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Abstract: New energy vehicles have significant prospects in reducing greenhouse gas emission and 
environmental pollution. Lithium-ion batteries are the favored power source in electric vehicles 
because of their high energy density and long service life. The battery performance depends 
noticeably on the temperature. Battery thermal management system, which can keep the battery 
pack working in a proper temperature range, not only affects significantly the battery pack system 
performance but is also vital for the safety and stability. This article mainly summarizes the thermal 
management models in the literature which can predict heat generation, heat transfer and the 
temperature distribution within the battery cell, module and pack. The multi-physical battery 
thermal management systems are divided into three categories based on different methods of cooling 
the phase change materials such as air-cooled system, liquid-cooled system, and heat-pipe-cooled 
system. The emergency battery thermal battier methods are also summarized in multi-scale included 
material scale, battery management system and supplementary system. Finally, we propose a novel 
digital solution for full-lifespan thermal management control of EV power system based on CHAIN 
framework that helps improve the power battery temperature control strategy applying multiple 
working conditions. 
Key word: Electric vehicle, Temperature distribution, Thermal model, Battery thermal management, 
CHAIN 

1 Introduction 
Electric vehicles (EV) have great potential benefits to reduce greenhouse gas (GHG) emission and 
environmental pollution. As the banning of sales of conventional fuels was proposed by European 
Union in 2011, deadlines to stop conventional fuel vehicle manufacturing have been announced 
sequentially by China, French, British, Norway, and other countries.[1] Meanwhile, funding and 
policies are set up to support the development of EV [2–6]. For example, European and Chinese 
governments are providing subsidies to promote the EV sales according to the vehicle price and 
greenhouse gas emission level. Meanwhile, most European countries offer high ratio (mostly 50% 
to 75%) of installation subsidies of charging piles for private and public parking areas. The 
International Energy Agency (IEA) also predicts in Nordic EV outlook 2018 that the EV will reach 
1.3 million units by 2030 based on the current market development trend. [7] 
With the rapid growth of EV, the demand for power batteries with high energy density has been 
increasing fast [8–10]. Compared with other types of energy storages[11,12], lithium-ion batteries 
(LIB) are favored in new energy vehicles due to their low self-discharge rate, long service life, high 



power and energy densities [13,14]. Recent researches indicate that lithium ion battery will continue 
to improve in cost, safety, energy and power capability and will keep standing out from the rest 
batteries in the next several years. However, degradation and thermal safety of LIB are still the 
major challenges for the development of the LIB and LIB-powered EV[15–19]. Studies have shown 
that the capacity[20–23], cycle life[24–27]and safety [4,28,29]of power battery depends highly on 
the temperature. The performance and stability of LIB decline fast at the abnormal temperature 
range for almost all cell materials. If the temperature is too low, the battery capacity will be 
significantly reduced[16] due to the lithium plating at high rate charging[20]/discharging[21]; High 
temperature will accelerate battery side reactions [30]and degradation. For example, the SEI layer 
on the anode grows faster at high temperatures, becoming more porous and unstable during fast 
charging [31]; Manufacturing defect parts such as holes on the separator may be overheated[28] and 
result in chain reactions which is conductive to thermal runaway[32], threatening lives of the drivers 
and passengers.  
Therefore, efficient battery thermal management system (BTMS) is essential to keep battery 
temperature within the proper range and to decrease the temperature variance between cells[33][34]. 
There are two main criteria to evaluate the performance of the BTMS: the maximum temperature 
rise and the maximum temperature difference of the battery pack. To maintain optimal performance 
and to prolong the lifespan of the power battery, the temperature of all the cells need to be maintained 
within a narrow range between 20 °C and 45 °C, and the maximum temperature difference among 
cells should be less than 5 °C. [35]The latest key metric of cooling coefficient proposed by 
Gregory[36] can be used to describe the temperature gradient across a cell in operation. It can inform 
a designer the ability of the heat generation and transfer and how difficult the thermal management 
will be in the selected cells in a pack.  
The BTMS can be classified into preheating BTMS, cooling BTMS and emergency battery thermal 
barrier (EBTB). Hu et al. [37]summarized the preheating BTMS comprehensively which is used to 
preheat the battery pack in the case of cold working condition. The preheating BTMS is composed 
of convective and conductive preheating. The convective preheating BTMS consists of air heating, 
liquid heating, and heat pump heating. The conductive preheating BTMS consists of resistance 
heating, Peltier-effect heating, heat pipe heating, burner heating and phase change material (PCM) 
heating. The cooling BTMS [6] is divided into air cooling[38], liquid cooling[39], heat pipe 
cooling[40][41], coolant direct cooling[42], boiling cooling[43][44] and phase change material 
(PCM) cooling[45]. These cooling methods are combined to multi-physical system to ensure both 
the maximum temperature rise and the maximum temperature difference are maintained in the 
proper range. EBTB is designed to minimize the potential hazards to the driver and passengers and 
the damage to the battery pack to reduce economic loss when the thermal runaway is predicted to 
occur[46]. In addition to the survey of different BTMS designs,, the thermal theories such as heat 
generation, heat transfer, and heat dissipation in power battery are also reviewed. Battery models 
such as the electrochemical-thermal-mechanical coupled model and multi-node thermal model for 
cells, modules, packs and other multi-dimensional models have been developed through theoretical 
derivation and experiments to predict the battery pack temperature. 
This paper aims to review the existing work and look forward to future developments of BTMS 
based on the latest research. Specifically, an overview of the electrical and thermal models of LIB 
is provided. The multi-physical cooling BTMS performances characterized by maximum 
temperature rise and maximum temperature variance are summarized and different optimization 



methods are compared. Different multi-scale EBTBs are presented and the trigger conditions are 
also detailed. Finally a new novel digital solution for full-lifespan thermal management control of 
EV power system based on CHAIN Control System framework is proposed to improve the 
performance of the BTMS. 

2 Thermal models and issue 
2.1 LIB thermal models 
The LIB’s performance is closely related to temperature, so it is important to understand the thermal 
dynamics of the battery [47]. Huang et al. [48]reported a method of in situ measurement of pouch 
cell internal temperatures. However, temperature measured by thermocouple can only obtain the 
mid point temperature, not the internal temperature distribution. The in-situ monitoring of the 
battery internal temperature is still challenging [49]. Simulation based on thermal models is usually 
used to study on the battery internal temperature distribution and reduce the experimental cost. 
Cell -level thermal models can be classified into electro-thermal model[50], electrochemical thermal 
model[51] and thermal runaway propagation model [52]according to the physical mechanism. 
These models can also be categorized as lumped model [51],1D axial symmetry [53] ,2D [54] and 
3D [55]according to the dimensions.  
The thermal model includes heat generation and heat transfer, as shown in (Eq. 1), and the heat 
generation is strongly related to the electrochemical reaction rate occurring inside the cell during 
charge and discharge. The cell temperature is solved by heat transfer equation as shown in (Eq. 1) 

                     (1) 

where ρ is the average density of the battery. cp is the average heat capacity under constant pressure. 
v is the electrolyte velocity. λ is the average thermal conductivity in all directions.  is the heat 
generation. It is worth noting that the term  which is the internal convective heat transfer is 
usually neglected due to the limited mobility of the liquid electrolyte of the LIB[56].  
The lumped thermal model considers the heat transfer between the battery and the surroundings, as 
in Eq. (2). It assumes that the heat transfer of battery is uniformly distributed in all directions and is 
usually used in cells with small thickness. [31] 

                          (2) 

where h is the convection coefficient. As is the surface area of cell exposed to the surroundings.  

is the temperature of the cooling medium.  
The heat generation of LIB consists of reversible and irreversible heat. Bernardi et al. obtained the 
simplified LIB heat generation equation from experiment as follows, [57] 

                          (3) 

q, I, U and V respectively represent the heat generation, the electric current, the open-circuit voltage 
and the cell voltage of the LIB. The term I(U-V) represents irreversible heat caused by the resistance 
in the cell. U-V represents the total internal overpotential of the battery induced by processes such 
as the charge transfer reactions at the electrode/electrolyte interfaces, the diffusion and migration of 

Li ion across the electrolyte and electrodes, and the ohmic losses. The second term  is the 

reversible entropic heat during the electrochemical reaction. [58] Fig.1 details the heat generation 



and transfer of different parts of LIB. 
 

Fig. 1 Schematic of heat generation and transfer of LIB 
Effective battery thermal models can predict the temperature distribution of cells, modules and 
packs under different charging/discharging patterns [3,53–55,59]. Based on electro-thermal model, 
sub-models such as impedance-based model of overcharging process and capacity fade model, are 
added to improve the accuracy of the prediction of the temperature distribution. [20,52,60]. Xie et 
al.[55] also took the battery body and the current collecting posts into account in the thermal model, 
and the maximum average error of temperature estimation was 1.23 °C . Feng et al. [61] formulated 
an electrochemical-thermal-neural-network (ETNN) model. The temperature prediction error is less 
than 0.7 °C when the battery temperature varies between 20–40 °C. Pan et al. [5] established a heat 
generation model based on a second-order equivalent-circuit model and a novel multi-node heat 
transfer model based on the battery geometry. The maximum temperature prediction error is less 
than 2 °C throughout the experimental cycles, while the computational cost is reduced by 90% 
compared with electrochemical model. The proposed model holds a great potential for online 
temperature estimation in advanced lithium-ion BTMS design.  

 

Fig.2 Schematic illustration of the multi-node electro-thermal model[5] 
As to the thermal model of the battery module and pack, the heat transfer analysis and thermal 
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gradient are key limiting factors for lifetime and cost. Jeong et al. [62] found that anisotropic heat 
conduction due to the stacked geometry of the unit cells caused temperature non-uniformity within 
the battery module. Further research by Liu et al. [63]investigated the degradation of battery pack 
caused by thermal gradient using the SEI growth model. It was shown that the thermal gradient can 
further cause current heterogeneity leading to accelerated local aging. However, the above work just 
aimed to optimize estimation accuracy of temperature and did not consider the economic factors. 
Liu et al. [64]proposed a constrained multi-objective optimization framework to develop economy-
conscious charging management. Specifically, the economic indicator of the total charging cost, 
which includes both the battery aging cost and electrical energy loss, is minimized based on a 
coupled electrothermal-aging model with different timescales. This study shows that small values 
of the cut-off voltage, heat convection resistance and ambient temperature can reduce the 
temperature rise and economic charging cost while sacrificing charging speed. 

 

Fig.3. Overall multi-objective optimization framework for economic-conscious charging[64] 
2.2 Coolant thermal model 
2.2.1 Fluid coolant thermal model 
Cooling BTMS is used to protect the battery from high temperature. Air and liquid are commonly 
used coolant due to the low cost, simple structure, high stability and good ability of heat transfer.[65] 
The model is built on the three fundamental equations, i.e., the continuity equation (Eq. 4), the 
momentum equation (Eq. 5) and the energy equation (Eq. 6). Incompressible condition is usually 
assumed because the fluid velocity is low.[66]  

                                    (4) 

                       (5) 

           (6) 

where ρ, λ and cp are the density, thermal conductivity and specific heat of the coolant. V is the 
velocity vector of the coolant, μ is the dynamic viscosity. p is the static pressure, g and F are the 
gravitational body force and external body forces and q is the heat source term. 



The cooling performance of the BTMS depends strongly on the flow pattern[67–69]and flow rate 
[39,70], which can be optimized based on the 2D[71] and 3D[10] models. However, the fabrication 
cost of complicated flow pattern can be prohibitively high, and therefore a reduction of 
computational expense is necessary [72]. Researchers [73,74] have found that the symmetrical 
BTMS can achieve much better cooling performance than the corresponding asymmetrical design. 
Fan et al. [9] found that the aligned arrangement has the best cooling performance in terms of 
temperature uniformity as shown in Fig.4. Zhou et al. [75] proposed a new air flow pattern (Fig.5) 
which can reduce the battery temperature variance.  

 
Fig.4 Structural projections of the replaceable battery packs[9] 

 
Fig.5 Schematics of the battery module with air distribution pipes [75] 

Ashraf et al.[71] found that the top and bottom walls with Zigzag configurations can increase the 
heat transfer performance due to the formation of the eddy which enhances the mixing of fluid. 
Zhang et al. [76]added a piece of flexible graphite between the battery and the flow channel in order 
to improve temperature uniformity of the battery pack as shown in Fig.6. Chung et al.[77] presented 
a thermal model for the liquid-cooling pouch battery pack with 7500 cells which can give a detailed 
thermal analysis of various pack designs. Rao’s group [78] designed a type of liquid cooling method 
based on mini-channel cold-plate as shown in Fig.7. The results showed that temperature uniformity 
was significantly improved and temperature difference decreased 43.3%.  

Fig.6 The battery surface temperature distribution in 
cooling equilibrium state[76] 

Fig.7 Thermal management system 
using mini-channel cooling[78] 

(a) (b) (c)



The multi-objective optimization algorithms have also been used to optimize the coolant flow 
pattern [79–81] and to improve the cooling control strategy [82]which keeps the battery pack within 
the optimal range (25–40 °C) and maintains a low temperature variance between cells (less than 
5 °C). Ma et al. [82] proposed an optimal design method for the cooling BTMS for lithium-ion 
batteries based on a three-step nonlinear optimization method. The triple-step nonlinear 
optimization method (Fig.8) and PID control method are compared under different operating 
conditions. The simulation results show that the triple-step nonlinear method can keep the battery 
temperature under 32 °C and the deviation from the target temperature is lower than 2.0 °C. The 
new method also improves the speed of the cooling process of lithium-ion batteries. 

 

Fig.8 Multi-objective design of microvascular panels [80] 
The flow rate control by adjusting the pump speed can improve the cooling performance in active 
air/liquid cooling system under a wide range of charging/discharging conditions [83]. However, the 
power loss caused by pump reduces the efficiency of the battery pack. Therefore, new adaptive 
control methods have been developed in recent research[11]. Liu et al. [84,85]established a self-
adaptive intelligent neural network-based model predictive control strategy for a J-type air-based 
BTMS using surrogate-based optimization algorithm, which can maintain the temperature variance 
under 1.33 K while increasing the energy efficiency by 15.8%. 
 

 

(a)

(b) (c) (d) (e)



Fig.9 The framework of the transient flow CFD model [84,85] 
 
2.2.2 PCM coolant thermal model 
Apart from air and liquid, PCM is another efficient coolant due to its high heat latent. Although the 
PCM’s cooling speed is lower than fluid cooling at high temperature, it can reduce the temperature 
variance dramatically which can reduce degradation of the battery pack [86,87]. Under the phase-
change temperature, heat is transferred from the cells to the solid PCM by conduction. After the 
battery temperature reaches the melting point, the PCM can absorb a large amount of heat flux from 
the battery. As a result, the temperature of every cell in the pack can be kept the same, equal to the 
melting point[88]. Klimeš et al. [89] summarized the two widely used methods for modelling the 
heat transfer of PCM, i.e., the enthalpy method and the effective heat capacity method. 

 
Fig.10 Temperature characteristic of PCM based system[90] 

The enthalpy method uses enthalpy which is a thermodynamic function to describe the relationship 
between sensible heat and latent heat during the phase change. The enthalpy can be defined as a 
function of temperature T as 

                         (7) 

where h is enthalpy, ρ is the density, Tref is a reference temperature, c is the heat capacity, Lf is the 
heat of fusion, fs is the solid fraction, and θ is integration variable. Then the enthalpy h is substituted 
into heat transfer function (Eqn. 7) to solve the heat transfer problem with phase change 

                                (8) 

where t is time, k is the thermal conductivity. The enthalpy method can deal with both sharp and 
gradual phase change, and the computation efficiency is high. However, it is difficult to handle 
supercooling problems. [91] 
The equations of the effective heat capacity method are given as follows.  

                                (9) 

                            (10) 



where ceff is the effective heat capacity.  
The effective heat capacity method is concise, and only one dependent variable ‘Temperature’ needs 
to be calculated. However, small time step and fine grids are required to achieve a desirable accuracy, 
which comes with a high computational cost compared with the enthalpy method.[91]  
Selecting the appropriate phase change material is the first step of building the PCM system. The 
PCM needs to satisfy the following six requirements: [66] 
(a) The melting point within the desirable temperature scope;  
(b) High latent heat, high specific heat capacity and high thermal conductivity; 
(c) Low volume dilatation after phase change process;  
(d) Negligible sub-cooling effect when freezing;  
(e) Properties including stable, nontoxic, nonflammable and non-explosive; 
(f) Commercially economical. 
Most pure PCM has low thermal conductivity. The cooling performance of PCM can be greatly 
enhanced by improving the thermal conductivity [90,92,93]. The most commonly used method is 
introducing a metallic component as the thermal conductive framework[41,94]. Nanomaterials such 
as nanosilic[95,96] and powder-like carbonaceous materials (CM), such as expanded graphite 
(EG)[97–99] and carbon nanotube, can also be used [100,101]as the thermal conductive component 
and adsorbent. 3D printing technology can be used to reduce the material waste and increase the 
mixing of PCM and the CM[102]. Futher, the conductivity and convention coefficient need to be 
identified accurately. Heyhat’s group developed [103]the local thermal non-equilibrium (LTNE) 
model using the non-Darcy law to simulate the nano-PCM melting inside the porous media. Results 
indicated that the porous-PCM composition reduce the temperature more quickly than the nano-
PCM and the fin-PCM ones. Javani et al [104]infused PCM in foam layers separating the LIB. When 
the foam is soaked in PCM and placed between the cells, the thermal management performance in 
terms of maximum temperature rise and temperature homogeneity is superior to that of dry foam 
under the same volumetric heat generation rate.  
Reducing the thermal barriers in the investigation of the structure-performance relationship is 
another way to optimize the PCM cooling performance.[105] Safdari et al. [106]revealed that both 
hexagonal and circular PCM vessels show generally the same thermal management performance 
and the circular PCM configuration is the best one as shown in Fig.11. It is worth noting that the 
cooling effects increase very slightly when the thermal conductivity exceeds a certain range [107]. 
Ling et al. [87]suggested the PCM with a melting point of approximately 40 °C, a thermal 
conductivity above 5.4 W/m K, and a latent heat density smaller than 0.0145 kJ/m3 should be 
selected. Huang et al. [108]put forward various flexible form-stable composite PCM which can 
lower the maximum temperature caused by thermal contact resistance. 
 



 
                      (a)             (b)              (c) 
Fig.11 Schematic of three different BTMS cases with different CELL-PCM unit shape a) circular 
cross section (Case 1), b) rectangular cross section (Case 2), c) hexagonal cross-section (Case 3) 

[106] 
 

3 Multi-physical BTMS based on PCM  
PCMs relies on the capacity of the latent heat to absorb heat from the cells. However, once the 
temperature exceeds the melting point, the cooling performance of the PCM is significantly reduced 
and they can act as an insulating material[109,110]. Therefore, combining cooling method with 
PCM to regulate the PCM temperature and thus to ensure a middle/long-term operation should be 
investigated. In this section, the existing solutions of PCMs in combination with other cooling media 
are reviewed. 
3.1 Thermal management with PCM and forced air convection 
Many researchers have studied PCM system with air cooling. A secondary heat dissipation system 
of forced air convection [86,99,111,112] can noticeably improve the cooling performance and the 
temperature homogeneity. The arrangement of cells, compactness of module and thickness of PCM 
[113] are the main structural parameters that affect the system performance. Ling’s combined system 
[114]successfully prevented heat accumulation and maintained the maximum temperature under 
50 °C in all test cycles. Mehrabi-Kermani et al. [115]proposed a novel hybrid BTMS using PCM 
embedded in copper foams combined with forced-air convection. The system was tested under 
various Reynolds numbers (Re). The results indicated that at the airspeed of 3.2 km/h, the battery 
temperature under high rate discharging is maintained below the 60 °C limit in steady state. The 
comparison of the hybrid BTMS with the passive and active BTMSs shows that although the active 
forced air convection BTMS can also keep the temperature below the safety limit at the ambient 
condition (24 °C), both active and passive systems were inefficient in hot weather (40 °C).  
 



     
Fig.12 Hybrid thermal management for Li-ion batteries using phase change materials embedded in 

copper foams combined with forced-air convection[115] 
Qin developed a multi-physical BTMS which can control the maximum temperature and the 
temperature variance of the battery pack [116] within the optimum range under dynamic 
charge/discharge current loads up to 4 C. Huang et al. [117] studied the influences of the design 
variables of the proposed BTMS, such as velocity inflow, on the thermal control performance using 
the Kriging-based high-dimensional model representation method which can reduce the 
computational expense.  
3.2 Thermal management using PCM and liquid coolant 
Liquid coolant have also been used in combination with the PCM [118][119]. The thermal runway 
arises when the cell temperature is high, or when the cell is over-charged or under short circuit[120]. 
Water or water-ethylene glycol (1:1) mixture are commonly used as liquid coolant[98,121–124]. 
Novel coolants such as nanofluid [125] [126]and phase change slurry [127] have also been 
investigated. Hekmat et al. [121]presented a multi-physical BTMS including PCM and cooling 
water pipes for a Li-ion module with high-capacity prismatic cells. The experimental results 
validated the effectiveness of the BTMS in terms of keeping a low maximum temperature rise and 
maintaining a uniform temperature distribution among the cells.  



 
Fig.13 Hybrid BTMS with PCM and liquid cooling  

Cao et al. [97]designed a hybrid BTMS which integrates a cold plate through which water flows 
into a PCM matrix made of expanded graphite/RT44HC composites for a battery pack of 20 Li-ion 
cylindrical cells. The water flow control strategies were also studied. This work showed that the 
water temperature should be kept below 40 °C and close to the ambient temperature in order to keep 
the battery temperature into the proper working condition. Once the flowrate exceeds a threshold, 
further increase of the flowrate only reduces marginally the maximum temperature of the battery 
pack but will significantly raise the axial temperature and the power consumption [128]. The water 
cooling battery module proposed by Lv et al. [129] presented a superior cooling performance in 
terms of temperature rise and temperature uniformity: during the fast charging process at 2C and 
3C, the maximum temperature of the water cooling module is 37.7 and 42.0 °C, and the maximum 
temperature difference is below 4 and 5 °C, respectively. Kong et al  [122] developed a coupled 
model of composite PCM and liquid cooling thermal management system. Simulation results 
showed that the BTMS exhibited good thermal performance under ambient temperature at 30 °C, 
which kept the maximum surface temperature and the maximum temperature difference of the 
battery pack at 41.1 °C and 4 °C, respectively at the end of 3C discharge. Based on the system model, 
a liquid cooling strategy was proposed for controlling the velocity and inlet temperature of coolant 
by monitoring the temperature of the PCM and the environment, which further improved the thermal 
performance of the battery pack during cycling at different ambient temperatures and significantly 
reduced power consumption of liquid cooling process.  

 

(a)

(c)

(b)

(d)

Battery Cooling-plate

PCM

Mini-channel

(a) (b) (c)



Fig.14 Temperature contours of the battery pack with three thermal management modes [122] 
3.3 Thermal management system using PCM and heat pipes 
Heat pipes have advantages such as excellent heat transfer efficiency and simple geometry. The 
system work on the combined effect of phase change and thermal conductivity, which can transfer 
heat efficiently with very small temperature drop over a substantial distance[130][131]. Jiang et al. 
[132] developed a lumped thermal model taking into consideration the coupling of the battery heat 
generation, the PCM melting and the transient thermal response of the heat pipe. The utilization of 
heat pipe can recover the latent heat of PCM at the end of the test cycle to ensure a low battery 
temperature for long-time cycling. A spray loop was added to the BTMS to ensure the cooling 
performance at the high ambient temperature by Lei[133]. The proposed design succeeds in limiting 
the average surface temperature rise within 8 °C even under a high discharging current, 24 A, and a 
high room temperature, 40 °C. The corresponding maximum temperature difference on the battery 
surfaces is effectively suppressed at less than 2.6°C.  

 
Fig.15 The BTMS design based on PCM and heat pipe[133] 

Zhang et al.[41] developed a BTMS with PCM and heat pipe for a LiFePO4 battery pack. The porous 
metal foam was saturated into PCM to improve the thermal conductivity. Since the filling of the 
PCM and other materials inside the battery pack is not required, the proposed BTMS has high safety 
and easy maintenance.  
More novel heat pipe can also be used in the BTMS. Oscillating heat pipe (OHP) is a kind of heat 
pipe with low cost and high heat conductivity. However, the application of OHP will increase the 
height of battery module[134].  

4 Emergency battery thermal barrier 
LIB thermal runaways can be caused by mechanical, electrical, and thermal stress and abuse, posing 
a major threat to the overall safety of the battery systems[135]. The initial abnormal behavior, if not 
detected or extinguished immediately, can lead to subsequent massive collateral damage or even 
fire and explosion [46]. Therefore, it is urgent to enhance the battery safety by material optimization 
and emergency cooling.  
As to the material optimization, Wang et al. [136]presented a novel concept to achieve the requisite 
stable and robust electrode/electrolyte interfaces by passivating a Li-ion cell and then self-heating 
before use. The additive, triallyl phosphate (TAP), was used in this work based on sufficient 
evidence in the literature of its ability to improve cell stability at both high-voltage and high-
temperature conditions as shown in Fig.16. Liu et al.[137] fabricated a novel “smart” nonwoven 
electrospun separator with thermal-triggered flame-retardant properties by adding triphenyl 
phosphate (TPP) for lithium-ion batteries. During thermal runaway of the lithium-ion battery, the 



protective polymer shell will melt, triggered by the increased temperature. The flame retardant will 
then be released, effectively suppressing the combustion of the highly flammable electrolytes. 

 
Fig.16 Schematic of the “smart” electrospun separator with thermal-triggered flame-retardant 

properties for lithium-ion batteries[137] 
Chen [138]reported a fast and reversible thermoresponsive polymer switching material that can be 
incorporated inside batteries to prevent thermal runaway. This material consists of electrochemically 
stable graphene-coated spiky nickel nanoparticles mixed in a polymer matrix with a high thermal 
expansion coefficient. Importantly, the conductivity decreases by seven to eight orders of magnitude 
within one second on reaching the transition temperature and spontaneously recovers at room 
temperature as shown in Fig.17. Batteries with this self-regulating material built in the electrode can 
rapidly shut down under abnormal conditions such as overheating and shorting, and are able to 
resume their normal function without performance compromise or detrimental thermal runaway. 
Zhao et al.[139] reported that externally applied compression has been employed to prevent lithium 
ion battery failure. The results show that compression reduces capacity loss by 0.07%, 4.95% and 
13.10% with the ambient temperature at 80, 90 and 100 °C for 10 h.  

 
Fig. 17 Physical properties of TRPS film [138] 

Emergency cooling is composed of thermal runaway monitoring and heat removal. The monitoring 
and detecting methods can be essentially divided into the following categories[135]:  
1) Terminal voltage detection using the battery management system (BMS); 
2) Battery mechanical deformation detection using creep distance sensors; 
3) Internal temperature estimation by embedding optic fiber sensors in lithium-ion batteries or 
monitoring the battery’s internal impedance change; 
4) Characteristic gas component identification during the thermal runaway 

(a) (b)

(c) (d) (e)



 
Fig.18 The evaluation strategy of overcharge fault[15] 

Zhu et al.[15] found that the sharp drop in voltage before thermal runaway provides a feasible 
approach to forewarn the users of the impending risk and proposed a safety management method to 
mitigate the impact of overcharge and avoid the thermal runaway risk as shown in Fig.18. When the 
thermal runaway is predicted to happen, some heat removal method should be used to cool the 
battery pack immediately[140]. Gao et al.[141] proposed an open-loop emergency thermal safety 
management method that sprays refrigerant directly into the battery box to achieve emergency 
cooling, oxygen suppression, cutting off heat and combustion once the thermal runaway is about to 
occur. Wilke et al.[140] presented experimental nail penetration studies on a Li-ion pack for small 
electric vehicles, designed with and without PCC. The results show that when parallel cells short-
circuit through the penetrated cell, the packs without PCC propagate fully while those equipped 
with PCC show no propagation.  

5 Future task and proposal 
With the rapid development of electric vehicles, power batteries with large capacity, high energy 
density, and fast charging lead to the wide range of temperature distribution. Thus, batteries suffer 
from safety problems such as life span aging, degradation acceleration and the deterioration of 
stability due to an increase in the heat generation rate [46]. Generally, multi-physical BTMS with 
self-adaptive intelligent control system combined with EBTB should be established to improve the 
temperature distribution of the battery pack as shown in Fig.19. Precise temperature distribution 
prediction for power battery pack under different working conditions is the foundation of BTMS. 
Multi-objective optimization based on battery full-lifespan management, techno-economic 
management and driving environment can improve the accuracy of the temperature prediction. 
Battery full-lifespan management based on the detailed model should be considered. Battery 
chemistry including positive/negative pole, electrochemical reaction and side reaction can simulate 
the electro-thermal behavior of LIB at sub-cell levels. The operating states of power battery, such 



as state of charge (SOC), state of health (SOH), state of power (SOP) and state of energy (SOE), 
can be integrated into the electro-thermal model using state estimation methods. The fast charging 
of power battery generates lots of heat, and therefore the temperature rise model should be taken 
into account when designing the charging strategy. The techno-economic management, which 
mainly considers the ratio of useful work output by BTMS to its electric consumptions, can increase 
the economical efficiency of whole system. Driving environment prediction based on vehicle to 
everything (V2X) can effectively predict the output power of the LIB which influences the 
temperature rise significantly. Self-adaptive intelligent control strategy should be made to control 
the multi-physical BTMS including preheating system, cooling system and EBTB effectively and 
economically. Several emerging cooling techniques [25,142]such as thermoelectric cooling, 
hydrogel-based cooling, thermo-acoustic refrigeration and magnetic refrigeration emerging 
nowadays can offer many advantages , including significant energy and cost-saving potential along 
with high scalability, over traditional forced-air or liquid cooling methods. Then, the working states 
of the battery pack such as temperature, current and voltage are measured by sensors, which can be 
used to correct the temperature prediction model interactionally. To fulfill the task, data collected 
from the BTMS by sensors are converted to hierarchical structures by a specific methodology that 
involves transfer protocols and the proper data-processing methods, such as data cleaning, screening, 
fusion, feature extraction, and clustering, achieving hierarchical computing and control methods. 
Based on sensing data and fetching data from the servers, a series of desired models can be 
established and trained, providing guidance for battery design and the optimization process. 
Intelligent algorithms and communication technologies are driving the product manufacturing 
industry toward the big data era[143].  

 
Fig.19 A novel BTMS framework based on CHAIN 
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