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A B S T R A C T

We propose a differential radial basis function (RBF) network termed RBF-DiffNet—whose hidden layer blocks
are partial differential equations (PDEs) linear in terms of the RBF—to make the baseline RBF network robust
to noise in sequential data. Assuming that the sequential data derives from the discretisation of the solution to
an underlying PDE, the differential RBF network learns constant linear coefficients of the PDE, consequently
regularising the RBF network by following modified backward-Euler updates. We experimentally validate the
differential RBF network on the logistic map chaotic timeseries as well as on 30 real-world timeseries provided
by Walmart in the M5 forecasting competition. The proposed model is compared with the normalised and
unnormalised RBF networks, ARIMA, and ensembles of multilayer perceptrons (MLPs) and recurrent networks
with long short-term memory (LSTM) blocks. From the experimental results, RBF-DiffNet consistently shows a
marked reduction in the prediction error over the baseline RBF network (e.g., 41% reduction in the root mean
squared scaled error on the M5 dataset, and 53% reduction in the mean absolute error on the logistic map);
RBF-DiffNet also shows a comparable performance to the LSTM ensemble but requires 99% less computational
time. Our proposed network consequently enables more accurate predictions—in the presence of observational
noise—in sequence modelling tasks such as timeseries forecasting that leverage the model interpretability, fast
training, and function approximation properties of the RBF network.
1. Introduction

The radial basis function network (RBFN) is an artificial neural
network first introduced in the 1980s (Broomhead & Lowe, 1988)
but still very much in vogue now (Dey et al., 2019; Masnadi-Shirazi
& Subramaniam, 2020; Que & Belkin, 2019; Teng, 2018) due to its
robustness as a universal function approximator. Architecturally, it is a
three-layer network having one input layer, one hidden layer, and one
output layer, as shown in Fig. 1, with activation units in the hidden
layer made up of radial basis functions (RBFs).

The input layer is often connected to the hidden layer via direct con-
nections whose weights are frozen at unity and thus not trainable, while
the output layer is a simple linear layer. Though simple (compared to
more complex architectures (Kaviani & Sohn, 2021)), this architecture
is particularly efficient as a universal function approximator (Girosi
& Poggio, 1990; Park & Sandberg, 1991; Rizaner & Rizaner, 2018;
Scarselli & Tsoi, 1998); one reason for this is that the hidden layer
of the RBF network performs a similar kernel transformation to an
infinite-dimensional inner product space employed by other kernel
machines such as the support vector machine (Abu-Mostafa et al., 2012;
Que & Belkin, 2019; dos Santos et al., 2012). The RBF network has
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therefore seen many uses especially in timeseries forecasting, function
approximation, control and classification problems that occur in many
real-world applications such as fraud detection, speech recognition,
manufacturing, medical diagnosis, and face recognition (Dash et al.,
2016; Li & Verma, 2016; Wong et al., 2011). One other area in which
the radial basis function network has seen increasing adoption is in the
linear approximation of the value function in reinforcement learning
in terms of the state–action variables (Barreto & Anderson, 2008;
Kretchmar & Anderson, 1997; Sutton & Barto, 2018).

One reason for the ubiquity of RBF networks in many machine
learning tasks is the interpretability of their outputs, since the hidden
layer essentially performs a fuzzy nearest-neighbour association of an
input vector to a set of well-defined exemplars in the training data;
thus, for a given input, the influence of different features on the output
can be estimated from the relative importance of the features in these
exemplars. Another reason for the sustained use of the RBF network
is the speed in training the network, since only the final linear layer
is often trained; for the least-squares error (with ridge regularisation),
there is, in fact, a closed-form solution for the network weights. This
comes at the expense of a usually unsupervised step of selecting the
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Fig. 1. Radial basis function network (RBFN).

umber, centres and widths of the radial basis function activation
nits. Thus, the eventual performance of the RBF network is highly
usceptible to the widths and centre locations of the RBF units (Lee
t al., 2009; Lim et al., 2019; Orr, 1995; Scheibel et al., 1999), which in
urn can be heavily influenced by the presence of noise in the data (Dey
t al., 2019; Masnadi-Shirazi & Subramaniam, 2020). Other neural
etwork architectures may not be so exceptionally sensitive to noise.
everal other approaches mainly using forward selection (Chen et al.,
008, 2006; Gomm & Yu, 2000; Mehrabi et al., 2009) and sophisticated
lustering methodologies or the self-organising map (Dash et al., 2016;
uilan et al., 2005; Kamalabady & Salahshoor, 2008; Lim et al., 2019)
ave thus been proposed to better locate the RBF centres.

Crucially however, for sequence modelling tasks such as timeseries
orecasting, the sequence data has to be reshaped such that the RBF
etwork takes as inputs the 𝑙 lagged values of the sequence (in addition
o any exogenous inputs) and outputs some next points in the sequence;
herefore, if there is a single noisy observation in the sequence, this
bservation likely gets replicated 𝑙 times in the reshaped data that
s input to the RBF network. In the extreme case, the sequence data
ay be so corrupted that the data contains no more meaningful infor-
ation for prediction (Masnadi-Shirazi & Subramaniam, 2020). This
rofoundly degrades the optimal placement of the RBF centres and
onsequently the performance of the network. It is worth noting that
his problem of noise propagation, as described, is not prevalent in
he application of the RBF network to other regression or classification
asks where there are no temporal correlations in the data, in which
ase each noisy observation occurs only once in training. For example,
n reinforcement learning settings, since the state transition in the
equential decision process is typically considered Markovian, there is
unctional dependence on only the last state vector, i.e. 𝑙 = 1, and
hus a single noisy observation does not replicate itself in the reshaped
raining data.

In this paper, we propose a novel neural network architecture,
ermed the differential RBF network (RBF-DiffNet), that is designed
o learn a representation of the sequence data that ignores signal
oise. By utilising activation blocks made up of partial differential
quations (PDEs) linear in terms of the radial basis function —with
he constant linear coefficients of the PDE being trainable —we subject
he network to a regularisation based on backward Euler updates
hat makes the network robust to noise. The intuition behind this
rchitecture stems from the observation that many real-world sequence
ata derive from phenomena (such as in biology, economics or physics)
hose underlying dynamics, in the absence of noise or control inputs,
ay be modelled by a set of partial differential equations, however

omplex. For example, the sequence of air temperature data observed
n a car cabin may very well be described by a set of heat balance
2

quations (Brusey et al., 2018), which are PDEs. o
Our main contributions in this paper are therefore as follows: (1) we
olve the known problem of the susceptibility of radial basis function
etworks to noise in timeseries forecasting applications; (2) we intro-
uce the differential RBF network architecture, whose hidden layer
locks are partial differential equations (PDE) linear in terms of the
adial basis function; (3) we analyse the mathematical properties of the
roposed network and show how the hidden layer blocks regularise the
etwork and make it robust to noisy perturbations to sequential data
hat easily degrades the performance of the baseline RBF network; (4)
e propose a fast recursive algorithm for training the proposed network
eights including the linear coefficients of the PDE. The proposed
etwork, its analysis and training are detailed in Section 3.

Section 4 presents an experimental validation of the proposed archi-
ecture on the logistic map chaotic timeseries (Farmer & Sidorowich,
987; Maathuis et al., 2017) and 30 different real-world retail time-

series from the M5 competition (Makridakis, 2020); this section also
includes performance comparisons with the baseline RBF network,
autoregressive integrated moving average (ARIMA) model, ensembles
of MLPs, and recurrent neural networks with long–short-term memory
(LSTM) blocks (Makridakis, 2020). From the experimental results, our
proposed network consistently shows a marked reduction over the base-
line RBF network in terms of the prediction error (e.g., 41% reduction
in the root mean squared scaled error on the M5 dataset); Our network
also shows a comparable performance to the LSTM ensemble at less
than one-hundredth the LSTM computational time. Conclusions and
future work are given in Section 5, while the problem statement and
related work are presented in the next section.

2. Problem statement and related work

We begin by considering a set of 𝑁 input–output pairs {𝐱𝑛, 𝑦𝑛}1∶𝑁
rom which we wish to train a function 𝑓 ∶  →  , where 𝐱𝑛 ∈  is
𝑑-dimensional input vector and 𝑦𝑛 ∈  is a scalar-valued output. In

he case of a univariate series 𝑠1, 𝑠2,… , 𝑠𝑇 , denoted as {𝑠𝜋}1∶𝑇 , where
indexes the timestep, we reshape the data into input–output pairs

𝐱𝑛, 𝑦𝑛}1∶𝑁 as before, such that 𝐱𝑛 is given by the 𝑙 lagged values of
he series prior to time 𝑡𝜋+1, i.e., 𝐱⊤𝑛 = [𝑠𝜋−𝑙+1,… , 𝑠𝜋 ], and 𝑦𝑛 is the
rue output 𝑠𝜋+1. If there are other exogenous inputs 𝐞 on which the
equence {𝑠𝜋}1∶𝑇 has dependence, we assume this is again captured in
𝑛 as:
⊤
𝑛 = [𝐞⊤, 𝑠𝜋−𝑙+1,… , 𝑠𝜋 ]. (1)

ote that if there are exogenous inputs, then 𝑙 < 𝑑; otherwise 𝑙 = 𝑑.
The radial basis function network (RBFN) as shown in 1, can be

ritten concisely as:

(𝐱𝑛) =
𝑐
∑

𝑗=1
𝑤𝑗𝜙𝑗 (𝐱𝑛) +𝑤0, (2)

here 𝑐 is the number of RBF centres, corresponding to the number of
eurons in the hidden layer, and

𝑗 (𝐱𝑛) = 𝑒−𝛽𝑗‖𝐱𝑛−𝝁𝑗‖
2 (3)

s the Gaussian radial basis function, which is the RBF used in this
aper. The choice of non-linearity in other radial basis functions has
een found not to be crucial to the performance of the network (Chen
t al., 1991). In (3), 𝝁𝑗 are exemplars in the training data; 𝛽𝑗 is inversely
roportional to the width of the 𝑗th RBF, and 𝑤𝑗 , 𝑤0 are the RBF
eights and bias to be optimised.

From (2) and (3), the hidden layer of the RBF network essentially
erforms a fuzzy nearest-neighbour association of the input vector 𝐱𝑛 to
he set of exemplars 𝝁𝑗 , based on a Mahalanobis distance criterion with
pherical covariance in terms of 𝛽𝑗 . Thus, for any given input vector,
he influence of different features on the output can be estimated from
he relative importance of the features in each of the 𝑐 exemplars, each
eighted by its corresponding RBF weight 𝑤𝑗 ; this property makes the

utput of the RBF network interpretable in terms of its inputs.
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For the sake of brevity, we drop the subscript 𝑛 in 𝐱𝑛 in the
following. In matrix form, (2) is equivalent to:

𝑓 (𝐱) = 𝝓(𝐱)⊤𝐰̃, (4)

where,

𝝓(𝐱) = [1, 𝜙1(𝐱),… , 𝜙𝑐 (𝐱)]⊤, (5)

and

𝐰̃ = [𝑤0, 𝑤1,… , 𝑤𝑐 ]⊤ (6)

If one considers the entire training set, then we have the following
system of equations:

𝐟 = 𝜱𝐰̃, (7)

where

𝐟 = [𝑓 (𝐱1), 𝑓 (𝐱2),… , 𝑓 (𝐱𝑁 )]⊤, (8)

and

𝜱 =
⎡

⎢

⎢

⎣

1 𝜙1(𝐱1) ⋯ 𝜙𝑐 (𝐱1)
⋮ ⋮ ⋱ ⋮
1 𝜙1(𝐱𝑁 ) ⋯ 𝜙𝑐 (𝐱𝑁 )

⎤

⎥

⎥

⎦

(9)

For the least-squares error (used in many regression tasks) and low to
moderate number of RBF nodes, 𝐰̃ can be optimised in closed-form as:

𝐰̃∗ = (𝜱⊤𝜱 + 𝛾𝐈)−1𝜱𝐲, (10)

where 𝛾 is a regularisation coefficient, 𝐈 is the identity matrix of size
𝑐 +1, and 𝐲⊤ = [𝑦1,… , 𝑦𝑛]. In general, the weights 𝐰̃ can be trained for
any arbitrary loss function using different optimisation routines.

Separate from the RBF network weights are the hyperparameters
𝑐, 𝝁𝑗 and 𝛽𝑗 that require tuning. Most commonly, these are obtained
from an unsupervised preprocessing step; the number of RBF centres
is fixed and the exemplars 𝝁𝑗 are determined as the cluster centres
obtained from some variants of K-Means clustering (Lim et al., 2019;
Masnadi-Shirazi & Subramaniam, 2020; Que & Belkin, 2019; Scholkopf
et al., 1997), while 𝛽𝑗 is derived from the compactness of the individual
lusters. Specifically, 𝛽𝑗 is defined as:

𝑗 =
1

2𝜎2𝑗
, (11)

where popular choices of 𝜎𝑗 (Benoudjit & Verleysen, 2003; McCormick,
2013; Moody & Darken, 1989; Wu et al., 2012) include:

𝜎𝑗 ∶=
𝑑𝑚𝑎𝑥
√

2𝑐
, ∀𝑗 ∈ {1,… , 𝑐} (12)

𝑗 ∶=
1
𝑛𝑗

∑

𝐱∈𝑗

‖𝐱 − 𝝁𝑗‖, ∀𝑗 ∈ {1,… , 𝑐} (13)

𝑗 ∶=
1
𝑜

∑

𝐱∈𝑗

‖𝐱 − 𝝁𝑗‖, ∀𝑗 ∈ {1,… , 𝑐} (14)

𝑗 ∶=
1
𝑜𝑐

𝑐
∑

𝑗=1

∑

𝐱∈𝑗

‖𝐱 − 𝝁𝑗‖, ∀𝑗 ∈ {1,… , 𝑐}, (15)

here 𝑑𝑚𝑎𝑥 is the maximum distance between the centres of any two
lusters, 𝑗 is the set of all points in the 𝑗th cluster, 𝑛𝑗 is the number
f points in the 𝑗th cluster, and 𝑗 is the set of the 𝑜 closest points to
he 𝑗th cluster centre. An alternative to K-Means clustering employed
or RBF networks is the self-organising map which allows for a more
ntuitive determination of the number of cluster centres 𝑐 when the data
s projected onto two or three dimensions (Kamalabady & Salahshoor,
008; Lin & Chen, 2005).

Since the RBF network parameters affect the network’s perfor-
ance quite significantly, other approaches utilising other performance
etrics have been proposed for the selection of the hyperparame-
3

ers. For example, the RBF nodes may be incrementally added in
rder to maximise the Fisher class-separability ratio and the leave-
ne-out cross validation RMSE for classification and regression tasks,
espectively (Chen et al., 2008, 2006). Alternatively, the incremental
dditions of the neurons can be based on the concept of ‘‘neuron
ignificance’’ that evaluates an RBF node’s contribution to the overall
erformance of the network (Lee et al., 2009). Nevertheless, the pres-
nce of observational noise tends to influence the optimal placement
f centres (Dey et al., 2019) or any metrics computed based on them,
uch as the Fisher class-separability ratio. The prevalence of observa-
ional noise tends to have an even more profound effect for sequence
ata (Masnadi-Shirazi & Subramaniam, 2020), where upon reshaping
nto input–output pairs, noisy observations get replicated throughout
he data if the lag 𝑙 is much greater than 1.

One way to make the RBF network robust is to normalise the
etwork to achieve the partition of unity property where the 𝑐 nor-
alised radial basis functions sum up to one for every point in the

nput space  , making the RBF network less susceptible to noisy
bservations in arbitrary regions of the input space (Shorten & Murray-
mith, 1994, 1996). Normalisation thus results in the RBF network
osing its local characteristics, but often results in improved general-
sability (Bugmann, 1998). The normalised RBF network 𝑓𝑛𝑜𝑟𝑚 is given
athematically as:

𝑛𝑜𝑟𝑚(𝐱𝑛) =
∑𝑐

𝑗=1 𝑤𝑗𝜙𝑗 (𝐱𝑛)
∑𝑐

𝑗=1 𝜙𝑗 (𝐱𝑛)
+𝑤0, (16)

Since normalising the RBF network has several known side effects
uch as shifts in the maxima of the RBFs (Shorten & Murray-Smith,
994, 1996), in this paper, we take a different perspective towards mak-
ng the RBF network robust specifically for its application to modelling
equential data. This involves utilising activation blocks made up of
artial differential equations linear in terms of the radial basis function
nd based on backward Euler discretisation of the sequence data.

It is worth mentioning that our proposed differential RBF network
rchitecture, although it utilises a similar Euler discretisation as the
eural ordinary differential equation (ODE-Net) (Chen et al., 2018),
iffers from the ODE-Net as follows: while the ODE-Net parameterises
he derivatives of the hidden state of a residual network with another
eural network in the limit of a large number of hidden layers when the
iscrete step size approaches 0, the differential RBF network parame-
erises the solution to the differential equation with an RBF network
nd directly evaluates the derivatives of this solution according to
he backward Euler updates given in Section 3 in such a way as to
egularise the original RBF network.

Furthermore, our work differs from other works that have em-
loyed the RBF network in solving ordinary or partial differential
quations (Chen et al., 2016; Lagaris et al., 1998; Larsson et al., 2017;
ai-Duy & Tran-Cong, 2001; Schaback & Wendland, 1970) in that,

nstead of a well-defined set of differential equations to solve, we have
nly some discrete realisations from phenomena that are assumed to
e described by unknown differential equations. Thus, we start with a
olution to an unknown differential equation in the form of the RBF
etwork and work backwards to find an optimal differential equation
ith constant coefficients that best describes the sequence data, based
n backward Euler updates.

Finally, the DiffNet architecture for deep learning proposed by Ward
t al. (2021) is similar only in name with our proposed RBF-DiffNet
rchitecture, but it differs fundamentally from our approach in the
earning task it is used for: while our approach is set up for sequential
odelling tasks, the model by Ward et al. is set up for supervised
imensionality reduction using autoencoders.

. Proposed differential RBF network

In this section, we provide the mathematical intuition behind our
roposed differential RBF network and analyse how the network
chieves regularisation against noise. We further propose a fast recur-
ive algorithm to train the network.
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3.1. Intuition

We first consider the univariate series {𝑠𝜋}1∶𝑇 , and assume that this
sequence data is generated by some underlying differential equation
given by:
𝑑𝑧
𝑑𝑡

= 𝑔(𝑡, 𝑧(𝑡)), (17)

hat is, the sequence {𝑠𝑡}1∶𝑇 are instances sampled from the solu-
ion to the differential equation given by (17) at specific timesteps.
hese discrete samples may be approximated by backward Euler up-
ates (Atkinson et al., 2011) of the form:

𝜋+1 = 𝑠𝜋 + ℎ𝑔(𝑡𝜋+1, 𝑠𝜋+1), (18)

here ℎ is some small interval between the occurrences of 𝑠𝜋 and 𝑠𝜋+1,
.e., ℎ = 𝑡𝜋+1 − 𝑡𝜋 . Note that in a noiseless system, 𝑠𝜋 = 𝑧(𝑡𝜋 ).

We wish to approximate the function 𝑧 with the RBF network 𝑓 .
owever, since we wish to predict the next state of the sequence based
n its prior values, we replace the functional dependence on time 𝑡 with
he last 𝑙 realisations of the sequence in the function 𝑓 . Thus, for 𝑙 = 1
and no exogenous inputs), we wish to approximate the local value of
𝜋+1 = 𝑧(𝑡𝜋+1) as:

𝜋+1 = 𝑧(𝑡𝜋+1) ≈ 𝑓 (𝑠𝜋 ). (19)

ith this approximation, the differential equation equivalent to (17)
ecomes:

𝑑𝑓
𝑑𝑠𝜋

=
𝑐
∑

𝑗=1
𝑤𝑗𝜙

′
𝑗 (𝑠𝜋 ), (20)

given the definition of the RBF network in (2), and the Euler update
equations become:

𝑠𝜋+1 = 𝑠𝜋 + ℎ𝑓 ′(𝑠𝜋 ). (21)

We may then train the RBF network 𝑓 on the input–output pairs
{𝑠𝜋 , 𝑠𝜋+1} (for example, via the pseudo-inverse solution in (10)), while
lso constraining the network to satisfy the Euler update equations
n (21). This constraint helps regularise the network weights against
oisy samples, since the noisy samples may be unlikely to satisfy the
ackward Euler update in (21), for a sufficiently small ℎ.

The backward Euler update in (21) can be thought of as a first-order
aylor’s approximation, and thus to improve this approximation and
educe the truncation errors, we may consider a higher-order Taylor’s
xpansion up to degree 𝜈 as follows:

𝜋+1 = 𝑠𝜋 + ℎ𝑓 ′(𝑠𝜋 ) +⋯ + ℎ𝜈

𝜈!
𝑓 (𝜈)(𝑠𝜋 ). (22)

One of the utilities in approximating the solution 𝑧 to the underlying
differential equation in (17) as an RBF network 𝑓 is in its parame-
ter efficiency, i.e., we are able to obtain closed-form expressions for
its higher-order derivatives without any increase in the number of
variables that parameterise 𝑓 or these higher derivatives.

If we now consider larger values for the lag 𝑙, as well as include
any exogenous inputs, then the RBF network is no longer a function
of 𝑠𝜋 only, but 𝐱𝑛 as defined in (1). Again, as in Section 2, we drop
the subscript 𝑛 for brevity. In this case, the gradient and higher order
derivatives of 𝑓 is computed for all the components of 𝐱, so that we
have a form of the Euler update analogous to (22) using multi-index
notation (Folland, 2005) as:

𝑠𝜋+1 = 𝝀⊤𝐬𝜋−𝑙+1∶𝜋 +
∑

0≤|𝑘|≤𝜈

𝐡𝑘
𝑘!

𝐷(𝑘)𝑓 (𝐱), (23)

which is equivalent to:

𝑠𝜋+1 = 𝝀⊤𝐬𝜋−𝑙+1∶𝜋 + 𝐡⊤𝐷𝑓 (𝐱) + 1
2
𝐡⊤𝐷2𝑓 (𝐱)𝐡 +⋯ (24)

Here, 𝐡 is now a small vector interval, 𝐷𝑖𝑓 is an 𝑖th-order tensor, with
𝑓 and 𝐷2𝑓 being the gradient and Hessian respectively of 𝑓 , and
4

𝑓

𝝀⊤𝐬𝜋−𝑙+1∶𝜋 is the weighted sum of the last 𝑙 realisations of the sequence,
with 𝝀 being the vector of weights.

For the special case where 𝜈 = 2, since 𝐷𝑓 and 𝐷2𝑓 are respectively
he gradient and Hessian of 𝑓 , we have from (24) that,

𝜋+1 ≈ 𝝀⊤𝐬𝜋−𝑙+1∶𝜋 +
𝑑
∑

𝑖=1
ℎ𝑖

𝜕𝑓 (𝐱)
𝜕𝑥𝑖

+ 0.5
𝑑
∑

𝑖=1

𝑑
∑

𝑝=1
ℎ𝑖ℎ𝑝

𝜕2𝑓 (𝐱)
𝜕𝑥𝑖𝑥𝑝

, (25)

where ℎ𝑖, ℎ𝑝 are respectively the 𝑖th and 𝑝th components of 𝐡. We note
here that the computational complexity is 𝑂(𝑑2).

In general, for an arbitrary 𝜈, the computational complexity would
e 𝑂(𝑑𝜈), which may be intractable for high-dimensional datasets. Thus,
o keep the order of complexity in (24) linear and tractable, we ignore
ll mixed derivatives (such as 𝜕2𝑓 (𝐱)

𝜕𝑥𝑖𝜕𝑥𝑝
in the summation in (25) involving

the second-order tensor, where 𝑖 ≠ 𝑝) thus approximating (24) with the
following partial differential equation:

𝑠𝜋+1 ≈ 𝝀⊤𝐬𝜋−𝑙+1∶𝜋 +
𝜈
∑

𝑘=1

𝑑
∑

𝑖=1
𝑎𝑘,𝑖

𝜕(𝑘)𝑓 (𝐱)
𝜕𝑥𝑘𝑖

. (26)

Because we ignore the mixed derivatives for computational reasons, the
Taylor approximation no longer holds, and thus we introduce in (26)
a new set of learnable parameters 𝑎𝑘,𝑖 (which replace 𝐡 in (24)) which
now have to be optimised to maximise the fit to the data. In the case
where 𝜈 = 1, 𝑎𝑘,𝑖 is equal to ℎ as given in (21).

With 𝑓 defined as in (19), we have from (26) that:

𝑓 (𝐱) = 𝝀⊤𝐬𝜋−𝑙+1∶𝜋 +
𝜈
∑

𝑘=1

𝑑
∑

𝑖=1
𝑎𝑘,𝑖

𝜕(𝑘)𝑓 (𝐱)
𝜕𝑥𝑘𝑖

. (27)

The relationship in (27) then represents a regularisation of the
arameters of 𝑓 in (2). Specifically, while the radial basis function
etwork 𝑓 is ordinarily given by (2), we are now subjecting it to the
dditional constraint that the next observation 𝑠𝜋+1 = 𝑓 (𝐱) is such that
t satisfies the multivariate, higher-order extension to the backward
uler updates as given in (26), assuming that the sequence data are
ampled from the solution to an underlying differential equation; this
an be expressed by the following optimisation problem:

min
𝐰

∑

𝑛
𝐿(𝑓 (𝐱𝑛), 𝑦𝑛), where 𝑓 (𝐱𝑛) =

𝑐
∑

𝑗=1
𝑤𝑗𝜙𝑗 (𝐱𝑛) +𝑤0

ubject to ∶

𝜋+1 = 𝑓 (𝐱𝑛) = 𝝀⊤𝐬𝜋−𝑙+1∶𝜋 +
𝜈
∑

𝑘=1

𝑑
∑

𝑖=1
𝑎𝑘,𝑖

𝜕(𝑘)𝑓 (𝐱𝑛)
𝜕𝑥𝑘𝑖

, (28)

where 𝐿 is an arbitrary loss function, and 𝐰 are the RBF network
weights. Note that this optimisation framework presumes knowledge
of 𝑎𝑘,𝑖 and 𝝀; in Section 3.3, we detail how to recursively optimise the
network parameters 𝐰 jointly with 𝑎𝑘,𝑖 and 𝝀.

By requiring that the RBF network satisfies the backward-Euler
pdates, the regularisation we introduce in (28) ensures that the net-
ork weights 𝐰 are trained to discount noisy training instances that
o not follow the sequential behaviour given by the backward-Euler
pdate equations. Thus, the proposed network relatively shows more
obustness to noisy observations in sequence data which affect the
hoice of RBF centres and widths, causing the vanilla RBF network to
nderperform. Consequently, while fitting the data to the differential
quation given by (27), we are implicitly only learning a regularised
ersion of the parameters 𝑤𝑗 , i.e., regularised by the equality constraint
n (28).

.2. Higher-order derivatives of the RBF

The fundamental idea in our proposed approach is fitting the data to
he backward-Euler-regularised RBF network given by the differential
quation in (27), rather than training the RBF network to approximate

directly as a function of 𝐱 as in (2). The form of (27) thus requires
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us to obtain the expressions for the first and higher-order derivatives
of the radial basis function network.

Deriving from (2), the first-order partial derivative of 𝑓 is given by:

𝜕𝑓 (𝐱)
𝜕𝑥𝑖

=
𝑐
∑

𝑗=1
𝑤𝑗

𝜕𝜙𝑗 (𝐱)
𝜕𝑥𝑖

, (29)

where
𝜕𝜙𝑗 (𝐱)
𝜕𝑥𝑖

= −2𝛽𝑗 (𝑥𝑖 − 𝜇𝑗,𝑖)𝑒
−𝛽𝑗‖𝐱−𝝁𝑗‖2 (30)

Accordingly, the second-order partial derivative of 𝑓 (ignoring
mixed derivatives) is given by:

𝜕2𝑓 (𝐱)
𝜕𝑥2𝑖

=
𝑐
∑

𝑗=1
𝑤𝑗

𝜕2𝜙𝑗 (𝐱)

𝜕𝑥2𝑖
, (31)

here
𝜕2𝜙𝑗 (𝐱)

𝜕𝑥2𝑖
= 2𝛽𝑗

[

2𝛽𝑗 (𝑥𝑖 − 𝜇𝑗,𝑖)2 − 1
]

𝑒−𝛽𝑗‖𝐱−𝝁𝑗‖
2
. (32)

This generalises to a higher-order 𝜈 as follows:

𝜕(𝜈)𝑧(𝐱)
𝜕𝑥𝜈𝑖

=
𝑐
∑

𝑗=1
𝑤𝑗

𝜕(𝜈)𝜙𝑗 (𝐱)
𝜕𝑥𝜈𝑖

, (33)

imilar results have been obtained for the Gaussian RBF (Mai-Duy &
ran-Cong, 2003) and the multiquadric radial basis functions (Mai-Duy
Tran-Cong, 2001).
Due to the form of the Gaussian radial basis function in (3), 𝜙𝑗 (𝐱)

s infinitely differentiable. In the following, we derive the formula for
inding the 𝑘th derivative of 𝜙𝑗 (𝐱) given by (3). First, we consider the
eneralised Leibniz rule for finding the 𝑘th derivative of the product 𝑢𝑣

given as:

(𝑢𝑣)(𝑘) =
𝑘
∑

𝑚=0

(

𝑘
𝑚

)

𝑢(𝑘−𝑚)𝑣(𝑚). (34)

If we start from the first-order partial derivative of 𝜙𝑗 (𝐱) in (30), we
can express this as a product 𝑢𝑣, where:

𝑢 = −2𝛽𝑗 (𝑥𝑖 − 𝜇𝑗,𝑖), (35)

and

𝑣 = 𝑒−𝛽𝑗‖𝐱−𝝁𝑗‖
2
= 𝜙𝑗 (𝐱). (36)

From Leibniz rule, we can then derive the 𝑘th order derivative of
the RBF as:

𝜕(𝑘)𝜙𝑗 (𝐱)
𝜕𝑥𝑘𝑖

=

⎧

⎪

⎨

⎪

⎩

𝜙𝑗 (𝐱), 𝑘 = 0
∑𝑘−1

𝑚=0
(𝑘−1

𝑚

)

𝑢(𝑘−𝑚−1)
𝜕(𝑚)𝜙𝑗 (𝐱)

𝜕𝑥(𝑚)𝑖
, 𝑘 ≥ 1,

(37)

hich computes the 𝑘th partial derivative recursively.
If we now substitute the radial basis function network 𝑓 and its

igher-order partial derivatives into the PDE in (26), we obtain:

= 𝝀⊤𝐬𝜋−𝑙+1∶𝜋 +
𝑐
∑

𝑗=1
𝑤𝑗

𝜈
∑

𝑘=1

𝑑
∑

𝑖=1
𝑎𝑘,𝑖

𝜕(𝑘)𝜙𝑗 (𝐱)
𝜕𝑥𝑘𝑖

, (38)

hose network architecture is given in Fig. 2.
In matrix form, (38) is equivalent to:

= 𝝀⊤𝐬𝜋−𝑙+1∶𝜋 + 𝐰⊤𝜣(𝐱)𝐚, (39)

here,

= [𝑤1,… , 𝑤𝑐 ]⊤, (40)

= [𝑎 ,… , 𝑎 ,… , 𝑎 ,… , 𝑎 ]⊤, (41)
5

1,1 1,𝑑 𝜈,1 𝜈,𝑑
nd

(𝐱) =

⎡

⎢

⎢

⎢

⎢

⎣

𝜕(1)𝜙1(𝐱)
𝜕𝑥1

⋯ 𝜕(1)𝜙1(𝐱)
𝜕𝑥𝑑

⋯ 𝜕(𝜈)𝜙1(𝐱)
𝜕𝑥𝜈1

⋯ 𝜕(𝜈)𝜙1(𝐱)
𝜕𝑥𝜈𝑑

⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮
𝜕(1)𝜙𝑐 (𝐱)

𝜕𝑥1
⋯ 𝜕(1)𝜙𝑐 (𝐱)

𝜕𝑥𝑑
⋯ 𝜕(𝜈)𝜙𝑐 (𝐱)

𝜕𝑥𝜈1
⋯ 𝜕(𝜈)𝜙𝑐 (𝐱)

𝜕𝑥𝜈𝑑

⎤

⎥

⎥

⎥

⎥

⎦

(42)

3.3. Training RBF-DiffNet

Using (39), we may then optimise 𝐰,𝝀 and 𝐚 jointly on the training
data for arbitrary objective functions. For example, for the mean-
squared error 𝜖 given as:

𝜖 = 1
𝑁

𝑁
∑

𝑛=1
(𝑦𝑛 − 𝑓𝑛)2 =

1
𝑁

𝑁
∑

𝑛=1

(

𝑦𝑛 − 𝝀⊤𝐬𝜋−𝑙+1∶𝜋,𝑛 − 𝐰⊤𝜣(𝐱𝑛)𝐚
)2, (43)

here 𝐬𝜋−𝑙+1∶𝜋,𝑛 is the 𝑙 lagged values of the series for the 𝑛th training
instance, we can optimise the network weights 𝐰,𝝀 and 𝐚 to an arbi-
trary accuracy with a given choice of an optimiser such as stochastic
gradient descent (SGD). Here, we denote 𝑓𝑛 as 𝑓𝑛 = 𝑓 (𝐱𝑛).

However, when we consider the matrix form of the differential RBF
network 𝑓 in (39), we observe that given any two out of the three
sets of network parameters: 𝐰, 𝐚 and 𝝀, the third set of parameters has
a closed form solution from (43), since the system of all 𝑛 training
instances becomes linear. For example, given 𝝀 and 𝐚, we may obtain
a closed-form solution for 𝐰 as follows:

𝐰̄ = (𝜳⊤
𝐰𝜳𝐰)−1𝜳⊤

𝐰𝜂𝐰, (44)

where 𝜳𝐰 is an 𝑁-by-𝑐 matrix whose rows are given by 𝜣(𝐱𝑛)𝐚, and 𝜂𝐰
s an 𝑁-dimensional vector whose components are 𝑦𝑛 − 𝝀⊤𝐬𝜋−𝑙+1∶𝜋,𝑛.

Similarly, given 𝝀 and 𝐰, we may obtain a closed-form solution for
as follows:

̄ = (𝜳⊤
𝐚𝜳 𝐚)−1𝜳⊤

𝐚 𝜂𝐚, (45)

here 𝜳 𝐚 is an 𝑁-by-𝜈𝑑 matrix whose rows are given by 𝜣(𝐱𝑛)⊤𝐰, and
𝐰 is an 𝑁-dimensional vector whose components are 𝑦𝑛 −𝝀⊤𝐬𝜋−𝑙+1∶𝜋,𝑛.

In the same way, given 𝐚 and 𝐰, we may obtain a closed-form
olution for 𝝀 as follows:
̄ = (𝜳⊤

𝝀𝜳𝝀)−1𝜳⊤
𝝀 𝜂𝝀, (46)

here 𝜳𝝀 is an 𝑁-by-𝑙 matrix whose rows are given by 𝐬𝜋−𝑙+1∶𝜋,𝑛, and
𝝀 is an 𝑁-dimensional vector whose components are 𝑦𝑛 − 𝐰⊤𝜣(𝐱𝑛)𝐚.

This leads us to propose a relatively inexpensive recursive approach
o training the RBF-DiffNet which is given in Algorithm 1:

The choices of weight initialisations for the proposed network are
ustified as follows:

1. By setting each component of 𝝀 as 1
𝑙 , equal weights are assigned

to the last 𝑙 values of the sequence.
2. By setting 𝑎𝑖,𝑘 as 𝑎𝑖,𝑘 = 0.1𝑘

𝑘! , the PDE weights are defined as Tay-
lor expansion coefficients with 0.1 being the interval between
any two realisations of the series.

3. By setting 𝐰 as 𝐰 = [𝑤̃∗
1 ,… , 𝑤̃∗

𝑐 ], we utilise the weights obtained
from the unnormalised RBF network.

The main computational load in the proposed algorithm is in lines
14 to 16, which involve obtaining closed-form solutions via the pseudo-
inverse; the matrix sizes used in the inversions are 𝑐, 𝑙, and 𝜈𝑑 re-
spectively, where 𝑐 is the number of RBF centres, 𝑙 is the number
of lags or lookback window, 𝜈 is the order of the PDE, and 𝑑 is the
dimensionality of the input space (i.e., 𝑑 equals the number of lags 𝑙
plus the number of any exogenous inputs). Since 𝑙 ≤ 𝑑, and 𝜈 ≥ 1 for the
Euler update, then 𝑙 ≤ 𝜈𝑑, and hence the computational performance
of RBF-DiffNet depends mainly on the relative magnitudes of 𝜈𝑑 and
𝑐. Since matrix inversion for the pseudo-inverse solution is cubic in the
number of input dimensions, the order of complexity of RBF-DiffNet, as
shown in Algorithm 1, is 𝑂(𝐼𝑚𝑎𝑥(max(𝑐, 𝜈𝑑)3). In comparison, the order
of complexity of the RBF network is 𝑂((𝑐 + 1)3). Thus, if 𝑐 ≫ 𝜈𝑑, then
RBF-DiffNet achieves similar computational performance as the vanilla

RBF network.
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Fig. 2. Proposed differential RBF network architecture.
Algorithm 1 RBF-DiffNet training
1: procedure RBF-DiffNet(𝑋𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛, 𝑐, 𝜈, 𝐼𝑚𝑎𝑥)
2: Obtain RBF centres by K-Means clustering for 𝑐 clusters.
3: Obtain RBF widths according to one of (12) to (15).
4: Initialise the entries of a as 𝑎𝑖,𝑘 = 0.1𝑘

𝑘! , where 𝑖, 𝑘 index the 𝑘th-
order partial derivative of the RBF with respect to the component
𝑥𝑖 of the input x𝑛, and 𝑘 ∈ {1, ..., 𝜈}.

5: Initialise each component of 𝜆 to 1
𝑙 , where 𝑙 denotes the number

of lags of the sequence being considered as inputs to the model.
6: Initialise w as w = [𝑤̃∗

1 , ..., 𝑤̃
∗
𝑐 ], where 𝑤̃∗

1 , ..., 𝑤̃
∗
𝑐 are obtained

from (10) with no regularisation, given that w̃∗ = [𝑤̃∗
0 , 𝑤̃

∗
1 , ..., 𝑤̃

∗
𝑐 ]

⊤.
7: while Number of iterations < 𝐼𝑚𝑎𝑥 do
8: Evaluate the loss function
9: if Loss function is the minimum found so far then

10: a† ∶= a
11: w† ∶= w
12: 𝜆† ∶= 𝜆
13: end if
14: Set a, 𝜆 to previous iteration’s values, and obtain a

closed-form solution for w from (44) on {𝑋𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛}.
15: Set a,w to previous iteration’s values, and obtain a

closed-form solution for 𝜆 from (46) on {𝑋𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛}.
16: Set w, 𝜆 to previous iteration’s values, and obtain a

closed-form solution for a from (45) on {𝑋𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛}.
17: Update newly computed a, 𝜆,w for current iteration.
18: end while
19: Return optimal network parameters: a†,w†, 𝜆†.
20: end procedure

4. Experimental work

In this section, we validate the proposed differential RBF network
on the logistic map chaotic timeseries (Farmer & Sidorowich, 1987;
6

Fig. 3. Logistic map chaotic timeseries.

Maathuis et al., 2017), as well as on 30 different timeseries from the
M5 competition (Makridakis, 2020); the reasons for the choice of these
datasets are given in Sections 4.1 and 4.2 respectively.

4.1. Logistic map

We consider the logistic map given as:

𝑠𝜋+1 = 𝑟𝑠𝜋 [1 − 𝑠𝜋 ], (47)

and we generate 1000 observations in the forward pass as our timeseries
using an initial value of 0.1, and 𝑟 ∈ {3.8, 3.9, 4.0}; the first 200
observations for 𝑟 = 4.0 are shown in Fig. 3: We split the timeseries
into training and testing sets, with the last 100 observations as the
test set. We have selected the logistic map because, although it is
an archetypal chaotic series, it arises from simple polynomial map-
pings that can be easily modelled by the RBF network. Furthermore,
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Fig. 4. MAE results on logistic map: 𝑟 = 3.8. RBF-DiffNet is the proposed differential
RBF network; u-RBFN and n-RBFN are the unnormalised and normalised RBF networks
respectively. 𝜈 is the noise variance.

Table 1
Model training times on three generated logistic map timeseries: 𝑟 = 3.8, 3.9, 4.0 given
in the form: mean ± s.d. RBF-DiffNet is the proposed differential RBF network; u-RBFN
and n-RBFN are the unnormalised and normalised RBF networks respectively.

Lags 𝑙 RBF-DiffNet n-RBFN u-RBFN

𝑙 = 1 0.52 ± 0.07 0.22 ± 0.02 0.22 ± 0.02
𝑙 = 2 0.65 ± 0.05 0.26 ± 0.02 0.26 ± 0.01
𝑙 = 4 0.84 ± 0.05 0.326 ± 0.02 0.26 ± 0.02
𝑙 = 8 2.15 ± 0.20 0.37 ± 0.01 0.37 ± 0.02
𝑙 = 16 5.78 ± 0.17 0.61 ± 0.03 0.62 ± 0.04

to simulate observational noise, we add some Gaussian noise with
variance 𝜔 ∈ {0, 0.02, 0.04, 0.08, 0.12} to the timeseries (whose original
chaotic behaviour is not due to noise) in order to demonstrate the
noise susceptibility of the RBF network. We have selected 𝜔 so that
it does not exceed the variance of the original timeseries which is 0.12,
in order not to corrupt the information contained in the series. We
perform mean-normalisation, and then reshape the training data into
input–output pairs using a lags of 𝑙 ∈ {1, 2, 4, 8, 16} with which we
train the unnormalised and normalised RBF networks and the proposed
differential RBF network. Although 𝑙 = 1 suffices for the logistic
map because it depends only its previous input, as shown in (47), we
experiment with exponentially increasing 𝑙 in order to demonstrate the
replication of noisy observations as inputs to the RBF network. The
number of RBF centres used is 𝑐 = max(5, 2𝑙), which is what showed
the best performance after experimenting with different configurations.
On the test set, we perform one-step prediction and report the mean
absolute error (MAE). We defer multi-step prediction to Section 4.2.

For all the RBF networks (i.e., unnormalised, normalised and dif-
ferential variants), we determine the exemplars 𝝁𝑗 via K-Means clus-
tering while the RBF parameters 𝛽𝑗 are defined according to (13). We
minimise the least-squares error with lasso regularisation, with the
regularisation coefficient determined via cross-validation. Furthermore,
the order 𝜈 of the PDE in the differential RBF network is set empirically
to 𝜈 = 3 based on cross-validation results. We subsequently optimise
the network weights according to Algorithm 1 using 𝐼𝑚𝑎𝑥 = 100. All
the RBF networks (including RBF-DiffNet) are coded in Python using
the scikit-learn linear models package to fit the networks’ final linear
layer.

The MAE results from these experiments are given in Figs. 4 to 6,
and the computational performance given in Table 1.

The logistic map experiments are run on a 8GB-RAM Intel Core i5-
1035G1 CPU @1.00 GHz 1.19 GHz. All the RBF networks (including
RBF-DiffNet) are coded in Python using the scikit-learn linear models
package to fit the networks’ final linear layer.
7

Fig. 5. MAE results on logistic map: 𝑟 = 3.9. RBF-DiffNet is the proposed differential
RBF network; u-RBFN and n-RBFN are the unnormalised and normalised RBF networks
respectively. 𝜈 is the noise variance.

Fig. 6. MAE results on logistic map: 𝑟 = 4.0. RBF-DiffNet is the proposed differential
RBF network; u-RBFN and n-RBFN are the unnormalised and normalised RBF networks
respectively. 𝜈 is the noise variance.

4.2. M5 dataset

The M5 competition is the latest in a series of M-forecasting compe-
titions organised by the University of Nicosia that has drawn the inter-
est of top forecasting practitioners including Google (Fry & Brundage,
2019) and Uber (Smyl, 2020). The M5 competition comprises 42840
individual timeseries data made available by Walmart. This dataset
consists of unit sales of products across the United States at different
levels of aggregation. This dataset has been chosen because, like many
real-world datasets, it exhibits a non-deterministic (noisy) behaviour.
Furthermore, by not including exogenous inputs such as prices that can
affect product sales, we impose further deterministic noise (Abu-Mostafa
et al., 2012) on the series. Thus, the dataset is able to sufficiently
illustrate the susceptibility of the baseline RBF network to noisy inputs
in sequential data.

Due to computational constraints, we work at the level 8 aggrega-
tion that consists of 30 different timeseries data of unit sales of products
aggregated for each of 10 stores (across three US states) and 3 product
categories (i.e., foods, household and hobbies). Each of the 30 different
timeseries has 1941 daily observations (spanning the period between
29 January 2011 and 19 June 2016), with the last 28 days set for
validation.

Different benchmark algorithms (categorised under statistical, ma-
chine learning and combinations of both) have been provided by the
M5 competition organisers, and in this section, we limit our comparison
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to one statistical benchmark: autoregressive integrated moving average
(ARIMA), and one machine learning benchmark: the multi-layer per-
ceptron (MLP). The benchmark MLP architecture specified in the M5
competition is given as follows (Makridakis, 2020):

1. Number of input layer nodes = 14, corresponding to the last 14
days of sales data

2. Number of hidden layer nodes = 28,
3. Number of output nodes = 1
4. Hidden layer activation function: logistic; output layer activation

function: linear,
5. Number of iterations = 500,
6. Ensemble size = 10, i.e, 10 different MLPs are trained and

their predictions aggregated in terms of the median operator to
account for poor weight initialisations.

sing the above network parameters, we also implement an ensemble
f 10 recurrent networks with LSTM blocks which use tanh activation
or further comparison.

To make the RBF networks comparable to the MLP architecture,
e set 𝑑 (the RBF network input size) to 14 and 𝑐 (the number of
BF nodes) to 28. The RBF network centres are again obtained via K-
eans clustering, and the RBF widths are set according to (14), using
= 10; the order 𝜈 of the PDE in the differential RBF network is set to
mpirically to 𝜈 = 1, based on cross-validation results.

The MLP and LSTM networks are implemented using Keras and opti-
ised with an Adam optimiser, while the ARIMA model is implemented
sing the statsmodels package in Python. Similar to the logistic map
xperiments, all the RBF networks (including RBF-DiffNet) are coded in
ython using the scikit-learn linear models package to fit the networks’
inal linear layer.

For each timeseries, we set the last 28 observations as the test set,
nd the remaining as the training set. Since preprocessing for timeseries
orecasting typically involves stationarising the series to make the series
asier to predict (Gheyas & Smith, 2009; Pal & Prakash, 2017), we first
erform a stationarity test on the training set using the augmented
ickey–Fuller test (Cheung & Lai, 1995); if the timeseries does not
xhibit stationarity according to the test’s null hypothesis, we proceed
o difference the timeseries incrementally until it shows stationarity, up
o a differencing order of 10. We then perform mean-normalisation and
hen reshape the data into input–output pairs using a lag of 𝑙 = 14.

On the test set, we perform reverse-differencing and normalisation
perations to recover the original series and range, and we perform
ulti-step prediction over the forecast horizon of 28 days. We report

he root mean squared scaled error (RMSSE), which is the error metric
sed in the M5 competition. The RMSSE is defined as:

MSSE =
(𝑛𝑡𝑟𝑎𝑖𝑛 − 1)

𝑛𝑡𝑒𝑠𝑡

∑𝑛𝑡𝑟𝑎𝑖𝑛+𝑛𝑡𝑒𝑠𝑡
𝜋=𝑛𝑡𝑟𝑎𝑖𝑛+1

(𝑠𝜋 − 𝑠̂𝜋 )2
∑𝑛𝑡𝑟𝑎𝑖𝑛

𝜋=2 (𝑠𝜋 − 𝑠𝜋−1)2
, (48)

where 𝑠̂𝜋 is a model’s estimate of the timeseries at time 𝑡𝜋 , 𝑛𝑡𝑟𝑎𝑖𝑛 = 1913
is the length of training series, and 𝑛𝑡𝑒𝑠𝑡 = 28 is the length of the forecast
horizon.

We do not investigate cross-learning, where information from other
timeseries are used in training a single global model to predict each
timeseries (Makridakis et al., 2020); this is out of the scope of this
paper.

Due to the large ensemble of neural networks involved here, the
M5 experiments are run on a 32GB-RAM Tesla P100-PCIE 128GB
GPU processor with 8 Intel E5-2650 CPU cores @2.2 GHz. The MLP
and LSTM networks are implemented using Keras and optimised with
an Adam optimiser, while the ARIMA model is implemented using
the statsmodels package in Python. All the RBF networks (including
RBF-DiffNet) are coded in Python using the scikit-learn linear models
8

package to fit the networks’ final linear layer. R
Table 2
Root mean squared scaled error (RMSSE) results on the M5 dataset (level 8 aggre-
gation). RBF-DiffNet is the proposed differential RBF network; u-RBFN and n-RBFN
are the unnormalised and normalised RBF networks respectively. Best values across all
algorithms are in boldface. Best values across the three RBF networks (RBF-DiffNet,
u-RBFN, n-RBFN) are in italics.

Series ID RBF-DiffNet u-RBFN n-RBFN ARIMA MLP LSTM

1 0.558 𝟎.𝟑𝟖𝟗 0.393 0.513 0.433 0.46
2 𝟎.𝟔𝟒𝟏 0.717 0.668 0.686 0.76 0.749
3 𝟎.𝟒𝟔𝟑 1.02 0.783 0.512 0.467 0.489
4 0.781 1.49 1.38 0.867 0.801 𝟎.𝟔𝟖𝟑
5 0.725 1.21 1.06 0.884 0.833 𝟎.𝟓𝟖𝟏
6 𝟎.𝟓𝟗𝟑 0.94 0.657 0.749 0.664 0.598
7 0.439 0.569 0.581 0.492 𝟎.𝟒𝟑𝟖 0.653
8 0.592 1.7 1.05 0.582 𝟎.𝟓𝟓𝟐 0.554
9 𝟎.𝟓𝟏𝟏 2.3 2.23 0.556 0.528 0.616
10 𝟎.𝟔𝟎𝟓 0.987 1.06 0.691 0.743 0.663
11 0.957 1.34 1.15 0.978 0.935 𝟎.𝟗𝟐𝟖
12 𝟎.𝟖𝟓𝟔 2.67 2.58 0.875 1.12 1.16
13 0.794 1.03 0.887 0.862 𝟎.𝟔𝟗𝟕 1
14 𝟎.𝟕𝟎𝟗 1.26 0.798 0.923 0.759 0.725
15 0.848 1.08 1.08 𝟎.𝟖𝟑 0.837 1.03
16 0.659 0.641 0.658 0.55 𝟎.𝟓𝟐𝟏 0.571
17 0.649 0.841 0.782 0.667 0.686 𝟎.𝟔𝟑𝟕
18 0.546 1.38 0.991 𝟎.𝟓𝟑𝟔 0.578 0.659
19 1.57 1.08 𝟏.𝟎𝟐 1.11 1.38 1.12
20 𝟎.𝟕𝟗𝟓 1.91 1.27 0.916 0.877 0.817
21 𝟎.𝟕𝟒𝟐 0.91 0.913 0.809 0.75 1.33
22 𝟎.𝟓𝟗𝟐 0.781 0.717 0.753 0.704 0.634
23 0.499 0.606 0.514 0.522 0.648 𝟎.𝟒𝟖𝟓
24 𝟎.𝟓𝟗𝟑 1.09 0.958 0.687 0.78 0.788
25 1.49 1.75 1.59 1.87 1.46 𝟏.𝟒𝟒
26 𝟎.𝟕𝟐𝟔 1.21 1.42 0.741 0.731 0.73
27 1.06 2.22 2.35 1.12 0.988 𝟎.𝟗𝟕𝟓
28 0.751 1.77 1.36 1.03 𝟎.𝟕𝟎𝟓 0.761
29 0.838 0.803 0.807 0.821 𝟎.𝟕𝟕𝟖 0.81
30 0.731 2.04 1.51 0.697 0.67 𝟎.𝟔𝟑𝟗
Mean 𝟎.𝟕𝟒𝟒 1.26 1.11 0.794 0.76 0.776
Median 0.717 1.09 1.01 0.751 0.737 𝟎.𝟕𝟎𝟒

5. Results and discussion

In this section, we present the results of the experiments on the
logistic map and the 30 M5 timeseries data. We discuss the performance
of the proposed RBF-DiffNet in comparison with the existing methods
tested on these experiments.

5.1. Logistic map data

In Figs. 7 to 9, we show the original timeseries (ground truth)
as well as the one-step predictions by the different algorithms for
visual comparisons; due to space limitations, we show this for only
three cases: at noise level 𝜈 = 0.8 for lag values 𝑙 = 1, 4, 16. Other
xperimental settings yield similar graphs.

From the MAE results in Figs. 4 to 6, there is an increase in the
AE values for the unnormalised RBF network (u-RBFN) as the lag
increases. This is especially observed for high noise levels 𝜔, since

he noisy observations gets replicated many times in the reshaped
ata that is input to the RBF network, illustrating the susceptibility
f the unnormalised RBF network to overfitting on noisy observations.
he normalised RBF network (n-RBFN), on the other hand, shows
obustness in its predictions across different noise levels at low lag
alues, with the MAE values remaining relatively constant. However,
s the lag 𝑙 increases, its performance also deteriorates for each of
he noise levels. This performance degradation is mainly due to the
ide effects of normalisation (Shorten & Murray-Smith, 1994, 1996)
hereby the maxima of the RBF shifts when the RBFs have unequally

paced centres or different widths. As Shorten (Shorten & Murray-
mith, 1994) notes, this side effect becomes more pronounced with
ncrease in the input dimension. This causes points far away from the

BF centre to have high functional values, and thus, rather than a few
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Fig. 7. Model predictions on logistic map: 𝑟 = 4.0, 𝑙 = 1, 𝜈 = 0.8. RBF-DiffNet is the
proposed differential RBF network; u-RBFN and n-RBFN are the unnormalised and
normalised RBF networks respectively. 𝑙 is the number of lags; 𝜈 is the noise variance.

Fig. 8. Model predictions on logistic map: 𝑟 = 4.0, 𝑙 = 4, 𝜈 = 0.8. RBF-DiffNet is the
proposed differential RBF network; u-RBFN and n-RBFN are the unnormalised and
normalised RBF networks respectively. 𝑙 is the number of lags; 𝜈 is the noise variance.

Fig. 9. Model predictions on logistic map: 𝑟 = 4.0, 𝑙 = 16, 𝜈 = 0.8. RBF-DiffNet is
the proposed differential RBF network; u-RBFN and n-RBFN are the unnormalised and
normalised RBF networks respectively. 𝑙 is the number of lags; 𝜈 is the noise variance.

RBFs getting activated, many more RBFs tend to contribute uniformly
to the output for any given input. The differential RBF network (RBF-
DiffNet), however, shows robustness across different noise variance 𝜔

and different values of 𝑙, significantly outperforming the benchmark
9

Table 3
P-values from Wilcoxon signed rank test for differences in median between proposed
differential RBF network (RBF-DiffNet) and other algorithms. u-RBFN and n-RBFN are
the unnormalised and normalised RBF networks respectively.

Algorithm 𝑝-value

u-RBFN 5.558 × 10−6

n-RBFN 1.654 × 10−5

ARIMA 5.886 × 10−4

MLP 2.000 × 10−1

LSTM 1.798 × 10−1

Table 4
Model training time on the M5 datasets (level 8 aggregation) given in the form: mean
± s.d. obtained on a 32GB-RAM Tesla P100-PCIE 128GB GPU processor with 8 Intel
E5-2650 CPU cores @2.2 GHz. RBF-DiffNet is the proposed differential RBF network;
u-RBFN and n-RBFN are the unnormalised and normalised RBF networks respectively.
The MLP and LSTM networks are implemented using Keras and optimised with an
Adam optimiser, while the ARIMA model is implemented using the statsmodels package
in Python. Similar to the logistic map experiments. All the RBF networks (including
RBF-DiffNet) are coded in Python using the scikit-learn linear models package to fit
the networks’ final linear layer.

Algorithm Training time (seconds)

RBF-DiffNet 4.8 ± 0.13
u-RBFN 1.27 ± 0.19
n-RBFN 1.20 ± 0.16
ARIMA 33.34 ± 10.74
MLP 307.23 ± 4.30
LSTM 633.61 ± 6.84

RBF networks. In particular, for low to medium noise levels, RBF-
DiffNet is able to utilise more information in the lagged values of the
series as 𝑙 increases to improve the prediction accuracy, without any
noise enhancement or side effects of normalisation, unlike for u-RBFN
and n-RBFN. While the MAE performance can be seen to degrade as
the noise variance increases, this is to be expected as the information
in the timeseries increasingly gets corrupted.

5.1.1. Influence of lags 𝑙 on RBF-DiffNet performance
However, RBF-DiffNet noticeably underperforms for 𝑙 = 1 across all

noise levels as seen in Figs. 4 to 6. At 𝑙 = 2, it achieves comparable
performance to the baseline RBF networks. The accuracy gains with
RBF-DiffNet only starts to show from 𝑙 ≥ 4. This phenomenon is also
observed in Figs. 7 to 9, where the RBF-DiffNet has poor predictive
performance for 𝑙 = 1 but achieves superior performance in Figs. 8 and
9. The reason for this behaviour is in the nature of the network output
as summarised in (39):

𝑓 = 𝝀⊤𝐬𝜋−𝑙+1∶𝜋 + 𝐰⊤𝜣(𝐱)𝐚.

For small values of the lag 𝑙, e.g., 𝑙 <= 2, the first term of the equation
𝝀⊤𝐬𝜋−𝑙+1∶𝜋 comprises only the last couple of realisations of the series; if
the series is noisy or chaotic, then the weighted sum of the last one or
two realisations is hardly predictive on unseen data, but has a negative
impact on the performance of the network in terms of overfitting on
noise. As 𝑙 increases however, the first term 𝝀⊤𝐬𝜋−𝑙+1∶𝜋 tends towards
the expected value of the series, and with that, the network learns
the trend in the series, ultimately yielding an improved predictive
performance. In contrast, in the case of the baseline RBF networks,
there is no additive term for the weighted sum of the last 𝑙 realisations,
as they are all mapped to prototypes in the hidden layer; hence the
baseline RBF networks tend to perform better for low values of 𝑙.
However, for high values of 𝑙, any noisy observations get replicated
many times in the reshaped data, causing the baseline RBF network
to overfit on noise, and underperform compared to the proposed RBF-
DiffNet. For this reason, the RBF-DiffNet is most suited to timeseries
forecasting tasks for which the series to be predicted is influenced by
more than one or two previous realisations of the series: an example
of this is demand forecasting of grocery items, where future sales may
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Fig. 10. Model predictions on M5 (series id 9). RBF-DiffNet is the proposed differential
RBF network; u-RBFN and n-RBFN are the unnormalised and normalised RBF networks
respectively.

be autocorrelated with historical sales up to 𝑙 = 14 days prior; other
examples include weather forecasting, household energy consumption
forecasting, or sentence completion in natural language processing.

5.1.2. Computational considerations
In terms of computational performance as given in Table 1, u-RBFN

and n-RNFN having closed-form solutions given in (10) outperform
the proposed RBF-DiffNet which requires a recursive optimisation rou-
tine given in Algorithm 1. In particular, the training time increases
more profoundly with the number of lags 𝑙 (this is equivalently an
increase in the dimensionality 𝑑) for RBF-DiffNet than for n-RBFN and
u-RBFN, because RBF-DiffNet has computational complexity of order
𝑂(𝐼𝑚𝑎𝑥(max(𝑐, 𝜈𝑑)3), while n-RBFN has 𝑂((𝑐 + 1)3); the computational
performance is detailed in Section 3.3. For a large number of RBF
nodes, the solution given by (10) may be computationally intractable
and u-RBFN and n-RBFN may require iterative optimisation techniques
such as SGD. Since u-RBFN and n-RBFN each has 𝑐 + 1 optimising
variables as compared to 𝑐+𝑑𝜈+ 𝑙+1 for the differential RBF network,
the existing RBF networks may still have a computational edge over
RBF-DiffNet in an iterative optimisation technique.

5.2. M5 datasets

In Figs. 10 and 11, we show the original timeseries (ground truth)
as well as the 28-steps predictions by the different algorithms for visual
comparisons; due to space limitations, we show this for only series id
9 and 30. Other series show similar graphs.

Although the different models are able to maintain relatively con-
stant prediction accuracy across the forecast horizon due to the season-
alities in the timeseries, the results in Table 2 show that the differential
RBF network (RBF-DiffNet) achieves superior predictive accuracy over
the unnormalised RBF network (u-RBFN) and normalised RBF network
(n-RBFN). Over the 30 different timeseries, RBF-DiffNet achieves a 41%
reduction over u-RBFN and a 33% reduction over n-RBFN in terms
of the mean RMSSE. This performance improvement is shown to be
statistically significant at the 0.95 confidence level, as seen from the
p-values in Table 3.

The RBF-DiffNet is also shown to yield a 6% reduction over ARIMA
(significant at the 0.95 confidence level), 2% over the MLP (statistically
insignificant), and 4% over the LSTM (statistically insignificant) in
terms of the RMSSE.

The reason for the performance gain of RBF-DiffNet over u-RBFN
and n-RBFN is the relative robustness of RBF-DiffNet to noise as de-
scribed in Section 5.1 due to its backward-Euler regularisation, while
the performance gain of RBF-DiffNet over ARIMA is because the RBF
10
Fig. 11. Model predictions on M5 (series id 30). RBF-DiffNet is the proposed differential
RBF network; u-RBFN and n-RBFN are the unnormalised and normalised RBF networks
respectively.

network generally learns complex non-linear mappings as compared to
the simple linear mapping in the ARIMA model.

Despite their comparable performance, it is worth noting that RBF-
DiffNet uses only one set of weight initialisation as given in Algorithm
1, whereas the LSTM and MLP ensembles respectively use 10 different
weight initialisations and the median operator to mitigate the effects
of poor weight initialisations. The single weight initialisation is pos-
sible in RBF-DiffNet because its network weights have more intuitive
meanings which allow for an informed choice of initialisation in such
a way that multiple random restarts yield only minor performance
improvements. Consequently, for the comparable performance given
in Table 2, RBF-DiffNet requires at least 132 times less computational
time than the LSTM ensemble and 64 times less time than the MLP
ensemble, as shown in Table 4. Moreover, RBF-DiffNet has the added
advantage of being interpretable in terms of the influence of different
input features on the output, since the hidden layer performs a fuzzy
nearest-neighbour association of a given input to the RBF centres.

5.3. Qualitative comparisons of algorithms

Despite the relative superiority of the proposed RBF-DiffNet archi-
tecture in terms of predictive accuracy, there are a few limitations to
its application, most notably, it is only suited to sequence modelling
tasks and does not currently work for general regression tasks, unlike
the baseline RBF network or the multilayer perceptron (MLP). Based
on the results of the two sets of experiments, the relative performance
of the proposed algorithm with respect to the existing algorithms are
summarised in Table 5 across 6 different performance criteria:

6. Conclusion and future work

The radial basis function (RBF) network has good function approxi-
mation properties, fast training time and is easily interpretable in terms
of the influence of different input features on the output. However, it
is especially sensitive to noisy inputs due to the usually unsupervised
step in selecting the RBF centres and widths. This paper extends the
RBF network for use on noisy sequential data. For this purpose, we
have introduced a novel differential RBF network (RBF-DiffNet) whose
hidden layer blocks are higher-order constant-coefficient partial differ-
ential equations in terms of the RBF. RBF-DiffNet exhibits robustness to
noisy perturbations to the input sequence by regularising the network
following backward-Euler updates, assuming the sequence data orig-
inates from an underlying differential equation. Notably, RBF-DiffNet
differs from the neural ordinary differential equation (ODE-Net) in that
RBF-DiffNet parameterises the solution to the underlying differential
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Table 5
RBF-DiffNet is the proposed differential RBF network; u-RBFN and n-RBFN are the unnormalised and normalised RBF networks respectively.

Criterion RBF-DiffNet u-RBFN/n-RBFN LSTM/MLP ARIMA

Accuracy Superior accuracy Poor in the presence of
noise

Superior accuracy Average

Training time Average: requires only
a few more matrix
inversions than the
baseline RBF network)

Low: has a simple
pseudo-inverse solution

High: requires several
epochs to train, as well
as multiple
initialisations

Average: requires
maximising the
likelihood for a given
ARIMA order

Ability to interpret Easy, since hidden
layer maps any test
input to relevant
prototypes in the data

Easy, since hidden
layer maps any test
input to relevant
prototypes in the data

Difficult, due to many
non-linear hidden
layers between input
and output

Easy, due to its
autoregressive setup

Application domain Only sequential
modelling

All regression tasks MLP can be used for all
regression tasks

Only sequential
modelling

Robustness Robust to noise Susceptible to noise Robust to noise Robust to noise

Weight initialisation Easy to initialise,
because weights have
intuitive explanations

Not applicable Different weight
initialisations are
typically required to
give good performance

Not applicable
C

C

C

C

D

F

F

equation with an RBF network and directly evaluates the derivatives
of the network based on the backward-Euler discretisation, while the
ODE-Net parameterises the derivatives of the hidden state of a residual
network with another neural network.

The proposed differential RBF network is experimentally validated
on the logistic map and 30 other real-world and noisy timeseries data
rom the M5 competition (level 8 aggregation). Experimental results
how RBF-DiffNet significantly outperforms the normalised and unnor-
alised RBF networks at different noise levels on the logistic map.
n the M5 dataset, RBF-DiffNet outperforms the normalised and un-
ormalised RBF networks by 33% and 41% respectively; furthermore,
ecause its network weights have intuitive meanings, RBF-DiffNet al-
ows for an informed choice of initialisation for the network weights,
hereby achieving comparable performance to an ensemble of 10 LSTM

networks (built from 10 different weight initialisations) at less than
one-hundredth the LSTM computational time.

Our proposed network therefore enables more accurate predic-
tions—in spite of the presence of observational noise—in sequence
modelling tasks such as timeseries forecasting that leverage the fast
training and function approximation properties of the RBF network,
where model interpretability is desired. Such timeseries forecasting
tasks may include demand forecasting in retail, weather forecasting,
or energy consumption forecasting.

Nevertheless, the current development of RBF-DiffNet is limited
to scalar outputs, and on-going work is investigating its extension to
vector outputs. This involves training the network to approximate back-
ward Euler updates involving vector sequences, rather than training
a different network for each output. The feasibility of the proposed
approach to cross-learning, where information from multiple series is
used in training a single global model, is also an area we are currently
researching. Finally, convergence analysis of the proposed recursive
training algorithm for RBF-DiffNet is being conducted.
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