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Abstract 
This paper proposes a mode switching supervisory controller for autonomous vehicles. The supervisory 
controller selects the most appropriate controller based on safety constraints and on the vehicle location 
with respect to junctions. Autonomous steering, throttle and deceleration control inputs are used to perform 
variable speed lane keeping assist, standard or emergency braking and to manage junctions, including 
roundabouts. Adaptive model predictive control with lane keeping assist is performed on the main roads 
and a linear pure pursuit inspired controller is applied using waypoints at road junction where lane keeping 
assist sensors present a safety risk. A multi-stage rule based autonomous braking algorithm performs stop, 
restart and emergency braking maneuvers. The controllers are implemented in MATLAB® and SimulinkTM 

and are demonstrated using the Automatic Driving ToolboxTM environment. Numerical simulations of 
autonomous driving scenarios demonstrate the efficiency of the lane keeping assist mode on roads with 
curvature and the ability to accurately track waypoints at cross intersections and roundabouts using a 
simpler pure pursuit inspired mode. The ego vehicle also autonomously stops in time at signalled 
intersections or to avoid collision with other road users.  
 
Keywords: autonomous vehicle, lane keeping assist, switched, adaptive model predictive control, 
braking, pure pursuit. 
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There is an increasing demand for methods that will enable cars to drive with high levels of autonomy, 
while dealing with dynamical, control and safety constraints. This paper considers the mode switching 
control of autonomous vehicles with an emphasis on path following, under constraints on the trajectory 
including traffic light signals, road users and the need to maintain a safe distance from preceding vehicles. 
The application under consideration is the simulation of a vehicle navigating a distance of 500m in a city 
environment, including cross intersections, roundabouts and traffic lights before reaching a car park. Real 
life driving scenarios often require hybrid systems with the ability to switch between controllers when the 
control objectives change. Mode switching is often implemented between adaptive cruise control (ACC) 
laws, as in (1) where cruise, following or approach modes were successfully selected with their distance, 
speed and acceleration references under real traffic conditions. In (2), Ioannou and Chien developed ACC 
for platooning applications by implementing a switching logic in a look ahead model. Faster traffic flows 
were obtained compared to driver models. A similar headway switching logic was extended in (3) to vehicle 
following and platooning in automated highway systems, with emergency situations handling. In (4), 
autonomous cruise control was further developed with the ability to change lanes and vary speed limits 
depending on the traffic conditions. In (5), ACC was used together with a traffic dependent switching logic. 
In (6), model predictive control (MPC) was used for the optimal combination of flow metering and speed 
limits to reduce the overall congestion time. Platooning is however beyond the scope of this paper, where 
a time headway is only considered with respect to a maximum of one lead vehicle at any time. Other aspects 
of autonomy may involve the ability to avoid obstacles, either using MPC or path planning methods, such 
as jump point search (JPS) (7, 8). Autonomous braking is increasingly considered because of its proven 
impact on driving safety through testing procedures (9). Autonomous braking algorithms often employ 
partial braking to decelerate, followed by full braking to avoid collision, as in (10) where a tradeoff was 
achieved between ride comfort and safety. In (11), a 39% reduction in the number of fatal injuries was 
obtained by combining forward collision warning with autonomous braking. This capability was extended 
in (12) to the ability to autonomously brake on roads with curvature. Autonomous driving strategies were 
also developed to account for traffic light signals. Predictive cruise control was used in (13) where 
upcoming traffic signal predictions were exploited to improve fuel economy and reduce trip time by 
adjusting speeds to reach intersections when traffic lights turn green. In (14), MPC was used to optimize 
fuel economy on roads with signalized intersections.  

This paper focuses on path following on roads with curvature and signalized intersections with the ability 
to stop but also restart autonomously. Lane keeping and manoeuvring using MPC methods has been the 
subject of increased research interest in recent years. Predictive control is also increasingly being considered 
using active set or interior point methods, with hybrid affine models where a mode is typically selected 
based on the discrete states of a state machine and on discrete events being triggered when those states 
exceed thresholds (15). In (16), a Stanley lateral MPC controller was used to optimize lateral and yaw 
errors, while avoiding obstacles during double lane changes. In (17), MPC was performed with autonomous 
lane keeping using lane keeping assist (LKA) sensor points. Other approaches have focused on reducing 
computational demand using an explicit MPC approach where a multiparametric quadratic optimization 
problem is solved offline. This allows for pre-computed gains to be used in different state space regions for 
real time implementation as shown in (18,19). Nonlinear and time varying MPC were also used in (20) to 
maintain stability during active steering control on slippery roads up to relatively high speeds. 

The ability to adapt MPC to unexpected emergencies or to changing paths constraints is important to many 
driving scenarios in city environments. The latter was shown in (21), where adaptive MPC was used to 
control the steering at constant speeds using a set membership-based switching strategy to deal with 
curvature changes during autonomous lane keeping. In (22), MPC was used with five driving modes 
depending on a congestion dependent emergency coefficient and on the estimated acceleration of a lead 
vehicle, with improvements compared to single mode MPC in terms of driving comfort and safety. In (23), 
adaptive MPC was used for automated fallback maneuvers in presence of sensor malfunctions. Adaptive 
MPC formulations with responsibility-sensitive safety distance constraints were introduced in (24). The 
robustness of adaptive MPC to scenario linked uncertainty, including driving at a junction, was investigated 
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in (25). A chance constrained scenario MPC approach was used to safely change lanes in (26).  MPC was 
used in (27) for path planning by enforcing collision avoidance constraints while maintaining driving 
comfort by incorporating a lane dependent potential field within the cost function. A hybrid MPC approach 
was used as an adaptive cruise control method in (28) where the objective was to follow a lead vehicle. In 
(29), switched MPC controller was developed to switch between local linear MPC controllers depending 
on tyre conditions. A switched MPC controller was also proposed in (30) with mode switching between 
tracking error models, respectively based on heading error, heading error rate and sideslip. Mode switching 
with simpler controllers is less common, with few exceptions as in (31), where ACC uses nonlinear MPC 
for throttle control and more reactive PI control for the more urgent autonomous braking and an additional 
switching logic is used to automatically transition from driver commands to ACC. The switching between 
MPC controllers is therefore increasingly considered, but mode switching between MPC and simpler more 
reactive controllers has not received sufficient attention. Another reason to switch to more reactive 
controllers is the known possible adverse effect of certain sensors such as LKA systems as reported by 
Thatcham Research in (32) for scenarios requiring a lane change or to stop following lanes. In this paper, 
mode switching is applied between adaptive MPC and a simpler pure pursuit controller, which is known to 
be efficient at low speeds. In pure pursuit, a virtual target is assumed. The steering command is then either 
calculated from a required curvature and look ahead distance from the vehicle’s rear axle to the virtual 
target position as in (33) or from a line of sight (LOS) requirement from the centre of gravity (CoG) of the 
vehicle to the virtual target as in (34). In this case, the car model still accounts for the fact that steering 
commands are applied with the front wheels, while heading is defined from the CoG.  

The main contributions of the paper are as follows: 
 a mode switching cruise and steering controller is applied with an adaptive MPC LKA mode on the 

main road to optimize path following and a safer and more reactive waypoints-based linear pure-
pursuit controller at road intersections, where this simpler approach is known to be efficient because 
of the shorter distances and lower speeds at those locations.  

 the mode switching controller only uses LKA sensors on the main road where they are safe. It uses 
waypoints instead of LKA sensing at road junctions including cross intersections and roundabouts, 
where the discontinuities in lane patterns otherwise present the safety risk of an interruption in LKA 
sensor data, potentially leading to a wrong lane, even assuming a large LKA sensor field of view 
(FoV). Driving at junctions using LKA indeed presents lane keeping safety risks similar to the ones 
reported in (32). 

 an autonomous braking logic is proposed, which differentiates between stopping accurately for 
traffic lights and emergency braking for other road users (ORUs) with additional safety margins, 
followed by a safe restart mode in both cases.  

 The pure pursuit law projects the heading towards a virtual target between the current and next 
waypoints, which exploits ideas from driver models and differs from conventional LOS pure 
pursuit where the next waypoint is tracked. 

The solutions are developed using features of the Automatic Driving ToolboxTM in MATLAB®/SimulinkTM 
2020a, including LKA, optical and radar sensors and Model Predictive Control toolbox libraries, as well as 
the Driving Scenario Designer app. It is noteworthy that the LKA block in SimulinkTM systematically fails 
at junctions and that the proposed approach circumvents this issue, which opens new prospects for users of 
the Automatic Driving ToolboxTM in MATLAB®, particularly for path following. The supervisory mode 
switching control, pure pursuit inspired mode and autonomous braking algorithms were all developed as 
part of the InnovateUK Assured Parking project (reference: 105095). One of the objectives of the project 
is to evaluate and develop city driving and parking capabilities for autonomous vehicles. The road model 
has similar features to the ASSURED CAV City at the HORIBA MIRA campus, Nuneaton, UK. A desired 
itinerary is realized using waypoints centered on the desired lanes with desired speeds, based on speed 
limits and arcs connecting waypoints on the roads that intersect. 
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The remainder of this paper is organized as follows: The equations of vehicle dynamics are described in 
the next section. The supervisory switching logic is introduced in the following section for the autonomous 
driving problem under consideration. A mode switching steering controller is then presented before being 
extended to steering and speed control. An autonomous braking controller is introduced as an additional 
control mode to stop for traffic lights or ORUs before restarting. The numerical simulation analyzis is then 
presented, which demonstrates the effectiveness of the proposed mode switching controller with adaptive 
LKA MPC and pure pursuit waypoint tracking modes for path following on roads with curvature, cross 
intersections, roundabouts and of the autonomous braking mode using onboard obstacle sensing and traffic 
light information. This is followed by a discussion on the generality of the approach before concluding the 
paper. 

Equations of Vehicle Dynamics 

The lateral and longitudinal vehicle dynamics are described by a ‘bicycle’ type model similar to the one in 
(20) and given by:  

      

�̈� = −�̇�𝑟 +
𝐹௬

𝑚

�̇� =
𝑀௭

𝐼௭௭

𝑟 = �̇�

              (1) 

 

          �̈� = �̇�𝑟 +
𝐹௫

𝑚
                (2) 

where 𝑥, 𝑦 are the Cartesian coordinates of the position vector in two dimensions, 𝑟 is the yaw rate, 𝐼௭௭ is 
the yaw inertia, 𝐹௫, 𝐹௬ are the forces acting along the longitudinal and lateral body axes, 𝑀௭ is the yawing 
moment and 𝜓 is the yaw angle. The yawing moment is a function of tyre dependent forces and arm lengths 
and is given by 𝑀௭ = 𝐹௬  𝑙 +  𝐹௬ 𝑙, where 𝑙 and 𝑙 are respectively the rear and front tyre arm lengths 
with respect to the center of gravity of the car. 𝐹௬ and 𝐹௬ are the forces on the rear and front tyres, 
respectively and are given in (20). They depend on tyre stiffness, steering angle 𝛿 , velocity components 
�̇�, 𝑦 ̇ and yaw rate r. The forces Fx and Fy are linked to the steering, acceleration and deceleration commands 
as follows:    

                     

𝐹௫

𝑚
=

𝛿ఛ − 𝐹

𝑚
                   

𝐹𝑦 = 𝐹𝑦𝑟 + 𝐹𝑦𝑓                
(3) 

where 𝛿ఛ is the throttle force acting along the longitudinal axis and 𝐹 is the deceleration force applied 
by the brakes. 

The model can be compactly written in vector form as:                        
               𝐱̇ = 𝒇(𝐱, 𝐮)                   (4) 

 with: 
𝐱 = [𝑥, �̇�, 𝑦, �̇�, 𝜓, 𝑟]் 

𝐮 = 
𝐹௫

𝑚
, 𝛿൨

்

 

For convenience, we define 𝐩 = [𝑥, 𝑦]் as the position vector, 𝐷 =
ி್ೝೌೖ


 as the deceleration obtained by 

autonomous braking and V as the longitudinal velocity. In practice, 
ிೣ


=

ఋഓ


 during path following when the 

throttle is used. When autonomous braking is used, the throttle is automatically disabled and  
ிೣ


= −𝐷. 
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Supervisory Mode Switching Decision Layer for Autonomous Vehicle Control 

The autonomous car in our study is required to perform the following autonomously:  
(i) switch between adaptive MPC and linear pure pursuit inspired waypoint tracking using the 

Autonomous Steering and Acceleration Supervisory Controller (ASASC) described in Algorithm 
2 to drive on roads with junctions and only use LKA when it is safe. Note that the Steering 
Controller Arbitrator (SCA) of Algorithm 1 assumes steering at a constant speed and was developed 
as a control design stage before being extended to ASASC, 

(ii) brake using the Multi-Stage Autonomous Braking System (MS-ABS) described in Algorithm 3 to 
adhere to road traffic regulations and stop in the case of emergencies due to the presence of ORUs 
in the path of the vehicle. The obstacle detection and pose estimation were obtained using sensor 
fusion from optical and radar sensors at the front of the ego vehicle. 

(iii) restart when the traffic light is green or when the way is clear again, also using MS-ABS. 

The supervisory decision layer determines which of the acceleration, steering and braking controllers are 
activated based on three sets of activation thresholds: 

(i) thresholds specifying forward crossing/collision warning time 𝑡before traffic lights or obstructions 
created by ORUs, 

(ii) thresholds specifying the time gap 𝑡that will determine the safety distance s with respect to 
preceding vehicles, 

(iii) lane keeping thresholds l and lc to respectively impose vertical deviation constraints and to indicate 
if LKA sensing is safe to use.  

A forward collision warning (FCW) status variable determines if without deceleration, collision with 
another road user will occur. Likewise, a forward stop line crossing warning (FSLCW) status variable 
determines if the traffic line will be crossed when the light is amber or red. The calculation of FCW time is 
described in the multi-stage braking section. The positions of the vertices of quadrilateral road intersection 
areas at the junctions are assumed to be obtained using the onboard map. Those regions will be taken to be 
rectangular in the numerical simulation section. The supervisory algorithm can be summarized as follows 
for scenarios requiring steering, acceleration and braking commands: 

if (Green light) and (no road users detected within the safety distance) 
           FCW status = 0             (No FCW) 
           FSLCW=0                    (No FSLCW) 
           braking status = 0         (No braking) 
           call the mode switching controller for steering/acceleration (ASASC, Algorithm 2) 
else if (amber or red traffic light) or (road user detected) 
           call the autonomous braking controller (MS-ABS, Algorithm 3)   
end if 

Note that within MS-ABS (Algorithm 3), FCW status will be set to 1, before braking status is set to 1 
(autonomous braking).  The throttle in ASASC (Algorithm 2) is then set to 0 during multistage braking. 
When the braking status is reset to 0 (green light), the brakes are released, and the throttle command of 
ASASC is reactivated. A finite state machine enables the car to start again when the light turns back to 
green and if there is no obstacle in front of the vehicle.  

Mode Switching Control for Path Following with Steering Inputs 

The control design for the autonomous vehicle control is done in stages, where the lane following is first 
formulated for steering at constant speeds before being extended to acceleration and steering commands. 
The mode switching steering controller, which is presented in this section, has two modes: a LKA MPC 
controller on the main road and a waypoints tracking pure pursuit inspired steering controller at road 
intersections. The next two subsections respectively describe the adaptive MPC mode and the pure pursuit 
inspired waypoints tracking mode in the constant speed case. 
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Adaptive MPC Steering Controller Mode 

This subsection is a precusor to the steering and acceleration controller. It focuses on steering and 
assumes that the speed is constant. It allows to independently evaluate the steering performance. This 
preliminary simplifying assumption will however be relaxed in the proposed 3DoF controller. 

A reduced order control system is therefore considered first, with 𝐮 = 𝛿, 𝐱 = [𝑥, 𝑦, 𝜓, 𝑟]. The 
optimization problem under consideration is the minimization of a quadratic cost function under control 
effort and lateral error limitations: 

min
ఋ

𝐽 = න ൫𝐞𝐓𝐐𝐞 + 𝐮𝐓𝐑𝐮൯𝑑𝑡
ஶ



 

𝑠𝑡. |𝛿| < 𝛿ெ௫

ห𝑒௬ห < 𝑙

             (5)  

where e= xd-x and xd is a desired state vector trajectory, 𝑒௬ is the lateral error with respect to the lane center, 
𝛿ெ௫ is the maximum steering angle and 𝑙 is a constraint on maximum lateral deviation from the path. The 
coordinates xd, yd are obtained from the LKA sensor when LKA is sufficiently accurate. 

Using adaptive MPC, it is possible to incorporate controller and state constraints. The prediction model is 
adapted to changing operating conditions. The plant model is linearized by a first order Taylor expansion 
around operating points (𝐱ത, 𝐮ഥ) along the road curvature. In adaptive MPC, the nominal operating point 
(𝐱ത, 𝐮ഥ) evolves with time and the linearization matrices are updated: 

�̇� = 𝐀𝐜(𝐱ത)𝐱 + 𝐁𝐜𝐮 + 𝐍(𝐱ത)
𝐲 = 𝐂𝐜𝐱

               (6) 

𝐀𝐜(𝐱ത) = 
𝜕𝒇

𝜕𝐱
൨

𝐱ത
, 𝐁𝐜(𝐱ത) = 

𝜕𝒇

𝜕𝐮
൨

𝐱ത
=

⎣
⎢
⎢
⎡0

1

𝑚
0      0       0        0      

0 0 0     
𝐾

𝑚
     0     

𝑙𝐾

𝐼௭௭
 
   

⎦
⎥
⎥
⎤
 

The matrix Cc is 𝐼× in the full 3DoF model and a concatenation of 𝐼ଶ×ଶ and 0ଶ×ଶ matrix in the special 
case of a steering only model. After first order discretization, the discrete state and control matrices Ak, Bk 
remain constant around the operating point and do not necessarily change at each time k. Matrices Ak and 
Bk are hereinafter referred to as A and B. 

The predicted states for i=1, N where N is the prediction horizon, can then be written as a function of past 
states over a prediction horizon and past control inputs over a control horizon Nc: 
                               𝐱(𝑘 + 𝑖|𝑘) = 𝐀𝐱(𝑘) + [𝐀ିଵ 𝐀ିଶ … 𝐈] 𝐁 𝑼(𝑘), 𝑖 = 1, 𝑁                  (7)         

𝑼(𝑘) = 𝑼(𝑘 − 1) + ∆𝑼(𝑘)             
                                                                                                                                                           

where          𝑼(𝑘) = 
𝐮(𝑘 |𝑘)

⋮
∆𝐮(𝑘 + 𝑁 − 1|𝑘)

൩ , ∆𝑼(𝑘) = 
∆𝐮(𝑘 |𝑘)

⋮
∆𝐮(𝑘 + 𝑁 − 1|𝑘)

൩         

For 𝑛௨ inputs, assuming no lead vehicle, the optimal vehicle path following control problem can be 
written as a quadratic programming problem minimizing: 

                      

𝐽 = ‖𝐱(𝑘 + 𝑖|𝑘) − 𝐱୰ୣ(𝑘)‖ொ
ଶ + ‖𝚫𝑼(𝑘 + 𝑖|𝑘)‖ோ

ଶ

ே

ୀଵ

ே

ୀଵ

𝑠𝑡. หuห < 𝑢ெ௫
, 𝑗 = 1, 𝑛௨

ห𝑒௬ห < 𝑙

             (8) 
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Pure Pursuit Steering Controller Mode 
The conventional stabilizing steering controller at cross intersections or when entering and leaving 
roundabouts in the constant speed case will simply consist of a Proportional plus Integral (PI) controller: 

𝛿ூ(𝑡) = 𝑘𝑝 ൫𝜓(𝑡) − 𝜓(𝑡)൯ + 𝑘 න ൫𝜓(𝜏) − 𝜓(𝜏)൯𝑑𝜏         (9)
௧



 

where kp and ki are the proportional and integral controller gains respectively, 𝜓 and 𝜓 are the actual and 
desired yaw angles respectively. The desired yaw 𝜓 is derived using a line of sight (LOS) pure pursuit 
inspired approach, which is recursively applied at the current position between the current waypoint i and 
the next waypoint i+1, for i=1, np, where np is the number of waypoints. Pure pursuit is also naturally 
complementary to MPC as it presents an analogy with it, given the tendency to look ahead with a LOS. A 
similar approach was proposed in (34) but the virtual target in that paper was simply the next waypoint. In 
this paper, the target can be adjusted depending on the relative positions with respect to the current and next 
waypoints. A weighting parameter 𝜆 is defined here as:  

        𝜆 =
ൻ∆𝐩, ∆𝐩𝒘𝒂𝒚𝒑𝒐𝒊𝒏𝒕𝒔(𝒊,𝒊ା𝟏)ൿ

ฮ∆𝐩𝒘𝒂𝒚𝒑𝒐𝒊𝒏𝒕𝒔(𝒊,𝒊ା𝟏)ฮ
ଶ      (10) 

                 
where ⟨., . ⟩ represents the scalar product,  𝚫𝒑 is the relative position with respect to current waypoint i and 
𝚫𝐩𝒘𝒂𝒚𝒑𝒐𝒊𝒏𝒕𝒔(𝒊,𝒊ା𝟏) is the position vector from waypoint i to waypoint 𝑖 + 1. The projection parameter 𝜆 is 
designed to be closer to 1 when the vehicle is closer to pi+1 and closer to zero when the vehicle is closer to 
pi. This safety improvement, which exploits driver models available in Mathworks examples, makes the 
controller more reactive between waypoints. The target position can then be obtained as: 

               𝐩் = (1 − 𝜆)𝐩 + 𝜆𝐩ାଵ              (11) 
where 𝐩 and  𝐩ାଵ respectively represent the current and next waypoint positions. A similar approach is 
used to develop realistic drivers’ models by Mathworks. The desired heading is then finally given by:  

                    𝜓 = 𝑎𝑡𝑎𝑛 ൬
Δ𝑦

Δ𝑥
൰           (12) 

where Δ𝑥 𝑎𝑛𝑑 Δ𝑦 are respectively the longitudinal and lateral components of the vector 𝐩 − 𝐩.  Note that 
the desired heading could also have been written as a function of look ahead distance and road curvature.                                         
The waypoints are taken to be at the center of the desired lane on the road map and on the arcs joining roads 
at road intersections. The desired speed is constant. This condition will later be relaxed with the variable 
speed controller and the same pure pursuit law will be used to track variable (piecewise constant) desired 
speeds.  In the next subsection, the constant speed mode switching steering controller will combine the two 
controllers from the last two subsections. 

Steering Controller arbitrator 

The steering control objective is to follow a desired path including junctions and only change steering with 
a constant speed. The mode selection switches to the adaptive MPC steering controller mode on the main 
road before reaching road intersections, whenever the lane keeping MPC and waypoint tracking are 
sufficiently different (above safety threshold 𝜀) which is typically the case with road curvature and the LKA 
sensing indicates a correct lane, which is characterized by a cross track error ห𝑒௬ห smaller than a threshold 
𝑙. LKA is used by default whilst operating in the adaptive MPC mode because of its accuracy and the 
threshold 𝜀 is kept small to avoid unnecessary switching to waypoints on curved main roads. The threshold 
𝜀  is only used to activate the simpler PI control when the road is straight. To avoid accidental switching on 
the main road, it is possible to require differences smaller than 𝜀 for the last few time steps in memory, but 
this was found not to be necessary for the selected scenarios with road curvature. At intersections and when 
entering or leaving roundabouts, the pure pursuit inspired waypoints tracking controller mode is used for 
path following.  
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A set-based approach is used to define road intersection areas where pure pursuit PI control is used. Let F 

denote the full road map, in other words 𝐹 = ቄ(𝑥, 𝑦) ∈ 𝑅ଶ, 𝑥 ≤ 𝑥 ≤ 𝑥 and 𝑦 ≤ 𝑦 ≤ 𝑦 ቅ, where 𝑥, 𝑥, 𝑦, 𝑦 are 

respectively the minima and maxima of x and y in the road map area. Let J denote the union of all 
intersection areas Γ in the map, either between two roads or between a road and a roundabout: 

                                 Γ = ራ Γ

ே

ୀଵ

                          (13) 

where 𝑁 is the number of road intersections on the desired path, Γ = ቄ(𝑥, 𝑦) ∈ 𝑅ଶ, 𝑥 ≤ 𝑥 ≤ 𝑥 and𝑦  ≤

𝑦 ≤ 𝑦

 ቅ represents a road intersection box (rectangular area in simulation examples) and 𝑥, 𝑦 , 𝑥


, 𝑦


 are 

elements of F, respectively representing the minima and maxima of x and y in that box area. 

The mode switching steering algorithm is summarized below: 

Algorithm 1 - Steering Controller Arbitrator (SCA) Algorithm 

In the SCA, steering control is applied at a constant speed to evaluate the steering performance 
independently from speed control and uses adaptive LKA MPC mode in 𝐹\Γ (main roads) provided that 
LKA is enabled by other safety and accuracy improvement thresholds. It uses the PI control mode in Γ 
(road intersection areas)  or if LKA is disabled due to other safety and accuracy thresholds. The MS-ABS 
of Algorithm 3 (autonomous braking and restart) cannot be activated from the SCA (Algorithm 1), as that 
would imply the use of variable speeds. This mode switching approach will be generalized to variable 
speeds in ASASC (Algorithm 2), from which MS-ABS can then be activated. 

if (𝐩 ∈ 𝐹\Γ  and ห𝑒௬ห ≤ 𝑙  and  |𝛿mpc-𝛿PI|>𝜀)  
 Apply adaptive MPC,δmpc, to solve Equation 5 (with LKA by default) 
else if (𝐩 ∈ Γ or ห𝑒௬ห > 𝑙   or |𝛿-𝛿PI|≤ 𝜀)  
 Apply the waypoint tracking PI pure pursuit controller of Equation 9  
end if 

Mode Switching Controller with Steering and Acceleration Commands 

The mode switching controller of this section also has an adaptive MPC LKA mode and a linear waypoint 
tracking pure pursuit Mode, however, both control modes have two inputs, steering and acceleration. The 
state vector 𝐱 = [𝑥, �̇�, 𝑦, �̇�, 𝜓, 𝑟]் and the control input vector 𝐮 = [𝐹௫ , 𝛿]்will therefore have full 
dimension.  
The control objective of ASASC (Algorithm 2) is to follow a desired path with variable desired speeds 
when necessary (ie. linearly decreasing desired speeds at the junctions when leaving the previous road or 
roundabout and linearly increasing desired speeds when entering the next road or roundabout). The ego 
vehicle will also maintain a safe minimum distance headway 𝑠 from the lead vehicle, specified as a constant 
time headway 𝑡. We define Δ𝛿 and Δ𝜏 respectively as the differences between MPC and pure pursuit 
inspired PI waypoint tracking for the steering and throttle commands. The mode selector will switch to the 
adaptive MPC steering and acceleration controller whenever the differences in absolute value of Δ𝛿 and Δ𝜏 
between the lane keeping MPC and the pure pursuit waypoints tracking control inputs exceed thresholds 
𝜀ଵ on Δ𝛿  𝜀ଶ on Δ𝜏, and that the vehicle is not at a road intersection area, such that LKA sensing is reliable. 
Otherwise, waypoints-based pure pursuit inspired PI control with acceleration and steering commands is 
used to control speed and yaw to the desired virtual target position. The fact that the pure pursuit controller 
is reactive is another safety advantage at junctions compared to MPC. 
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Adaptive MPC Steering and Acceleration Controller Mode 

The adaptive MPC algorithm will be identical to the one of Equations 6-15, but with additional 
constraints.       

                

min
𝐮

 𝐽 = න ൫𝐞𝐓𝐐𝐞 + 𝐮𝐓𝐑𝐮൯𝑑𝑡
ஶ



 

𝑠𝑡 |𝛿| < 𝛿ெ௫

    𝜏 < 𝜏௫

ห𝑒௬ห < 𝑙

 |𝑑ா| > 𝑠(𝑡)

         (14) 

           
where l is an upper bound constraint on the cross track error ห𝑒௬ห, 𝑑ா is the additional constraint on the 
distance headway from the ego to the lead vehicle and as previously defined, 𝐮 = [𝛿, 𝜏]𝑻 as it can be 
assumed that braking is not active and 𝐹௫ =

𝝉

𝒎
  when this controller is applied. Autonomous braking is only 

used in the autonomous braking mode. 

Linear Steering and Speed Controllers in the Waypoints Tracking Mode 

The conventional steering control law for the 3DoF controller is still given by Equation 9 and the controller 
for longitudinal speed 𝑉 is likewise given by:  

    𝛿ఛ ூ = 𝑆 ቆ𝑘 ൫𝑉(𝑡) − 𝑉(𝑡)൯ + 𝑘 න ൫𝑉(𝜏) − 𝑉(𝜏)൯𝑑𝜏
௧



ቇ        (15) 

where 𝑉  is the desired longitudinal speed. 

Note that the throttle will be multiplied by a status variable 𝑆 that will be equal to 1 nominally but will 
be switched to zero when a braking maneuver is activated (𝐹 ≠ 0) due to traffic lights turning amber 
or red or to prevent collision with other road users impeding the vehicle path. 

The 3DoF mode switching algorithm, summarized in the ASASC (Algorithm 2), uses steering and 
acceleration commands to control speed, position and heading. 

Algorithm 2 – Autonomous Steering and Acceleration Supervisory Controller (ASASC) 

This algorithm only runs when MS-ABS (Algorithm 3) is not running (FCW status =0, Braking status =0). 
For compactness, 𝛿 and 𝜏 are both denoted 𝑢 in this algorithm, with i =1 and i =2 for the steering and 
throttle components of u, respectively. The sets Γ, F are defined as in the steering case. 

if (𝐩 ∈ 𝐹\Γ and ห𝑒௬ห ≤ 𝑙 and ห𝑢  − 𝑢 ூห > 𝜀 , 𝑖 = {1,2} ) 
 Apply adaptive MPC umpc steering and acceleration that solves Equation 14 
else if (𝐩 ∈ Γ or ห𝑒௬ห > 𝑙 or ห𝑢  − 𝑢 ூห ≤ 𝜀, 𝑖 = {1,2}) 
 Apply waypoint tracking PI controllers from Equations 9, 15 
end 

Note that in the adaptive MPC mode, the control input vector u(k) is applied at the current time step k. A 
loop predicts and stores inputs and outputs over the prediction horizon N and the control horizon Nc for 
possible future use (if MPC mode remains active) by solving Equation 14.  

Autonomous Braking with Start-Stop Sequencing 

The traffic light signals are programmed as a periodic finite state machine sequence. The proposed MS-
ABS mode can be activated at any time to allow the car to stop for road users in the path of the ego vehicle, 
detected using optical and radar sensors, or to stop for traffic lights when necessary. The vehicle is also 
programmed to restart when the traffic lights turn back to green or when there are no more road users in the 
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path of the ego vehicle. The methodology and algorithms for autonomous braking and start-stop sequencing 
are detailed hereinafter. Without loss of generality, autonomous braking is assumed to take place on straight 
parts of the road circuit, which is a realistic assumption near traffic lights. Autonomous braking is 
implemented using a finite state machine to select realistic progressive deceleration stages in the range from 
0 to 1g, with values above 0.4g considered as hard braking. 

Multi-Stage Braking Algorithm 

The algorithm is activated when a time to collision (TTC) or time to traffic light (TTTL) becomes lower 
than the forward collision/intersection warning time. The FCW and a forward stop line crossing warning 
(FSLCW) times are given by:  

               𝐹𝐶𝑊 𝑡𝑖𝑚𝑒 =
𝑉

𝐷ிௐ
                      (16a) 

             𝐹𝑆𝐿𝐶𝑊 𝑡𝑖𝑚𝑒 =
𝑉

𝐷ிௌௐ
               (16b) 

where V is the norm of vector 𝑽 = �̇�𝚤 + �̇�𝚥 and 𝚤, 𝚥 are respectively unit vectors along the 𝑥 and 𝑦 axes of 
the road map and 𝐷ிௐ is the FCW deceleration, representing the nominal deceleration that an average 
driver would apply. Similarly, the FSLCW time will be needed to calculate the TTTL and this deceleration 
will be chosen such that 𝐷ிௌௐ ≤ 𝐷ிௐ. For the simulated scenarios, traffic lights were placed at locations 
where the road is straight and along the 𝑥 or 𝑦 axis and nominal decelerations were also assumed for 
simplicity. Multi-stage braking uses predefined deceleration commands 𝐷, i=1, n, such that 𝐷ାଵ < 𝐷 and 
𝐷 is the maximum deceleration at the last stage n. In the numerical simulation analyzis, we take n=3. Each 
deceleration stage has an associated braking time 𝑡: 

          𝑡 =
𝑉

2 𝐷
 , 𝑖 = 1, 𝑛               (17) 

The division by 2 in Equation 17 is sometimes overlooked in commercial software but is necessary to 
stop at the correct position. Indeed, for a constant deceleration stage to reduce the initial speed 𝑉 to 0, the 

average of the decreasing speed over the deceleration time is 


ଶ
, assuming that the vehicle was not initially 

accelerating. The TTTL is given by:                  

                TTTL =
‖𝐩 − 𝐩்‖

𝑉
                    (18) 

where 𝐩் is the desired CoG position of the car to stop at the traffic light stop line. Note that the TTTL 
simply reduces to 

௫ି௫ಽ

௫̇
  when the traffic light is along the 𝑥 axis for example. The automamous braking 

logic is similar for pedestrians and ORUs but the difference is that exact stopping position is not enforced. 
Instead, the breaking time for ORUs is given by:   

                      𝑡 ைோ = 𝑘
𝑉

2 𝐷
                     (19) 

where k is a gain that can be tuned empirically and depends on the speed limit and the detection sensors 
specifications. Geometrically, detection is possible if the ORU is within the sensor FoV and range 

ೢ

୲ୟ୬(ி)
≤ 𝑑ିை ≤ 𝑟௫  ,  where 𝑟௫ is the maximum sensor range, 𝑑ିை is the distance to the ORU 

and 𝑙௪ is lane width. The additional time needed to account for the fact that the vehicle is not yet aligned 
with a crossing pedestrian and that the braking distance is smaller than the detection range can be calculated 

as 
ೌೣି

ೢ
౪(ಷೇ)
ೇ

మ

. In practice, an analytical formula helps to inform a first guess, but the value of k will be 

tuned manually because of the uncertainty on obstacle detection, which is characterized by the sensor 
detection probability and the scenario.  
The autonomous braking algorithm for other road users in Algorithm 3 is otherwise very similar to stopping 
for traffic lights, with the differences being that TTTL is replaced by the TTC and that the restart condition 
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(light turning back to green) is replaced by a condition to check that the road user has been outside detection 
range for more than a set time trestart.  

The multi-stage braking algorithm is summarized in Algorithm 3 as follows: 

Algorithm 3 – Multi-Stage Autonomous Braking Algorithm (MS-ABS) 
This algorithm is run: 

 if (traffic light is amber or red and 𝜀ௌ < 𝑑ିௌ < 𝐿), where 𝜀ௌ is a distance ahead of the stop line 
that is too short to enable the ego vehicle to stop if the light changes to amber. L is the maximum 
distance from the stop line to start monitoring the traffic lights if the required 𝐷 ≥ 𝐷୫୧୬. L will be 
taken to be equal to the range of the optical sensor. 

 or if an ORU is suddenly detected and emergency braking is required. 
 
There is an additional 0.1s detection time delay to detect traffic lights or ORUs. That delay is implemented 
by default within the Automatic Driving Toolbox radar and optical sensors blocks in the case of road users 
and was verified with Horiba Mira to be realistic. To account for this and stop before the traffic light stop 
line, the car stop line is taken to be - 0.5m before the traffic light stop line. Let n be the number of braking 
stages.  

FCW status =1 or FSLCW=1 (Collision or stop line warning, autonomous braking algorithm activated) 
           while i ≤ 𝑛  (n=3 in 3 stage braking)         
                       if (TTTL<𝑡)  and (TTC< 𝑡ೀೃೆ

) 
                                𝐷 = 𝐷,    (Note that  𝐷ାଵ > 𝐷 )      
                                                 (use Equation 17 to compute 𝐷 if 𝑇𝑇𝑇𝐿<𝑡 and 𝑇𝑇𝐶 ≥ 𝑡𝑏𝑖𝑂𝑅𝑈,  
                                                  otherwise use Equation 19) 
                                 Braking status = 1 (Deactivate throttle controller of Algorithm 2: 𝛿் = 0) 
                                        if (car not stopped)   
    𝑖 = 𝑖 + 1 
   else if car stopped  
                                                FCW status = 0   
                                                FSLCW =0 
                                                Apply 𝐷 to keep the car stationary (assuming zero or low road inclination) 
                                                      if traffic light is green or ORU out of collision area for duration trestart 
                                                            D=0     (Disable autonomous braking) 
                                                            Braking status = 0     (Reactivate throttle controller of Algorithm 2)  
                                                       end if (green light road user out of risk)                                                                                               
                                       end if (car stop condition) 
                 end if (TTTL or TTC condition) 
            end while 

Note that for single stage braking (n=1) in the MS-ABS, the condition to compute TTTL (or TTC) is: 

                     −
𝐷

2
 𝑇𝑇𝑇𝐿ଶ + 𝑉 𝑇𝑇𝑇𝐿 +  ‖𝒑 − 𝒑𝑻𝑳‖ = 0                   (20) 

where D is the nominal deceleration value (typically 4 m.s-2). In the simulation analyzis, only longitudinal 
axis components of vectors p and V (with norm V) are used with a traffic light along that axis.  

The autonomous braking algorithm was implemented using StateflowTM and MATLAB®/SimulinkTM to 
implement the state machine part of the logic that differentiates between the cases of traffic lights and 
ORUs. 

 

 



Nadjim Horri, Olivier Haas, Sheng Wang, Mathias Foo and Manual Fernandez  

12 
 

Numerical Simulation Analyzis 

The vehicle parameters used for the simulation analyzis are mass m=1575 kg, yaw inertia Izz=2875 𝑚𝑁𝑠ଶ, 
right and left arm lengths given by lr= 1.6m and lf=1.2m respectively. The front and rear tyre stiffness are 
Kf=19.6 kN/rad and Kr=33 kN/rad, respectively. Lane width is 3.75m. Initial conditions and desired speeds 
are scenario dependent. All scenarios are designed using the Driving Scenario Designer app within 
MATLAB® and are preloaded with waypoints centered within the desired lanes on the desired itinerary. 
Functionalities of the Automatic Driving ToolboxTM are used for LKA and obstacle sensing. All three 
scenarios presented in this section have an ego vehicle with feedback control and may include other actors, 
such as lead cars or ORUs (pedestrians), with predefined paths.  

The path following objective is to track a desired trajectory with waypoints centered within the lane. This 
is done using adaptive MPC when LKA is enabled on the main road (F\Γ) and using waypoints tracking PI 
control for cruise and pure pursuit steering control at road intersections and when entering and leaving 
roundabouts (Γ), where the lane pattern is typically temporarily discontinued, leading to a failure in LKA 
sensing. An additional time constant of 0.5 s is added between the throttle input and the vehicle. In SCA 
and ASASC (Algorithms 1 and 2), the lateral MPC constraints are a maximum lateral deviation in absolute 
value l= 0.5 m, a maximum steering angle in absolute value 𝛿௫ =0.6 rad. A threshold lc =1.5 m is also 
used as a safety feature to indicate the unlikely but risky possibility of an unintended lane change. The 
number of waypoints is scenario dependent, with more waypoints and finer spacing at the junction areas. 

Obstacle detection sensors with moderate technical specifications are only used in scenarios 2 and 3 where 
speed is variable. The radar sensor on the vehicle has a range of 100m and a FoV of 19.85 degrees to detect 
lead vehicles at a relatively close range. The optical sensor has a larger FoV of 43.6 degrees and a range of 
150m. Those technical specifications are within the usual range for modern obstacle sensors in autonomous 
vehicles, see (35). The sensor detections were derived for realistic simulated pedestrian motion, which was 
defined using the Driving Scenario Designer app. 

Scenario 1: Switched Controller with Lane Keeping MPC Steering and Waypoint Steering 
Modes  

For this scenario, the SCA (Algorithm 1) is used and simulation time of 𝑡 =54 s. The total number of 
waypoints is 37, most of which are used as a backup on the main road in case LKA sensing fails or at the 
roundabout. In this scenario, the set Γ is the union of two intersection areas,  𝑁=2, between the roundabout 
and the two roads in Figure 1 and 𝑁=2.  The MPC prediction horizon is 4 s and the control horizon is 0.2 
s. The weights of the MPC controller are equal to 1 for lateral tracking and 0.1 for the control input. The 
desired speed is assumed to be fixed at 17 m.s-1 (38 mph). The gains of the Proportional plus Integral (PI) 
steering mode are kp =1, ki=0.02 in the steering scenario. The MPC constraints are a lateral deviation 𝑒௬ of 
+/- 0.5 m, a steering command in the range [-0.6, 0.6] rad. The threshold 𝜀 = 0.002 of similarity between 
linear waypoint tracking and LKA MPC is low, such that LKA MPC is used on the main road (F\Γ), where 
there are no lane pattern issues and MPC is more efficient in accommodating for road curvature. Figure 2 
shows the times when the LKA MPC controller is used (index=1) and when the pure pursuit waypoint 
tracking mode is used (index =0). The latter corresponds to the ego vehicle entering and leaving the 
roundabout, from 37 s to 39 s, then from 46 s to 51 s, respectively. It can be seen in Figure 3 that the steering 
command remains within the steering constraints and steering angle 𝛿 reaches a maximum of 𝛿௫ =0.6 
rad at the activation time of the waypoint tracking mode. Figure 4 shows that the lateral deviation changes 
sign when the curvature changes direction and remains bounded within +/-0.5 m.  

In Table 1, the performance metrics show that the use of the mode switching controller with adaptive MPC 
and linear stabilizing modes has enhanced efficiency in terms of lateral integrated absolute error (IAE) 

∫ |𝑦|𝑑𝑡
௧


 and in terms of control effort ∫ |𝛿(𝑡)|𝑑𝑡

௧


. Both controllers meet constraints but the path 

following performance is enhanced using the SCA. The use of waypoints improves yaw error, which is of 
less practical significance than the lateral position error. 
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Figure 1. Comparison between Lane keeping assist (right) and waypoint tracking (left) as an adaptive MPC 
mode for Algorithm 1 on the main road  

 

 
Figure 2. Mode index for steering only control, where 1 indicates that LKA MPC is activated and 0 
indicates that waypoint tracking is activated. 
 



Nadjim Horri, Olivier Haas, Sheng Wang, Mathias Foo and Manual Fernandez  

14 
 

 
Figure 3. Steering angle input using the switched steering controller 
 

 
Figure 4. Lateral deviation using the switched steering controller 

 

Performance metric Switched Steering controller 
(SCA)  

Switched steering controller 
with waypoint tracking (no 
LKA) in both MPC/PI modes  

Integral of steering control effort 

∫ |𝛿(𝑡)|𝑑𝑡
௧


 

3.41 5.15 

Yaw IAE= ∫ |𝜓|𝑑𝑡
௧


 3.2 2.95 

Lateral IAE= ∫ |𝑦|𝑑𝑡
௧


 17.95 21.21 

Min-Max lateral deviation 𝑒௬ [-0.5, 0.6] [-0.6, 0.6] 
Min-Max yaw [-0.5, 0.5] [-0.5, 0.5] 

Table 1. Performance metrics for the switched steering controller simulation with and without LKA on 
the main road 
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Scenario 2: Switched Controller with Steering and Acceleration Inputs in MPC and Waypoint 
Tracking Modes 

In this subsection, ASASC is used and speed is controlled to a target speed history, which is constant at 21 
m.s-1 on the main road (47 mph) or adjusted to keep a safe distance with respect to the lead car. Desired 
speeds at the cross intersection consist of a linear deceleration when approaching the junction followed by 
a linear acceleration out of the junction. The full simulation uses 29 waypoints in total, including waypoints 
on the main road in case LKA sensing failed and waypoints at the junction. The additional constraints 
compared to to scenario 1 are a prescribed time headway 𝑡 = 1.5 s with respect to a lead vehicle and an 
acceleration in the range [-3, 2] m.s-2. The thresholds of similarity  𝜀ଵ, 𝜀ଶ between steering and acceleration 
using waypoint tracking and LKA MPC are both equal to 0.002, such that LKA MPC is used on the main 
road (F\Γ), where there are no lane pattern issues and Γ is the junction area in this example where 𝑁  =1. 

The car is shown to follow the road curvature at the center of the lane and turns at the junction where the 
lanes are discontinued before joining the correct road and lane and reactivating lane keeping assist. The 
MPC weights on longitudinal tracking, change in acceleration and steering commands are all equal to 0.1, 
whereas the weight on lateral error is equal to 1. The prediction horizon is 3 s, the control horizon is 0.2 s, 
the sampling time period is 0.1 s. The gains of the PI controllers are kp=1, ki=0.05 for steering and kp= 1.1, 
ki=0.1 for speed control. Figure 5 shows that the ego car follows the road curvature accurately and remains 
centered on the lane. In Figure 6, the mode switching controller is shown to perform better when the 
adaptive MPC mode uses LKA sensing compared to the use of waypoints during that mode on the main 
road. The same waypoint tracking pure pursuit controller is used at the junction in both cases. Note that 
LKA simply cannot be used for comparison at junctions using the Automatic Driving ToolboxTM. It was 
indeed found that LKA sensing systematically fails at junctions, which would also be the case in practice, 
because of lane discontinuities and lane recognition issues, even with a wide LKA sensor FoV. Using 
waypoints at junctions is therefore a safety improvement.   

In Figure 7, the ego vehicle remains above the prescribed safety distance using MPC while the lead vehicle 
is detected. The control logic switches from mode index =1 to waypoint tracking (mode index =0) for 1 s 
at time t=31 s, when the ego vehicle reaches the junction, before lane keeping assist is enabled when the 
ego vehicle exits the junction. Figure 8 shows that the acceleration commands remain within the prescribed 
maximum acceleration limits of +/-2 m.s-2. Figure 9 shows that gentle steering commands are used by the 
adaptive MPC controller mode of ASASC (Algorithm 2) compared to the steering only controller of 
Algorithm 1 (SCA), steering then reaches and recovers from a peak in steering but remains within 
prescribed steering constraints. In Figure 9, the lateral deviation remains within +/- 0.5 m. 

All controller constraints were met during the MPC stage. A linear speed deceleration and acceleration 
profile was used when entering and exciting road junctions. In Table 2, good tracking performance is 
obtained by adding speed control to the mode switching controller. The MPC LKA stage is more accurate 
as predicted in terms of yaw and lateral control, but the performance of the controller remains admissible 
in terms of integrated control inputs and tracking error when the linear stabilizing control mode is 
incorporated in the full simulation.  
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Figure 5. Path following on curved trajectory with a junction using the switched 3DoF controller 
 

 
Figure 6. Comparison at the intersection between lane keeping assist (left) and waypoint tracking (right) 
as an adaptive MPC mode for Algorithm 2 on the main road 



Nadjim Horri, Olivier Haas, Sheng Wang, Mathias Foo and Manual Fernandez  

17 
 

 
Figure 7. Distance to lead car and safety distance 

 
Figure 8. Acceleration commands using the 3DoF switched controller 
 
 

 
Figure 9. Lateral deviation and steering angle using the 3DoF switched controller (in radian) 



Nadjim Horri, Olivier Haas, Sheng Wang, Mathias Foo and Manual Fernandez  

18 
 

Performance 
metric 

ASASC controller 
during MPC LKA 
stage only before the 
junction 
 (t=0 to tf=27.5s) 

ASASC controller during full 
simulation time  
(t=0 to tf=40s) 

Switched controller with 
waypoints tracking in both 
MPC/PI modes  
(t=0 to t=40s) 

න |𝛿(𝑡)|𝑑𝑡
௧



 
0.37 0.78 0.92 

න |𝛿ఛ(𝑡)|𝑑𝑡
௧



 
15.9 26.25 34.55 

Yaw IAE= 

∫ |𝜓|𝑑𝑡
௧


 

0.158 0.305 0.412 

Lateral IAE= 

∫ |𝑦|𝑑𝑡
௧


 

1.3 2.9 3.41 

Table 2. Performance metrics for the switched controllers with steering and acceleration commands  

Scenario 3: Autonomous Braking for Traffic Tights and a Pedestrian 

In this scenario, MS-ABS (Algorithm 3) is used on a straight road along the Y-axis of the driving circuit. 
The traffic light stop line y-position coordinate is 8 m and the initial ego car y-position is at -30 m. The 
traffic light is located before a road intersection and a pedestrian y-position was set at a 50m in a collision 
course, after the road intersection. The pedestrian speed along the X-axis is 1.4 m. sିଵ. The number of 
braking stages was selected to be 𝑛=3 as it was found to be more accurate than single stage braking. The 
distance from the vehicle Centre of Gravity (CoG) to the front of the vehicle is 2.5m. A standard sensor 
detection probability of 0.9 was used for both optical and radar sensors in the Driving Scenario Designer 
App to account for the fact that pedestrian detection may not be systematic and immediate. The 
multiplicative margin k in Equation 18 was taken to be equal to 1.4 to brake safely for the pedestrian in this 
typical scenario where the maximum speed is 12 m.s-1 (assuming a 30 mph speed limit). This speed limit 
dependent gain was determined empirically and was found to work successfully on other scenarios with the 
same speed limit and sensor characteristics. The ability to restart when the traffic lights switch to green is 
also demonstrated. The maximum acceleration is conservatively set at 2m.s-2. The effect of sensor update 
time period 𝑡௦ is evaluated by numerical simulations, assuming that both the camera and radar have the 

same operating frequency 𝑓௦ =
ଵ

௧ೞ
. This operating frequency is typically between 10Hz and 20Hz for current 

obstacle sensing technology (see (35)) but the effect of this parameter is evaluated to assess the robustness 
to an unexpectedly low sensor frequency. 

Initially, the traffic light is green (car running ASASC on a straight portion of the road map for simplicity). 
The traffic light then switches to amber, then red. The FCW time is calculated for a deceleration of 4𝑚𝑠ିଶ. 
The traffic light is amber for 3 s before switching to red for 13 s, then amber and red for 2 s before turning 
back to green for 15 s, which is a typical sequence.  

Figure 10 shows that the autonomous braking strategy uses multiple stages for the traffic light, but quickly 
selects either an intermediate deceleration of 6.8 m. sିଶ if ts= 0.1 s or ts= 0.3 s or the highest level of 
deceleration available of 9.8 m. sିଶ for a degraded sensor specification of ts=0.5s. The maximum 1g 
deceleration level is realistic for modern vehicles equipped with anti-lock brake systems (36). 
Figure 11 shows that the vehicle stops at the correct (traffic light stop line) position when the traffic light 
switches to red, then starts successfully again when the light stitches back to green. After that, the vehicle 
successfully stops again safely at a CoG position 3.6 m before the crossing pedestrian and avoids a collision 
with the pedestrian for ts= 0.1 s and ts= 0.3 s. The distance from the front of the vehicle is 1.1m in both 
cases. The same figure however also shows that the collision risk is not avoided with ts =0.5 s with both x 
and y positions differences below 0.1m. This is explained by the fact that the pedestrian is detected on time 
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(around 23.5s) when ts= 0.1 s or ts= 0.3 s, but slightly too late (approximately t=23.8s) with ts= 0.5 s. The 
vehicle automatically restarts when the pedestrian is no longer on a collision course. 

 
 
Figure 10. Deceleration during stop-start sequences for different sensor update time periods 

 
 
 

 
Figure 11. Sequence with autonomous braking for traffic light then road user for different sensor update 
time periods 
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Discussion on the Generality of the Proposed Approach 

The proposed mode switching control approach was designed under commonly used assumptions such as 
zero road inclination and straight roads near traffic lights. However, the approach is systematic, provided 
that regions are defined at road junctions for the application of the pure pursuit controller. In simulation 
scenarios, the number of junctions 𝑁 was either taken to be equal to 1 or 2, but the theory extends to larger 

road maps (larger 𝑁). All mode switching control algorithms were successfully tested on several road 
layouts with scenarios involving different speed limits and junctions. To further automate the process, it is 
possible to store certain parameters, such as the gain k of Equation 19, in a lookup table to automatically 
change them when the speed limit changes. As future work, alternatives to the pure pursuit algorithm can 
be considered for the waypoints tracking at junctions to further enhance performance at the expense of 
simplicity. The MPC mode can also be further enhanced for higher speed driving circuits or more complex 
junctions. The use of artificial intelligence was beyond the scope of the paper, but it could also be considered 
to further improve the mode switching.  
 
Conclusions 
This paper has demonstrated uninterrupted accurate autonomous path following in a city environment using 
threshold-based mode switching control with steering and acceleration commands. The first control mode 
is applied on the main roads and uses lane keeping assist based on adaptive MPC for accurate path following 
at desired cruise speeds. The second mode uses a safer and more reactive pure pursuit inspired controller 
with waypoints at junctions including cross intersections and roundabouts to maneuver at a reduced velocity 
at these locations where lane keeping assist sensing is less reliable. An autonomous braking mode with a 
stop-start logic overrides either mode to accurately stop and restart at traffic lights or to avoid collisions 
with other road users. Numerical simulations show that the switched controller meets the prescribed 
constraints on road curvature, acceleration, steering commands, time headway and lateral deviation. The 
proposed approach is systematic, provided that the speed limits are known and that road intersection areas 
are defined. This software development enhances the closed loop control demonstrations capabilities 
provided with the Automatic Driving ToolboxTM by including junctions and roundabouts and only 
employing lane keeping assist capabilities when it is safe.  
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