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Abstract: Exposure of humans to high concentrations of PM2.5 has adverse effects on their health.
Researchers estimate that exposure to particulate matter from fossil fuel emissions accounted for
18% of deaths in 2018—a challenge policymakers argue is being exacerbated by the increase in
the number of extreme weather events and rapid urbanization as they tinker with strategies for
reducing air pollutants. Drawing on a number of ensemble machine learning methods that have
emerged as a result of advancements in data science, this study examines the effectiveness of using
ensemble models for forecasting the concentrations of air pollutants, using PM2.5 as a representative
case. A comprehensive evaluation of the ensemble methods was carried out by comparing their
predictive performance with that of other standalone algorithms. The findings suggest that hybrid
models provide useful tools for PM2.5 concentration forecasting. The developed models show that
machine learning models are efficient in predicting air particulate concentrations, and can be used for
air pollution forecasting. This study also provides insights into how climatic factors influence the
concentrations of pollutants found in the air.

Keywords: ensemble machine learning methods; modelling and forecasting; PM2.5; predictive
performance

1. Introduction

In the developing world, the number of people living within urban areas is rapidly
increasing. For instance, it is projected that 68% of the global population will reside in
urban areas by 2050 [1]. Based on census data and projections, the population of Lagos was
9.1 million in 2006, and it was projected that the city would have 24.3 million residents in
2015 [2]. This growth creates lots of social, economic, and environmental problems. Urban
heat islands [3] and the rise in air pollution [4]) are some of the consequences of this rapid
urbanisation. According to previous studies [5,6], the increase in the number of extreme
weather events and healthcare costs, among others, have been linked to the air pollutants
emitted as a result of the activities of city dwellers. To protect the planet, there is an urgent
need for stakeholders (such as policymakers) to develop and implement strategies for
reducing these air pollutants.

The outcomes of research focused on monitoring, modelling, and predicting air pollu-
tants provide evidence for policy interventions, and justify changes in human behaviour.
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Traditionally, regression-based methods have been used for forecasting air pollutant con-
centration. For instance, the logistic regression model was used for forecasting the con-
centration of NO2 in a study by Drye [7]. However, the need to improve the accuracy of
forecasts has led to the application of other methods in recent studies. Neural networks [8],
Prophet [9], and support-vector machines [10] are examples of methods used in recent
studies on air pollutant forecasting. These methods have inherent weaknesses that affect
the quality of their forecasts. For example, regression-based methods cannot adequately
capture nonlinearity present in real-world data [11]. McKendry [12] used linear and non-
linear methods for air pollutant forecasting, and found that the nonlinear models (i.e.,
neural networks) produce a better forecast. Moreover, other studies have shown that neural
network models are susceptible to overfitting and local minima [13]. Due to the identified
limitations, there is a need to evaluate the effectiveness of newer modelling techniques that
have emerged as a result of advancements in data science.

Prophet and ensemble models are examples of new algorithms used for solving
problems relating to prediction. Research has shown that the ensemble model, which can
combine a variety of models, tends to generate more accurate forecasts when compared
with standalone models [14,15]. The present study seeks to examine the effectiveness of
using ensemble models for forecasting the concentrations of air pollutants, using PM2.5 as
a representative case. A comprehensive evaluation of the ensemble methods was carried
out by comparing their predictive performance with that of other standalone algorithms.
This goal was achieved by addressing two objectives: (1) to model and forecast PM2.5
using seven algorithms (autoregressive integrated moving average, exponential smoothing,
Prophet, neural networks, random forests, support-vector machines, and extreme gradient
boosting), and (2) to apply the ensemble models for the forecasting of PM2.5 concentrations.

The identification of reliable models for forecasting of PM2.5 concentrations is impor-
tant for several reasons. First, the information from such models can be used to reduce
the exposure of humans to air pollution (e.g., people can use face masks on days when the
expected exposure is high). Second, the models can be used to investigate the effects of
policy on the reduction in the level of air pollution (e.g., what is the impact of low-emission
zones on air pollution in cities?). Finally, the models provide insights into the variables that
have significant effects on the concentration of PM2.5.

Significance of PM2.5

Modelling and forecasting of air pollutant concentrations have been the focus of
previous research. The pollutants that were modelled in those studies include PM2.5 [9],
PM10 [16], and NO2 [7], among others. PM2.5 has received more attention due to the
link between its concentration and various health problems, such as heart conditions,
respiratory illnesses, and neurological disorders, among others [17,18]. Other studies have
established a positive relationship between exposure to PM2.5 and the need for hospital
visits [18,19]. Taken together, the concentration level of PM2.5 has an adverse effect on
human health and the costs of providing healthcare. Thus, the development of reliable tools
for forecasting of PM2.5 is vital for establishing effective strategies for reducing exposure
to it.

2. Methods
2.1. Study Area and Data

Lagos was the former administrative capital of Nigeria, and it remains the hub of
economic activities within the country. The population of the city keeps increasing, and it is
projected that it is approaching ‘megacity’ status [20]. High population density, economic
activities, and transportation generate large volumes of air pollutants, such as PM2.5 [21].
For instance, due to the shortfall in power supply, business owners spend a huge chunk
of their operating costs on the running of fossil-fuel-powered generators that generate
noise and air pollution [22]. Moreover, Zeng et al. [23] showed that the concentration of
PM2.5 is Lagos is higher than those recorded in Hong Kong. In the study presented in this
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paper, PM2.5 data collected over 15-min intervals over a 6-month period at a location at the
University of Lagos were used to assess the effectiveness of using contemporary techniques
for modelling and forecasting the concentration of PM2.5.

The concentration of PM2.5 was measured using the EarthSense Zephyr air quality
sensor; meteorological variables (temperature and relative humidity) were also quantified.
These data (PM2.5 concentration and the meteorological variables) were used to train the
univariate and multivariate models developed in this study. Subsequently, the trained
models were used to generate forecasts of PM2.5 concentration.

2.2. Modeling Techniques

As stated previously, seven methods were used to predict the PM2.5 concentration. A
regression-based method—i.e., autoregressive integrated moving average (ARIMA)—was
applied in this study because it has been extensively applied in previous research on air
pollution forecasting [24]. However, the ARIMA model does not have the capacity to
capture nonlinear relationships. Therefore, the predictive performance of machine learning
methods (such as support-vector machines, neural networks, and random forests, among
others) was compared with the ARIMA model. The nonlinear relationships between the
variables included in machine learning models are difficult to interpret. However, these
models can be interpreted through the use of sensitivity analysis (i.e., the improvement in
predictive accuracy through the inclusion or removal of certain variables).

ARIMA: ARIMA is a time-series modelling approach used for forecasting. The ARIMA
model has three elements, i.e., an autoregression model, a moving average model, and dif-
ferencing [25]. ARIMA models strive to capture information present in the autocorrelation
of the data and use it for modelling and forecasting purposes. The ARIMA model can be
mathematically expressed as:

y′t = c + y′t−1∅1 + . . . +∅py′t−p + θ1εt−1 + . . . + θqεt−q + εt (1)

where y′t represents the differenced time-series data for PM2.5 concentration, c is the con-
stant, and ε is the error term. The order of differencing of the time-series data is ‘d’. The
‘predictors’ on the right-hand side of Equation (1) include the lagged values of PM2.5 concen-
tration and lagged errors. The p, d, and q elements of the ARIMA model are automatically
determined using a variant of the Hyndman–Khandakar algorithm [26].

Exponential smoothing: This method was introduced in the late 1950s [27–29], and
has been applied to forecasting problems in several fields; it is an extension of the simple
moving average system in which past observations are weighted equally based on the
averages of a number of subsets of the full dataset; for the exponential smoothing method,
the weighting assigned to past events exponentially decreases over time. The formula for
the exponential smoothing can be expressed as:

yt+1 = Ft + α(yt − Ft) (2)

where yt+1 is the forecast of PM2.5 concentration at the next time period, Ft is the forecast
of PM2.5 concentration at time (t), yt is the actual value of PM2.5 concentration at time (t),
and α is a weight called the exponential smoothing constant (0 ≤ α ≤ 1).

Exponential smoothing has been used for modelling and forecasting of several prob-
lems, e.g., emergency department visits [30] and electricity consumption [31], among others.
However, the weights attached to these previous values decay exponentially with respect
to time [26]. Thus, the weights attached to recent observations (such as yt−1) are higher
than those of the older observations (such as yt−6).

Prophet model: This is one of the modelling techniques applied in the current study.
According to Hyndman and Athanasopoulos [25], the Prophet model is a nonlinear regres-
sion model that was introduced by Facebook [32]. The Prophet model can be expressed
in mathematical form as shown in Equation (3). This method works best with data that
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have ‘strong seasonality’. For example, this technique has been used for the forecasting of
groundwater levels [33] and variations in oil production [34].

yt = g(t) + s(t) + h(t) + εt (3)

where g(t) describes a piecewise linear trend, s(t) describes the various seasonal patterns,
h(t) captures the holiday effects, and εt is a white noise error term.

Neural network (NN): Neural networks are a modelling technique that is inspired
by nature. The neural network model mimics the human brain, and captures complex
nonlinear relationships between dependent and independent variables. Two types of neural
network models were used in this study: (1) neural network autoregression (NNAR), and
(2) a neural network model based on multiple variables. The NNAR model is similar to
the ARIMA model in terms of the variables included in the model. The NNAR model is a
neural network model with 3 layers, i.e., 1 input, 1 hidden, and 1 output. For instance, an
NNAR (9, 4) model is a neural network model that predicts yt using (yt−1, yt−2, . . . , yt−9)
as inputs and 4 nodes in the hidden layer. The number of lags and number of nodes to be
included are determined automatically as described in [25].

Several variables, including meteorological factors (see Table 1) and the PM2.5 con-
centration, are included in the second neural network model. The second type of neural
network model uses the information contained in previous values of the PM2.5 concentra-
tion and independent variables to predict future values of the PM2.5 concentration.

Table 1. Summary statistics of collected data from 1 December 2020 to 28 May 2021.

Variable Unit
Before Data Cleaning After Data Cleaning

Range Mean SD Range Mean SD

PM2.5 µg/m3 (1.73, 165.3) 22.4 11.9 (3.39, 65.96) 21.9 9.8

RH (13.1, 90.7) 66.7 14.3 (14.65, 89.4) 66.7 14.2

Temp ◦C (23.0, 43.0) 32.2 4.2 (24, 42.4) 32.2 4.1

Note: SD = standard deviation; RH = relative humidity; Temp = temperature.

Random forest (RF): Random forest is an ensemble learning method that generates
a large number of decision trees during the training process. The bootstrapping of the
training dataset ensures that each decision tree that forms part of the random forest is
unique. The prediction generated by the random forest model is an average of the output
of each of the decision trees (see Equation (4)). Random forests prevent overfitting of
the model to the training data. Reduced likelihood of overfitting is achieved through the
integration of trees of various sizes and the averaging of the results.

ρ =
1
N

n

∑
n=1

N (4)

where ρ is the random forest prediction, and N is the number of runs over the trees in the
random forest.

The forecast generated by the random forest model is the average of the outputs of
each decision tree.

Support-vector machine (SVM): The SVM was initially developed by Vladimir Vapnik
and his colleagues [35]. The main goal of the SVM algorithm is to identify an optimal
hyperplane (the formula for the hyperplane is presented in Equation (5)) that linearly
separates the collected data into two groups.

wTx + b = 0 (5)

where w is the weight vector, x is the input vector, and b is the bias.
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The SVM algorithm was initially used for solving classification problems; however, it
was extended with the adoption of the ε-insensitive loss function, and it can be applied to
regression tasks (i.e., prediction of numbers) [36]. The SVM model uses nonlinear mapping
to project input vectors in a higher dimensional space. The SVM model is able to always
converge to optimal weights, and this gives SVM an advantage over the neural network
model. In this study, the radial basis function (RBF) kernel was utilised, and the tuned
hyperparameters of the SVM model are γ and C.

Extreme gradient boosting (XGBoost): XGBoost is a relatively new machine learning
algorithm that is an ensemble of decision trees that utilise the gradient boosting framework.
The method was developed by Chen and Guestrin in 2016 [37]. The main intuition behind
the XGBoost model is that the ensemble combines the output of a large number of decision
trees to produce better predictions. XGBoost is an ensemble of gradient boosted decision
trees. Moreover, the gradient boosting technique, which is a method introduced by Fried-
man [38], builds an ensemble of models through an interactive process aimed at improving
accuracy—it initializes with a single model; subsequently, new models, which learn from
the errors of the previous model, are added to the ensemble to improve the accuracy of the
forecast. The predictions from the XGBoost model are computed using an additive strategy:

ŷ =
n

∑
n=1

fn(xi) (6)

where xi is the test sample, i is the number of samples, fn is the nth tree model, and n is
the number of all trees in the model.

2.3. Modeling Process

The proposed models were used to generate predictions of the average hourly con-
centrations of PM2.5. The data used to estimate the models were collected using the air
pollution sensor described in the previous section. To evaluate the relevance of the metro-
logical variables, two groups of models (i.e., with and without metrological variables) were
developed. The ARIMA model was used as the baseline model. The decision to apply
the ARIMA model was informed by its extensive application in previous studies on air
pollution forecasting [39]. The forecasting performances of the other modelling techniques
were compared with those of the ARIMA model. The modelling process was carried out
in 4 stages: (1) data cleaning and preparation, (2) fitting the data to the models, (3) using
the estimated model for forecasting, and (4) forecast evaluation. All of the models were
implemented using the R programming software [40] and several packages, including
modeltime, modeltime.ensemble, timetk, tidyverse [41,42], and tidymodels [43], among others.
This software and these packages provide a platform for the application of statistical and
machine learning models.

Data cleaning and preparation: The air pollution measuring device collected the PM2.5
concentration and meteorological data at 15-min intervals. These data were aggregated
and converted into hourly time-series data on PM2.5 concentration, temperature, and
relative humidity. As shown in previous research, the data cleaning process can have an
impact on the accuracy of forecasting [44]; thus, the linear interpolation approach was
used to replace the outliers that existed in the collected data. The time-series data on
PM2.5 concentration are presented in Figure 1. The descriptive statistics for the PM2.5
concentration and metrological data are presented in Table 1.

The size of the dataset has a significant impact on the reliability of forecasts generated
from models. To improve the accuracy of forecasting, the use of feature extraction methods
(such as principal component analysis), dummy variables, Fourier series, and featuring
engineering has been suggested in previous research [25,45,46]. Similarly, the outcome of
forecasting competitions has shown that the use of feature engineering (e.g., extracting
additional features out of the time data) improves the accuracy of forecasts. Therefore, in
the present study, the ‘modeltime’ package in the R programming software was used to create
calendar-related features that were added to the multivariate models (i.e., models that
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contain predictor and outcome variables). The variables incorporated into the multivariate
models, along with their justifications, are described and explained in the Results section of
this paper.
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2.4. Forecast Accuracy

PM2.5 concentration, relative humidity, and ambient temperature data covering the
period between 1 December 2020 and 28 May 2021 (4283 data points) were collected and
utilised for this study. The data were divided into two groups: training (4259 data points)
and test (24 data points). The models were estimated using the training dataset. Subse-
quently, the trained models were used to generate forecasts for the previous 24 h, i.e., model
validation. Adequate care was taken to ensure that there was no data leakage. To evaluate
the accuracy of the forecasts generated by the models, the actual test data were compared
with the forecast data.

Several metrics are usually used for evaluating the quality of the predictive accuracy of
forecast models; they are usually classified into scale-dependent, percentage-based, relative-
error-based, and relative measures. Hyndman and Koehler [47] identified the limitations of
these four groups of metrics. For instance, it was stated that the mean absolute percentage
error (MAPE) treats positive and negative errors in a different way [47]. Based on these
limitations, the mean absolute scaled error (MASE) was identified as a suitable method
for the evaluation of forecast accuracy. In the present study, MAE (mean absolute error),
MASE, and root-mean-square Error (RMSE) were adopted. The use of RMSE is attributed
to the extent of its usage in similar previous studies [48,49]. RMSE can be calculated as:

et = yt − ft (7)

where et is the forecast error at time t, yt represents the actual value of PM2.5 concentration
at time t, and ft denotes the forecast of yt.

RMSE =

√
1
n ∑n

i=1

(
e2

i
)

(8)

where n is the total number of values.
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MASE can be computed as follows [47]:

MASE =
MAE

MAEnaive
(9)

where:
MAE(meanabsoluteerror) =

1
n ∑n

i=1|ei|

and MAEnaive is the MAR for the naïve model.
In forecasting research, it is expected that complex/advanced modelling techniques

will generate better forecasts when compared with simple models, such as the naïve model.
If a complex model produces a poor forecast when compared to a simple model, then it
should be discarded [25]. If the value of MASE is greater than 1, this means that the model
produces a forecast that is worse than that of the naïve model. A lower value (i.e., a value
close to 0) of MASE indicates that the predictive accuracy of the model is better when
compared with the naïve model.

3. Results
3.1. Exploratory Data Analysis

Correlation and autocorrelation are appropriate tools for measuring the relationships
between variables and lagged values of time-series data, respectively. Correlation analysis
was used to examine the relationship between the PM2.5 concentration and the meteorolog-
ical variables. As suggested by Hyndman and Athanasopoulos [25], Pearson’s correlation
was used for the bivariate analysis. The correlation plots and coefficients are presented in
Figure 2. It was found that a weak negative correlation exists between PM2.5 concentration,
relative humidity, and temperature, with corresponding correlation coefficients of −0.107
and −0.048, respectively. In contrast, a strong negative correlation (−0.929) exists between
relative humidity and temperature. Overall, all variables were negatively correlated with
one another.
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The autocorrelation plot is presented in Figure 3. As can be seen from Figure 3, the
values of the autocorrelations for lags 24, 48, and 72 are higher than those for other lags.
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This observation can be attributed to the seasonal patterns present in the data. The peaks
tend to be spaced 24 h apart. Various models were trained with these lag combinations to
identify the appropriate one to be included in the multivariate models (for more details,
see Section 3.3).
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3.2. Univariate Models

Four univariate modelling techniques (i.e., ARIMA, exponential smoothing, Prophet,
and NNAR) were estimated. The trained models were used to generate 24-hour forecasts
of the PM2.5 concentration values. The forecasts from the univariate models are compared
with the actual concentration values of PM2.5 in Figure 4. Additionally, the predictive
performance metrics of the univariate models are summarised and presented in Table 2.
The MAE, MASE, and RMSE of the ARIMA model were 1.83, 0.83, and 2.3518, respectively.
Except for the NNAR model, all other univariate models outperformed the naïve model
(i.e., the MASE values were lower than 1). From Table 2, it is evident that the values of
MAE, MASE, and RMSE for the ARIMA model are lower when compared with those of
the other univariate models. This finding shows that the ARIMA model outperforms the
Prophet, exponential smoothing, and NNAR models when used for the forecasting of PM2.5
concentration levels.

3.3. Multivariate Models

Multivariate models provide insights into the relationships that exist between in-
dependent and dependent variables. Five techniques (Prophet, XGBoost, SVM, RF, and
neural network) were used to estimate various multivariate models. The factors considered
when selecting variables to be included in the multivariate models included (1) literature,
(2) availability of data, and (3) results from correlation analysis. The literature indicates
that meteorological variables, such as humidity, are useful for the prediction of future
concentration values of PM2.5 [16,45]. Based on the availability of data, correlation analysis,
and the literature, two meteorological variables (i.e., temperature and relative humidity)
were added to the multivariate models as input variables.
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concentration from the ARIMA model; ETS: predicted value of PM2.5 concentration from the expo-
nential smoothing model; Prophet: predicted value of PM2.5 concentration from the Prophet model;
NNETAR: predicted value of PM2.5 concentration from the NNAR model.

Table 2. Predictive performance of the univariate models.

S/N Model MAE MASE RMSE

1 ARIMA 1.82 0.83 2.3518

2 Prophet 1.96 0.89 2.4895

3 Exponential smoothing 2.08 0.95 2.4839

4 NNAR 2.29 1.04 2.7129

The autocorrelation plot (see Figure 3) shows that a seasonal pattern exists in the PM2.5
concentration data. To capture this trend, four variables were identified: the 24th lag of
PM2.5 concentration, and 24 h, 48 h, and 72 h moving averages of PM2.5 concentration. The
‘modeltime’ package in the R programming software was used to create additional calendar-
related features (see Table 3). The calendar-related features were based on the times at
which the air quality data were collected (e.g., the day of the month). Research shows that
calendar-related features are useful for the development of forecast models [40]. These
calendar-related features capture the hourly, daily, weekly, and monthly patterns present in
the PM2.5 concentration data. The independent variables added to the multivariate models
were (1) the meteorological variables, (2) lag (lags of the PM2.5 concentration and moving
averages) variables, and (3) calendar-related variables.

To identify the variables that have significant effects on the PM2.5 concentration,
various combinations of input variables were added to the multivariate models (see Table 4).
All in all, 25 multivariate models were estimated and used for the forecasting of the PM2.5
concentration values.
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Table 3. Calendar-related features created using ‘modeltime’.

Name Type Description

Index.num Numeric Time is converted into seconds (Base = 1970-01-01 00:00:00)

Month Categorical (01–12) Month of each air quality measurement (e.g., December = 12)

Month.lbl Dummy Month of the year for each air quality measurement

Day Categorical Day of each air quality measurement (13 December 2020 = 13)

Hour Categorical (0–23) Hour of each air quality measurement

Hour12 Categorical (0–11) Hour of the day on a 12 h scale

am.pm Categorical (1–2) Morning = 1 and Afternoon = 2

Wday Categorical (1–7) Day of the week (Sunday = 1, Monday = 2, . . . , Saturday = 7)

Wday.lbl Dummy Day of the week

Qday Categorical Day of the quarter

Yday Categorical (1–365) Day of the year

Mweek Categorical Week of the month

Week Categorical Week number of the year

Week2 Categorical The modulus for biweekly frequency

Week3 Categorical The modulus for triweekly frequency.

Week4 Categorical The modulus for quadweekly frequency

Mday7 Categorical (1, 2, . . . , 5) The integer division of day of the month by seven (e.g., the first
Saturday of the month has mday7 = 1

Source: Dancho, 2017.

Table 4. Variables included in the multivariate models.

S/N Input Variables Description of Models

1 Calendar-related features Prophet_time, XGBoost_time, SVM_time,
NN_time, RF_time

2 24th Lag of PM2.5, and 24 h, 48 h, and 72 h moving
averages of PM2.5 + calendar-related features Prophet_lag, XGBoost_lag, SVM_lag, NN_lag, RF_lag

3 Relative humidity + calendar-related
features + lag features Prophet_RH, XGBoost_RH, SVM_RH, NN_RH, RF_RH

4 Temperature + calendar-related features + lag features Prophet_Temp, XGBoost_Temp, SVM_Temp,
NN_Temp, RF_Temp

5 Relative humidity + temperature + calendar-related
features + lag features Prophet_All, XGBoost_All, SVM_All, NN_All, RF_All

The predictive performance metrics of the 25 multivariate models are summarised
and presented in Table 5. For the test period, the forecasts from the best five multivariate
models (in terms of predictive accuracy) were compared with the actual values of the PM2.5
concentration, as shown in Figure 5. From Table 5, it can be observed that the values of
MAE, MASE, and RMSE for the XGBoost_All model are the lowest when compared with
those of other multivariate models. The MAE, MASE, and RMSE for the XGBoost_All
model are 1.69, 0.77, and 2.3809, respectively. Comparing the univariate and multivariate
models, the values of MAE, MASE, and RMSE revealed that the XGBoost_All and RF_All
models generated forecasts of PM2.5 concentration that were more accurate than those of
the ARIMA model (see Tables 2 and 5). These findings suggest that variables (i.e., relative
humidity, temperature, time-related features, and lag features) included in the XGBoost_All
and RF_All models are good predictors of the concentration of PM2.5.
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Table 5. Predictive performance of the multivariate models.

Model_id Model Description MAE MASE RMSE

1 XGBoost_All 1.69 0.77 2.3809

2 RF_All 1.81 0.82 2.3730

3 RF_Temp 1.82 0.83 2.3582

4 RF_RH 1.83 0.83 2.4226

5 RF_Lag 2.02 0.92 2.4825

6 XGBoost_Lag 2.02 0.92 2.5920

7 XGBoost_Temp 2.10 0.96 2.5971

8 Prophet_Temp 2.16 0.98 2.6942

9 RF_Time 2.26 1.03 2.7664

10 Prophet_Time 2.30 1.04 2.9765

11 NN_Lag 2.31 1.05 2.7369

12 Prophet_All 2.34 1.06 2.8370

13 SVM_Lag 2.35 1.07 3.0027

14 SVM_Temp 2.45 1.11 3.1188

15 Prophet_RH 2.64 1.20 3.2143

16 Prophet_Lag 2.65 1.21 3.2254

17 SVM_Time 2.66 1.21 3.26243

18 XGBoost_RH 2.90 1.32 3.7129

19 SVM_RH 2.95 1.34 3.5400

20 SVM_All 2.95 1.34 3.5315

21 NN_RH 3.35 1.52 4.6193

22 NN_All 3.73 1.70 4.3048

23 XGBoost_Time 5.19 2.36 6.0694

24 NN_Temp 6.07 2.76 6.6457

25 NN_Time 7.53 3.42 8.0063

3.4. Ensemble Models

Ensemble methods utilize a combination of machine learning algorithms to produce
better forecasts. Previous research of forecasting problems has shown that ensembles
achieve better predictive performance when compared with standalone algorithms [45,50].
In this study, the top three models in terms of predictive performance were incorporated
into the ensemble model. The top three models were XGBoost_All, RF_All, and ARIMA
(see Tables 2 and 5). The three types of ensemble models were (1) average, (2) median,
and (3) weighted (weights were allocated based on predictive performance: XGBoost_All
(weight = 3), RF_All (weight = 2), and ARIMA (weight = 1)). The weights were assigned
based on the predictive performance of each model.

The predictive performance of the ensemble models, which is quantified through the
use of MAE, MASE, and RMSE, is shown in Table 6. A comparison of the forecasts from
the ensemble models and the actual concentration values of PM2.5 for the test period is
presented in Figure 6. It can be seen from the data in Table 6 that the performance metrics
(MAE, MASE, and RMSE) of the ensemble (weighted) model are the lowest. Overall, the
ensemble models outperform the univariate and multivariate models (see Tables 2, 5 and 6)
in terms of predictive performance. The ensemble model developed in this study is a
hybrid of the ‘best’ models (i.e., XGBoost_All, RF_All, and ARIMA), which could be the
reason for its improved performance. Interestingly, it was found that the ensemble models
developed in this study produced more accurate forecasts of PM2.5 concentration.
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4. Discussion

The overall goal of this study was to create reliable models for the forecasting of
PM2.5 concentration levels. The present study showed that the temperature and relative
humidity values are good predictors of the PM2.5 concentration. The inclusion of these me-
teorological variables improved the performance of multivariate models, i.e., XGBoost_All
and RF_All. One unanticipated finding was that the ARIMA model outperformed some
of the multivariate models, e.g., NN_All. In terms of predictive accuracy, the ensemble
models (XGBoost_All, RF_All, and ARIMA) outperformed standalone algorithms, such as
XGBoost. Taken together, this study showed that the availability of meteorological data is
vital for the development of reliable models for forecasting of PM2.5 concentrations. Fur-
thermore, the proposed hybrid model, XGBoost-RF-ARIMA, generates a reliable forecast of
PM2.5 concentrations.

Previous studies have made attempts to identify the ‘best’ set of predictors for PM2.5
concentration levels. The findings detailed in the present study are consistent with those
obtained in previous studies. For instance, studies have shown that temperature and
relative humidity have influences on the concentration of PM2.5 [12,37]. Moreover, a
previous study by Wang et al. [51] revealed that variations in the meteorological conditions
have significant influences on the concentration of PM2.5. Therefore, the availability of data
on meteorological factors plays a crucial role in the development of reliable models for
forecasting of PM2.5 concentrations.

As stated previously, it was somewhat surprising that the ARIMA model outperformed
some of the multivariate models. This finding is contrary to those of previous studies,
which have shown that nonlinear models (such as neural networks) tend to outperform
ARIMA models [50]. This finding could be attributed to several factors: First, this could be
due to the unavailability of data on other meteorological variables, such as wind speed; the
inclusion of these variables could improve the performance of multivariate models. Second,
the availability of data on other factors that affect the concentration of PM2.5 could aid in
the application of variable selection methods. Research has shown that the application of
variable selection methods improves the performance of prediction models [52,53]. The
ensemble models outperformed the standalone algorithms. This result is consistent with
those reported by Zhou et al. [50], who showed that ensemble models tend to generate
better forecasts. These findings suggest that hybrid models constitute useful tools for PM2.5
concentration forecasting.

5. Conclusions

Reliable forecast models can be useful tools for understanding the factors that can
affect the concentration of PM2.5. This information can be used to develop strategies and
policies for reducing the concentrations of air pollutants such as PM2.5. In the present
study, seven algorithms and three hybrid models were used for forecasting the hourly
concentrations of PM2.5. To evaluate the predictive performance of the proposed models, the
trained models were used to generate 24-hour-ahead forecasts of PM2.5 concentration based
on air quality data collected in Lagos, Nigeria. Subsequently, the predictive performance of
the models was compared. Two key findings emerged from this study: (1) meteorological
factors are useful for the forecasting of PM2.5 concentration, and (2) ensemble models
(e.g., XGBoost-RF-ARIMA) generate a more reliable forecast of PM2.5 concentration when
compared with standalone algorithms.

However, the following conclusions can also be drawn: (1) Metrological variables
cannot adequately forecast PM2.5 concentration at its peak and lowest periods. This finding
suggests the need for the collection of data on other factors (such as number of vehicles)
affecting the concentration of PM2.5. (2) Advancements in data science are providing new
tools that can be used for generating reliable forecasts of PM2.5 concentration. (3) Finally,
meteorological, calendar-based, and time-based variables were used for the development
of the multivariate forecast models; however, future studies can collect data on other
variables (e.g., number of vehicles, types of vehicles, and other sources of air pollutants).
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The additional data can then be used to update the multivariate models. Subsequently, the
updated models could be used as a laboratory to test the impacts of policies on air pollutant
concentrations. Taken together, this study provides evidence for the effectiveness of using
ensemble modelling techniques for air pollution forecasting.

The most important limitation of this study lies in the fact that meteorological factors
were the only variables used for model development. Other variables (i.e., calendar- and
time-based variables) were derived from the time component. Despite this limitation, the
developed models outperformed the naïve model, i.e., the value of MASE was less than 1.
This finding indicates that the developed models are reliable. These findings contribute to
knowledge in several ways: First, this study shows that metrological and time variables
are useful predictors of PM2.5 concentration. Second, the study indicates that ensemble
modelling techniques can be applied to solve air quality forecasting problems. More re-
search using data on additional variables could provide more evidence on the effectiveness
of ensemble models. The proposed models can be used by relevant stakeholders for the
forecasting of PM2.5 concentration levels.
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