding
parameters for each Prism in the chain. An HMI on the host
computer enables new bandpass filters to be designed and
implemented on the FPGA instantly.

The paper is organized as follows. Section II gives a brief
overview of PSP and the design calculation for the bandpass
filter. Section III describes the FPGA-based implementation of
the bandpass filtering demonstrator, while Section IV gives
experimental results obtained from the system, including
results for a 192 million order, 384 TMAC/s filter.

Fig. 1. Prism structure generating a single output Gs
h.

II. PRISM BANDPASS FILTERING

The Prism (Fig. 1) is an FIR filter generating one or two
outputs. Its properties are defined by its characteristic
frequency m and harmonic number h [12]. Structurally, the
Prism consists of four or six integration blocks, where the
input to each is multiplied by a sine or cosine function with
frequency mh Hz and integrated over the period 1/m s to
generate the block output. This calculation can be performed
recursively [12], as the final Prism outputs are independent of
the instantaneous phase of the sinusoidal modulation
functions. In the Prism, the equivalent of filter coefficients are
linearly spaced sine and cosine values, so that, for desired
values of m and h, the design calculation is straightforward.

A companion paper to this conference provides more
background on the Prism and sets out the theory of how a
bandpass filter can be constructed using a chain of six single
output Prisms, arranged as three pairs (Fig. 2). A Prism-based
Recursive Signal Tracker (RST) [13] may be used to calculate
the frequency, amplitude and/or phase of the filtered signal.
Given the desired bandwidth b and central frequency c, simple
rules are used to calculate the corresponding values of m and h
for each of the six Prisms. Fig. 3 shows how the relative gain
of the bandpass filter varies with distance from c, where the
gain at c ± b/2 Hz is -3 dB.

III. DEMONSTRATION SYSTEM

The demonstration system consists of a PC hosting an
Innovative Integration Inc XA-160M module [14]; this has
dual 16 bit ADCs and DACs, an Artix-7 XC7A200T FPGA
and a 4 lane PCIe link to the host. Input is provided by a dual
channel signal generator: one channel provides the sinusoidal
signal to be tracked, while the second provides an interference
signal, such as white noise or a sinusoid with an adjacent
frequency. The host PC controls the bandpass filter design,
filter operation, and data storage of experimental results.

Fig. 2. Bandpass filter from three pairs of single output Prisms, and a Prism-

based tracker generating frequency, amplitude and phase estimates.

Fig. 4 outlines the arrangement. The XA-160M card
samples the two inputs separately (so they can be recorded
individually) but then sums the digitized values and feeds the
sum into the six Prism filter. One disadvantage of the Prism
compared with a conventional FIR filter is its relatively high
memory requirements. Given a sampling rate fs and Prism
parameter m, and defining l = fs/m, from Fig 1 it can be
deduced that approximately 8l storage locations are required
for each Prism, as follows: sine and cosine vectors of length l,
and a shifting window of l product values for each of the six
integration stages; this is in addition to a relatively small
number of totalizers, control variables etc. Viewed as a
conventional FIR filter, however, the equivalent order of the
Prism is only 2l (consider the concatenation of the two layers
of integration blocks in Fig. 1). To achieve a balance between
precision and execution speed in the FPGA, the sine/cosine
and product vectors are stored as 32 bit floating point values,
while the totalizers are 64 bit floating point values.

To facilitate the creation of long bandpass filters, the data
needed for each filtering Prism is held in the 8 Gbyte RAM of
the host PC. This arrangement is one of the limiting factors on
total system data throughput (~ 2M samples/s). The faster 1
Gbyte RAM on the XA-160M card is currently used for
buffering of PCIe transfers; higher throughput, especially for
smaller filters, may be possible with a different arrangement.

Fig. 3. Frequency response of bandpass filter formed from three Prism pairs.

Ic
h(t)

Is
h(t)

Input s(t)
Gs

h(t)




Iss
h(t)

Icc
h(t)

  dttshmtmI h
s)()2sin(

  dttshmtmI h
c)()2cos(

  dttIhmtmI h
s

h
ss)()2sin(

  dttIhmtmI h
c

h
cc)()2cos(

Fig. 4. FPGA-based implementation of bandpass filtering.

The functionality of the tracker in Fig. 2 (used to generate
frequency, phase and amplitude values from the filter output)
is split between the Prism and host PC. As explained in [13],
the RST consists of a dual output Prism (here instantiated
within the FPGA), and further calculations based on the Prism
outputs. As the latter include calls to trigonometric and square
root functions, here these are carried out on the host PC.

Prism algorithms previously coded in C++ were used as
the basis for the FPGA coding in VHDL. The logic
development tool Vivado ™ includes a simulator enabling the
VHDL code to be debugged by comparing outputs with the
C++ code. Table 1 shows the Artix-7 resource usage for the
FPGA design, which includes the 6 + 1 Prisms and the
interfaces to the ADCs, host, and host memory interfaces.
Note that less than 30% of the DSP48 slices are currently
used, so there is scope for further design improvements, for
example introducing additional pipelining to improve data
throughput.

Fig. 5 shows a section of the PC HMI: a new filter design
can be created by supplying the desired central and bandpass
frequencies. The corresponding values of m and h for each of
the Prisms are calculated and downloaded to the bandpass

TABLE I. ARTIX-7 XC7A200T RESOURCE UTILIZATION

Resource

Available
Utilization

Quantity %

LUT 133800 59087 44.16

LUTRAM 46200 3169 6.86

FF 267600 102832 38.43

BRAM 365 144.50 39.59

DSP 740 218 29.46

IO 386 283 73.32

GT 8 8 100.00

BUGF 32 16 50.00

MMCM 10 4 40.00

PLL 10 1 10.00

PCIe 1 1 100.00

Fig. 5. Section of PC host HMI interface.

filter on the FPGA, along with the linearly spaced sine and
cosine values for the modulation functions.

IV. EXPERIMENTAL RESULTS

A series of tests have been carried out to evaluate the
performance of the Prism-based bandpass filtering system.
The signal generator used was an Agilent 33522B Waveform
Generator; a reference clock signal was shared between the
Agilent and the test system to ensure timing consistency.

The first set of two tests had the following common
characteristics: a sample rate of 2 MHz, a central frequency of
5000 Hz, and a passband of 0.02 Hz. This results in a
bandpass filter of order 192 million, and an equivalent DSP
performance of 384 TMAC/s.

In both experiments, the frequency component to be
tracked is at 5000 Hz, with an amplitude of 1 mV zero-peak.
In the first experiment, the interference signal, which is added
to the desired signal, is at 5000.1 Hz (i.e. at a distance 5b from
the central frequency, c) and has an amplitude of 1 V zero-
peak i.e. 1000 times greater than the adjacent signal
component to be tracked. Fig. 6 shows the frequency spectrum
of the combined input signal around the central frequency
5000 Hz; the two adjacent frequency components with their
respective amplitudes are clearly discernable.

Fig. 7 shows the frequency spectrum of the bandpass
filtered signal. The noise floor, which in Fig. 6 is steady at
around 1e-5 V, has dropped to around 1e-8 V at a distance of
0.5 Hz or greater from c. As intended, the interfering signal at
5000.1 Hz has been effectively attenuated, leaving the desired
signal component at 5000Hz as the highest peak. Fig. 8 shows
the amplitude calculated by the RST which remains with 5%
of its nominal value of 1 mV.

Figs. 9, 10 and 11 are similar plots for the second test
using b = 0.02 Hz, where the interference signal is white noise
with an amplitude of 0.5 V and a bandwidth of 10 MHz. The
plots show a ± 10Hz region around the central frequency. The
high noise floor (Fig. 9) is readily suppressed by the filter (Fig
10), with the amplitude approaching 1e-16 V at a distance of
10 Hz from the central frequency. Amplitude tracking based
on the filter output (Fig. 11) yields similar results to those
from the previous example (Fig 8).

While this first pair of examples demonstrates a very
narrow passband filter and high DSP performance, the
dynamic response of the filter is of the order of 100 seconds,
which limits the system’s ability to demonstrate successful
tracking of changes in component parameter values.
Accordingly, a second pair of examples is presented which is

Fig. 6. Spectrum of input signal; components at 5000 Hz and 5000.1 Hz.

Fig. 7. Filtered signal: 5000.1 Hz component has been attenuated.

Fig. 8. Amplitude value calculated by tracker from filtered signal.

Fig. 9. Spectrum of input signal; component at 5000 Hz with white noise.

Fig. 10. Spectrum of filtered signal; white noise has been attenuated.

Fig. 11. Amplitude value calculated by tracker from filtered signal.

Fig. 12. Spectrum of input signal; components at 5000 Hz and 5000.5 Hz.

Fig. 13. Filtered signal: 5000.5 Hz component has been attenuated.

Fig. 14. Tracking amplitude step changes in filtered signal.

Fig. 15. Spectrum of input signal; component at 5000 Hz with white noise.

Fig. 16. Spectrum of filtered signal; white noise has been attenuated.

Fig. 17. Tracking amplitude step changes in filtered signal.

similar to the first pair, but where the filter bandwidth is
extended so that step changes in the amplitude of the tracked
signal component can be tracked.

In the second pair of tests, the sampling rate remains 2
MHz and the bandpass central frequency c remains 5000 Hz,
but the bandwidth b is increased to 0.1 Hz. The corresponding
filter order is 38 million samples, so the equivalent DSP
performance is 76 TMAC/s.

In the first of these tests, the amplitude of the 5000 Hz
frequency component steps between 2.5 mV and 5 mV every
20 s, while the interference component is at 5000.5 Hz (i.e. 5b
away) with a fixed amplitude of 1 V. Fig. 12 shows the
spectrum of the input signal, which has additional peaks at
intervals of 0.05 Hz due to the period of the amplitude step
changes. The spectrum of the filter output (Fig. 13) shows that
the frequency component at 5000.5 Hz has been significantly
attenuated. Finally, in Fig. 14 the tracker output shows the
amplitude step changes every 20s.

The second test once more uses 1 V of white noise, while
the 5000 Hz component steps between 10 mV and 20 mV
every 20s. Figs. 15 and 16 show the spectra of the input signal
and filter output respectively, while Fig. 17 demonstrates that
the step changes in the 5000 Hz signal are successfully
tracked.

V. SUMMARY

 This paper has described an implementation of a Prism-
based bandpass filter demonstrator using an FPGA card and a
PC host. Filters with orders as high as 192 million can be
designed in real time and instantiated on the FPGA.
Experimental results using a signal generator demonstrate that
the bandpass filters are effective in isolating desired signal
components and removing unwanted components. While the
Artix-7 FPGA DSP performance is rated at less than 1
TMAC/s, the recursive FIR Prism-based filters achieve an
equivalent DSP performance of up to 384 TMAC/s, using only
a fraction of the resources of the FPGA.

There is significant scope for improving the performance
described in this paper. In particular, it is desirable to increase

the throughput of the filter implementation so that faster
sampling rates can be used. Most obviously this can be
achieved by using more FPGA resources, and providing
access to faster memory resources.

VI. REFERENCES
[1] Xilinx. 7 Series FPGAs Data Sheet Overview. DS180 (v2.6) Feb 27,

2018.https://www.xilinx.com/support/documentation/data_sheets/ds180
_7 Series_Overview.pdf

[2] https://www.xilinx.com/support/answers/41803.html
[3] R. Lyons and A. Bell, "The swiss army knife of digital networks," in

IEEE Signal Processing Magazine, vol. 21, no. 3, pp. 90-100, May 2004.
[4] T. G. Campbell and Y. Neuvo, "Predictive FIR filters with low

computational complexity," in IEEE Transactions on Circuits and
Systems, vol. 38, no. 9, pp. 1067-1071, Sep 1991.

[5] T. Saramaki and A. T. Fam, "Properties and structures of linear-phase
FIR filters based on switching and resetting of IIR filters," IEEE
International Symposium on Circuits and Systems, New Orleans, LA,
1990, pp. 3271-3274 vol.4.

[6] E. Hogenauer, "An economical class of digital filters for decimation and
interpolation," in IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 29, no. 2, pp. 155-162, Apr 1981.

[7] M. Mottaghi-Kashtiban, A. Jalali, “FIR filters involving shifts and only
two additions, efficient for short word-length signal
processing”,Microelectronics Journal, Volume 49, 2016, Pages 57-63

[8] S. Chu and S. Burrus, “Efficient recursive realizations of FIR filters, Part
I: The filter structures,” Circuits Syst. Signal Process., vol. 3, no. 1, pp.
3–20, 1984.

[9] S. Chu and S. Burrus, “Efficient recursive realizations of FIR filters, Part
II: Design and Applications,” Circuits Syst. Signal Process., vol. 3, no.
1, pp. 21–57, 1984.

[10] R. Lehto, T. Tauren, and O. Vainio, “Recursive FIR filter structures on
FPGA,” Microprocess. Microsyst., vol. 35, pp. 595–602, Oct. 2011.

[11] K. Mukumoto and T. Wada, "Realization of Root Raised Cosine Roll-
Off Filters Using a Recursive FIR Filter Structure," in IEEE
Transactions on Communications, vol. 62, no. 7, pp. 2456-2464, July
2014. doi: 10.1109/TCOMM.2014.2329672

[12] MP Henry, F Leach, M Davy, O Bushuev, MS Tombs, FB Zhou, and S
Karout, “The Prism: Efficient Signal Processing for the Internet of
Things”, IEEE Industrial Electronics Magazine, pp 2–10, December
2017. DOI: 10.1109/MIE.2017.2760108.

[13] F. Leach, S. Karout, F.B. Zhou, M.S. Tombs, M. Davy, and M.P. Henry,
“Fast Coriolis mass flow metering for monitoring diesel fuel injection”,
Flow Measurement and Instrumentation, 58 (2017), pp 1–5.

[14] http://innovative-dsp.com/product/xa-160m-two-160-msps-16-bit-adc-
two-615-msps-16-bit-dac-artix-7-fpga/

	Owen_384_TMACs_FIR_filtering cs
	384 TMAC/s FIR filtering on an Artix-7 FPGA using Prism signal processing

	Owen_384_TMACs_FIR_filtering

