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Boosting Nonnegative Matrix Factorization Based
Community Detection With Graph Attention

Auto-encoder
Chaobo He, Yulong Zheng, Xiang Fei, Hanchao Li, and Yong Tang

Abstract—Community detection is of great help to understand
the structures and functions of complex networks. It has become
one of popular research topics in the field of complex networks
analysis. Due to the simplicity, flexibility, effectiveness and better
interpretability, Nonnegative Matrix Factorization (NMF)-based
methods have been widely employed for community detection.
However, most existing NMF-based community detection meth-
ods are linear and their performance is limited when facing
networks with diversified structure information. In view of this,
we propose a nonlinear NMF-based method named NMFGAAE,
which is composed of two main modules: NMF and Graph Atten-
tion Auto-Encoder (GAAE). This approach can boost the perfor-
mance of NMF-based community detection methods by the aid
of graph neural networks and deep clustering. More specifically,
GAAE introduces an attention mechanism directed by NMF-
based community detection to learn the node representations,
while NMF can simultaneously factor these representations to
uncover the community structure. We design a unified framework
to jointly optimize GAAE and NMF modules, which is very ben-
eficial to obtain better community detection results. We conduct
extensive experiments on synthetic and real-world networks. The
results show that our NMFGAAE not only performs better than
state-of-the-art NMF-based community detection methods, but
also outperforms some network representation based baselines.
More importantly, NMFGAAE indeed can boost the performance
of NMF-based community detection methods.

Index Terms—Community detection, nonnegative matrix fac-
torization, graph attention auto-encoder, graph neural networks,
deep clustering, complex networks

I. INTRODUCTION

Community detection is a long-standing problem in the
field of complex networks analysis. It aims to detect cohesive
groups of nodes, where nodes in the same group connect to
each other more densely than those in different groups [1], [2].
Effective methods for community detection not only can be
served as the fundamental tools to characterize and understand
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the structures and functions of complex networks [3], but
also having a great application value, such as helping to find
groups with similar users in social networks [4], identify fraud
groups in telecommunications networks [5], mine research
teams in co-authorship networks [6] and discover functional
units in protein-protein interaction networks [7]. Accordingly,
community detection has attracted a lot of attention from both
academia and industry. Moreover, related researchers cover a
wide range of disciplines, including network science, computer
science, sociology and bioinformatics.

In the past decades, various methods for community de-
tection have been proposed, such as modularity optimization
based methods [8], [9], stochastic block model based methods
[10], game theoretic model based methods [11], label propa-
gation based methods [12], deep learning based methods [13]
and so on. It is worth mentioning that Nonnegative Matrix
Factorization (NMF) based methods are also widely adopted.
Compared with other types of methods, NMF-based methods
are often more simple and effective, and more interpretable
[14]. Particularly, they are competent in almost all community
detection tasks, including overlapping community detection
[15], [16], semi-supervised community detection [17], [18]
and detecting communities from a variety of networks (e.g.,
undirected networks [19], [20], attributed networks [21], [22],
signed networks [23], [24], multi-layer networks [25], [26],
dynamic networks [27], [28] and large-scale networks [29],
[30]). It can be argued that NMF-based methods are very
versatile to deal with the problem of community detection.
Until now, NMF-based community detection is still a hot topic
and many methods are constantly presented in high-prestige
journals and conferences.

NMF-based community detection has exhibited its unique
advantages, but it may be less effective when encountering
complex networks with complicated and diversified structures.
This is due to the intrinsic linearity of NMF. Most NMF-based
methods assume that the original networks could be directly
reconstructed using a linear combination of community fea-
tures. However, this linear reconstruction assumption is invalid
for these networks mentioned above, because they often have
various nonlinear features [31], [32]. To address this issue, a
few methods have been proposed and can be roughly divided
into the following two types:

• One is devising methods based on deep NMF [33], such
as MvDGNMF [34] and DANMF [35]. These methods try
to obtain better performance with the aid of deep NMF’s
expressive power enhanced by the multi-layer factoriza-
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tion structure. However, due to the linear decomposition
feature of each layer in deep NMF, deep NMF-based
methods are essentially still linear, and their performance
improvements are limited.

• The other type of methods is constructing nonlinear
community detection model. A representative method is
NAGC [36] which is based on symmetric NMF with
positive unlabeled learning. This method introduces a
nonlinear projection function to learn the relationship
between the different community assignments of the
topology and the attributes of networks. Although NAGC
achieves better performance than some linear NMF-based
methods, it cannot be generalized to networks with only
structure information. Besides, it is very time consuming
and can not deal with networks beyond a certain scale.

In summary, these two kinds of methods above both try to
improve NMF-based community detection model by enhanc-
ing its expressive power. Considering that nonlinear models
often have stronger expressive power to learn complicated
features of data samples, constructing nonlinear community
detection model will be a better strategy. However, relatively
little attention has been dedicated to this aspect, and more
effective methods still need to be explored.

In recent years, Deep Neural Networks (DNNs) have rev-
olutionized many machine learning tasks, including image
classification [37], speech recognition [38] and machine trans-
lation [39]. Due to the powerful nonlinear expressive power,
DNNs have also been widely used to boost the performance
of tradition machine learning models. Among them, deep
clustering which combines clustering model (e.g., K-means
and spectral clustering) with DNNs is very attractive and many
effective methods have been proposed, such as DCN [40],
DEC [41] and SC-EDAE [42]. Comparing with traditional
clustering methods, deep clustering methods demonstrate great
superiorities, especially in terms of the clustering performance.
On the other hand, currently, as a special extension of DNNs
to graph data, Graph Neural Networks (GNNs) have received
increasing interest and many variants have been presented,
such as famous Graph Convolutional Network (GCN) [43] and
Graph Attention Network (GAT) [44]. Existing works show
that GNNs are more suitable and powerful to conduct nonlin-
ear feature learning on graph data than other general DNNs
(e.g., auto-encoder and convolutional neural networks) [45],
[46]. This makes them have great potential to improve many
graph-related tasks, such as community detection focused in
this paper. All of these above give us a good inspiration
that using GNNs can be expected to better boost NMF-based
community detection.

Motivated by the above-mentioned analyses, in this paper
we propose a nonlinear NMF-based community detection
method named NMFGAAE, which is powered by a special-
ly designed variant of GNNs: graph attention auto-encoder
(GAAE). To the best of our knowledge, it is the first time
to utilize GNNs to boost the performance of NMF-based
community detection. Our contributions are summarized as
follows:

• NMFGAAE provides a unified framework to integrate

GAAE with NMF-based community detection model. Us-
ing this framework, GAAE and NMF-based community
detection model can be optimized jointly, which enables
GAAE to generate more beneficial node representations
for NMF-based community detection.

• For the GAAE module in NMFGAAE, we design
an attention mechanism which specially serve NMF-
based community detection. Comparing with the attention
mechanism used in GAT, our proposed attention mecha-
nism can help NMFGAAE obtain better performance.

• We conduct extensive experiments to demonstrate the
effectiveness of NMFGAAE on both synthetic and real-
world networks. The results show that NMFGAAE not
only outperforms state-of-the-art NMF-based community
methods, but also outperforms some widely used network
representation based methods, including DeepWalk+K-
means and LINE+K-means.

The rest of this paper is organized as follows. We firstly
briefly review the related work in Section II, and then respec-
tively detail the proposed method NMFGAAE and report the
experiment results in Section III and Section IV. Finally, we
conclude this paper in Section V.

II. RELATED WORK

In this section, we introduce some background knowledge
and overview some work that relates to the features used in
our method NMFGAAE: NMF-based community detection,
GNNs and deep clustering.

A. NMF-based community detection

NMF is a classical low-rank matrix factorization model
proposed by Lee and Seung [47]. It can factor a nonnegative
data sample matrix into the approximate product of two
nonnegative matrices: the basis matrix and the coefficient
matrix. Due to the nonnegativity constraint, every data sample
can be represented as an additive linear combination of the
basis features in the basis matrix, and the coefficients are from
the corresponding vector in the coefficient matrix. Therefore,
NMF is essentially a linear model.

In [48], Ding et al. proved that NMF has approximately
equivalent relationships with K-means and spectral clustering
models, which are both applicable to detect communities from
complex networks. Besides, from the perspective of generative
model, Psorakis et al. [14] demonstrated the powerful inter-
pretability of NMF when used in community detection. These
works provide a solid theoretical foundation to NMF-based
community detection, and meanwhile stimulate the research
interest in this field. Recently, various NMF-based community
detection methods have been proposed, such as symmetric
NMF-based methods [16], [19], [20], semi-supervised NMF-
based methods [17], [18], semi-NMF-based methods [23],
[24], joint NMF-based methods [25], [26], [27], [28], [49] and
deep NMF-based methods [34], [35]. These methods construct
the community detection model by extending the basic NMF,
such as relaxing nonnegative constraint (semi-NMF), imposing
graph regularization (graph regularized NMF), stacking multi-
layer factorization structure (deep NMF) and so on. With these
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strategies, they all have achieved good performance in some
cases.

Although existing NMF-based community methods use
various NMF variants, most of them are still within the
category of linear methods due to the intrinsic linearity of
NMF model. It is generally believed that linear community
detection model may be less effective when facing networks
with diversified structure information, which are considered
to have various nonlinear features [31], [32]. In this paper,
our proposed NMFGAAE is nonlinear due to the combination
with a variant of GNNs: graph attention auto-encoder, which
makes it fundamentally different from existing NMF-based
community methods.

B. GNNs

The concept of GNNs was formally proposed in [50], which
extended existing neural networks to process graph data. Up
to now, lots of GNNs have been presented, which main-
ly include three categories: graph recurrent neural networks
(GRNNs), graph convolutional networks (GCNs) and graph
auto-encoders (GAEs). Among them, GCNs have received
more attention in recent years, which is largely attributed to
the great success of convolution neural networks in computer
vision domain. According to the difference in how to define
graph convolutions, GCNs are further categorized into two
types: spectral-based and spatial-based. Spectral-based GCNs
define the graph convolutions as low-pass filters of graph
signals, such as spectral CNN [51], ChebNet [52] and GCN
[43]. Spatial-based GCNs define graph convolutions as the
process of information propagation. The key idea behind them
is to aggregate feature information from neighbor nodes via
specific aggregation schemes, such as LSTM pooling used in
GraphSage [53], attention mechanism used in GAT [44] and
max-pooling used in GIN [54]. In general, spatial-based GCNs
are more efficient, because spectral-based GCNs often need
to conduct the costly Laplacian matrix eigen-decomposition.
Besides, spatial-based GCNs are more flexible, because aggre-
gation schemes, especially attention mechanism, allow them to
only focus on task-relevant parts instead of the whole graph
structure.

As another type of GNNs, GAEs is applied to learn node
low-dimensional representations by an unsupervised training
manner. They are composed of two parts: Encoder and De-
coder. Encoder maps nodes into a latent feature space and de-
coder reconstructs graph structure from latent representations.
In particular, the encoder part can adopt various GNNs flexibly,
such as GCN encoder [55], [56] and GAT encoder [57].
Motivated by the unsupervised characteristic of community
detection task here, and the effectiveness and flexibility of
GAEs, we construct our method NMFGAAE based on the
architecture of GAEs and specially design a spatial-based
GCN with attention mechanism as its encoder.

C. Deep clustering

Clustering with deep learning are called as deep clustering,
which aims to improve the clustering performance via DNNs
[58], [59]. In the early stage, most deep clustering methods

comprise two steps, such as StructAE [60] and SAE [61].
These methods firstly use DNNs to learn data representations
and then feed these representations into the specified clustering
model (e.g., K-means) directly. The drawback of two-step
methods is that the learned representations may not be the best
fit for the subsequent clustering model, and the clustering mod-
el is not beneficial to the representation learning. To achieve
mutual benefit for these two steps, one-step deep clustering
is presented. It provides a unified framework to jointly train
representation learning model and clustering model. Represen-
tative methods include DCN [40], DEC [41] and SC-EDAE
[42], which all demonstrate that one-step deep clustering can
learn more clustering-friendly data representations, resulting
in more significant increase of the clustering performance.

It should be noted that most existing deep clustering meth-
ods are designed for data with grid or sequence structure (e.g.,
image and text data). More recently, with the popularity of
GNNs, a few deep clustering methods for graph data are
proposed, such as SDCN [56], DAEGC [57] and EGAE-
JOCAS [62]. These methods all belong to one-step deep
clustering approaches, and meanwhile use GAEs to learn node
representations. Our method NMFGAAE adopt the similar
architecture with them, but it still has some obvious differ-
ences: (1) NMFGAAE selects NMF as the clustering mod-
el, but DAEGC and SDCN select self-supervised clustering
model, and EGAE-JOCAS simultaneously use K-means and
spectral clustering models. (2) NMFGAAE only exploits the
structure information of the graph, but DAEGC, SDCN and
EGAE-JOCAS all use the structure and attribute information.
(3) NMFGAAE uses a different attention mechanism with
DAEGC, whereas SDCN and EGAE-JOCAS do not use any
attention mechanism. (4) More importantly, NMFGAAE is a
goal-directed clustering method, which specially focuses on
boosting NMF-based community detection.

III. THE PROPOSED METHOD: NMFGAAE

In this section, we will first introduce the notations and
preliminaries used in this paper, next give an overview about
the proposed NMFGAAE framework, then detail its modules
and finally present how to optimize NMFGAAE model.

A. Notations and preliminaries

Throughout this paper, matrices are denoted by bold upper-
case letters. For a given matrix Y, its i-th row vector, (i, j)-th
element, trace, transpose and Frobenius norm are denoted by
Yi, Yij , tr(Y), YT and ||Y||F , respectively. For clarity, we
summarized all frequently used notations in Table I.

In this paper, we focus on non-overlapping community de-
tection in undirected networks with only structure information.
This is because most NMF-based community detection meth-
ods are suitable for this application scenario, and undirected
networks with only structure information are more readily
available in real-world.

Without loss of generality, we denote an undirected network
as an undirected and unweighted graph G = (V,E), where
V = {v1, v2, ..., vn} is the nodes set and E = {eij |vi ∈ V ∧
vj ∈ V } is the edges set. To represent the structure information
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TABLE I
NOTATIONS AND DESCRIPTIONS

Notation Description
G The input network
V Nodes set
vi The i-th node
E Edges set
|E| The number of edges
eij The edge from vi to vj
n The number of nodes
k The number of communities
C Communities set
Ci The i-th community
X The node feature matrix
m The dimension of node feature
A The adjacency matrix
I The identity matrix
Z The node latent representation matrix
d The dimension of node latent representation
U The community membership matrix
V The community feature matrix
Ni The neighbor nodes set of vi
R The real number set
R+ The nonnegative real number set

of G, we use a binary-valued adjacency matrix A = [Aij ]
n×n,

where Aij = 1 if eij ∈ E and Aij = 0 otherwise. Assuming
that G comprises k non-overlapping communities, we denote
the non-overlapping communities set as C = {Ci|Ci ̸= ∅, 1 ≤
i ≤ k}, where Ci

∩
Cj = ∅ (i ̸= j). Based on the definitions

above, the problem of community detection using NMFGAAE
here is formally formulated as follows.

Problem statement: Given a network G = (V,E), using
NMFGAAE to obtain the community membership matrix
U = [Uij ]

n×k ∈ Rn×k
+ , where Uij denotes the strength

that vi belongs to community Cj . For the given vi, its
non-overlapping community membership is determined by
assigning it into the p-th community satisfying the condition
that Uip is the maximum element in Ui.

B. An overview of NMFGAAE framework

The overall framework of NMFGAAE is shown in Fig.
1 and it consists of two main modules: GAAE (i.e., graph
attention auto-encoder) and NMF. GAAE module learns node
representation Z ∈ Rn×d of the graph G by minimizing the
reconstruction loss. It takes A and a node feature matrix
X ∈ Rn×m as the input. Because we focus on networks with
only structure information, the attribute features adopted in
most GCNs are unavailable here. However, X can be obtained
by using any graph representation algorithm (e.g., DeepWalk
[63], LINE [64] and DNGR [65]) or simply replaced with
the identify matrix I, which is suggested in [66]. Based on
the learned Z, NMF module iteratively factorizes it to obtain
community membership matrix U ∈ Rn×k

+ .
GAAE is optimized by minimizing the sum of the GAAE

loss and NMF loss. Through this unified framework, we can
learn node representations and perform community detection
simultaneously, so that GAAE and NMF modules can benefit
from each other. In the following two subsections, we will
detail GAAE and NMF modules, respectively.

aij

so
ft
m
ax
j

UiW UjW

a

(a) The attention mechanism
directed by NMF-based com-
munity detection

W

a

aij

so
ft
m
ax
j

ZiW ZjW

a

(b) GAT attention mechanism

Fig. 2. Comparison of attention mechanism used in NMFGAAE and GAT

C. GAAE module

Encoder. As shown in Fig. 1, Encoder attempts to learn
the node representation Z via multiple graph convolutional
layers with attention, which can adaptively measure the im-
portance of neighbors to the target node. By borrowing from
the attention mechanism used in GAT, we specially design
an attention mechanism directed by NMF-based community
detection. Specifically, we define the attention coefficient δij
from vj to vi as

δij = a(UiW||UjW), (1)

where a is the attention mechanism using a single-layer
feedforward neural network on the concatenation (||) of UiW
and UjW with weight vector a ∈ R2k, and W ∈ Rk×k is a
weight matrix shared by the linear transformation of each Ui.
Note that we use the community membership representation
U instead of node representation Z to compute attention
coefficients, which is obviously distinct from the strategy used
in GAT (Fig. 2).

We believe that this attention mechanism directed by NMF-
based community detection can well incorporate the communi-
ty membership information into the attention coefficients: for
a target node vi and ∀vj ∈ Ni, if Ui is more similar to Uj ,
then vi and vj are more likely to be in the same community
and the corresponding attention coefficient eij will be bigger,
which means that vj will contribute more to the representation
of vi, or vice versa. By this attention mechanism, it can be
expected to learn the node representation Z which is more
friendly to the community detection. This will be confirmed
in our experiments.

To make attention coefficients easily comparable, we nor-
malize them across all neighbor nodes with a softmax function:

aij = softmaxj(δij) =
exp(δij)∑

q∈Ni
exp(δiq)

. (2)

Applying the LeakyReLU activation function, the coeffi-
cients can be finally expressed as:

aij =
exp(LeakyReLU(a[UiW||UjW]))∑

q∈Ni
exp(LeakyReLU(a[UiW||UqW]))

. (3)

We stack L graph attention layers with nonlinear activation
function ReLU, and obtain the layer-wise representation for
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A

X

Input GAAE encoder

Z

sigmoid(ZZ
T
)

Â

sigmoid

Optimize GAAE with loss function

= GAAE+ NMF

Graph 

reconstruction loss

GAAE

NMF loss NMF

+

GAAE decoder

NMF

Community membership 

matrix U

Fig. 1. The framework of NMFGAAE. Note that the input node feature X is not the attribute feature matrix, and it can be obtained from A by applying
any network representation algorithm or simply replaced with the identify matrix I.

every node via the following aggregation scheme:

Zl+1
i = ReLU(

∑
j∈Ni

aijW
lZl

j), (4)

where Zl
i and Wl denotes the representation of vi and the

linear transformation weight matrix at l-th layer, respectively.
Note that we set Z0 = X, and at the final layer we use sigmoid
function to obtain the latent representation Z:

Z = sigmoid(Z(L−1)), (5)

where Z is nonnegative for 0 ≤ Z ≤ 1, and will be
factorized to uncover community structures in the following
NMF module.

Similar to GAT, we also introduce multi-head attention
mechanism to independently execute the transformation of Eq.
(4) and average their layer-wise latent representations as:

Zl+1
i = ReLU(

1

H

H∑
h=1

∑
j∈Ni

ahijW
l
hZ

l
j), (6)

where H is the number of attention heads, ahij is the attention
coefficient computed by the h-th attention mechanism (ah),
and Wl

h is the corresponding linear transformation weight
matrix.

Decoder. After obtaining Z, decoder uses it to reconstruct
the structure of G. Here, we devise the following inner product
decoder:

Â = sigmoid(ZZT ), (7)

where Â ∈ Rn×n
+ denotes the reconstructed structure matrix

of G. The reconstruction loss LDAAE is measured via the
following binary cross entropy function:

LDAAE = − 1

n2

∑
i,j

(Aij logÂij+(1−Aij)log(1−Âij)). (8)

D. NMF module

NMF module takes the output Z of DAAE module as the
input to detect communities from G. There are many NMF
variants with better performance, such as graph regularized
NMF [67] and orthogonal NMF [68], but we select the
basic NMF model to factorize Z to obtain the community
membership matrix U ∈ Rn×k

+ and the community feature
matrix V ∈ Rk×d

+ . In this way, we want to prove that even the
combination of the basic NMF and GAAE also can achieve the

goal of boosting the performance of NMF-based community
detection. The corresponding NMF loss LNMF is denoted as

LNMF = ||Z−UV||2F , (9)

where U and V are both nonnegative.

E. Optimization

To train the whole NMFGAAE model, we merge LGAAE
and LNMF into a unified loss function L

L = LGAAE + λLNMF, (10)

where λ is a tradeoff parameter. By minimizing L, it can not
only optimize GAAE, but also can simultaneously optimize
NMF. Essentially, this is a joint optimization process, which
can make GAAE and NMF benefit from each other. Namely,
GAAE can output more friendly node latent representation
Z for NMF community detection module, meanwhile NMF
module also can well improve the accuracy of attention
coefficients in GAAE by Eq. (3).

Obviously, minimizing L is a non-convex constrained op-
timization problem, which is hard to obtain its close-form
solution. In view of this, we adopt the following alternating
optimization strategy to solve this problem.

Optimize GAAE with NMF fixed. When NMF related
variables U and V are fixed as constants, we use L to optimize
GAAE and update its network parameters: W and Wl

h using
the standard gradient decent:

W = W − α
∂L
∂W

, (11)

Wl
h = Wl

h − α
∂L

∂Wl
h

, (12)

where α is the learning rate, and the gradients ∂L
∂W and ∂L

∂Wl
h

can be computed by the back-propagation algorithm widely
used in DNNs.

Optimize NMF with GAAE fixed. When GAAE is fixed,
minimizing L is equivalent to:

minLNMF = ||Z−UV||2F ,
s.t. U ≥ 0,V ≥ 0.

(13)

To solve this constrained optimization problem, we use the
Lagrange multiplier method and define the following Lagrange
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function:

F = ||Z−UV||2F + tr(ΦUT ) + tr(ΨVT ), (14)

where Φ and Ψ are the Lagrange multipliers. The derivatives
of F with respect to U and V are:

∂F
∂U

= −ZVT +UVVT +Φ, (15)

∂F
∂V

= −UTZ+UTUV +Ψ. (16)

Using the Karush-Kuhn-Tucker (KKT) conditions that:
ΦijUij = 0 and ΨijVij = 0, we can derive the following
multiplicative update rules for U and V:

U = U⊙ ZVT

UVVT
, (17)

V = V ⊙ UTZ

UTUV
, (18)

where ⊙ and (·)
(·) are the element-wise product and division

operators, respectively. Through iteratively execute Eq. (17)
and Eq. (18) until LNMF converge, we can obtain the final U
to uncover community structure of G. It should be pointed
out that: after each complete update for NMF module, the
output U and V should be preserved as the initial values
of the next update. Only by this way, U can become better
and better during the whole optimization process. Based on
the analysis above, we summarize NMFGAAE community
detection algorithm in Algorithm 1.

Algorithm 1: NMFGAAE community detection algorithm
Input: G = (V,E), k, λ;
Output: Communities set C = {C1, C2, ..., Ck};

1 repeat
2 Z← Optimize GAAE module via Eq. (11) and Eq. (12);
3 U,V← Optimize NMF module via iteratively executing

Eq. (17) and Eq. (18);
4 until L converges or exceed the maximum iterations;
5 for vi ∈ V do
6 q = argmax

p
Uip;

7 Cq = Cq

∪
{vi};

8 return C;

F. Time complexity analysis

From Algorithm 1, we can observe that it is composed
of two stages: iteratively optimizing GAAE and NMF, and
extracting communities from U. It is clear that the time
complexity of the second stage is O(nk), and the fist stage is
the most time consuming. Assuming that the number of outer
iterations is T and the number of inner iterations for NMF is
t, the time complexity of the first stage can be expressed as
O(T (Hnmd+H|E|d+tndk)), where O(T (Hnmd+H|E|d))
and O(Ttndk) are the time complexities of GAAE and NMF
modules, respectively. By summing up and considering that
m ≪ n, d ≪ n, k ≪ n and H often takes a very small value,
we can deduce that the overall time complexity of NMFGAAE
is proportional to n and |E|. In real-world networks, n is often

far fewer than |E|, so the time cost of NMFGAAE will be
largely dominated by |E|.

IV. EXPERIMENTS

In this section, to validate the effectiveness of our proposed
method NMFGAAE, we conduct extensive experiments by
comparing it with state-of-the-art methods on several synthetic
and real-world networks. All methods are implemented in
Python 3.5 and all of experiments are conducted on a PC with
64bits Windows 7 system, 3.4G Intel Core i7-6700 CPU and
32GB RAM.

A. Baselines

Our basic hypothesis in this paper is that NMFGAAE is a
nonlinear NMF-based community detection method powered
by graph attention auto-encoder, and is expected to achieve
better performance than existing NMF-based community de-
tection methods, almost all of which are linear. In view of
this, we select eight representative NMF-based community
detection methods as baselines. Besides, to further validate
the superiority of NMFGAAE, we also compare it with
three representative network representation based community
detection methods. These baselines are detailed as follows.

The NMF-based community detection methods include:
• NMF. NMF is a module of NMFGAAE, and it can also

be used to detect communities independently by replacing
Z in Eq. (9) with A, i.e., ||A−UV||2F .

• SNMF. SNMF is the symmetric NMF, which factorizes A
into the product of U and UT with the objective function:
||A − UUT ||2F . It has been adopted for community
detection in [19], [20].

• ONMF. ONMF is a variant of NMF by enforcing orthogo-
nal constraints on community membership matrix U, i.e.,
UTU = I. In [48], ONMF is proven to be equivalent to
K-means.

• HPNMF [69]. HPNMF is based on symmetric NMF with
graph regularized constraint. Through this framework, it
can integrate structure information with node homophily
information to detect communities.

• DANMF [35]. DANMF is based on deep NMF. It consists
of an encoder component and a decoder componen-
t, which enables it to learn the hierarchical mappings
between the original network and the final community
structure.

• M-NMF [70]. M-NMF is a modularized NMF based com-
munity detection method. It provides a unified framework
to jointly optimize NMF-based representation learning
model and modularity-based community detection model.

• NSED [49]. NSED is similar to DANMF and also com-
prises an encoder component and a decoder component,
but every component is still based on shallow NMF with
only one layer factorization structure.

• BigClam [29]. BigClam is a cluster affiliation model. It
uncovers community structure by incorporating NMF into
the probabilistic generative framework, and meanwhile
provides an efficient optimization algorithm.

The network representation based methods include:
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• DeepWalk [63]. DeepWalk is a random walks based
network representation learning method. It learns node
representations by using local information obtained from
truncated random walks.

• LINE [64]. LINE is an edge modeling based method.
Through modeling a joint probability distribution and a
conditional probability distribution on connected nodes,
it can learn the first-order and the second-order proximity
preserving node representations.

• DNGR [65]. DNGR is a deep learning based method. It
first constructs the high-dimensional positive pointwise
mutual information matrix representations, and then ap-
plies the stacked denoising auto-encoder to obtain node
representations.

Note that some NMF-based methods (e.g., BigClam) claim
to detect overlapping communities, but they are also very
straightforward to detect non-overlapping communities by
following the steps of the second stage in Algorithm 1. NMF-
based methods can directly obtain community detection results
without seeking help from other clustering algorithms. For the
network representation based methods, we utilize standard K-
means algorithm to cluster the final node representations to
obtain community detection results. For the Python imple-
mentations of SNMF, DANMF, M-NMF, NSED, BigClam and
DeepWalk, we refer to the open-source Python framework for
unsupervised learning on Graphs: Karate Club [71].

B. Evaluation metrics
We select four widely used metrics to evaluate the per-

formance of community detection. For the networks with
ground-truth communities, we use accuracy (ACC), adjusted
Rand index (ARI) and normalized mutual information (NMI).
For the networks without ground-truth communities, we use
modularity Q. Detailed definitions for these metrics can be
found in [72], which is a comprehensive survey on metrics
for community detection.

According to the definitions, we can obtain ACC ∈ [0, 1],
ARI ∈ [−1, 1], NMI ∈ [0, 1] and Q ∈ [−1, 1]. For all these
metrics, larger values indicate better performance.

C. Parameter settings
For fair comparisons, the parameters of every baseline are

set to be their optimal values. Specifically, for HPNMF, we
set its regularization parameter λ to be 1. For DANMF, its
regularization parameter λ and layer configuration are set to
be 1 and n-256-128-k, respectively. For BigClam, we set its
ℓ1 regularization parameter λ to be 10. For DeepWalk, we set
walks per vertex γ = 80, window size ω = 10 and walk length
ℓ = 40. For LINE, the number of negative samples K is set
to be 5. For DNGR, its layer configuration is set to be n-256-
128-64. The size of node representations of all the network
representation based methods is uniformly set to be 64. For
NMFGAAE, we set λ, H , t and the layer configuration of
graph encoder to be 1, 3, 50 and n-256-64, respectively. Note
that the number of communities k for all methods is set to be
the same value. Under the corresponding optimal settings for
different methods, the experiments are repeated for 10 times
and the average results are reported.

D. Experiments on synthetic networks

1) Datasets. We utilize the well-known LFR tool [73]
to generate benchmark synthetic networks with ground-truth
communities. The setting of parameters of LFR networks is
shown in Table II. By respectively varying n and mu, and
fixing the other parameters, we generate 10 synthetic networks
to test the performance of community detection. Because we
only focus on non-overlapping community detection, on and
om are both set to be 0.

TABLE II
PARAMETERS OF LFR NETWORKS

Parameter Explanation Value
n Number of nodes To vary
mu Mixing paramter To vary
on Number of overlapping nodes 0
om Number of overlapping memberships 0
davg The average degree 4
dmax The maximum degree 15
λ1 Exponent for node degree distribution 2
λ2 Exponent for community size distribution 1

Cmin Minimum community size 50
Cmax Maximum community size 100

3) Experiment results and analysis. In our experiments, we
first generate 5 synthetic networks by varying n from 1000 to
5000 with step size 1000 and fixing mu at 0.3. For all methods,
k is set to be the number of ground-truth communities. The
results on these networks are shown in Table III. We can
observe that our proposed method NMFGAAE performs better
than other methods in any case. Specifically, compared with
the best NMF-based baseline: HPNMF, the average ACC,
ARI and NMI scores of NMFGAAE respectively improve
by 10.4%, 11% and 4.5%. Compared with the best network
representation based baseline: LINE, the average ACC, ARI
and NMI scores of NMFGAAE respectively improve by 7.2%,
14.4% and 5.7%.

We then generate another 5 synthetic networks by varying
mu from 0.1 to 0.3 with step size 0.05 and fixing n at 3000.
The results on these networks are shown in Fig. 3. As we
can see, when mu increases, the performance of all methods
tend to decrease. This is because the community structures
become more and more obscure, which makes community
detection more and more difficult. However, NMFGAAE still
performs better than other methods at any mu. Even when
mu = 0.3 the scores of ACC, ARI and NMI of NMFGAAE
are still competitive and satisfactory. These results show that
NMFGAAE has better ability to detect communities from
networks with more complicated structure.

E. Experiments on real-world networks

1) Datasets. In this part, we select 6 real-world networks
without ground-truth communities, including WebKB, Cora,
Citeseer, Polblog, Blogcatalog and Pubmed. These networks
are from LINQS data repository 1. For the sake of simplicity,
the number of communities k on each network is set to be the
number of node labels. The basic information of real-world
networks is shown in Table IV.

1https://linqs.soe.ucsc.edu/data
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TABLE III
PERFORMANCE COMPARISON ON SYNTHETIC NETWORKS WITH DIFFERENT n (BOLD NUMBERS DENOTE THE BEST RESULTS).

n Metrics NMF SNMF ONMF HPNMF DANMF M-NMF NSED BigClam DeepWalk LINE DNGR NMFGAAE

1000
ACC 0.51 0.5 0.49 0.54 0.55 0.23 0.27 0.12 0.25 0.44 0.57 0.59
ARI 0.29 0.28 0.29 0.33 0.32 0.07 0.09 -0.01 0.08 0.21 0.31 0.37
NMI 0.39 0.37 0.39 0.42 0.41 0.18 0.20 0.03 0.19 0.35 0.45 0.46

2000
ACC 0.48 0.51 0.51 0.54 0.50 0.24 0.25 0.13 0.14 0.55 0.51 0.56
ARI 0.30 0.31 0.35 0.34 0.29 0.09 0.10 0.02 0.03 0.34 0.33 0.36
NMI 0.47 0.47 0.50 0.52 0.47 0.28 0.30 0.14 0.19 0.52 0.51 0.52

3000
ACC 0.49 0.51 0.51 0.53 0.53 0.14 0.23 0.11 0.16 0.59 0.49 0.61
ARI 0.31 0.31 0.32 0.34 0.33 0.04 0.10 0.02 0.04 0.36 0.31 0.39
NMI 0.44 0.50 0.50 0.54 0.53 0.24 0.34 0.20 0.19 0.57 0.51 0.58

4000
ACC 0.45 0.48 0.52 0.54 0.52 0.14 0.26 0.11 0.11 0.60 0.52 0.61
ARI 0.29 0.30 0.34 0.36 0.34 0.04 0.11 0.02 0.01 0.38 0.33 0.40
NMI 0.41 0.52 0.55 0.58 0.56 0.26 0.38 0.22 0.18 0.59 0.51 0.60

5000
ACC 0.51 0.53 0.51 0.53 0.53 0.25 0.25 0.10 0.09 0.58 0.55 0.59
ARI 0.31 0.34 0.32 0.35 0.34 0.11 0.11 0.02 0.01 0.38 0.31 0.39
NMI 0.53 0.56 0.53 0.59 0.58 0.40 0.39 0.22 0.18 0.59 0.52 0.61
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Fig. 3. Performance comparison on synthetic networks with different mu in terms of ACC (Left), ARI (Middle) and NMI (Right).

TABLE V
PERFORMANCE COMPARISON ON REAL-WORLD NETWORKS IN TERMS OF MODULARITY Q (BOLD NUMBERS DENOTE THE BEST RESULTS)

Networks NMF SNMF ONMF HPNMF DANMF M-NMF NSED BigClam DeepWalk LINE DNGR NMFGAAE
WebKB 0.57 0.63 0.64 0.68 0.35 0.62 0.66 0.30 0.61 0.45 0.58 0.73

Cora 0.53 0.52 0.62 0.71 0.71 0.70 0.69 0.47 0.65 0.61 0.71 0.74
Citeseer 0.59 0.61 0.58 0.65 0.65 0.63 0.59 0.58 0.49 0.67 0.65 0.72
Polblog 0.43 0.43 0.43 0.43 0.42 0.43 0.43 0.05 0.03 0.43 0.41 0.43

Blogcatalog 0.07 0.13 0.06 0.13 0.07 0.15 0.15 0.01 0.06 0.15 0.12 0.17
Pubmed 0.45 0.42 0.50 0.53 0.52 0.51 0.39 0.53 0.32 0.53 0.51 0.55

TABLE IV
STATISTICS OF REAL-WORLD NETWORKS

Networks n |E| k
WebKB 877 1388 4

Cora 2708 5278 7
Citeseer 3327 4552 6
Polblog 1490 16715 2

Blogcatalog 10312 333983 39
Pubmed 19717 44324 3

2) Experiment results and analysis. We run every method on
the real-world networks. Since these networks have no ground-
truth communities, we select modularity Q metric to evaluate
the performance. The results are shown in Table V. Although
NMFGAAE achieves the same performance as most other
methods on Polblog network, it performs the best on other net-
works and even exceed by a certain margin when comparing
with NMF-based baselines. For example, on Citeseer network,
the modularity Q scores of NMFGAAE are respectively 22%,

18%, 24.1%, 10.8%, 10.8%, 14.3%, 22% and 24.1% higher
than those of NMF, SNMF, ONMF, HPNMF, DANMF, M-
NMF, NSED and BigClam. Similar results can be found on
WebKB, Cora and Pubmed networks. These results verify
again that NMFGAAE indeed can boost the performance of
NMF-based methods for community detection.

F. Attention mechanism comparison

In NMFGAAE, we adopt specially designed attention mech-
anism directed by NMF-based community detection (Fig. 2
(a)) instead of GAT mechanism (Fig. 2 (b)). Results on
synthetic and real-world networks have demonstrated its ef-
fectiveness. To further validate its superiority, we conduct
comparative experiments between these two attention mech-
anisms on real-world networks. For convenience, we call the
method using GAT attention mechanism as NMFGAT. The
experiments results are shown in Fig. 4.
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Fig. 4. NMFGAAE vs. NMFGAT

As we can see from Fig. 4, NMFGAAE performs better
than NMFGAT on each network. The score of modularity Q
of NMFGAAE increases by an average of 6.1%. This means
that our proposed attention mechanism can better improve the
performance of NMFGAAE than GAT attention mechanism.

G. Joint optimization analysis

In NMFGAAE, we jointly optimize GAAE and NMF mod-
els, which can make GAAE and NMF benefit from each other.
One of the most obvious intuitions is that the output Z of
GAAE will be more discriminative, because it is improved by
NMF community detection model simultaneously. To verify
this intuition visually, we respectively run NMFGAAE on real-
world networks, and apply t-SNE tool [74] to visualize Z
in two-dimensional space. As a comparison, we run GAAE
individually (i.e., it is not jointly optimized with NMF), and
also visualize its output Z. Note that here we train GAAE
only using the graph reconstruction loss. Because the results
of different networks have similar tends, here we just show
two networks with fewer communities: WebKB and Polblog
in Fig. 5 and Fig. 6, respectively.

From Fig. 5 and Fig. 6, we can observe that the visualization
results of Z in NMFGAAE both have shown clear boundaries
of clusters (i.e., communities), but those in GAAE are not
distinguishable: points with different color are extensively
mixed together. Bad node representations will deteriorate the
performance of community detection. By applying NMF to Z
of GAAE, the modularity Q scores on WebKB and Polblog are
0.55 and 0.36, respectively, which are both inferior to those of
NMFGAAE as shown in Table V. These all fully demonstrate
that optimizing GAAE and NMF jointly indeed can obtain
better performance.

H. Parameter λ sensitivity analysis

There is one hyperparameter λ in the loss function of our N-
MFGAAE model. It is used to trade off GAAE reconstruction
loss and NMF loss. To study its effects to the performance of
NMFGAAE under different settings, we vary λ in the range
of {10−3,10−2,10−1,100,101,102,103} and evaluate the corre-
sponding performance on real-world networks. The results are
shown in Fig. 7. As we can see, although there is degradation
of performance as λ ≥ 10, the degradation is mild and
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Fig. 7. The performance of NMFGAAE with different λ

trivial. On the whole, when λ increases, NMFGAAE achieves
consistent good performance. This shows that NMFGAAE
is not sensitive to the exact value of λ and it can obtain
satisfactory performance for a range of λ, e.g., [10−3, 101].
In all of our experiments, we equally treat the contributions
of GAAE reconstruction loss and NMF loss, and thus set λ
to be 1.

I. Running efficiency analysis

As described in Algorithm 1, the results of community
detection can be obtained by executing update rules iteratively.
To investigate how many iterations NMFGAAE needs to take
to obtain satisfactory results, we run NMFGAAE on each
real-world network and explore how performance varies with
the number of iterations. To better illustrate this problem, we
select the best NMF-based baseline HPNMF as the competitor.
The results are depicted in Fig. 8. As we can see, on every
network NMFGAAE only needs to take about 10 iterations
to obtain stable and satisfactory results, but HPNMF needs
at least 30 iterations, and even more than 100 iterations on
Blogcatalog and PubMed networks. Actually, most existing
NMF-based methods for community detection need to take
many iterations to get the best results on these networks.
However, nonlinear NMFGAAE utilizes graph attention auto-
encoder to significantly reduce the number of iterations.

To further analyze the running efficiency of NMFGAAE, we
specially compare it with NMF-based baselines in term of the
runtime on two larger networks: Blogcatalog and Pubmed. In
the previous experiments, we have found that DANMF is very
time consuming, due to its multiple factorization structure.
Therefore, to better illustrate the comparison results, in this
experiment we do not select DANMF as the competitor. We set
the number of iterations for NMFGAAE on Blogcatalog and
Pubmed networks to be 10, and that of NMF-based baselines
to be 100. Experiment results are shown in Fig. 9.

As we can see from Fig. 9, in terms of runtime, on
Blogcatalog network, NMFGAAE is inferior to NMF, SNMF,
NSED and BigClam, but performs better than ONMF, HPNMF
and M-NMF. On PubMed network, NMFGAAE performs the
best. Overall, NMFGAAE is very efficient, because it requires
fewer iterations. On Blogcatalog and PubMed networks, it
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Fig. 5. 2D visualization of Z on WebKB

−40 −20 0 20 40

−20

0

20

40

(a) NMFGAAE

−40 −20 0 20 40 60

−40

−20

0

20

40

(b) GAAE

Fig. 6. 2D visualization of Z on Polblog

only takes about 100 and 800 seconds to converge to obtain
satisfactory results, respectively. Besides, as we analyze in
Section III.F, the time cost of NMFGAAE is largely dominated
by the number of edges |E|. This also shows that NMFGAAE
can be expected to run faster on networks with fewer edges.
As we can see, NMFGAAE run faster on PubMed than on
Blogcatalog, because the number of edges on Blogcatalog
network is about 7 times more than that of PubMed network.

V. CONCLUSIONS

NMF-based methods are widely applied to deal with the
problem of community detection in complex networks. How-
ever, most of them are linear and still need to further boost the
performance, especially when facing networks with diversified
structure information. In this paper, we devise a nonlinear
NMF-based method named NMFGAAE, which aims to com-
bine NMF community detection and graph attention auto-
encoder models to achieve better performance. We conduct
extensive experiments on synthetic and real-world networks.
The results show that NMFGAAE is effective and efficient,
and consistently performs better than state-of-the-art NMF-
based community detection methods. In the future, we think
there are two related topics which are worth further study:

• In essence, NMFGAAE provides us a general framework
to boost the performance of NMF-based community
detection by incorporating GNNs, and its two main
components NMF and GAAE can be replaced with other
advanced NMF and GNN models, respectively. There

should be more combinations that can be expected to
obtain better performance.

• NMF-based community detection in attributed networks
is also popular, but NMFGAAE here focuses on networks
with only structure information. Therefore, extending
NMFGAAE to attributed networks is promising. This
leads to the study of how to effectively fuse attributed
information with structure information and how to learn
the relevances of attributes to the communities.
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