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Abstract 

Ocean-atmosphere modes of climate variability in the Pacific and Indian oceans, as well as 

monsoons, regulate the regional wet and dry episodes in tropical regions. However, how those 

modes of climate variability, and their interactions, lead to spatial differences in drought 

patterns over tropical Asia at seasonal- to interannual time scales remains unclear. This study 

aims to analyse the hydroclimate processes for both short- and long-term spatial drought 

patterns (3-, 6, 12- and 24-months) over Peninsular Malaysia using the Standardized 

Precipitation Index, Standardized Precipitation Evapotranspiration Index, and Palmer Drought 

Severity Index. Besides that, a generalised least squares regression is used to explore 

underlying circulation mechanisms of these spatio-temporal drought patterns. The tested 

drought indices indicate a tendency toward wetter conditions over Peninsular Malaysia. Based 

on principal component analysis, distinct spatio-temporal drought patterns are revealed, 

suggesting North-South and East-West gradients in drought distribution. The Pacific El Nino 

Southern Oscillation (ENSO), the South Western Indian Ocean (SWIO) variability, and the 

quasi-biennial oscillation (QBO) are significant contributors to the observed spatio-temporal 

variability in drought. Both the ENSO and the SWIO modulate the North-South gradient in 

drought conditions over Peninsular Malaysia, while the QBO contributes more to the East-

West gradient. Through modulating regional moisture fluxes, the warm phases of the ENSO 

and the SWIO, and the western phases of the QBO weaken the southwest and northeast 

monsoon, leading to precipitation deficits and droughts over Peninsular Malaysia. The East-



West or North-South gradients in droughts are related to the middle mountains blocking 

southwest and northeast moisture fluxes toward Peninsular Malaysia. In addition, the ENSO 

and QBO variations are significantly leading to short-term droughts (less than a year), while 

the SWIO is significantly associated with longer-duration droughts (two years or more). 

Overall, this work demonstrates how spatio-temporal drought patterns in tropical regions are 

related to monsoons and moisture transports affected by the oscillations over the Pacific and 

Indian oceans, which is important for national water risk management.  

Keywords: Peninsular Malaysia; Spatiotemporal droughts; El Nino Southern Oscillation 

(ENSO); South Western Indian Ocean (SWIO); Quasi-Biennial Oscillation (QBO); Tropical 

interannual variation 

1. Introduction 

Drought is one of the most disruptive natural hazards with recurrent features, which occurs in 

all climate zones (Liu et al., 2013; Sanusi, Jemain, Zin, & Zahari, 2015). Even though 

Peninsular Malaysia receives an average of around 2500 mm of precipitation per year, the 

region is affected by frequent episodes of drought in response to changes in climate 

(Chinnasamy & Ganapathy, 2017). The dry spells result in strong impacts on agricultural and 

socio-economic sectors, notably by reducing local paddy and oil palm production, which are 

the most important crops in Malaysia (Firdaus, Leong Tan, Rahmat, & Senevi Gunaratne, 2020; 

Nurul Fatin, Mohd Razali, Ahmad, & Mohd Shafri, 2019), and by enhancing the occurrence of 

forest wildfires and reducing the social stability over Peninsular Malaysia (Hui-Mean, Yusof, 

Yusop, & Suhaila, 2019; Yusof, Hui-Mean, Suhaila, & Yusof, 2013). While the social and 

ecological disturbances caused by short-term droughts (i.e. lasting less than a year) are 

generally manageable and recoverable, long-term droughts (i.e. lasting more than a year) can 

lead to irreversible hydrological and ecological changes (Munson, Bradford, & Hultine, 2020; 

Tallaksen & Van Lanen, 2004). Therefore, analysing droughts at different time scales, 



especially long-term droughts, provides insights into regional water management and 

mitigation measures (Sun, Zhu, Pan, Zhang, & Liu, 2018).  

Droughts are quantified and investigated through hydroclimate observations, including 

precipitation (McKee, Doesken, & Kleist, 1993; Valipour, 2016), evapotranspiration (ET; 

Chen & Sun, 2015; Vicente-Serrano, Beguería, & López-Moreno, 2010), streamflow (Shukla 

& Wood, 2008; Wu, Miao, Tang, Duan, & He, 2018), groundwater (Li & Rodell, 2015; Thomas 

et al., 2017), and soil moisture (Martínez-Fernández, González-Zamora, Sánchez, Gumuzzio, 

& Herrero-Jiménez, 2016; Wang, Lettenmaier, & Sheffield, 2011). Based on proxies of such 

hydroclimate observations, different drought indices have been proposed and widely used (e.g., 

Fung, Huang, & Koo, 2020a; Tirivarombo, Osupile, & Eliasson, 2018; Xu, Ren, Ruan, Liu, & 

Yuan, 2012; Zhai et al., 2010), e.g.: i) the Standardized Precipitation Index (SPI; McKee et al., 

1993); ii) the Standardized Precipitation minus Evapotranspiration Index (SPEI; Vicente-

Serrano et al., 2010); iii) the Palmer Drought Severity Index (PDSI; Palmer, 1965). 

Comparisons between the SPI, which only considers changes in precipitation, and the SPEI, 

which includes ET in its calculation, allow for including the effect of warming temperature in 

considering the shifts of drought conditions (e.g., Stagge, Kingston, Tallaksen, & Hannah, 2017; 

Tirivarombo et al., 2018; Vicente-Serrano et al., 2010). However, both the SPI and the SPEI 

do not account for soil moisture content that plays an important role in drought formations 

(Yoon, Mo, & Wood, 2012). Thus, a more comprehensive drought index, the PDSI, based on 

the water balance by considering precipitation, temperature, and soil moisture (Heim, 2002; 

Niemeyer, 2008), has been usually used to serve as a comparison to the SPI or SPEI in drought 

analysis (e.g., Liu et al., 2013; Sun et al., 2018; Zhai et al., 2010; Zhao et al., 2017). Moreover, 

the SPI and SPEI both allow for depiction of short-term and multi-year droughts, while the 

PDSI is more effective for capturing the droughts for a given location and time, making it less 

flexible for the identification of different time-scaled droughts (Zhao et al., 2017). Considering 



their advantages and drawbacks, those drought indices are thus usually used together for 

drought monitoring.  

While drought indices are highly depending on precipitation amount, over Peninsular Malaysia, 

precipitation variability is primarily driven by monsoons (Fung et al., 2020a; Suhaila, Deni, 

Wan Zin, & Jemain, 2010), which show large variability from one year to another in response 

to changes in ocean-atmospheric modes of climate variability (Albani, Ibrahim, & Yong, 2018; 

Supari et al., 2018; Tangang et al., 2012). The hydroclimate variability over Malaysia has been 

found to be affected by sea surface temperature (SST) variability, especially over the Pacific 

Ocean (e.g., Daud, Akhir, & Muslim, 2019; Salimun, Tangang, Juneng, Behera, & Yu, 2014; 

Suhaila et al., 2010; Tangang & Juneng, 2004) and the Indian Ocean (e.g., Tan, Ibrahim, 

Cracknell, & Yusop, 2017; Tangang et al., 2012; Tangang et al., 2008). Furthermore, in both 

the Pacific and Indian oceans, SST variability has been linked to processes modulating the 

moisture distribution in the troposphere (Chakraborty, Behera, Mujumdar, Ohba, & Yamagata, 

2006; Lee, Worden, Noone, Chae, & Frankenberg, 2015; Pillai & Mohankumar, 2010). 

However, very little is known about the role of the quasi-biennial oscillation (QBO) in 

triggering droughts in tropical regions, although the QBO was found to affect SST anomalies 

in the Pacific Ocean, and the Indian summer monsoon rainfall in tropical regions 

(Chattopadhyay & Bhatla, 2002). Furthermore, it remains unclear how those modes of climate 

variability in the Pacific and Indian Oceans, and their interactions, influence the mechanisms 

driving regional water balance, and what their roles are on temporal persistence (i.e. short and 

long-term drought) and spatial differences of droughts in Asian tropical regions.  

The drought conditions over Peninsular Malaysia have been explored in recent studies, but 

these studies provide inconsistent results using different drought indices (Fung et al., 2020a; 

Fung, Huang, & Koo, 2020b). Using the SPI, Fung et al. (2020a) suggested that the annual 

number of dry months was reduced between 1983 and 2017 over most regions of Peninsular 



Malaysia. However, Fung et al. (2020b) reported that the occurrence of seasonal droughts 

(number of dry seasons) increased from 1983 to 2017 over Peninsular Malaysia based on the 

SPEI. Such inconsistency in previous studies highlight the need to consider multiple drought 

indices in impact assessment study. Here, we examine spatio-temporal drought conditions in 

Peninsular Malaysia based on three drought indices, and using  four different time scales (i.e., 

3-, 6-, 12-, and 24-month). Moreover, we go beyond previous studies (Fung et al., 2020a; Fung 

et al., 2020b), by examining the relationships between drought conditions and large-scale 

climatic oscillations, including the QBO and SST variations in the Pacific and Indian oceans, 

and their relations with regional monsoons. This paper is organised as follows. In Section 2, 

the general hydrological characteristics of Peninsular Malaysia are summarized, and different 

data and methods for quantifying drought patterns and climate impacts are presented. In 

Section 3 and 4, the spatio-temporal drought conditions over Peninsular Malaysia are analysed, 

and how Peninsular Malaysia drought conditions interact with the regional circulations related 

to the Pacific and Indian oceans is investigated and discussed. In Section 5, we discuss the 

potential implications and possible future applications of our results in drought analysis in 

tropical regions.  

2. Materials and Methods 

2.1 Study Area 

Peninsular Malaysia is characterized by humid and hot climate, with high mean annual rainfall 

(~2500 mm) and warm temperature (~26°C) throughout the year (Tan, Ibrahim, Duan, 

Cracknell, & Chaplot, 2015). Due to the weak temperature gradient in the tropic, the climate 

conditions are somewhat uniform for the whole region. However, Malaysian climate has strong 

seasonal variations in rainfall, in response to regional monsoon conditions (Fung et al., 2020a; 

Suhaila et al., 2010). The northeast monsoon (NEM) starts with a wet phase from December to 

mid-January, bringing heavy rainfall to Malaysia, and this season is then followed by a dry 



phase from late January to early March (Tan & Santo, 2018). The southwest monsoon (SWM; 

June to September) brings less rainfall, as compared to the NEM (Suhaila et al., 2010). In 

Peninsular Malaysia, the mountains in Main Range (i.e., Banjaran Titiwangsa) separate the 

West and East of the Peninsular (Suhaila et al., 2010), which affects the water distribution over 

the region. Based on geographical characteristics defined in Fung et al. (2020), we investigate 

the spatial hydroclimate conditions of four regions of Peninsular Malaysia (Figure 1): East, 

South, North, and Central.  

2.2 Data 

2.2.1 Drought indices 

To quantify drought events, three drought indices are used: the SPI (McKee et al., 1993), the 

SPEI (Vicente-Serrano et al., 2010), and the PDSI (Palmer, 1965). The SPI is suitable for 

quantifying most types of drought events (Sun et al., 2018), but emphasizes on precipitation 

amount, unlike the SPEI, which emphasizes the impact of temperature as well (Vicente-Serrano 

et al., 2010). The SPI is calculated by standardizing precipitation following a Gamma 

distribution function. Similarly, the SPEI calculation standardizes the precipitation minus the 

potential evapotranspiration (PET), using a log-logistic distribution function. We use four time 

scales to capture both short-term (i.e. with a duration no more than a year) and long-term 

droughts (i.e., lasting more than a year) in the SPI and SPEI: 3-month, 6-month, 12-month and 

24-month. In addition, we use the PDSI, which is a comprehensive index considering 

precipitation, temperature, and soil moisture content (Niemeyer, 2008). However, the 

conventional PDSI calculation by Palmer (1965), based on the empirical constants for the 

climatic characteristics of the middle parts of the United States (US), is not suitable for drought 

quantification in other areas (Wells, Goddard, & Hayes, 2004). Therefore, the self-calibrating 

PDSI (scPDSI; Wells et al., 2004) is used in this study. For the scPDSI, the empirical constants 

are adjusted with dynamically calculated values over the interested region. For simplicity, in 



following sections, we refer to the scPDSI as the PDSI. In addition, to further investigate 

droughts over Peninsular Malaysia, five drought levels of the three drought indices are defined 

(Table 1), and are ranging from no drought (D0) to extreme drought (D4), according to Sun et 

al. (2018).  

Hydroclimatic variables for the three drought indices are extracted from the ERA5-Land 

monthly averaged dataset (http://doi.org/10.24381/cds.68d2bb30), ranging from 1981 to 2019, 

at monthly time step (Muñoz, 2019). The ERA5-Land reanalysis dataset has enhanced the 

spatial resolution of 0.1×0.1°, as compared to the ERA5 dataset (0.25×0.25°). The ERA5-land 

reanalysis dataset is compared to the observed precipitation data from Kuala Krai station 

(northern part, 5.53°N, 102.20°E) and Senai station (southern part, 1.63°N, 103.57°E) to 

evaluate the suitability of the reanalysis data to the region. Generally, the ERA5-land dataset 

is suitable for the region, as the reanalysis data and observed precipitation match well, with 

correlations of 0.86 (Kuala Krai station) and 0.72 (Senai station), respectively (Figure A1).   

2.2.2 Climate Data 

To investigate the underlying climate drivers of drought conditions over Peninsular Malaysia, 

oceanic indices for the Pacific and Indian oceans have been used, together with an atmospheric 

oscillation index. The oceanic indices are derived from the extended reconstructed SST version 

5 (ERSST.v5) of the National Climate Data Centre (http://doi.org/10.7289/V5T72FNM) 

(Huang et al., 2017). The main advantage of ERSST.v5 is that this product is not affected by 

systematic cold SST bias induced by the use of satellite observations at the end of the twentieth 

century (Reynolds et al. 2002). The ENSO index is calculated based on empirical orthogonal 

function (EOF) of SST anomalies (SSTa) over the tropical Pacific Ocean (30°S-30°N; 110°E-

95°W).  This region has been deemed to be able to capture an optimal representations of the 

ENSO canonical pattern (Dieppois, Rouault, & New, 2015). The Dipole Mode Index (DMI) is 



commonly used for assessing the climate variability of the Indian Ocean (Biswas & Kundu, 

2018; Harapan et al., 2020; Ibnu Khaldun, Wirasatriya, Dwi Suryo, & Kunarso, 2018). 

However, based on relative importance analysis, the South Western Indian Ocean (SWIO) is 

found to explain a larger part of the SPI variance in Peninsular Malaysia than any other indices 

in the Indian Ocean (Figure A2). Therefore, to avoid redundancy and to overcome issues 

related to overfitting linear regression models, we only consider the SWIO in this study. As 

defined in Washington and Preston (2006), the SWIO index is the SSTa average over the south-

west Indian Ocean (32°S-25°S, 35°E-90°E). 

In tropical Asia regions, such as Malaysia and Singapore, the QBO has been demonstrated to 

be associated with several tropical surface climate variability, such as the ENSO (Geller, Zhou, 

& Yuan, 2016; Liess & Geller, 2012) and Indian monsoon rainfall (Fasullo, 2004). As a 

stratosphere oscillation, the QBO refers to the downward propagating patterns of easterly and 

westerly zonal winds in the equatorial stratosphere with a period around 25-28 months 

(Marshall & Scaife, 2009). In this study, the QBO index is calculated from the zonal average 

of the 30mb zonal wind at the equator (Huang, Hu, Kinter, Wu, & Kumar, 2012), using the 

0.25×0.25° ERA-5 reanalysis database (http://doi.org/10.24381/cds.f17050d7), between 1981 

and 2019 (Hersbach et al., 2019). To further investigate regional circulations associated with 

different climate indices, vertically integrated moisture flux divergence and water vapour flux 

data are extracted from the ERA5 dataset. 

2.3 Methods 

A diagram outlining the methods for data processing and analysis is shown in Figure 2. The 

detailed information for these methods are described in following sections. 

2.3.1 Trend detection 



Using multiple drought indices, we first identify potential temporal trends using a non-

parametric Mann-Kendall test (Kendall, 1975; Mann, 1945). However, as it is recognised that 

the MK trend test can be unreliable if serial-correlations are ignored (Hamed, 2008; Khaliq, 

Ouarda, & Gachon, 2009), we use a modified MK test, accounting for serial-correlation 

(Hamed & Ramachandra Rao, 1998). In addition, trend slopes are estimated through Thiel-

Sen’s slope, which provides a better estimate in the presence of outliers (Sen, 1968).  

2.3.2 Identifying spatio-temporal drought patterns  

To explore the spatio-temporal drought patterns over Peninsular Malaysia, principal 

component analysis (PCA) is used (e.g., Awange et al., 2014; Rieser, Kuhn, Pail, Anjasmara, 

& Awange, 2010). Spatio-temporal gridded datasets (X), describing three drought indices, are 

decomposed into EOF modes and principal components (PCs), representing the spatial and 

temporal variations, respectively. It can be written as: 

                                                                          ܺ = ்ܵܲ                                                                   (1) 

where the columns of S and P represent the spatial EOF modes and corresponding temporal 

PCs, respectively. ்ܲ is the transposition of matrix P. The first three largest EOFs/PCs are 

usually selected, as they can grasp the main characteristics of original signals and reduce the 

complexity of original dataset (Awange et al., 2011). However, PCA sometimes may lead to 

the confusion of spatial patterns, thus causing the difficulty in providing physical 

interpretations (Hannachi, 2007). Therefore, varimax rotation procedure, one of the most 

popular rotation method, is applied to EOF modes (hereafter called REOF; Kaiser, 1958; Lian 

& Chen, 2012) in this study.  

2.3.3 Generalised least square (GLS) regressions 



The ENSO, SWIO and QBO indices are then used to develop empirical models for drought 

indices, based on the generalised least square (GLS) regression, for drought indices. These 

models account for serial correlations, and can be expressed as follows 

                        ܻ = ଴ߚ + ܱܵܰܧଵߚ + ܱܫଶܹܵߚ + ܱܤଷܳߚ +           ߝ

or, more compactly, as (Chandler & Scott, 2011) 

ࢅ                                                        = ࢼࢄ +  (2)                                                                     ࢿ

where Y represent the drought indices, and ࢼ is a 4 × 1 vector representing the regression 

coefficients for climate modes of variability ࢄ = (૚ ࡻࡿࡺࡱ ࡻࡵࢃࡿ  is the model ߝ .(ࡻ࡮ࡽ

errors. 

The explicit expression of least squares estimators can be written as 

෡ࢼ                                                          = ቀࢄ ቁିଵࢄ ࢄ  (3)                                                             ࢅ

To account for serial correlation, the errors are adjusted by the covariance matrix of ઺෡, as 

                                                        ቀࢄ ቁିଵࢄ ࢄ ࢄቀࢄ෡ࢳ  ቁିଵ                                                      (4)ࢄ

where ࢳ෡ is the estimate of the covariance matrix of errors ࢿ. Suppose the errors are generated 

using a first-order autoregressive process or AR(1) 

௧ߝ                                                            = ௧ିଵߝ߶ +  ௧                                                           (5)ߜ

where |߶| < 1 and δ୲ is a white noise sequence. ࢳ෡ can be obtained using estimated parameter ߶෠. Thus, adjusted errors can be obtained as the square roots of the diagonal elements of the 

covariance matrix of ઺෡. Such GLS regression has also been used to investigate the impacts of 

climate indices on the regional atmospheric circulations. The statistical significance of the GLS 

regression coefficients is tested based on asymptotically normal tests. 



2.3.4 Wavelet transform coherence (WTC) 

To investigate climate impacts on droughts at multiple time scales, the wavelet transform 

coherence (WTC) is used (e.g., He et al., 2020; Torrence & Webster, 1999). Wavelet coherence 

evaluates the level of linear correlation between two time series Y (e.g., the SPI-6 PC1, PC2 

and PC3) and Z (e.g., the ENSO, SWIO and QBO) at time n and on a variability scale s. The 

WTC is then calculated as:  

                                              ܴ௡ଶ(ܻ, ܼ) = ቚெቀ௦షభௐ೙ೊೋ(௦)ቁቚమெቀ௦షభหௐ೙ೊ(௦)หమቁ∙ெቀ௦షభหௐ೙ೋ(௦)หమቁ                                     (6) 

where M is a smoothing operator. ௡ܹ௒(ݏ) and ௡ܹ௓(ݏ) are the continuous wavelet transform 

(CWT) of two time series Y and Z of length N (i.e., 468 in this study; n=1, 2, …, N), respectively.  

௡ܹ௒௓(ݏ) is the cross-wavelet spectrum, defined as: 

௡ܹ௒௓(ݏ) = ௡ܹ௒(ݏ) ௡ܹ௓(ݏ)∗ 
where ∗ represents the complex conjugate. The significance level of WTC is calculated against 

red-noises, using 1000 Monte Carlo simulations.  

3. Results 

3.1 Trend patterns over Peninsular Malaysia  

Between 1981 and 2019, both the SPI and SPEI show a tendency toward wetter conditions over 

most regions of Peninsular Malaysia and at each time scale (Figure 3a-h). Drier conditions, 

however, emerge locally in the northernmost regions of peninsular (Figure 3a-h). The PDSI 

also shows a significant trend toward wetter conditions over most Peninsular Malaysia (Figure 

3i). Over northern regions of East Peninsular Malaysia, the PDSI shows a tendency toward 

drier conditions (Figure 3i).  

3.2 Temporal changes in drought spatial extensions over Peninsular Malaysia 



3.2.1 PDSI vs. SPI/SPEI variations 

Section 3.1 shows the differences in spatial trend patterns between the PDSI and the SPI/SPEI. 

In this section, the temporal similarities and differences between the PDSI and the SPI/SPEI 

are further examined by regionally averaging variations at different time scales over the whole 

Peninsular Malaysia. The temporal variability of the PDSI matches well with those of the SPI 

and the SPEI, especially at 6-month time scale (Figure 4; Table 2). These results indicate that 

the PDSI is preferred at capturing droughts over a 6-month period. In the following sections, 

the 6-month SPI and SPEI (i.e. SPI-6 and SPEI-6) have thus been used for further comparison 

with the PDSI.  

3.2.2 Spatial extension of drought in Peninsular Malaysia 

Trend analysis indicates that most regions of Peninsular Malaysia are becoming wetter between 

1981 and 2019 (cf. Section 3.1). Here, we further examine the spatial extension of drought by 

evaluating the percentages of area impacted by droughts, based on the SPI-6, SPEI-6, and PDSI 

(Figure 5). The SPI-6, SPEI-6, and PDSI show very similar pattern, suggesting that, between 

1981 and 2019, Peninsular Malaysia experienced several severe droughts (Figure 5): 1981-

1983, 1987, 1992, 1998, 2003-2005, and 2015-2016. Interestingly, these droughts occur at the 

same time as El Nino episodes (Figure A3). Among these droughts, the droughts in 1983 and 

2005 were the most severe in terms of the spatial extension and duration based on all drought 

indices (Figure 5). In 1983 and 2005, almost the whole Peninsular Malaysia experienced a 

certain degree of droughts (i.e., from mild drought to extreme drought), and around 60% (in 

1983) and 30% (in 2005) of the region suffered from extreme drought (Figure 5). However, 

compared with the SPI/SPEI, the PDSI indicates higher severity and larger spatial extension 

for drought events in 1987 and 1992, which have been reported as severe droughts that cover 

the whole Peninsular Malaysia (Cheang, 1993; Tan et al., 2020; UNWATER, 2014). To further 



explore the spatial drought severity and spatial extension in these years, the spatial patterns of 

precipitation deficits in 1983, 1987, 1992 and 2005 are shown in Figure 6. Consistent with 

drought percentage results of three drought indices, almost the whole Peninsular Malaysia 

experienced droughts in 1983 and 2005 (Figure 6a and 6d). The drought severity also showed 

spatial differences: the drought was more severe in the North and Central regions compared to 

other regions (Figure 6a and 6d). However, there were positive precipitation deficits (wetting) 

over almost the whole Peninsular Malaysia in 1987 (Figure 6b). In 1992, precipitation deficit 

map indicates South and Central region were becoming wetter, while East and North part were 

becoming slightly drier (Figure 6c). The 1987 and 1992 severe droughts (Tan et al., 2020; 

UNWATER, 2014), are detected by the PDSI, but their severity are not well presented in the 

SPI/SPEI. Therefore, the PDSI is much more reliable than the SPI/SPEI by considering more 

variables.  

In addition, we note that drought is becoming less severe and less widespread between 1981 

and 2019 over Peninsular Malaysia based on all drought indices (Figure 5), which is consistent 

with wetter conditions, as indicated by trend analysis (Figure 3). Even though the whole 

Peninsular Malaysia is becoming wetter at a long-term scale, the study region can still suffer 

from severe droughts over short periods (i.e., 1-2 years). Therefore, exploring spatio-temporal 

patterns of droughts and their connections with climate variability are still necessary over 

Peninsular Malaysia for future regional hazard prevention and water management. 

3.3 Spatio-temporal modes of variability for drought over Peninsular Malaysia 

To further explore the drought spatio-temporal variability over Peninsular Malaysia, the first 

three REOFs of the SPI (i.e., SPI-REOF1, SPI-REOF2, and SPI-REOF3) are extracted for 

different time scales (Figure 7).  



Representing around 60% of the total variance of the SPI, the REOF1 is the main modes of 

spatio-temporal drought variability, showing a North-South (N-S) gradient, with alternating 

dry (wet) conditions in the North and Central part, but wet (dry) conditions in the South and 

East (Figure 7a-d). The temporal variations of the SPI-PC1 are strongly correlated to the 

average SPI variations over Peninsular Malaysia, with correlation values reaching -0.97, at p-

value < 0.05, for all time scales (Figure A4). The SPI-REOF2 and -REOF3 express much lower 

fractions of spatio-temporal variance of drought across Peninsular Malaysia (~13% and 7%, 

respectively; Figure 7e-l). However, these two REOFs allow for examining background spatio-

temporal variations, which could not be detected using the regionally averaged SPI over the 

region, as it is not significantly correlated to the SPI-PC2 and -PC3 (Figure 7). The SPI-REOF2 

shows homogeneous dry or wet conditions, but the dry (or wet) intensities are much stronger 

in the northern part than southern part, which can be also seen as a N-S gradient (Figure 7e-h). 

The SPI-REOF3 refers to alternating dry (wet) conditions over the western regions of 

Peninsular Malaysia, while wet (dry) conditions occur in the eastern regions (hereafter called 

East-West [E-W] gradient; Figure 7i-l).  

Combining three modes of the SPI allows to identify four different regions with consistent 

spatio-temporal variations of drought (Figure A5): East, North, South, and Central part of 

Peninsular Malaysia. Note that similar modes of spatio-temporal drought variability are found 

using the SPEI over Peninsular Malaysia (Figure A6). For the PDSI, although three REOFs 

only explain around 50% of total variances, they also indicate spatial differences between 

South (West) and North (East), consistent with the SPI patterns (Figure A7).  

3.4 Underlying climate mechanisms driving drought conditions 

3.4.1 Regional drought variations and large-scale climate variability 

To explore the underlying climate drivers of drought conditions over Peninsular Malaysia, 

Figure 8 displays the regression maps between the ENSO, SWIO, QBO, and the SPI. 



The ENSO and SWIO show significant negative relationships with the SPI variations over most 

Peninsular Malaysia, while the QBO shows positive relationships (Figure 8). This suggests that 

the warm phases of the ENSO (i.e. El Nino) and the SWIO favour droughts over the whole 

region, while the positive QBO (i.e. more stratospheric easterly winds) alleviates drought 

conditions. Moreover, eastern region is generally much drier than other parts of Peninsular 

Malaysia during El Nino years, indicating the spatial differences in the ENSO impacts (Figure 

8a-d). Similarly, the impacts of the SWIO on droughts over Peninsular Malaysia are stronger 

in the southern region than in the northern region (Figure 8e-h). The QBO impacts are generally 

much stronger in the eastern peninsular compared to the western part (Figure 8i-l). We also 

note that the strength of the impacts of climate drivers on droughts varies among different time 

scales (Figure 8). The ENSO impacts on droughts are stronger at 6- and 12-month time scales 

(Figure 8a-d). The SWIO contributions to droughts are more pronounced on longer time scales 

(e.g., 24-month; Figure 9e-h), while the QBO impacts are stronger at 12-month time scale 

(Figure 8i-l). In summary, spatially, the N-S and E-W gradients showed in the SPI-REOFs may 

be attributed to the spatial differences in impacts of the ENSO, SWIO, and QBO on droughts. 

In addition, the ENSO and QBO may affect more for droughts lasting a year or less, while the 

SWIO has a stronger impact on longer-term or multi-year drought conditions (i.e., 2 years or 

more). 

To examine the contribution of warming temperature to droughts, we examine the same 

regression maps, but using the SPEI (Figure 9). As for the SPI, the ENSO and SWIO have 

significant negative impacts on the SPEI over the most peninsular Malaysia, while the QBO 

has positive effects (Figure 9). However, compared to the SPI, the impacts of the ENSO, SWIO 

and QBO on the SPEI strengthen. Such strengthening in the impacts of the ENSO, SWIO, and 

QBO on droughts over Peninsular Malaysia suggests a significant role of such modes of climate 

variability on temperature and evapotranspiration, enhancing their impacts on droughts. The 



same regressions, but using the PDSI, show similar impact strengthening patterns (Figure 10), 

confirming the impacts of rising temperature and evapotranspiration on droughts over 

Peninsular Malaysia. 

3.4.2 Time-scale dependence of links between drought spatio-temporal variations and 
large-scale climate variability 

Section 3.4.1 suggests spatial differences in the impacts of large-scale climate variability on 

droughts, and its persistence (i.e., short-term and long-term drought). We here examine how 

the relationship between climate indices and drought spatio-temporal variations (REOF1 to 3) 

evolve over time, and at different time scales, using the WTC (Figure 11).  

The WTC analysis between the ENSO and the SPI6-PC1 (i.e. the N-S gradient in drought 

conditions) reveals a strong relationship, specifically centered on 4-year time scale (Figure 11a). 

We also note that the time lag (i.e., phase lag) for the relationship between the ENSO and the 

SPI6-PC1 is changing over time, from 0.5 year during 1981-1990 to 0 year during 1991-2019 

on 4-year time scale (Figure 11a). Similarly, the relationship between the SPI6-PC1 and the 

SWIO is only significant, and particularly pronounced, on 4-8 year time scales, with a time lag 

around 1-2 years (Figure 11b). The QBO impacts on the SPI6-PC1 are much weaker, but 

centered on high-frequency time scales (≤2 years; Figure 11c). The ENSO shows a strong 

relationship with the SPI6-PC2, which also represents a N-S gradient in drought conditions 

(Figure 11d). Such relationship is mainly on 2-4 year time scale, with a time lag around 0.5-1 

year (Figure 11d). 

The timing of the ENSO impacts on the SPI6-PC1 (~4 years) and -PC2 (2-4 years) is however 

different, suggesting the interannual changes in the relationship between the ENSO and drought 

spatio-temporal variability over Peninsular Malaysia (Figure 11a, d). Moreover, the impacts of 

the SWIO on the SPI6-PC2 (i.e., the N-S gradient in drought conditions) are significant on 4-

year time scale between 2000 and 2010, but much weaker than that on the SPI6-PC1 (Figure 



11e). For the SPI6-PC3 (i.e. the E-W gradient in drought conditions), the impacts of the ENSO 

and SWIO are generally much weaker than on the SPI6-PC1 and -PC2 (Figure 11g-h). 

However, the QBO shows significant impacts on the SPI6-PC3 at 2-year time scale, much 

stronger than that on the SPI6-PC1 and-PC2 (Figure 11c, f, i).  

Altogether, the results indicate that both the ENSO and SWIO contribute to more or less 

pronounced the N-S gradient in drought conditions over Peninsular Malaysia. Likewise, the 

QBO has a stronger impact on the E-W gradients in drought conditions over Peninsular 

Malaysia.  

3.4.3 Mechanisms driving climate-drought teleconnections in Peninsular Malaysia 

Here, we examine the regional circulation associated with the ENSO, SWIO, and QBO to 

identify the mechanisms of large-scale processes leading to the spatio-temporal variability in 

droughts over Peninsular Malaysia. Figure 12 shows the regressed surface atmospheric 

moisture flux associated with the ENSO, SWIO, and QBO, and their relations to the SWM in 

boreal summer (JJA) and the NEM in boreal winter (DJF). 

During JJA, the SWM wind brings heavy moisture to the western coast of the Indochinese 

Peninsula and the western part of Peninsular Malaysia, while other parts of the peninsular have 

relatively low precipitation (Figure 12a). In boreal summer, the ENSO has significant positive 

impacts on moisture flux divergence over Peninsular Malaysia (Figure 12b), indicating that El 

Nino events favour the export of continental moisture toward the ocean, reducing precipitable 

water over land. Warmer SWIO seems to promote northeasterly/easterly moisture flux, 

weakening the SWM wind, and favouring precipitation deficits over the western part of 

Peninsular Malaysia (Figure 12c). Over Peninsular Malaysia, the positive QBO promotes 

westerly moisture flux, as well as moisture convergence over land, favouring more 

precipitation (Figure 12d). In boreal winter (DJF), the NEM wind brings precipitation to the 



eastern part of Peninsular Malaysia (Figure 12e). During that season, the warm phases of the 

ENSO and SWIO significantly weaken the NEM winds, favouring droughts as a response of 

precipitation deficits over the peninsula (Figure 12f-g). The QBO impacts are statistically non-

significant in DJF (Figure 12h).   

In summary, the ENSO, SWIO, and QBO are related to the SWM and NEM winds, and 

contribute to precipitation deficits and droughts over the peninsula. Their impacts on droughts 

largely contribute to the differences between northern and southern regions, as well as eastern 

and western regions. These spatial differences may, however, partly be attributed to the 

geographic characteristics, as the Main Range Mountains separate the western and eastern parts 

of the peninsular (Suhaila et al., 2010), and mountains in the northeastern region (Figure 1) 

also separate the northern and southern part. The SWM in JJA brings moistures to western 

coast of peninsular, and the mountains prevent moisture from entering the eastern part. The 

QBO brings more precipitation by enhancing the SWM, which combined with orographic 

effects, explains why the QBO is associated with the E-W gradient in drought conditions over 

Peninsular Malaysia. Similarly, during DJF, the ENSO and SWIO weaken the NEM, which 

interact with mountains in the northeastern region (Figure 1), and lead to the N-S gradient in 

precipitation deficits. 

4. Discussion 

4.1 Difference of three drought indices for drought analysis 

Previous studies have suggested that different drought indices may get different results over 

the same region and during the same period (e.g., Fung et al., 2020a; Fung et al., 2020b). Fung 

et al. (2020a) showed an increase of annual precipitation, and a decreasing number of drought 

events, except in the Southern region between 1983 and 2017 based on the SPI. However, the 

SPEI analysis suggested that both the occurrence of seasonal droughts and the number of dry 



seasons had increased during 1983-2017 (Fung et al., 2020b). In our study, similar 

inconsistency among different drought indices for long term trend analysis over Peninsular 

Malaysia are found. Despite a significant increase in the SPI and SPEI over northern part of 

East Peninsular Malaysia (Figure 3a-d), these regions are becoming drier according to the PDSI 

(Figure 3i). Such discrepancy between the SPI/SPEI and the PDSI is likely caused by the 

different foundations of the indices. The PDSI is a comprehensive drought index integrating 

precipitation, temperature, and soil moisture, while the SPI (and SPEI) only considers the 

precipitation (and temperature) variations. Sheffield, Wood, and Roderick (2012) however 

suggested that the influences of warming temperature on droughts are likely to be 

overestimated based on the PDSI calculations. Therefore, compared to the SPI and SPEI, which 

detect drying conditions in a very small part, the PDSI may expand the drying conditions due 

to an overestimation of the effect of rising temperature. In addition, soil moisture variations are 

related to topographic elements and land use (Guo et al., 2020; Yang, Dou, Liu, & An, 2017). 

The drying regions detected by the PDSI are the mountainous areas, whereas wetting regions 

are lowland areas (Figure 1). Thus, the different land uses may affect the drought conditions, 

leading to the observed differences between the PDSI and the SPI/SPEI.  

4.2 Underlying climate mechanism of drought patterns over Peninsular Malaysia 

From 1981 to 2019, droughts are less severe and less widespread over Peninsular Malaysia, 

which is regulated by the ENSO, SWIO and QBO through the modulations of the SWM and 

NEM winds. During El Nino episodes, the warm phases of the SWIO, and the westerly phase 

of the QBO, droughts are more likely to strike the peninsula. The impacts of the ENSO on 

water variability over Malaysia are consistent with previous studies (e.g., Juneng & Tangang, 

2005; Salimun et al., 2014; Tangang & Juneng, 2004). The SST variability in Indian Ocean 

(IOD) and tropical atmosphere oscillations (i.e., Madden-Julian Oscillation [MJO]) are also 

suggested to affect the hydroclimate variability over Peninsular Malaysia (Islam, Chan, 



Ashfold, Ooi, & Azari, 2018; Tangang et al., 2008), even though the specific climate indices 

are different from those in our study. Our statistical analysis suggests that the SWIO has larger 

contributions to drought conditions compared to the IOD (Figure A2). The MJO and the QBO 

are two key modes of variability in the tropical atmosphere, both affecting the tropical 

convection (Islam et al., 2018; Liess & Geller, 2012). However, the MJO normally weakens 

when it approaches the Malaysia region (Zhang, 2013). Therefore, the QBO should be a better 

choice of tropical atmosphere oscillations for affecting local water variability over Peninsular 

Malaysia compared to the MJO. In addition, there are interactions among the ENSO, Indian 

SST variability and QBO (Pillai & Mohankumar, 2010), and we need further investigations for 

the interaction of these oscillations, similarly to previous studies for studying relations between 

the ENSO and the SWIO (Cai et al. 2011; Weller; Cai 2013), and between the ENSO and the 

QBO (Calvo et al. 2009; Hansen et al. 2015). 

5. Conclusions 

Using three drought indices from 1981 to 2019, we analyse the spatio-temporal drought 

patterns over Peninsular Malaysia at four time scales (i.e., 3-, 6-, 12-, and 24-month). Over the 

past decades, there is generally a significant tendency toward wetter conditions over the region, 

based on all drought indices (i.e. the SPI, SPEI, and PDSI). Moreover, based on the analysis of 

interannual changes in the drought severity and drought spatial extensions, results indicate that, 

from 1981 to 2019, droughts are less severe and less widespread over Peninsular Malaysia, but 

the region still suffered severe droughts during past decades, like 1983 and 2005. Based on the 

PCA results, generally, the first and second mode of drought spatio-temporal variability reveal 

the N-S gradient of drought conditions over Peninsular Malaysia, while the third mode 

indicates the E-W differences in droughts.  

To characterise how large-scale ocean-atmosphere oscillations are related to drought 

conditions, the GLS models have been used to establish the relationships between drought 



indices and three climate indices: the ENSO, SWIO, and QBO. All three indices are found to 

be linked to drought conditions, via modulations of the SWM and NEM winds. Droughts are 

more likely to occur over the peninsula during the El Nino events, the warm phases of the 

SWIO and the westerly phases of the QBO. Moreover, those modes of large-scale climate 

variability show stronger impacts on droughts using the SPEI and PDSI, rather than the SPI. It 

indicates that those climate oscillations may affect the local temperature and evapotranspiration, 

exacerbating drought patterns over Peninsular Malaysia.  

Additionally, the response of drought patterns to the ENSO and SWIO largely contributes to 

differences between the North and South, while the impacts of the QBO may contribute more 

to the E-W differences. These spatial differences may, however, be related to interactions 

between the large-scale atmospheric circulations and the orographic factors over the region. 

For instance, moisture fluxes associated with the SWM in JJA, and the NEM in DJF, are 

prevented from spreading throughout the peninsular by the mountains. In addition, the ENSO 

and QBO show stronger impacts on droughts lasting a year or less, while the SWIO is 

associated with multi-year droughts (i.e. ≥2 years).  

Based on the above results, despite that Peninsular Malaysia recorded a tendency toward wetter 

conditions, we show that, from one year to another, some regions may still suffer from droughts 

due to the interactions between large-scale atmospheric circulations and orographic factors. 

Local stakeholders may need to pay more attention to such regional droughts in the future. In 

particular, warming ocean temperature, especially in the Indian and Pacific oceans, might 

contribute to increase drought risks over Peninsular Malaysia (Cai et al., 2014; Chu et al., 2018). 

The expected future risks in droughts could thus put more pressure on the local Malaysian 

Government for water supply and food security. Overall, the empirical relationships between 

drought conditions over Peninsular Malaysia and the atmosphere-ocean oscillations linked with 



monsoon circulations can be valuable to develop seasonal to multi-year empirical forecast for 

water resources management in tropical Asia.  
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Tables 

Table 1. Different drought levels based on the drought indices (Sun et al., 2018).  

Table 2. The correlations between SPI/SPEI and PDSI from 3- to 24-month time scales. * 

indicates the correlation is statistically significant at p-value < 0.05. 

 

Figures 



Figure 1. Elevation (m a.s.l; green to brown colour shades) over Peninsular Malaysia. The 

whole Peninsular Malaysia is divided into four regions: East, South, North, and Central. 

Figure 2. The diagram for data processing and analysis. The red boxes are related to data, 

orange boxes are calculated indices, and bule boxes are statistical analysis. 

Figure 3. The trend pattern (per year) over Peninsular Malaysia based on SPI (a-d), SPEI (e-

h) at 3-month, 6-month, 12-month and 24-month time scale, and PDSI (i). The black dots 

indicate significant values at 0.1 significance level according to the modified MK-test. Red to 

blue colour shades indicate different level of dryness and wetness, respectively. 

Figure 4. The averaged PDSI against SPI and SPEI at 3-month, 6-month, 12-month, and 24-

month time scales. 

Figure 5. The percentage of area impacted by drought over Peninsular Malaysia. Drought are 

here estimated using SPI-6 (a), SPEI-6 (b), and PDSI (c), and at different levels of drought 

severity from no drought (D0, blue) to extreme drought (D5, dark red; cf. Table 1).  

Figure 6. The precipitation deficits in 1983 (a), 1987 (b), 1993 (c) and 2005 (d) as compared 

to mean precipitation 1981-2019. 

Figure 7. The REOF1 (a-d), REOF2 (e-h), and REOF3 (i-l) of SPI at 1-month, 6-month, 12-

month, and 24-month time scale. The percentage indicates the fraction of variance of REOFs. 

Red to blue colour shades indicate different level of dryness and wetness, respectively. 

Figure 8. The maps of regression coefficients of ENSO (a-d), SWIO (e-h) and QBO (i-l) for 

SPI at 3-month, 6-month, 12-month, and 24-month time scale. The black dots indicate 

statistically significant values at 0.1 significance level according to the asymptotically normal 

tests. Red to blue colour shades indicate negative and positive impacts of climate indices on 

SPI, respectively. 



Figure 9. The maps of regression coefficients of ENSO (a-d), SWIO (e-h), and QBO (i-l) for 

SPEI at 3-month, 6-month, 12-month and 24-month time scale. The black dots indicate 

statistically significant values at 0.1 significance level according to the asymptotically normal 

tests. Red to blue colour shades indicate negative and positive impacts of climate indices on 

SPEI, respectively. 

Figure 10. The maps of regression coefficients of ENSO, SWIO and QBO for PDSI. The black 

dots indicate statistically significant values at 0.1 significance level according to the 

asymptotically normal tests. Red to blue colour shades indicate negative and positive impacts 

of climate indices on PDSI, respectively. 

Figure 11. The WTC analysis of the SPI-6 PCs and the ENSO, SWIO and QBO at different 

time scales. The thick black contour represents the 5% significance level against the red noise. 

The thin black line is the boundary of the cone of influence (COI), i.e., the edge effects caused 

by zero-padding effect. The phase lag is denoted by the arrow directions (right (left) is 0 (180) 

degree phase lag; up (down) is 270 (90) degree phase lag). 

Figure 12. The surface climatological moisture flux with precipitation distribution (a), and 

moisture flux (divergence) regressed by ENSO, SWIO, and QBO during JJA (b-d). The (e-h) 

are similar as the (a-d) but for DJF. For (a) and (e), the magenta arrows and shaded area are 

climatological moisture flux and precipitation. For other figures, the arrows and shaded areas 

represent the regressed wind and regressed coefficients of moisture flux divergence. The 

magenta and black arrows in (b-d) and (f-h) are significant and non-significant results at p-

value < 0.1, respectively. For shaded area, only significant results with the significance level 

of p-value < 0.1 are provided. 

 

Tables 



Table 1. Different drought levels based on the drought indices (Sun et al., 2018).  

Drought level SPI/SPEI PDSI Description 
D0 DI > -0.5 DI > -1.0 No drought 
D1 -1.0 < DI ≤ -0.5 -2.0 < DI ≤ -1.0 Mild drought 
D2 -1.5 < DI ≤ -1.0 -3.0 < DI ≤ -2.0 Moderate drought 
D3 -2.0 < DI ≤ -1.5 -4.0 < DI ≤ -3.0 Severe drought 
D4 DI ≤ -2.0 DI ≤ -4.0 Extreme drought 

 

Table 2. The correlations between SPI/SPEI and PDSI from 3- to 24-month time scales. * 

indicates the correlation is statistically significant at p-value < 0.05. 

 
3-month 6-month 12-month 24-month 

SPI 0.599* 0.617* 0.577* 0.452* 
SPEI 0.613* 0.622* 0.586* 0.466* 
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Figure 3. The trend pattern (per year) over Peninsular Malaysia based on SPI (a-d), SPEI (e-

h) at 3-month, 6-month, 12-month and 24-month time scale, and PDSI (i). The black dots 

indicate significant values at 0.1 significance level according to the modified MK-test. Red to 

blue colour shades indicate different level of dryness and wetness, respectively. 



 

Figure 4. The averaged PDSI against SPI and SPEI at 3-month, 6-month, 12-month, and 24-

month time scales. 



 

Figure 5. The percentage of area impacted by drought over Peninsular Malaysia. Drought are 

here estimated using SPI-6 (a), SPEI-6 (b), and PDSI (c), and at different levels of drought 

severity from no drought (D0, blue) to extreme drought (D5, dark red; cf. Table 1).  



 

Figure 6. The precipitation deficits in 1983 (a), 1987 (b), 1993 (c) and 2005 (d) as compared 

to mean precipitation 1981-2019. 

 

 



 

Figure 7. The REOF1 (a-d), REOF2 (e-h), and REOF3 (i-l) of SPI at 1-month, 6-month, 12-

month, and 24-month time scale. The percentage indicates the fraction of variance of REOFs. 

Red to blue colour shades indicate different level of dryness and wetness, respectively. 



 

Figure 8. The maps of regression coefficients of ENSO (a-d), SWIO (e-h) and QBO (i-l) for 

SPI at 3-month, 6-month, 12-month, and 24-month time scale. The black dots indicate 

statistically significant values at 0.1 significance level according to the asymptotically normal 

tests. Red to blue colour shades indicate negative and positive impacts of climate indices on 

SPI, respectively. 



 

Figure 9. The maps of regression coefficients of ENSO (a-d), SWIO (e-h), and QBO (i-l) for 

SPEI at 3-month, 6-month, 12-month and 24-month time scale. The black dots indicate 

statistically significant values at 0.1 significance level according to the asymptotically normal 

tests. Red to blue colour shades indicate negative and positive impacts of climate indices on 

SPEI, respectively. 



 

Figure 10. The maps of regression coefficients of ENSO, SWIO and QBO for PDSI. The black 

dots indicate statistically significant values at 0.1 significance level according to the 

asymptotically normal tests. Red to blue colour shades indicate negative and positive impacts 

of climate indices on PDSI, respectively. 

 

Figure 11. The WTC analysis of the SPI-6 PCs and the ENSO, SWIO and QBO at different 

time scales. The thick black contour represents the 5% significance level against the red noise. 



The thin black line is the boundary of the cone of influence (COI), i.e., the edge effects caused 

by zero-padding effect. The phase lag is denoted by the arrow directions (right (left) is 0 (180) 

degree phase lag; up (down) is 270 (90) degree phase lag). 

 



Figure 12. The surface climatological moisture flux with precipitation distribution (a), and 

moisture flux (divergence) regressed by ENSO, SWIO, and QBO during JJA (b-d). The (e-h) 

are similar as the (a-d) but for DJF. For (a) and (e), the magenta arrows and shaded area are 

climatological moisture flux and precipitation. For other figures, the arrows and shaded areas 

represent the regressed wind and regressed coefficients of moisture flux divergence. The 

magenta and black arrows in (b-d) and (f-h) are significant and non-significant results at p-

value < 0.1, respectively. For shaded area, only significant results with the significance level 

of p-value < 0.1 are provided. 

 

Appendix  

PDSI calculation 

The calculation of the PDSI is performed as follows (Liu et al., 2013; Wells et al., 2004): 

௜ܫܵܦܲ                                                 = ݌ × ௜ିଵܫܵܦܲ + ݍ × ܼ௜                                           (A1) 

where ܲܫܵܦ௜ and ܲܫܵܦ௜ିଵ are the current and previous month’s PDSI, respectively. p and q are 

the empirical duration factors, which are adjusted using the self-calibrating procedure. ܼ௜ is the 

current moisture anomaly index, and can be expressed as: 

                                                                 ܼ௜ = ௜ܭ ×  ௜                                                        (A2)ܦ

where ܦ௜ is the moisture departure, written as 

௜ܦ                                = ܲ − ቀா ഢ்തതതതത௉ாഢതതതതത ܧܲ + ோഢതതത௉ோഢതതതതത ܴܲ + ோைഢതതതതത௉ோைഢതതതതതതത ܴܱܲ − ௅ഢഥ௉௅ഢതതതതത  ቁ                              (A3)ܮܲ



where ܲ is the precipitation. ET, R, RO and L are the evapotranspiration, recharge, runoff and 

loss of soil moisture, respectively. PE, PR, PRO and PL are the potential evapotranspiration, 

recharge, runoff and loss of soil moisture, respectively. 

 ௜ᇱ (i.e., the Palmer’s generalܭ ௜ is the current climate characteristics value and a refinement ofܭ

approximation of climate characteristics). It is written as: 

௜ܭ                                                      = ൬ ଵ଻.଺଻∑ ஽ണതതതത×௄ೕᇲభమೕసభ ൰ܭ௜ᇱ                                                        (A4) 

௜ᇱܭ                                    = 1.5 × ݃݋݈ ቂቀ௉ாഢതതതതതାோഢതതതାோைഢതതതതത௉ഢഥା௅ഢഥ + 2.8ቁ పഥൗܦ ቃ + 0.5                                   (A5)  

 

Figure A1. The scatterplot and correlations between ERA5 and observed precipitation. 

Figure A2. The relative importance analysis for the Indian variability indices to the SPI over 

Peninsular Malaysia. 

Figure A3. The SST anomaly shows the warm and cold phase of the ENSO during 1900 and 

2019. 

Figure A4. The SPI PCs and SPI at 3-, 6-, 12-, and 24-month time scale. 

Figure A5. The scatterplot between REOF2 and REOF3 of SPI-3. 

Figure A6. The REOF1 (a-d), REOF2 (e-h), and REOF3 (i-l) of SPEI at 1-month, 6-month, 

12-month and 24-month time scale. 

Figure A7. The REOF1 (a), REOF2 (b), and REOF3 (c) of PDSI. 
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Figure A1. The scatterplot and correlations between ERA5 and observed precipitation. 

 

Figure A2. The relative importance analysis for the Indian variability indices to the SPI over 

Peninsular Malaysia. 



 

Figure A3. The SST anomaly shows the warm and cold phase of the ENSO during 1900 and 

2019. 

 

Figure A4. The SPI PCs and SPI at 3-, 6-, 12-, and 24-month time scale. 



 

Figure A5. The scatterplot between REOF1+REOF2 and REOF3 of SPI-3. 



 

Figure A6. The REOF1 (a-d), REOF2 (e-h), and REOF3 (i-l) of SPEI at 1-month, 6-month, 

12-month and 24-month time scale. 



 

Figure A7. The REOF1 (a), REOF2 (b), and REOF3 (c) of PDSI. 


