

Wind Power Forecasting with Deep
Learning Networks: Time-Series
Forecasting

Wen-Hui Lin, Ping Wang, Kuo-Ming Chao, Hsiao-Chung Lin, Zong-Yu Yang
and Yu-Huang Lai

Final Published Version deposited by Coventry University’s Repository

Citation
https://dx.doi.org/10.3390/app112110335

DOI 10.3390/app112110335
ISSN 2076-3417

Publisher: MDPI

This is an open access article distributed under the Creative Commons Attribution
License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited

https://dx.doi.org/10.3390/app112110335
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

applied
sciences

Article

Wind Power Forecasting with Deep Learning Networks:
Time-Series Forecasting †

Wen-Hui Lin 1, Ping Wang 1,* , Kuo-Ming Chao 2, Hsiao-Chung Lin 1 , Zong-Yu Yang 1 and Yu-Huang Lai 1

����������
�������

Citation: Lin, W.-H.; Wang, P.; Chao,

K.-M.; Lin, H.-C.; Yang, Z.-Y.; Lai,

Y.-H. Wind Power Forecasting with

Deep Learning Networks:

Time-Series Forecasting. Appl. Sci.

2021, 11, 10335. https://doi.org/

10.3390/app112110335

Academic Editor: Nikos D. Lagaros

Received: 20 October 2021

Accepted: 31 October 2021

Published: 3 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Green Energy Technology Research Center, Faculty of Department of Information Management,
Kun Shan University, Tainan 710303, Taiwan; linwh@mail.ksu.edu.tw (W.-H.L.);
fordlin@mail.ksu.edu.tw (H.-C.L.); s109000200@g.ksu.edu.tw (Z.-Y.Y.); s106001738@g.ksu.edu.tw (Y.-H.L.)

2 Engineering and Computing, School of MIS, Coventry University, Coventry CV1 5FB, UK;
csx240@coventry.ac.uk

* Correspondence: pingwang@mail.ksu.edu.tw; Tel.: +886-6-205-0545
† This paper is an extended version of our paper published in 7th IEEE International Conference on Applied

System Innovation 2021 (IEEE ICASI2021), Chiayi, Taiwan, 24–25 September 2021.

Abstract: Studies have demonstrated that changes in the climate affect wind power forecasting
under different weather conditions. Theoretically, accurate prediction of both wind power output
and weather changes using statistics-based prediction models is difficult. In practice, traditional
machine learning models can perform long-term wind power forecasting with a mean absolute
percentage error (MAPE) of 10% to 17%, which does not meet the engineering requirements for
our renewable energy project. Deep learning networks (DLNs) have been employed to obtain
the correlations between meteorological features and power generation using a multilayer neural
convolutional architecture with gradient descent algorithms to minimize estimation errors. This
has wide applicability to the field of wind power forecasting. Therefore, this study aimed at the
long-term (24–72-h ahead) prediction of wind power with an MAPE of less than 10% by using the
Temporal Convolutional Network (TCN) algorithm of DLNs. In our experiment, we performed TCN
model pretraining using historical weather data and the power generation outputs of a wind turbine
from a Scada wind power plant in Turkey. The experimental results indicated an MAPE of 5.13%
for 72-h wind power prediction, which is adequate within the constraints of our project. Finally, we
compared the performance of four DLN-based prediction models for power forecasting, namely,
the TCN, long short-term memory (LSTM), recurrent neural network (RNN), and gated recurrence
unit (GRU) models. We validated that the TCN outperforms the other three models for wind power
prediction in terms of data input volume, stability of error reduction, and forecast accuracy.

Keywords: renewable energy; wind power forecasting; deep learning network; temporal convolu-
tional network; long short-term memory

1. Introduction

With the increasingly serious global warming crisis and the burning of fossil fuels
inducing air pollution and climate change, concerned parties have begun to invest in the
development and application of renewable energy. European countries such as Denmark,
Germany, and Sweden have invested in renewable energy through smart power grids, in
which power suppliers and regional suppliers provide two-way complementary power
supply and demand. The key technology of a smart power grid is power forecasting in
relation to renewable energy, which is a clean power supply.

Many techniques have been applied to wind power forecasting to solve various
problems, such as the fluctuations in power from wind farms for very short-term, short-
term (from 30 min to day-ahead), medium-term (from day-ahead to month-ahead), and
long-term (more than month-ahead) [1].

Appl. Sci. 2021, 11, 10335. https://doi.org/10.3390/app112110335 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8077-4759
https://orcid.org/0000-0001-8304-4786
https://doi.org/10.3390/app112110335
https://doi.org/10.3390/app112110335
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112110335
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112110335?type=check_update&version=2

Appl. Sci. 2021, 11, 10335 2 of 21

Wind power forecasting prediction models can be classified using the following three
approaches: (1) the physical approach, in which weather changes are considered as deter-
ministic events [1], (2) the statistical approach, in which weather changes are considered
as a random process [2,3], and (3) the hybrid approach, which constitutes a weighted
aggregation of the other two prediction models [4–9]. Compared with these three methods
for wind power prediction problems, deep learning network (DLN) approaches, such as
Boltzmann machines (RBM), long short-term memory (LSTM), temporal convolutional
networks (TCN), and convolutional neural networks (CNN) have exhibited superior results
and are generally considered as an alternative solution for wind power prediction [10,11].
These wind power forecasting schemes are summarised as Table 1.

Table 1. Four Major Approaches for Wind Power Forecasting.

Features Limitations

Physical methods
[1]

• Physical methods for wind forecasting use
numerical weather prediction (NWP) to
predict weather, considering the effects of
atmosphere, local terrain, and wind farm
layout factors.

• Needs a lot of weather experts to handle
numerical weather data prediction.

• In case that accuracy of NWP is poor, the
wind power generation forecasting
becomes inaccurate.

Statistical methods
[2,3]

• Applies statistical methods to find the
relationships between weather features and
the predicted power.

• Statistical methods include Bayesian,
regression, and auto regression integrated
moving average (ARIMA) models.

• A specific statistical method cannot handle
complex weather conditions affected by
atmosphere and environment factors.

• Thus, enhanced learning schemes such as
random trees and GDBT are proposed in
order to increase the accuracy for wind
power prediction.

Hybrid methods
[4–9]

• Aggregate different weights of models to
improve model performance by preserving
advantages of each approach, such as
combination of fuzzy logic approach,
artificial neural network (ANN) and
support vector machine (SVM), where SVM
and fuzzy logic approach can complement
each other and ensure superior results.

• These hybrid models have problems with
stable prediction as their complex learning
architecture may cause low efficiency, long
training times and even under-fitting.

Deep learning methods
[10,11]

• Use convolution operation to extract the
features of time series data and predict the
output using classification results.

• Multilayer neural networks for multiclass
classification exhibited superior results in
wind power forecasting applications.

• Compared with the traditional ANNs, deep
learning neural networks do not need extra
unsupervised networks or data
preprocessing (e.g., decomposition).

• The performance of the DLN model is
constrained by the quality of data input and
neural architecture design.

• To avoid constraints from data inputs,
researchers have begun to study and
propose new (NWP + DLN)
models recently.

These developed models can perform long-term day-ahead wind power forecasting;
however, forecasting schemes with a mean absolute percentage error (MAPE) between 12%
and 17% [12,13] do not meet the engineering requirements. Thus, the development of an
accurate and robust approach for wind power forecasting under varying climate conditions
is still a challenge. Considering the increasing role of wind power in the renewable energy
system, the research gaps and opportunities for wind power predicting are summarised as:

1. Practically, most existing approaches to forecasting do not model the uncertainty of
wind well. Thus, a high-accuracy wind power model needs high resolution weather
data inputs generated by an NWP model, which is not a trivial task.

2. Typically, deep learning-based neural networks for day ahead wind power fore-
casting outperform traditional neural networks such as ANN in renewable power

Appl. Sci. 2021, 11, 10335 3 of 21

forecasting problems, as these deep learning networks (DLNs) do not need extra data
pre-processing, i.e., decomposition, in order to retrieve features from datasets.

Typically, wind power forecasting is subject to a power level output classification
problem related to different spatial temporal weather data. Four major types of DLNs
for time series data have been applied to wind power forecasting from the time-series
sequence data input, namely the recurrent neural network (RNN), long short-term memory
(LSTM), gated recurrence unit (GRU), and temporal convolutional network (TCN).

RNNs were the first neural networks to assist in analyzing and learning sequences of
data. However, some problems with RNNs were raised during model training, including
slow computation times on account of their recurrent nature. Particularly when using
Relu or Tanh as the activation function, long sequence inputs (i.e., gradient exploding and
vanishing problems) become difficult to process [14]. LSTM was later proposed to solve the
gradient exploding and vanishing problems. Typically, LSTM is capable of learning lengthy
time dependencies by using the forget, input, and output gates in the module. Similarly,
LSTMs have some weaknesses, for example difficulty in applying the dropout algorithm.
Dropout is a regularization method in which input and recurrent connections to the LSTM
units are probabilistically excluded from activation and weight updates when training a
network [15,16]. GRU is a type of RNN that, in certain cases, has advantages over LSTM.
GRU uses less memory and is faster than LSTM, although LSTM is more accurate when
using datasets with longer sequences [17–19].

In this study, we intend to answer the question of which deep machine learning
methods for time series data input can predict day-ahead wind power generation with
the smallest error. To investigate the forecast accuracy of day-ahead for wind turbines
measured with a performance evaluation index (i.e., MAPE), we developed a feature-
based learning model for wind power forecasting and trained TCNs [20–23] to learn
meteorological features and identify the output class of power generation. We applied a
multilayer neural convolutional architecture with gradient descent algorithms to minimize
the estimation model error.

Four major types of sequence-to-sequence DLN models for wind power forecasting
were compared to assess model performance. The experimental results demonstrated that
the TCN outperforms canonical recurrent networks, LSTMs, RNNs, and GRUs across a
diverse range of experiments and datasets. Thus, the TCN provides an effective means of
accurately predicting power generation under varying climate conditions.

In summary, the primary contributions of this study are as follows:

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 21

 Compared with LSTM, GRU, and RNN models, the TCN model created long effec-
tive memory in the deep learning framework and exhibited a lower forecast error to
predict 24-, 48-, and 72-h ahead of wind power generation, which is more suitable
for sequence modeling based on sequence-to-sequence applications.
The remainder of this article is organized as follows. Section II provides a review of

other relevant studies in this field, and Section III introduces the proposed TCN-based
model for wind power forecasting. The results and performance analysis are presented
in Section IV. Finally, Section V provides the concluding remarks.

2. Literature Review
This section provides an overview of deep neural networks (DNNs) in relation to

their processing of time-series data and the application of the differential evolution (DE)
algorithm to improve the forecast accuracy of wind power generation.

2.1. DNNs for Processing Time-Series Data
To address the issues involved in wind power forecasting, researchers have devel-

oped DNNs, which include the RNN, LSTM, GRU, and TCN and can be applied to ad-
dress complex nonlinear relations between wind power output and climate data.

RNNs can manage several types of sequence problems, including speech and text
recognition, language-to-language translation, handwriting recognition, and sequence
data analysis (i.e., forecasting). Generally, RNNs are the best candidate for se-
quence-to-sequence learning because their internal memory gates obtain outstanding
results in natural language processing and other applications. However, RNNs have
limited testing with wind time-series data, as well as long memory requirements. LSTMs
were later designed to avoid the vanishing gradient that occurs with long sequences. A
simplified version of the LSTM, the GRU was applied to resolve simple problems using
shorter sequences. In 2016, Lea et al. [20] first proposed temporal convolutional net-
works (TCNs) for video-based action segmentation. In practice, TCNs have all the ad-
vantages of LSTMs as well as extended memory processing input based on dilated con-
volution architecture and residual connections, with higher classification accuracy than
LSTMs.

TCN architecture is based on dilated casual convolutions that enable an exponen-
tially large receptive field. This is more suitable for sequence modeling based on se-
quence-to-sequence applications that require long effective memory, such as long- or
medium-term wind power forecasting [14]. Dilated convolution is a means of increasing
the receptive view of the network exponentially, as well as linear parameter accretion
[21]. Thus, TCNs are considered a better-adapted architectures thanks to their simplicity,
autoregressive prediction, and flexibility for sequence modeling, with a large long
memory.

Many researchers have demonstrated that TCNs effectively perform se-
quence-to-sequence tasks, such as machine translation or speech synthesis in
text-to-speech systems. Bai [21] conducted a systematic evaluation of generic convolu-
tional and recurrent networks for sequence modeling and reported that the TCN out-
performed canonical recurrent networks across a broad range of standard tasks. Four
deep learning network schemes for wind power forecasting are summarised in Table 2.

The optimal parameters of the models were investigated using evolutionary algo-
rithms (EAs) in order to minimize convergence loss in the learning process.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 21

 Compared with LSTM, GRU, and RNN models, the TCN model created long effec-
tive memory in the deep learning framework and exhibited a lower forecast error to
predict 24-, 48-, and 72-h ahead of wind power generation, which is more suitable
for sequence modeling based on sequence-to-sequence applications.
The remainder of this article is organized as follows. Section II provides a review of

other relevant studies in this field, and Section III introduces the proposed TCN-based
model for wind power forecasting. The results and performance analysis are presented
in Section IV. Finally, Section V provides the concluding remarks.

2. Literature Review
This section provides an overview of deep neural networks (DNNs) in relation to

their processing of time-series data and the application of the differential evolution (DE)
algorithm to improve the forecast accuracy of wind power generation.

2.1. DNNs for Processing Time-Series Data
To address the issues involved in wind power forecasting, researchers have devel-

oped DNNs, which include the RNN, LSTM, GRU, and TCN and can be applied to ad-
dress complex nonlinear relations between wind power output and climate data.

RNNs can manage several types of sequence problems, including speech and text
recognition, language-to-language translation, handwriting recognition, and sequence
data analysis (i.e., forecasting). Generally, RNNs are the best candidate for se-
quence-to-sequence learning because their internal memory gates obtain outstanding
results in natural language processing and other applications. However, RNNs have
limited testing with wind time-series data, as well as long memory requirements. LSTMs
were later designed to avoid the vanishing gradient that occurs with long sequences. A
simplified version of the LSTM, the GRU was applied to resolve simple problems using
shorter sequences. In 2016, Lea et al. [20] first proposed temporal convolutional net-
works (TCNs) for video-based action segmentation. In practice, TCNs have all the ad-
vantages of LSTMs as well as extended memory processing input based on dilated con-
volution architecture and residual connections, with higher classification accuracy than
LSTMs.

TCN architecture is based on dilated casual convolutions that enable an exponen-
tially large receptive field. This is more suitable for sequence modeling based on se-
quence-to-sequence applications that require long effective memory, such as long- or
medium-term wind power forecasting [14]. Dilated convolution is a means of increasing
the receptive view of the network exponentially, as well as linear parameter accretion
[21]. Thus, TCNs are considered a better-adapted architectures thanks to their simplicity,
autoregressive prediction, and flexibility for sequence modeling, with a large long
memory.

Many researchers have demonstrated that TCNs effectively perform se-
quence-to-sequence tasks, such as machine translation or speech synthesis in
text-to-speech systems. Bai [21] conducted a systematic evaluation of generic convolu-
tional and recurrent networks for sequence modeling and reported that the TCN out-
performed canonical recurrent networks across a broad range of standard tasks. Four
deep learning network schemes for wind power forecasting are summarised in Table 2.

Four crucial architecture parameters for developed wind power prediction models
were analysed, incorporating the differential evolution (DE) algorithm [16–18] in
the learning process of the TCN model, namely, (i) number of filters, (ii) activation
function, (iii) optimizer, and (iv) dilatation coefficient, in order to determine the initial
model architecture for model training, according to the natural feature of TCN.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 21

 Compared with LSTM, GRU, and RNN models, the TCN model created long effec-
tive memory in the deep learning framework and exhibited a lower forecast error to
predict 24-, 48-, and 72-h ahead of wind power generation, which is more suitable
for sequence modeling based on sequence-to-sequence applications.
The remainder of this article is organized as follows. Section II provides a review of

other relevant studies in this field, and Section III introduces the proposed TCN-based
model for wind power forecasting. The results and performance analysis are presented
in Section IV. Finally, Section V provides the concluding remarks.

2. Literature Review
This section provides an overview of deep neural networks (DNNs) in relation to

their processing of time-series data and the application of the differential evolution (DE)
algorithm to improve the forecast accuracy of wind power generation.

2.1. DNNs for Processing Time-Series Data
To address the issues involved in wind power forecasting, researchers have devel-

oped DNNs, which include the RNN, LSTM, GRU, and TCN and can be applied to ad-
dress complex nonlinear relations between wind power output and climate data.

RNNs can manage several types of sequence problems, including speech and text
recognition, language-to-language translation, handwriting recognition, and sequence
data analysis (i.e., forecasting). Generally, RNNs are the best candidate for se-
quence-to-sequence learning because their internal memory gates obtain outstanding
results in natural language processing and other applications. However, RNNs have
limited testing with wind time-series data, as well as long memory requirements. LSTMs
were later designed to avoid the vanishing gradient that occurs with long sequences. A
simplified version of the LSTM, the GRU was applied to resolve simple problems using
shorter sequences. In 2016, Lea et al. [20] first proposed temporal convolutional net-
works (TCNs) for video-based action segmentation. In practice, TCNs have all the ad-
vantages of LSTMs as well as extended memory processing input based on dilated con-
volution architecture and residual connections, with higher classification accuracy than
LSTMs.

TCN architecture is based on dilated casual convolutions that enable an exponen-
tially large receptive field. This is more suitable for sequence modeling based on se-
quence-to-sequence applications that require long effective memory, such as long- or
medium-term wind power forecasting [14]. Dilated convolution is a means of increasing
the receptive view of the network exponentially, as well as linear parameter accretion
[21]. Thus, TCNs are considered a better-adapted architectures thanks to their simplicity,
autoregressive prediction, and flexibility for sequence modeling, with a large long
memory.

Many researchers have demonstrated that TCNs effectively perform se-
quence-to-sequence tasks, such as machine translation or speech synthesis in
text-to-speech systems. Bai [21] conducted a systematic evaluation of generic convolu-
tional and recurrent networks for sequence modeling and reported that the TCN out-
performed canonical recurrent networks across a broad range of standard tasks. Four
deep learning network schemes for wind power forecasting are summarised in Table 2.

In our experiment, the prediction error of the TCN model for wind power prediction
decreased most steadily among the four models, followed by LSTM, GRU, and RNN.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 21

 Compared with LSTM, GRU, and RNN models, the TCN model created long effec-
tive memory in the deep learning framework and exhibited a lower forecast error to
predict 24-, 48-, and 72-h ahead of wind power generation, which is more suitable
for sequence modeling based on sequence-to-sequence applications.
The remainder of this article is organized as follows. Section II provides a review of

other relevant studies in this field, and Section III introduces the proposed TCN-based
model for wind power forecasting. The results and performance analysis are presented
in Section IV. Finally, Section V provides the concluding remarks.

2. Literature Review
This section provides an overview of deep neural networks (DNNs) in relation to

their processing of time-series data and the application of the differential evolution (DE)
algorithm to improve the forecast accuracy of wind power generation.

2.1. DNNs for Processing Time-Series Data
To address the issues involved in wind power forecasting, researchers have devel-

oped DNNs, which include the RNN, LSTM, GRU, and TCN and can be applied to ad-
dress complex nonlinear relations between wind power output and climate data.

RNNs can manage several types of sequence problems, including speech and text
recognition, language-to-language translation, handwriting recognition, and sequence
data analysis (i.e., forecasting). Generally, RNNs are the best candidate for se-
quence-to-sequence learning because their internal memory gates obtain outstanding
results in natural language processing and other applications. However, RNNs have
limited testing with wind time-series data, as well as long memory requirements. LSTMs
were later designed to avoid the vanishing gradient that occurs with long sequences. A
simplified version of the LSTM, the GRU was applied to resolve simple problems using
shorter sequences. In 2016, Lea et al. [20] first proposed temporal convolutional net-
works (TCNs) for video-based action segmentation. In practice, TCNs have all the ad-
vantages of LSTMs as well as extended memory processing input based on dilated con-
volution architecture and residual connections, with higher classification accuracy than
LSTMs.

TCN architecture is based on dilated casual convolutions that enable an exponen-
tially large receptive field. This is more suitable for sequence modeling based on se-
quence-to-sequence applications that require long effective memory, such as long- or
medium-term wind power forecasting [14]. Dilated convolution is a means of increasing
the receptive view of the network exponentially, as well as linear parameter accretion
[21]. Thus, TCNs are considered a better-adapted architectures thanks to their simplicity,
autoregressive prediction, and flexibility for sequence modeling, with a large long
memory.

Many researchers have demonstrated that TCNs effectively perform se-
quence-to-sequence tasks, such as machine translation or speech synthesis in
text-to-speech systems. Bai [21] conducted a systematic evaluation of generic convolu-
tional and recurrent networks for sequence modeling and reported that the TCN out-
performed canonical recurrent networks across a broad range of standard tasks. Four
deep learning network schemes for wind power forecasting are summarised in Table 2.

With an increasing amount of historical data, the prediction error (MAPE) of the TCN-
based model decreased significantly; the 72 h forecast error of the 1-week, 1-month,
and 1-year training datasets was 66.43%, 10.93%, and 5.13%, respectively.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 21

 Compared with LSTM, GRU, and RNN models, the TCN model created long effec-
tive memory in the deep learning framework and exhibited a lower forecast error to
predict 24-, 48-, and 72-h ahead of wind power generation, which is more suitable
for sequence modeling based on sequence-to-sequence applications.
The remainder of this article is organized as follows. Section II provides a review of

other relevant studies in this field, and Section III introduces the proposed TCN-based
model for wind power forecasting. The results and performance analysis are presented
in Section IV. Finally, Section V provides the concluding remarks.

2. Literature Review
This section provides an overview of deep neural networks (DNNs) in relation to

their processing of time-series data and the application of the differential evolution (DE)
algorithm to improve the forecast accuracy of wind power generation.

2.1. DNNs for Processing Time-Series Data
To address the issues involved in wind power forecasting, researchers have devel-

oped DNNs, which include the RNN, LSTM, GRU, and TCN and can be applied to ad-
dress complex nonlinear relations between wind power output and climate data.

RNNs can manage several types of sequence problems, including speech and text
recognition, language-to-language translation, handwriting recognition, and sequence
data analysis (i.e., forecasting). Generally, RNNs are the best candidate for se-
quence-to-sequence learning because their internal memory gates obtain outstanding
results in natural language processing and other applications. However, RNNs have
limited testing with wind time-series data, as well as long memory requirements. LSTMs
were later designed to avoid the vanishing gradient that occurs with long sequences. A
simplified version of the LSTM, the GRU was applied to resolve simple problems using
shorter sequences. In 2016, Lea et al. [20] first proposed temporal convolutional net-
works (TCNs) for video-based action segmentation. In practice, TCNs have all the ad-
vantages of LSTMs as well as extended memory processing input based on dilated con-
volution architecture and residual connections, with higher classification accuracy than
LSTMs.

TCN architecture is based on dilated casual convolutions that enable an exponen-
tially large receptive field. This is more suitable for sequence modeling based on se-
quence-to-sequence applications that require long effective memory, such as long- or
medium-term wind power forecasting [14]. Dilated convolution is a means of increasing
the receptive view of the network exponentially, as well as linear parameter accretion
[21]. Thus, TCNs are considered a better-adapted architectures thanks to their simplicity,
autoregressive prediction, and flexibility for sequence modeling, with a large long
memory.

Many researchers have demonstrated that TCNs effectively perform se-
quence-to-sequence tasks, such as machine translation or speech synthesis in
text-to-speech systems. Bai [21] conducted a systematic evaluation of generic convolu-
tional and recurrent networks for sequence modeling and reported that the TCN out-
performed canonical recurrent networks across a broad range of standard tasks. Four
deep learning network schemes for wind power forecasting are summarised in Table 2.

Compared with LSTM, GRU, and RNN models, the TCN model created long effective
memory in the deep learning framework and exhibited a lower forecast error to
predict 24-, 48-, and 72-h ahead of wind power generation, which is more suitable for
sequence modeling based on sequence-to-sequence applications.

The remainder of this article is organized as follows. Section 2 provides a review
of other relevant studies in this field, and Section 3 introduces the proposed TCN-based
model for wind power forecasting. The results and performance analysis are presented in
Section 4. Finally, Section 5 provides the concluding remarks.

Appl. Sci. 2021, 11, 10335 4 of 21

2. Literature Review

This section provides an overview of deep neural networks (DNNs) in relation to
their processing of time-series data and the application of the differential evolution (DE)
algorithm to improve the forecast accuracy of wind power generation.

2.1. DNNs for Processing Time-Series Data

To address the issues involved in wind power forecasting, researchers have developed
DNNs, which include the RNN, LSTM, GRU, and TCN and can be applied to address
complex nonlinear relations between wind power output and climate data.

RNNs can manage several types of sequence problems, including speech and text
recognition, language-to-language translation, handwriting recognition, and sequence
data analysis (i.e., forecasting). Generally, RNNs are the best candidate for sequence-to-
sequence learning because their internal memory gates obtain outstanding results in natural
language processing and other applications. However, RNNs have limited testing with
wind time-series data, as well as long memory requirements. LSTMs were later designed
to avoid the vanishing gradient that occurs with long sequences. A simplified version
of the LSTM, the GRU was applied to resolve simple problems using shorter sequences.
In 2016, Lea et al. [20] first proposed temporal convolutional networks (TCNs) for video-
based action segmentation. In practice, TCNs have all the advantages of LSTMs as well as
extended memory processing input based on dilated convolution architecture and residual
connections, with higher classification accuracy than LSTMs.

TCN architecture is based on dilated casual convolutions that enable an exponentially
large receptive field. This is more suitable for sequence modeling based on sequence-to-
sequence applications that require long effective memory, such as long- or medium-term
wind power forecasting [14]. Dilated convolution is a means of increasing the receptive
view of the network exponentially, as well as linear parameter accretion [21]. Thus, TCNs
are considered a better-adapted architectures thanks to their simplicity, autoregressive
prediction, and flexibility for sequence modeling, with a large long memory.

Many researchers have demonstrated that TCNs effectively perform sequence-to-
sequence tasks, such as machine translation or speech synthesis in text-to-speech systems.
Bai [21] conducted a systematic evaluation of generic convolutional and recurrent networks
for sequence modeling and reported that the TCN outperformed canonical recurrent
networks across a broad range of standard tasks. Four deep learning network schemes for
wind power forecasting are summarised in Table 2.

Table 2. Deep Learning Approaches for Wind Power Forecasting.

Features Limitations

RNN
[14]

• Used for mapping inputs to outputs of varying
types and lengths, and are fairly generalized in
their applications such as text translation and
voice recognition.

• RNNs have a major setback called the
exploding/vanishing gradient, which causes
difficulties in learning
long-range dependencies.

• RNNs become severely difficult to train as the
number of parameters becomes extremely large.

LSTM
[15,16]

• LSTMs are a novel, efficient, gradient-based
method for handling complex, artificial
long-time-lag tasks.

• Essentially, LSTMs are a special kind of RNN
capable of learning long-term dependencies.

• LSTMs require a lot of memories and time in
order to be trained for real-world applications.

• LSTMs can solve the problem of vanishing
gradients; however, they fail to remove
it completely.

GRU
[17–19]

• GRUs reduce the number of gating units on the
LSTM model and optimize the network
structure, which is now widely used in
industrial practice.

• GRU models have problems with slow
convergence rate and low learning efficiency,
resulting in too long a training time, and even
under-fitting.

TCN
[20–23]

• TCNs consist of dilated, causal 1D
convolutional layers with the same input and
output lengths to create a powerful forecasting
model in distinct domains.

• Many studies show that TCNs exhibit better
performance than RNNs in domain
applications, while avoiding the drawback of
the exploding/vanishing gradient problem in
RNN models.

Appl. Sci. 2021, 11, 10335 5 of 21

TCNs exhibit outstanding behavior with sequences of undetermined length, and the
TCN architecture can assist engineers in managing information flows in incredibly long
sequences. Consequently, TCNs have stronger learning capabilities and exhibit equal or
better results compared to those of the RNN, LSTM, and GRU.

To meet the large memory requirements for DLNs, TCNs use one-dimensional (1D)
separable convolutions to factorize a standard convolution into a depth-wise and pointwise
convolution. Typically, the TCN consists of three parts: dilated causal convolutions,
nonlinear activation, and residual connections. A causal convolutional network is used
with 1-dimensional fully convolutional network architecture. A key characteristic is that
the output at time t is only convolved with the elements that occurred before t. In 2020,
Yan et al. [23] used a TCN for weather state predictions in a comparative experiment
conducted with an LSTM. Notably, the results demonstrated that the TCN outperformed
other models, including the RNN, LSTN, and GRU, in prediction tasks with time-series
data. As shown in Figure 1, the TCN used the 1-dimensional convolutional neural network
for short-term wind power prediction, showing that it not only retained the powerful
ability of feature learning from both the weather data and electric power output, but was
also suitable for processing large volumes of time series data.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 21

Table 2. Deep Learning Approaches for Wind Power Forecasting.

 Features Limitations

RNN
[14]

• Used for mapping inputs to outputs of
varying types and lengths, and are
fairly generalized in their applications
such as text translation and voice
recognition.

• RNNs have a major setback called the explod-
ing/vanishing gradient, which causes difficulties in
learning long-range dependencies.

• RNNs become severely difficult to train as the num-
ber of parameters becomes extremely large.

LSTM
[15,16]

• LSTMs are a novel, efficient, gradi-
ent-based method for handling com-
plex, artificial long-time-lag tasks.

• Essentially, LSTMs are a special kind
of RNN capable of learning long-term
dependencies.

• LSTMs require a lot of memories and time in order to
be trained for real-world applications.

• LSTMs can solve the problem of vanishing gradients;
however, they fail to remove it completely.

GRU
[17–19]

• GRUs reduce the number of gating
units on the LSTM model and opti-
mize the network structure, which is
now widely used in industrial prac-
tice.

• GRU models have problems with slow convergence
rate and low learning efficiency, resulting in too long
a training time, and even under-fitting.

TCN
[20–23]

• TCNs consist of dilated, causal 1D
convolutional layers with the same
input and output lengths to create a
powerful forecasting model in distinct
domains.

• Many studies show that TCNs exhibit better per-
formance than RNNs in domain applications, while
avoiding the drawback of the exploding/vanishing
gradient problem in RNN models.

TCNs exhibit outstanding behavior with sequences of undetermined length, and
the TCN architecture can assist engineers in managing information flows in incredibly
long sequences. Consequently, TCNs have stronger learning capabilities and exhibit
equal or better results compared to those of the RNN, LSTM, and GRU.

To meet the large memory requirements for DLNs, TCNs use one-dimensional (1D)
separable convolutions to factorize a standard convolution into a depth-wise and
pointwise convolution. Typically, the TCN consists of three parts: dilated causal convo-
lutions, nonlinear activation, and residual connections. A causal convolutional network
is used with 1-dimensional fully convolutional network architecture. A key characteris-
tic is that the output at time t is only convolved with the elements that occurred before t.
In 2020, Yan et al. [23] used a TCN for weather state predictions in a comparative ex-
periment conducted with an LSTM. Notably, the results demonstrated that the TCN
outperformed other models, including the RNN, LSTN, and GRU, in prediction tasks
with time-series data. As shown in Figure 1, the TCN used the 1-dimensional convolu-
tional neural network for short-term wind power prediction, showing that it not only
retained the powerful ability of feature learning from both the weather data and electric
power output, but was also suitable for processing large volumes of time series data.

Figure 1. Basic architecture of a temporal convolutional network for wind power prediction.

2.2. Differential Evolution Algorithm

In the design of DNNs for processing time-series data, the optimal parameters of
the developed model are identified from training data in order to achieve high predictive
precision in the model output.

In supervised machine learning algorithms, in order to minimize the convergence loss
of the model in the learning process the optimal parameters of the model can be investigated
using evolutionary algorithms (EAs). Practically, the EA algorithm is an effective and
efficient approach for solving global numerical optimization problems, avoiding overfitting,
and preventing the gradient descent algorithms from converging prematurely on a local
suboptimal solution. EAs constitute a smart approach to solving constrained multiobjective
optimization problems. In practice, EAs are a family of nature-inspired algorithms widely
used for solving complex optimization problems which can be used for assisting developers
in determining the optimal parameters of the training model. The differential evolution
(DE) algorithm [24–28] is a branch of EA that follows the general procedures of EAs.

In detail, DE is a metaheuristic method that optimizes a problem by iteratively attempt-
ing to provide an improved candidate solution with regard to a set measure of quality. DE
was introduced by Storn and Price in the 1990s [16], and is applied to solve multiobjective
optimization with constraints. Typically, metaheuristic methods can search large spaces
for candidate solutions. DE is particularly used for multidimensional real-valued func-
tions; however, it does not use the gradient of the problem being optimized and therefore
does not require the optimization problem to be differentiable. Thus, DE can be used on
optimization problems that are not continuous, noisy, or changeable over time.

Appl. Sci. 2021, 11, 10335 6 of 21

The three basic operators of the DE algorithm are the mutation, crossover, and selection
operators. The fundamental idea behind DE is a scheme for producing trial vectors
according to the manipulation of target vector and difference vector. If the trail vector yields
a lower objective function than a predetermined population member, the newly generated
trail vector will replace the vector and be compared in the following generation [28].

After the initialization process, DE forms a loop of the mutation, crossover, and
selection processes until the termination condition is satisfied [24]. The processes of these
operators are described as follows:

(i) Initialization

Suppose that each individual of the population is denoted as Xi = [xij] = (xi,1, . . . ,
xi,j, . . . , xi,D), where i = 1, . . . , N, N is the number of the solution as well as j = 1, . . . , D,
and D represents the number of the dimension. Xi is limited by Xmin = (xG

min, . . . , xG
min,

. . . , xG
min) and Xmax = (xG

max, . . . , xG
max, . . . , xG

max), which is specified by the user. G is the
generation number.

An individual of the population can be defined as follows:

Xi = (xi,1, . . . , xi,j, . . . , xi,D), i = 1, . . . , N. j = 1, . . . , D (1)

First, the initialization population randomly selects the initial parameter values uni-
formly based on the intervals [Xmin, Xmax]. The commonly used initialization method for
individuals is

XG
i = rand(0, 1)·(Xmax − Xmin) + Xmin (2)

where rand(0, 1) represents the generation of a uniformly distribution random number
located in [0, 1].

(ii) Mutation

The DE algorithm adopts the mutation strategy, in which a mutant vector is created
for each individual VG

i (also called the trial vector) in each generation G. For a given
parameter vector VG

i , three vectors are selected randomly: XG
r1, XG

r2, and XG
r3, such that the

indices i, r1, r2, and r3 are distinct. First, the weighted difference of two of the vectors is
added to formVG

i

VG
i = XG

r1 + F·
(

XG
r2 − XG

r3

)
, (3)

where F is the scaling factor that controls the amplification of the differential evolution, i.e.,
mutation scale; its value is located in [0, 2]. Small values of F will lead to smaller mutation
step sizes. Consequently, it will take longer for the algorithm to converge. Conversely,
large values of F enable exploration, but can lead to the algorithm overshooting good
optima. Thus, the value has to be small enough to enhance local exploration but also large
enough to maintain diversity [25]. A well-known DE mutation operation is described as
follows [26,27]:

VG
i = VG

best + F·
(

VG
r1 −VG

r2

)
(4)

VG
i = VG

r1 + F·
(

VG
r2 −VG

r3

)
+ F·

(
VG

r4 −VG
r5

)
(5)

VG
i = VG

i + F·
(

VG
r1 −VG

ri

)
+ F·

(
VG

r2 −VG
r3

)
, (6)

where r1, r2, r3, r4, and r5 are the distinct integers randomly generated from the range of
[1, N] and are not equal to i, i.e., (r1 6= r2 6= r3 6= r4 6= r5 6= i). VG

best is the best individual
with the highest fitness value (objective value) at generation G.

(iii) Crossover

Appl. Sci. 2021, 11, 10335 7 of 21

After mutation, a trial vector XG
i = (XG

i,1, XG
i,2, . . . , XG

i,D) is generated for each individual
according to a binomial crossover operator on XG

i and VG
i , as follows:

UG
i,j =

{
VG

i,j i f
(
randi,j(0, 1) ≤ CR or j == jrand

)
XG

i,j otherwise
(7)

In this equation, rand is a uniformly distributed random integer in the range of [1, D],
which is generated for each individual. CR is the crossover rate, which is restricted in the
range of [0, 1]. CR controls the number of elements that will adjust. Larger values of CR
will lead to deriving more variation in the new population, therefore increasing it also
increases exploration [25].

If the j-th variable UG
i,j of the trial vector UG

i violates the boundary constraints, it is
reset as follows:

UG
i,j = Xmin

j + rand(0, 1)·
(

Xmax
j − Xmin

j

)
. (8)

(iv) Selection

The selection operator determines whether the target or trial vector survives and
enters the next generation based on their fitness values. For a minimization problem, the
decision vector with the lower fitness value (objective value) can enter the next generation,
which can be expressed as follows:

XG+1
i =

{
VG

i i f (f it
(
UG

i
)
≤ f it

(
XG

i
)

XG
i otherwise

(9)

The process is repeated with the expectation, though it is not guaranteed, that a
satisfactory solution will eventually be discovered.

3. Wind Power Forecasting Model with Temporal Convolutional Networks

In this section, a TCN-based approach for a long-term wind power forecasting model
is presented. A detailed workflow of the TCN model design for 24–72 h wind power
forecasting is described herein. The following three subphases comprise the TCN model
development process with DE for determining the optimal parameters of the proposed
model: (i) architecture design, (ii) determination of the architecture parameters of the
model, and (iii) the overall process for model development.

3.1. Architectural Design for TCN

Inspired by [20], we incorporated the convolutional network architecture involved in
casual convolution with residual connections to construct a stable TCN-based prediction
model for 24–72 h wind power forecasting. Dilated convolution is used to select which
values of the neurons from the previous layer contribute to those in the next layer. Thus,
the dilated convolution operation captures both local and temporal information.

The dilated convolution function, F(s), is provided by [21]

F(s) = (x ∗d f)(s) = ∑k−1
i=0 f (i)·xs−d.i, (10)

where xs is the current input sequence data at time t, d is the dilation factor parameter, and
f is a filter of size k.

The TCN model can be defined as follows [23]:

xl
t = σ(W l

x·Fd

(
xl−1

t

)
+ bl

x + xl−1
t), (11)

where Fd(.) is the dilated convolution function of d factor, xl
t is the value of the neuron of

the l-th layer at time t, W l
x and bl

x are the weights and bias corresponding to the l-th layer,

Appl. Sci. 2021, 11, 10335 8 of 21

and σ is the activation function. The dilated residual block in our project is detailed in
Figure 2.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 21

proposed model: (i) architecture design, (ii) determination of the architecture parameters
of the model, and (iii) the overall process for model development.

3.1. Architectural Design for TCN
Inspired by [20], we incorporated the convolutional network architecture involved

in casual convolution with residual connections to construct a stable TCN-based predic-
tion model for 24–72 h wind power forecasting. Dilated convolution is used to select
which values of the neurons from the previous layer contribute to those in the next layer.
Thus, the dilated convolution operation captures both local and temporal information.

The dilated convolution function, F(s), is provided by [21] 𝐹(𝑠) = (𝑥 ∗ௗ 𝑓)(𝑠) = ∑ 𝑓(𝑖). 𝑥௦ିௗ.ିଵୀ , (10)

where 𝑥௦ is the current input sequence data at time t, d is the dilation factor parameter,
and f is a filter of size k.

The TCN model can be defined as follows [23]: 𝑥௧ = 𝜎(𝑊௫. 𝐹ௗ(𝑥௧ିଵ) + 𝑏௫ + 𝑥௧ିଵ), (11)

where Fd(.) is the dilated convolution function of d factor, 𝑥௧ is the value of the neuron
of the l-th layer at time t, 𝑊௫ and 𝑏௫ are the weights and bias corresponding to the l-th
layer, and σ is the activation function. The dilated residual block in our project is detailed
in Figure 2.

Figure 2. TCN-based architecture for wind power forecasting.

The system must use the residual block to the convolutional layers when deep and
large TCNs are employed in order to achieve further stabilization. As presented in Figure
3, the residual connections constituted the addition of the data input to the output before
applying the activation function; the residual block (d = 16) is used between each layer in
the TCN to accelerate convergence and enable the training of deeper models.

Figure 2. TCN-based architecture for wind power forecasting.

The system must use the residual block to the convolutional layers when deep and
large TCNs are employed in order to achieve further stabilization. As presented in Figure 3,
the residual connections constituted the addition of the data input to the output before
applying the activation function; the residual block (d = 16) is used between each layer in
the TCN to accelerate convergence and enable the training of deeper models.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 21

Figure 3. Detailed diagram of the dilated residual block.

3.2. Parameter Selection for TCN Model Using Evolutionary Algorithm
The architecture design for TCN and optimal parameters for the developed wind

power prediction model with the DE search mechanism are analyzed in this section.

3.2.1. Preliminary Architecture Design
In this step, four crucial architecture parameters were selected by transferring

learning cases in the TCN predictor [20–23]; the original parameters of TCN models de-
veloped for wind power prediction models were obtained from P. Rémy at GitHub [29],
namely, (i) number of filters, (ii) activation function, (iii) optimizer, and iv) dilatation
coefficient, in order to decide the initial model architecture for model training.

(i) Filter size
In practice, the cost function is a measure of the inaccuracy of the model in terms of

the difference between predicted values and real measured values. Following the analy-
sis of three filter sizes (8, 16, and 32), as described in Figure 4, the filter size of 32 exhib-
ited the smallest convergence error of the cost function after 100 iterations of simulation
and was the optimal choice for the designed TCN-based prediction model.

Figure 4. Convergence error of cost function with three different filter sizes.

(ii) Activation function

Figure 3. Detailed diagram of the dilated residual block.

3.2. Parameter Selection for TCN Model Using Evolutionary Algorithm

The architecture design for TCN and optimal parameters for the developed wind
power prediction model with the DE search mechanism are analyzed in this section.

Appl. Sci. 2021, 11, 10335 9 of 21

3.2.1. Preliminary Architecture Design

In this step, four crucial architecture parameters were selected by transferring learning
cases in the TCN predictor [20–23]; the original parameters of TCN models developed
for wind power prediction models were obtained from P. Rémy at GitHub [29], namely,
(i) number of filters, (ii) activation function, (iii) optimizer, and iv) dilatation coefficient, in
order to decide the initial model architecture for model training.

(i) Filter size

In practice, the cost function is a measure of the inaccuracy of the model in terms of
the difference between predicted values and real measured values. Following the analysis
of three filter sizes (8, 16, and 32), as described in Figure 4, the filter size of 32 exhibited the
smallest convergence error of the cost function after 100 iterations of simulation and was
the optimal choice for the designed TCN-based prediction model.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 21

Figure 3. Detailed diagram of the dilated residual block.

3.2. Parameter Selection for TCN Model Using Evolutionary Algorithm
The architecture design for TCN and optimal parameters for the developed wind

power prediction model with the DE search mechanism are analyzed in this section.

3.2.1. Preliminary Architecture Design
In this step, four crucial architecture parameters were selected by transferring

learning cases in the TCN predictor [20–23]; the original parameters of TCN models de-
veloped for wind power prediction models were obtained from P. Rémy at GitHub [29],
namely, (i) number of filters, (ii) activation function, (iii) optimizer, and iv) dilatation
coefficient, in order to decide the initial model architecture for model training.

(i) Filter size
In practice, the cost function is a measure of the inaccuracy of the model in terms of

the difference between predicted values and real measured values. Following the analy-
sis of three filter sizes (8, 16, and 32), as described in Figure 4, the filter size of 32 exhib-
ited the smallest convergence error of the cost function after 100 iterations of simulation
and was the optimal choice for the designed TCN-based prediction model.

Figure 4. Convergence error of cost function with three different filter sizes.

(ii) Activation function

Figure 4. Convergence error of cost function with three different filter sizes.

(ii) Activation function

In artificial neural networks, the activation function of a node defines the output of
that node based on the input or set of inputs. Generally, nonlinear activation functions
allow such networks to compute complex problems using a few nodes. In the experiment,
we analyzed two types of nonlinear activation function, the norm_relu and Tanh*Sigmoid
activation function used in WaveNet. The corresponding convergence error of the cost
function for these activation functions is presented in Figure 5; norm_relu was selected as
the activation function of the model.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 21

In artificial neural networks, the activation function of a node defines the output of
that node based on the input or set of inputs. Generally, nonlinear activation functions
allow such networks to compute complex problems using a few nodes. In the experiment,
we analyzed two types of nonlinear activation function, the norm_relu and
Tanh*Sigmoid activation function used in WaveNet. The corresponding convergence
error of the cost function for these activation functions is presented in Figure 5;
norm_relu was selected as the activation function of the model.

Figure 5. Convergence error of cost function for two nonlinear activation functions.

(iii) Optimizer
To minimize loss during model training, an optimizer was adopted to improve the

accuracy of the model through adjustment of the filter weights. We assessed three pop-
ular optimizers in the TCN model, Adam, SGD, and RMSprop; the corresponding con-
vergence error of cost function is detailed in Figure 6. The Adam optimizer was chosen
as the ideal optimizer for model training.

Figure 6. Convergence error of cost function for three types of optimizer.

(iv) Dilatation coefficient
Following the analysis of three combinations of dilatation coefficients (1, 2, 4; 1, 2, 4,

8; 1, 2, 4, 8, 16) in the model input architecture, the third set (1, 2, 4, 8,16) achieved the
most optimal results in relation to the error convergence of the cost function, as depicted
in Figure 7.

Figure 5. Convergence error of cost function for two nonlinear activation functions.

Appl. Sci. 2021, 11, 10335 10 of 21

(iii) Optimizer

To minimize loss during model training, an optimizer was adopted to improve the
accuracy of the model through adjustment of the filter weights. We assessed three popular
optimizers in the TCN model, Adam, SGD, and RMSprop; the corresponding convergence
error of cost function is detailed in Figure 6. The Adam optimizer was chosen as the ideal
optimizer for model training.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 21

In artificial neural networks, the activation function of a node defines the output of
that node based on the input or set of inputs. Generally, nonlinear activation functions
allow such networks to compute complex problems using a few nodes. In the experiment,
we analyzed two types of nonlinear activation function, the norm_relu and
Tanh*Sigmoid activation function used in WaveNet. The corresponding convergence
error of the cost function for these activation functions is presented in Figure 5;
norm_relu was selected as the activation function of the model.

Figure 5. Convergence error of cost function for two nonlinear activation functions.

(iii) Optimizer
To minimize loss during model training, an optimizer was adopted to improve the

accuracy of the model through adjustment of the filter weights. We assessed three pop-
ular optimizers in the TCN model, Adam, SGD, and RMSprop; the corresponding con-
vergence error of cost function is detailed in Figure 6. The Adam optimizer was chosen
as the ideal optimizer for model training.

Figure 6. Convergence error of cost function for three types of optimizer.

(iv) Dilatation coefficient
Following the analysis of three combinations of dilatation coefficients (1, 2, 4; 1, 2, 4,

8; 1, 2, 4, 8, 16) in the model input architecture, the third set (1, 2, 4, 8,16) achieved the
most optimal results in relation to the error convergence of the cost function, as depicted
in Figure 7.

Figure 6. Convergence error of cost function for three types of optimizer.

(iv) Dilatation coefficient

Following the analysis of three combinations of dilatation coefficients (1, 2, 4; 1, 2, 4,
8; 1, 2, 4, 8, 16) in the model input architecture, the third set (1, 2, 4, 8,16) achieved the
most optimal results in relation to the error convergence of the cost function, as depicted in
Figure 7.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 21

Figure 7. Convergence error of cost function with three sets of dilatation coefficients.

The architectural components of the proposed TCN model for transferring learning
from model training are listed in Table 3.

Table 3. Architecture of the proposed TCN model.

Number of

Filter Kernel_Size Dilatations
Number of

Stack Optimizer

Parameter
Value 32 10 [1, 2, 4, 8, 16] 2 Adam

To confirm the appropriate architecture of the model design, different model archi-
tecture parameters were experimentally investigated. In this experiment, 83.3% (500,000
records) of the data from the open dataset of wind farm in Turkey (2018) [30] was ran-
domly selected to serve as the training dataset, and the remaining 17.7% (100,000 records)
was used for testing. The average accuracy of the results of experimental training and
testing is summarized in Table 4. Model accuracy was above 96.4% based on different
parameter combinations, with a low convergence loss result for the cost function. Thus,
the architectural parameters of Table 3 for the TCN model were validated.

Table 4. Accuracy analysis of the TCN model architecture.

 Maximum Minimum Average
Training accuracy 98.2% 97.1% 97.8%

Test accuracy 96.7% 92.9% 95.1%
Average 97.45% 95.0% 96.4%

3.2.2. Analysis of Architecture Design
Following the architecture analysis step of detailed model design, experiments were

conducted with model training in order to validate the optimal parameters of the de-
veloped TCN model based on training samples. In the experiment, differential evolution
(DE) methods [24–28] explored these solutions to handle the hyper-parameter tuning of
the TCN model for predicting wind power output in order to reach the satisfactory pre-
diction accuracy for different weather conditions. Essentially, the DE method is a popu-
lation-based stochastic search process using the distance and direction information from
the current population to conduct its search. Inspired by [25], we selected the DE meth-
od to solve our problem because the historical data for wind power generation are gen-

Figure 7. Convergence error of cost function with three sets of dilatation coefficients.

The architectural components of the proposed TCN model for transferring learning
from model training are listed in Table 3.

Appl. Sci. 2021, 11, 10335 11 of 21

Table 3. Architecture of the proposed TCN model.

Number of
Filter Kernel_Size Dilatations Number of

Stack Optimizer

Parameter
Value 32 10 [1, 2, 4, 8, 16] 2 Adam

To confirm the appropriate architecture of the model design, different model architecture
parameters were experimentally investigated. In this experiment, 83.3% (500,000 records) of
the data from the open dataset of wind farm in Turkey (2018) [30] was randomly selected to
serve as the training dataset, and the remaining 17.7% (100,000 records) was used for testing.
The average accuracy of the results of experimental training and testing is summarized in
Table 4. Model accuracy was above 96.4% based on different parameter combinations, with
a low convergence loss result for the cost function. Thus, the architectural parameters of
Table 3 for the TCN model were validated.

Table 4. Accuracy analysis of the TCN model architecture.

Maximum Minimum Average

Training accuracy 98.2% 97.1% 97.8%

Test accuracy 96.7% 92.9% 95.1%

Average 97.45% 95.0% 96.4%

3.2.2. Analysis of Architecture Design

Following the architecture analysis step of detailed model design, experiments were
conducted with model training in order to validate the optimal parameters of the developed
TCN model based on training samples. In the experiment, differential evolution (DE)
methods [24–28] explored these solutions to handle the hyper-parameter tuning of the
TCN model for predicting wind power output in order to reach the satisfactory prediction
accuracy for different weather conditions. Essentially, the DE method is a population-
based stochastic search process using the distance and direction information from the
current population to conduct its search. Inspired by [25], we selected the DE method to
solve our problem because the historical data for wind power generation are generally
not continuous, noisy, or changeable over time; thus, the gradient of the problem being
optimized is not used.

For all experiments, 50 independent runs were conducted for each test function. The
parameter settings for the DE algorithm are listed in Table 5. As shown in Table 5, the
following parameters were chosen for the application of DE: population size NP = 10;
scaling_rate F = 0.5, crossover_rate CR = 0.3, generation number G = 30, and maximum
iteration = 500. Optimization was terminated at the pre-specified number of generations.

Table 5. The parameter settings for the architectural analysis.

Algorithm Parameter Setting

DE NP = 10, F = 0.5, CR = 0.3, G = 30

Then, nine trial vectors VG
i and difference vectors (Table 6) were generated for

each generation G according to the mutation, crossover and selection operations using
Equations (1)–(9). If the trail vector yielded a lower error value of objective function than a
predetermined population member, the newly generated trail vector replaced the target
vector and was compared in the following generation.

Appl. Sci. 2021, 11, 10335 12 of 21

Table 6. The parameter settings for the nine trial vectors.

Target Vector Filter_Size Dilatation Number of
Stacks

Activation
Function Optimizer

#1 8 [1, 2, 4, 8] 2 norm_relu RMSporp

#2 32 [1, 2, 4, 8, 16] 2 wavenet RMSporp

#3 16 [1, 2, 4, 8] 4 norm_relu Adam

#4 8 [1, 2, 4, 8] 3 norm_relu SGD

#5 32 [1, 2, 4, 8] 3 wavenet RMSporp

#6 8 [1, 2, 4, 8] 2 wavenet SGD

#7 16 [1, 2, 4, 8, 16] 3 norm_relu SGD

#8 16 [1, 2, 4, 8] 2 wavenet SGD

#9 32 [1, 2, 4] 4 norm_relu Adam

For analysis of the optimal parameters of the TCN model, DE allows for the process
of mutation, crossover, and selection until the termination condition is satisfied, using
Equations (1)–(9); the analysis process is shown in Figure 8.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 21

Figure 8. Differential evolution used to decide the optimal parameters of TCN model training.

In our experiment, the error value and error reduction speed of the loss function
were adopted to evaluate whether the appropriate model parameters had been selected.
If the convergence error decrease was not smooth (i.e., a bouncing phenomenon), the
cost function or model parameters required adjustment. The convergence error of cost
function in the training process for TCN model is illustrated in Figure 9.

Figure 9. Convergence error training of the TCN model.

As shown in Figure 9, a stable convergence was reached after a stable error descent
was exhibited in the experiments. Overall, the experimental results for the selected op-
timal parameters of the TCN model are listed in Table 7.

Figure 8. Differential evolution used to decide the optimal parameters of TCN model training.

In our experiment, the error value and error reduction speed of the loss function
were adopted to evaluate whether the appropriate model parameters had been selected. If
the convergence error decrease was not smooth (i.e., a bouncing phenomenon), the cost
function or model parameters required adjustment. The convergence error of cost function
in the training process for TCN model is illustrated in Figure 9.

Appl. Sci. 2021, 11, 10335 13 of 21

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 21

Figure 8. Differential evolution used to decide the optimal parameters of TCN model training.

In our experiment, the error value and error reduction speed of the loss function
were adopted to evaluate whether the appropriate model parameters had been selected.
If the convergence error decrease was not smooth (i.e., a bouncing phenomenon), the
cost function or model parameters required adjustment. The convergence error of cost
function in the training process for TCN model is illustrated in Figure 9.

Figure 9. Convergence error training of the TCN model.

As shown in Figure 9, a stable convergence was reached after a stable error descent
was exhibited in the experiments. Overall, the experimental results for the selected op-
timal parameters of the TCN model are listed in Table 7.

Figure 9. Convergence error training of the TCN model.

As shown in Figure 9, a stable convergence was reached after a stable error descent
was exhibited in the experiments. Overall, the experimental results for the selected optimal
parameters of the TCN model are listed in Table 7.

Table 7. Selected optimal parameters of the TCN model.

Algorithm Layers Total
Params/Kernels AF/LF Optimizer Dilations Number of

Stack

TCN model for
wind power
prediction

TCN 45,761/16 norm_Relu Adam [1, 2, 4, 8] 4

Input Layer 0 -

Initial_Conv (11,16)

Dilated
ConvLayer (16,161,16) norm_Relu/MSE

Dropout layer 0

Conv Layer (16,17,16) norm_Relu/MSE

OutputDense
Layer (17,1) linear

AF = activation function, LF = loss function, MSE = mean squared error.

3.3. Overall Process of the Model Operations

Four experimental DNN models for wind power forecasting incorporating RNN,
LSTM, GRU, and TCN were employed to verify the performance of model training. The
execution process of model development is illustrated in Figure 10. The proposed TCN
model comprised the following three subphases in the model operation process: (i) data
preprocessing, (ii) model training, and (iii) model validation.

Step 1. Data preprocessing
Before performing model pretraining, engineers must perform data processing for

wind farm datasets that contain real weather observations and wind turbine power outputs
with anomaly data. Each record in the wind power dataset includes items such as wind
speed, wind direction, temperature, humidity, height of wind turbine for model pretraining,
and some null fields where linear proportions of the neighbouring observation data are
noted in advance.

Following the study of patterns in high-dimension data using principal component
analysis, the prediction experiment employed two key model parameters, wind speed and
wind direction, which were applied to model training.

Appl. Sci. 2021, 11, 10335 14 of 21

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 21

Table 7. Selected optimal parameters of the TCN model.

Algorithm Layers
Total
Params/
Kernels

AF/LF Optimizer Dilations Number
of Stack

TCN model
for wind
power
prediction

TCN 45,761/16 norm_Relu Adam [1, 2, 4, 8] 4
Input Layer 0 -
Initial_Conv (11,16)
Dilated Conv
Layer (16,161,16) norm_Relu/

MSE

Dropout layer 0

Conv Layer (16,17,16) norm_Relu/
MSE

Output
Dense Layer

(17,1) linear

AF = activation function, LF = loss function, MSE = mean squared error.

3.3. Overall Process of the Model Operations
Four experimental DNN models for wind power forecasting incorporating RNN,

LSTM, GRU, and TCN were employed to verify the performance of model training. The
execution process of model development is illustrated in Figure 10. The proposed TCN
model comprised the following three subphases in the model operation process: (i) data
preprocessing, (ii) model training, and (iii) model validation.

Figure 10. Experiment execution process.

Step 1. Data preprocessing
Before performing model pretraining, engineers must perform data processing for

wind farm datasets that contain real weather observations and wind turbine power
outputs with anomaly data. Each record in the wind power dataset includes items such
as wind speed, wind direction, temperature, humidity, height of wind turbine for model
pretraining, and some null fields where linear proportions of the neighbouring observa-
tion data are noted in advance.

Following the study of patterns in high-dimension data using principal component
analysis, the prediction experiment employed two key model parameters, wind speed
and wind direction, which were applied to model training.

Step 2. Model training
Step 2.1 Model pretraining
In the pretraining phase, the proposed model incorporated the gradient descent op-

timization algorithm in order to fine-tune the model parameters for transfer learning

Figure 10. Experiment execution process.

Step 2. Model training
Step 2.1 Model pretraining
In the pretraining phase, the proposed model incorporated the gradient descent

optimization algorithm in order to fine-tune the model parameters for transfer learning
using error derivatives of back-propagation with the optimizer for all layers. Then, a series
of experiments were pretrained to investigate the performance of the TCN-based classifier
using the Scada dataset, where the learning results were regarded as a basis of the optimal
model parameters, including number of filters, dilatation coefficient, activation function,
epochs, and prediction accuracy (Table 2).

Step 2.2 Model fine-tuning
During the fine-tuning of the model, we adopted a cross-validation scheme to evaluate

the predicted accuracy of the model and overcome the problem of over-training using
various n-folds of the cross-validation scheme. For example, k = 5 indicates that 80% of the
dataset collected was used in the training experiment, with the remaining 20% used for
alternative testing that was repeated five times. In the model validation phase, the system
provided a quick response for wind power forecasting using the weights of the neural nets
employed in the trained TCN model learning.

Step 3. Model validation
To test the robustness of the proposed model, the trained TCN model associated with

the test dataset was adopted to examine the model performance. Finally, the MAPE was
selected to evaluate the power prediction performance of the proposed model as follows:

MAPE =
1
n ∑n

i=1

∣∣∣∣∣Oi − Ôi
Wi

∣∣∣∣∣, (12)

where Wi represents the installed capacity of the wind turbine, Oi is the real value, and Ôi
is estimated output.

In the experiment, an open historical dataset from the Scada wind farm in Turkey,
including real weather observations and wind turbine power outputs, was used in model
pretraining. Each record of the Scada dataset can be found in [30].

The detailed algorithm for wind power prediction with the TCN-based model is
described by PDL as follows (Algorithm 1).

Appl. Sci. 2021, 11, 10335 15 of 21

Algorithm 1 Pseudocode of the TCN-based model for wind power prediction.

Input: 1. Historical weather data and wind turbine power outputs from Scada wind farm in
Turkey, containing five parameters sampled every 10 min, with a total of 52,560 samples listed. 2.
Model parameters of the proposed TCN model including the batch set, kernel, and epochs.
Output: predicted accuracy of wind power generation
1: Initialize the model parameters of the model
2: Set the value of the epochs to 50
3: Assign the stop condition value (ε) as 0.0001
4: Training loop
5: While (the number of epochs) do
6: Determine the optimal parameters of TCN model, as given in Equations (1)–(9)
7: Perform the wind power prediction, as given in Equations (10) and (11)
8: Return (model_file)
9: The training results of the model_file include: (1) filter size, (2) activation function, (3)
optimizer, (4) dilatation coefficient, (5) final loss of the cost function, and (6) output result of the

training process (
∼
Oi)

10: Return train (output_file)
11: End loop
12: Test phase
13: Accuracy prediction with loss of cost function by using specific parameters from the model
14: return predict (accuracy)
15: End

4. Results

In this section, the performance of the proposed TCN-based model for wind power
prediction is demonstrated by means of an example. The experiments were conducted
using the Python programming language and TensorFlow, which is an open source software
library for numerical computation. Moreover, TensorFlow incorporates numerical libraries
such as Pandas, NumPy, and Matplotlib for computation. The parallelisation of the
multicore architecture increased the computation speed of the TCN model. The multicore
architecture included an AMD Ryzen Threadripper processor (3.4 GHz) with 32 GB RAM,
a 64-bit Ubuntu 14.04 operating system, an Nvidia GeForce GTX 1080 graphics card (GPU),
graphics core computing, and the MongoDB 2.2.6 database. The experimental environment
is described in Table 8.

Table 8. Experimental environment for TCN-based prediction model.

IP Programming
Language Operating System Numerical Library

192.168.1.10 (AMD
Ryzen Threadripper,

1920X, 3.4G)
Python 3.5 Ubuntu 14.04 LTS 64

Tensorflow-gpu 1.1.3

Pandas 0.23.4

Numpy 1.1.8

Matplotlib 3.3.2

4.1. Case Study: Performance Analysis for TCN-Based Model (Scada Wind Farm, Turkey)

Step 1. Data preprocessing phase
In the experiment, an open historical dataset from Scada wind farm in Turkey, in-

cluding real weather observations and wind turbine power outputs, was used in model
pretraining. Each record in the Scada dataset contained five parameters sampled every
10 min, with a total of 52,560 samples listed [31]. Notably, some null fields contained
linear proportions of the neighbouring observation data in advance. Our training dataset
comprised samples from 1 January 2018, to 26 December 2018, and the test dataset used
samples from three days, namely December 27 to 29, 2018.

Appl. Sci. 2021, 11, 10335 16 of 21

Scada Systems measured and saved data including wind speed, wind direction,
generated power, etc. This file was taken from a Scada Systems wind turbine working and
generating power in Turkey. The data in the file are listed as follows: [30]

1. Date/Time: 10 min intervals
2. LV ActivePower (kW): The power generated by the turbine for that moment.
3. Wind Speed (m/s): The wind speed at the hub height of the turbine.
4. Theoretical Power Curve (KWh): The theoretical power values that the turbine gener-

ates with that wind speed, which is given by the turbine manufacturer.
5. Wind Direction (◦): The wind direction at the hub height of the turbine

Step 2. Model training phase
To examine model efficiency, four deep neural models were incorporated for series

data processing, namely, RNN, LSTM, GRU, and TCN, in order to conduct wind power
forecasting 72 h ahead of time. We set the initial values of TCN model parameters as in
Algorithm 1, and the experiment parameters for the RNN, LSTM and GRU models as in
Table 9.

Table 9. Experimental parameters for RNN, LSTM and GRU prediction models.

Model
Parameter Output Unit Optimizers Learning Rate (lr) Layers

RNN 64 RMSporp 0.002 3

LSTM 64 RMSporp 0.002 2

GRU 32 RMSporp 0.01 2

Step 3. Model validation phase
Two experiments with training datasets of different sizes (i.e., one month and one

year) were conducted to verify the effectiveness of the four DNN-based models for wind
power forecasting.

In the first experiment, the one-month dataset was used to train four DNNs. The
LSTM model had the lowest prediction error (MAPE = 3.8%), followed by the GRU (9.09%)
and the TCN (10.93%) models, with the RNN model exhibiting the poorest performance
(11.21%), as detailed in Figure 11.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 21

Step 3. Model validation phase
Two experiments with training datasets of different sizes (i.e., one month and one

year) were conducted to verify the effectiveness of the four DNN-based models for wind
power forecasting.

In the first experiment, the one-month dataset was used to train four DNNs. The
LSTM model had the lowest prediction error (MAPE = 3.8%), followed by the GRU
(9.09%) and the TCN (10.93%) models, with the RNN model exhibiting the poorest per-
formance (11.21%), as detailed in Figure 11.

Figure 11. 72-h wind power prediction (Experiment I).

In the second experiment, the one-year historical data were used to pretrain the
four DNNs; the prediction results for 24, 48, and 72 h are presented in Figures 12–14. For
72 h ahead of time, the prediction error of the TCN model indicated the highest accuracy
(MAPE = 5.13%), followed by the GRU (6.25%), LSTM (9.12%), and RNN (173.87%)
models.

Figure 12. 24-h wind power forecasting (Experiment II).

Figure 11. 72-h wind power prediction (Experiment I).

Appl. Sci. 2021, 11, 10335 17 of 21

In the second experiment, the one-year historical data were used to pretrain the four
DNNs; the prediction results for 24, 48, and 72 h are presented in Figures 12–14. For
72 h ahead of time, the prediction error of the TCN model indicated the highest accuracy
(MAPE = 5.13%), followed by the GRU (6.25%), LSTM (9.12%), and RNN (173.87%) models.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 21

Step 3. Model validation phase
Two experiments with training datasets of different sizes (i.e., one month and one

year) were conducted to verify the effectiveness of the four DNN-based models for wind
power forecasting.

In the first experiment, the one-month dataset was used to train four DNNs. The
LSTM model had the lowest prediction error (MAPE = 3.8%), followed by the GRU
(9.09%) and the TCN (10.93%) models, with the RNN model exhibiting the poorest per-
formance (11.21%), as detailed in Figure 11.

Figure 11. 72-h wind power prediction (Experiment I).

In the second experiment, the one-year historical data were used to pretrain the
four DNNs; the prediction results for 24, 48, and 72 h are presented in Figures 12–14. For
72 h ahead of time, the prediction error of the TCN model indicated the highest accuracy
(MAPE = 5.13%), followed by the GRU (6.25%), LSTM (9.12%), and RNN (173.87%)
models.

Figure 12. 24-h wind power forecasting (Experiment II). Figure 12. 24-h wind power forecasting (Experiment II).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 21

Figure 13. 48-h wind power forecasting (Experiment II).

Figure 14. 72-h wind power forecasting (Experiment II).

4.2. Method Comparisons
Theoretically, the convergence error of the cost function decreased in each iteration

of model training, as detailed in Figure 15. As presented in Figure 15, the convergence
error gradually converged and decreased with the increasing number of iterations
(epochs) when three of the prediction models (TCN, LSTM, and GRU) were applied; the
RNN model convergence error did not converge, and the prediction error did not de-
crease. RNNs are thus not suitable for wind power forecasting from large amounts of
temporal–spatial data series inputs. The convergence error of the TCN model decreased
more than that of the LSTM close to the twentieth epoch, and continued to decrease
steadily with the increasing number of iterations. The prediction error of the TCN model
decreased most steadily among the four models, followed by LSTM and then GRU.

Figure 13. 48-h wind power forecasting (Experiment II).

Appl. Sci. 2021, 11, 10335 18 of 21

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 21

Figure 13. 48-h wind power forecasting (Experiment II).

Figure 14. 72-h wind power forecasting (Experiment II).

4.2. Method Comparisons
Theoretically, the convergence error of the cost function decreased in each iteration

of model training, as detailed in Figure 15. As presented in Figure 15, the convergence
error gradually converged and decreased with the increasing number of iterations
(epochs) when three of the prediction models (TCN, LSTM, and GRU) were applied; the
RNN model convergence error did not converge, and the prediction error did not de-
crease. RNNs are thus not suitable for wind power forecasting from large amounts of
temporal–spatial data series inputs. The convergence error of the TCN model decreased
more than that of the LSTM close to the twentieth epoch, and continued to decrease
steadily with the increasing number of iterations. The prediction error of the TCN model
decreased most steadily among the four models, followed by LSTM and then GRU.

Figure 14. 72-h wind power forecasting (Experiment II).

4.2. Method Comparisons

Theoretically, the convergence error of the cost function decreased in each iteration
of model training, as detailed in Figure 15. As presented in Figure 15, the convergence
error gradually converged and decreased with the increasing number of iterations (epochs)
when three of the prediction models (TCN, LSTM, and GRU) were applied; the RNN model
convergence error did not converge, and the prediction error did not decrease. RNNs are
thus not suitable for wind power forecasting from large amounts of temporal–spatial data
series inputs. The convergence error of the TCN model decreased more than that of the
LSTM close to the twentieth epoch, and continued to decrease steadily with the increasing
number of iterations. The prediction error of the TCN model decreased most steadily
among the four models, followed by LSTM and then GRU.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 19 of 21

Figure 15. Convergence error of the cost function.

The performance of the four prediction models was affected by the varying
amounts of input training data. Therefore, performance analysis must be assessed with
different amounts of historical data for long-term prediction. In our experiment, differ-
ent amounts of historical data were used for model pretraining and the output results of
the modules were sorted; the stability comparison of the convergence errors is detailed
in Table 10. With increasing amounts of historical data, the prediction error (MAPE) of
the TCN-based model decreased significantly, and the 72-h forecast error of the
one-week, one-month, and one-year training datasets was 66.43%, 10.93%, and 5.13%,
respectively. In the experiment, the TCN model exhibited consistent, stable and good
prediction results by using selected parameters from the DE algorithm.

Table 10. Performance comparison of four DNN models for wind power forecasting.

 Performance
Period

Excellent Good Medium Bad

Week RNN GRU LSTM TCN
Month LSTM GRU TCN RNN
Year TCN LSTM GRU RNN

In summary, the wind power forecast error (MRE) of the proposed TCN-based
model was near 5.13% based on one-year historical data in different climatic scenarios.
Compared to the accuracy of other projects in wind power forecasting, the European
team’s SafeWind project in 2011 achieved a forecasting error of 17%. In 2017, the pre-
dicted error improved to 11%; a project of the BSI electric power company reached
within 10% in 2019. As shown in Table 11, the proposed TCN-based approach provides a
lower prediction error with higher prediction accuracy than those of real projects in
studies of wind power forecasting [12,13,31].

Table 11. Performance comparison of other real projects for wind power forecasting.

Research Team Prediction Cycle Prediction Intervals
Prediction Error

(MAPE)
ANEMOS, ANEMOS.plus &

SafeWind, 2011 [31] Short-term within 36 h 17–35%

ANEMOS.plus & SafeWind,
2017 [12] Short-term within 48 h 11–14%

Figure 15. Convergence error of the cost function.

The performance of the four prediction models was affected by the varying amounts
of input training data. Therefore, performance analysis must be assessed with different
amounts of historical data for long-term prediction. In our experiment, different amounts
of historical data were used for model pretraining and the output results of the modules
were sorted; the stability comparison of the convergence errors is detailed in Table 10.

Appl. Sci. 2021, 11, 10335 19 of 21

With increasing amounts of historical data, the prediction error (MAPE) of the TCN-based
model decreased significantly, and the 72-h forecast error of the one-week, one-month, and
one-year training datasets was 66.43%, 10.93%, and 5.13%, respectively. In the experiment,
the TCN model exhibited consistent, stable and good prediction results by using selected
parameters from the DE algorithm.

Table 10. Performance comparison of four DNN models for wind power forecasting.

Period
Performance

Excellent Good Medium Bad

Week RNN GRU LSTM TCN

Month LSTM GRU TCN RNN

Year TCN LSTM GRU RNN

In summary, the wind power forecast error (MRE) of the proposed TCN-based model
was near 5.13% based on one-year historical data in different climatic scenarios. Compared
to the accuracy of other projects in wind power forecasting, the European team’s SafeWind
project in 2011 achieved a forecasting error of 17%. In 2017, the predicted error improved
to 11%; a project of the BSI electric power company reached within 10% in 2019. As
shown in Table 11, the proposed TCN-based approach provides a lower prediction error
with higher prediction accuracy than those of real projects in studies of wind power
forecasting [12,13,31].

Table 11. Performance comparison of other real projects for wind power forecasting.

Research Team Prediction Cycle Prediction Intervals Prediction Error
(MAPE)

ANEMOS,
ANEMOS.plus &

SafeWind, 2011 [31]
Short-term within 36 h 17–35%

ANEMOS.plus &
SafeWind, 2017 [12] Short-term within 48 h 11–14%

UK Power Networks
2016 [13] Medium-term within 120 h 10%

Proposed model Medium-term within 72 h Near 5%

5. Conclusions

This study presented a TCN-based model for day-ahead wind power prediction
based on a casual convolution architecture with residual connections, in order to learn
correlations between meteorological features and wind power generation. The proposed
scheme effectively solves the long-distance dependency problem, as demonstrated by
the input of large amounts of temporal–spatial series data such as one-year wind power
data. The experimental results indicate that TCN models have the capability for feature
extraction of long-term sequence data, and exhibit the same or higher prediction accuracy
compared to LSTM and GRU models. Overall, the proposed TCN-based approach provides
a lower convergence error with higher prediction accuracy than those of other models
employed in other studies of wind power forecasting [12,13,31].

Author Contributions: Conceptualization, P.W. and K.-M.C.; methodology, W.-H.L.; resources, P.W.;
formal analysis, W.-H.L.; data curation, W.-H.L.; writing—original draft, Z.-Y.Y., Y.-H.L. and W.-H.L.;
writing-review and editing, P.W.; software, H.-C.L. and Y.-H.L.; validation, H.-C.L. and W.-H.L.;
visualization, Y.-H.L. and Z.-Y.Y.; project administration, P.W.; funding acquisition, P.W. All authors
have read and agreed to the published version of the manuscript.

Appl. Sci. 2021, 11, 10335 20 of 21

Funding: This research was funded by the Ministry of Science and Technology of Taiwan under
Grant Nos. MOST 110-2410–H-168-003, and Taiwan’s Ministry of Education (MOE) under Grant No.
MOE 2000-109CC5-001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: This work was jointly supported by Taiwan’s Ministry of Science and Technology
under Grant No. MOST 110-2410–H-168-003 and Taiwan’s Ministry of Education (MOE) under Grant
No. MOE 2000-109CC5-001.

Conflicts of Interest: The authors declare no conflict of interest

References
1. Alexiadis, M.; Dokopoulos, P.; Sahsamanoglou, H. Wind speed and power forecasting based on spatial correlation models. IEEE

Trans. Energy Convers. 1999, 14, 836–842. [CrossRef]
2. Cadenas, E.; Rivera, W.; Campos-Amezcua, R.; Heard, C. Wind speed prediction using a univariate ARIMA model and a

multivariate NARX model. Energies 2016, 9, 109. [CrossRef]
3. Mohandes, M.; Halawani, T.; Rehman, S.; Hussain, A.A. Support vector machines for wind speed prediction. Renew. Energy 2004,

29, 939–947. [CrossRef]
4. Moreno, S.; da Silva, R.G.; Mariani, V.C.; Coelho, L. Multi-step-ahead wind speed forecasting based on a hybrid decomposition

method and temporal convolutional networks. Energy 2021, 238, 121981. [CrossRef]
5. Donadio, L.; Fang, J.; Porté-Agel, F. Numerical weather prediction and artificial neural network coupling for wind energy forecast.

Energies 2021, 14, 338. [CrossRef]
6. Hong, Y.Y.; Rioflorido, C.L.P.P. A hybrid deep learning-based neural network for 24-h ahead wind power forecasting. Appl.

Energy 2019, 250, 530–539. [CrossRef]
7. Mana, M.; Astolfi, D.; Castellani, F.; Meißner, C. Day-ahead wind power forecast through high-resolution mesoscale model: Local

computational fluid dynamics versus artificial neural network downscaling. J. Sol. Energy Eng. 2020, 142, 034502. [CrossRef]
8. Emeksiz, C.; Tan, M. Multi-step wind speed forecasting and Hurst analysis using novel hybrid secondary decomposition

approach. Energy 2022, 238, 121764. [CrossRef]
9. Jiang, P.; Liu, Z.; Niu, X.; Zhang, L. A combined forecasting system based on statistical method, artificial neural networks, and

deep learning methods for short-term wind speed forecasting. Energy 2021, 217, 119361. [CrossRef]
10. Neshat, M.; Nezhad, M.M.; Abbasnejad, E.; Mirjalili, S. A deep learning-based evolutionary model for short-term wind speed

forecasting: A case study of the Lillgrund offshore wind farm. Energy Convers. Manag. 2021, 236, 114002. [CrossRef]
11. Sareta, K. Short-term wind speed forecasting system using deep learning for wind turbine applications. Int. J. Electr. Comput. Eng.

2020, 10, 5779–5784.
12. Kariniotakis, G. Renewable Energy Forecasting, from Models to Applications; Cambridge Elsevier Science & Technology: Cambridge,

UK, 2017.
13. UK Power Networks. KASM SDRC 9.3: Installation of Forecasting Modules, November 2016. Available online: https://

innovation.ukpowernetworks.co.uk/wp-content/uploads/2019/05/Installation-of-forecasting-modules.pdf (accessed on 8
February 2021).

14. Gupta, D. Fundamentals of Deep Learning—Introduction to Recurrent Neural Networks. 2019. Available online: https:
//www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/ (accessed on 20 March 2021).

15. Hochreiter, S. Long-short term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
16. Kandpal, A. Generating Text Using an LSTM Network, Codeburst Web Site. 2018. Available online: https://machinelearningmastery.

com/text-generation-lstm-recurrent-neural-networks-python-keras/ (accessed on 8 February 2021).
17. Firat, O.; Oztekin, I. Learning Deep Temporal Representations for Brain Decoding. In Proceedings of the First International

Workshop, MLMMI 2015, Lille, France, 11 July 2015; pp. 25–34.
18. Ding, L.; Xu, C. TricorNet: A. Hybrid Temporal Convolutional and Recurrent Network for Video Action Segmentation. arXiv

2017, arXiv:1705.07818.
19. Wang, X.; Xu, J.; Shi, W.; Liu, J. OGRU: An Optimized Gated Recurrent Unit Neural Network. J. Phys. Conf. Ser. 2019, 1325, 012089.

[CrossRef]
20. Lea, C.; Flynn, M.D.; Vidal, R.; Reiter, A.; Hager, G.D. Temporal Convolutional Networks for Action Segmentation and Detection.

In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; pp. 1003–1012.

21. Bai, S.; Kolter, J.Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling.
arXiv 2018, arXiv:1803.01271.

http://doi.org/10.1109/60.790962
http://doi.org/10.3390/en9020109
http://doi.org/10.1016/j.renene.2003.11.009
http://doi.org/10.1016/j.energy.2021.121981
http://doi.org/10.3390/en14020338
http://doi.org/10.1016/j.apenergy.2019.05.044
http://doi.org/10.1115/1.4045740
http://doi.org/10.1016/j.energy.2021.121764
http://doi.org/10.1016/j.energy.2020.119361
http://doi.org/10.1016/j.enconman.2021.114002
https://innovation.ukpowernetworks.co.uk/wp-content/uploads/2019/05/Installation-of-forecasting-modules.pdf
https://innovation.ukpowernetworks.co.uk/wp-content/uploads/2019/05/Installation-of-forecasting-modules.pdf
https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/
https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://machinelearningmastery.com/text-generation-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/text-generation-lstm-recurrent-neural-networks-python-keras/
http://doi.org/10.1088/1742-6596/1325/1/012089

Appl. Sci. 2021, 11, 10335 21 of 21

22. Torres, J.F.; Hadjout, D.; Sebaa, A.; Martínez-Álvare, F.Z.; Troncoso, A. Deep Learning for Time Series Forecasting: A Survey. Big
Data 2021, 9, 3–21. [CrossRef] [PubMed]

23. Yan, J.; Mu, L.; Wang, L.; Ranjan, R. Temporal Convolutional Networks for the Advance Prediction of ENSO. Sci. Rep. 2020, 10,
8055. [CrossRef]

24. Storn, R.; Price, K.V. Differential Evolution: A Simple and Efficient Heuristic for Global Optimization over Continuous Space. J.
Glob. Optim. 1997, 11, 341–359. [CrossRef]

25. Georgioudakis, M.; Plevris, V. A Comparative Study of Differential Evolution Variants in Constrained Structural Optimization.
Front. Built Environ. Comput. Methods Struct. Eng. 2020, 6, 1–14. [CrossRef]

26. Zhang, J.; Sanderson, A.C. JADE: Adaptive Differential Evolution with Optional External Archive. IEEE Trans. Evol. Comput.
2009, 13, 945–958. [CrossRef]

27. Yu, W.J.; Shen, M.; Chen, W.N.; Zhan, Z.H.; Gong, Y.J.; Lin, Y. Differential Evolution with Two-level Parameter Adaption. IEEE
Trans. Cybern. 2014, 44, 1080–1099. [CrossRef] [PubMed]

28. Li, X.; Yin, M. Application of Differential Evolution Algorithm on Self-Potential Data. PLoS ONE 2012, 7, e51199. [CrossRef]
[PubMed]

29. Rémy, P. Keras-tcn, GitHub. Available online: https://github.com/philipperemy/keras-tcn (accessed on 15 February 2021).
30. Erisen, B. Wind Turbine Scada Dataset: 2018 Scada Data of a Wind Turbine in Turkey. Available online: https://www.kaggle.

com/berkerisen/wind-turbine-scada-dataset (accessed on 7 January 2021).
31. Giebel, G.; Brownsword, R.; Kariniotakis, G.; Denhard, M.; Draxl, C. The State-of-the-Art in Short-Term Prediction of Wind Power:

A Literature Overview, 2nd ed. 2011. Available online: http://ecolo.org/documents/documents_in_english/wind-predict-
ANEMOS.pdf (accessed on 10 February 2021).

http://doi.org/10.1089/big.2020.0159
http://www.ncbi.nlm.nih.gov/pubmed/33275484
http://doi.org/10.1038/s41598-020-65070-5
http://doi.org/10.1023/A:1008202821328
http://doi.org/10.3389/fbuil.2020.00102
http://doi.org/10.1109/TEVC.2009.2014613
http://doi.org/10.1109/TCYB.2013.2279211
http://www.ncbi.nlm.nih.gov/pubmed/24013834
http://doi.org/10.1371/journal.pone.0051199
http://www.ncbi.nlm.nih.gov/pubmed/23240004
https://github.com/philipperemy/keras-tcn
https://www.kaggle.com/berkerisen/wind-turbine-scada-dataset
https://www.kaggle.com/berkerisen/wind-turbine-scada-dataset
http://ecolo.org/documents/documents_in_english/wind-predict-ANEMOS.pdf
http://ecolo.org/documents/documents_in_english/wind-predict-ANEMOS.pdf

	Lin_et_al_Wind_Power_Forecasting cs
	Lin_et_al_Wind_Power_Forecasting
	Introduction
	Literature Review
	DNNs for Processing Time-Series Data
	Differential Evolution Algorithm

	Wind Power Forecasting Model with Temporal Convolutional Networks
	Architectural Design for TCN
	Parameter Selection for TCN Model Using Evolutionary Algorithm
	Preliminary Architecture Design
	Analysis of Architecture Design

	Overall Process of the Model Operations

	Results
	Case Study: Performance Analysis for TCN-Based Model (Scada Wind Farm, Turkey)
	Method Comparisons

	Conclusions
	References

