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Abstract: Wire + arc additive manufacturing (WAAM) is a modern manufacturing process that has
opened new possibilities for rapid builds and reductions in material wastage. This paper explores
residual stress in WAAM Ti-6Al-4V walls built using three different deposition strategies: single
bead, parallel path, and oscillation path. The effect of interlayer hammer peening and interlayer
temperature was investigated for the single bead walls. We also examined the residual stress in
compact-tension (C(T)) coupons extracted from large builds (walls) with crack orientation either
parallel with or perpendicular to the build direction. This type of sample is often used for the
measurement of the fatigue crack growth rate. The contour method was used for experimental
determinations of residual stress. In addtion, residual stress in the C(T) coupons was estimated
by finite element (FE) analysis. A good agreement was achieved between the contour method and
FE analysis. The oscillation-path wall had the lowest residual stress values. For the single bead
walls built with various process conditions, residual stress was significantly reduced after removing
the substrate. A interlayer temperature of 110 ◦C resulted in much higher residual stress values
in the wall (both tensile and compressive) compared to the continuous build, with much higher
interlayer temperature.

Keywords: titanium alloy; additive manufacturing; residual stress; contour method; finite element
analysis

1. Introduction

Ti-6Al-4V is the most commonly used titanium alloy in the aerospace, energy, and
biomedical industries owing to its high fracture toughness, high strength-to-weight ratio,
and excellent fatigue and corrosion resistance [1,2]. Conventional manufacturing oper-
ations (such as forging, rolling, casting, followed by machining) are commonly used to
manufacture Ti-6Al-4V. However, these methods are expensive as they cause material
wastage and require special tools. The typical buy-to-fly ratio of Ti-6Al-4V with conven-
tional manufacturing is 12–25:1 [2,3]. Additive manufacturing (AM) offers an alternative to
conventional manufacturing processes, resulting in material savings, high build speeds,
the production of complex geometry and larger parts. However, some common drawbacks
associated with AM processes are porosity, surface roughness or waviness, residual stress,
and distortion [2].

Additive manufacturing can be divided into two major groups: powder bed fusion
(PBF) and directed energy deposition (DED). Each group comprises numerous manufac-
turing technologies. Wire and arc additive manufacturing (WAAM) [4] falls under the
Directed Energy Deposition classification [5]. WAAM offers cost savings compared to
powder bed fusion and other DED methods [6], and has been investigated for titanium,
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aluminum and steel alloys, nickel bronze [4,7], tantalum [8], NiTi alloy [9], and steel-copper
based alloy [10]. WAAM uses metal wire and an arc heat source to melt the wire and build
a part layer-by-layer. It enables the production of large components with higher deposition
speed [11], and offers greater material savings and deposition speed than powder-based
AM processes [12]. Typical deposition rates of 1–10 kg/h have been reported [6]. Gas
Metal Arc Welding (GMAW), Gas Tungsten Arc Welding (GTAW) and Plasma Arc Welding
(PAW) are the most commonly used methods in WAAM [7,13,14]. The buy-to-fly ratio is
about 3–12:1 [2,3]. WAAM has also found applications in the construction [15] and nuclear
power [12] industries.

In WAAM, various factors can affect the generation of residual stress such as power
source, deposition parameters and strategy, speed, layer thickness, pre-heating, the sub-
strate material and geometry. [12,16]. The local heating and uneven cooling during the
WAAM process induces large thermal gradients, resulting in residual stress and distor-
tion [2,17], which can in turn reduce the structural strength and cause the final geometrical
dimensions to be incorrect [17]. High levels of residual stress lead to solidification cracking,
which is more common in materials with a high thermal expansion coefficient, such as
aluminum alloys [6]. In WAAM, the heat dissipates through three forms: conduction
to previous deposited layers, substrate and clamps; convection to the shielding air; and
radiation to the atmosphere [12]. In as-deposited components, the peak tensile residual
stress has been seen at the interface of the substrate and the deposit. The thermal gradient is
at maximum when the first WAAM layers are deposited on the substrate, as a faster cooling
rate occurs due to dissipation of heat through conduction into the substrate [3,18]. The
conductive heat transfer, however, decreases with an increase in the deposit height [19]. The
thermal profile changes because of the change in heat dissipation as a result of the evolution
of the geometry during the build, and the cumulative effect of successive thermal cycles.
Moreover, in-wall the heat dissipation is mainly in the form of radiation and convection [6].

Residual stress can be mitigated by reducing the local heat accumulation during
WAAM [12]. To improve heat transfer in the WAAM process, different strategies have
been employed. Preheating the substrate [17,20], reducing power source energy [17], and
interlayer rolling [4] all help to reduce the residual stresses. A high interlayer temperature
can help to reduce the residual stress as well as the dwell time. It has been suggested that
the idle time may be increased as the build height increases to maintain same interlayer
temperature and a constant molten pool size [19]. Interlayer rolling usually requires cooling
of the build before its application, however it reduces the residual stress effectively [6].
Heat treatment, interlayer cold rolling [4,12], and ultrasonic impact treatment have been
shown to reduce the residual stress [7]. Shot and hammer peening are frequently used
in the welding industry. Adaptations are generally required to apply peening to WAAM
components [7]. Interlayer hammer peening was shown to generate high compressive
residual stress up to 1.2 mm depth below the peened surface for WAAM Ti-6Al-4V [21].

WAAM process planning consists of build orientation, path planning, process param-
eters, and desired geometry. For example, regarding build orientation, a deposit can be
built either vertically (most commonly used) or horizontally (suffers from greater thermal
gradients due to dissipation of heat to the substrate, and thus results in much higher resid-
ual stresses: also the substrate material has to be removed from the deposit all along the
build). The substrate used for deposition often undergoes distortion. However distortion
can be reduced by depositing the WAAM layers on both sides of the substrate, which
balances the amount of residual stress on both sides [4,22]. A thick substrate reduces
thermal deformations/distortions, however upon removal of the substrate there will be
stress relaxation which may further result in the part distortion.

Tensile residual stress can be reduced by optimizing the substrate design through
numerical simulations [18] e.g., by changing the substrate thickness, substrate area, making
use of hollow substrate, depositing on both sides of the substrate, or adjustment of the
clamping locations and clamping force. A change in stress distribution of WAAM Fe3Al was
noticed after cutting off the substrate and after heat treatment [23]. A suitable deposition



Metals 2022, 12, 253 3 of 20

strategy may also help to manage the development of residual stress. A uni-directional
path pattern is commonly used in WAAM. A number of path planning strategies exist for
WAAM e.g., raster, zigzag, etc. [12].

Various numerical techniques have been used to estimate residual stress generated
from the AM process in complex shape parts [20,24]. Long computational time and cost is of-
ten involved for numerical simulations of large WAAM parts. Coupled thermo-mechanical
transient analysis is generally desired for accurate simulation of the arc, heat and mass
transfer, and solidification [25]. In addition, residual stress has been characterized in
WAAM components using experimental techniques (both non-destructive and destruc-
tive). Ultrasonic testing was used to measure residual stresses during and after additive
manufacturing [14]. Neutron diffraction is frequently applied to estimate residual stress
in WAAM builds [23,26–28]. X-ray diffraction has also been used to determine surface
residual stresses, e.g., for WAAM aluminum alloy [29]. The contour method has been
employed to measure residual stresses in WAAM parts [28,30]: for example, axial and hoop
stress were measured in extracts from a circular WAAM steel build [31]. Tensile residual
stress up to 500 MPa was reported at the interface of deposits and substrates, in the case of
as-deposited WAAM Ti-6Al-4V [26]. This paper reports the residual stress measurement
and analysis performed on WAAM Ti-6Al-4V, investigating deposition strategies, the use of
interlayer peening, the effect of substrate removal, and the effect of coupon removal from
the main build. Residual stress was first investigated in large walls built by three different
deposition strategies: single bead, parallel path, and oscillation path. Residual stress was
also estimated in single bead walls with interlayer hammer peening or with a particular
interlayer temperature that was similar to the temperature value at interlayer peening. The
application of peening techniques to WAAM builds is relatively new. The contour method
was used in this study for the determination of residual stress, which is method based
on stress relaxation [32]. The contour method provides 2D stress distribution for a stress
component of interest that is perpendicular to the contour surface and is not affected by the
material microstructure. In addition to attainment of stresses within the thickness, the near
surface residual stresses in certain cases are also comparable to other techniques, such as
the X-ray diffraction (XRD) and hole drilling techniques, which measure the near-surface
residual stresses; e.g., XRD can analyze residual stress up to a few micrometers below the
sample surface. The coarse grain size and texture in WAAM Ti64 materials generally gives
low quality results in XRD. Another source of error can be the wavy surface in WAAM.
The sampled area should be sufficiently flat for the XRD and hole drilling methods. The
incremental hole drilling method can measure stresses up to 1.2 mm in depth.

Residual stress in small compact-tension (C(T)) coupons extracted from the walls was
evaluated using the contour method and by finite element analysis. This evaluation was
necessary for fatigue crack growth rate analysis. Based on the fracture mechanics approach,
the crack tip stress intensity factor should take account of the contribution from residual
stresses [33,34].

2. Materials and Methods
2.1. Materials and Specimens

Figure 1 shows a schematic of the three deposition strategies studied in this paper.
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and for this purpose the wall bottom location was selected, where the residual stress is 
much higher. Two types of C(T) coupons were investigated: one for introducing a crack 
across the WAAM layers; and the other for cracking parallel to the WAAM layers. Figure 
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Figure 1. Deposition strategies for WAAM Ti-6Al-4V walls: (a) single bead, (b) parallel path,
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Single bead is generally used to build thin walls and parallel and oscillation paths for
thick walls. The first batch of samples were built with a continuous deposition approach.
The parallel-path wall was composed of four 50% overlapped single beads. The oscillation
path walls were deposited on opposite sides of the substrate (Figure 2a). The thickness of the
single bead, parallel path and oscillation path walls were approximately 10, 25 and 20 mm,
respectively. Walls were removed from the substrate before residual stress measurement.
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The second batch of samples consisted of single bead walls only, for investigation
of the effects of interlayer tempeature, and interlayer hammer peening (ILP) with and
without the substrate. The length of the walls was about 300 mm. The average interlayer
temperature of these walls was 110 ◦C. The interlayer hammer peening was begun after the
build cooled to 140 ◦C. The thickness of the ILP single bead walls was about 7–8 mm. All
walls were removed from the substrate before residual stress measurement, except for one
ILP wall that was measured with the substrate. The thickness of the substrate was 10 mm.
The deposition parameters for the walls are shown in Table 1. Interlayer hammer peening
was performed on each deposited layer along the length of the wall, leaving a distance of
15 mm from the wall-ends unpeened. The interlayer hammer peening parameters for the
single-bead walls are shown in Table 2.

Table 1. Process parameters for the WAAM walls studied in this paper.

Wire Diameter
(mm)

Work Piece
Distance (mm) Current (A) Wire Feed Rate

(m/min)
Torch Travel

Speed (mm/s)
Plasma Gas

Flow (L/min)
Shielding Gas
Flow (L/min)

1.2 8 145 2.4 5 0.8 8

Table 2. Interlayer hammer peening parameters for single bead WAAM walls.

Tool Impact Energy (J) Insert Radius (mm) Step Size (mm) Peening Speed (mm/min)

Atlas Copco
(Model RRH06P) 6 10 4 150

Compact-tension (C(T)) coupons of 5 mm thickness were extracted from all three build
strategies (single bead, parallel path, and oscillation path), and also from the ILP single
bead wall. All C(T) coupons were extracted from the mid-thickness of the walls near the
wall bottom location using wire electro-discharge machining. The coupons for fatigue crack
growth tests were extracted from both the top and bottom locations of a wall. However,
this paper has only focused on retained residual stresses in these small coupons and for
this purpose the wall bottom location was selected, where the residual stress is much
higher. Two types of C(T) coupons were investigated: one for introducing a crack across
the WAAM layers; and the other for cracking parallel to the WAAM layers. Figure 2a,b
show the as-received walls: in Figure 2a, the oscillation path deposited on both sides of
the substrate is shown; and in Figure 2b the interlayer-hammer-peened single-bead wall
(measured with the substrate) is shown. Figure 2c shows a sketch depicting the contour
cut location of the walls and the extraction locations for the small blocks and the C(T)
coupons. Figure 2d depicts contour cut locations for small blocks and C(T) coupons, as
well as cut/crack orientations.

The measured perimeter of various walls (single bead, parallel path, and oscillation
path) at the mid-length is illustrated in Figure 3.

To examine cutting errors associated with wire electro-discharge machining for the
contour method, the substrate material (a wrought Ti-6Al-4V) used for the deposition
of WAAM walls was measured. The substrate plate was measured in as-received and
stress-relieved conditions. Residual stresses were first evaluated in the walls with the
contour cut position shown in Figure 2c. Afterwards, the compact-tension (C(T)) coupons
were extracted from the walls (oscillation path, parallel path, single bead, and ILP single
bead) to investigate the residual stress levels. The coupons were extracted after the contour
cut of the wall and near the cut location, as shown in Figure 2c,d. The extraction of C(T)
coupons from the walls followed a similar procedure as the single bead, parallel path and
oscillation path walls. Besides the C(T) coupons, two small blocks were machined from
the oscillation path wall: one for contour cuts across the WAAM layers, and another for
cuts parallel to the WAAM layers. These blocks were machined from a similar location
of wall as for the C(T) coupons in Figure 2c,d. The size of the blocks prior to contour cut
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was the same as the C(T) samples. The purpose of this measurement was to exclude the
notch effect on measured residual stresses in the C(T) samples, because the notch causes
redistribution of residual stress and local stress concentration. The contour measurement
was expected to give the true residual stress status retained in the C(T) samples.
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2.2. Methods

The contour method uses a wire electrical discharge machine (WEDM) to cut the
component to be measured into two halves. The steps involved in the contour method are:

• Cutting, for which a single flat cut is desired through the sample to relax the stress
component normal to the cut surface.

• Following cutting, the cut surfaces are measured with a coordinate measuring ma-
chine (CMM).

• Data analysis is performed in which the measured contours are averaged and smoothed
with a curve fitting routine.

• Finally, the reverse of the measured contour is applied as displacement boundary
conditions to a 3D finite-element model of one of the cut surfaces. To avoid rigid
body motion, constraints are applied to the FE model, and a linear-elastic analysis is
performed to obtain the original residual stress present in the sample [32].

For contour method measurements, the walls and C(T) samples were cut with a Fanuc
Robocut α-C600i wire electrical discharge machine, Fanuc corporation, Yamanashi, Japan.
A brass wire of 0.25 mm diameter was used. The samples were symmetrically clamped.
Machine cutting parameters such as spark duration ON time, voltage, current, spark dura-
tion OFF time, wire tension, nozzle injection pressure and feed rate were optimized (based
on trials) for each sample [35]. The chosen machine settings gave the best possible surface
finish. For all samples, it was ensured that the cutting speed remained below 1 mm/min.
CT coupons were extracted with WEDM using the CAD drawing and machine standard
cutting parameters. All samples were cut at their mid-length to obtain the longitudinal
stress component (the LD component as in Figure 2c). The surface displacement profiles
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of both cut halves of each sample were measured with a Zeiss Contura g2 coordinate
measuring machine (CMM). A touch probe of 3 mm diameter was used. The distance
between the measurement points for both in-plane directions of the sample cut surface and
from the perimeter were set as 0.5 mm (for walls and substrate) and 0.1 mm (for the C(T)
coupons), respectively. The surface displacement data of all samples were post-processed
with Matlab analysis (MATLAB 2020a, MathWorks, Nattick, MA, USA) routines for data
aligning, averaging, cleaning and smoothing with cubic splines [36]. A cubic spline smooth-
ing with suitable knot spacing was used for each sample. For FE analysis, one cut half of
all samples was modelled. A brick element having 8 nodes in Abaqus software was used,
Abaqus 6.14-1, Dassault Systemes, Waltham, MA, USA. The distance between the adjacent
FE nodes on the cut surface was set as 0.5 mm or less. The smoothed displacements were
then applied to the FE model as boundary conditions, constraints were applied to avoid
rigid body motion, and finally linear-elastic analysis was performed to obtain the original
stresses present in sample before the cutting. The following material properties were used:
modulus of elasticity E = 113.8 GPa, Poisson’s ratio v = 0.342.

A 2D finite-element analysis (FEA) of both C(T) coupon types (i.e., crack across the
WAAM layers and crack parallel to the WAAM layers) was performed to obtain residual
stresses along the straight cut/crack path. The FEA was based on the contour method
measurement of the WAAM walls (i.e., single bead, parallel path, and oscillation path), as
investigated and reported previously [37]. The stress distribution changes due to coupon
extraction as well as crack growth, and can be modelled by FEM [34,37–39]. For FEA, a 2D
model of the C(T) coupons was constructed.

From contour measurement of WAAM walls, the stresses over a 5 mm distance around
the mid thickness of the walls were averaged, and this process proceeded along the walls’
height. These averaged stresses were assumed to be uniform along the length of the walls.
The averaged stresses (corresponding to cut locations of the C(T) coupons) were then
applied as initial stresses to an FE model of the C(T) coupons. Constraints were applied
at appropriate corner nodes to avoid rigid body motion. Linear-elastic FE analysis was
performed to obtain the residual stresses in the C(T) coupons. The FE analysis was executed
using Ansys 16.1 software with Plane182 elements, Ansys, Canonsburg, PA, USA and the
mesh size was set as 0.5 mm. Similar E and v values as used for the contour measurement
were employed.

3. Results and Discussion
3.1. Calibration of Contour Cutting Parameters

To estimate errors in the wire electro-discharge machining cutting associated with
the chosen cutting parameters and conditions, contour cuts were performed firstly on a
reference plate that was the same as the substrate plate used for depositing the WAAM
layers. The reference plate is a wrought Ti-6Al-4V, which was measured in the as-received
condition and also a stress-relieved condition following heat treatment at 600 ◦C in a
furnace for 3 h, after which it was expected to have minimal residual stress. Figure 4 shows
the through-thickness averaged residual stress. Very little residual stress (±4 MPa) was
present after the stress relief operation. This confirmed that the chosen set of WEDM cutting
parameters and conditions had minimal cutting errors for the contour method used in
this study.

3.2. Residual Stresses in Single Bead Walls with Various Build Conditions

Single bead walls of the following conditions were studied: (a) interlayer peened
(ILP) with substrate plate; (b) interlayer peened (ILP) after removing the substrate plate;
(c) as-deposited (unpeened) with average interlayer temperature 110 ◦C after removing
the substrate; (d) unpeened, built by continuous deposition (with much higher interlayer
temperature), after removing the substrate. The contour method results of residual stress
are shown in Figure 5.
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Figure 5. Residual stress results of single bead walls of different build conditions: (a–d) stress maps,
(e) stress profiles at mid-thickness from the bottom to top of the walls.

The ILP wall with substrate showed the highest tensile residual stress, approaching
600 MPa at the intersection of the wall and substrate. From the bottom towards the top of
the wall, the tensile stress decreased gradually, and in the mid-height, the stress state was
compressive. Low tensile stress was present in the upper part of the wall, and at the very
top of the ILP wall with the substrate, the stresses were highly compressive (more than
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−200 MPa). Within the substrate, compressive residual stresses were seen away from the
deposit, and tensile residual stress of a magnitude greater than 100 MPa was found at the
bottom of the substrate.

In the single-bead build, in the first few deposited layers, stresses arose due to restraint
from the clamped baseplate, similar to what occurs in welding processes. High tensile
stress arises at the junction of the baseplate with the build layers, and compressive residual
stress appears away from the deposited bead to balance the tensile peak stress. In the
second stage of the build process, when the build height reaches a certain distance, restraint
stresses do not occur, as there is no restraint from the substrate and clamps. However, large
shrikage stresses appear. This two-stage development results in two regions of residual
stress: (i) high tensile residual stress in the deposition (longitudinal) directon near the
baseplate due to plastic strain mismatch (deposition and restraint); (ii) compressive stress
in the middle of the build height and tensile stress near the top of the deposit due to elastic
strain mismatch (shrinkage).

The ILP wall, after removing the baseplate, showed significant stress relaxation, partic-
ularly near the wall bottom location (i.e., the start of the deposit), as compared to the wall
top location. Stresses were largely relaxed after removing the substrate, but part of tensile
stress near the wall-substrate interface was retained, around 200 MPa, which was 450 MPa
before the substrate removal. At the mid-point of the wall build height, the compressive
residual stress was of similar magnitude for both ILP walls. It was noticed that removal of
substrate reduced residual stress in the WAAM build [18]. The substrate also developed
tensile residual stress at its bottom as well as the top surface away from the deposit. The
single bead unpeened WAAM wall built with an averaged interlayer temperature of 110 ◦C
resulted in much higher residual stress compared to the other unpeened and peened single
bead walls. A high interlayer temperature not only decreases dwell/idle time but also the
residual stress [6].

The effect of interlayer temperature on residual stress was studied by comparing
the two unpeened conditons. The 110 ◦C interlayer temperature wall showed higher
tensile residual stress, approaching 500 MPa at the wall bottom location, compared to
the continuous deposited wall. The higher interlayer temperature was found to have
a beneficial effect on the generation of low residual stress as it reduced any thermal
mismatches [40]. High tensile residual stress was not only present at the wall bottom
location but also at the wall top location. The continuous deposit wall showed the lowest
residual stress along the build height. The ILP wall without substrate showed significantly
less tensile residual stresses at the wall bottom and top locations compared to the unpeened
single bead wall prepared with similar interlayer temperature. Interlayer hammering
peening is known to generate compressive residual stresses [21].

The residual stress profiles at mid-thickness of all single bead walls along the build
height are compared in Figure 5b. The stress distribution was similar to that discussed
above. The unpeened wall with average 110 ◦C interlayer temperature had the highest
tensile residual stress among the walls with the substrate plate removed. The ILP wall
without substrate showed the lowest tensile residual stress, almost similar to the as-built
(continuous deposit). The ILP wall with substrate also showed higher compressive residual
stress (more than −200 MPa) at the wall top location than the ILP wall after substrate
removal. The top layer of the ILP wall after substrate removal was not peened, contrary to
the other ILP wall with the substrate, which resulted in higher compressive residual stress
in the case of the ILP wall with the substrate still attached.

3.3. Residual Stresses in the WAAM Walls

The contour method results presented in Figure 6 show residual stress distribution
along the build height for continuous deposits using single bead, parallel path, and oscilla-
tion path strategies. After removing the substrate plate, tensile stress was present at the
bottom and top of the walls, with compressive stress around the mid-height. The oscillation
path wall showed the lowest values of residual stress, and the parallel path wall showed
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the highest values, with the peak tensile stress approaching 280 MPa at the top of the wall.
The single bead wall also showed high tensile stress, approaching 185 MPa at the wall
bottom location (near the substrate plate).
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and oscillation path (25 mm × 152 mm) walls: (a–c) stress maps, (d) stress profiles (value at the
mid-thickness).

All WAAM walls showed high tensile residual stress at the wall bottom location (i.e.,
the intersection of wall and substrate). The parallel path WAAM wall showed the highest
residual stresses: the parallel path wall was composed of three single passes grouped
together side by side (horizontally), and the single bead wall showed higher residual stress
than the oscillation path wall. The parallel path build had lateral horizintal restriant due
to four passes being deposited side by side, hence it showed higher tensile residual stress.
The oscillation path wall was one of the two walls deposited on each side of the substrate
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(Figure 2a). The low residual stress in the case of the oscillation path wall may has been
caused by the presence of less steep thermal gradients.

3.4. Residual Stress in Small Blocks Extracted from the Oscillation Path

After performing a contour cut of the wall, two small rectangular blocks were extracted
from the bottom of the oscillation path wall (as shown in Figure 2c,d). Figure 7 shows the
residual stresses obtained with the contour method that were retained in the small blocks
after being extracted from the wall, with line profiles presented in Figure 7b. The block
with the contour cut across the build layers indicates residual stress along the layers, and
the block with contour cut parallel to build layers indicates residual stress transverse to the
layers. Both blocks showed tensile stress near the sample surfaces with maximum stress
values of 30 to 50 MPa, and compressive stress in the bulk material at the middle section
with stress values of −10 to −25 MPa. In summary, tensile residual stress in the direction
transverse to the build layers was higher (maximum 50 MPa) than the other direction.
Residual stress in these small test coupons was very low for the high strength titanium alloy.
The maximum compressive residual stress (−25 MPa) was in the transverse direction. The
longitudinal direction (welding direction) had negligible compressive stress (−10 MPa).

3.5. Residual Stresses in Compact-Tension Coupons (Single Bead, Parallel Path and
Oscillation Path)

The compact-tension (C(T)) samples were extracted from the bottom of the walls with
various build conditions (single bead continuous deposit and ILP single bead, parallel path,
and oscillation path). One sample was oriented for crack growth across the WAAM layers
and the other for crack growth parallel to the WAAM layers. The contour results of residual
stress are shown in Figure 8.

The following observations can be made:

1. The peak tensile residual stress was at the notch root with lower tensile stress at the
back face of the sample; compressive residual stress was in the middle of the coupon.
The coupon with crack growth parallel to layers showed higher tensile residual stress
at the notch root than the other crack orientation. Away from the notch root, the
stress values were comparable to those in the small block samples that had the same
dimensions, but without the notch. Therefore, the peak stress at the notch root was
caused by the notch stress concentration: i.e., residual stress redistribution after the
notch cutting. The difference in stress values between the two crack orientations was
also consistent with the stress value difference in the small block samples.

2. C(T) coupons extracted from the oscillation path wall had the lowest tensile residual
stress at the notch root.

3. The unpeened single bead coupon showed higher notch root stress (150 MPa) for the
orientation with crack growth parallel to the layers.

4. The ILP single bead coupons showed a stress distribution along the coupon length
very similar to that of the coupons extracted from the other walls. However, the stress
sign at the mid-length and through the thickness was reversed completely compared
to that of the unpeened coupons: i.e., low tensile residual stress was seen at the
center location and comparatively high compressive residual stress was seen near the
surface on both sides, a contrast to the small blocks presented in Section 3.4 that were
produced without peening.
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Figure 8. Residual stress results from the compact-tension (C(T)) coupons: (a–d) crack across the
layers, (e–h) crack parallel to layers; in various build conditions as indicated.
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The through-thickness averaged residual stress profiles of all C(T) coupons (extracted
from the oscillation path, parallel path, single bead, and ILP single bead walls) are compared
in Figure 9. The unpeened single bead specimen showed the highest tensile residual stress
at the notch root (about 110 MPa for the crack growth direction parallel to the build layers
and 45 MPa for crack growth across the layers). The distance from the notch root where the
tensile residual stress acts was about 5 mm for the coupon oriented for crack growth across
the layers, and 7 mm for crack growth parallel to the layers. Lower tensile residual stress at
the notch root was found in the case of coupons extracted from parallel pass and oscillation
path walls (about 15 MPa for the crack growth direction across the layers and 45 MPa for
the crack growth direction parallel to the layers). The C(T) coupon extracted from the
parallel pass build wall showed different stress distribution along the crack path compared
to other coupons for the same crack orientation. The ILP single bead coupons showed peak
tensile residual stress at the notch root of 80 MPa for the crack growth direction parallel to
the layers and 53 MPa for the crack growth direction across the layers. The tensile stress
was present within the distance of 5 mm from the notch root.
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Figure 9. Through-thickness averaged residual stress profiles from the compact-tension (C(T))
coupons: (a) crack across the layers, (b) crack parallel to layers.

Since the C(T) coupons were extracted from the wall mid-thickness, residual stress
magnitude and distribution also depended on the stress state at and around the mid-
thickness of the walls. The notch cutting in the coupons caused local stress concentration,
resulting in peak tensile stress at the notch root [41]. The C(T) coupons with crack paths
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across and parallel to WAAM layers extracted from the single-bead build were tested for
fatigue crack growth life previously [42].

3.6. Finite Element Analysis of C(T) Coupons

Residual stress in the C(T) samples was studied by two-dimensional (2D) finite element
analysis (FEA). The model was based on the measured residual stress data in the larger walls
obtained from the contour method, as presented in Section 2.2, and using the technique
of removing those elements in the wall model that were not part of the C(T) sample.
FEA was performed for C(T) coupons extracted from the single bead, parallel path, and
oscillation path walls. The numerical results of two types of C(T) coupons (crack across or
parallel to the build layers) are shown in Figures 10 and 11. Along the crack path, the FE
model showed similar stress distribution and stress values to the results obtained from the
contour method.
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Figure 10. FE stress maps of CT coupons with crack across the build layers: (a) oscillation path (60 
mm × 62.5 mm), (b) parallel path (76 mm × 80 mm), (c) single bead (76 mm × 80 mm), (d) sketch of 
the crack orientation (unit: MPa). 
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Figure 10. FE stress maps of CT coupons with crack across the build layers: (a) oscillation path
(60 mm × 62.5 mm), (b) parallel path (76 mm × 80 mm), (c) single bead (76 mm × 80 mm), (d) sketch
of the crack orientation (unit: MPa).

The residual stress line profiles obtained from FEA along the crack path for both C(T)
coupon types (i.e., with the crack growth direction across the layers and with the crack
growth direction parallel to the layers) are compared with the contour method results in
Figure 12, where the contour method results are the through-thickness averaged stress
values. A good agreement was found between the FEA and the contour method results. It
should be mentioned here that the residual stress values were low in the compact-tension
coupons studied here, especially for this high-strength titanium alloy.
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Figure 11. FE stress maps of CT coupons with cracks parallel to the build layers: (a) oscillation path 
(62.5 mm × 62 mm), (b) parallel path (80 mm × 76 mm), (c) single bead (80 mm × 76 mm), (d) sketch 
of the crack orientation (unit: MPa). 
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Figure 11. FE stress maps of CT coupons with cracks parallel to the build layers: (a) oscillation path
(62.5 mm × 62 mm), (b) parallel path (80 mm × 76 mm), (c) single bead (80 mm × 76 mm), (d) sketch
of the crack orientation (unit: MPa).
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Figure 12. Comparison of residual stress profiles obtained from FEA and contour method for
compact-tension (C(T)) specimens; build method and crack orientation are labled in the figures (a–f).

4. Conclusions

Residual stress was estimated in WAAM Ti-6Al-4V walls deposited with three build
strategies: single bead, parallel path, and oscillation path. Single bead walls were further
investigated for the effects of interlayer hammer peening and changes in interlayer temper-
ature. Compact-tension (C(T)) coupons extracted from the walls of the three different build
methods were examined for the presence and effect of residual stress on two different crack
growth orientations. FE analysis of residual stress in the C(T) coupons was performed
based on the measurements of the large walls. The following conclusions were drawn from
this study:

• After removing the substrate plate, the oscillation path wall showed the lowest tensile
residual stress (~100 MPa), and the parallel path wall showed the highest tensile
residual stress (~200 MPa). Peak tensile residual stress was found near the wall bottom
(where the substrate plate was) for the single bead and oscillation path walls, but the
parallel path wall peak tensile stress was at both ends. Compressive residual stress
was found in the mid-height of the wall for all cases.

• For the interlayer peened (ILP) single bead walls, the wall with the substrate plate
showed higher tensile residual stress (~600 MPa) at the intersection of the wall and
the substrate compared to when the wall was removed from the substrate. The wall
with substrate also showed higher compressive residual stress (over 200 MPa) at the
wall top location.

• In the unpeened condition, the single bead wall built with average interlayer tem-
perature 110 ◦C resulted in much higher tensile residual stress (~500 MPa) at the
wall-substrate intersection, and more compressive residual stress (over 200 MPa) at
the wall mid-height, compared to the continuous built wall. Interlayer hammer peen-
ing reduced tensile residual stress by a factor of 1.5 compared to the unpeened wall
(without substrate) at the average interlayer temperature 110 ◦C.
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• In all compact-tension (C(T)) coupons, peak tensile residual stress was present at the
notch root and compressive residual stress wsa present in the middle location. Away
from the notch root, residual stress was very low.

• The C(T) coupons built by the oscillation method showed the lowest tensile residual
stress at the notch root, ~15 to 45 MPa, while the single bead samples showed the
highest tensile residual stress at the notch root, ~45 to 110 MPa. Coupons with the
starter crack parallel to the build layers had higher tensile residual stress than coupons
with the starter crack across the layers. C(T) coupons extracted from the interlayer
peened (ILP) single bead wall showed similar residual stress as C(T) coupons extracted
from three different deposition strategies without ILP, because the residual stresses
retained in these small coupons were very low.

• In C(T) coupons, the measured residual stresses with the contour method agreed well
with finite element analysis for both crack orientations.
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