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Abstract 

Equivalent circuit models (ECM) of lithium ion batteries are used in many 

applications because of their ease of implementation and low complexity. The 

accuracy of an ECM is critical to the functionality and usefulness of the battery 

management system (BMS). The ECM accuracy depends on the parametrization 

method, and therefore different experimental techniques and model parameter 

identification methods (PIM) have been widely studied. Yet, how to account for 

significant changes in time constants between operation under load and during 

relaxation has not been resolved. In this work a novel PIM and modified ECM is 

presented that increases accuracy by 77.4% during drive cycle validation and 87.6% 

during constant current load validation for a large format lithium iron phosphate 

prismatic cell. The modified ECM uses switching RC network values for each phase, 

which is significant for this cell and particularly at low state-of-charge for all lithium 

ion batteries. Different characterisation tests and the corresponding experimental data 

have been trained together across a complete State-of-Charge (SoC) and temperature 

range, which enables a smooth transition between identified parameters. Ultimately, 

the model created using parameters captured by the proposed PIM shows an improved 

model accuracy in comparison with conventional PIM techniques.      

Keywords: Lithium-ion battery, equivalent circuit model parameterization, 

parameter identification method, lithium iron phosphate, electric vehicle, 

stationary energy storage.   
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1. Introduction  

Electrification is inevitable. The transformation from internal combustion engine 

(ICE) transportation to electric drive is dramatically increasing in recent years, due to 

aggressive policies worldwide driven by air quality, greenhouse emissions and 

national economic competition. Between 2030-40, a significant majority of countries 

and/or cities will ban the sales of ICE passenger vehicles, including China, USA, 

Germany, UK and many more. [1,2] As a consequence the sales of EVs have been 

increasing dramatically. There are over 2 million electric vehicles sold in 2018, up 

from just a few thousand in 2010. Bloomberg NEF forecasted that the sales of annual 

passenger EV will rise to 10 million in 2025, 28 million in 2030 and 56 million by 

2040. [3] During this global transport industry paradigm shift, the lithium-ion battery 

plays a central role in the majority of EVs. [3] 

While researching and developing lithium-ion batteries with new materials and 

manufacturing [4,5], the usage of a robust battery model is pivotal at the application 

level. Models enable the battery management system (BMS) to improve battery 

performance and prolong lifetime. [6] There are predominantly three types of models 

in the literature, which are data-driven models, physics-based models and equivalent 

circuit models (ECM) [7]. Data-driven models, such as neural networks [8] and 

support vector machine [9], etc., do not require a physical interpretation of the 

battery’s internal dynamics, making it suitable for simulating complex or unknown 

systems. However, the model training usually relies on a large amount of data. 

Further, it is difficult to predict the model’s generalization performance under 

different operating conditions. The test data collection can be time-consuming, and 

the model training involves complex optimization. The physics-based models capture 

the physical behaviours through solving equations such as lithium diffusion equations 

and charge conservation equations. Newman, Doyle, Fuller et al established the 

foundations for these physics-based model [10,11]. Later, other electrochemical 

models have been proposed to describe different battery properties, such as capacity 

fade and electrode particle geometry etc. [12–18]. The main two drawbacks of 

physics-based models for BMS applications are 1. High complexity of 

parameterisation; 2. High computational power. There are more than 30 parameters 

needed to be fitted and parameterised including salt concentration, electrode/separator 

thickness, conductivity of electrolyte etc. Quite often the parameters in the physics-
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based model require ex-situ experimental measurements which are time/cost 

inefficient. [19,20] Also, the computational speed is another disadvantage of this type 

of models. Further, it is challenging to scale such model into multi-dimensional or 

pack level analysis. [16,21,22] Although these drawbacks can be mitigated through 

reduced order models (ROMs) ECMs are still the model of choice for many 

applications. 

ECMs describe the battery terminal voltage-current dynamics using passive electrical 

components (resistors and capacitors) and measured/parameterised look-up tables or 

simple mathematical functions. The ease of implementation and low model 

complexity make ECM feasible in real-time applications such as integrated BMS 

systems, and they are regularly embedded in microprocessors and deliver precise 

simulation/feedback signals in real-time.[23]. The reader is referred to recent reviews 

by He et al. [24] and Hu et al.[25] on ECM models. A typical ECM consists of the 

battery open circuit voltage (OCV) and a series ohmic resistor  and several 

resistor-capacitor (RC) networks [26]. The battery OCV can be measured directly 

from experimental data using low-rate constant current (CC) (dis)charge (giving a 

pseudo-OCV), or using a pulsed current (dis)charge with long rest periods between 

pulses (true OCV) [27]. The RC values, on the other hand, need to be identified by 

fitting the model’s voltage prediction under current load to measurements using 

optimisation algorithms [28,29]. This represents the model parametrization procedure.  

The parameter identification method (PIM) is critical for the ECM model accuracy. 

The model accuracy is correlated with what and how PIM is used for the certain Li-

ion battery. There are various PIMs for ECM parametrization in the literature, 

including genetic algorithm (GA) [30], particle swarm optimization (PSO) algorithm 

[31], and the least-squares method [32,33]. A recent study conducted by Lai et al [34] 

compared 9 different popular PIMs for 9 different ECM models in the entire SoC area 

and demonstrated the importance of the PIM to the model accuracy.  

The ECM parameters depend on the operating conditions. The popular methods for 

capturing this parameter dependency include offline parameterized look-up tables 

[35–37] and the online adaptive parameter estimation algorithms such as recursive 

least squares methods [28,38] and the dual Kalman filter algorithms [39]. Existing 

PIMs mainly focus on capturing the parameter dependence on the SoC, temperature 
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and current directions. However, another important dependency factor for ECM 

parameters that is generally overlooked is the type of current loads. Different current 

profiles have been used for ECM parameter estimation, such as the pulsed current test 

(different types of pulse design as in [36,37,40]), drive cycles [41,42] and constant-

current charging and discharging [43–45]. However, few works have considered the 

effect of choosing different current profiles on the identified parameters and the 

model accuracy [41,42]. The battery is an electrochemical system with complex 

internal dynamics, and ECM is an approximate reduced-order model. Therefore, 

different current excitations will reveal different system properties. As a result, the 

ECM parameters will vary under different load conditions [46,47]. Waag et al [47] 

analysed the dependency of the ECM parameters on the frequency characteristics of 

the load current, and proposed an application-specific parametrization method by 

taking into consideration the frequency spectrum of the load current. However, the 

switching scheme between different load conditions is not addressed in [47]. Further, 

because of the nonlinearity of the battery dynamics, it is not straightforward to 

translate the frequency domain analysis to time-domain implementation. The 

influence of the load current profile on the ECM parameters was also studied in [42]. 

However, the study is limited to a few standard drive cycles that are usually used for 

battery characterization, and the underlying mechanism is not explained.   

There is one key difference in the current load that the studies in the literature were 

missing, which is the difference in the underload and the relaxation. Generally the 

model parameters were identified without distinguishing the two different working 

conditions and the underload and relaxation test data are used together for ECM 

parametrization [36,40]. However, the test data analysis on the chosen cell in this 

paper shows that the battery performs distinctly differently during underload and 

relaxation, in terms of the scale of magnitude of time constants of the RC networks. It 

shows that using the same parameter set cannot capture both the underload and the 

relaxation dynamics accurately. Therefore, this paper proposes a parameter switching 

scheme between underload and relaxation working conditions to address this problem. 

Further, this study delivers a novel PIM that captures ECM parameter dependence on 

load switching, SoC (0-100%) and temperatures (10 , 20 , 30  and 40 ). The 

novelty of the proposed PIM is that the time constants of the RC networks are 

independent from SoC and temperature. The rest parameters, i.e., the resistor values, 
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then become linear-in-the-variable which can be readily obtained using 

computationally efficient least squares optimization solvers. This also enables the 

simultaneous estimation of all the resistor values under all SoC and temperatures 

levels with parameter constraints to ensure a smooth transition between different 

temperature levels. In theory, the battery internal resistance is reversely proportional 

with the operating temperature. However, in the conventional way of parameter 

identification, the resistance values might zig-zag across a range of temperatures 

without using parameter constraints [29]. The ultimate purpose of this novelty is to 

provide a temperature dependent ECM model e.g. [21], in many BMS and modelling 

applications, which is critical for the model accuracy. This proposed PIM shows a 

better fit for large current/large power/large heat generation applications. Unlike 

smaller cells, large format cells have significant heat generation challenges, therefore 

training the data within the operating temperature window is important and inevitable.  

The rest of the paper is structured as follows. The ECM equations are expressed in 

Section 2. The experimental design for battery characterization and model validation 

is introduced in Section 3. Then, in Section 4 there is a detailed data analysis and the 

introduction of the novelties of the proposed PIM. In Section 5, the modelling results 

are validated against the experimental data from Section 3. Also, there is one 

comparative study between the proposed PIM and conventional method. Please note, 

in the main paper there are only experimental data and its corresponding validation 

results under a single thermal chamber temperature. The rest results at other 

temperature levels can be found in the supplementary material A. Lastly, Section 6 

concludes this study.     

2.  ECM Equations 

The typical n-th order battery ECM consists of n RC networks connected in series 

with the OCV and internal resistor . The OCV represents the equilibrium voltage, 

and  captures the total ohmic resistance of the current collectors, electrode and 

electrolyte. The battery’s internal polarization overpotential is captured by the RC 

networks, which have different time constants to represent the battery internal 

dynamics at different timescales, such as the slow diffusion and fast charge transfer.  
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Let  represent the battery terminal voltage and current, respectively. Denote  

as the number of RC networks and define  as the voltage and 

current through . Then,  . Let be the time constant. Then 

       (1) 

where 

   

 stands for  at the k-th sampling time, and  is the sampling interval (s). 

The battery SoC is obtained using the widely employed coulomb counting method 

[29,36],  

              (2) 

where is the battery nominal capacity at 25  (unit: Ampere-hour). Next, the 

battery terminal voltage can be expressed as, 

          (3) 

3. Experimental details 

This section introduces the detailed experimental procedure of the battery 

characterisation, and the test data are used for identifying the OCV,  and RC 

values. The OCV hysteresis effect is not considered in this paper, therefore only 

experimental data for discharge current was used for parameter training and 

validation. The data sampling rate is 1Hz under current load and during relaxation 

periods. 

The battery is always charged using the same constant current constant voltage (CC-

CV) test procedure to make sure the initial SoC of the battery is consistent between 

tests. The CC current is 1C (90A) and the CV voltage is 3.65V. The cut-off charging 

current of CV procedure is C/50 (1.8A). The cut-off voltage during discharge 

procedure is 2.5V.  

A range of pulse discharge characterisation tests, on a high capacity 90Ah Lithium 

iron phosphate (LFP) cathode based, graphite anode battery with aluminium/prismatic 

shell (200.5 x 130.3 x 36.5 mm) were examined under various temperatures. Before 
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characterisation tests were carried out, the cell underwent five 1C (90A) 

charge/discharge cycles for pre-conditioning and demonstrated stabilised capacity. 

After the pulse discharge characterisation tests, a range of validation tests were 

examined, including drive cycle discharge with noisy current load at 20  and 

constant current discharge under various temperatures. The cell was evenly wrapped 

with nitrite rubber insulation material (RS Pro, thickness 25 mm, thermal conductivity 

0.034 W/mK) across entire cell surface, as shown in the figure 1. The cell was placed 

in the centre of the bottom shelf of a thermal chamber (Binder, model KB23). The 

thermal boundary condition has been designed in this format to approach a near 

‘adiabatic condition’ by minimizing convection in the thermal chamber, this is done 

to minimize the internal thermal gradient of the cell being tested and to avoid the 

problems this can cause as described by Zhao et al.[21] The same thermal boundary 

condition was implemented in the model. K-type thermocouple was placed and taped 

with Kapton R  polyimide films tape on the centre of the prismatic aluminium shell 

surface (200.5 x 130.3 mm) to measure surface temperature, as marked in Figure 1. A 

single channel battery cycling system (BioLogic, HCP-1005) was used for 

charging/discharging the cell. One set of characterisation pulse discharge tests, one 

validation noisy load drive cycle test and one set of constant current discharge tests 

were carried out in this study, as detailed below.  
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Figure 1 Battery testing rig demonstration 

3.1. Experiment #1: variable ambient temperature characterisation pulse 

discharge tests 

Characterisation pulse discharge (PD) tests were carried out to generate data for the 

PIMs in this work. The measurement involves repetitions of a constant current 

discharge pulse at 1C (90A) followed by a resting period of 2 hours. This process 

starts from 100% SoC and finished at 0% SoC. The SoC breakpoints step length is 1% 

(9Ah) for 0% -10%, 90% - 100% SoC, and 5% (4.5Ah) for 10% - 90%. The current 

input and the corresponding voltage response are shown in Figure 2. Also, in Figure 

2(d), the cell surface centre temperature is presented, where a maximum temperature 

difference at different SoC is about 0.5 °C. The measurements were repeated for a 

range of temperatures (10 , 20 , 30  and 40 ). Here, Figure 2 only shows data 

at 20  as an example, and all the other data can be found in supplementary material 

A.  
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Figure 2: Test data for the pulse discharge experiment at 20  thermal chamber ambient temperature: (a) Input 

current, (b) Terminal voltage, (c) SoC profile, (d) Measured surface temperature. 

3.2. Experiment #2: validation noisy load drive cycle discharge test 

The model and the parameters are validated using independent sets of experiment 

data. The first one is the bespoke designed noisy load discharge which based on the 

US06 drive cycle current profile with enlarged average current value and extended 

test time. The Figure 3 demonstrates the current profile examined, the voltage and cell 

surface temperature responses respectively.  
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Figure 3: Test data for the discharge drive cycle experiment at 20  thermal chamber ambient temperature: (a) 

Input Current, (b) Terminal voltage, (C) Cell centre surface temperature.   
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3.3. Experiment #3: variable ambient temperature validation constant 

current discharge tests 

The second set of validation experiments are constant current discharge tests. The 

measurement involves a constant current discharge at 1C (90A). This process starts 

from 100% SoC and finished when the voltage reaches 2.5V. The current input and 

the corresponding voltage and cell surface temperature responses are shown in Figure 

4. The measurements were repeated for a range of temperatures (10 , 20 , 30  

and 40 ). Here, the Figure 4 only shows 20  as an example, and all the other data 

can be found in supplementary material A.  

 

Figure 4: Test data for the constant current discharge experiment at 20  thermal chamber ambient temperature: 

(a) Input current & terminal voltage, (b) Cell centre surface temperature & SoC profile.   
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4. Data analysis and ECM parameter estimation 

Open circuit voltage measurement 

The battery OCV is captured by the pulse discharge test followed by 2 hours rest. The 

test data is shown in Figure 2. The battery OCV between the SoC breakpoints is 

calculated with the commonly used linear interpolation method [29,48].  

4.1. RC network characterisation    

After collecting experimental data, it is essential to conduct a detailed data analysis to 

better understand the battery properties under study. A single pulse discharge data 

segment shown in Figure 2 is used here for data analysis. The SoC value decreases 

from 50% to 45%. A detailed look is presented in the Figure 5a, which shows an 

underload period of 1C (90A) constant current discharge load for 180 seconds (5% 

SoC breakpoint step) followed by a 2-hour relaxation period.  

Since both the SoC and temperature changes are small for this single pulse discharge 

(The SoC decreases by 5%, and the battery’s surface temperature variation is less than 

1 .), the model parameters are assumed to be constant. There are mature methods in 

the literature, such as the cross-validation method, for selecting the number of RC 

networks, which for this study was chosen to be 3 following the procedure described 

in [36,40]. It is found that 3 RC networks can capture both the underload and 

relaxation dynamics with high accuracy and 4 RC networks provides negligible 

accuracy improvement. The ECM RC parameters, including the time constants in Eq 

(1) and the resistor values in Eq (3), are obtained following an optimization procedure 

to minimize the root mean square error (RMSE) between the model voltage output 

and the measurements. The Matlab function ‘fmincon’ is used for the numerical 

optimization. This optimization involves only 6 parameters and is a standard 

procedure and therefore not detailed here.  

The results give an indication that it is difficult to capture both the battery underload 

and relaxation voltage profiles accurately using a single parameter set. This is because 

large RC time constants are required to capture the 2-hour voltage relaxation, while 

only small RC time constants are required to capture the underload voltage profile. In 

this study, the LFP cell has a nominal capacity of 90Ah with a dimension of W200.5 x 

L130.3 x H36.5 mm. This large-size battery is an energy cell with thick electrodes. It 
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is therefore hypothesized that the fast electrochemical reactions at the interface 

between the electrode and the electrolyte dominate the voltage response under load, 

while the slow diffusion dynamics inside the solid electrode particles dominate the 

voltage output during relaxation. Therefore, these two working conditions require RC 

time constants at different magnitudes. This data analysis process leads to the first 

novelty of this study, which captures the significant time constant difference between 

under load phase and relaxation phase using a parameter switching scheme, as 

follows,  

            (4) 

where  represents the underload time constant and  the relaxation time 

constant. The current threshold value  is used in this paper.  

Note that this switching scheme will not cause sudden jumps of the state variables, as 

shown in Eq (1). Only the poles of the transfer function of the RC networks vary with 

parameter-switching, and the gain (the resistor value) is not affected. Further, the 

parameter-switching is only triggered when the battery switches between underload 

and relaxation operating conditions, therefore the switching bandwidth is much lower 

than the model dynamics (around 1Hz) in EV driving conditions. 

To illustrate the comparison between the underload and relaxation dynamics, four 

parameter identification cases are compared. The first case uses only the underload 

data for parameter identification. The second case uses underload test data and 500-

second relaxation period. The third uses the underload with the full 2-hour relaxation 

data. The fourth case represents the proposed parameter switching scheme.  

Table 1 introduces the time constants obtained in these four case studies, and the 

modelling results are given in Figure 5 which compares the measured data with the 

simulation results. As it can be seen in Table 1, the time constants grow with the 

length of the relaxation period used for parameter identification. Using underload data 

alone for parameter identification in Case 1, the model can capture the underload 

dynamics with high accuracy. However, the model error during the relaxation period 

is high. This is because the maximum RC time constant is only 35.7s, which cannot 

reproduce a 2-hour voltage relaxation profile. The relaxation stage voltage profile can 

be better captured in Case 2 and 3, however, this comes at a cost of a larger underload 
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modelling error. This can be clearly seen in Figure 5(b), i.e., the zoomed segment at 

the end of the pulse discharge, where the model outputs of Case 2 and Case 3 produce 

an over-shoot error. It can be predicted that if the current pulse is longer, the 

underload modelling error will further increase. This is because, the three RC 

networks with high time constants ( ) and large resistance values are 

needed in order to sustain the 2-hour voltage relaxation, which compromised the 

underload accuracy. This shows an apparent trade-off between the quality of fitting 

for underload region and the relaxation region, regardless of the length of the 

relaxation data being examined. The underload stage needs small RC time constants, 

while the relaxation stage needs long RC time constants. By using the proposed 

switching time constants in Eq (4), the results in Figure 5 (a)&(b) show good model 

accuracy for both underload and relaxation, which essentially solve this issue. It is 

noteworthy that not all lithium ion battery cells show such distinctive features 

between underload and relaxation stages across their full SOC range, but it is often 

observed at the extremes, particularly at low SOC when state estimation can be 

particularly important. Therefore, this study highlights the importance of considering 

the load dependency of the ECM parameters.     
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Figure 5: Test data and simulation results for the constant current discharge pulse experiment at 20  thermal 

chamber ambient temperature, SoC starts at 50%, ends at 45%. (a) Comparison between the measured data with 

simulation results using 1. Underload time constant 2. Underload + short relaxation (500 seconds) time constant 

3. Underload + long relaxation (7200 seconds) time constant, (b) Zoomed look for (a).    

Data Selected/ 
Tau No. 

Time constant 1/s Time constant 2/s Time constant 3/s 

Case 1: Underload 
alone 

0.21 6.4 35.7 

Case 2: Underload 
+ 500s relaxation 

2.0 17.9 498.4 

Case 3: Underload 
+ 7200s relaxation 

10.7 170.0 2285.1 

Case 4: Switching 
Taus 

Underload: 0.2 
Relaxation: 1653 

Underload: 6.4 
Relaxation: 68.7 

Underload: 35.7 
Relaxation: 9.3 

Table 1: Time constant used for the simulation results shown in Figure 5.   

4.2. ECM parameter identification: 
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This section presents the full parameter identification procedure. The proposed 

method consists of two steps. The first step uses the underload test data to identify the 

underload RC time constants and the resistors values. The second step identifies the 

relaxation time constants using the relaxation region test data.  

To reduce the complexity of the parameter optimization, the time constants of the RC 

networks are fixed throughout the entire SoC range and at various temperature levels. 

In this way, the resistor values become linear-in-the-variable parameters and can be 

solved using computationally efficient least squares tools. In literature, it is concluded 

by Hu et al. that the time constants of the RC networks can be considered as 

independent from SoC values. The benefit of this assumption is reducing the 

parameter identification complexity by finding the global minima of fewer 

parameters. The insensitivity of the variation of the capacitor values to the ECM-

based SoC estimation accuracy further supports this assumption. [49] The RC time 

constants represent the time scale of interest for the voltage profile which can be 

considered independent from the working condition. The modelling results later show 

that this simplification doesn’t lead to poor model accuracy.  

4.2.1. Step 1: identification of the underload time constants and 

resistors 

For a given set of the underload RC time constants, , the current 

passing through  (i.e., ) can be calculated in Eq (1). Denote  to represent 

the current passing through  (to be consistent with ).  

To capture the SoC dependency of the resistor values, the full SoC operating window 

is divided using breakpoints as follows,  

              (5) 

where  is the number of SoC breakpoints. Next, define the triangle base function 

at each SoC breakpoint as follows,  
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 (6) 

 

The SoC dependency of the resistor values can now be expressed using linear 

interpolation as follows,  

                   (7) 

Then from the terminal voltage in Eq (3), yielding,  

                 (8)             

Here the time step indicator  is dropped from the variables, e.g., . Denote 

, and row vector . Let row vector 

 and  as the 

collection of all the resistor values. Eq (8) can then be reformulated as 

                    

Denote the value of  and  at time  as  and , respectively, and let                

 

Then from Eq (8) we obtain a least-squares formulation as follows,  

                           (9) 

Repeat the above procedure from Eq (5) to Eq(9) at the four different 

temperatures, and denote the ,  and  at [10, 20, 30, 40]  as 

;  and  respectively.  

Denote  where ‘ ’ stands for block 

diagonal,  and . 

Then  
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                       (10) 

The parameter constraints can be put as  in elementwise. 

This comes from the prior knowledge that the resistance value decreases with 

temperature rise.  

The optimal parameters to Eq (10),  can be obtained using least-squares solvers 

(here Matlab function ‘lsqlin’ is used). This is a convex optimization problem 

which can be solved efficiently. Then optimal resistor values can be calculated 

using the least squares method, 

                   (11) 

and the modelling RMSE is , where  is the length of . Note that this 

RMSE depends on the choices of the underload RC time constants, . Then the 

optimal  can be obtained by solving the following parameter optimization 

problem 

                        (12) 

Here, with only three parameters to optimize, the chance of finding the global 

minimum is greatly increased compared with optimizing all the model parameters 

together using the Genetic algorithm [50]. The Matlab function ‘fminbnd’ is used in 

this paper for finding the optimal underload RC time constants in Eq (12).  

 

 

4.2.2. Step 2: identification of the relaxation time constants 

Note that in Section 4.3.1, only the underload test data are used. Next, the rest 

relaxation test data will be used for identification of the relaxation RC time 

constants.  

First, the underload time constants and the resistor values obtained in Section 4.3.1 

are used to simulate the current values  under current load. Next, given 
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the relaxation time constants ( ), the model’s voltage profile during 

relaxation stage can be simulated using Eq (1) and Eq (3).  

The model voltage during the relaxation stage will be compared with the 

measurements and the RMSE depends on the chosen relaxation time constants. This 

is an optimization problem similar to Eq (12). Again, with only three parameters 

( ) to optimize, the chance of finding the global minimum is high. The 

Matlab function ‘fmincon’ is used again for parameter optimization. 

4.2.3. Comparison against PIM without parameter switching 

scheme 

In order to compare with the case that doesn’t consider the load dependency of the 

ECM parameters, another PIM is given here that uses the same RC time constants for 

both underload and relaxation stages. The PIM with no switching consists of only the 

optimization step in Section 4.3.1 but uses different test data for parameter 

identification, i.e., both the underload and 2-hour relaxation test data are used for 

extracting the ECM parameters.   

5. Modelling results vs validation results  

In order to conduct a comparative study of the conventional PIM and the proposed 

PIM with switching, the model training results for the pulse discharge tests and 2 sets 

of validation tests are demonstrated in this section. 

5.1. Model training results 

The Figure 6 shows the model parameter training results for the two PIMs. Both PIMs 

perform under certain error bias within 20mV besides a few error spikes when the 

current jumps. In general, the PIM with no switching leads to better model accuracy 

during the relaxation stage and lower underload accuracy compared with the 

switching PIM, as it shows in Figure 6 (c) & (d). It is noticeable that the model 

accuracy decreases under low SoC (<5%).  Essentially, the training results show the 

overall RMSE errors are comparable, 2.4 mV and 3.4 mV for no switching and 

switching respectively. However, the underload phase RMSE errors are 7.1 mV and 

1.8 mV for no switching and switching respectively, which demonstrates the benefits 

of using the switching PIM in this study. Figure 6 (c) & (d) shows a detailed 

investigation at SoC value of 85 % - 84%, where the cell underwent constant current 
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discharge for 180s (5% SoC breakpoint step) followed by a 2-hour relaxation. The 

PIM with no switching illustrates a better performance on the relaxation phase but 

poorer fitting on the underload phase, by contrast to the switching PIM as detailed in 

Figure 6 (c) & (d).  

In Figure 6 (b) subplot, PIM with no switching delivers a noticeable large error spike 

at SoC value of 90%, where the underload time for the constant current period 

changes from 36s (1% SoC breakpoint step) to 180s (5% SoC breakpoint step). The 

larger error generated from PIM with no switching (maximum error about 21 mV) 

compares to switching PIM (maximum error about 8mV) shows another advantage of 

the proposed switching PIM. As the underload phase and the relaxation phase are 

trained individually, therefore the RC networks values have greater potential to 

overcome current load fluctuation during characterisation tests, which fits the 

potential needs for various current load characterisation tests.  

 

Figure 6 Comparison of the two PIM methods using the 1% & 5% SoC pulse discharge data at 1C (90A) with a 
120minutes relaxation period at 20  (a): battery voltage fitting results, (b) modelling error & a zoomed segment 
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of the fitting error at SoC range 89% - 85%, (c): a zoomed segment of the battery voltage fitting results at SoC range 
85% - 84%, (d) a zoomed segment of the modelling error at SoC range 85% - 84%. 

 

 

 

 

5.2. Validation results: 

In this study, there are 2 set of validation tests examined for both PIMs, which are 

constant current load and drive cycle noisy load. Normally if a set of parameters are 

trained from conventional PIM with pulse load as characterisation tests, then 

validation against constant current test data is typically not done, in many cases this is 

described as out of scope but is more likely because of poor agreement. Here, the 

proposed switching PIM is validated against both constant current and under load 

experimental data, to show its ability to reproduce a wide range of current loads.    

5.2.1. Constant Current load validation  

Figure 7 (a) demonstrates the measured data together with simulated model results 

using both PIMs for a constant current discharge test at 1C (90A). The cell centre 

surface temperature acts as an additional input to the model. Figure 7 (b) demonstrates 

the error of both PIMs in voltage response. The overall modelling RMSE errors are 

140.8 mV and 17.4 mV for PIM with no switching and switching PIM , respectively. 

The PIM with no switching shows a poor alignment between measured data and 

model simulation, where a constant error bias over 130 mV is observed. Meanwhile, 

the switching PIM delivers a good fit between measured data and simulation result. 

There is over 87.6% improvement on the error bias level from switching PIM.  

This is because the PIM with no switching sacrifices partly the underload accuracy in 

order to improve the accuracy at the relaxation period, i.e., a trade-off. It is 

noteworthy that the model accuracy during the training step is acceptable, as shown in 

Figure 7. This problem of underload accuracy deficiency only becomes outstanding 

under this constant current discharge. In another word, the model training results can 

be misleading without careful data analysis. The root cause to this problem is that the 

battery shows distinctive dynamics properties for underload and relaxation. This 

effect must be taken into consideration during ECM parametrization and application. 
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It is therefore recommended that the training data set for ECM parametrization should 

have similar characteristics with the intended application of the model. In particular, if 

the intended application of the model includes constant current discharge, then a 

similar load profile should be used for ECM parametrization. This is a general 

recommendation for identifying a reduced order model from a highly complex or 

nonlinear system [46], which is however, generally overlooked in the ECM modelling 

field. The proposed PIM method using the parameter switching scheme effectively 

avoids this trade-off which would otherwise reduce the model underload accuracy.  

There are similar features at low SoC region (<10%), where error is accumulated. 

This may be caused by the severe nonlinearity of the battery dynamics at this low SoC 

range, making constant-parameter ECM unsuitable for capturing the voltage profiles 

under different current profiles. The model accuracy at low SoC could be improved 

by taking into consideration of the difference between the surface and bulk 

concentrations of the battery electrode [51]. This, however, uses a different model 

structure from ECM and increases the model parametrization complexity. The low 

SoC accuracy of the ECM modelling will be explored in future work, however this is 

out of the scope for this study.    
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Figure 7 Comparison of the two PIM methods using the Constant Current discharge load at 1C (at 20  as 
starting thermal chamber ambient, cell centre temperature data is considered as an input for model simulation, 

(a): battery voltage fitting results; (b) modelling error 

5.2.2. Drive cycle validation  

A bespoke designed drive cycle based on a US06 drive cycle is subjected to the cell, 

where the input current is shown in Figure 3a. Figure 8 (a) demonstrates the measured 

data together with simulated model results using both PIMs. The cell centre surface 

temperature acts as an additional input to the model. Figure 8 (b) demonstrates the 

error of both PIMs in voltage response. The modelling overall RMSE errors are 78.2 

mV and 17.7 mV for PIM with no switching and switching PIM, respectively. Also, 

the underload phase RMSE errors are 81.4 mV for PIM with no switching and 7.7 mV 

for switching PIM, where the switching PIM delivers 10 times less error (improved 
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90.5% for underload phase, and 77.4% for overall simulation) in this validation 

scenario. It is clear to see a constant error bias level about 75mV for the results 

generated from PIM with no switching, while the switching PIM offers an error bias 

level less than 10mV. The less error and more accurate model performance that uses 

the parameters generated from switching PIM proves the necessity of this PIM, 

especially for this type of battery. The reason for the difference of the model accuracy 

is similar to that in Figure 7. 

All the PIMs trained the parameters across the entire SoC bandwidth together with 4 

characterisation test temperatures. As shown in Figure 3 (c) and 4 (b), the cell centre 

surface temperature grows from 20 °C to 26 °C for drive cycle test and 20 °C to 

35 °C, respectively. Training all the data together gives the model a smooth transition 

on these thermally dynamic scenarios.   
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Figure 8 Comparison of the two PIM methods using the Drive cycle discharge load (input current is shown in 
Figure 3(a)) at 20  as starting thermal chamber ambient, cell centre temperature data is considered as an 

input for model simulation, (a): battery voltage fitting results; (b) modelling error 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion and future work 

A novel modified equivalent circuit model and parameter identification method is 

presented which takes into account the fact that many lithium ion batteries exhibit 

different time constants during underload operation compared to relaxation. The 

model switches between RC values for different current profiles. This is particularly 

pronounced in the large prismatic with lithium iron phosphate cathode studied in this 

paper but is also seen at the extremes of SOC in other lithium ion batteries, 

particularly at low SOC where state estimation can be particularly difficult yet even 

more important. The approach presented in this paper demonstrates significant 

improvements over a conventional equivalent circuit model without switching time 

constants. The work should be of interest to application engineers, battery 

management system developers, and control engineers. 

The study in this paper is limited to the specific phenomena of the battery’s different 

dynamics between underload and relaxation. The discharge current pulses are used for 

model training and parameter identification, and the model performance is validated 

under constant-current full discharge and drive cycle profile. A more detailed analysis 

of the ECM’s parameter dependency on the load current profile (such as frequency 

spectrum of the drive cycles) and the corresponding parameter-switching scheme are 

left for future work. Further, although frequency domain methods such as Fourier 
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transform have been widely used for input profile characterization and categorization, 

a time domain method for the classification of current profile still needs to be 

developed and validated for real-time BMS implementation.  

7. Supplementary material  

Figure 1-3: Model training results for other temperatures + experimental data for other temperatures  

Figure 4-6: CC discharge validation for other temperatures + experimental data for other temperatures 

Figure 7: OCV curves for different temperatures 

Figure 8: The identified model parameters – resistor values versus SoC and temperature 

Figure 9: ECM model structure with n RC networks 

Table 1. The identified underload and relaxation RC time constants of the ECM 
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