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ARTICLE OPEN

Restoring circadian gene profiles in clock networks
using synthetic feedback control
Mathias Foo 1,4, Ozgur E. Akman2 and Declan G. Bates 3✉

The circadian system—an organism’s built-in biological clock—is responsible for orchestrating biological processes to adapt to
diurnal and seasonal variations. Perturbations to the circadian system (e.g., pathogen attack, sudden environmental change) often
result in pathophysiological responses (e.g., jetlag in humans, stunted growth in plants, etc.) In view of this, synthetic biologists are
progressively adapting the idea of employing synthetic feedback control circuits to alleviate the effects of perturbations on
circadian systems. To facilitate the design of such controllers, suitable models are required. Here, we extend our recently developed
model for the plant circadian clock—termed the extended S-System model—to model circadian systems across different kingdoms
of life. We then use this modeling strategy to develop a design framework, based on an antithetic integral feedback (AIF) controller,
to restore a gene’s circadian profile when it is subject to loss-of-function due to external perturbations. The use of the AIF controller
is motivated by its recent successful experimental implementation. Our findings provide circadian biologists with a systematic and
general modeling and design approach for implementing synthetic feedback control of circadian systems.
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INTRODUCTION
The daily routines of most living creatures are governed by their
built-in biological clock, called the circadian system1. This
biological clock oscillates in a quasi-sinusoidal manner with a
period close to 24 h, which enables the anticipation and
coordination of biological processes cued by diurnal environ-
mental changes to happen at the most favorable time of the day.
Some examples of circadian-controlled processes across different
kingdoms of life include sleep/wake cycles in mammals, spore
formation and release in fungi, leaf movement in plants, pupal
eclosion in insects, and valve activity in bivalves (see e.g.,2–6), all of
which are important biological functions necessary for organisms
to function properly. Furthermore, many studies (see e.g.,7–11)
have revealed a range of pathophysiological conditions associated
with the disruption of the circadian rhythm (e.g., poor metabolism,
psychiatric disorders, deterioration of the immune system),
thereby suggesting the importance of keeping the circadian clock
in a good operating condition. The general significance of
circadian systems in biology is evident from the award of the
2017 Nobel Prize in Physiology or Medicine to the pioneers of
circadian research12,13.
At the molecular level, the circadian rhythm is primarily

generated through gene-protein feedback loops involving tran-
scription and translation14, as well as non-transcriptional mechan-
isms—e.g., involving calcium15 and sucrose16 regulation. In higher
organisms (e.g., mammals and plants), circadian rhythms are
orchestrated by complex gene regulatory networks involving
multiple clock genes. In order to gain mechanistic insights into
these networks, extensive work has been undertaken by
computational biologists to develop comprehensive and accurate
mathematical models. These models have shown their usefulness
in, for example, elucidating the effects of disruption to the
plant circadian system (e.g., to plant defense17,18 and plant

development19) as well as revealing the core genetic components
responsible for generating oscillations in plants (e.g.,20).
From the perspective of synthetic biology, a disruption to the

circadian system through transcription and translation mechan-
isms can be potentially addressed through the use of appropriate
synthetic biomolecular circuits, such as those implementing
feedback control. As mitigating the effects of perturbations to a
system by means of feedback is an established subject of study for
control engineers, synthetic biologists have started exploring the
use of controller design principles to develop synthetic feedback
control circuits that can be deployed to restore a disrupted natural
system (see e.g.,21–23 and references therein).
To facilitate the systematic and robust design of a synthetic

feedback control circuit, an accurate model describing the system
of interest is essential. In the case of circadian systems, the most
common approach used to describe transcription and translation
mechanisms is Michaelis–Menten modeling with Hill-type non-
linearities (see e.g.,24–29). Despite the prevalence of this modeling
framework in describing circadian systems, our previous work30

(see also Supplementary Methods) showed that when attempting
to estimate Michaelis–Menten kinetic constants from temporal
data, the estimated values are found to be inconsistent—i.e.,
markedly different values of the kinetic constants can reproduce
the same temporal data. From the point of view of feedback
control design, consistent parameter estimates are critical, since
tuning of the controller design parameters for optimal perfor-
mance relies heavily on these estimates. In the same work30, we
found that a power law-based model, termed the extended S-
System, does not suffer from inconsistent estimates, thereby
making this modeling framework suitable for control design. In
ref. 31, we show that this extended S-System modeling framework
has comparable accuracy to equivalent Michaelis–Menten for-
mulations in describing the plant circadian system, but with a
much simpler mathematical structure.
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Here, we generalize the extended S-System modeling frame-
work to other circadian systems—namely mammals, fungi, and
insects—and show how this modeling approach can be used to
facilitate the design of antithetic integral feedback (AIF) con-
trollers32 to restore a gene’s circadian profile when it is subject to
loss-of-function due to external perturbations. The AIF controller is
chosen in this study due to its recent successful experimental
implementation33, a result that highlights its great potential for
application to circadian clocks.
The application of control theory to circadian systems is not

new (see e.g.,34–38). However, previous works typically focused on
controlling the external light sources to readjust the phase of the
circadian rhythms of plant or mammals that have been altered
due to perturbations. These control actions are thus exerted
externally (via light) and not at the molecular level. In contrast, the
AIF controller considered here exerts its control action at the
molecular level. Our analysis of the properties of this controller
provides systematic design guidelines that should be useful to
circadian biologists attempting to implement synthetic control of
circadian systems.
The main contributions of this study are as follows:

● Applying the extended S-System modeling framework to non-
plant circadian clocks.

● Demonstrating the applicability of the extended S-System
formalism for AIF controller design.

● Providing a systematic design framework for AIF controllers in
the context of circadian systems, together with a discussion of
the practical implementation of the framework and some
directions for future works.

RESULTS
Extended S-System models for circadian systems
Figure 1 shows the comparison for all models between the
extended S-System and Michaelis–Menten formulations, for the
simulation of a representative gene component in each case (see
also Supplementary Figs. 2–6 for the full comparisons). For the two
plant clock models—JL2005 and JD2016—we see that the
extended S-System models replicate the dynamics of the original
Michaelis–Menten ones. Note that the comparison for JL2005 was
also presented in our previous work31. The inclusion of an
additional plant clock model in this study (JD2016) is principally
due to this model including a downstream phenotype that we are
interested in manipulating using the AIF controller. As shown in
Fig. 1c–e and Supplementary Figs. 4–6, the extended S-System
formulations of the mammalian, fungal, and insect circadian clocks
are also able to produce similar behaviors to their
Michaelis–Menten counterparts. These results confirm the capa-
city of the extended S-System framework to model circadian
systems, beyond those of the plant clock considered previously.
The extended S-System model equations for all the circadian
clocks considered here can be found in Supplementary Methods,
Supplementary Eqs. S1–S5. From this point onward, we will
present results for two clock models only—JD2016 and AD2015.
Similar results are obtained for the other three clock models (see
Supplementary Methods).

Design of AIF controllers for circadian systems
Before proceeding with the design of the AIF controller (Fig. 2a),
we first describe the control problem that will be investigated in
our study. For each model, we assume that the perturbation
results in the loss-of-function of a genetic component that acts as
a positive regulator—these components are indicated by yellow
boxes in Fig. 1. Specifically, the perturbations render the following
positive regulations ineffective: upregulation of LHY/CCA1 by TOC1
in JL2005, of HYP by PIF in JD2016, of PER by CLC/CYC in HU2001,

of BMAL1 by PER2/CRY in SB2004, and of FRQ by WC-1 in AD2015,
thereby requiring a feedback controller to restore the resulting
loss-of-function. Note that in HU2001, PER is actually regulated by
two components: CLK/CYC and PER/TIM. As we are considering
only the loss of positive regulation, the negative regulation of PER
by PER/TIM is not modified.
Using AD2015 as an illustration, the perturbation to the positive

regulation of FRQ by WC-1 results in the loss of a circadian profile
in FRQ (see the red solid line in the inset of Fig. 3b). The AIF
controller is therefore employed in a closed loop manner to
restore the FRQ mRNA, as shown in Fig. 2b, where the AIF
controller compares the reference FRQ mRNA with the output FRQ
mRNA and actuates the correct control signal to the affected
regulation such that the desired FRQ mRNA can be recovered.
There are four parameters that govern the dynamics of the AIF

controller (see Eq. 7 in the “Methods” section). These are the
sequestration rate η, the controller actuation rate θ1, the controller
sensing rate θ2, and the controller degradation rate γC. Follow-
ing39,40, we shall first consider the case of no controller degradation,
γC= 0 h−1, and then consider the case where γC ≠ 0 h−1.

Case when the controller degradation is zero. Among these three
parameters, θ1, θ2, and η, the sequestration rate η plays an
important role in determining the performance of the AIF
controller. A small value of η yields almost no feedback between
the controller and the process—hence, this will be the first
parameter to be analyzed. This then begs the question of how
large η should be. To address this, in39,40, Olsman et al. derived a
condition on the size of η that ensures time scale separation
between the dynamics of the system and the AIF controller. In
other words, they wanted to determine whether a large value of η
could affect the stability of the AIF controller. In their derivation,
they considered the case when there are two process species (i.e.,
N= 2). In our case, as we are dealing with only one species (e.g.,
the FRQ gene in AD2015), we have N= 1. Following the derivation
in39,40 the condition on η for N= 1 is given by

η>> η ¼ θ1θ2
γP

� �2 1
μ

� �
: (1)

For the details of the derivation of Eq. 1, see39,40.
From Eq. 1, we compute η using the clock model parameter

values listed in Supplementary Table 2 (JL2005), Supplementary
Table 3 (JD2016), Supplementary Table 4 (SB2005), Supplemen-
tary Table 5 (AD2015), and Supplementary Table 6 (HU2001),
together with their associated reference signal μ in each case. As
the effect of the sequestration rate η on the AIF controller is our
main interest, following the values used in refs. 39,40, we set
θ1= θ2= 1 h−1.

Effect of varying sequestration rate η. For the plant clock model
JL2005, the reference signal μ is the circadian profile of LHY/CCA1,
which varies between 1.3920 and 2.4149 nM−1 h−1 (see Fig. 1a). For
JD2016, the reference signal μ is the hypocotyl growth, represented
by the protein HYP profile, which we consider over a 96 hour time
interval, where it takes minimum and maximum values of 6.2713
and 21.4195 nM−1 h−1, respectively (see Fig. 1b). In the original
model developed in41, the protein HYP is modeled as a strictly
monotonically increasing function—i.e., with no degradation, γP=
0 h−1. This leads to η being undefined as we have a division by zero.
Nonetheless, we will discuss our approach to choosing appropriate
AIF controller parameters for this case later below.
For the non-plant clock models, the reference signals μ for

HU2001, SB2004, and AD2015 are, respectively, the circadian profile
of PER (which varies between 0.3450 and 3.8943 nM−1 h−1—see
Fig. 1c), BMAL1 (which varies between 0.2626 and 1.8317 nM−1

h−1—see Fig. 1d) and FRQ (which varies between 0.0738 and
2.5583 nM−1 h−1—see Fig. 1e). In computing η for all the clock
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Fig. 1 The plant, mammalian, fungal, and insect circadian clock models. a Plant clock, JL200524. b Plant clock, JD201641. c Insect clock,
HU200125. d Mammalian clock, SB200427. e Fungal clock, AD201526. For illustration, only the time series of a single gene component is
presented (these components are indicated by yellow boxes). Blue solid line: Simulated time series using the standard Michaelis–Menten
model from the respective literature. Black dashed line: Simulated time series using the extended S-System model. White, black, and gray
rectangular boxes at the top of the figures correspond to light, dark, and subjective dark intervals, respectively. For the full comparison of all
the clock genetic components, see Supplementary Figs. 2–6.
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models (except JD2016), we set μ= μmin in Eq. 1. The resulting values
of η are shown in the rightmost column of Table 1.
Equation 1 states that the value of η is required to be significantly

larger than that of η. As mentioned previously, this leads to the
question of how much larger η should be. Although, theoretically,
the value of η can be set arbitrarily large, in practice this value is
limited by biological constraints, and thus warrants active tuning. To
address this issue, we consider a range of η values for each clock
model with θ1 and θ2 fixed at the values θ1= θ2= 1 h−1. For each η
value applied, we calculate the mean square error (MSE) of the
desired reference profile and process output using

Mean square error, (MSE) ¼ 1
NT

XNT

t¼1

μðtÞ � x1ðtÞð Þ2; (2)

where NT= 96 is the total number of data points, t is the time
index, μ is the reference profile and x1 is the output of the process.
We then plot the MSE values on a logarithmic scale against η for
all five clock models.
As shown in Fig. 3a, b and Supplementary Fig. 7, we notice

that there is an exponentially decreasing trend of the MSE
values as η increases. This trend is consistent with that
observed in39,40. In each MSE plot, we have also indicated
the value of η with a dotted black line (except for JD2016 for
which η is undefined). Interestingly, while the condition in Eq. 1
states that the value of η should be significantly larger than
that of η, the plots shown in those figures suggest that an η
value of around 10η is sufficient to obtain satisfactory AIF
controller performance, as the MSE values do not change much
when η> 10η. For JD2016, when η < 10 nM−1 h−1 we observe
large MSE values, while for η ≥ 10 nM−1 h−1, the MSE values
drop significantly. Given this observation, we choose η=
100 nM−1 h−1 in this case, which is 10 times larger than the
value at the transition point, mirroring the choice of η in the
other four clock models.
For each gene that is assumed to be affected by perturbation in

the clock models of interest, the time series profiles obtained using
the AIF controller with η ¼ 10η are shown as insets in the panels of
Supplementary Fig. 7. From these profiles, we see that the AIF
controller restores the profiles of the affected genes quite well. By
contrast, when no controller is applied, the behavior of the affected
genes deviates markedly from the reference profile. For JL2005, the
peaks observed in the absence of the AIF controller are due to the
external light cue that regulates LHY/CCA1, and this shows that
external light alone is unable to restore the profile of LHY/CCA1.
However, while the AIF controller is, in general, able to

successfully restore functionality in each of the clock models, there

are some unwanted effects—viz. the presence of multiple peaks
when tracking the rising phase of the FRQ profile in AD2015, the
transient that occurs during the tracking of the falling phase of the
LHY/CCA1 profile in JL2005, the overshooting PER peaks in HU2001,
and a large initial BMAL1 transient in SB2004.
Moreover, for JD2016, the AIF controller is not able to track the

profile of HYP properly, oscillating around the reference signal
instead. This inability to track the reference signal can be understood
through the analogy of tracking a ramp signal in a linear control
system (see e.g.,42). Like the HYP profile, a ramp signal is also a
strictly monotonically increasing signal. In linear control systems
analysis, to properly track a ramp signal requires the transfer
function of the controller and process to contain at least two
integrators and at least one zero, with the closed loop poles located
in the left-hand side of the Laplace plane (s-plane)—this ensures
that the closed loop poles have a negative real part, yielding
exponential decay of the output oscillation to the ramp reference
signal (see e.g.,42). Without a zero, the closed loop poles will be
purely imaginary, yielding an undamped system in which the output
response will continue to oscillate around the ramp reference signal.
For more details of this analysis see Supplementary Methods,
section S1.7.
In the case of JD2016, since HYP is modeled without the

degradation term, this means there is an integrator in the process,
and with the AIF controller being an integral controller, this results in
the combination of the controller and the process having two
integrators without any zeros. With no zero in the transfer function,
the controller is unable to track the desired HYP profile accurately
but oscillates around it, as we observe in Fig. 3a. Despite this, the AIF
controller is able to track the increasing trend of the HYP profile and
its final value does not deviate too far from that of the desired HYP
final value. Given that HYP is associated with hypocotyl growth, this
indicates that the controller is able to ensure sustained hypocotyl
growth, albeit without the exact desired growth pattern.
Having established that the sequestration rate η ¼ 10η is

sufficient to realize good performance of the AIF controller, we
next proceed to investigate the effect of varying θ1 and θ2—we
want to determine whether these two parameters can be tuned to
further improve controller performance, in the sense of yielding
smaller MSE values.

Effect of varying controller actuation rate, θ1. First, we vary θ1
between 0.1 and 10 h−1 while fixing η and θ2 at the values η ¼
10η and θ2= 1 h−1, computing the MSE value in each case. The
results are shown in Fig. 3c, d and Supplementary Fig. 8. We note
that the performance of the AIF controller can be further

Fig. 2 The architecture of the AIF controller. a The AIF controller adapted to circadian system has two control species, Z1 and Z2, where the
former and the latter act as an actuator and a sensor respectively. Z1 and Z2 both degrade at the rate γC. The key mechanism to achieving
integral control is the sequestration of Z1 and Z2 at the rate η. Z1 is a product of the reference reaction, μ, which in turn actuates the process
through X1 at the rate θ1, where the output gene X1 is sensed by Z2 at the rate θ2. b The closed loop configuration of the AIF controller in
restoring transcription factor-driven production of an affected single gene in the circadian system.
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improved by increasing the value of θ1 through 1 h−1 (shown by
the dotted black line), as indicated by the smaller MSE values
obtained. The values of θ1 yielding the smallest MSE values are
marked by red arrows and these values range between 2 and
5 h−1 across the models. The time series profiles for the clock
genes regulated by the AIF controller that are obtained with these
optimal θ1 values are shown in Fig. 3e, f and Supplementary Fig. 9,
in which we also include the profiles obtained with θ1= 1 h−1

(blue solid line) for comparison. As can be seen in the figures,
there is noticeable improvement in the AIF controller performance
when the new θ1 values are used. Notably, in JD2015 the deviation
from the desired HYP profile (and in particular the final value) is
smaller, in AD2015 the multiple FRQ peaks are no longer present,
although there is still an overshoot, in JL2005 the tracking of the
falling phase of the LHY/CCA1 profile is smoother, in HU2001
the overshoot peaks of PER have been reduced and in SB2004 the
effect of the initial BMAL1 transient is less apparent.

Effect of varying controller sensing rate, θ2. Before proceeding
with our investigation into the effects of varying θ2, we would like
to make the following remark: we expect that this parameter
should be fixed at unity in order to ensure the good performance
of the AIF controller. From Eqs. 7b and 7c, with γC= 0 h−1, at
steady state, θ2x1= μ. Thus in order for x1 to track μ properly (i.e.,
to have x1= μ), the scaling factor θ2 must be set to unity. To
illustrate this point, we vary θ2 between 0.1 and 10 h−1 for each
model, with η set to the value η ¼ 10η and θ1 set to the value
indicated by the red arrow in Supplementary Fig. 8. As shown in

Fig. 3 Effect of varying AIF controller parameters when controller degradation is zero. a, c, e Plant clock, JD2016. b, d, f Fungal clock,
AD2015. a, b Effect of varying sequestration rate η on the MSE. The inset figures in a, b show the time series profiles for the reference profile
and process output, with and without the use of the AIF controller. c, d Effect of varying θ1 on the MSE. e, f Time series profiles obtained using
the AIF controller with different values of θ1.

Table 1. Computation of sequestration rate from Eq. 1 with θ1= θ2=
1 h−1.

Model (μmin, μmax)[nM
−1 h−1] γP [h

−1] η ¼ θ1θ2
γP

� �2
1

μmin

� �
nM�1 h�1� �

JL2005 (1.3920, 2.4149) 1.2875 0.4334

JD2016 (6.2713, 21.4195) 0 Undefined

HU2001 (0.3450, 3.8943) 0.5238 10.5645

SB2004 (0.2626, 1.8317) 1.5816 1.5233

AD2015 (0.0738, 2.5583) 0.2749 179.3057

M. Foo et al.
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Supplementary Fig. 10, there is no improvement in the MSE value
when we tune θ2 away from 1 h−1. In fact, for all the clock models,
any variation in θ2 results in a greater than tenfold increase of the
MSE value. This reiterates our point that θ2 should be fixed
at unity.
Our analyses regarding AIF controller design when the

controller degradation is zero can be summarized as follows: θ2
is the most sensitive parameter and must be kept close to its
designated value to ensure that the AIF controller can track the
reference profile accurately. The sequestration rate η should be
chosen to be at least 10 times the value of η and further
improvement of the AIF controller can be achieved by tuning θ1.

Case when the controller degradation is non-zero. Our previous
analyses considered the case of zero controller degradation (i.e.,
γC= 0 h−1). In this section, we consider the case where the
controller degradation is non-zero, since—as highlighted in39,40—
this can provide further tuning of the AIF controller performance.
To start our analysis, we use the AIF controller parameters listed in
Supplementary Fig. 10 with θ2= 1 h−1, and vary the value of γC to
determine its effect on the MSE. Note that θ2 has again been fixed
at unity as any deviation from this value leads to poor controller
performance (Supplementary Fig. 13), which cannot be remedied
by adjusting θ1 (Supplementary Fig. 14).
As can be seen in Fig. 4a, all clock models exhibit the same

general trend, in which the MSE value increases with γC. This trend
is in agreement with the findings of39,40, where an increase in the
steady state error with γC is observed (note that as we are not
tracking a constant reference signal, we use the MSE value as a
proxy for the steady state error). We further observe that the MSE
values increase almost linearly for γC ≤ 1 h−1 before increasing
exponentially for γC ≥ 2 h−1.
Given that the MSE value increases with γC, if the controller

degradation rate is constrained by practical considerations to be
non-zero, we next identify whether there is an acceptable MSE
level associated with a particular γC value. We also investigate

whether the MSE can be further decreased by tuning the other AIF
controller parameters. To do this, we need to first decide on an
acceptable value of the MSE (and corresponding γC). With
reference to Fig. 4a, we have mentioned the existence of two γC
regions in which the rate at which the MSE values increase differ.
In the region γC ≤ 1 h−1, the MSE values increase linearly, while in
the region γC ≥ 2 h−1, the MSE values increase exponentially.
At the transition region (highlighted as a purple box) 1 < γC <
2 h−1, the MSE value for all the clocks is approximately 0.3, which
we deem to be the acceptable value. The mid-point of this
transition region is γC= 1.5 h−1 and this is therefore selected as
the controller degradation rate γC across all clock models, which
we use for our further analyses.
Recall that in our analysis of the zero degradation AIF controller,

we found θ2 to be the most sensitive parameter, concluding that it
should not be varied at all. We are therefore left with the choice of
varying η and θ1. As varying η does not change the MSE value
significantly for η> 10η (see Supplementary Fig. 7), we expect that
this parameter will also affect the performance of the AIF
controller minimally. Thus, we are left to consider whether tuning
θ1 can further improve the AIF controller performance when the
controller degradation rate is non-zero.

Effect of varying controller actuation rate θ1 for non-zero controller
degradation. To proceed with our analysis, we fix the following
AIF controller parameters: η ¼ 10η, θ2= 1 h−1 and γC= 1.5 h−1. As
before, we then vary θ1 and compute the corresponding MSE
values. The results are shown in Fig. 4b, c and Supplementary Fig.
11. It can be seen that the performance of the AIF controller, as
quantified by the MSE value, can indeed be further improved by
varying θ1. We note that JD2016 has an optimal θ1 value that is
less than one, whilst the other clock models have optimal θ1
values that are greater than one (see Fig. 4b and Supplementary
Fig. 11). This suggests that the estimated parameters of JD2016
may not be optimal, in the sense of minimizing the cost function
given in Eq. 6. In other words, there could be another set of model

Fig. 4 Effect of varying AIF controller parameters when controller degradation is not zero. a Effect of varying γC on MSE. b, d Plant clock,
JD2016. c, e Fungal clock, AD2015. b, c Effect of varying θ1 on the MSE. d, e Time series profiles obtained using the AIF controller with different
values of θ1.
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parameters having similar values to the set used here that can
further minimize the cost function. Nevertheless, from the point of
view of AIF controller design, this is consistent with our frame-
work, i.e., we can further improve the performance of the AIF
controller by tuning θ1. This observation also highlights the added
robust performance of the AIF controller when dealing with
parameter uncertainty. The AIF controller ensures good perfor-
mance, even when the estimated parameter values are different
from the true values.
To ascertain the degree of improvement, in Fig. 4d, e and

Supplementary Fig. 12 we compare the time series profiles
generated for all the controller-regulated clock genes when using
θ1 values from Supplementary Fig. 8 to the profiles generated
when using θ1 values from Supplementary Fig. 11. With the
optimized θ1 values in the case γC= 1.5 h−1, we see further
improvement in the performance of the AIF controller compared
with the case γC= 0 h−1. Moreover, all the aforementioned
unwarranted effects observed with γC= 0 h−1 have been sig-
nificantly reduced. Specifically, in JD2016, the deviation from the
reference HYP signal has been reduced substantially, in JL2005,
the AIF controller can now track the falling phase of the LHY/CCA1
profile, whilst in HU2001, SB2004 and AD2015, the AIF controller
tracks the reference profiles so well that the plots overlap and are
almost indistinguishable. We remark that the reduction of the
unwanted effects through tuning of θ1 is also consistent with the
findings of39,40. Taken altogether, our analyses show that a non-
zero degradation rate can lead to further improvement in the AIF
controller performance when θ1 is tuned appropriately.

DISCUSSION
In this study, we have used our previously proposed extended
S-System framework to model the circadian clocks of non-plant
organisms, constructing new models of the mammalian, insect,
and fungal clocks. We then showed how these models can be
used to facilitate the systematic design of the AIF controllers to
restore the circadian profiles of genes that suffered loss-of-
function due to perturbation.
As expected, the extended S-System formulation is able to

represent the non-plant circadian systems with good accuracy, as
shown in Fig. 1 and Supplementary Figs. 2–6. Furthermore, the
corresponding estimated values of the gi,j exponents in these
models—in which positive/negative exponents represent gene
activation/inhibition, respectively—are consistent with the archi-
tecture of the model used to generate the synthetic data to which
it is fitted. The results presented here thus confirm the extended
S-System framework as a viable and general method for
quantitatively modeling circadian networks across multiple
organisms.
The AIF controller in this study is designed on the basis of

results from39,40, but here we derive the conditions for the case of
single process species (i.e., N= 1) to cater for the application to
circadian systems. There are four parameters governing the
behavior of the AIF controller: the controller sequestration rate
η, the controller actuation rate θ1, the controller sensing rate θ2,
and the controller degradation rate γC. We have provided a
systematic analysis of the effect of each of those parameters on
the AIF controller performance. Central to the overall design
strategy is Eq. 1 which is derived in39,40, which establishes the
initial design constraints.
Equation 1 establishes the plausibility condition on the choice

of the sequestration rate, in the sense of stating that a rate
sufficiently larger than η will guarantee good control. However, in
practice, we do not have the luxury to choose an arbitrarily large
sequestration rate as we are constrained by biological feasibility.
To establish a practical sequestration rate, we found a rate η ¼
10η was sufficient to achieve good performance of the AIF
controller for each of the five clock models considered. This η

value ranges from 4.3 to 1793 nM−1 h−1 (or 0.07 to 29.88 nM−1

min−1) across the models. These rates lie within the feasible values
reported in the experimental literature, i.e., between 0.072 and
0.96 nM−1min−1 for rates (see Table SII of43) and up to ≈
38.4 nM−1 h−1 for in vivo rates as reported in44. In addition, Aoki
et al.33 used an η value of 0.05 nM−1min−1 in their modeling
analysis (see Supplementary Information S.1.4.4 of33), which is
consistent with the range found in this study. Having set the
condition for the sequestration rate, our subsequent analyses
showed that the controller sensing rate θ2 should be fixed at 1
h−1, as deviations from this rate incur large mean-square errors
(MSEs) between the reference signal and the AIF controller output,
as shown in Supplementary Figs. 10–13.
For the controller production rate θ1, our analyses show that

further improvement in the AIF controller performance can be
achieved by varying this parameter. In the case where the
controller degradation is zero, we found that the θ1 values that
can improve performance lie between 2 and 5 h−1 (or 0.033 and
0.083min−1), as shown in Supplementary Fig. 8. In the case where
the controller degradation is non-zero, this range is between 0.7
and 80000 h−1 (or 0.012 and 1333.333 min−1), as shown in
Supplementary Fig. 11. These θ1 values are within the range
0.6–6000 h−1 (or 0.1–100min−1) mentioned in33, with the excep-
tion of the θ1 value 80000 h−1 obtained for the fungal clock model
AD2015. Nevertheless, if we look at Fig. 4c, the rate θ1= 80000 h−1

corresponds to an MSE value of 0.0046. If we consider an MSE
value of 0.01 to be an acceptable error, based on the MSE values
observed for the four other clock models, we have θ1= 4000 h−1,
which is within the range reported in33.
In our final analysis, we investigated the performance of the AIF

controller when the degradation rate γC is non-zero. With non-zero
degradation, we observe that the MSE value increases as γC
increases. We then proceeded to investigate whether θ1 can be
used to further improve the performance of the AIF controller
when the degradation rate is fixed at γC= 1.5 h−1 (or 0.025min−1).
We remark that in a practical sense, this degradation rate is similar
to the degradation rate of bacteria (i.e., 0.028 min−1), as reported
in33. Interestingly, our analysis revealed that a substantial
improvement in AIF controller performance can be achieved by
tuning θ1 (see Fig. 4d, e and Supplementary Fig. 12). In particular,
we note that the tracking of HYP protein in JD2016 improves
considerably, compared to the case where the controller
degradation is zero. To explain this improvement, we compare
the two control strategies in the context of linear control theory
(see Supplementary Methods section S1.7). In essence, the
presence of controller degradation has transformed a pure
integral controller into a phase lag controller, which is known to
reduce transient effects and decrease the steady state error. The
parameter θ1 is therefore analogous to the proportional gain in a
phase lag controller, and tuning this gain is commonly used in
linear control theory to further reduce the steady state error (see
e.g.,42,45). The combined effect of implementing a phase lag
controller (via setting γC ≠ 0) and adjusting the proportional gain
(via θ1) has resulted in the considerable improvement observed
for JD2016.
This substantial improvement could be attributed to the

additional degree of freedom provided by having γC ≠ 0. More-
over, given that the genetic components of the circadian system
are always oscillating (i.e., always out of equilibrium), our results
also indicate that an ideal integrator may not be essential in
achieving adaptation for a system that does not remain at
equilibrium.
In summary, in designing the AIF controller for restoring a single

gene’s circadian profile, the following steps are suggested:

● Step 1 : Choose a suitable model in which the equation for the
process species takes the form of Eq. 7a.

● Step 2 : Calculate η using Eq. 1 and choose η ¼ 10η.
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● Step 3 : Set θ2 to unity. If this is not possible, θ1 can be fine-
tuned to achieve comparable performance (Supplementary
Methods, section S1.9).

● Step 4 : Select a value for the controller degradation γC that
yields an acceptable MSE value.

● Step 5 : Sweep across the biologically feasible θ1 parameter
range to determine the value that yields the smallest MSE.

Note that there are algorithms available that can aid the
selection of optimal AIF controller parameters, in particular for
Steps 4 and 5 (see e.g.,46).
Here, we would like to make some remarks regarding the

design of an in vitro AIF controller. In practice, the controller
requires knowledge of the reference oscillatory profile μ(t) in order
to correctly determine the error and thus restore the disrupted
circadian profile. Realizing μ(t), which is time-varying, is challen-
ging in comparison to realizing a constant reference profile μ(t),
such as that used in33. Nevertheless, recent advances in the field
of optogenetics have provided potential methods for realizing a
time-varying reference signal. Optogenetics uses the manipulation
of light to enable precise timing and local control of signaling
process (see47–49 and references therein). In particular, Jayaraman
et al. were able to use blue light regulation to control bacterial
gene expression in an oscillatory manner50,51. In the context of
generating a time-varying reference profile μ(t) for AIF control as
proposed in this study, a blue light pulse could be similarly
manipulated to enable bacteria to produce gene expression
following the desired circadian profiles of interest, and thereby act
as our μ(t) signal.
We note that employing an optogenetics approach in generat-

ing the time-varying μ(t) would introduce an additional layer of
complexity to the current configuration. But to the best of our
knowledge, there has not yet been any approach reported in the
literature regarding the generation of time-varying reference
signals for synthetic feedback control applications. While our
suggested approach of using optogenetics is challenging, this
should provide us with the first step towards developing this form
of synthetic feedback control strategy.
Given that the optogenetics approach also requires externally

exerted light signals, one could suggest using these signals
directly for control, following previous work (see e.g., refs. 34–38).
However, these studies primarily focused on using such signals to
realign circadian phase. What is different in our study is that we
are looking at strategies to recover circadian profiles as a result of
a complete loss-of-function of a particular genetic component,
which cannot be easily recovered using externally exerted light
signals alone (see Supplementary Fig. 7). In view of this, a different
control strategy that operates at the molecular level is required.
In addition, given that optogenetics has the potential to realize

a time-varying μ(t), it could be suggested to use the signal to
directly regulate the target circadian genes to compensate for the
loss-of-function, hence negating the need for an AIF controller at
all. From the control engineering perspective, this approach is akin
to model inversion open-loop control, where the control signals
are specifically designed through inversion of process dynamics to
ensure proper reference tracking. It is known within the control
community that model inversion open-loop control can never
achieve perfect inversion of the process dynamics due to the
effect of intrinsic noise and model uncertainties, and thus a
feedback controller is always required to address the resulting
mismatch (see e.g.,52). Nevertheless, in the case of circadian
systems, previous studies (see e.g.53–55) have demonstrated the
robustness of circadian profiles to noise, where the desired
profiles were retained through time averaging. This opens up the
possibility of using the model inversion open-loop control
approach instead of a more expensive and complex synthetic
feedback control, which is worth exploring further as part of our
future studies.

Our current analysis of the AIF controller involves a simple clock
model, and it primarily operates to restore the functionality of a
single gene in the clock network. Moreover, the transcription
factor that loses its function has no major impact on the other
genetic component of the network. In some cases, the transcrip-
tion factor that loses its function may have widespread repercus-
sion on the overall network (e.g., TOC1 in the plant clock is known
to affect five other genes in addition to LHY/CCA156). In such cases,
possible strategies include designing the AIF controller to restore
the transcription factor that loses its function (Supplementary Fig.
15) or reformulating the AIF control design as a Single-Input-Multi-
Output (SIMO) control problem (see e.g.,57), which are being
considered as part of our future work.
As a final remark, even though the design framework we describe

here is for circadian clocks, the approach presented is potentially
applicable to tracking or restoring any biological system character-
ized by entrainable, periodic oscillations, for which theoretical
developments are garnering great interest (see e.g.,58,59).

METHODS
The extended S-System modeling framework
The S-System model structure developed by Savageau has its origins in
biochemical systems theory (see e.g.,60), in which the model structure takes
the form below:

dXi

dt
¼ αi

Ynþm

j¼1

X
gi;j
j � βi

Ynþm

j¼1

Xhi;j
j ; 1 � i � n: (3)

Here, the dependent variables, Xi : 1 � i � nf g represent the biochemical
species of interest, and the independent variables,
Xi : nþ 1 � i � nþmf g represent forcing terms. For each dependent
variable Xi, αi represents the production rate constant, βi denotes the
degradation rate constant, the gi,js are the exponents associated with
production processes and the hi,js are the exponents associated with
degradation processes.
To account for the light input and other gene/protein post-translational

processes characteristic of circadian clocks, Eq. 3 is extended (and
hereafter termed the extended S-System) as follows31:

dXi

dt
¼ αi

YnPi
j¼1

Xn
k¼1

bi;j;kXk

 !gi;j

�
XnDi
j¼1

βi;jXi

Yn
k¼1

Xhi;j;k
k

 !
þ
XnLi
j¼1

γi;j;Ui;j ; 1 � i � n:

(4)

In the above, nPi , n
D
i and nLi represent the number of processes associated

with production, degradation, and light regulation, respectively. αi, gi,j, βi,j,
hi,j, and γi,j in turn represent the production rate constant of Xi, the
exponents associated with production, the degradation/stabilization rate
constants of Xi, the exponents associated with degradation, and the
strength of the light-regulated processes affecting Xi. The bi,j,ks are Boolean
variables that specify the particular species contributing to the light-
independent production of Xi. Each Ui,j= Ui,j(X1,…, Xn, LT(t)) represents the
effect on Xi of processes regulated by the external light signal, LT(t). The
explicit dependence of Ui,j on X1; ¼ ; Xnf g indicates that in addition to
taking into account direct regulation by LT(t), the extended S-System
model also encompasses the effects of light-regulated gene/protein
expression and protein complexes. The light input LT(t) is modeled as a
periodic square wave that alternates between 0 and 1, with t= 0 taken to
correspond to dawn. With that, LT(t) has the form

LT ðtÞ ¼
1 if 0 � tmod24<PH;

0 otherwise,

�
(5)

where PH denotes the photoperiod (the length of the light interval).
Accordingly, PH= 0 corresponds to constant dark (DD) while PH= 24
corresponds to constant light (LL). A symmetric light–dark cycle with
alternating 12 h periods of light and dark (12L:12D) can be generated by
setting PH= 12. For more details on the development of this modeling
framework, see31.
A notable feature of using Eq. 4 to represent transcription is that it can

naturally accommodate either positive or negative regulation within the
same model structure, unlike the Michaelis-Menten formalism where
different nonlinear functions are required. The type of regulation is set by
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specifying the sign of the exponent gij in Eq. 4, where gij > 0 corresponds to
positive regulation and gij < 0 corresponds to negative regulation.
The plant circadian clock models considered in this current study are

JL200524 and JD201641. These were chosen as they represent basic and
compact models of the plant clock network, respectively. The mammalian,
fungal (Neurospora), and insect (Drosophila) clock models considered in
this work are SB200427, AD201526, and HU200125, respectively. Each model
name is based on the initials of the first author followed by the year of
publication. The equations for the models are given in Supplementary Eq.
S1 (JL2005), Supplementary Eq. S2 (JD2016), Supplementary Eq. S3
(SB2004), Supplementary Eq. S4 (AD2015), and Supplementary Eq. S5
(HU2001) of the Supplementary Methods. Circuit diagrams for each of the
clock models are shown in Fig. 1.

Parameter estimation
To estimate the parameters of the extended S-System model, we follow
the procedure detailed in31. First, for each clock model, the synthetic
temporal data (hereinafter termed the training set) for all the genes/
proteins in the clock are generated in a symmetric light–dark cycle
(12L:12D) for four days using the original Michaelis–Menten model
provided in the respective literature. Four days of data are generated in
order to integrate out transient effects, thereby ensuring that the circadian
profiles are in steady state (i.e., have converged to the limit cycle attractor).
Once in steady state, the model parameters are estimated using the final
two days of data. This training set is then used for parameter estimation by
solving the optimization problem given by

Θ̂ ¼ argmin
Θ

1
NLNG

XNG

i¼1

XNL

j¼1

XiðtjÞ � X̂ iðtj ;ΘÞ
Mi

 !2

; (6)

where Θ represents the model parameters, NG is the total number of
genes/proteins in the circadian model, NL is the number of time points in
each synthetic timeseries, and Xi(tj) and X̂ iðtj ;ΘÞ with 1 ≤ j ≤ NL are the
synthetic timeseries for the ith model component and the corresponding
simulated timeseries obtained from the model with parameter set Θ,
respectively61,62. Note that we normalize the fit to each model component
with the maximum value of the corresponding synthetic timeseries,
Mi ¼ max

1�j�NL

XiðtjÞ31. This is to mitigate bias in the optimization, since the

genes/proteins of each model have a diverse range of amplitudes. To solve
Eq. 6, we use the MATLAB function fminsearch, which implements the
Nelder–Mead simplex algorithm. The estimated parameters are given in
Supplementary Table 2 (JL2005), Supplementary Table 3 (JD2016),
Supplementary Table 4 (SB2005), Supplementary Table 5 (AD2015), and
Supplementary Table 6 (HU2001).

Antithetic integral feedback (AIF) controller
In control theory, integral feedback control is a fundamental approach for
mitigating the effects of external perturbations on the functioning of a
system. Integral feedback control guarantees that a system is able to return
to its original pre-perturbation condition even in the continued presence
of the perturbation—this is known as adaptation in the biology literature.
In view of this, the synthetic biology community has proposed multiple
types of biomolecular integral control to mitigate perturbations (e.g., see21

and references therein). However, to date, there have been few successful
experimental implementations of these integral control strategies.
In this study, we focus our attention on the AIF controller that was

proposed in32, for which a similar mechanism has been found in
endogenous biological systems (e.g., sigma factor σ70 to anti-sigma factor
rsd63). Our focus on the AIF controller is primarily motivated by its recent
successful experimental implementation in living cells33.
The configuration of the AIF controller is shown in Fig. 2a, where the

controller is shown to the left of the dashed line and the process to be
controlled is shown to the right of the dashed line. In the original
configuration proposed in32, the degradation of the controller species is
assumed to be zero (i.e., γC= 0 h−1). In39,40, Olsman et al. extended the
analysis by considering the case where γC ≠ 0 h−1 and this case is also
considered in33. In this study, we carried out our design analysis of the AIF
controller for circadian clocks using the results obtained in39,40, employing
the same notation as those studies. For a more detailed derivation and
theoretical analysis of the AIF controller, see39,40.
Consider the case where we have the simplest process with N= 1 (i.e.,

only one process species). Then the model of the interconnection between

the AIF controller and the process to be controlled can be written as39,40

dx1
dt

¼ θ1z1 � γPx1; (7a)

dz1
dt

¼ μ� ηz1z2 � γCz1; (7b)

dz2
dt

¼ θ2x1 � ηz1z2 � γCz2; (7c)

where Z1 and Z2 are the controller species, X1 is the process species directly
interacting with the controller species, θ1 and θ2 are the production rates,
γC and γP are the degradation rates for the controller and process species,
respectively, μ is the reference signal that regulates Z1 and η is the
sequestration (annihilation) rate. Following the standard convention, we
use the uppercase and lowercase letters to denote the species and the
associated variables respectively. When the controller degradation is not
present (i.e., γC= 0), the integral representation is obtained via32,40:

dz1
dt

� dz2
dt

¼ μ� θ2x1 ) z1 � z2 ¼
Z t

0

μ� θ2x1ðτÞð Þdτ: (8)

In the original configuration32, the AIF controller ensures perfect
adaptation (where the output process species X1 exactly follows the
desired reference signal μ) in the following manner. Consider the controller
part of the AIF equations, i.e., Eqs. 7b and 7c, with γC= 0 h−1. Then at
steady state (i.e., setting all the derivatives to zero); we have the output
x1= μ/θ2, indicating that the output converges proportionally by 1/θ2 to
the reference signal. In the case where γC ≠ 0 h−1, while perfect adaptation
cannot be achieved due to the loss of the integral representation,
adaptation can still be achieved under certain conditions (see39,40).
The main feature of the AIF controller that enables adaptation is the

sequestration of Z1 and Z233. The sequestration rate η thus plays a vital role
in determining the performance of the AIF controller39,40. Here, we,
therefore, explored how the performance of the AIF controller was affected
by changing the sequestration rate (and the other controller parameters).

DATA AVAILABILITY
All the MATLAB simulation codes are available and can be downloaded from https://
github.com/mathiasfoo/aifcontrolcircadian.
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