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Producing daily actual evapotranspiration (ETa) maps with high spatial resolution has
always been a challenge for remote sensing research. This study assessed the feasibility of
producing daily ETa maps with a high spatial resolution (30 m) for the sugarcane farmlands
of Amir Kabir Sugarcane Agro-industry (Khuzestan, Iran) using three different scenarios. In
the first scenario, the reflectance bands of Landsat 8 were predicted from the moderate
resolution imaging spectroradiometer (MODIS) imagery using the spatial and temporal
adaptive reflectance fusionmodel (STARFM) algorithm. Also, the thermal bands of Landsat
8 were predicted by the spatiotemporal adaptive data fusion algorithm for temperature
mapping (SADFAT). Then, ETa amounts were calculated employing such bands and the
surface energy balance algorithm for land (SEBAL). In the second scenario, the input data
needed by SEBAL were downscaled using the MODIS images and different methods.
Then, using the downscaled data and SEBAL, daily ETa amounts with a spatial resolution
of 30 m were calculated. In the third scenario, ETa data acquired by MODIS were
downscaled to the scale of Landsat 8. In the second and third scenarios, downscaling
of the data was carried out by the ratio, regression, and neural networks methods with two
different approaches. In the first approach, the Landsat image on day 1 and the
relationship between the two MODIS images on day 1 and the other days were used.
In the second approach, the simulated image on the previous day and the relationship
between the two consecutive images of MODIS were used. Comparing the simulated ETa
amounts with the ETa amounts derived from Landsat 8, the first scenario had the best
result with an RMSE (root mean square error) of 0.68 mm day−1. The neural networks
method used in the third scenario with the second approach had the worst result with an
RMSE of 2.25 mm day−1, which was however a better result than the ETa amounts derived
from MODIS with an RMSE of 3.19 mm day−1. The method developed in this study offers
an efficient and inexpensive way to produce daily ETa maps with a high spatial resolution.
Furthermore, we suggest that STARFM and SADFAT algorithms have acceptable
accuracies in the simulation of reflectance and thermal bands of Landsat 8 images for
homogeneous areas.
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INTRODUCTION

Evapotranspiration (ET) is a major component of global water
cycle (Sobrino et al., 2021). Precise estimation of actual
evapotranspiration (ETa) on different temporal and spatial
scales is necessary for various applications such as natural
resources and agricultural management, water resources
management, irrigation planning, and soil and crop modeling
(Steiner et al., 1991; Nassar et al., 2021). Given the limited number
of weather stations and high cost and time required for collecting
ground data, using remote sensing techniques can be useful for
determining ETa, if a good output accuracy is guaranteed. One of
the most common methods for determining ETa using remotely
sensed data is the surface energy balance algorithm for land
(SEBAL) (Bastiaanssen et al., 2002; Bastiaanssen et al., 2005; Li
et al., 2021). Hafeez et al. (2002) compared the results of daily ETa

calculated by SEBAL using advanced spaceborne thermal
emission and reflection radiometer (ASTER) data with ETo

(reference ET calculated by the FAO Penman-Monteith
method), ETpan (ET measured at weather stations), and ETc

(ET calculated having the crop coefficient Kc � 0.9) and
indicated that SEBAL is of a good accuracy. In another study,
Chandrapala and Wimalasuriya (2003) compared ETa resulted
from SEBAL with ETa measured by a scintillometer and showed
that the differences between them in 10-days and monthly
periods were 17 and 1%, respectively. These studies concluded
that SEBAL is of a good performance in estimating ETa.

A balance is established between spatial, temporal, and
spectral resolutions in the designing process of satellites
(Emelyanova et al., 2013; Zhu et al., 2018; Bai et al., 2020;
Moreno-Martinez et al., 2020). Nevertheless, due to technical
limitations, most satellites are not able to collect images with high
temporal, spatial, and spectral resolutions simultaneously
(Ghassemian, 2009; Bai et al., 2015). Many of satellites images
of high spatial resolution have lower temporal resolution
compared to those with low to average spatial resolutions
(Emelyanova et al., 2013; Zhu et al., 2018; Bai et al., 2020).
For example, due to their high spatial resolution, Landsat
images are used for many environmental applications
i.e., production of ETa maps (Fu et al., 2014; Ping et al., 2018).
However, there is a huge limitation in using the Landsat imagery
for monitoring dynamic changes over land surfaces due to a 16-
days temporal resolution and the probability of cloud cover (Gao
et al., 2006; Roy et al., 2008; Ping et al., 2018). On the other hand,
the moderate resolution imaging spectroradiometer (MODIS)
imagery has a daily temporal resolution, but its low spatial
resolution limits its performance in environmental applications
(Zhu et al., 2010; Gevaert and García-Haro, 2015; Ping et al.,
2018). Thus, it has not so far been possible to monitor important
environmental phenomena like ETa with the same sensor and
high spatial and temporal resolutions. In order for an accurate
spatial and temporal estimation of environmental ETa, image
fusion methods are usually employed (Ha et al., 2013; Ping et al.,
2018). In the process of image fusion, images acquired from two

or more sensors are used as input data, and an output that has
more information compared to the input images is derived
(Roshan et al., 2015; Malhotra et al., 2021). This process of
spatial resolution enhancement of remotely sensed data by
fusion of separate data is called downscaling (Atkinson, 2013).
For instance, downscaling of MODIS images using Landsat data
could create images with a spatial resolution of 30 m and a
temporal resolution of 1 day (Ke et al., 2016).

To date, various methods have been used and assessed for
downscaling remotely sensed data in order to obtain ETa maps
with high temporal and spatial resolutions. The downscaling can
be conducted in three levels as downscaling of bands,
downscaling of input data required for energy balance
algorithms, and downscaling of ETa products. For instance,
Gao et al. (2006) introduced an algorithm for combining
images acquired from the enhanced thematic mapper plus
(ETM+) and MODIS in order to achieve images with better
clarity and higher temporal and spatial resolutions. They
employed the spatial and temporal adaptive reflectance fusion
model (STARFM) for prediction of reflectance bands in ETM+.
They also used MODIS images at time 1 (the day on which
Landsat images are available) and time 2 (the day on which
Landsat images are not available) as well as ETM + images at
time 1 to predict reflectance bands of ETM+ (i.e., bands 1, 2, 3, 4,
5, 7) at time 2. They compared the downscaled images with the
ETM + images and demonstrated that the results were good.

Given the high accuracy of STARFM, it can be used for
simulation of Landsat reflectance bands in order to monitor
ETa. However, for achieving ETa maps with high temporal
and spatial resolutions, thermal bands are also required. Hong
et al. (2013) produced high-resolution daily ETa images using two
different approaches. In the first approach, they obtained input
data for SEBAL (e.g., surface albedo coefficient, normalized
difference vegetation index [NDVI] and land surface
temperature [LST]) from MODIS, and then downscaled these
data to the spatial resolution of Landsat 7 using the subtraction
and regression methods and obtained ETa using the downscaled
data. In this approach, they calculated a mean absolute difference
(MAD) of 0.55 mm day−1 for the subtraction method and
0.54 mm day−1 for the regression method. In the second
approach, they obtained ETa using MODIS images and
SEBAL, and then downscaled ETa obtained from MODIS to
the spatial resolution of Landsat 7 using the subtraction and
regression methods. In this approach, a MAD of 0.53 mm day−1

was calculated for the subtraction method and 0.57 mm day−1 for
the regression method. Brindhu et al. (2013) conducted a study in
Tamil Nadu and parts of the Thamiraparani River Basin (India)
with a total area of 5,665 km2 and downscaled LSTs obtained
from MODIS with a spatial resolution of 960 m to the scale of
Landsat 7 with a spatial resolution of 60 m using the Nonlinear
DisTrad method. They compared the LSTs downscaled using the
Nonlinear DisTrad method with the LSTs downscaled using the
sharpening thermal (TsHARP) method and the LSTs obtained
from Landsat 7. In their study, RMSEs were 0.96° K for the
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Nonlinear DisTradmethod and 1.91o K for the TsHARPmethod.
They also compared the ETa amounts resulted from SEBAL using
the LSTs downscaled by the Nonlinear DisTrad method, the LSTs
downscaled by the TsHARP method, the LSTs obtained from
Landsat 7. Their calculated RMSEs for ETa were 0.16 mm day−1

using the LSTs downscaled by the Nonlinear DisTrad method
and 0.55 mm day−1 using the LSTs downscaled by the TSHARP
method.

For monitoring ETa, reflectance bands are also required. Weng
et al. (2014) modified STARFM in order to take into account the
annual temperature cycle (ATC) and developed the
spatiotemporal adaptive data fusion algorithm for temperature
mapping (SADFAT) for downscaling thermal data. They attained
a coefficient of determination (R2) of 0.87 between the
downscaled and Landsat thermal data. In another study,
Mahour et al. (2017) evaluated the effect of downscaling of
LSTs by the Co-Kriging method on the estimation of ETa for
a farmland located in Qazvin (Iran). They used two approaches
for downscaling. In the first approach, the LSTs obtained from
MODIS with a spatial resolution of 1,000 m were downscaled to a
spatial resolution of 250 m by the Co-Kriging method. They used
the outcome and applied the surface energy balance system
(SEBS) algorithm for estimating daily ETa with a spatial
resolution of 250 m. In the second approach, they downscaled
the ETa data obtained from MODIS with a resolution of 1,000 m
using SEBS to a spatial resolution of 250 m using the Co-Kriging
method. They used the LSTs obtained from Landsat 8 for
accuracy assessment. Their results illustrated that a difference
of 2.7o K between the LSTs obtained from Landsat 8 and the
downscaled LSTs exists. Further, ETa calculated by SEBS and
Landsat 8 was 5.76 mm day−1 and the downscaled ETa was
5.57 mm day−1. The RMSE between the reference ETa and the
downscaled ETa was 1.26 mm day−1, and the RMSE between the
reference LSTs and the downscaled LSTs was 3.67o K. They
concluded that LST has a great impact on the estimation of ETa

based on remote sensing data.
So far, there has been no study that uses downscaling

techniques in three levels including downscaling of bands,
downscaling of input data required for the energy balance
algorithms, and downscaling of ETa images to obtain daily ETa

images with a spatial resolution of 30 m. Thus, the present
study aimed to employ downscaling techniques in three
different scenarios for producing daily ETa maps with a
spatial resolution of 30 m for the sugarcane farmlands of
Amir Kabir Sugarcane Agro-industry, Khuzestan, Iran. In
the first scenario, the reflectance and thermal bands of
Landsat 8 were predicted using STARFM and SADFAT,
respectively. Then, ETa was calculated using these bands
and SEBAL. In the second scenario, the input data required
for SEBAL were downscaled and then daily ETa with a spatial
resolution of 30 m was calculated. In the third scenario, the
ETa images obtained from MODIS were downscaled to the
scale of Landsat 8. In the second and third scenarios, data
downscaling was conducted by using the ratio, regression, and
neural networks methods with two different approaches. In the
first approach, for simulating the data with a spatial resolution
of 30 m and a temporal resolution of 1 day, the Landsat image

on day 1 and the relationship between the two MODIS images
on day 1 and the other days were used. In the second approach,
for simulating the data on the desired day, the simulated image
on the previous day and the relationship between the two
consecutive images of MODIS were used.

METHODS

Study Area and Data Acquisition
The study area is the sugarcane farmlands of Amir Kabir
Sugarcane Agro-industry. The company is located in south of
Khuzestan province, Iran, at 48° 16′ 49″ E and 31° 2’ 2” N. Amir
Kabir Sugarcane Agro-industry is located 45 km from Ahwaz-
Khorramshahr Road and bordered with Karun River from the
east. The gross area of the abovementioned farmlands is 15,000 ha
and the net area is 12,000 ha, which is divided into several 25-ha
pieces (Figure 1).

Satellite data including MODIS images acquired on June 16,
2017 and June 30, 2017 and Landsat 8 images acquired on June
14, 2017, June 30, 2017 and July 16, 2017 were used. The bands
used in this study for downscaling including Landsat 8 bands and
the corresponding bands in MODIS images are listed in Table 1.

Pre-Processing of Satellite Images
Due to the atmosphere between the sensor and land surface, the
reflectance of the surface features before reaching the sensor is
affected by two factors of absorption and scattering, leading to
uncertainty in determination of the surface reflectance (Kaufman
et al., 1997; Gao et al., 2000). In this study, the method introduced
by Tasumi et al. (2008) was used for atmospheric correction of the
MODIS and Landsat 8 images.

Downscaling of Reflectance Bands Using
STARFM
In order to achieve images with high temporal and spatial
resolutions, researchers used an image fusion algorithm for
combining images of ETM + and MODIS (Gao et al., 2006).
This algorithm is abbreviated as STARFM and is a common basic
algorithm for temporal and spatial combination of satellite
images. It predicts the value of the central pixel in Landsat
images at the second time based on the calculation of correct
weights for the neighboring pixels. Therefore, this algorithm
moves over the Landsat classified image acquired on the first
time as a moving window and downscales the image with low
spatial resolution acquired at the second time with respect to the
images of MODIS acquired at the first and second times and the
classified image of Landsat acquired at the first time. The
following equation was established for a heterogeneous pixel
of MODIS:

L(xi, yj, t0) � M(xi, yj, t0) + L(xi, yj, tk) −M(xi, yj, tk) (1)

where (xi, yj) indicates the location of the given pixel in Landsat
andMODIS images, t0 and tk are the dates on which the images of
MODIS and Landsat were acquired.
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Equation 1 is logical for homogeneous pixels in MODIS
image, but it should be considered that all pixels in MODIS
image are not homogeneous and it is possible that the type of land
cover changes over the prediction period. Thus, the
neighborhood information was used for correcting the surface
reflectance by applying a weight function:

L(xw
2
, yw

2
, t0) � ∑w

i�1
∑w
j�1

∑n
k�1

Wijk × (M(xi, yj, t0) + L(xi, yj, tk)
−M(xi, yj, tk)) (2)

where w is the size of the moving window, (xw
2
, yw

2
) is the central pixel

of the window, and Wijk is a weight that indicates the contribution
level of neighboring pixels in estimation of reflectance.

For ensuring that the information in Eq. 2 is correct and that
the neighboring pixels are homogeneous, only spectrally similar
pixels (pixels belonging to one spectral class) were used. A
classified Landsat image was needed for achieving this. The
ISOData algorithm was used as an unsupervised classification
method.

Downscaling of Thermal Bands Using the
SADFAT
STARFM has been used for prediction of reflectance bands based
on the assumption that surface reflectances in MODIS and
Landsat images on the same day are similar (Gao et al., 2006;

Masek et al., 2006). For homogeneous pixels, so long as this
assumption i.e., band similarity between Landsat and MODIS
thermal data on the same day is established, STARFM was used
for downscaling thermal images and LST. However, changes of
LST over time show that daily and seasonal variations are severe
(Sabins, 1997; Weng et al., 2008). Weng et al. (2014) modified
STARFM taking into account ATC and heterogeneous urban
thermal landscape for prediction of thermal radiance and LST
data. They named the new algorithm SADFAT. In this algorithm,
the linear spectral mixture analysis (LSMA) was used for relating
radiance in the Landsat and MODIS images so that temporal
changes in the radiance could be included in the fusion model.
For a homogeneous pixel in Landsat image, radiance at tp is equal
to the total radiance of Landsat image at t0 and a coefficient of
difference in radiance in MODIS images at tp and t0. The
required coefficient (a) can be determined through a
regression relationship derived from the association
between thermal bands of Landsat MODIS images. Since a
large number of pixels contain more than one cover type, the
radiance of the mixed pixel of the Landsat image was
estimated according to the below processes.

The radiance change of the MODIS pixel from t1 to t2 was
computed as:

RM(t2) − RM(t1) � 1
a
∑N
i�1

fi(RiL(t2) − RiL(t1)) (3)

FIGURE 1 | Geographical location of the study area.

TABLE 1 | Bands and bandwidths of Landsat 8 and the corresponding bands and bandwidths in MODIS.

Landsat 8 MODIS

Landsat 8 Band Landsat
8 Bandwidth (nm)

MODIS Band MODIS Bandwidth (nm)

2 450–510 3 459–479
3 530–590 4 545–565
4 640–670 1 620–670
5 850–880 2 841–876
6 1,570–1,650 6 1,628–1,652
7 2110–2290 7 2105–2155
10 10,620–11,190 31 10,780–11,280
11 11,500–12,510 32 11,770–12,270
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where R is the radiance and M and L are abbreviations of MODIS
and Landsat respectively.

Seasonal change in LST was modeled using the annual
temperature cycle (ATC) approximated using a sinusoidal
function (Bechtel, 2012):

LST � MAST + YASTp sin(wpd + θ) (4)

where MAST is the mean annual surface temperature, YAST is
the yearly amplitude surface temperature, w is the angular
frequency, d is the day of year (DOY) relative to the equinox,
and θ is the phase shift. Since spectral radiance is related to LST by
the Plank’s law, the radiance change of an L pixel from time t1 to
t2 was quantified as:

RiL(t2) − RiL(t1) � 2c cos(θi + w
d1 + d2

2
) sinw

d2 − d1

2

� C cos(θi + wđ) (5)

where θ is the phase shift or heat lag, c is the amplitude of the
radiance variation, C is the constant, đ is the mean acquisition
date, and d1 and d2 are the parameters input to the algorithm.
Incorporating the ATC model, Eq. 3 can be re-written as:

RM(t2) − RM(t1) �
2c sinw(d2−d12 )

a
∑N
i�1

fi cos(θi + wđ)

� C

a
∑N
i�1

fi cos(θi + wđ) (6)

If the radiances of the kth L pixel at date t1 and t2 are known, Eq.
4 has an instance as:

RkL(t2) − RkL(t1) � 2c cos(θk + wđ) sinwd2 − d1

2
(7)

By combining Eqs 6, 7, Eq. 8 can be obtained:

RkL(t2) − RkL(t1)
RM(t2) − RM(t1) �

cos(θk + wđ)
1
a∑N

i�1 fi cos(θi + wđ) � hk (8)

Since θ reflects the phase shift of a pixel and is associated with
thermal properties of land surface materials, it can be regarded as
constant as long as the land cover does not change in the
observational period. Therefore, the ratio of the radiance
change of kth L pixel to that of the corresponding M pixel is
constant for a certain L pixel. Here, hk is called the conversion
coefficient for consistency (Zhu et al., 2010).

Based on Eq. 8, if one pair of L and M radiance image at t0 and
another M radiance image at tp are available, the L radiance image
at tp can be predicted using the following formula:

RL(xw
2
, yw

2
, tp) � RL(xw

2
, yw

2
, t0) +∑N

i�1
Wiphip[RM(xi, yi, tp)

−RM(xi, yi, t0)] (9)

where Wi is the weight of the similar neighboring pixel and N is
the number of similar pixels.

The calculated radiance could be converted to LST using
Planck’s law. In Eq. 3, the weight of similar neighboring pixels
of the central pixel should be calculated. This weight
determines the contribution of the neighboring pixels to the
calculation of a central pixel. Similarity between reflectance
and thermal radiances in a pixel and the central pixel as well as
the distance between the central pixel and a neighboring pixel
increase the pixel weight.

In the MODIS sensor, thermal bands 31 and 32 are used to
estimate LST. For this, the radiance was converted to the
brightness temperature using the inverse of the Planck’s law
(Lu and Weng, 2006).

Ti �
(hck )

λi × ln( 2hc2

RADπλ2i
+ 1) (10)

FIGURE 2 | Calculation processes based on the ratio and regression methods (Hong et al., 2013).
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FIGURE 3 | Simulated reflectance bands of the sugarcane farmlands of Amir Kabir Sugarcane Agro-industry with the spatial resolution of 30 m using STARFM on
June 30, 2017 and the original reflectance bands of the Landsat 8 image on the same day. (A) original band 2, (A׳) simulated band 2, (B) original band 3, (B׳) simulated
band 3, (C) original band 4, (C׳) simulated band 4, (D) original band 5, (D׳) simulated band 5, (E) original band 6, (E׳) simulated band 6, (F) original band 7, and (F׳)
simulated band 7 on June 30, 2017. White spots on the right edge and central part of the simulated image are cloud cover over these areas.
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where Ti is the brightness temperature in Kelvin, RAD is the
radiance in w

m2μm.sr , h is Planck’s constant, C is the velocity of light,
K is Boltzmann’s constant, and λi is the wavelength in the middle
of the band. The values of λ for bands 31 and 32 are 11.3 and
12.4 μm, respectively. To put it simply, the brightness
temperature was obtained for each band as:

Ti � (c2)
λi × ln( c1

RADπλ2i
+ 1) (11)

The constant coefficients c1 and c2 for MODIS are considered
3.741775*10−22 and 0.0143877, respectively. By obtaining
brightness temperature, LST could also be obtained. Parodi
(2000) provided the following equation for obtaining LST by
MODIS data.

Ts � 0.39 × Tb231 + 2.34 × Tb31 − 0.78 × Tb31 × Tb32 − 1.34

× Tb32 + 0.39 × Tb232 + 0.56 (12)

where Tb31 and Tb32 are brightness temperatures for bands 31
and 32 of MODIS sensor, respectively.

In the Landsat 8 satellite, LST is obtained from bands 10 or 11.
In this study, LST was obtained from band 10 using Eq. 13.

Ts � k2

ln(εNBk1
Rc

+ 1) (13)

where k1 and k2 are constant coefficients for band 10
(k1 � 774.89 , k2 � 1321.08). Rc is the radiance of the thermal
band in w

m2μm.sr , and Ts is land surface temperature (k).

Ratio and Regression Methods
In the ratio and regression methods, for simulation of the Landsat
image at T1 (the day on which Landsat images are not available),
a relationship was established between the two MODIS images at
T0 and T1 by the ratio and regression methods. Then, by
assuming that this relationship is also established between the
two Landsat images at T0 (the day on which Landsat images are

available) and T1 (Hong et al., 2013), the Landsat image at T1 was
simulated (Figure 2).

Neural Networks Method
The neural networks method has different algorithms, one of
which is the multi-layer perceptron (MLP). MLP is formed of
multiple layers and neurons. It consists of an input layer, one or
more hidden layers, and an output layer. One of the differences
between different neural networks is their distinct activation
functions. In the hidden layer of MLP, mostly three types of
sigmoid, hyperbolic and linear (identical) moving functions are
used. In the present study, the sigmoid function was used in the
hidden layer. Generally, in MLP networks, some factors should be
determined properly including the number of hidden layers, the
number of neurons in the hidden layers, the learning rate, the
momentum, and the error threshold in order to reach a suitable
model for solving a specific problem.

SEBAL for Calculation of ETa
The energy balance equation is the basis of remote sensing
algorithms for calculation of ETa. The energy balance equation
is as follows (Bastiaanssen et al., 1998):

Rn � G +H + λET + S + P + h (14)

where Rn is net radiation, G is soil heat flux, H is sensible heat
flux, λET is latent heat flux, s is biomass energy, P is
photosynthesis, and h is the horizontal component of sensible
and latent heat fluxes.

In Eq. 4, photosynthesis and heat storage in plants could be
ignored, becausemost plants consume less than 1% of the reached
Sun radiation for photosynthesis. Daytime heat storage in plants
could also be ignored, because it is important only when
temperature changes fast (especially at sunset and sunrise) and
when amounts of Rn, H, and λET are small. Moreover, the
horizontal component of sensible and latent heat fluxes
indicates the net amount of energy exchanged by the plant in
a horizontal direction. In dry weather, it can be equal to net

FIGURE 4 | Reflectance bands of the land surface temperature (LST) of the sugarcane farmlands of Amir Kabir Sugarcane Agro-industry on June 30, 2017. (A)
simulated by SADFAT; (B) obtained from the Landsat 8 image.
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radiation, and despite its importance, it is usually not taken into
account due to lack of a simple solution for evaluation.
Considering such assumptions in the energy balance equation
and elimination of those three components, Bastiaanssen et al.
(1998) applied an algorithm of land surface energy namely
SEBAL using the multi-step physical calculations. The
equations and calculation processes for each parameter of Rn,
G and H are explained fully in the study of Bastiaanssen et al.
(2002). Due to the high efficiency of SEBAL for calculation of ETa,
this method was used to evaluate the efficiency of the used

scenarios for calculation of daily ETa with a high spatial
resolution.

RESULTS

Visual comparison of the simulated bands with the original bands
of Landsat 8 (Figure 3) and the RMSE values provided in Table 2
indicated that STARFM had an acceptable performance. Also,
comparison of LST determined based on the simulated bands

FIGURE 5 | Comparison of ETa derived from the simulations and Landsat 8 image: (A) the first scenario, (B) the second scenario, the ratio method (the first and
second approaches), (C) the second scenario, the regression method, the first approach, (D) the second scenario, the neural networks method, the first approach, (E)
the second scenario, the regression method, the second approach, (F) the second scenario, the neural networks method, the second approach, (G) the third scenario,
the ratio method (the first and second scenario), (H) the third scenario, the regressionmethod, the first approach, (I) the third scenario, the neural networksmethod,
the first approach, (J) the third scenario, the regression method, the second approach, (K) the third scenario, the neural networks method, the second approach.
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with LST obtained from the original image of Landsat 8 acquired
on June 30, 2017 showed that SADFAT was able to simulate the
LST distribution well (Figure 4).

In the second scenario, the input data of SEBAL (i.e., surface
albedo, NDVI, leaf area index [LAI], and LST) were simulated by
the ratio, regression, and neural networks methods with two
approaches. In the ratio method, both approaches were the same
and had identical performances (Table 3; Figure 5). In the
regression method, the R2 values obtained for the input data
simulated by the first and the second approaches were the same
(Figure 5). ETa obtained by SEBAL for the input data simulated
by the regression method with the first and second approaches

had the same R2 values but different RMSEs (Table 3; Figure 5).
In the neural networks method, the first and second approaches
were completely different (Table 3; Figure 5).

In the third scenario, ETa amounts simulated by the first and
second approaches were identical and had equal performances
(Table 3; Figure 5). In the regression method, the R2 values
calculated for ETa amounts simulated with the first and second
approaches were the same, but the RMSEs were different (Table 3;
Figure 5). In the neural networks method, the simulated ETa had
different R2 values and RMSEs (Table 3; Figure 5).

The simulated ETa images and the ETa images obtained from
MODIS and Landsat 8 data on June 30, 2017 were visually

FIGURE 5 |Comparison of ETa derived from the simulations and Landsat eight image: (A) the first scenario, (B) the second scenario, the ratio method (the first and
second approaches), (C) the second scenario, the regression method, the first approach, (D) the second scenario, the neural networks method, the first approach, (E)
the second scenario, the regression method, the second approach, (F) the second scenario, the neural networks method, the second approach, (G) the third scenario,
the ratio method (the first and second scenario), (H) the third scenario, the regressionmethod, the first approach, (I) the third scenario, the neural networksmethod,
the first approach, (J) the third scenario, the regression method, the second approach, (K) the third scenario, the neural networks method, the second approach.
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compared (Figure 6). In these images, pink points indicate
minimum ETa and represent idle lands. Dark brown points
show maximum ETa and illustrate lands with dense
vegetation. As it is shown in image A2, pixels on the northern
and eastern borders of the farmlands had the lower ETa than the
other pixels, due to the neighboring barren lands.

DISCUSSION

Evaluation of the Used Scenarios
The first scenario with an RMSE of 0.68 mm day−1 had the best
performance (Table 3). A major reason for this could be the
simulation of the thermal band with higher accuracy in this
scenario. In the first scenario, the value of RMSE for the simulated
LST on June 30, 2017 is estimated to be 1.95 °K. (Weng et al.,
2014) used SADFAT for simulation of LST with the spatial
resolution of Landsat 8 and compared the results with the
images acquired by Landsat 8. They found RMSE values for
the study area to be between 1.32 °K to 2 °K. Their finding is in
agreement with the results of the present study. In SADFAT,
changes of LST over the time gap between acquisition times of
MODIS and Landsat images of the same day are taken into
account. Whilst the ratio, regression, and neural networks
methods function based on the assumption that LST values
obtained from MODIS and Landsat images of the same day
are similar. Mahour et al. (2017) also pointed out the importance
of thermal data accuracy in determination of ETa.

STARFM was used in the first scenario for simulating the
reflectance bands. STARFM had a satisfactory performance in the
study area (Table 2). Gao et al. (2006), Hilker et al. (2009), and

Bhandari et al. (2012) also reported a high efficiency for STARFM
in the simulation of Landsat reflectance bands. STARFM is
greatly dependent on the homogeneity of study areas, and
heterogeneity and variability of land cover in the area may
significantly affect results of this algorithm (Gao et al., 2006).
Thus, the homogeneity of the study area in the present study
could be the main reason for the high R2 (except band 5) and low
RMSE values for the simulated bands. A major reason for the
reduced R2 of band 5 can be the existence of uncertainties related
to downscaling. Bhandari et al. (2012) found low R2 for bands 1
and 2 but suggested no specific reason for this. Rather than being
an accuracy indicator, R2 is a statistical measure to reveal how
close the data are to the fitted regression line. Instead, RMSE is a
measure of accuracy. Since the RMSE value for band 5 is
reasonably well, therefore it may not distort the results. It is
seen in Table 2 that the simulation accuracy varies between the
different bands. This difference could have two major reasons.
First, it is due to variable atmospheric effects in different
wavelengths especially in shorter ones (Roy et al., 2008),
which might have caused different atmospheric conditions at
the acquisition times of the MODIS and Landsat images
(Bhandari et al., 2012). Second, inadequate wavelength
overlapping between the corresponding bands in the Landsat
and MODIS images could have caused a spectral difference in the
corresponding bands and consequently affected the outcome of
the downscaling process (Pohl and Van Genderen, 1998).

The neural networks method in the third scenario with the
second approach had the worst performance with an RMSE of
2.25 mm day−1 (Table 3). Nevertheless, it had a better accuracy
than ETa obtained from the MODIS images with an RMSE of
3.19 mm day−1. Therefore, it is deduced that the simulated actual
ETa images in all three scenarios and using all methods with both
approaches have better performances than the ETa images
obtained from the MODIS data. Since the time required for
the calculations in the third scenario is much shorter than that of
the first and second scenarios and also according to Table 3, the
regression method in the third scenario with the first approach
with an RMSE of 0.87 mm day−1 is of a good accuracy as a quick
and efficient method.

Evaluation of the Used Methods
Hong et al. (2013) aimed at producing ETa maps with a resolution
of 30 m and daily temporal resolution. They used four methods
namely input subtraction, output subtraction, input regression,
and output regression. In the input subtraction and input
regression methods, they downscaled the input data of SEBAL.
They reported a higher accuracy for the input regression method
compared to the input subtraction method. Furthermore,
Spiliotopoulos et al. (2013) showed that the regression method
had a greater accuracy than the subtraction method. Due to high
similarity between the subtraction and ratio methods, it is derived
that the results of the second scenario in the present study is
similar to the results of the studies of Hong et al. (2013) and
Spiliotopoulos et al. (2013). The lower accuracy of the ratio
method compared to the regression and neural networks
methods has different reasons. One of the reasons is that, in

TABLE 2 |Comparison of the simulated and original bands of the Landsat 8 image
of the sugarcane farmlands of Amir Kabir Sugarcane Agro-industry on June
30, 2017.

Band number 2 3 4 5 6 7

RMSE 0.015 0.018 0.025 0.037 0.041 0.041
R2 0.83 0.82 0.86 0.48 0.72 0.81

TABLE 3 | RMSE values for the simulated ETa amounts.

Scenario Approach Method RMSE (mm day−1)

First − STARFM and SADFAT 0.68
Second First Ratio 1.43

Regression 1.07
Neural network 0.97

Second Ratio 1.43
Regression 1.12
Neural network 2.04

Third First Ratio 2.22
Regression 0.87
Neural network 1.16

Second Ratio 2.22
Regression 1.83
Neural network 2.25
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FIGURE 6 | Actual evapotranspiration (ETa, mm day−1) images on June 30, 2017 (A1) ETa obtained from Landsat 8 data, (A2) ETa obtained from MODIS data, (B)
ETa simulated in the first scenario, (C) ETa simulated in the second scenario by the ratio method (the first and the second approaches), (D) ETa simulated in the second
scenario by the regression method with the first approach, (E) ETa simulated in the second scenario by the neural networks method with the first approach, (F) ETa
simulated in the second scenario by the regression method with the second approach, (G) ETa simulated in the second scenario by the neural networks method
with the second approach, (H) ETa simulated in the third scenario by the ratio method (the first and the second approaches), (I) ETa simulated in the third scenario by the

(Continued )
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the ratio method, a separate relationship is made between both
pixels of the MODIS images acquired at times 1 and 2, and this
relationship is only applied for the pixels of the Landsat image
within that pixel of the MODIS image. In contrast, in the
regression and neural networks methods, only one relationship
is made between all pixels of the MODIS images acquired at
times 1 and 2, and this relationship is applied for all pixels of the
Landsat image at time 1, causing no severe change in the images
downscaled by the regression and neural networks methods.
Whilst the images downscaled by the ratio method have severe
changes in some pixels and less changes in some others. By visual
comparison of the images simulated by the ratio method and the
images acquired by Landsat 8 (Figure 6), these severe changes can
be seen in some pixels, while there are no severe changes in such
pixels in the images simulated by the regression and neural
networks methods. Another reason for this could be the lack of
a complete geometric conformity of MODIS and Landsat images
through the georeferencing process. The ratio and subtraction
methods are more vulnerable to such geometric non-conformity
between satellite images compared to the regression and neural
networks methods (Hong et al., 2013). In STARFM and SDFAT,
since a moving window is used for simulation of the central pixel
value, the error due to the geometric non-conformity is much less
than the ratio, regression, and neural networksmethods.Moreover,
other sources of uncertainties such as difference in viewing the
sensor angle, Sun radiation angle, acquisition time, atmospheric
correction, and calculation of emissivity could also affect the results
(McCabe and Wood, 2006; Kim and Hogue, 2012).

Evaluation of the Used Approaches
The first and second approaches were similar in the ratio method,
because the ratio method is linear and the relationship in this
method is pixel to pixel. In the present study, the subtraction
method was not used for simulation of the input data. However,
due to similar processes in the subtraction and ratio methods, it
can be concluded that the first and second approaches would be
identical with similar performances in the subtraction method. In
the second and third scenarios in the regression method, the first
and second approaches had the same R2 values, but the simulated
ETa amounts by the regression method with the first approach
were more accurate than the second approach. Moreover, in the
neural networks method in both scenarios, the first approach has
a better performance than the second approach. Thus, in the
second and third scenarios, except in the ratio method in
which both approaches have the same performance, the first
approach has a better performance in the regression and
neural networks methods. In the first approach, for
simulating all images, the Landsat image was the
reference image. Therefore, the interval between the
reference image and the simulated image varied from
1 day to 15 days. In fact, in this approach, the
downscaling methods were used once for simulation of

the Landsat image on the desired date. In the second
approach, the interval between the reference image and
the simulated image is 1 day for all simulations. For
simulating the Landsat image on the desired date, the
simulated Landsat image for the day before was used.
Actually, in the second approach, for simulating the
image on the desired date, the downscaling methods are
used 1 to 15 times. Thus, it can be deduced that the time gap
in the first approach causes less error than using the
downscaling methods several times in the second approach.

CONCLUSION

We applied three scenarios for downscaling of theMODIS images
using the Landsat 8 images in order to estimate daily ETa with
a spatial resolution of 30 m for the sugarcane farmlands. In
total, our results show that STARFM and SADFAT
algorithms have acceptable accuracies in the simulation of
reflectance and thermal bands, respectively, of Landsat 8
images for homogeneous areas. We recommend using the
first scenario for producing daily ETa maps with a spatial
resolution of 30 m. Moreover, using the third scenario, the
regression method, and the first approach is a simple process
for quick production of accurate daily ETa maps with a spatial
resolution of 30 m. Finally, it is suggested that future studies
apply the developed method in this study to
heterogeneous areas.
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