

iTP-LfD: Improved Task Parametrised
Learning from Demonstration for
Adaptive Path Generation of Cobot

El Zaatari, S., Wang, Y., Li, W. & Peng, Y.

Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:

El Zaatari, S, Wang, Y, Li, W & Peng, Y 2021, 'iTP-LfD: Improved Task Parametrised
Learning from Demonstration for Adaptive Path Generation of Cobot', Robotics and
Computer-Integrated Manufacturing, vol. 69, 102109.
https://dx.doi.org/ 10.1016/j.rcim.2020.102109

DOI 10.1016/j.rcim.2020.102109
ISSN 0736-5845

Publisher: Elsevier

NOTICE: this is the author’s version of a work that was accepted for publication in
Robotics and Computer-Integrated Manufacturing. Changes resulting from the
publishing process, such as peer review, editing, corrections, structural formatting,
and other quality control mechanisms may not be reflected in this document.
Changes may have been made to this work since it was submitted for publication.
A definitive version was subsequently published in Robotics and Computer-
Integrated Manufacturing, 69, (2021) DOI: 10.1016/j.rcim.2020.102109

© 2020, Elsevier. Licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/10.1016/j.rcim.2020.102109

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http:https://dx.doi.org

iTP-LfD: Improved Task Parametrised Learning from

Demonstration for Adaptive Path Generation of Cobot

Shirine El Zaatari1, Yuqi Wang2, Weidong Li1,2*, Yiqun Peng2

1 Faculty of Engineering, Environment and Computing, Coventry University, UK

2 School of Logistics Engineering, Wuhan University of Technology, China

* Corresponding author: weidong.li@coventry.ac.uk

Abstract

An approach of Task-Parameterised Learning from Demonstration (TP-LfD) aims at automatically

adapting the movements of collaborative robots (cobots) to new settings using knowledge learnt from

demonstrated paths. The approach is suitable for encoding complex relations between a cobot and its

surrounding, i.e., task-relevant objects. However, further efforts are still required to enhance the

intelligence and adaptability of TP-LfD for dynamic tasks. With this aim, this paper presents an

improved TP-LfD (iTP-LfD) approach to program cobots adaptively for a variety of industrial tasks.

iTP-LfD comprises of three main improvements over other developed TP-LfD approaches: 1) detecting

generic visual features for frames of reference (frames) in demonstrations for path reproduction in new

settings without using complex computer vision algorithms, 2) minimising redundant frames that

belong to the same object in demonstrations using a statistical algorithm, and 3) designing a

reinforcement learning algorithm to eliminate irrelevant frames. The distinguishing characteristic of the

iTP-LfD approach is that optimal frames are identified from demonstrations by simplifying

computational complexity, overcoming occlusions in new settings, and boosting the overall

performance. Case studies for a variety of industrial tasks involving different objects and scenarios

highlight the adaptability and robustness of the iTP-LfD approach.

Keywords: Learning from Demonstration, Intuitive Programming, Reinforcement Learning,

Collaborative robots (Cobots)

Symbols and Abbreviations

General Symbols

M (m as an index) Number of demonstrations

P (i, j, k used as

indices)
Number of frames

TotPts (t used as an

index)
Total number of path points in the task path

bi,m={x, y}i,m
The x-y coordinates of the frame i in the demonstration image m with

respect to a global frame of reference

αi,m
The rotation angle of the frame i in the demonstration image m with respect

to a global frame of reference

Grouping redundant frames

mailto:weidong.li@coventry.ac.uk

𝑑𝑗𝑘,𝑚 The relative distance between the frames j and k in the demonstration m

𝑎𝑗𝑘,𝑚 The relative orientation between the frame j and k in the demonstration m

thresh The threshold of determining whether two frames are redundant or not

maxlead The maximum allowed number of lead frames

Redun PxP matrix where 𝑅𝑒𝑑𝑢𝑛𝑗𝑘=1 if the frames j and k are redundant

Removing irrelevant frames

𝑅𝑒𝑙𝑒𝑣𝑗 The relevancy score of the frame j

iter The iteration index of the reinforcement learning algorithm

Δ𝑅𝑒𝑙𝑒𝑣𝑗 Disruption in the relevancy score of the frame j in an iteration iter

𝛽𝑗 A random number between 0 and 1 used to calculate Δ𝑅𝑒𝑙𝑒𝑣𝑗

𝛩𝑅𝑒𝑙𝑒𝑣𝑗 A temporary relevancy score of the frame j used in an iteration iter

poolsize The expected number of relevant frames for a task

id The index of the demonstration used in iteration iter

cost
The cost calculated at every iteration iter when different frames are chosen

for reproducing a path

reward
The reward calculation for every iteration used to update the value of

𝑅𝑒𝑙𝑒𝑣𝑗 using the obtained costs from every iteration

1. Introduction

1.1 Introduction of TP-LfD

Collaborative robots (cobots) are affordable solutions and bring various benefits to manufacturing,

including facilitating mass customisation and supporting human-robot collaboration for improved

working conditions to operators [1]. In particular, cobots are known to be easily integratable into

manufacturing environments due to their intuitive programming user interfaces (UIs). Thus, cobots have

been increasingly adopted in manufacturing companies especially small and medium-sized enterprises,

in which expert programming experience might be unavailable.

Task-Parametrised Learning from Demonstration (TP-LfD) is an effective algorithm for

programming cobots intuitively to act in unpredictable settings [2]. TP-LfD takes a set of

demonstrations of a cobot acting in a few varied settings, and then a model is generalised over them

and a new path is reproduced for a new setting. Owing to the flexibility and intuitiveness of the approach,

TP-LfD has been widely used to support various engineering applications [4-6]. Main steps of TP-LfD

are the following:

1. Recording demonstrations: Fig. 1 shows an illustrative example of three user-provided

demonstrations for picking and placing an object with different start locations. Each demonstration

consists of an image of the initial setup and a demonstration path through which the object is picked up

by a cobot and is placed into a packing box.

Fig. 1: Three demonstration paths for picking and placing an object in different start positions. A demonstration

consists of a 2D image of an initial setup and a task path followed by a cobot to perform the task.

2. Detecting task parameters: In TP-LfD, the path of a cobot is encoded with respect to multiple

frames of reference (task parameters, called “frames” in the rest of the paper). Task parameters are

usually associated with locations of task-relevant objects. For example, in Fig. 2, the object and box are

each associated with a frame, which is defined by a location vector and a rotation matrix. In this paper,

we tackle the problem of detecting and optimising the choice of task parameters, i.e., frames.

Fig. 2: Frame 1 is attached to a picked object and Frame 2 is attached to a wooden box for placing. Both frames

are defined with respect to a global reference frame, by a position vector b and a relative orientation α for a

rotation matrix. The location of the frame can be randomly chosen from the object.

3. Encoding the paths with respect to the task parameters: A path can be modelled as Task

Parameterised Gaussian Mixture Model (TP-GMM) from the perspective of each available frame. TP-

GMMs are chosen to model the paths since the central limit theorem states that normal distributions

successfully models many complex systems with the least amount of prior knowledge [3]. In Fig. 3(a),

Frames 1 from all the three demonstrations shown in Fig. 1 and 2 are aligned as if the paths are observed

from Frame 1. Each ellipse is a Gaussian probabilistic distribution (in the paper, each ellipse is called a

“Gaussian” for simplicity). In Fig. 3(a), the paths are encoded with three Gaussians (A, B and C) for

each one third of the path. In Fig. 3(b), a similar process is carried out for Frame 2 resulting in Gaussians

a, b and c.

(a) Paths encoded into three Gaussians after

being observed from Frame 1.
(b) Paths encoded into Gaussians after

being observed from Frame 2.

Fig. 3: GMMs, constituting of 3 Gaussians encoding the path as observed from Frame 1 and Frame 2.

4. Reproducing a new path: The Gaussians of the TP-GMM for each frame are regressed to obtain

a Gaussian for every time step t. For every time step t, the Gaussians from all frames are multiplied

together. The product factors are weighted by the inverse of the covariance of the Gaussian. The new

path (called a reproduced or regression path) is sampled from the Gaussian product (Fig. 4), in a

reproduction process known as Task Parametrised Gaussian Mixture Regression (TP-GMR).

a

Frame 2

Given a new image with

frames in new positions,

their TP-GMM are

aligned.

The TP-GMM is regressed

to obtain a Gaussian for

every time step t.

b
a

c

Frame 2

A

B

C

Frame 1

Gaussians of the same

time step are multiplied*

together to obtain the

reproduced path.

Frame 2

Frame 1

Frame 1

Reproduced path

Fig. 4: The green path is reproduced in a new setting by sampling from the product of the regressed Gaussians

of Frames 1 and 2.

1.2 Research challenges in TP-LfD

Frames are critical inputs for TP-LfD. Traditionally, a computer vision algorithm needs to be

designed to detect these frames, in the form of objects or locations. For different tasks, the algorithm

needs to be adjusted, which process is time-consuming and difficult. To facilitate the process, generic

visual features can be used to represent frames.

However, many of the detected frames might be redundant or irrelevant, because the vision

algorithm will detect all visual features in a working environment. For example, in Fig. 5, Frames 2 and

3 are redundant since both of them belong to the wooden box. Frame 4 can also be considered redundant

since it is always at a fixed location with respect to Frames 2 and 3. Only one of them is needed for use

in the successful training process of TP-LfD. Therefore, TP-LfD would eliminate all except for one.

Moreover, Frames 5 and 6 are irrelevant since they belong to a task irrelevant object that is the moving

conveyor belt. These frames should be eliminated since they would negatively affect the performance

of TP-LfD. Removing redundant and irrelevant frames identified via the generic visual features is a

tedious task, but it is crucial for improving the performance of TP-LfD.

Fig. 5: Examples of redundant and irrelevant frames. Frames 2, 3, 4 are redundant since they belong to the same

object/have the fixed relative position with respect to each other. Frames 5 and 6 are irrelevant since the task

does not depend on them to generate the path.

To address the aforementioned challenges, in this paper, an improved TP-LfD approach (iTP-LfD)

to support cobots in dynamic collaboration setting is presented. In the approach, a set of intelligent

algorithms are designed for a variety of tasks with minimal operator interference. The details include:

(1) The iTP-LfD approach uses a generic visual features algorithm to optimally identify frames in

demonstrations to boost the performance of the approach. In iTP-LfD, a statistical algorithm is

designed to group redundant frames, and a reinforcement learning based algorithm is integrated to

eliminate irrelevant frames;

(2) To leverage the grouped redundant frames, an intelligent algorithm is devised to overcome partial

occlusions of objects during reproductions;

(3) Based on the above intelligent algorithms, iTP-LfD can adapt to changes in dynamic collaborative

settings in an easier, quicker and cheaper means. That is, designing task-specific algorithms or

adding industrial fixtures to regulate object positions is not necessary. The performance of iTP-

LfD was validated via multiple industrial scenarios of varying complexity, in both simulation and

laboratory experiments, showing the promising potential of the approach to support industrial

applications.

In the rest of this paper, further background information and literature discussions are provided in

Section 2. The developed solution is explained in Section 3. The experimental setup, results and

discussions are detailed in Section 4. Finally, the conclusion is drawn in Section 5.

2. Related works

In this section, some background information and discussions on related work, specifically cobot

programming using TP-LfD, are given.

2.1 Programming UIs

Cobots need to be designed to closely cooperate with operators and be easily moved around shop

floors for different collaborative tasks. To fulfil the tasks, cobot manufacturers designed teaching

pendants that help operators program cobot easily. Based on the pendants, operators can specify way-

points on the cobot’s path, optimal speeds and torque parameters. However, teaching pendants are

mainly used to program cobots for tasks with pre-determined settings. To be adaptive to more dynamic

collaborative conditions, in recent years, researchers have resorted to creating intuitive UIs for dynamic

tasks. Guerin et al. created Adjutant that allows users to define tool affordances, i.e., constraints, to be

applied to different tasks [4]. Schou et al. designed Skill Based System (SBS) that allows users to

program tasks using a set of parametrisable skills [5]. Each skill has a “capability” of a specific hardware

component, e.g., drilling is a skill for a drill. Steinmetz et al. developed RAZOR, which is an intuitive

UI that allows parametrising skills for creating programs for dynamic tasks [6]. Paxton et al. devised

CoSTAR that enables users to develop programs that rely on trained computer vision models to detect

specific objects dynamically. The design supports programs to be robust against changes in object

positions during tasks [7]. Table 1 summarises the technical characteristics of the different user-

interfaces from the above research works and the proposed approach in this paper. This paper’s work

stands out due to its perception capabilities that do not need adjusting/retraining for different objects,

making this solution generic. Moreover, since this work relies on TP-LfD, the generated paths can have

subtle dependencies on multiple objects rather than just one. That makes it possible to be adaptive to

complex tasks, including those involving HRC.

Table 1: Summary of the technical characteristics of developed approaches.

Reference Perception capability
Support changes in

object positions

Support motion/task-level

programming

Guerin et al.

[4]

No. Tool constraints are

interpolated to different

positions. The operator

moves the cobot

manually to different

positions.

Motion-level, i.e., it specialises in

defining tool affordances and

constraints.

Schou et al.

[5]

Yes, but it is human-

assisted, i.e., the images

are transferred to the

human operator for

decision making.

It does not. Task-level, i.e., given a set of pre-

defined “capabilities”, the developed
system allows the user to easily

create parametrisable skills and build

task programs. A motion planner is

used to create paths.

Steinmetz et

al. [8]

No. It does not. Task-level, i.e., the user creates

programs by sequencing and

parametrising pre-defined skills.

Kinaesthetic teaching is used to

define the start and end positions of a

task.

Paxton et al.

[7]

Yes, it can detect

markers and classify

objects based on trained

models.

The cobot adjusts the

way-points of the path

according to new

positions.

Task-level, i.e., the user is allowed to

create paths by specifying way-points

and also build task programs using a

set of pre-defined operations.

Gaspar et al.

[9]

Yes, it contains object

detection algorithms that

adjust accuracy

depending on grasping

tolerance.

No, but it is easily

reprogrammable to new

tasks due to

reconfigurable hardware.

Motion-level programming using

kinaesthetic teaching, and task-level

programming using UI.

iTP-LfD Yes, it does not need to

train models or paste

markers.

The cobot automatically

adjusts paths to suit new

positions, based on task-

parametrised learning

from demonstrations.

Motion-level, i.e., the paths are

generated by the algorithm

intelligently.

2.2 Task parameter detection

In TP-LfD, task parameters usually refer to the positions of objects to be utilised to re-generate a

new path for a new setting. These positions can be detected in a variety of ways. Classical techniques

include motion capture such as in [10] and sticker markers such as in [11] [7]. Moreover, in cases where

a human is involved whether as a teacher or as a collaborator, Inertial Measurement Units (IMUs) [12]

or data gloves [13] are used for tracking a human’s motion. These methods are not applicable in

industrial scenarios due to their intrusive sense, i.e., external objects need to be attached to parts or

operators. Other developed non-intrusive methods to detect human posture and movement include

OpenPose [14] for full-body posture detection and Leap Motion [15] for hand motion detection. In the

research, image processing algorithms were tailored to detect specific objects. This is true when the

objects are in simple colours and geometric shapes, such as those in [16] [17]. However, this might be

more difficult for industrial objects with complex shapes and colours that do not stand out from the

surrounding. Thus, more complex computer vision algorithms were devised and trained to detect

specific objects, such as a deep learning algorithm, i.e., convolutional neural networks (CNN) in [18].

However, retraining these networks to detect new objects for new tasks is computationally expensive

and requires programming expertise. Gu et al. created a system including a 3D camera and a rotating

platform that were used to train a computer vision algorithm to detect the sensed objects [19]. The

system recorded point clouds and saved it in a database for future detections. However, such a system

includes hardware that is difficult to set up. Wang et al. developed a feature-based algorithm that used

line features to learn object models to detect object pose in 3D [20]. However, their work requires the

object’s CAD model and is restricted to objects with line features, i.e., straight edges. Therefore, this

work presents a task-parameter detection algorithm that works on generic objects and makes TP-LfD

achievable with minimal sensors, i.e., a 2D camera only.

2.3 Task parameter optimisation

Another research challenge is how to optimise the selection of task parameters (frames). A few

works have been done to overcome the parameter selection, such as redundant or irrelevant frames of

reference. Redundant frames are defined as a set of frames belonging to the same rigid object, i.e. with

fixed relative positions with each other. Due to their fixed relative position, redundant frames will have

the same GMMs after training. Moreover, irrelevant frames are frames that are randomly occurring and

of no relevancy to the task. Accounting for all redundant and irrelevant frames in TP-LfD degrades the

algorithmic performance as the path becomes falsely biased. Ideally, there should be one frame per task-

relevant object. Assuming in a large set of frames some of which are task-irrelevant or redundant,

Alizadeh et al. defined an importance score 𝐹𝑡,𝑗 for a Frame j at Time step (point along the

demonstration path) t [21] [22]. Alizadeh and Karimi used the importance score to identify redundant

frames [21]. Frames with the equal importance are deemed redundant and only one of them is accounted

for during reproduction. However, this approach does not suit iTP-LfD for two main reasons: 1)

detecting frames from visual features might lead to a large number of frames, thus generating significant

computational inefficiency and difficulty to train the TP-GMM algorithm. Therefore, it is important to

filter through the frames to identify redundant and irrelevant frames before executing TP-GMM; 2) in

a real-life situation where data is not synthetically generated, the redundant frames will not have exactly

consistent relative positions. Some of the redundant frames might be varying in position due to slight

mis-localisations. Therefore, when identifying redundant frames, an error threshold needs to be

introduced to account for slight mis-localisations.

On the other hand, Alizadeh and Malekzadeh used an importance score to identify irrelevant frames

[22]. Frames with an importance score less than a user-specified threshold for all times t, are deemed

irrelevant and excluded from TP-LfD. However, specifying the threshold might be tricky in cases when

some frames have subtle yet important effects on the path. Moreover, this method does not eliminate

redundant frames in case some are missed by the algorithm in [21]. Sena et al. used the same importance

score to adjust the weights of TP-LfD for different frames during reproduction [23]. This provides more

accurate results at the start and end of the paths even when frame positions are changed drastically

compared to demonstrations. In order to further improve the performance of this process, Huang et al.

were the first to design a reinforcement learning approach to optimise task parameters [24]. Using

reinforcement learning ensures that the process is improved due to the closed-loop nature of the

algorithm. In their work, several frames were first initialised. Then, a reinforcement learning algorithm

was used to shift the pose of these frames such that a task-specific cost function was minimised.

Moreover, Huang et al. also developed an automatic frame selection algorithm [24]. Given a number of

frames, their algorithm was able to identify which frames play the most important role in minimising

the cost function. This helps eliminate the frames that have low influence on learning. Based on this,

computation was speeded up and the performance was improved. On the other hand, there are several

limits in the work of Huang et al. [24]. The approach does not tackle the question of how to visually

detect frames, but rather they are specified as fixed positions with respect to the cobot’s end-effector.

This eliminates cases in which frames are intrinsically defined on non-static objects.

To overcome the above issues, the work presented in this paper will combine the advantages of some

research and design an improved algorithm to optimise TP-LfD in terms of computation efficiency and

robustness for changing industrial settings.

3. The iTP-LfD approach

The iTP-LfD approach developed in this paper consists of two general procedures: training to

generate TP-GMM, and path reproduction based on TP-GMR. For the training process, there are several

critical steps: 1) recording demonstrations, 2) detecting frames from the images of the recorded

demonstrations, 3) grouping redundant frames, 4) generating TP-GMM, and 5) eliminating irrelevant

frames. In the reproduction process, the main steps are: 1) recording a new setting, 2) detecting the

relevant frames from the new image of the setting, and matching them with those in the demonstrations,

and 3) regenerating a path using TP-GMR. Fig. 6 provides an overview of the procedures of training

and reproduction.

In Section 3.1, an overview of the approach is presented. In Sections 3.2 - 3.6, the implementation

details are discussed while the research contributions of this paper are from Sections 3.2, 3.3 and 3.5.

Capture N images for N

demonstrations

Detect visual features common

in all demonstrations

Group redundant frames of

reference together

Train TP-GMM

Eliminate irrelevant frames of

reference

Capture the image for a new

task setting

Detect visual features in a new

image

Match visual features between

the new image and the images

from demonstrations to obtain

relevant frames of reference

Reproduce a new task in the

new image using TP-GMR

Training Reproduction

Fig. 6: The overall flow of the iTP-LfD approach, including training and reproduction.

3.1 Overview

In the training process, demonstrations are recorded as images. Each demonstration entails the image

of a scene and a path that the cobot needs to perform in the scene. In this paper, the images in the

demonstrations are recorded in 2D, i.e., top view of objects located on a surface, to simplify the

computation complexity of the approach. Using the aforementioned pick-and-place demonstrations as

examples, the cobot needs to pick the pink object and place it in the brown box. In each demonstration,

the picked object varies its initial position while everything else is fixed and images for the processes

are taken. More images would provide more demonstration variability that makes the iTP-LfD approach

more robust. However, the more demonstrations, the lower the computational efficiency of retrieving

common visual features in the images. In order to balance efficiency and accuracy, a number of

experimental trials were conducted. It was observed that three to five demonstrations are enough to

highlight variability, i.e., how the objects might vary positions in future task settings. After recording

demonstrations, the iTP-LfD approach trains and reproduces the task autonomously, without requiring

an operator to tweak parameters or adjust code.

In the training process, frames are extracted from the demonstration images as visual features

autonomously. Redundant frames, e.g., belonging to the same object, are grouped together using a

statistical method. Then, the training of the TP-GMM is executed with the frames as task parameters,

resulting in TP-GMM encodings of the demonstration paths for each frame. Grouping redundant frames

before generating TP-GMM is necessary since it helps decrease the total number of frames making the

convergence of TP-GMM possible. Afterwards, irrelevant frames are identified to optimise the

performance through a reinforcement learning process. In the reinforcement learning process, TP-GMR

is used to regenerate a regression path from the trained TP-GMM.

During task reproduction in a new scenario, the goal of the iTP-LfD approach is to automatically

generate the cobot’s path based on what is learnt from the demonstrations provided previously. Firstly,

an image is taken of the new scene from the same camera position as the demonstration image. Visual

features are extracted from the image and matched with the relevant frames in the demonstrations. If all

the relevant frames are matched, then the path is generated using TP-GMR. If any of the relevant frames

is not matched, then the algorithm proceeds by matching the redundant frames with that relevant frame.

The position of the relevant frame is estimated using its relative position with respect to the redundant

frame found (refer to Section 3.3 for more details). Based on the result, a regression path is generated

using TP-GMR. Otherwise, if a redundant frame is also not identified, then the operation is halted and

an operator interference is necessary.

3.2 Detecting visual features

Traditionally, objects are detected using sticker markers [7], pre-trained neural network models [25]

or complex image processing algorithms [19]. In an effort to simplify the process of frame detection for

iTP-LfD, in this research, visual features are used to identify frames from demonstrations. This presents

a generic solution that can work for a wide range of objects without tweaking. Moreover, it requires a

minimal setup, only a camera. In Fig. 7, the relevant steps are illustrated. The process is explained in

more detail below.

Fig. 7: The process of detecting SURF features and matching them between demonstration images.

Step 1 – Detecting visual features in each of the images of demonstrations: In this paper, Speeded Up Robust

FeatuFigure 1res (SURF) are detected (oriented circles in Step 1 of Fig. 7) from the demonstration images

captured by a human operator. SURF features provide a balance between detection time and number of features

retrieved [26]. Moreover, SURF detects features that are scale and rotation invariant such as corners and blobs

[27]. This is suitable for this paper’s application in which objects might vary orientation, though not necessarily

vary in size with respect to the camera.

Step 2 – Matching features between the images of demonstrations: The features from each two

images are compared and identical features are associated together, i.e., matched. The matching is

carried out by an exhaustive nearest neighbour search method [28]. Features that are matched across all

the images of demonstrations are kept. If a feature is not found in at least one of the images, it is

eliminated since TP-GMM can only be trained if a feature is found in all demonstration images. In Step

2 of Fig. 7, it can be observed that the matched features are less than the total SURF features in Step 1.

Each matched feature is called a frame (e,g., the frame i), which is defined by a pixel position vector

bi,m={x,y}i,m and an orientation αi,m, where m ∈ M, and M is the total number of the demonstration images.

3.3 Grouping redundant frames

In each demonstration, the relative position is used to identify redundant frames for grouping. The

distance d and the relative orientation α between two frames, e.g., the frame j and the frame k in a

demonstration m, are calculated using the following Equations (1) and (2) respectively. If the standard

deviation σ divided by the mean μ is below a certain threshold thresh (see Equation 3), the frames are

deemed redundant. A P x P redundancy matrix Redun is defined to represent the redundancy

relationship between frames, where P is the total number of frames. In the matrix, if Redunjk = 1, the

frames j and k are considered redundant (see Equation 4).

𝑑𝑗𝑘 = {𝑑𝑗𝑘,𝑚 ∀ 1 ≤ 𝑚 ≤ 𝑀 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑𝑗𝑘,𝑚 = √(𝑥𝑗,𝑚 − 𝑥𝑘,𝑚)2 + (𝑦𝑗,𝑚 − 𝑦𝑘,𝑚)2 (1)

𝑎𝑗𝑘 = {𝑎𝑗𝑘,𝑚 ∀ 1 ≤ 𝑚 ≤ 𝑀 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑎𝑗𝑘,𝑚 = (𝛼𝑗,𝑚 − 𝛼𝑘,𝑚) (2)

𝜎(𝑑𝑗𝑘) 𝜎(𝑎𝑗𝑘)
𝑖𝑓 < 𝑡ℎ𝑟𝑒𝑠ℎ ∩ < 𝑡ℎ𝑟𝑒𝑠ℎ (3)

𝜇(𝑑𝑗𝑘) 𝜇(𝑎𝑗𝑘)

𝑡ℎ𝑒𝑛 𝑅𝑒𝑑𝑢𝑛𝑗𝑘 = 𝑅𝑒𝑑𝑢𝑛𝑘𝑗 = 1 (4)

After completing Redun, redundant frames are gathered in groups called objects. Lead frames are

chosen such that each object has one lead frame. The rest of the frames belonging to that object are

stored, to be used in case of partial occlusion. The threshold is adjusted so that the resultant number of

lead frames is below a particular number, which ensures that the iTP-LfD approach will converge. Fig.

8 and 9 summarise the relevant steps of this process based on a statistical algorithm. Fig. 10 shows an

example.

1. Go through all

pairs of frames

available in each of

the demonstration

images. Here, we

consider the pair of

frames j and k shown

in the 3 demonstration

images.

𝜎(𝛼𝑗𝑘)

𝑑𝑗𝑘,3
𝑑𝑗𝑘,2

𝑑𝑗𝑘,1

𝑑𝑗𝑘,1
𝑑𝑗𝑘,2

𝑑𝑗𝑘,3

𝜇(𝑑𝑗𝑘)
𝜎(𝑑𝑗𝑘)

𝜇(𝛼𝑗𝑘)

2. Calculate the

distance 𝑑𝑗𝑘 and angle

𝛼𝑗𝑘 between frames j

and k, in all 3

demonstration images.

3. Calculate the

mean 𝜇 and standard

deviation 𝜎 of

distances 𝑑𝑗𝑘 and of

angles 𝛼𝑗𝑘 .

k kk

j

j
j

k kk

j

j
j

𝛼𝑗𝑘,1

Fig. 8: Calculation of the mean and standard deviation of distances and angles between every pair of frames, as

part of grouping redundant frames together.

Fig. 9: Flowchart of the statistical algorithm showing how redundant frames are grouped. The threshold is

increased until the total number of lead frames is less than 25.

Fig. 10: Redundant frames form objects, i.e. the dots with the same colour. The chosen lead frame out of each

objects is marked in white and a number.

3.4 Training TP-GMM

TP-GMM is then trained using the collected demonstration data, consisting of demonstration paths

and task parameters (frames). The input to the algorithm consists of two elements, i.e., 1) a path, drawn

by the user on the demonstration image, which the cobot should follow to execute the task. There is a

path for each demonstration provided. Each path consists of a TotPts number of points defined by (xk,

yk) pixel coordinates on the image; 2) a set of task parameters, for each demonstration image, which are

the lead frames identified in Section 3.3. Each frame such as the frame j is defined by a pixel position

vector bi,m={x,y}i,m and an orientation αi,m, where m ∈ M, and M is the total number of the demonstration

images. In TP-GMM, the paths are encoded as TP-GMMs with respect to each of the lead frames [2].

Therefore, the outputs of the TP-GMM are a set of arrays in the length TotPts comprising of Gaussian

distributions. Each lead frame has its own array. Each Gaussian distribution comprises of a mean vector

μ and a covariance matrix Σt,j, modelling the distribution across demonstrations of a point t ∈ [1, TotPts]

along the path observed from the frame j. In a new task setting, the reproduced path will be sampled

from the product of these Gaussians using a process called TP-GMR (Refer to Section 3.6).

3.5 Identifying relevancy of frames

The performance of the iTP-LfD approach is highly dependent on the set of frames given. If any of

the frames are task-irrelevant, the performance of iTP-LfD will deteriorate. Therefore, a reinforced

learning-based algorithm is designed to enhance the iTP-LfD approach by scoring the relevancy of the

frames and eliminating irrelevant frames. Some critical steps of the algorithm are described below.

A relevancy score for each frame Relevj, e.g., the frame j, is defined. Relevancies are initialised with

equal values such that their sum equals 1.

1
𝑅𝑒𝑙𝑒𝑣𝑗 = (5)

𝑃

where P is the total number of (lead) frames.

The iTP-LfD approach takes a number of iterations of computation for optimisation. In each iteration

iter, a disturbance ΔRelevj to the relevancy score is introduced as part of the exploration tactic in

reinforcement learning. The temporary relevancy score resulting from the disturbance, ΘRelevj, is

created to be used in iter to filter the frames:

Δ𝑅𝑒𝑙𝑒𝑣𝑗 = (β𝑗 − 𝑅𝑒𝑙𝑒𝑣𝑗) × 𝑠𝑐𝑎𝑙𝑒 (6)

ΘR𝑒𝑙𝑒𝑣𝑗 = (𝑅𝑒𝑙𝑒𝑣𝑗 + ΔR𝑒𝑙𝑒𝑣𝑗)⁄∑ (𝑅𝑒𝑙𝑒𝑣𝑗 + ΔR𝑒𝑙𝑒𝑣𝑗) (7)𝑗

𝛽𝑗 is a random number between 0 and 1 and the scale is usually chosen as 0.05. ΘRelevj is a

temporary relevancy score used in an iteration. The equations are designed such that it is certain that

the resulting ΘRelevj will also add up to 1 while each ΘRelevj being between 0 and 1.

Frames are sorted in decreasing order of ΘRelevj. Given a specific poolsize number, the first poolsize

number of frames are chosen. That is, if poolsize = 2, the first 2 frames with the maximum ΘRelevj are

chosen. Then, the TP-GMR process (Refer to Section 3.6) is executed given the chosen frames with

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

maximum relevancy and the path is generated. A cost function is defined to be the average of the

distance between the points on the reproduced path and those on the demonstration path (Equation 8).

1 𝑇𝑜𝑡𝑃𝑡𝑠 𝑐𝑜𝑠𝑡 = ∑ √(𝑥𝑘 − 𝑋𝑘)2 + (𝑦𝑘 − 𝑌𝑘)2 (8)𝑘=1𝑇𝑜𝑡𝑃𝑡𝑠

where TotPts is the total number of points on the path, and (xk, yk) and (Xk, Yk) are the coordinates of

the kth point on the reproduced and demonstration paths. The cost for every period run is normalised to

fit into the range of 0 and 1. For every period number of iterations, the reward is calculated below:

𝑟𝑒𝑤𝑎𝑟𝑑 𝑖𝑡𝑒𝑟 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(−5 × 𝑐𝑜𝑠𝑡𝑖𝑡𝑒𝑟). (9)

Relevj is then update by adding the ΔRelevj of each iteration iter multiplied by the reward of that

iteration. The algorithm converges such that the Relev values of frames belonging to relevant objects

surpasses those belonging to irrelevant objects. In other words, the frames of maximum Relev chosen

for TP-GMR are relevant and hence result in the best performance. The trained algorithm is able to

identify the relevant frames. Table 2 summarises the algorithm to eliminate irrelevant frames.

Table 2: Pseudo code for filtering out irrelevant frames.

Algorithm Filtering Out Irrelevant Frames

Inputs:

poolsize: expected number of relevant frames

Demonstration data: images, paths, frames, and GMMs

Initialisation:

Let period = number of frames P

Let Total number of iterations = period x 10 x poolsize

Let Scale = 5e-2

Let Relev = 1xP vector of 1/P

Main Program:

FOR iter from 1 till Total number of iterations

Reproduce:

Set ΔRelev to a random 1xP vector of values between 0 and 1-Relev

Let ΘReleviter = Relev + ΔRelev

Sort ΘReleviter in decreasing order

id is the index of a randomly chosen demonstration

filtered_frames is the first poolsize number of frames from demonstration id of the highest ΘRelev

Reproduce path using GMMs of filtered_frames only

costiter is the distance between reproduced path and demonstration path of id

Update:

IF iter is a multiple of period THEN

Normalise costs from all previous iterations between 0 and 1

FOR each iter in the past period iterations

rewarditer = sigmoid(-5 x costiter)

updateReleviter = reward x ΔReleviter

Relev = Relev + updateReleviter /period

END FOR

END IF

END FOR

Outputs:

Relevant frames = the first poolsize frames of the highest Relev

Fig. 11 displays an example for the above processes. One of the relevant frames chosen (white dot)

belongs to the pink object to be picked. The other belongs to the fixed fixture of the cobot, which is at

a fixed position with respect to the brown box. Hence, the second frame belong to the location that the

object is placed in. The white path is generated using TP-GMR, with Gaussians of the relevant frames

only. More details about the performance of the algorithm in comparison to the ground truth and other

solutions are included in Section 4.

Fig. 11: The training results of the reinforcement learning based algorithm on the demonstration images. The

white path is generated using the TP-GMR process accounting only for the relevant frames. The white frames

are the ones that the algorithm identified as relevant.

3.6 Reproducing the task in new setting (TP-GMR)

After the training process taking place off-line as explained in Sections 3.2 to 3.5, the cobot needs

to apply TP-GMR on-line for new settings (a reproduction process). Firstly, an image is captured in the

new setting, i.e., similar images to those in demonstrations but with objects varying positions. In order

to reproduce the path using TP-GMR, the relevant frames according to the procedure presented in

Section 3.5 should be identified in the new setting. Therefore, the second step is to match the visual

features, i.e., frames, in the new image with the relevant ones in the demonstration image. If all the

relevant features are matched, the path can be reproduced using the TP-GMR process. The inputs for

TP-GMR include the following: 1) The relevant frames detected in the new image. Each frame (denoted

the frame j) is defined by a pixel position vector bi={x,y}i and an orientation αi; 2) The GMMs for each

relevant frame obtained from the off-line training of TP-GMM. Each frame has an array of the length

TotPts of Gaussian distributions. Each Gaussian distribution comprises of a mean vector μ and a

covariance matrix Σt,j, modelling the distribution across the demonstrations of a point t ∈ [1, TotPts]

along the path observed from the frame j. In TP-GMR, the GMMs are multiplied together and the

reproduced path is sampled from the product, adjusted for the new positions of the frames (Fig. 3).

More details on the algorithm refer to [2]. Fig. 12 shows an example of reproducing the task in a new

setting, after the two relevant features have been located in the image.

Fig. 12: An image of a new setting in which the pink object is in a new position, unseen in the demonstrations.

The relevant frames of reference are identified in the new image automatically. The path is then generated using

the TP-GMR process using the GMMs of the relevant frames.

If any of the relevant features could not be matched, possibly due to it being occluded in the new

setting, then the iTP-LfD approach attempts to match any of the redundant frames. The redundant

frames are identified in the off-line training as described in Section 3.3. If the matching is successful,

then a position transformation is done to estimate the relevant frame’s position from its detected

redundant frame. Redundant frames have a fixed relative position with respect to each other. Finally,

once the whole set of relevant frames are identified in the new image, the path is reproduced. Fig. 13

further provides explanation and an example of reproducing the task with occluded relevant frames.

Fig. 13: A new image in which an unusual obstacle hides one of the frames. iTP-LfD matches a redundant frame

and estimates the position of the hidden frame. Then, it reproduces the path using TP-GMR.

4. Experimental Results and Discussions

4.1 Effect of the varying poolsize parameter

The aim of this subsection is to investigate how the performance of the algorithm is affected by

varying the poolsize parameter. When identifying the relevant frames, the iTP-LfD approach requires

the user to input the expected number of relevant frames, called the poolsize. Since the poolsize is so

far a user-specified parameter, the possibility of automatically identifying the correct poolsize is

explored. Moreover, the effect of misstating it by the user is investigated, i.e. what would happen if the

user provides a false poolsize. To fulfil the purpose of this investigation, iTP-LfD was executed on

synthetic data while varying the poolsize. The synthetic data is such 20 frames are scattered in random

positions and orientations. All the frames are independent of each other, i.e. there are no redundant

frames. Two of these frames are task-relevant, where the task is to go from one frame to the other;

hence, the correct poolsize is 2. The training set is three demonstrations and the results are shown on a

new setting. Table 3 and Fig. 14 provide some results.

Table 3: The performance of each algorithm with respect to the ground truth.

Algorithm Distance from ground truth

Alizadeh and Malekzadeh’s approach [22] 0.1988

iTP-LfD (Poolsize = 1) 0.4245

iTP-LfD (Poolsize = 2) 0.1988

iTP-LfD (Poolsize = 3) 0.2718

iTP-LfD (Poolsize = 7) 0.3874

Fig. 14: The results on the validation demonstration: ground truth (green), Alizadeh and Malekzadeh’s approach

(purple), and the generated path using iTP-LfD with variable poolsize (blue).

The results show that choosing the correct poolsize is imperative to reaching optimal results.

However, it also shows that one additional frame would still lead to meaningful results. For example,

Fig. 14 shows that the path did not significantly change when the poolsize was varied from 2 to 3.

However, when the poolsize was increased to 7, the path detached at the start which led to dysfunctional

results. Moreover, the results show the possibility of automatically finding the optimal number of

frames by minimising the difference between the generated path and the ground truth.

4.2 Effect of number of lead frames on the reinforcement learning algorithm

As previously mentioned, the TP-GMM algorithm does not converge if given a high number of

frames (e.g., more than 50). That is why it is important to eliminate some of the redundant frames before

training the TP-GMM. However, the performance of the reinforcement learning based algorithm was

also found to be sensitive depending on the number of frames inputted. In this sub-section, the

performance of the reinforcement learning algorithm is investigated as the number of lead frames are

varied. The purpose of this investigation is to determine the maximum number of frames that yields an

acceptable performance, and then tuning the redundancy algorithm accordingly.

The experiment was run on the synthetic data in Section 4.1. The number of frames was varied in

increments of 5 from 5 to 30. Moreover, none of the frames were redundant and two of them where

relevant. The task was to go from the first relevant frame to the second, as they varied positions. The

reinforcement learning algorithm was responsible for identifying these two relevant frames. The

algorithm was run 10 times to obtain the success rate shown in Fig. 15.

100

90

80

70

60

50

40

30

Number of lead frames

Fig. 15: Success rate of the reinforcement learning algorithm to determining the relevant frames versus the

number of total lead frames.

According to the results in Fig. 15, the success rate of the reinforcement learning algorithm decreases

as the number of frames increases beyond 15. Thus, it is decided to choose 25 to be the maximum

number of frames inputted to the algorithm for generic applications.

4.3 Simulation case studies

The iTP-LfD approach is used to program the cobot for three tasks of different complexities. Cobot

programming and control were implemented using MATLAB. The tasks are the following:

1. Task 1 - Drawing on an object: This is a one-object operation in which the cobot needs to draw

a line on a fixed position on a book cover. The book varies position and orientation. This task

is representative of other single-object tasks such as scanning, stamping, etc.

2. Task 2 - Pick-and-place: This is a two-object operation in which the cobot picks up a cube and

places it in a box. The cube’s position and orientation varies, whereas the box is at a fixed

position.

S
u
cc

es
s

R
a
te

 (
%

)

5 10 15 20 25 30

3. Task 3 - Pick-trace-place: The cobot’s path moves from one object to another, i.e. picks up a

cube and places it in a box. This task is similar to Task 2 except that both objects change

positions and orientations.

The inputs provided to the approach constitute of three demonstration images showing a top view

of the initial outlay of the objects, and the path that the cobot follows in each demonstration to

accomplish the task (Fig. 16). Given these inputs, the approach is able to learn and reproduce each of

the tasks in new settings.

Task 1: Drawing on an object Task 2: Pick-and-place Task 3: Pick-trace-place

Fig. 16: Three task scenarios to validate the iTP-LfD approach.

Given four images of demonstrations for each scenario, three were used for training and one for

validation, i.e., showing unbiased results in Fig. 17. The iTP-LfD approach was able to learn and

reproduce all the task with only one change made to the algorithm parameters: changing the poolsize

value. In the scenario of task 1, poolsize=1 since there is only one task-relevant object. However, in the

scenarios of Tasks 2 and 3, poolsize=2, since there are two task-relevant objects (the cube and the box).

However, it is important to know that the algorithm is capable of finding the correct poolsize

automatically (Refer to Section 4.1).

The iTP-LfD approach identified the relevant frames that belong to the task-relevant object(s). The

path is generated using TP-GMR based on the GMMs of the relevant frames. Fig. 17 shows the results

in the validation image for each task. In the first row, it shows the results of grouping redundant frames

together. Dots of the same colour are redundant and are grouped together in which each group is

represented by a numbered lead frame. Via experimental trials, the approach was successful in grouping

redundant frames together such that the total number of lead frames is less than 25. Bringing the number

of lead frames to below 25 is essential for the performance of the rest of the approach (Refer to Section

4.2). Only the lead frames are used for training the TP-GMM training.

The second row shows the relevant frames being identified after the TP-GMM training. Frames from

the relevant task objects, e.g., the cube, the book, the brown box, are identified and shown in white. In

the third row, the path in white is generated using TP-GMR accounting for the GMMs of relevant

frame(s) only. The path in red shows the path generated using TP-GMR accounting for the GMMs of

all frames. The results show that the white path is closer to the ground truth path (green) of

demonstration than the red path.

Grouping Redundant Frames Eliminating Irrelevant Frames Generating Path

T
a
sk

 1
: D

ra
w

in
g
 o

n
 a

n
 o

b
ject

T
a
sk

 2
: P

ick
-a

n
d
-p

la
ce

T
a
sk

 3
: P

ick
-tra

ce-p
la

ce
Fig. 17: Training results on the validation image. Relevant frames are autonomously detected and identified.

The path reproduced using relevant frames (white) is closer to the ground truth (green) than the path reproduced

using all frames (red).

Following the training, the simulation for each task reproduction was executed for 100 times. That

is, 100 new images of the objects in varied positions were used to run TP-GMR, to quantitatively assess

the performance of the iTP-LfD approach. Two different causes for reproduction errors were identified

below:

1. Frame error: This includes one or more of the frames not being detected at all or being mis-

located. Objects with less significant features are more prone to this error, such as a plain surface.

2. TP-GMR error: It is the error that reproduction of the TP-GMR process is not good enough.

More demonstrations would help reduce this error but might limit the number of features initially

detected in the algorithm, thus increasing the chance of failure. Moreover, iTP-LfD approach is an

orientation sensitive algorithm generating the error.

Table 4 shows the occurrence percentage of each error in the 100 runs of each scenario.

Table 4: The occurrence percentage of errors in the 100 runs of each scenario.

Scenario Success Frame error TP-GMR error

Draw on Object 100% 0 0

Pick-and-place 92% 4% 4%

Pick-trace-place 94% 5% 1%

Task 1 only has one task-relevant object, which eliminates the errors of TP-GMR. Moreover, the

object, i.e., a book, has distinctive visual features such as writing and shapes. This eliminated frame

errors. In Task 2, the errors of TP-GMR occurred when the cube was placed on the boundaries of the

space where reproduction might fail unless more varied demonstrations were provided for training. In

Tasks 2 and 3, frame errors occurred occasionally when the conveyor belt was confused for the

stationary table or the wooden box respectively.

The measurements to further eliminate the above errors and improve the iTP-LfD approach for

practical situations are discussed below.

4.4 Discussions

Detecting visual features is an essential part of the iTP-LfD approach. It was found that matching

SURF features tends to fail in certain scenarios, especially when an object is symmetrical, when

identical objects are present and/or an object is reflective. Therefore, it is recommended to use iTP-LfD

approach when task objects are unique and non-reflective. If used for reflective objects, it is

recommended to use an appropriate industrial lighting.

Finding redundant frames given real data proved challenging. The results showed that some

redundant frames were detected but not all. That is, a single rigid object was divided into several objects.

This is due to two main reasons:

1) Slight mis-localisations: The location of the frame is slightly inconsistent across demonstrations

due to camera calibration issues, object being skewed with respect to surface, etc. We aim to account

for this by adjusting a threshold for comparing distance between two frames across demonstrations. The

threshold is adjusted until the total number of lead frames obtained is less than 25 (refer to Section 4.2

for justification of why the number 25 is chosen).

2) Frame outliers: When a frame is mismatched in one of the frames, it is considered an outlier.

Outlier frames are not detected as redundant.

The reinforcement learning algorithm was successful in identifying relevant frames to reproduce a

task. The algorithm is reliable for a certain number of frames, which is one of the reasons why redundant

frames need to be grouped. It is also important to note that no tweaks in parameters were done for

different scenarios, even for the one with synthetic data in Fig. 16. That is because the parameters are

encoded in terms of the inputs. For example, the period (number of iterations performed before updating

the Relevancy) is chosen to be equal to the number of frames. This makes the iTP-LfD approach

applicable in a variety of scenarios with minimal changes done by the operator.

The iTP-LfD algorithm currently uses 2D visual features and 2D task paths, for simplicity. In future

works, we aim to leverage redundant frames to be able to learn 3D paths using 2D features. This would

make it possible for a cobot to learn 3D paths such as tracing at variable heights or inclined surfaces

and complex assembly tasks. Moreover, SURF features are not effective at detecting human hands since

they change shapes between demonstrations. Therefore, supportive collaborative tasks [29] such as

hand-over and co-manipulation cannot be learnt using iTP-LfD. In future works, we aim to incorporate

hand detection using body part trained detection models, such as OpenPose [14], to encode the paths

with respect to the human partner’s hand as well.

The probabilistic nature of TP-GMM, which models the task paths, makes iTP-LfD suitable for tasks

with path tolerance, such as applications for human-robotic collaboration and cobots. However, some

algorithms in the iTP-LfD approach, such as the vision algorithm, are not restricted to cobots and can

be integrated with other path reproduction techniques that cater for deterministic (low tolerance) paths

and hence non-collaborative robots.

4.5 Implementation

In this research, physical experiments were conducted to validate the iTP-LfD approach using the

aforementioned pick-and-place case. The hardware set-up is shown in Fig. 18.

Fig. 18: The experimental setup.

The set-up includes a UR5 cobot, a 2-finger adaptive gripper, a switch, a 3D camera and a computer.

Four demonstration images were captured by the 3D camera. A cylindrical object (called target-A) is

picked and placed into a rectangular storage box (called des-B). The position and direction of target-A

can be varied while des-B is fixed. Fig. 19 shows the image of the original setup and the demonstration

paths (using one demonstration as an example).

(a) The original set-up for the demonstrations

(b) One demonstration as an example (there will be four demonstrations)

Fig. 19: Demonstrations constituting of 2D image of initial setup and the recorded demonstration path. The

visual features are detected and matched between the images.

According to the iTP-LfD approach, the paths were used to train the TP-GMM process. Moreover,

the optimal task parameters, i.e., frames, were automatically detected by the iTP-LfD approach. Given

a new image of the setting, Fig. 20 shows the the reproduction paths generated by the TP-GMR process.

Fig. 21 shows the physical implementation.

Fig. 20: Test image showing the object in a previously unseen position. The relevant frames are

automatically detected and the path is reproduced successfully going from target-A to des-B.

Fig. 21: The implementation of the pick-and-place process. In the setup as shown in the test image, the cobot

performs the reproduction path. The cobot approaches target-A, pick it up, follows the path to the des-B and

drops the object in the box.

5. Conclusions

In this paper, an iTP-LfD approach is presented to support cobots to adapt their movements

intelligently and adaptively for a variety of dynamic industrial tasks. There are three major

improvements of this iTP-LfD approach over developed TP-LfD approaches, including: 1) a generic

visual feature extraction algorithm is designed to effectively identify frames of reference from

demonstrations to regenerate the path of a cobot for dynamic settings, 2) a statistical algorithm is

developed to identify redundant frames of reference to simplify computational complexity and

overcome occlusions in applications, and 3) a reinforcement learning algorithm is devised to eliminate

irrelevant frames to enhance computational robustness. Case studies with different complexities show

that the overall performance of the iTP-LfD approach are significantly enhanced in terms of adaptability

and robustness.

In future works, further improvements on eliminating frame errors and TP-GMR errors will made.

It aims to extend the approach to more complex industrial tasks and run a user-study for operators,

eventually leading to the deployment of the approach on factory floors.

Acknowledgement

This work is funded by the PhD studentships from the Coventry University, the Unipart Powertrain

Application Ltd. (U.K.), the Institute of Digital Engineering, U.K., and a research project sponsored by

the National Natural Science Foundation of China (Project No. 51975444).

References

[1] A. Realyvásquez-Vargas, K. C. Arredondo-Soto, J. L. García-Alcaraz, B. Y. Márquez-Lobato

and J. Cruz-García, “Introduction and configuration of a collaborative robot in an assembly task

as a means to decrease occupational risks and increase efficiency in a manufacturing company,”

Robotics and Computer-Integrated Manufacturing, vol. 57, pp. 315-328, 2019.

[2] S. Calinon, “A tutorial on task-parametrized movement learning and retrieval,” Intelligent

Service Robotics, vol. 9, no. 1, pp. 1-29, 2016.

[3] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016, p. 64.

[4] K. R. Guerin, S. D. Riedel, J. Bohren and G. D. Hager, “Adjutant: A Framework for Flexible

Human-Machine Collaborative Systems,” in Proceedings of IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS 2014), Chicago, 2014.

[5] C. Schou, R. S. Andersen, D. Chrysostomou, S. Bøgh and O. Madsen, “Skill-based instruction

of collaborative robots in industrial settings,” Robotics and Computer Integrated

Manufacturing, vol. 53, pp. 72-80, 2018.

[6] F. Steinmetz, A. Wollschlager and a. R. Weitschat, “RAZER—A HRI for Visual Task-Level

Programming and Intuitive Skill Parameterization,” IEEE Robotics and Automation Letters, vol.

3, no. 3, pp. 1362-1369, 2018.

[7] C. Paxton, A. Hundt, F. Jonathan, K. Guerin and G. D. Hager, “CoSTAR: Instructing

Collaborative Robots with Behavior Trees and Vision,” in Proceedings of IEEE International

Conference on Robotics and Automation (ICRA), Singapore, 2017.

[8] F. Steinmetz and R. Weitschat, “Skill Parametrization Approaches and Skill Architecture for
Human-Robot Interaction,” in Proceedings of IEEE International Conference on Automation

Science and Engineering (CASE), 2016.

[9] T. Gašpar, M. Deniša, P. Radanovič, B. Ridge, T. R. Savarimuthu, A. Kramberger, M.

Priggemeyer, J. Roßmann, F. Wörgötter, T. Ivanovska, S. Parizi, Ž. Gosar, I. Kovač and A.

Ude, “Smart hardware integration with advanced robot programming technologiesfor efficient
reconfiguration of robot workcells,” Robotics and Computer Integrated Manufacturing, vol. 66,

2020.

[10] D. Vogt, S. Stepputtis, S. Grehl, B. Jung and H. B. Amor, “A system for learning continuous

human-robot interactions from human-human demonstrations,” in Proceedings of IEEE

International Conference on Robotics and Automation (ICRA), Singapore, 2017.

[11] C. Perez-D'Arpino and J. A. Shah, “C-LEARN: Learning geometric constraints from

demonstrations for multi-step manipulation in shared autonomy,” in 2017 IEEE International

Conference on Robotics and Automation (ICRA), Singapore, 2017.

[12] J. d. G. Fernandez, D. Mronga, M. Gunther, T. Knobloch, M. Wirkus, M. Schroer, M. Trampler,

S. Stiene, E. Kirchner, V. Bargsten, T. Banziger, J. Teiwes, T. Kruger and F. Kirchner,

“Multimodal sensor-based whole-body control for humanrobot collaboration in industrial

settings,” Robotics and Autonomous Systems, vol. 94, p. 102–119, 2017.

[13] M. Haage, G. Piperagkas, C. Papadopoulos, I. Mariolis, J. Malec, Y. Bekiroglu, M. Hedelind

and D. Tzovaras, “Teaching Assembly by Demonstration using Advanced Human Robot
Interaction and a Knowledge Integration Framework,” Procedia Manufacturing, vol. 11, p. 164

– 173 , 2017.

[14] Z. Cao, T. Simon, S.-E. Wei and Y. Sheikh, “Realtime Multi-Person 2D Pose Estimation using

Part Affinity Fields,” in Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Honolulu, 2017.

[15] H. Jin, Q. Chen, Z. Chen, Y. Hu and J. Zhang, “Multi-LeapMotion sensor based demonstration

for robotic refine table-top-object manipulation task,” CAAI Transactions on Intelligence

Technology , vol. 1, pp. 104-113, 2016.

[16] A. M. Ghalamzan and M. Ragaglia, “ Robot learning from demonstrations: Emulation learning

in environments with moving obstacles,” Robotics and Autonomous Systems, vol. 101, p. 45–56,

2018.

[17] D. A. Duque, F. A. Prieto and J. G. Hoyos, “Trajectory generation for robotic assembly

operations using learning by demonstration,” Robotics and Computer Integrated

Manufacturing, vol. 57, pp. 292 - 302 , 2019.

[18] K.-B. Park, M. Kim, S. H. Choi and J. Y. Lee, “Deep learning-based smart task assistance in

wearable augmented reality,” Robotics and Computer Integrated Manufacturing , vol. 63, 2020.

[19] Y. Gu, W. Sheng, C. Crick and Y. Ou, “Automated assembly skill acquisition and

implementation through human demonstration,” Robotics and Autonomous Systems, vol. 99, pp.

1-16, 2018.

[20] K. Wang, D. Liu, Z. Liu, G. Duan, L. Hu and J. Tan, “A fast object registration method for
augmented reality assembly withsimultaneous determination of multiple 2D-3D

correspondences,” Robotics and Computer Integrated Manufacturing, vol. 63, 2020.

[21] T. Alizadeh and N. Karimi, “Exploiting the task space redundancy in robot programming by

demonstration,” in Proceedings of 2018 IEEE International Conference on Mechatronics and

Automation , Changchun, 2018.

[22] T. Alizadeh and M. Malekzadeh, “Identifying the relevant frames of reference in programming

by demonstration using task-parameterized Gaussian mixture regression,” in Proceedings of the

2016 IEEE/SICE International Symposium on System Integration, Sapporo, 2016.

[23] A. Sena, B. Michael and M. Howard, “Improving Task-Parameterised Movement Learning

Generalisation with Frame-Weighted Trajectory Generation,” in Proceedings of IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS 2019), Macau, 2019.

[24] Y. Huang, J. Silverio, L. Rozo and D. G. Caldwell, “Generalized Task-Parameterized Skill

Learning,” in Proceedings of 2018 IEEE International Conference on Robotics and Automation

(ICRA), Brisbane, 2018.

[25] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” arXiv, 2018.

[26] S. A. K. Tareen and Z. Saleem, “A comparative analysis of SIFT, SURF, KAZE, AKAZE,

ORB, and BRISK,” in Proceedings of Conference: 2018 International Conference on

Computing, Mathematics and Engineering Technologies (iCoMET 2018), Sukkar, 2018.

[27] H. Bay, T. Tuytelaars and L. V. Gool, “SURF: Speeded Up Robust Features,” in Proceedings of

European Conference on Computer Vision, 2006.

[28] M. Muja and D. G. Lowe, “Fast Approximate Nearest Neighbors with Automatic Algorithm
Configuration,” in Proceedings of International Conference on Computer Vision Theory and

Applications, Lisboa, 2009.

[29] S. E. Zaatari, M. Marei, W. Li and Z. Usman, “Cobot programming for collaborative industrial

tasks: An overview,” Robotics and Autonomous Systems, pp. 162-180, 2019.

	iTP-LfD cs
	RCIM_Shirine_revision

