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Abstract: Autonomous Vehicles (AVs) have the potential to solve many traffic problems, such as
accidents, congestion and pollution. However, there are still challenges to overcome, for instance, AVs
need to accurately perceive their environment to safely navigate in busy urban scenarios. The aim of
this paper is to review recent articles on computer vision techniques that can be used to build an AV
perception system. AV perception systems need to accurately detect non-static objects and predict
their behaviour, as well as to detect static objects and recognise the information they are providing.
This paper, in particular, focuses on the computer vision techniques used to detect pedestrians and
vehicles. There have been many papers and reviews on pedestrians and vehicles detection so far.
However, most of the past papers only reviewed pedestrian or vehicle detection separately. This
review aims to present an overview of the AV systems in general, and then review and investigate
several detection computer vision techniques for pedestrians and vehicles. The review concludes
that both traditional and Deep Learning (DL) techniques have been used for pedestrian and vehicle
detection; however, DL techniques have shown the best results. Although good detection results
have been achieved for pedestrians and vehicles, the current algorithms still struggle to detect small,
occluded, and truncated objects. In addition, there is limited research on how to improve detection
performance in difficult light and weather conditions. Most of the algorithms have been tested
on well-recognised datasets such as Caltech and KITTI; however, these datasets have their own
limitations. Therefore, this paper recommends that future works should be implemented on more
new challenging datasets, such as PIE and BDD100K.

Keywords: autonomous vehicle; vehicle detection; pedestrian detection; generic object detection;
deep learning; traditional technique

1. Introduction

In recent years, many countries around the world have been facing road traffic issues
such as accidents, congestion, and pollution. According to WHO [1], in 2016, the number of
fatalities due to road traffic accidents reached 1.35 million, and approximately 20 to 50 mil-
lion people are injured each year. In addition, it was reported that road traffic accidents
are the primary reason for the deaths of children and young adults. Human error and
imprudence, for instance, fatigue, drink-and-driving, using mobile phones while driving
and speeding, are two of the main factors that contribute to these extreme numbers [2].
In order to decrease road traffic accidents and fatalities, the following measures were
presented: enforce legislation to avoid human error and imprudence, improve vehicle
safety to avoid or mitigate collisions, and post-crash care to increase the chance of saving
lives. The advanced driver assistance system (ADAS) is one of the proposed solutions
to make vehicles safer and to reduce driver error. According to IIHS-HLDI [3], several
car manufacturers have adopted ADAS technology and this has already reduced traffic
accidents. However, the technology has its limitations because it still depends on the
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driver’s actions and road users’ acceptance [3]. Strategies have also been proposed to
reduce congestion and pollution, for example, making road improvements and using other
methods of transportation (e.g., cycling, trains, buses, etc.); however, it is expected that by
2050 the urban population will double [4] and, in the next twelve years, the number of cars
on the road will be approximately two billion [5]. Although some solutions were proposed
to deal with the mentioned traffic issues, they have their limitations and might not be
sufficient. A promising solution that has been highly investigated in the past decades is
AV. However, many challenges need to be solved to make AV available on public roads.
For instance, AV needs to perceive their environments to safely navigate in busy urban
scenarios to prevent collisions. Hence, this work reviews and investigate the computer
vision techniques that can be used to create a perception system for AV. There are two main
approaches to develop a perception system for an AV, pure-vision based or sensor–fusion
based. This paper only reviews a pure-vision based system, where a monocular camera
is mounted on the vehicle’s dashboard. An AV perception system must detect static and
non-static objects, recognise the information provided by the static objects, and predict the
non-static objects’ behaviour. Due to the space limitation, the review will be split into three
parts. This article, which is the first, will review the computer vision techniques that have
been used to detect pedestrians and vehicles. The subsequent review papers will review
the computer vision techniques used to detect and recognise traffic signs and traffic lights,
and the technique used to predict the non-static objects behaviour.

Benenson et al. [6], Nguyen et al. [7], Antonio and Romero [8], Ragesh and Rajesh [9],
Gilroy et al. [10] performed a review on pedestrian detection algorithms. At the time, Benenson
et al. [6] had reviewed the most relevant algorithms for the 10 previous years. They reported
that the main ways to improve detection performance were to acquire improved features, use
the Deformable Part Model (DPM), use decision forest and DL. Although they reviewed DL
techniques, only a limited amount of work was covered, since DL was starting to emerge at
the time. In addition, the authors only focused on the works that were mainly trained and
tested using the Caltech dataset. Nguyen et al. [7] explored the developments and challenges
of pedestrian detection algorithms. They covered the state-of-the-art algorithms between
2010 and 2015, and most of them were based on traditional techniques. They concluded
that pedestrian detection algorithms’ performance are mostly dependent on the extracted
features, which are used to build the descriptor. The authors only focused on the algorithms
that were trained and tested on the Caltech dataset. Antonio and Romero [8] reported mainly
DL algorithms, but only a few of them were reported and they did not provide sufficient
and clear details of the algorithms, such as the methods used, the problem that they were
handling, the datasets used, and the results acquired. Ragesh and Rajesh [9] present an
extensive review, covering the specific requirements for ADAS systems; they covered the
traditional and DL techniques used to detect pedestrians, the different metrics to evaluate
pedestrian detection algorithms, the trends and suggestions for further work. However,
the mentioned DL algorithms were limited, for instance, RNN (LSTM), encoder–decoder
architectures and ensembles were not mentioned. They also only reported algorithms that
were trained and tested on Caltech and CityScape datasets. Gilroy et al. [10] is one of the most
recent pedestrian detection review papers, but their review is only focused on the algorithms
used to handle occluded objects.

Sivaraman and Trivedi [11], Mukhtar et al. [12], Abdulrahim and Salam [13], Antony
and Suchetha [14], Shobha and Deepu [15], Abbas et al. [16] performed reviews on vehicle
detection algorithms; however, they only explored traditional techniques. There are limited
papers that reviews DL vehicle detection algorithms, for example, Manana et al. [17]
reviewed vehicle detection system that uses DL technique; however, they covered systems
that use satellites images and images that are acquired from a mono camera mounted at
the back of the vehicle. Manana et al. [17], Wang et al. [18], Meng et al. [19] only referred
DL techniques that are related to general object detection, and not in the on-road vehicle
detection domain. Kiran et al. [20], Yang and Pun-Cheng [21] mentioned DL techniques
for on-road vehicle detection but only a few works were mentioned. Arnold et al. [22]
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only reviewed 3D vehicle detection techniques. Haris and Glowacz [23] only compared
the performance of the main general object detection algorithms to detect road objects.
Different from the previous works, this paper:

• Reviews not only pedestrian or vehicle detection algorithms, but both of them. Since
many pedestrian and vehicle detection algorithms used a modified version or tech-
niques of generic object detection algorithms, these are also reviewed;

• Briefly presents the most important traditional techniques and focuses more on the
DL techniques for generic objects, pedestrian, and vehicles detection algorithms;

• Reports works from 2012 until 2021 and works that were performed on different
datasets, such as Caltech, KITTI, BDD100K and others;

• Summarises the main information acquired from the reviewed pedestrian and vehi-
cle detection works in tables. The tables report the methods, the problem that the
algorithms are trying to solve, the datasets used and the results acquired.

This paper is structured as follows: Section 2 introduces AV system discussing its
history, benefits, challenges, taxonomy, and system architecture; Section 3 presents the
evolution of the most relevant traditional and DL techniques used to detect generic objects;
Section 4 reviews traditional and DL techniques used to detect vehicles; Section 5 reviews
traditional and DL techniques used to detect pedestrians; and Section 6 discusses the main
findings and if the reviewed algorithms can be used in an AV perception systems.

2. Autonomous Vehicle Systems

The idea of AV started around 1920 and, at the time, they were called “phantom
auto” since the vehicle did not have a driver and it was remote-controlled [24]. AVs
only progressed in the 1980s when Pomerleau [25] created the project “Autonomous Land
Vehicle In a Neural Network”, where they concluded that neural networks could make a big
contribution to autonomous navigation systems. The Defence Advanced Research Projects
Agency (DARPA) has organised the first Grand challenge in 2004, where the objective was
to motivate research and development of AVs. DARPA organised other grand challenge
events in 2005 and 2007 also known as the Urban Challenge [26]. In 2008, Rio Tinto started
the trials of autonomous haul truck fleet to transport ore and waste material in Pilbara.
Nowadays, they have more than 130 autonomous trucks [27]. In 2009 Google secretly
started developing its first AV and they were able to pass the first self-driving test on
1 May 2012 in Las Vegas [28]. The UK government launched a driver-less competition
in 2014 to support and encourage AV [29]. Between 2010 and 2017 major automotive
manufacturers such as General Motor, BMW, Nissan, Volkswagen, Tesla, Volvo, Mercedes-
Benz, Toyota and Audi recognised the potential benefits of AVs; therefore, they adopted
the concept and started their research and development [30,31]. In 2019, the European
Parliament and Council released the Regulation (EU) 2019/2144 for the first time specifying
requirements associated with automated and fully automated vehicles [32]. A big step
for AV was achieved when Waymo (Google self-driving wing became Waymo in 2016)
reported that their “Waymo Driver” reached 20 million self-driven miles and 15 billion
simulated miles [33]. This is an important achievement since these self-driven miles are
considerable training experience that can be used as the dataset for other AI systems.

2.1. Benefits and Challenges

AVs are expected to offer many benefits, for example, to follow the traffic law and to
have a quick response to unexpected scenarios; therefore, a significant reduction in road
traffic accidents is expected since most of them are caused by human error and imprudence.
AV is expected to foresee the behaviour of the vehicle ahead, by doing so, it can reduce
braking, acceleration and consequently reduce fuel consumption, air pollution, traffic
shock-wave propagation and congestion [34]. Yet, it faces many challenges that need to be
tackled; for instance, AV would replace taxis, trucks and buses drivers, as a consequence,
the number of unemployed workers would increase. Table 1 presents several more benefits
and challenges of AV systems.
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Table 1. Benefits and implications of AVs [34,35].

Benefits Challenges

• It is expected that AVs will be able to have vehicle
to vehicle/infrastructure (V2V, V2I) communication,
therefore, it would be able to choose more efficient
routes, reduce or even remove intersection delay and
collisions;

• Make the best use of the road lanes by maintaining
short gaps between vehicles;

• Improve social inclusion since unlicensed, young,
disable and elderly people would be able to use them;

• Improve freight transportation, for example, travel
long distance in less time, offer cheaper freight since
drivers are not required, and trucks would drive
more efficiently;

• Increase economic opportunities;
• Reduce parking space;
• Enhance driver experience by offering comfort dur-

ing the trip by avoiding harsh braking and jerking;
• It is estimated that each year driver spend 6 working

weeks driving(Perry, 2015). AV could enable people
to have free time to relax or work while going to
his/her destination;

• Less CO2 emission;
• AV is expected to reduce traffic accidents hence there

will be less expense with legal works and compensa-
tions, and car insurance price would be lower.

• Currently human drivers are better in recognising
pedestrians, cyclists, and other small traffic objects;

• Human driver is better in recognising different types
of materials, for example, if an object ahead is made of
cardboard, wood, or concrete.

• A reasonable quantity of AVs is required to validate
their benefits;

• Not everyone will be able to afford AV technology;
• Since unlicensed young, elderly, and vulnerable people

will be able to travel, this would increase the number of
trips and could cause more congestions;

• Initially public may have some resistance to accept and
become comfortable with AVs (Yuen et al., 2020);

• Initially driver of normal cars would not predict AVs
behaviour.

• Creating new legislation, regulations, certification, test-
ing standards and insurance for AVs;

• Security against cyber-attacks.

2.2. AV Taxonomy

Society of Automotive Engineers (SAE) created the J3016-2018 guidelines outlining
the taxonomy and definitions for driving automation systems. The document describes
the six levels of driving automation: in Level 0 there is no automation; in Level 1 there is
some automation assistance, such as ADAS features that can control the steering or speed.
However, the driver is responsible to supervise and act when required; Level 2 enables
partial driving automation where the autonomous system can control both steering and
speed; however, the driver is still responsible to observe the environment and support
the autonomous system; Level 3 enables conditional driving automation where the car is
fully automated when certain conditions are met, for instance, good weather and visibility.
When conditions are not favourable, the driver must be in control; Level 4 enables high
automation where the automated system does not require the driver to be in control;
however, the system only works if certain conditions are met; and Level 5 enables full
driving automation where the automated system is always under control and can drive in
any condition [36,37].

2.3. AV System Architecture

AV functional requirement can be compared to an autonomous mobile robot sys-
tem, it requires Perception, Communication, Localisation, Path Planning and Trajectory,
and Motion Control [38,39]. These functional requirements in AV systems are commonly
referred to as sense, plan, and act, or perception, planning and control [40]. The functional
requirements should answer the following question: “Where the AV is ?”, “What is around
the AV ?”, “What will happen next ?” and “What should the AV do ?” [33]. An AV block
diagram proposed by [40] is depicted in Figure 1.
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Figure 1. AV architecture: hardware requirements are sensors, V2X communication device and
actuators. Software modules are perception, planning and control .

2.3.1. Perception

Perception is an important topic, since it may enable the AV to perform reliable,
efficient, and safe driving [31]. It should answer the “Where the AV is?” and “What is
around the AV?” questions. The perception module uses the raw data information from
the environment, acquired by sensors and communication devices, to extract road features,
detect road objects and predict their behaviour. Furthermore, the raw data is used to enable
the AV to execute the Simultaneous Localisation and Mapping (SLAM) task [36]. For a
detailed AV literature review, please refer to [41].

Passive (receive and measure existing energy) and/or active sensors (measures re-
flected signals that have been transmitted by it) can be used to perceive the environ-
ment. Passive sensors generally used are Charge-Coupled Devices (CDD) or Comple-
mentary metal-oxide semiconductors (CMOS) cameras. Active sensors generally used are
Light Detection and Ranging (LIDAR), long/medium/short Radio Detection and Ranging
(RADAR), ultrasound/Sound Navigation System (SONAR), Inertial Measurement Unit
(IMU) and Global Navigation Satellite Systems (GNSS). The advantages and disadvantages
for each sensor are described in Table 2. It is observed that each sensor has their strengths
and weaknesses, for example, radar sensors work well in the dark, it is not affected by
extreme weather and can accurately detect speed, but it has low resolution. An approach
to overcome the deficiency of each sensor is to use sensor fusion technology, where data
from multiple sensors are combined to attain enhanced information. Recently, AV systems
have been implemented using two main methods, a pure vision-based approach where
only cameras and computer vision techniques are used, and a sensor fusion approach
where information from multiple sensors and computer vision techniques are used (e.g.,
cameras, LIDAR, RADAR, etc.) [42]. For example, Tesla uses a pure vision-based technique
to acquire information from the traffic scene, whereas, Waymo uses computer vision and
fusion of advanced sensors. The main advantages of a pure vision-based system are that,
many new cars already have cameras and once an AI computer vision system is created,
it can be easily deployed, cameras are much cheaper than LIDAR, cameras have more
resolution, and LIDAR systems need to pre-map the environment first, whereas, in the
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pure vision-based system everything happens at once. For these reasons the remaining
sections of this paper mainly focus on a pure vision-based system.

Table 2. Advantages and disadvantages of various sensors used in AVs [36].

Advantages Disadvantages

CAMERA

-Low cost.
-Technology is mature.
-High Resolution.
-Possible to generate 3D stereoscopic view.
-Detect RGB information.
-Road markings and signs are design for hu-
man eyes.
-Less chance to be affected by interference from
another vehicles.
-Wider field of view.

-Short range.
-Performance decreases in poor weather and low light
conditions.
-Does not provide accurate distance and position of
objects.
-Usually does not provide depth information. Depth
information can be acquired but make the system
more complex (e.g., stereo camera and disparity esti-
mation algorithms).

THERMAL

-Distinguish between hot and cold targets.
-Can be used during the day and night.

-More expensive than cameras.
-Main target is pedestrian but can get confused with
hot air from the exhaust pipe or other objects that
generates heat.
-Cannot detect heat through glass, for example, detect
drivers inside the car.

INFRARED -Can be used during the day and night-time.
-They are cheaper and small.

-It has short range.

SONAR
-Cheap. -Affected by poor weather conditions.

-Short range, it is commonly used for automated park-
ing and blind spot detection features.

RADAR

-Its performance is not affected in bad weather
or low light conditions.
-Long range (up to 300 m).
-Provide accurate distance, position,
and speed.
-Technology is mature.
-Low cost

-Limited resolution.
-Limited to recognise objects.

LIDAR

-360-degree view of the environment.
-Wide field of view.
-High accuracy.

-Low spatial resolution compared to cameras.
-Performance decreases in poor weather.
-Complex and requires high processing power.
-Expensive.
-Affected by interference and external light.
-Does not provide colour information.
-Acquired information are sparse.

2.3.2. Planning

Once the AV can perceive its environment, the next stage is to plan the AV actions
to achieve its goal. It should answer “What will happen next ?” and “What should the
AV do?” questions. The planning stage is generally subdivided into three tasks, mission,
behaviour, and motion planner [40]. The mission planner is responsible to assign a goal
(e.g., pickup/drop-off task) to the AV and choose the best routine to complete the assigned
goal. The behaviour planner takes into consideration the interaction between other traffic
agents, as well as the available traffic rules to decide what behaviour the AV should perform,
for example, should the AV change lane, stop, turn left or right. Finally, the motion planner
is responsible to generate paths to perform the behaviour determined by the behaviour
planner without collision. The planning stage has been implemented using traditional
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techniques such as the Voronoi diagram, occupancy grid algorithm, or driving corridors
diagram. However, these approaches are not suitable for complex urban scenarios where
the interaction between different traffic agents and the different traffic rules need to be
taken into account. Lately, many researchers have been using machine learning (ML)
such as CNN, Deep Reinforcement Learning, or hybrid systems where ML and traditional
techniques are jointly used [36].

2.3.3. Act

The information acquired from the planning stage, is used by the control stage to
perform the actual movements of the AV, which are performed by sending steering, ac-
celeration, braking, and signalling commands to the actuators. The most appropriate
and advanced way to transfers the commands to actuators are the Drive-by-Wire system.
The control system is responsible to generate and track trajectories, as well as to use con-
trollers to make sure that the desired trajectories are performed. Trajectories generation are
usually achieved either by sensor-based or dynamics based. Sensor-based approaches are
more suitable for robotics while dynamic based are suitable for vehicles. The most used
methods to track trajectories are geometric or model-based. A feedback controller such
as Proportional-Integral-Derivative (PID) is usually used to make sure that the AV is not
deviating from the target trajectories. However, feedback controllers have their limitations,
for example, the system will only respond to errors when they occur [40]. Two degrees
of freedom controller, which is a combination of feedback and feedforward controllers,
have been proposed to overcome the limitations of the feedback controller. In this type of
controller, a model reference of the system is also used, which help the system to predict
the AV motion with more details.

3. General Object Detection

AVs should perceive static objects such as parked cars, road works, road signs, traffic
lights, and so forth; as well as non-static objects such as pedestrians, animals, cyclists,
large/medium/small vehicles, motorcyclists, and so forth. Of all these road objects this
work concentrates on pedestrians and vehicles, since the former are the most vulnerable
ones and the latter are the ones that most interacts with the ego vehicle. Several generic
object detection algorithms have been modified to detect pedestrians or vehicles, and for
this reason, this section review the most relevant generic object detection algorithms and
the next sections review vehicles and pedestrians detection algorithms. If the reader is
already familiar with generic object detection algorithms please go to Sections 4 or 5.

Human eyes can easily extract features of an image/video to perceive and interpret
a scene. This capability has been evolving over millions of years [43]. Computer vision
scientists and engineers have worked on many computer vision tasks to enable computers
to achieve these capabilities [44], for example:

• Image classification (Recognition): extracts features and information from an image to
predict in which category it belongs to.

• Object detection: detects single or multiple objects in an image, surrounds each one of
them with a bounding box and identify their locations.

• Object tracking: predicts the objects motions.
• Object segmentation: once each object is detected in an image, a pixel-wise mask for

each object is created instead of separating them with surrounding boxes.

In the literature, computer vision, object recognition and detection algorithms have
been classified as Traditional or Deep Learning (DL) techniques [45].

3.1. Traditional Techniques

The most known traditional techniques for feature extraction are Scale Invariant
Feature Transform (SIFT) [46], Viola-Jones rectangles, Haar-Like-Wavelets, Histogram
of Oriented Gradient (HOG) [47], Edge-Orientation-Histograms (EOH), Optical Flow
(motion), Implicit Shape Model (ISM), SHAPELET, Self-similarity Shannels (SSC), Speeded



Sensors 2021, 21, 7267 8 of 47

Up Robust Features (SURF), Maximally Stable Extremal Regions (MSER), Integral Channels
Features (ICF) and Aggregated Channel Features (ACF). The most known traditional
techniques for object classification are linear Support-Vector-Machines (SVM), Graphical
Model, non-linear SVM, Adaptive Boosting (AdaBoost), Artificial Neural Networks (ANN),
and MPL-Boost. From the listed classifiers, linear SVM is the most used since it requires less
memory, it is fast to train and classify. Table 3 presents the advantages and disadvantages
of the other learning algorithms.

Table 3. Advantages and disadvantages of the different classifiers used in traditional techniques.

Classifier Advantages Disadvantages

Linear-SVM -Use less memory.
-Fast to train and classify.

-Lower accuracy.

Non-linear SVM -Good accuracy. -Slow to train and test.
-Considerable complexity.

Histogram Intersection Ker-
nel SVM (HIKSVM)

-Same computational load as Linear
SVM.

-Bad performance when using FPPI eval-
uation.
-It has a short-range.

AdaBoost -Fast classification.

-Slow to train.
-Complexity increases as the number of
classes increases. Hence, not suitable for
challenging datasets.

MPL-Boost -Learns Multiple classifiers in parallel. -Still limited by the number of classes.

The SIFT algorithm presented by Lowe [46,48] was a remarkable work since the
algorithm was able to find features that are invariant to scale, and rotation to create an
object recognition system that is robust to partial occlusion, cluttering, noise and change in
illumination. The algorithm is composed of many stages, the first step is called “scale-space
extrema detection”, which uses a difference-of-Gaussian function to detect potential key
points in the image that are invariant to scale and orientation. In the second step “keypoint
localisation”, the location and scale of each one of the key points are determined and
only the stable ones are selected. In the third step, one or more orientations are assigned
for each key point. Regions around the key points are sampled to create an orientation
histogram that quantises the direction of the key points in 36 bins ranging from 0◦ to 360◦.
The gradient magnitude of the key points is used to vote on the 36 bins, only the highest
peak and the peaks that have 80% of the highest peak value is selected as the key point
orientation. By the end of the third step, each key point should have a location, scale,
and orientation. The fourth step uses the magnitude and direction from the previous steps
to create a key descriptor vector. Lastly, the key descriptor vector is used to recognise
objects by matching the key points of a new image with the key points descriptor vector
database. This is achieved by performing nearest neighbour indexing using Best-Bin-First
(BBF) sort algorithm and by applying Hough transform (HT) to find key points clusters.
The least-square method was used to verify if the new image is related to the chosen image
in the database. The drawbacks of the SIFT algorithm, are that the repeatability of key
points is not persistent in dynamic objects (e.g., humans), the dimension of the feature
descriptor vector is considerably high in which affects the matching procedure, and the
algorithm is patented.
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Viola-Jones algorithm is another object recognition algorithm presented by Viola and
Jones [49] where they aimed to recognise human faces in an image using Harr-like feature
extractors. Their algorithm has four main aspects: firstly Haar-like feature extractor was
applied in the image to select discriminative features; secondly, an Integral Image algorithm
was used to simplify the image representation which enable faster computation; thirdly
the overall number of features was decreased by using AdaBoost learning algorithm; and
lastly, cascade classifier was used to reject background information and focus more on the
regions where it is likely to have the object of interest. The algorithm has shown to be
very fast since it processes a 384 × 288 pixel image in 0.067 s, using a 700 Mhz Pentium
III processor. In addition, it achieved detection rates up to 91.4% with 50 false detections.
Although the algorithm is fast and achieves good accuracy, its training time is slow and it
is not suitable to describe general objects.

Dalal and Triggs [47] introduced the HOG algorithm with the aim to detect humans
in digital images. In the HOG algorithm, the input images is processed with vertical
and horizontal gradient filters to yield gradient magnitude and direction. The filtered
images is first divided into 8x8 pixels cells and subsequently blocks of 2 × 2 cells with a
fifty per cent overlap. Orientation histograms for each cell (descriptor cells) are created,
the histograms quantise the calculated gradient direction into 9 bins ranging from 0◦ to 180◦

and the calculated magnitude is used as the vote for each respective bin. The orientation
histograms for each cell that belongs to a particular block is concatenated to yield a HOG
descriptor vector for that block. The HOG descriptor vectors for each block are normalised
to take into consideration changes in illumination and contrast. The final HOG descriptor
is a vector of all the normalised blocks that is fed into an SVM to classify if the input
image is human or non-human. The algorithm was able to reduce false-positive results
outperforming Haar Wavelets algorithms. The downsides of the HOG algorithm are that
compared to SIFT, it requires more computation load due to the dense grid process and its
performance is considerably affected when objects are occluded.

Bay et al. [50] presented the SURF algorithm, which has some similarities with SIFT
algorithm, but the authors tried to simplify it. To detect invariant features in the image,
the authors used a basic approximation of Hessian blob detector and integral images. This
combination offers faster computation and good accuracy. Haar-wavelet and integral
images were used for orientation assignment as well as to create the feature descriptor.
The evaluation of the algorithm was achieved by calculating the Euclidian distance between
the features in an input image and the features in the database. Authors reported that
their algorithm has outperformed current state of art algorithms such as GLOH, SIFT and
Principal Component Analyis (PCA)-SIFT, achieving an average recognition rate of 85.7%.

The main drawback of the previously cited traditional algorithms, is that they required
handcrafted feature extractors to learn distinct descriptors of the objects. This requires
experienced extractor engineers, it is time-consuming, and it is more suitable for specific
domain systems.

3.2. DL Techniques

DL has become very popular and highly used in the past decades. According
to O’Mahony et al. [51], DL has outperformed traditional computer vision algorithm
in classification, segmentation, detection, and SLAM problems. The advantages of DL
over traditional techniques are: it is an end-to-end approach, it is flexible because the
model can be re-trained with different datasets, and it is expected to require less expertise
and fine-tuning. Whereas in traditional methods, engineers must specify which features
are relevant to extract, it might require fine-tuning and it is likely to be domain-specific.
The main drawback of DL technique is that their performance is dependent on the network
depth and the availability of the datasets. Figure 2 compares the stages for traditional
computer vision and DL. This section covers the main DL techniques for general object
classification and detection.
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Figure 2. (a) Traditional techniques require engineers to manually extract features and then classifiers are used to learn the
best descriptors. (b) In DL, the features are automatically extracted and learnt. (Modified version of [51].)

A seven-layer Convolutional Neural Network (CNN) system, as depicted in Figure 3,
was implemented by LeCun et al. [52] to learn to extract important features from 32× 32× 1
handwritten characters images. The system was called LeNet and an important aspect
of it, was that instead of applying the conventional gradient-based learning algorithm to
learn patterns, that is limited to a linear system, they used the back-propagation algorithm.
Their work was remarkable because they showed that is not required to manually extract
relevant features from an input image, instead the features were automatically extracted by
using CNN. In addition, they have outperformed all other character recognition techniques
at the time. However, their CNN architecture is shallow, which inhibits the system to
extract sufficient features to improve the algorithm generalisation and accuracy. Some
authors presented a modified version of the LeNet network, for example, Lin et al. [53]
used smaller convolutional kernels (3 × 3) to increase the number of extracted features and
reduced the fully connected layer from 10 units to 2 units. Xie et al. [54] further improved
LeNet by adding activation layers, batch normalisation layers, and online hard example
mining. Li et al. [55] increased the number of convolutions kernels at some of the layers,
adopted the ReLu activation function, used max-pooling instead of mean-pooling layers,
and used SVM at the output layer.
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Figure 3. LeNet has seven layers: three convolutional layers, two sub-sampling, and two fully connected layers [52].

An eight layers CNN system, similar to LeNet, called AlexNet was performed
by Krizhevsky et al. [56]. At this time, the authors had access to a larger image dataset
and more advanced computing resources such as powerful CPUs, GPUs, and larger mem-
ory sizes. These improvements enabled the authors to work with high-resolution colour
images, to have deeper neural network architecture and to have more filters with wider
dimensions. One important feature of the system was that the authors used the ReLU
non-linearity activation function instead of the traditional ones, this enabled the system
to train much faster and be more robust against vanishing gradient. AlexNet was tested
in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) contest which uses
the ImageNet database of 1.2 million images belonging to 1000 categories. The algorithm
outperformed prior state of art algorithms and it achieved error rates of 37.5% and 17.0% in
the top 1 and top 5, respectively. An important conclusion that the authors reported is that,
deep CNN is expected to have a better performance. Even though the ReLU activation
function speeded up the training time, AlexNet still took 5 to 6 days to train 1.2 million
images. This issue limited the DL engineers to optimise their algorithm, test new ideas,
and construct deeper CNN. Figure 4 depicts the overall structure of the AlexNet.

Figure 4. AlextNet have eleven layers: five convolutional layers and three fully connected layers that computes weights;
and three max pooling layers [57].
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After AlexNet, many other CNN work was presented as an approach for object
recognition and detection problems. Although, good results have been reported on datasets
such as ImageNet and PASCAL, up until 2013 no work had been done to truly understand
why such good results were achieved and how activation layers of CNN systems works.
Author Zeiler and Fergus [58] used the Multi-layered Deconvolutional Network technique
to visualise and understand what is happening in the CNN activation layers. The process
is similar to the CNN system however it does the inverse, it maps features maps to
pixels space. The visualisation technique led the authors to identify AlexNet architecture
limitations and to make the required change to achieve a better performance. The authors
named their system as ZFNet , which has the same architecture as the AlexNet but, some
of the hyper-parameters were improved. For instance, ZFNet uses a 7 × 7 filter in the first
layers instead of an 11× 11 filter and it uses a stride of 2 instead of 4. These changes allowed
the system to keep more information in the first two layers, consequently improving the
system performance in classifying the images. In addition, these changes reduced the
chance of aliasing artefacts. ZFNet was able to reach a test error of 14.8% using the
ImageNet 2012 dataset, meaning that they have outperformed AlexNet by 1.7%. However,
the algorithm still requires a large number of parameters and take a considerable amount
of time to train.

In 2014, two important CNNs were presented, VGGNet and GoogLeNet. VGGNet
was implemented by Simonyan and Zisserman [59]. They investigated how the accuracy
of CNN model is related to their depth. The authors presented several CNN models that
would vary their layers from 11 to 19. Their models would have similar architecture to
AlexNet and LeNet, however as depicted in Figure 5, they used three stacks of 3 × 3
convolution layers instead of one 5× 5 or 7× 7 convolution layers, their convolution stride
is 1 and the images were padded with zeros to retain its original dimensions. These changes
had many advantages, they made the model simpler to implement, they enabled the model
to acquire more complex and discriminative features by using smaller receptive fields
and more rectification, and made the computation load more efficient since the number
of weights (parameters) were decreased. Conversely, the model required a large memory
size to store the layer’s parameters for the back-propagation process and the model took 2
to 3 weeks to train one single network. The authors concluded that image classification
accuracy was improved when using a deeper CNN network, for example, their VGG 19
had the best results compared to VGG 11 and 16 and it was ranked the second in the
ILSVRC14 contest.

Figure 5. If an input has 5 pixels, a stacked 3 × 3 convolutions reaches the same number of output
pixels as a single 5 × 5 convolution. However, it requires only 18 variables to be trained (3 × 3 × 2)
instead of 25 (5 × 5) [60].

GoogLeNet was implemented by Szegedy et al. [61] and their goal was to make a
deeper CNN but keeping the computation efficient. This was achieved by constructing
an efficient inception module block that was repeatedly used in the CNN. The inception
module uses 1 × 1, 3 × 3 and 5 × 5 convolution kernel and a 3 × 3 max pooling. Note
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that before applying the 3 × 3 and 5 × 5 convolutions a 1 × 1 convolution is applied to
reduce the previous layer dimension. This decreases the computation cost and increases
the use of the rectified linear activation (addition of non-linearity model). GoogLeNet
has 22 layers, it does not have a fully connected (FC) layer and it only has 5 million
parameters, which is a huge reduction compared to AlexNet that has 60 million parameters.
The CNN architecture was the winner in the ILSVRC 2014 contest with a test error rate of
6.7%. Although GoogLeNet was the winner, it deviated from the classic CNN architecture
making the model more complex. In addition, the use of 7 × 7 convolution in the first layer
may reduce the feature maps which can affect the performance in the later layers.

GoogLeNet was an important work since the model had a considerable deep CNN
of 22 layers and inspired other authors to implement deeper models, however, a problem
called degradation surged when the number of layers were increased. For example, He
et al. [62] experimented to compare the performance of an 18 and a 34 layers model.
The experiment showed that the training and validation error for the 34 layers model was
higher than the 18 layers model. To solve the degradation problem, the authors presented a
residual learning block. The idea is to directly copy the input X to the forward layers in the
neural network, other terms used are skipped connections or shortcuts. By using several
residual blocks, the authors were able to create a 152 layers CNN called Residual Network
(ResNet) without compromising the training and validation error performance. Resnet
achieved a test error rate of 3.57% and it was the winner in the ILSVRC 2015 contest.

Apart from object classification, there is research on object localisation and detection.
For instance, the AlexNet model was the winner in ImageNet 2012 contest, both for
classification and localisation, however, the authors did not publish the methods used
for the localisation procedure. The first work published explaining localisation was done
by [63]. The main concept of object localisation is to use a CNN that has two heads,
one usually called classifier head and the other regression head. The regression head
can be located after the convolution layers or after the fully connected layers. Sermanet
et al. [63] placed the regression head in their Overfeat model after the 5th layer and they
used a classifier similar to AlexNet architecture. The regression head was used to predict
the coordinates used to draw a bounding box around the detected object. As depicted
in Figure 6, to get the final predicted bounding box the OverFeat network would be
densely applied in all locations and scale of the input image using the sliding window
approach. Each sliding window would give a confidence score of the objects category and
a bounding box. The bounding boxes that have 50% of overlap with the object would be
merged, accumulated, and used by the regression algorithm to predict a final bounding
box. The detection task is almost the same as the localisation, the only difference is that the
model would need some negative samples to distinguish between background and objects,
in addition, the image will have more than one object to be recognised. Overfeat was the
winner in the ILSVRC 2013 contest for localisation and detection, achieving top 5 error rate
of 29.9% and mean average precision (mAP) of 24.3%, respectively.

Figure 6. (a) Sliding window approach densely applied in all location of the image. (b) Only the bbox that have 50% of
overlap with the object (child) are used by the regression algorithm to predict the final bbox. (c) Predicted bbox are drawn
around the object .
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The sliding window approach used in the Overfeat CNN is very computationally
expensive and, it is not efficient since too many windows are used and in most of them there
will not be an object. Girshick et al. [64] proposed a system to overcome these issues where
they combined region proposal algorithm with CNN. The system generates regions that
are likely to have an object using the selective search technique, these proposed regions are
then passed in a pre-trained CNN to extract feature vector. Finally, the extract feature vector
is fed into an SVM classifier, and a localisation regression approach is used to classify the
objects and draw a bounding box around them. The system is called Region Convolutional
Neural Network (R-CNN) and it was able to achieve an mAP of 53.7% in the PASCAL
VOC 2010 dataset and it outperformed the Overfeat algorithm in the 200-class ILSVRC2013
detection dataset. Although, R-CNN reduces the number of regions per image to be
classified, to approximately 2000, this number still requires a large storage disk to cache
the extracted features and affects the time taken to train and test the network. The time
taken to train 5000 images is approximately 2.5 GPU-days and the time taken to test one
image is approximately 47 s which does not meet a real-time system requirement [65].
Other disadvantages are that R-CNN requires that input images have fixed size (224 × 224)
because of the fully connected layers; it does not enable-shared computation because
it requires one feature map for each sub-image; it is a multi-stage pipeline as it must
train three different models, one for feature extraction, one for object classification and
one for bounding box regression. Figure 7 depicts the overall architecture of the R-CNN
framework.

Figure 7. R-CNN architecture: (a) Input Image. (b) Region proposals are acquired using selective
searching technique. (c) The regions of interest are warped or cropped and used as the input to the
CNN. (d) CNN extract features and classify the proposed regions of interest [64].

Because R-CNN algorithm only accepts fixed input images, it needs to perform
cropping or warping in the sub-images to acquire a fixed-length descriptor for training.
This causes distortion and deletion of the objects parts which yields less detection accuracy.
In order to enable networks to accept arbitrary image size/scale He et al. [66] proposed the
Spatial Pyramid Pooling Network (SPP-Net). As depicted in Figure 8, the SPP-Net applies
a 3 level spatial pyramid pooling on the 5th convolution layer which has 256 feature maps.
At level zero a 1 × 1 max pooling is applied in each feature map and outputs a 1 × 256
vector, at level one a 4 × 1 max pooling is applied outputting a 4 × 256 vector, and at level
2 a 16 × 1 max pooling is applied outputting a 16 × 256 vector. The output vectors of
each pyramid level are concatenated yielding a final output vector of 21 × 256 which is
fed to the fully connected layers. The SPP-Net technique makes output vector dimension
independent of the input image size/scale, it is only dependent on the number of feature
maps. The SPP-net also has the benefit of the feature maps of the entire image being
computed only once. Overall SPP-Net improves both detection accuracy and efficiency.
On the other hand, it is still a multi-stage pipeline and since the 5th layers are reused, they
cannot be fine-tuned, hence there is a drop in detection accuracy.
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Figure 8. Spatial Pyramid Layers and the output vectors [66].

Girshick [65] presented a second version of the R-CNN, called Fast R-CNN where
they were able to increase the mAP, reduce the train and test time, convert the system from
a multistage pipeline to a single stage, and eliminate the need for disk storage. As depicted
in Figure 9, the main difference between the R-CNN and Fast R-CNN architecture are that
the latter one processes the entire image, instead of each region proposal, to create a high-
resolution convolution feature map. This enables shared computation (share convolution
features), since all the region of interest (RoI) in the image proposed by the selective
searching algorithm, can be projected in this high-resolution convolution feature map.
Once the RoI is projected into the feature map, the network adopts the SPP technique
with only one pooling level to generate a fixed-length feature vector. The feature vectors
undergo by few fully connected layers and at some point, the fully connected layers are
divided into two parallel processes, one is the SoftMax, to classify the objects categories
and the image background, and the second is the bounding box regressor that calculates
the numbers required to draw the bounding box around each detected object. The authors
achieved a single-stage pipeline by using multi-task learning. The Fast R-CNN takes
around 9.5 h to train and 2.3 s to test an image, this is a noticeable improvement compared
to the R-CNN system which takes days to train and 47 s to test an image. However, 2.3 s
still does not meet real-time system requirement. The bottleneck of the fast R-CNN test time
is the time taken by the selective search algorithm to find the region proposals, which takes
2 s. Another disadvantage of the system is that, it is not learning what is the best region
proposal, instead, it uses a fixed output generated by the selective searching algorithm.

A system called Faster R-CNN was implemented by Ren et al. [67] and its main
contribution was the introduction of Region Proposal Network (RPN) in the Fast R-CNN
system. This almost eliminates the time taken for the region proposals stage and enables
the system to learn what is the best region proposals. As depicted in Figure 10, the system
is almost the same as the Fast R-CNN, but instead of using the region proposals determined
by the selective search algorithm, the system uses the high-resolution feature maps as the
input to the RPN to determine the regions of interest of the image. The Faster R-CNN
system can test an image in 0.2 s (5 fps) and have improved detection accuracy, however, it
still requires intensive computation and does not meet the criteria of a real-time system.
The system is also more complex because two NNs must be trained, and, somehow, they
are dependent on each other, this makes the system complicated to optimise [68].
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Figure 9. Fast R-CNN architecture: (a) Input image. (b.1) CNN is used to generate feature maps of the entire input image
only once. (b.2) RoIs are acquired using selective searching technique. (c) Each RoI is projected onto the generated feature
maps. (d) Pooling and fully connected layers are applied onto the feature maps with the projected RoI to generate a feature
vector. The feature vector is used by softmax, and bbox regressor to output confidence score and bbox for each RoI [65].

Although the mentioned algorithms give acceptable accuracy in the COCO and
ImageNet datasets, they struggle to detect objects that are small and in different scales.
Figure 11 depicts some of the proposed techniques to tackle these issues. Figure 11a depicts
the image pyramids approach, it provides rich semantic information on all scale levels,
however, it is not efficient because it requires more memory and time. Figure 11b depicts
the single feature map approach which uses only one input scale to generate high semantic
information during the training, but during test time, it generates image pyramids. This
approach uses less memory and it is quicker, however, the train and test time inference
is not consistent. Figure 11d depicts pyramidal feature hierarchy, it treats the different
pyramidal feature hierarchies generated by the CNN as a feature image pyramid. This
presents a gap in the overall semantic information because high-resolution maps have
low-level features. To overcome these limitations Lin et al. [69] further improved the
Faster R-CNN network by adding to it a Feature Pyramid Network (FPN) . As depicted
in Figure 11c, the FPN uses bottom-up, top-down, and lateral connection approaches to
deal with the scale invariance problem. These approaches enable the system to merge
low-resolution, semantically strong features with high resolution and semantically weak
features. In addition, it does not require more memory and time than the latter approaches.
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Figure 10. Faster R-CNN architecture: (a) Input image. (b) CNN is used to generate feature maps of the entire input image
only once. (c) RoIs are acquired using Region Proposal Network (RPN). (d) The RoI is projected onto the generated feature
map of the whole image. Then, pooling and fully connected layers are applied onto the feature map with the projected RoI
to generate a feature vector. The feature vector is used by softmax, and bbox regressor to output confidence score and bbox
coordinates [67].

Figure 11. Different types of strategies to deal with scale variance. (a) Featurized image pyramid. (b) Single feature map.
(c) Feature Pyramid Network. (d) Pyramidal feature hierarchy [69].

The previous mentioned object detection algorithms, for instance, R-CNN, Fast R-
CNN, Faster R-CNN and SPP, are considered two-stage systems. Because first, they
calculate the bounding boxes using region proposal and then perform object classifica-
tion. One-stage algorithms also have been proposed where it combines the detection and
localisation into a regression problem. For instance, the You Look Only Once (YOLOv1)
algorithm performed by Redmon et al. [70] has unified the object classification and the
bounding box as a regression problem. Instead of using region proposal or sliding window,
YOLO divides the input image into SxS grid cells, then each grid cell predicts B bound-
ing boxes and the confidence score that an object is present in them. If the confidence
score is greater than the set threshold, the algorithm will predict the confidence score for
each C object-specific class. There are many advantages in this approach, for example,
the algorithm is much faster than the Faster R-CNN (state of art algorithm at that time),
the algorithm commits fewer background errors since it sees the large context, it learns
more general representations of the object which makes the system more robust when
tested with new inputs. However, the algorithm has a lower mAP and recall, compared to
Faster R-CNN, it has a considerable localisation error number, and difficulties in detecting
small objects. As the algorithm divides the input image into SxS grids and each grid can
only classify and localise one object, it cannot detect more than 49 objects.
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Single Shot Multi-box detection (SSD) is another single-stage system, it was presented
by Liu et al. [68]. Their main goal was to perform object detection using a single deep
neural network (DNN), that removes the need to re-sample pixels or features to hypothesise
bounding boxes but still yields good object detection accuracy. Their network has two parts,
one called “base network” and the other called “auxiliary structure”. The base network has
similar architecture to VGG-16 network, and it is used for image classification. The main
difference between SSD and YOLOv1, is the auxiliary structure in the SSD algorithm. It
enables multi-scale features (MSF) maps, pre-computation of the object category score and
the bounding boxes offsets by using small receptive kernels (3 × 3 × p, where p is the
number of channels). Additionally, several default bounding boxes (anchor boxes) with
different dimensions, aspect ratios and scales were used in the MSF maps to predict the
ground truth box. SSD system became state-of-art in 2016 both in accuracy and speed.
It outperformed Faster R-CNN and YOLOv1 by achieving 74.3% mAP at 59 Frame Per
Second (FPS) using the PASCAL VOC2007 dataset.

After SSD, Redmon and Farhadi [71] proposed the second version of the YOLO
algorithm. They aimed to make it better, faster and stronger to overcome the limitations
of the previous model. They made the algorithm better by using batch normalisation,
high-resolution input images, adopting the anchor box method, k-mean clustering, direct
location prediction and multi-scale training. The algorithm is faster because instead of
using the GoogLenet architecture, they proposed their custom network called Darknet
which decreases the number of operations from 8.52 billion to 5.58 billion per image. Finally,
the algorithm is stronger because they used WordTree method to combine both ImageNet
and COCO dataset to train the network. The final YOLOv2 algorithm achieved an mAP
of 76.8% at 67 fps using the VOC 2007 dataset. This achievement outperforms previous
state-of-art detection algorithms such as Faster R-CNN and SSD algorithms. However,
the algorithm still faces the problem of detecting small objects.

By comparing two stage with one stage algorithms, two stage algorithms have better
accuracy results, while the one stage algorithms are faster. There was no clear explana-
tion why one stage algorithm has lower accuracy, hence Lin et al. [72] investigated and
found that the issue with the one-stage algorithm, which performs dense sampling, is the
foreground–background class imbalance. In other words, as depicted in Figure 12, there is
more background information meaning more negative samples, than objects, which are pos-
itive examples. To overcome this problem, the authors modified the standard cross-entropy
loss function, in which the negative samples contribute more to the final total loss results,
and presented the Focal Loss. The focal loss function, down-weights the contributions of
easy samples and focuses more on hard examples, hence the positive samples contributes
more to the total loss result. The authors used this modified loss function and created the
RetinaNet network that was able to achieve higher accuracy and faster detection speed
than the previous two and one stage algorithms. The disadvantage of the algorithm is that
it requires to fine-tune one more hyper-parameter which is the focusing parameter.

Other versions of YOLO are YOLOv3/v4/PP/v5. In YOLOv3 Redmon and Farhadi [73]
focused on making the algorithm more accurate by extending their classification Darkenet-
19 network to 53 layers, and adopting the concept of residual learning block in their network
architecture. To overcome the problem of detecting small objects, the authors predict the
bounding boxes at three different feature map scales, 13× 13 to detect large objects, 26× 26
to detect medium objects, and 52× 52 to detect small objects [74]. Zhao and Li [75] and Yang
and Deng [76] presented a modified version of the YOLOv3. Zhao and Li [75] instead of
using the k-means cluster to determine the height and width of the bounding box priors,
which is time-consuming when dealing with high scale variance image datasets, they used
Markov Chain method. This change enabled the YOLOv3 to achieve better Average IoU
and faster run-time. In addition, the algorithm was able to slightly improve the recall,
mAP and F1-Score. Yang and Deng [76] did not modify the convolutional architecture
but they combined both of the features extracted by the convolutional layers and features
extracted by the FPN to acquire more semantic information. They also proposed global
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context blocks, which is based on self-attention mechanism, in order to pay more attention
to the relevant information of the feature maps. These techniques increased the YOLOv3
algorithm accuracy with a slight addition of computation cost.

Figure 12. Foreground–background imbalance example, there are more negative (orange boxes)
than positive (blue boxes) examples.

In YOLOv4 Bochkovskiy et al. [77] focused on optimising the speed and accuracy
of the system, in such a manner that only one conventional GPU is required (e.g., 1080Ti
or 2080Ti GPU). In their paper, they described that one stage object detector is made
of several elements, input, backbone, neck, and head. Where the input is the image,
the backbone is the classification algorithm that is usually pre-trained using ImageNet
dataset, the neck is the element where features map of different stages are collected and
combined to yield a higher receptive field, which allows the network to learn variance
in different images scale and size, and the head is the part where the object classification
and bounding boxes are predicted. The authors did a thorough study to identify which
algorithm for each element would yield an object detector algorithm with high speed
and good accuracy. The final architecture of the YOLOv4 is composed of CSPDarknet53
as the backbone, SPP and PAN as the neck, and YOLOv3 as the head. The algorithm
became state-of-art where it achieved an accuracy of 43.5% AP using the MS COCO dataset,
and it can process approximately 65 fps, which meets the real-time requirement. The PP-
YOLO system was presented by Long et al. [78], their goal was not to introduce a new
detector algorithm but use existing tools to create an effective and efficient version of the
YOLOv3 algorithm. The main differences between the previous YOLO versions were that
they used the ResNet network as the image classifier; they used a larger batch size and
Exponential Moving Average (EMA) to make the system more stable; DropBlock to prevent
overfitting; and Intersection Over Union (IoU) Loss, IoU Aware, Grid Sensitive, Matrix
NMS, CoordConv and SPP to increase the model accuracy. They outperformed YOLOv4
both in accuracy and speed, they achieved 43.5% mAP at speed of 72.9 fps, whereas,
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YOLOv4 achieved 43.5%mAP at 62 fps. YOLOv5 has been implemented by Jocher [79] but
there is still no paper reporting their work. Quang et al. [80] proposed a new single-stage
algorithm which has two main modules, the local information extraction model (LIEM)
and the global information extraction model (GIEM). The former model uses a bidirectional
FPN to extract multi-scale features from different convolutional layers, and the latter is
responsible to extract global features from downsized images. Once local and global
information is extracted, they are combined using an aggregation network. The LIEM and
the GIEM modules were introduced to acquire richer features, since the authors claimed
that important information is lost when only the low-level and high-level feature maps are
combined. The algorithm was able to improve AP by 1.6% and achieved a detection speed
of 45.43 fps when tested with the MS COCO dataset.

4. Vehicle Detection

Vehicle detection is a key stage for many of the Intelligent Transportation Systems
(ITS) such as AV, ADAS, Traffic Surveillance and Traffic Statistics. As depicted in Figure 13,
vehicles must be first detected to then perform vehicle tracking and vehicle behaviour
prediction. A vehicle detection system should be robust, fast, accurate, and at low cost.
Different sources of images are used for vehicle detection, for instance, images from traffic
surveillance cameras, cameras mounted on vehicles, UAV cameras and satellites images.

Figure 13. Block diagram to present the stages of vehicle detection, vehicle tracking, and vehi-
cle behaviour. The vehicle detection is performed using appearance, motion, shape, point cloud,
and disparity techniques. Vehicle tracking is acquired using position, dynamics, filtering, context
information, or data association. The vehicle behaviour is determined using manoeuvres, contextual
cues, data driven, or goal-orientated approaches [11].
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This research will only focus on on-road vehicle detection, where the camera is
mounted in the vehicle. The main challenges for a vehicle detection system are:

• Vehicle can belong to many classes (e.g., car, bus, truck, etc.).
• Vehicles belonging to the same class have varieties of shape, structure, colour, and size.
• Vehicles are viewed in different orientations (e.g., side-front view, side-back view,

left-side, right side, etc.).
• One image might have several vehicles in different scales. Large size and small size

vehicles have scale-variance, for instance, different visual characteristics and feature
maps.

• Vehicles are more prone to be cluttered in complex traffic scenes.
• Vehicles are in environments that are dynamic due to different weather conditions

(e.g., sunny, rainy, foggy and snow.), different times of the day (e.g., day, dusk,
and night) and passing through tunnels. These factors affect the image background
and illumination.

• For on-board vehicle detection, it is necessary to take into consideration the ego and
target vehicle motion [21].

Currently, in order to overcome these vehicle detection challenges, traditional and DL
techniques are used. These techniques generally are a two-stage processes, the first stage is
to extract RoI candidates, and the second stage verifies if the generated candidates are the
objects of interest.

4.1. Traditional Techniques

For detailed literature reviews on traditional vehicle detection, tracking and behaviour
prediction algorithms please refer to [11–15,21,81]. Traditional vehicle detection is mainly
performed by motion-based and appearance-based approaches. Motion-based approaches
have been implemented using optical flow techniques, such as dense optical flow, sparse
optical flow or Scene Segmented Establishing Tracking (ASSET-2). However, the perfor-
mance of these techniques is affected by camera movement/vibration, they are not able
to classify the different objects in motions, they are limited to detect slow motion vehi-
cles, several images are required to detect object motion, and many post-processes are
required to refine the results, which makes the algorithm computationally expensive and
complex [82]. The appearance-based approach uses basic or advanced features extracted
directly from the pixel image. Basic features used in the literature are corners, colour,
symmetry, texture, vehicles shadow, vehicle’s headlights and taillights, edges, and so forth.
However, these basic features are easily affected by reflection, low light intensity, different
weather conditions and external objects. In addition, only one of these basic feature is not
enough to describe all the rich information given by an image, hence it was proposed to use
multiple of these features, but this makes the system more computationally expensive and
complex. Advanced features are extracted using algorithms like HOG [83,84], Haar-Like
(wavelets) [85], combination of HOG, Local Binary Patterns (LBP), and Haar-like [86],
SIFT [87], PCA [88], SURF [89], And-Or model [90], and Gabor filter [91]. Once features are
extracted, discriminative classifier algorithms such as SVM, ANN, Mahalanobis Distance,
or AdaBoost are used to classify the objects as vehicle or non-vehicle. Generative classifiers
like probabilistically weighted vote, hidden Markov models and Gaussian mixture models
are also used in the literature; however, the discriminative approach is preferable, since it
gives a distinct classification of vehicle or non-vehicle, instead of a distribution probability
for each object class. Although the above extraction and classification algorithms have
shown acceptable results for vehicle detection in simple traffic scenes, their performance
is limited to complex traffic scenes, as they produce too many false-positive results and
they are still highly affected by occlusion, illumination, scale sensitivity, and background
environment [82].
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4.2. DL Techniques

Recently, to overcome these challenges, researchers have been investigating the use of
DL techniques, since they can learn what are the best features to extract in order to detect
vehicles. This section will present some of the most relevant on-road vehicle detection
works between 2016 to 2020, that adopted DL technique. Based on the reviewed works from
Table 4 the research community have tried, either to improve vehicle detection robustness
and accuracy or efficiency. The following approaches were used to improve detection
robustness: extract and retain more discriminative information from the input image,
handles scale sensitivity, fine-tune existing generic object detection algorithm, and handles
occlusion and truncation problems.

The following works aimed to extract or retain more discriminative information from
the input image. To the best of the author knowledge, one of the first DL works for vehicle
detection, was performed by Wang et al. [92], where they used 2D deep belief network
(2D-DBN) to extract more discriminative information, which made the system more robust
to complex scenes and achieve better results than the traditional techniques. However,
the datasets used are very basic and do not take into consideration occluded and multi-scale
vehicles.

Table 4. Relevant vehicle detection works using traditional and DL techniques.

Work Methods Algorithm Objective Dataset-Results
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hn
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VeDAS [85]

Appearance based
Multi-part based model.
Active learning and Symmetry.
Feature extractor: Haar Like.
Classifier: AdaBoost.
Hardware: i7 CPU with 4 cores.

Occlusion handling.

LISA
True-Positve: 95%
Detection-Rate: 87%
Time: 15–25 fps.

[90]

Appearance based
And-Or model to represent occlusion
and context.
Classifier: Weak-level Structural SVM
Hardware: NVIDIA GPU.
Evaluation: AP(%).

Occlusion handling.

KITTI:
Easy: 84.80%
Medium: 75.94%
Hard: 60.70%
Time: 2 to 3 s/img.

[83]

Region proposal: Edges and Shadows.
Feature extractor: HOG.
Classifier: AdaBoost.
Tracking: Feature points matching using
Harris algorithm.
Hardware:i5 3.2 GHz CPU 4 GB RAM.

Vehicle detection and
Tracking for FCW.

OWN
True Positive: 91.37
False-Positve: 3.09
Recognition Error: under
5%

[86]

Feature extractor: Combination of HOG +
LBP + Haar.
Classifier: AdaBoost.
Hardware: Intel Xeon 8 core 3.0 GHz.

Comparison of
different feature
extractors.

Udacity & KITTI
Precision: 94.7%
Detection Rate: 91%
Time: 0.528 s/img.

[84]

Feature extractor: HOG (for day-time and
dusk).
Classifier: SVM (for day-time and dusk).
Detector: DBN (for night-time).
Hardware: Zynq Soc.

Improve vehicle
detection in different
light conditions (day,
dusk, and dark).

UPM & SYSU
Accuracy:
Day 91.56%
Dusk 85.34%.
Time: 50 fps/img.
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[92] Detector: 2D DBN.
Hardware: Advantech industrial computer.

Improve vehicle
detection performance
by retaining more
discriminative
information.

OWN & Caltech
Detection Rate: 96.05%
Time: 53 ms/img.

Faster-RCNN [67]
Detector: original Faster R-CNN.
Hardware: GPU 3.5 GHz.
Evaluation: AP(%).

Generic object
detection.

KITTI
Easy: 88.97%
Medium: 83.16%
Hard: 72.62%
Time: 2 s/img.

[93]

Detector: Faster R-CNN.
Hardware: 32 Core server 3.1 GHz, 13 GB
RAM, Tesla K40 GPU.
Evaluation: AP(%).

Handle scale sensitivity.
Improve vehicle
detection by
fine-tuning the Faster
R-CNN detector.

KITTI
Easy: 95.14%.
Medium: 83.73%.
Hard: 71.22%.
Time: 0.32 and 0.47 s/img.

MS-CNN [94]

Detector: MS-CNN.
Feature up-sampling:
Deconvolutional Layer.
Hardware: Intel Xeon E5-2630 2.40 GHz
64 GB and NVIDIA Titan GPU.
Evaluation: mAP(%).

Handle scale sensitivity
and improve detection
speed.

KITTI
Easy: 90.03%.
Medium: 89.02%.
Hard: 76.11%.
Time: 0.4 s/img.

DAVE [95]

Region proposal: FVPN.
Attributes: ALN (Based on GoogleNet).
Detector: Combination of FVP + ALN.
Hardware: NVIDIA Titan X GPU.

Vehicle detection and
pose annotations.

UTS
AP: 62.85%, 2 fps.
PASCAL
AP: 64.44%, 4 fps.
LISA
AP: 79.41%, 4 fps.

SDP+CRC(ft) [96]

Multi-Scale method: Scale Dependent
Pooling (SDP).
Feature Extractor: VGG-16.
Classifier: Cascade Rejection Classifier
(CRC).
Detector: SDP-CRC(ft).
Hardware: NVIDIA K40 GPU.
Evaluation: AP(%).

Handle scale variance
and improve detection
speed.

KITTI
Easy: 90.33%
Medium: 83.53%
Hard: 71.13%
Time: 0.6 s/img.

[97]

Region proposal: Graph based algorithm +
Super-pixels.
Detector: VGG-16.
Hardware: NVIDIA Titan GPU.
Evaluation: AP(%).

Decrease the number of
Region Proposal
candidates.

KITTI:
Easy: 80.53%
Medium: 67.89%
Hard: 58.23%
Time: 1.57 s/img.

[98]
Detector: R-CNN with modified anchor
boxes and use of shallow features.
Hardware: Not Specified.

Handle multi-scale
vehicles.

KITTI
AP: 83.6%
Time: Not Specified.

RV-CNN. [99]

Region proposal: RoI Voting.
Feature extractor: AlexNet + GoogleNet +
Res-50Net.
Detector: RV-CNN a Multi-task learning
and ensemble network.
Evaluation: AP(%).

Improve vehicle
detection robustness.

KITTI
Easy: 91.28%
Medium: 91.67%
Hard: 85.43%
Time: Not Specified.
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Deep-MANTA
[100]

Object Proposal: Coarse-to-Fine RPN.
Feature extractor: GoogleNet or VGG16.
Detector: Deep Course-to-fine Many
task CNN.
Hardware: Not Specified.
Evaluation: AP(%).

Improve detection
performance and
robustness (occlusion
and truncation) by
performing 2D/3D
vehicle analysis.

KITTI
Easy: 96.40%
Medium: 90.10%
Hard: 80.79%
Time: 0.7–2.1 s/img.

RRC [101]

Feature Extractor: VGGNet.
Detector: RRC enables feature aggregation
to extract more contextual information.
Multi-scale feature pyramid.
Hardware: Not specified.
Evaluation: AP(%).

Improve mAP for
single stage method.

KITTI
Easy:N\ a
Medium: 90.19%.
Hard: 86.97%.
Time: Not specified.

ITVD [102]

Region Proposal: BFEN.
Feature extractor: ResNet50.
Detector:ITVD which is the combination of
ResNet-50+ BFEN + STM + SLPN.
Hardware: GPU 1080Ti.
Evaluation: AP(%).

Improve detection of
small vehicles by
acquiring high-quality
region proposals.

KTTI:
Easy: 95.85%
Medium: 91.73%
Hard: 86.37%
Time: 0.3 s/img.
DETRAC:
Easy: 92.95%
Medium: 81.43%
Hard: 63.73%
Time: 0.2 s/img.

SINet [82]

Region proposal: Context-aware pooling to
conserve small object properties.
Feature extractor: VGG or PVA.
Detector: Multi-branch decision network
called SINet.
Hardware: Intel Xeon E5-1620 3.5 GHz and
GPU NVIDIA Titan X.
Evaluation: AP(%) and mAP(%).

Handle scale
sensitivity.

KITTI:
Easy: 90.60%
Medium: 89.60%
Hard: 77.75%
Time: 0.11–0.2 s/img.
OWN (LSVH):
mAP: 70.17%.

AP-SSD [103]

Feature extractor: multi-shape and colour
Gabor.
R-Net to generate AG map.
Dynamic Region Enlargement to detect
small objects.
Detector: SSD.
Hardware: Intel Xeon E5-2603 1.8 GHz and
NVIDIA Quadro K620 GPU.

Improve detection
accuracy.

KITTI:
AP: 92.23%
Time: 31.86 fps

Cascade R-CNN
[104]

RoI: RPN.
Detector: cascades of the Faster
R-CNN detector.
Hardware: Single Titan Xp GPU.

Improve detection
quality (increase IoU
threshold) by using
multistage object
detection.

KITTI
Easy: 90.68%.
Medium: 89.95%.
Hard: 78.40%.
Time: 0.14 s/img.

[105]

Feature extractor: ZFNet
Detector: Faster R-CNN
Hardware: Intel Xeon E5-2630 2.40 GHz
64 GR RAM, NVIDIA GTX 1080 GPU.

Vehicle type
classification.

OWN
mAP: 81.05%
Time: 0.354 s/img.
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[106]

Region proposal: uses a novel part-aware
RPN and PAFs to construct feature vectors
for different parts of the vehicle.
Feature extractor: VGG-16.
Detector: Faster R-CNN.
Part-aware NMS to reduce the number of
box candidates.
Hardware: NVIDIA Titan X GPU 12 GB
memory.
Evaluation: mAP(%).

Handle occlusion and
truncation.

KITTI
Easy: 90.21%
Medium: 89.01%
Hard: 80.72%
Time: 2.1 s/img.

MonoFENet [107]

Region proposal: RPN same as Faster
R-CNN, RoI max pooling for the feature
presentation, and RoI mean pooling for RoI
point clouds.
Disparity Estimation: DORN.
Feature extractor: VGG-16 or ResNet-101
for image feature, and PointFE Network for
point clouds features.
Detector: MonoFENet.
Hardware: Not specified.
Evaluation: AP(%).

Feature enhancement
by detecting 3D
bounding boxes.

KITTI
Easy: 91.42%
Medium: 84.09%
Hard: 75.93%
Time: 0.06 s/img.

SS3D [108]

Feature extractor: ResNet34 or drn_c_26
(Dilated Residual network) encoder.
3D boxes Estimator: non-linear least
squares optimizer.
Detector: SS3D.
Hardware: Not specified.
Evaluation: AP(%).

Improve inference time
and detection accuracy
for monocular 3D
vehicle detection.

KITTI
Easy: 92.72%
Medium: 84.92%
Hard: 70.35%
Time: 0.048 s/img.

[109]

Feature extractor:
retrieve-and-transform LTN.
Detector: Faster R-CNN.
Hardware: Not specified.
Evaluation: AP(%).

Trade-off between
accuracy and speed.

KITTI:
Easy: 90.12%
Medium: 88.85%
Hard: 79.62%
Time: 0.4 s/img.

DLNet [110]

Detector: DLNet is a combination of
characteristics of DenseNet, YOLO
and MobileNet.
Hardware: GPu GeForce Titan X.

Improve speed and
decrease resources
requirements.

CITY
AP: 78%.
Time: 71 fps.
Weight: 10.1MB.

[111]
Feature extractor: VGG-16.
Detector: Faster RCNN.
Hardware: Not specified.

Improve detection
accuracy by fine-tuning
Faster RCNN.

CityScapes
AP: 89.06%
Time: Not specified.

[112]

Feature extractor: DarkNet53.
Multi-scale method: Multi-level
feature pyramid.
Detector: YOLOv3.
Hardware: i7-9700 anbd NVIDIA GTX
1080ti.
Evaluation: AP(%).

Handle multi-scale
vehicles.

KITTI:
Easy: 95.04%
Medium: 92.39%
Hard: 87.51%
Time: 2.1 s/img.

[113]

Feature extractor: HOG + LBP + Haar Like
+ VGG.
Detector: SVM + Cascade CNN.
Hardware: i7-8700 CPU 3.2 GHz 16 GB
memory.

Improve detection
accuracy and
robustness.

BDD+Udacity+Other:
Precision: 97.32%
Recall: 98.69%
Time: Not specified.

Liu et al. [102] argues that algorithms such as R-CNN have difficulty to detect small
objects, as the feature maps used for region proposal have limited discriminative infor-
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mation, therefore, they proposed the Backward Feature Enhancement Network (BFEN),
which adds discriminative information from high levels layers to low-level layers in order
to acquire high-quality region proposals. The generated region proposals are then refined
using the Spatial Layout Preserving Network (SLPN) which replaces the conventional FC
layers with the split-transform-merge (STM) blocks. The BFEN have the advantage to
increase the recall values for small objects.. Ren et al. [101] presented a novel DL network
called Recurrent Rolling Convolution (RRC) to improve the mAP of a single-stage detector.
As illustrated in Figure 14 the RRC have the recurrent and the rolling components, these
components enable the system to perform feature gathering and aggregation to extract
more contextual information. RRC has the best result in the KITTI moderate and hard
categories for the 2D monocular vision system.

Figure 14. Recurrent Rolling Convolution (RRC): (a) The recurrent component of the RRC, where I is
the input image, Φ is the feature map and F is feature aggregation function. This block is considered
recurrent because the weights for F and τ are shared in each step, for instance from Φ1 to Φ2 and to
Φ3. (b) It is considered the rolling component because it performs downwards and upwards feature
aggregation [101].

Hu et al. [113] proposed a cascade vehicle detection algorithm which combines a
traditional detector and DL classifier. The traditional detector uses HOG, LBP, and Haar
Like to extract features and SVM to classify vehicle/no-vehicle. Since traditional detectors
in complex scenarios have high false positives, the DL classifier uses the output of the
traditional detector to further enhance the classification performance.

The following works aimed to handle scale sensitivity problem [82,94,96,112]. Cai et al. [94]
implemented a network called multi-scale CNN (MS-CNN) where they were able to detect
vehicles at different scales by using information from different features maps resolution.
The MS-CNN network is made of a proposal and a detection sub-network. At the proposal
sub-network the main convolutions layers streams are divided into three other branches in
order to create three detectors. These three detectors are then combined and used by the
detection sub-networks to yield a final multi-scale detector. The algorithm performed well
on the KITTI easy and moderate categories, but it falls behind in the hard category.

The SDP+CRC(ft) implemented by Yang et al. [96] uses Cascade Rejection Classifiers
(CRC) to reject easy negative samples (background). The regions that are not rejected are
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evaluated by the Scale Dependent Pooling (SDP) model. If the region is small then the SPD
module pools the low-level convolutional features. On the other hand if the region is large
then the SDP pools the high level convolution. The algorithm was able to improve AP and
make the detection more efficient.

Hu et al. [82] identified that the scale sensitivity problem in DCNN has to do with
the RoI pooling method that does not conserve the features of small objects. They also
identified the large intra-class distance between small and large scale images of an object
that belongs to the same class. To overcome these issues, they presented the DCNN,
depicted in Figure 15, called Scale-insensitive Convolutional Neural Network (SINet) that
uses context-aware RoI pooling to conserve features of small objects and a multi-branch
decision network to deal with the intra-class distance. Even though, SINet has a slightly
lower performance than the other cited methods from Table 4, they have the best detection
speed of 0.11 s and 0.2 s.

Figure 15. SInet: The blue and grey blocks are the feature maps and the proposed RoI, respectively,
at different scales. The separated green blocks are the fixed size feature map, pooled by the context-
aware RoI pooling for each RoI scale. The fixed size feature maps are then concatenated and used by
the multi-branch decision network to classify the objects [82].

Wang et al. [103] presented an Adaptive Perceive SSD (AP-SSD) network. The network
replaces the low-level convolutional kernel with multi-shape and colour Gabor filters to
improve detection accuracy. It also has a dynamic region enlargement module, that uses the
Accuracy Gain (AG) map generated by the Amplified Precision Gain regression Network,
to zoom in at specific regions of the input image where small objects are located. These
region candidates are then fed into the SDD detector. The authors implemented the detector
with an LSTM network to further improve accuracy and to enable tracking. The LSTM
enables the information of feature maps to be shared at different frames.

Hong et al. [112] modified the YOLOv3 algorithm by presenting a new multi-level
feature pyramid (FPN). As illustrated in Figure 16, the multi level feature pyramid has
three modules, the feature stitching, encoder–decoder and the feature fusion. The network
was able to achieve impressive results on the KITTI dataset, beating all the mono camera
vehicle detection works. It only stays behind the works that use 3D cloud points, which
are out of the scope of this paper. However, its detection speed of 2.1 s is too high and their
algorithm has not been submitted at the KITTI benchmark.

Fan et al. [93], Gao et al. [98], Wang et al. [105], Fan et al. [111] noticed that Faster
R-CNN [67] has a good vehicle detection performance on dataset such as PASCAL 2007,
but not so well on the KITTI dataset which has more occluded, different angle view,
and multi-scale vehicles. Therefore, by fine-tuning the Faster R-CNN algorithm they were
able to achieve good results on the KITTI easy and moderate categories but not so well
on the hard. Chu et al. [99] improved vehicle detection robustness by presenting a novel
multi-task learning and ensemble DCNN called Region of Interest Voting CNN (RV-CNN)
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and a novel RoI voting method. The algorithm was able to beat all the other mono camera
works in the KITTI hard category at that time.

Figure 16. Multi-level FPN YOLO : three convolutions layers at different levels are stitched, then
this stitched features are encoded and decoded. Finally, the original convolutional layers that were
used by the stitching component and the decoded stitched features are fused to yield a multilevel
feature pyramid [112].

3D information from the objects is valuable because it can help to deal with occlusion
and truncation problem. Therefore, some authors presented some techniques to enhance
vehicle detection by extracting 3D information from monocular camera, for instance,
Chabot et al. [100], Bao et al. [107], Jörgensen et al. [108]. Figure 17 depicts a DCNN
presented by Chabot et al. [100] called Deep Many-Tasks (DeepMANTA). DeepMANTA
have three-levels of refinements, the first level is the generation of RoI, then the second
level uses these generated RoI to predict a set of bounding boxes, and finally, the predicted
bounding boxes are refined again to yield a final set of bounding boxes. This technique,
helps to deal with large intra-class distance problems. The last stage of the DeepMANTA is
to use the final predicted bounding boxes to infer 3D information of the vehicle. At the time
DeepMANTA became the state-of-art mono camera vehicle detection system, achieving
results of 96.40%, 91.10% and 80.79% AP in the KITTI easy, moderate, and hard categories,
respectively. The main drawback of the algorithm is its detection speed that ranges between
0.7 s and 2.0 s.

The monocular Feature Enhancement Networks (MonoFENet) algorithm was intro-
duced by Bao et al. [107], it has two main parts. The first part uses VGG-16 or ResNet-101
to extract features, it adopted the RPN from the faster R-CNN and RoI max pooling to
proposal object categories and 2D bounding boxes. The second part uses the Deep Ordinal
Regression Network (DORN) to estimate disparity from the input image, then RoI mean
pooling is used to create RoI point clouds, then PointFE Network is used to extract features
from the point clouds. Finally, the features acquired from the image and the point cloud
are combined to estimate 3D localisation. Jörgensen et al. [108] presented the Single Stage
Monocular 3D (SS3D) which uses ResNet-34 or Dilated Residual Network (drn_c_26) to
encoder features and non-linear least squares optimiser to estimate 3D bounding boxes.
To overcome occlusion, Zhang et al. [106] presented a Faster R-CNN detection system that
uses part-aware RPN to capture both global and local information from the vehicles. The al-
gorithm outperforms DeepMANTA in the KITTI hard category; however, its detection
speed is still high 2.1 s.

The following works aimed to improve vehicle detection efficiency. Yuan et al. [97]
present, a graph-based algorithm that decreases the number of RoI candidates compared
to the traditional sliding-widow approach, it achieved a detection speed of 1.57 s (2.0
GHz Xeon CPU), however, it does not meet the real-time requirements. The MS-CNN,
SDP+CRC(ft), and SS3D works not only aimed to improve robustness but detection speed
too. The MS-CNN applied feature up-sampling instead of input image up-sampling using
deconvolution and managed to keep the detection speed to 0.4 s (Intel Xeon CPU 2.4 Hz
and NVIDIA Titan GPU). The SDP+CRC(ft) algorithm improved detection speed using the
CRC to reduce the total number of region proposals that will go under feature extraction
and achieved a detection speed of 0.6 s (NVIDIA K40 GPU). The SS3D achieved a detection
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speed of 0.048 s (Tesla V100) by building a lightweight CNN, estimating the bounding
boxes for each proposed object independently, and in parallel, and using the input image
only once during the feature extraction stage. Chen et al. [110] presented a DCNN based on
the DenseLightNet aiming to decrease the resources requirements and increase detection
speed. The algorithm was evaluated using the PASCAL 2007 dataset and it only uses
10.1 MB of memory and achieved a detection speed of 71 fps (GeForce Titan X GPU).
However, it only achieved an average precision (AP) of 82.5%.

Figure 17. DeepMANTA: at phase I three level of refinements is applied; and at phase II the predicted
bboxes from Phase I are used to infer 3D coordinates [100].

Generally, the studies are more focused on improving accuracy, robustness, or effi-
ciency. However, Cai and Vasconcelos [104] proposed a network called cascades R-CNN,
with the aim to improve detection quality. As depicted in Figure 18 several detectors, in this
case Faster R-CNN, are used to perform re-sampling mechanism, where the output of the
first stage detector is fed as input to next stage. Cascades R-CNN has increased AP but
it takes more time to train and test as the number of stages increases. However, this time
overhead it is not high, because only the regression operation is computed which is much
less than the feature extraction computation.

Figure 18. Cascade R-CNN: an input image is convoluted with the backbone convolutions layers
(green), then three different pooling (grey) are applied in the convoluted image. Each one of the
three pooled feature maps are fed into different detectors(dark-blue). The detectors then predict the
class of the objects(orange) and their respective bounding box(light-blue). Notice that the predicted
bounding box "bbox X" from the previous detector is fed as input to the next detector. This cascade
approach enables the network to train with a higher IoU threshold which increases the detector
quality [104].
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5. Pedestrian Detection

Pedestrians are considered one of the most vulnerable road users, therefore, AVs must
be able to detect them in order to avoid collisions. For this, AV has to detect pedestrians
with high accuracy and low inference time. This section is not intended to present a
literature review on pedestrian detection, but it will present an overview of the pedestrian
detection challenges and techniques used over the years. For literature reviews please refer
to the following works, [6,7,114–121]. Pedestrian detection is considered a challenging task
for the following reasons:

• Inconsistence of pedestrian appearance, for example, pedestrians wear different types
and colours of clothes, have different heights, carry different objects in their hands,
and constantly change their pose;

• They are more difficult to detect in environments that are cluttered (busy urban
areas), have a high variance of illumination, are very dynamic and have poor weather
conditions;

• One image might have several pedestrians in different scales. Pedestrian that are far
away in the image does not have distinct boundaries and are obscure;

• Large size and small size pedestrians have scale-variance, for instance, different visual
characteristics and features maps [122];

• Pedestrians change directions very quickly.

The main components used to tackle the challenges of pedestrian detection are, feature
extraction, part deformation model, occlusion model and classification algorithm [123].
The feature extraction component uses algorithms to extract distinct features (descriptors)
from an input image that describes a pedestrian, for example, shape, colour (greyscale or
CIE-LUV), motion, edges, texture and gradients [114]. The extractor algorithms can be
either holistic, where it will look for features that describe an object as a whole (e.g., full
pedestrian); or part-based, where it will look for features that describe different parts of
the object (e.g., pedestrian head, trunk, and limbs). The features extractor algorithms, are
usually categorised as background subtraction, appearance, or motion-based. Background
subtraction involves the subtraction of two given images to isolate moving objects. This
technique is more suitable for surveillance systems because the camera usually needs to
be static, and for systems that use binocular stereo sensors. In the appearance approach,
the features are extracted directly from the image or video pixels. Optical flow detects
velocities of movements from moving objects in an image. These velocities movements are
then represented as brightness patterns [124]. Part deformation model is the component
responsible to handle the pedestrian’s articulations such as head, trunk, and limbs. Part
deformable models are suitable to handle occluded objects, but its performance is highly
affected when applied to objects that are too small and with low resolution. One state-of-
the-art deformation model algorithm is the Deformable Part Model (DPM) [125,126]. It
was previously discussed that pedestrians can be easily occluded by other objects, hence an
occlusion handling algorithm such as the detection scores of blocks or parts [127] is used.
The classification algorithms use the information acquired from the extracted features to
classify the objects as pedestrian or non-pedestrian.

In the literature, pedestrian detection has been implemented using either traditional
computer vision, DL, or hybrid techniques. The hybrid technique combines traditional and
DL techniques.

5.1. Traditional Techniques

Dalal and Triggs [47], Viola et al. [128] are considered the pioneers of traditional
pedestrian detection, because of their ground breaking work for the pedestrian detection
system. Some of the most remarkable traditional pedestrian detection works from 2000 to
nowadays are listed in Table 5, for more works between 2000 and 2015 see [6].
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Table 5. Relevant works for pedestrian detection using traditional techniques.

Work Feature Classification MR

VJ [128] Appearance + Motion (VJ-rectangles) Cascade-AdaBoost 94.73%

HOG [47] HOG Linear SVM 68.46%

SHAPELET [129] SHAPELET AdaBoost 91.37%

LatSvm-V1 [125] HOG + DPM Laten SVM 79.78%

HIKSVM [130] HOG HIKSVM 73.39%

MULTIFTR [131] HOG + Shape Context + Haar Features Linear SVM 68.26%

LatSvm-V2 [126] HOG + DPM Latent SVM 63.26%

ChnFtrs [132] ICF AdaBoost 56.34%

FPDW [133] Approximate Multiscale Gradient histograms + ICF AdaBoost 57.40%

MULTIFTR+MOTION [134] HOG + Optical Flow + CSS HIKSVM 50.88%

MLS [135] Macro-feature (Shapes) AdaBoost 61.03%

CorssTalk [136] HOG + LUV + ICF Crosstalk Cascade 53.88%

SquaresChnFtrs [137] HOG + LUV Linear SVM 50.17%

Roerei [137] HOG + LUV + Multi-Scales + Global Normalisation Linear SVM 48.50%

ACF [138] HOG + LUV + Normalised Gradient Magnitude AdaBoost 51.36%

InformedHaar [139] Haar-Like + HOG + LUV AdaBoost 34.60%

LDCF [140] Same as ACF Same as ACF 25.0%

Katamari-v1 [6] HOG + LUV + DCT+ Optical Flow Not Clear 22.49%

Checkerboards [141] HOG + LUV (Filtered channels feature) AdaBoost 18.50%

NNNF-L4 [142] HOG + LUV NNF: SIDF and SSF AdaBoost 16.84%

FSSS [143] ACF + FSSS RealBoost L3 Decision tree 13.96%

Table 5 describes what feature extractors and classifiers the authors have used, as well
as their miss rate (MR) percentage in the Caltech dataset [6]. According to the table, most
of the works adopted the combination of HOG and linear SVM or HOG and AdaBoost as
the baseline detector. Then, from the baseline detector, the authors tried to improve the de-
tection accuracy by increasing and diversifying the features. Another trend from the table
is that as the numbers of extracted features increased the better the MR percentage was got,
for instance, the Katamari-V1 algorithm used HOG, LUV, DCT and optical flow features
and achieved an MR of 22.49%, and the FSSS algorithm used ACF (HOG+LUV+Normalised
gradient magnitude) and Feature selected self-similarity and achieved an MR of 13.93%.
These trends were also noticed by Benenson et al. [6], where they concluded that: choosing
the right training dataset can improve system performance, the classifier does not play
an important role in order to improve the detector quality, the multi-scale system only
have a small contribution to the system accuracy, DPM might not be necessary for detec-
tion in normal conditions, but it may handle occlusion problems, image context features
improve accuracy, using additional information such as optical flow and finally, stereo
images might improve the system; however, some of the top detection systems only use
appearance information.

5.2. Hybrid and DL Techniques

As observed in Table 6, from 2015, the number of works submitted at the Caltech
benchmark using traditional techniques started to decrease. In contrast, as reported in
Table 6, from 2015 to 2017 the hybrid technique was heavily researched. It is observed
that hybrid algorithms that had more extracted features were the ones with the best
MR percentage, for instance, the MCF and SA Fast-RCNN algorithms achieved MR of
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10.40% and 9.32%, respectively. Although hybrid techniques have achieved impressive
results from 2017 to nowadays, most works adopted the DL technique. One reason for
this preference is that DL techniques achieved similar or better results and does not
require handcrafted features. The types of DL networks used for pedestrian detection
are CNN, Recurrent Neural Network (RNN)-Long Short Term Memory [144] (LSTM),
Ensemble network, Cascade network, and Encoder-decoder networks. Recurrent neural
networks are good for a system that uses temporal or sequential data. It has been used
to refine feature maps [101], to learn specific features [145], to improve bounding box
localisation [146], and to extract semantic information [147]. Ensemble networks fuse
multiple learning algorithms to improve the system accuracy. Du et al. [148,149] fused
several DNNs to refine the pedestrian candidates generated by the SSD algorithm, Brazil
et al. [150] fused RPN and R-CNN to improve their system performance, and Brazil and
Liu [145] fused several RPNs to improve the system precision. As mentioned by Brazil and
Liu [145], the limitation of ensemble networks is that they require a lot of memory as the
networks become bigger. Cascaded networks also involve multiple learning algorithms;
however, they are somehow connected in series. The information learned by one network
is transferred to the next network. Brazil and Liu [145] used cascaded networks to improve
detection precision. Encoder–decoder networks are a kind of RNN that allows the input
and the output sequence to have different lengths. Brazil and Liu [145] used encoder-
decoder to compact the information sent from one node to another, this reduces the use
of memory. The state of art algorithm in the Caltech benchmark is the AR-Ped where the
authors combined all the previously discussed DL networks (Ensemble + Encoder-Decoder
+ Cascade + RNN) and achieved an MR of 6%.

More recently, researchers have attempted to improve detection algorithm gener-
alisation performance, using cross-dataset evaluation and progressive training pipeline
techniques. Cross-dataset evaluation is the process of training and testing the detection
algorithm with different datasets. Progressive training pipeline, merges two or more
datasets to train the algorithm and then uses another dataset to test it. It also involves
the procedure of pre-training, training, and testing the algorithm with a different dataset.
For instance, Hasan et al. [151] performed an extensive study, and reported that pedestrian
detector generalisation performance can be improved when using cross-data evaluation
and progressive training pipeline. In their paper, they trained the detection algorithm
with the CityPerson dataset and tested it with the Caltech dataset, and they were able
to achieve MR of 8.8%. They also pre-train, trained, and tested their algorithm with the
Wider Pedestrian, ECP, and Caltech datasets, respectively, and were able to achieve an MR
of 2.5%.

Table 6. Relevant works for pedestrian detection using hybrid or DL techniques.

Work Methods Algorithm Objective Dataset & Results

DBN-Isol
[127]

Hybrid
HOG + DPM + Scores of parts + Model-part
Visibility Estimation
Deep Model
Hardware: Not specified.
Evaluation: MR(%).

Occlusion handling and
deformations.

Caltech
Reasonable: 61.00%
Heavy: 93.00%
Time: Not specified.

ConvNet
[152]

DL
LeNet CNN.
Unsupervised Multi-Stage Feature Learning
Hardware: Not specified.
Evaluation: MR(%).

Improve features.
Caltech
Reasonable: 77.20%
Time: Not specified.
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Table 6. Cont.

Work Methods Algorithm Objective Dataset & Results

DBN-Multi
[153]

Hybrid
HOG + DPM + Part Detection Score
Mutual Visibility Deep model
Hardware: 2.27 GHz CPU.
Evaluation: MR(%).

Cluttered background.
Caltech
Reasonable: 48.00%
Time: Not specified.

ContDeepNet or SDP
[154]

Hybrid
HOG + CSS + Feature Pyramid
Deep Model
Hardware: Not specified.
Evaluation: MR(%).

Improve features.
Caltech
Reasonable: 45.00%
Time: Not specified.

UDN\JointDeep
[123]

Hybrid
Unify feature extraction, part deformation
model, occlusion handling and classification.
Standard CNN
Back-propagation for Optimisation
Hardware: Not specified.
Evaluation: MR(%).

Improve features,
deformation, occlusion,
and classification.

Caltech
Reasonable: 39.00%
Time: Not specified.

SDN
[155]

Hybrid
HOG + CSS + SVM for pruning.
Learn Features + Saliency Maps +
Mixture Representations
Switchable Restricted Boltzmann Machine +
CNN
Hardware: NVIDIA GTX 760 GPU.
Evaluation: MR(%).

Cluttered background and
occlusion.

Caltech
Reasonable: 37.87%
Time: <0.1 s/img.

CompACT-Deep
[156]

Hybrid
ACF + HOG + LUV
Complexity aware cascade training (AdaBoost)
Hardware: Intel Xeon E5-2620 64 GB RAM and
NVIDIA Tesla K40m GPU.
Evaluation: AP(%) for KITTI and MR(%) for
Caltech.

Trade-off between accuracy
and complexity.

Caltech
Reasonable: 11.7%
KITTI
Easy: 70.69%
Medium: 58.74%
Hard: 52.71%
Time: 1 s/img.

MS-CNN
[94]

DL
Multi-Scale (Uses earlier layers of the Network
since it is better to detect small objects)
Proposal and Detection network.
Deconvolutional Layer to increase feature
map resolution.
Hardware: Intel Xeon E5-2630 64 GB RAM and
NVIDIA Titan GPU.
Evaluation: AP(%) for KITTI and MR(%) for
Caltech.

Variance in instance scale and
fast detection.

Caltech
Reasonable: 9.95%
KITTI
Easy: 83.92%
Medium: 73.70%
Hard: 68.31%
Time: 0.4 s/img.

RPN+BF
[157]

DL.
RPN region proposal
BF to mine hard negative examples.
Faster-RCNN for detection.
Hardware: Tesla K40 GPU.
Evaluation: AP(%) for KITTI and MR(%) for
Caltech.

Variance in instance scale.

Caltech
Reasonable: 9.60%
Time: 0.5 s/img.
KITTI
Easy: 77.12%
Medium: 61.15%
Hard: 55.12%
Time: 0.6 s/img.
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Table 6. Cont.

Work Methods Algorithm Objective Dataset & Results

MCF
[158]

Hybrid
Multi-layer Channel features
Integrates HOG+LUV channels + the
CNN layers
Multistage cascade AdaBoost as the learn and
classification algorithm.
Hardware: Intel Core i7-3700.
Evaluation: MR(%).

Improve features.
Caltech
Reasonable: 10.40%
Time: 0.54 fps.

F-DNN
and F-DNN+SS
[148]

DL -Ensemble.
SSD for pedestrian candidate generator.
Multiple binary classification DNNs (Resnet
and GoogLeNet).
SNF for network fusion.
Semantic Segmentation to refine
object detection.
Hardware: NVIDIA Titan X GPU.
Evaluation: MR(%).

Fast and robust.

Caltech
F-DNN: 8.65%
F-DNN+SS: 8.18%
Time: 2.48 s/img.

SA Fast-RCNN
[122]

Hybrid
ACF for region proposals.
Combine a large-size and a
small-size sub-network.
Divide-and-conquer philosophy.
Hardware: NVIDIA GeForce GTX Titan X GPU
12 GB.
Evaluation: AP(%) for KITTI and MR(%) for
Caltech.

Variance in instance scale.

Caltech
Reasonable: 9.32%
KITTI
Easy: 77.93%
Medium: 65.01%
Hard: 60.42%
Time: 0.59 s/img.

SDS-RCNN
[150]

DL -Ensemble
Semantic Segmentation.
RPN+BF region proposal.
Hardware: Titan X GPU.
Evaluation: AP(%) for KITTI and MR(%) for
Caltech.

Detection accuracy.

Caltech
Reasonable: 7.36%
KITTI
Medium: 63.05%
Time: 0.21 s/img.

ADM
[146]

DL -RNN Resnet to extract features
R-CNN for pedestrian proposals.
Active detector using RNN (LSTM) to improve
bbox predictions.
Hardware: Not specified.
Evaluation: MR(%).

Variance in instance scale.
Caltech
Reasonable: 9.0%
Time: Not specified.

PCN
[147]

DL -RNN Part and Context Network.
RNN (LSTM) for semantic information.
Hardware: Not specified.
Evaluation: MR(%).

Occlusion handling.
Caltech
Reasonable: 8.4%
Time: Not specified.

GDFL
[159]

DL
VGG16 to extract feature.
Scale-aware pedestrian attention module.
Zoom-in-Zoom-out module using max-pooling
and bi-linear interpolation.
Hardware: Single GeForce GTX 1080Ti GPU.
Evaluation: AP(%) for KITTI and MR(%) for
Caltech.

Improve feature extraction.

Caltech
Reasonable: 7.84%
KITTI
Easy: 84.61%
Medium: 68.62%
Hard: 66.86%
Time: 20 fps.
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Table 6. Cont.

Work Methods Algorithm Objective Dataset & Results

F-DNN2 SS
[149]

DL -Ensemble
SSD to generate pedestrian candidates.
Soft-rejection to adjust confidence.
Semantic Segmentation.
Hardware: Single NVIDIA Titan X GPU.
Evaluation: AP(%) for KITTI and MR(%) for
Caltech.

Detection accuracy and
velocity.

Caltech
Reasonable: 7.67%
KITTI
Easy: 74.05%
Medium: 61.17%
Hard: 57.15%
Time: 2.48 s/img.

TLL-TFA
[160]

Topological annotation to introduce
less ambiguity.
MRF to eliminate ambiguities in
occlusion cases.
Temporal feature aggregation as an
extra feature.
Hardware: Not specified.
Evaluation: MR(%).

Variance in instance scale.
Caltech
Reasonable: 7.40%
Time: Not specified.

AR-Ped
[145]

DL -Ensemble + Encoder-Decoder + Cascade +
RNN
Auto-regressive RPN.
Decoder-encoder module for
feature refinement.
R-CNN classifier.
Hardware: NVIDIA 1080Ti GPU.
Evaluation: AP(%) for KITTI and MR(%) for
Caltech.

Improve features.

Caltech
Reasonable: 6.45%
KITTI
Easy: 83.66%
Medium: 73.44%
Hard: 68.18%
Time: 91ms/img.

Parallel-Net
[161]

DL
Fire modules to reduce parameters.
Feature Fusion: Parallel convolutional layers
are combined.
Detector: Parallel-Net.
Hardware: NVIDIA 2080Ti GPU.
Evaluation: AP(%) for KITTI and MR(%) for
Caltech.

Improve features and reduce
parameters.

Caltech
Reasonable: 54.61%
Time: 35.71 fps.
KITTI
Combined: 77.90%.
Time:2.26 fps.

Adaptive Perceive
-SSD [103]

See Table 4
Evaluation: AP(%). See Table 4 KITTI

Combined: 92.42%.

CSP
Liu et al. [162]

Detector:Center Scale Prediction (CSP).
Resnet to extract centre points that can
represent heat and scale map of the
pedestrians.
Hardware: GTX 1080Ti GPU.
Evaluation: MR(%).

Avoid the use of sliding
windows or anchor boxes.

Caltech
Reasonable: 4.5%
Time: 0.33 s/img.

W3-Net
Luo et al. [163]

Feature Extractor: ResNet-50 + FPN.
Detector: Where, what, and Whether Network
(W3-Net).
GAN transforms 2D images to Bird-view-map.
Transform from bird view to front view map to
create a relationship between object scale and
depth.
Encoder-Decoder technique to re-encode body
parts into full body.
Hardware: NVIDIA GTX 1080Ti.
Evaluation: MR(%).

Handling occlusion.

Caltech
Reasonable: 6.37%
Heavy: 28.33%
CityPerson
Reasonable: 9.3%
Heavy: 18.7%
Time: 0.31 s/img.
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Work Methods Algorithm Objective Dataset & Results

TFAN
Wu et al. [164]

Feature Extractor: ResNet.
Detector:Tube feature aggregation network
(TFAN).
Temporal feature fusion: temporally
discriminative embedding module and
part-based relation module.
Hardware: Not specified.
Evaluation: MR(%).

Make use of temporal context
information to handle heavy
occlusion.

Caltech
Reasonable: 6.5%
Heavy: 31.5%
Time: Not specified.

MFPN
[165]

Resnet to extract features.
Feature Fusion: Bi-direction FPN to acquire
more semantic information.
Repulsion Loss of Minimum to increase
detection quality.
Hardware: i7-6500 CPU 2.5 GHz and NVIDIA
GTX 1080Ti GPU.
Evaluation: AP(%).

Handling occlusion.
CrowdHuman
90.96%.
Time: Not specified.

DAGN and DAGN++
Xie et al. [166]

Detector: cascade R-CNN.
Tone mapping to deal with poor illumination.
Deformable Convolution with an Attention
Module.
DAGN++ uses progressive training pipeline.
Hardware(Testing): Single GTX Titan X GPU.
Evaluation: MR(%).

Handling occlusion.

Caltech
DAGN: 6.03%
DAGN++: 1.84%
Time: 0.11 s/img.

Pedestron
Hasan et al. [151]

Cross-dataset evaluation.
Progressive training pipeline.
Detector: cascade R-CNN.
Hardware: Not specified.
Evaluation: MR(%).

Handling generalisation
limitations.

Caltech:
Reasonable: 2.5%
Small: 9.9%
Heavy: 31.0%
Cityperson:
Reasonable: 9.7%
Small: 11.8%
Heavy: 31.0%
Time: Not specified.

6. Discussion

This paper surveys how generic, pedestrian, and vehicle detection algorithms have
evolved from simple traditional techniques to DL, and investigates the main limitations of
DL object detection algorithms and what has been done up to now to overcome these.

Up until 2008, basic feature extractor algorithms were widely used for classification
and detection, however, these features are easily affected by reflection, low light intensity,
severe weather conditions and other objects. Hence, from 2008 to 2015 traditional ML
algorithms became popular; however, these algorithms are highly affect when tested in
complex scenarios and the features are manually extracted. From 2015 to 2017, hybrid
approaches were used and showed a good detection performance, but they still need
features to be manually extracted. From 2017 to nowadays, most works have adopted DL
techniques since they have shown to have better performance than traditional algorithms,
require less time and expertise to be developed. However, traditional algorithms also have
their advantages, for example, they require less resource, they are not considered as black
box, and they might be more useful for systems that do not require generalisation. In the
past, DL was restricted to limited CPU, GPU, memory, and dataset resource, but nowa-
days, as these resources became more available, DL learning has significantly evolved,
for instance, a conventional CNN would have only five layers [52] and nowadays there
are networks with more than hundred layers [62]. The most used DL technique for object
detection are CNNs but RNNs (LSTMs) [101,145–147] and ensemble networks [148–150]
are becoming popular.
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Detection algorithms, especially for pedestrians and vehicles, must be accurate, ro-
bust, fast, and low cost. One point to clarify is the relationship between accuracy and
robustness for detection algorithms. Yang et al. [167]reported that there is a trade-off
between robustness and accuracy. However, from the authors’ point of view, the reviewed
techniques that were used to improve robustness positively reflected on the accuracy.
For example, [82,94,96,112] used techniques to make detection algorithms more robust to
scale variance and they reported an increase in accuracy. This relationship also applies if
robust techniques are used to detect objects that are affected by occlusion, severe illumina-
tion and weather conditions. If this relationship is considered, then to make generic objects,
pedestrians and vehicles detection systems more accurate and robust, the reviewed works
made use of the following approaches:

• Deeper networks to extract more features from different levels of abstraction. The
downside is that the deeper network can suffer vanishing gradient issues, and it
requires more memory and computational work [62];

• High-resolution input image approach which enables the network to extract more
discriminative information, however, it requires more memory and computation
power [56];

• Smaller receptive kernels to extract more information from the input image. However,
smaller receptive kernels focus more on local information [59];

• Transfer learning technique, enables a network to transfer the parameters learnt from
a task to another. This enables the network to learn in less time and to have better
performance. However, the transferring of learning is only possible if the new task is
closely related to the previously learned one;

• SSP to avoid warping, cropping, and accept images with different sizes and scales. It
might affect accuracy performance, since the layers where the SPP is placed cannot be
fine-tuned [66];

• Algorithms, such as WordTree, to combine multiple datasets. This enables the algo-
rithm to improve performance and have better generalisation, but it can be complex
to implement [71];

• Use different feature maps to predict bounding-box coordinates for multi-scale ob-
jects [73];

• Focal Loss Function to pay more attention to the positive sample (actual object) instead
of the negative samples (background). This increases the algorithm efficiency and
accuracy, however, it is required to fine-tune one more parameter [72];

• Multi-scale detection approaches such as multi-scale images, multi-scale features,
anchor boxes, FPN, or using information from different layers of the network. An ideal
multi-scale detector would be able to use various input images with different scales;
however, this is very computationally expensive. The other cited options use methods
to approximate the multi-scale feature map, therefore, the algorithm might be losing
important information that could be used to better detect the objects [94];

• Region proposal algorithms that pay more attention to small objects. This increases
the recall values of small objects, but it can be complex to devise [102];

• Multi-branch decision networks to deal with the intra-class distance. It increases the
accuracy performance, however, it can be slightly more complex to implement because
each branch needs to be designed according to the different scales of the object;

• Multitasking learning enables sharing of knowledge and can increase accuracy perfor-
mance. However, it slightly increases the computation load [99];

• Ensemble network enable diversification but can make the algorithm computational
expensive;

• 3D information, which provides more discriminative features to better detect and
localise objects [100,107,108];

• Multiple levels of refinement, which increases the accuracy performance, but increases
the detection speed as well [100];
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• Disparity and point clouds estimation algorithms. They are used to extract 3D in-
formation which can increase the accuracy performance, however, they increase the
algorithm complexity too [107];

• Part-aware RPN to increase the robustness of the algorithm to detect occluded objects.
The drawback is that, it is complicated to combine the different detected parts to form
the whole body [106];

• Techniques to transfer information from high-level layers to low-level layers to acquire
high-quality region proposal [102];

• RNNs (LSTMs) to refine detection and localisation;
• RRC to improve accuracy detection and bounding box quality. After six iterations

of the RRC, there is no further improvement because it needs an efficient memory
mechanism [101].

• Feature fusion techniques to acquired richer feature maps as in Zhu and Wu [161], Wu
et al. [164], Shao et al. [165].

• Deformable part technique to detect occluded objects. It increases the detection
accuracy; however, a method is required to combine the detected parts of the same
objects as in Luo et al. [163], Xie et al. [166]

Pedestrian and vehicle detection systems must be efficient in terms of memory and
processing speed, since AVs must detect objects in real-time to plan upfront the actions
that it must take. In addition, embedded devices are usually used by AV, although they are
smaller and cheaper than actual GPU and CPU, they have limited memory and processing
speed. In order to make the detection system more efficient, the reviewed works made use
of the following approaches:

• Pooling layers or 1 × 1 convolution kernels to down-sample feature maps [56,61];
• Stacks of small kernels instead of bigger ones to compute less variables [59];
• Share computation where feature maps are computed only once [66];
• Region proposal algorithm or RPN instead of densely apply sliding windows in the

whole image [64];
• Feature pyramid instead of image pyramid [69];
• Single stage instead of two stage algorithms, since they do not require region pro-

posal [68,71];
• Decrease the number of RoI candidates [99].

The following paragraphs take into consideration the achieved accuracy and efficiency
of the current pedestrian and detection algorithms, in order to discuss if they can be
deployed in an AV perception system.

AVs are safety-critical systems and it is crucial that they should detect small and
occluded pedestrians and vehicles with a high accuracy. For instance, it was previously
mentioned that road accidents are one of the main reasons for children deaths, since they
are generally smaller and harder to detect. In a situation where vehicles are at a high
speed, drivers must detect pedestrians or vehicles further ahead to take appropriate actions.
However, objects that are further ahead are smaller and have low resolution. Pedestrians,
especially children, can be easily occluded between parked cars. The review shows that,
although many approaches were presented to improve the detection performance of
pedestrian and vehicle algorithms, they still struggle to detect small and occluded objects.
For example, the two works reported in this paper that acquired the best results for a
mono-vision pedestrian on the KITTI dataset were Cai et al. [94] and Brazil and Liu [145],
where the former work achieved 83.92%, 73.70% and 68.31%; and the latter achieved
83.66%, 73.44%, and 68.18% for the easy, moderate and hard categories. The work that
achieved the best result for vehicle detection reported in this paper on the KITTI dataset
was performed by Ren et al. [101], where they were able to achieve 90.19% and 86.97% in
the KITTI moderate and hard categories. It is noticed that the detection accuracy drops
when the algorithms are tested on the moderate and hard categories, meaning that they
still struggle to detect small, occluded and truncated objects. For these reasons, from the
authors’ point of view, the current pedestrian and vehicle detection algorithms are still
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not suitable for AV perception systems. Another reason why the current algorithms are
still not suitable for AV perception systems, is that most of the algorithms have been
tested in well-recognised datasets such as Caltech and KITTI, and these datasets have their
limitations. As observed by Hasan et al. [151], only using these well known datasets to
train and test the detection algorithms might limit their generalisation performance.

AVs should meet real-time requirements in order to make quick decisions to avoid
collisions. From our review, it is not possible to conclude if the reviewed works meet real-time
requirements for AVs, for the following reasons: several works have not reported the hardware
they have used and the achieved detection time, for example, Chu et al. [99], Ren et al. [101];
and the hardware reported were not appropriated for AVs since they are large, heavy, not
power-efficient, and not cheap. Furthermore, it is not possible to make a fair comparison
between the algorithms to decide which one is the fastest, for the reason that the works
have used different GPUs and CPUs. For example, Cai et al. [94] reported a detection speed
of 0.4 s/img using a NVIDIA Titan GPU, while Liu et al. [102] reported a detection speed
of 0.2 s/img using a 1080Ti GPU.

7. Conclusions

Pedestrians and vehicles are important objects that AV perception systems must detect.
Hence the purpose of this review was to survey the most relevant pedestrian and vehicle
detection algorithms. Since several pedestrian and vehicle detection algorithms made
use of the same or a modified version of the methods used in generic object detection
algorithms, this paper also reviews relevant generic object detection algorithms. The review
shows that:

• Nowadays, the preferred methods for object detection are based on DL techniques;
• Even though good results have been achieved for pedestrian and vehicle detection,

the current algorithms are still struggling to detect small, occluded and truncated
objects;

• There is limited work that investigates how to improve detection performance in bad
illumination and weather conditions;

• From the authors’ point of view, the current algorithms are still not ready to be
deployed in AV perception systems;

• Using only the traditional datasets (e.g., Caltech, KITTI, etc.) can make the algorithms
have limited generalisation;

• It is not possible to make a fair comparison between the achieved detection speed of
the algorithms, because they have been trained and tested in different hardware (e.g.,
GPUs, CPUs, etc.);

• Using techniques, such as ensemble and cascade architectures, to combine different
detection algorithms has been shown to improve accuracy performance.

Suggested Future Research Directions

The authors would recommend the following future works:

• Have more research that adopts ensemble techniques, since there is limited work that
did this, and the ones reported in this review achieved improvement on the detection
performance;

• Implement pedestrian and vehicle algorithms with more new challenging and large
datasets, such as PIE Rasouli et al. [168] and BDD100K Yu et al. [169];

• Adopt cross-dataset evaluation and progressive training pipelines to increase general-
isation performance, such as in Hasan et al. [151];

• Explore and improve detection algorithms in scenarios where weather and illumina-
tion conditions are challenging;

• Make a comparative study of the reviewed algorithms to report which one gives
the best trade-off between accuracy and efficiency. In the comparative study, all the
algorithms should be trained and tested on the same set of hardware. Although Haris
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and Glowacz [23] performed a comparative study of DL algorithms to detect road
objects, they only compared the most known general object detection algorithms;

• Analyse if the reviewed algorithms meet AV real-time requirements. The authors
would suggest adapting and implementing the reviewed algorithms in embedded
devices, such as NVIDIA DRIVE Orin, NVIDIA DRIVE AGX Pegasus, and so forth.
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Abbreviations
The following abbreviations are used in this manuscript:

AV Autonomous Vehicle.
DL Deep Learning.
KITTI Karlsruhe Institute of Technology and Toyota Technological Institute
PIE Pedestrian Intention Estimation.
BDD100K Berkeley DeepDrive.
ADAS Advanced Driver Assistance System.
HDAI Hazard Detection System.
DARPA Defence Advanced Research Projects Agency.
SAE Society of Automotive Engineers.
V2V Vehicle to Vehicle.
V2I Vehicle to Infrastructure.
SLAM Simultaneous Localisation and Mapping.
CDD Charge-coupled Devices.
CMOS Complementary Metal-oxide Semiconductors.
LIDAR Light Detection and Ranging.
RADAR Radio Detection and Ranging.
IMU Inertial Measurement System.
GNSS Global Navigation Satellite Systems.
ML Machine Learning.
CNN Convolutional Neural Network.
PID Proportional Integral Derivative.
SIFT Scale Invariant Feature Transform.
HOG Histogram of Oriented Gradient.
EOH Edge-Orientation-Histograms.
ISM Implicit Shape Model.
SSC Self-similarity Channels.
SURF Speeded Up Robust Features.
MSER Maximally Stable Extremal Regions.
ICF Integral Channels Features.
ACF Aggregated Channel Features.
SVM Support-Vector-Machine.
AdaBoost Adaptive Boosting.
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ANN Artificial Neural Network.
BBF Best-Bin-First.
HT Hough Transform.
ILSVRC ImageNet Large-Scale Visual Recognition Challenge.
R-CNN Region Convolutional Neural Network.
SPP-Net Spatial Pyramid Pooling Network.
RoI Region of Interest.
RPN Region Proposal Network.
FPS Frame Per Second.
FPN Feature Pyramid Network.
YOLO You Look Only Once.
SSD Single Shot Multi-box Detection.
LIEM Local Information Extraction Model
GIEM Global Information Extraction Model
DNN Deep Neural Network.
MSF Multi-scale Features.
EMA Exponential Moving Average.
IoU Intersection Over Union.
ITS Intelligent Transportation Systems.
LBP Local Binary Patterns.
PCA Principal Component Analysis.
2D-DBN 2D Deep Belief Network.
BFEN Backward Feature Enhancement Network.
SLPN Spatial Layout Preserving Network.
FC Fully Connected Layer.
RRC Recurrent Rolling Convolution.
mAP mean Average Precision.
MS-CNN Multi-scale CNN.
SDP + CRC Scale Dependent Pooling and Cascade Rejection Classifiers.
DeepMANTA Deep Many-Tasks.
monoFET monocular Feature Enhancement Networks
DORN Deep Ordinal Regression Network.
SS3D Single Stage Monocular 3D.
TP True Positive.
DR Detection Rate.
AP Average Precision.
FP False Positive.
RE Recognition Error.
ITVD Imporving Tiny Vehicle Detection.
PAFs Part Affinity Fields.
DPM Deformable Part Model.
MR Miss Rate.
RNN Recurrent Neural Network.
LSTM Long Short Term Memory.
SINet Scale-insensitive Convolutional Neural Network.
LSVH Large Scale Variance Highway.
RV-CNN Region of Interest Voting CNN.
UTS Urban Traffic Surveillance.
FVPN Fast Vehicle Proposal Network.
ALN Attributes Learning Network.
DCT Discrete Cosine Transform.
CSS Self-similarity on colour channels.
NNF Non-Neighbouring Features.
SIDF Sine-Inner Difference Features.
SSF Symmetrical Similarity Features.
FSSS Feature Selected Self-Similarity.
SDN Switchable Deep Network.
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BF Boosted Forest.
SNF Soft-rejection Network Fusion.
SDS Simultaneous Detection and Segmentation.
MRF Markov Random Field.
AG Accuracy Gain.
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