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Abstract 

The approach of Learning from Demonstrations (LfD) can support human operators especially 

those without much programming experience to control a collaborative robot (cobot) in an intuitive and 

convenient means. Gaussian Mixture Model and Gaussian Mixture Regression (GMM and GMR) are 

useful tools for implementing such a LfD approach. However, well-performed GMM/GMR require a 

series of demonstrations without trembling and jerky features, which are challenging to achieve in 

actual environments. To address this issue, this paper presents a novel optimised approach to improve 

Gaussian clusters then further GMM/GMR so that LfD enabled cobots can carry out a variety of 

complex manufacturing tasks effectively. This research has three distinguishing innovative 

characteristics: 1) a Gaussian noise strategy is designed to scatter demonstrations with trembling and 

jerky features to better support the optimisation of GMM/GMR; 2) a Simulated Annealing-

Reinforcement Learning (SA-RL) based optimisation algorithm is developed to refine the number of 

Gaussian clusters in eliminating potential under-/over-fitting issues on GMM/GMR; 3) a B-spline based 

cut-in algorithm is integrated with GMR to improve the adaptability of reproduced solutions for 

dynamic manufacturing tasks. To verify the approach, cases studies of pick-and-place tasks with 

different complexities were conducted. Experimental results and comparative analyses showed that this 

developed approach exhibited good performances in terms of computational efficiency, solution quality 

and adaptability. 
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𝑃𝑖 Control points in B-spline 
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𝐺𝑀𝑅 The regression data – x dimension 

𝐸(𝑥𝑗|𝑡𝑗) Expectation 

𝐵𝑖,𝑘(𝑢) The base functions of k-times B-spline 

 

 



1. Introduction 

Industrial robots, which can execute pre-programmed tasks for mass production, lack versatility 

and adaptability to changes in dynamic and customised manufacturing environments [1,2]. In contrast, 

a collaborative robot (cobot) with intuitive programming capabilities can work with humans to conduct 

Human-Robot Collaboration (HRC) in a flexible and safe means [3-6]. In HRC, intuitive programming 

can facilitate human operators without much robotic programming experience to control cobots more 

efficiently and cost-effectively [7]. Learning from Demonstrations (LfD) has become an increasingly 

popular approach for implementing such intuitive programming in cobots [8]. LfD is inspired by 

imitating human behaviours to acquire new skills. That is, LfD enables learning from a set of human 

demonstrations on a cobot acting in a few varied settings, generalising them and reproducing solutions 

for new settings [9-10].  

A pick-and-place example illustrated in Fig. 1 is used to explain the concepts of LfD. For this task, 

a cobot needs to pick an object and place it into a packaging box along a trajectory path. LfD can tackle 

the problem according to the following steps: 

• A human operator demonstrates the operations of dragging the end effector of a cobot for picking 

the object from several start points and dropping it into the desired packaging box. As shown in Fig. 

1, three trajectories (represented in yellow, purple and blue curves) of the cobot are considered as 

demonstration paths created by the human operator; 

• A mathematical model, such as Gaussian Mixture Model (GMM), is used to encode the 

demonstrated paths. Then, a regression model, such as Gaussian Mixture Regression (GMR), is 

employed to specify a new reproduced path (illustrated in dash line in Fig. 1). The reproduced path 

is to interpolate (“mimic” or “learn from”) the geometric features of the demonstration paths. During 

the above process, the human operator is not required to possess programming skills and robotic 

knowledge in operating the cobot. Based on the demonstrations and encoding/decoding processes 

specified in GMM/GMR, the cobot can be adaptively controlled for dynamic settings. 

 

Fig. 1: A pick-and-place task with demonstrations and a reproduced trajectory for a new setting. 

GMM/GMR enabled LfD approaches to control cobots intuitively have been actively researched 

in recent years [11-13]. There are two reasons of using GMM/GMR modelling for LfD: 1) real-world 
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modelling is close to the Gaussian probabilistic distribution; 2) GMM/GMR are effective in supporting 

LfD to achieve a good fit into demonstration data without prior knowledge on models’ parameters. 

Gaussian clusters are building blocks for GMM/GMR, and their number and parameters are critical in 

generating a reproduced path. A good-quality reproduced path is a balance between the interpolation of 

the geometric features of demonstration paths and the smoothness of the reproduced path to avoid 

learning trembling and jerky features from the demonstration paths. If the number of Gaussian clusters 

is not optimised, over-fitting (leant too much from the demonstrations) or under-fitting (leant too little 

from the demonstrations) in GMM/GMR may occur. For instance, in the pick-and-place example shown 

in Fig. 1, constructive points of demonstrations paths could be grouped based on different numbers of 

Gaussian clusters (i.e., 1, 3, 8 in Fig. 2). A reproduced path generated based on corresponding Gaussian 

clusters is “under-fitting”, “appropriate” or “over-fitting” respectively. In Fig. 2(a), although the 

reproduced path can reach the target, the deviation between the reproduced path and the demonstrations 

is too big due to a small number of Gaussian clusters used for GMM/GMR. S-shape features embedded 

in the demonstrations, which ensure the paths to be collision free from an intermediate obstacle, could 

be lost in the reproduced path. In Fig. 2(c), the path can complete the task and avoid collisions with the 

obstacle, but there are various sharp turnings in the reproduced path due to the excessive number of 

Gaussian clusters. This will generate unnecessary time loss and jerk during the robotic movement. 

Therefore, both Fig. 2(a) and Fig. 2(c) are not good enough compared with Fig. 2(b). 

 
Fig. 2: Reproduced paths using different numbers of Gaussian clusters. 

To address the above issue, in this paper, a novel optimisation approach for GMM/GMR based 

LfD is developed. Distinguishing innovations of the research include the following aspects: 

• Design of a Gaussian noise strategy to enrich demonstrations: Trembling and abrupt changes in 

demonstrations caused by human operators result in generating jerky reproduced paths. With 

Gaussian noises added to scatter the demonstrations, trembling features in the demonstrations can 

be rectified during optimisation processes; 

• Simulated Annealing-Reinforcement Learning (SA-RL) optimisation on Gaussian clusters: Using 

conventional optimisation criteria, such as Bayesian Information Criterion (BIC), could lead to a 
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computational failure in convergence and potential under-/over-fitting issues in GMM/GMR. In this 

research, a SA-RL based optimisation algorithm, supported by a new optimisation criterion 

embedded with the K-means and Expectation-Maximisation (EM) algorithms, is designed to avoid 

the under-/over-fitting issues; 

• Adaptive reproduced path generation: For GMR, it could be not adaptive for dynamic manufacturing 

tasks if the start or end point of a new task is significantly deviated from those in demonstrations. A 

B-spline based cut-in algorithm is integrated with GMR to enhance the adaptability of the 

reproduced path to better address the situations. 

The rest of the paper is organised as follows. Section 2 reviews the related work. The overall 

framework of the approach is outlined in Section 3. In Section 4, the technical details of the approach 

are depicted. Case studies and experimental results are explained in detail in Section 5. Finally, Section 

6 concludes the research and envisages the future work. 

2.  Literature Survey 

2.1 LfD and GMM/GMR 

LfD is a widely used programming method for different robotic applications. Calinon et al. 

classified a LfD process roughly into observational learning and kinesthetic teaching [14]. 

Observational learning refers to visual observations by a human operator and reproduction of specific 

actions. Kinesthetic teaching refers to moving a robot manually by haptic interaction, and the robot 

learns from the demonstrations.  Argall et al. summarised such the process of LfD as the similar steps 

but in different terminologies, i.e., gathering examples and deriving a policy from the examples [15]. A 

good LfD approach is that it can easily capture demonstration data and encode states and behaviours, 

and then reproduce a solution for a new environment [16]. LfD has been used for various applications 

and HRC is one of the effective applications of using LfD [14].  

GMM/GMR are one of major intelligent technologies to implement LfD. Primary reasons of using 

GMM/GMR include being easy learning and simplicity of serialising learned behaviours as well as the 

capability to model internal correlations and constraints within the tasks. Demonstration trajectories can 

be encoded using GMM and regression trajectories can be generated using GMR for dynamic scenes 

based on the encoded knowledge. Duque et al. developed GMM/GMR based LfD to learn an assembly 

task [17]. GMM/GMR were used to encode multiple human demonstrations and a generalised assembly 

path was obtained by reproduction. However, in the research, the regression path owns several 

redundant turns, so that it is not effective to drive robots/cobots smoothly. Kyrarini et al. developed 

GMM/GMR for demonstration learning and reproducing, and Kinect was used to identify objects 

dynamically [18]. In the work, the smoothness of the regression path was not addressed effectively. 

Ogenyi et al. combined observational learning and kinaesthetic teaching [19]. In the research, a robot 

learns by ‘watching’ the movement of the arm of a human operator. The acquired dataset is 



complemented using kinaesthetic teaching for further moving. GMM/GMR were used to process the 

joint angle data of the robot to obtain a regression path. However, the complexity of this system is high, 

which may bring about the problem of robustness. However, according to the experimental results in 

the paper, the regression path is relatively simple. A robotic assistance-as-needed framework was 

proposed for children with cerebral palsy to perform a 2D position-following task [20]. In the research, 

GMM/GMR were used to build a bridge between children with cerebral palsy and therapist. That is, the 

proposed system helps correct daily behaviours of children, which puts stricter requirements on the 

quality of the demonstration path, the smoothness and accuracy of the regression path. Considering the 

robustness of visual teaching, the research adopts human demonstration (kinaesthetic teaching) to 

obtain the data.  

However, the reproduced path generated by GMM/GMR is inadaptable to a new task if there is a 

significant change either in the start or end point of the task. Dynamic Moving Primitives (DMP) can 

be used to enhance GMM/GMR in generating adaptive paths and so it has been used in LfD. Ti et al. 

developed an approach of combining DMP and GMM/GMR to smoothen a human-like regression path 

to a new goal [21]. In the research, GMM/GMR was applied to learn from multiple demonstration paths 

while DMP was used to generalise paths to new environments. However, compared with GMM/GMR 

or DMP, GMM/GMR combined with DMP increases the uncertainty and complexity of entire models 

by introducing more parameters. Calinon et al. proposed TP-GMM, i.e., Task-Parameterised GMM, to 

learn from demonstrations by training GMM by considering different frames [11]. TP-GMM can be 

adaptive by changing the parameters of frames. However, TP-GMM needs an extra frame recognition 

algorithm, and it is sensitive to directions leading to poor robustness. 

In addition to the widely used GMM/GMR and DMP in LfD, there are some other methods. Rozo 

et al. used Hidden Markov Model (HMM) to encode a robot pouring task and a ball-in-box task based 

on demonstrations and GMR was adopted to generate a regression path [22]. Pignat et al. used Hidden 

semi-Markov Model to encode dressing and shoeing assistance to better support elderly and disable 

people [23]. However, HMM, which is as an extended model of GMM, is also more complicated, and 

GMM/GMR are of better operability for applications. Zhang et al. [24] proposed an Adaptive Curve 

Gaussian Mixture Model (AdC-GMM). In the research, curve Gaussian clusters was designed to model 

data, and a Cross Entropy Optimisation (CEO) algorithm instead of the traditional EM algorithm [25] 

was used to calculate the parameters of Gaussian clusters. This method improves the fitting performance 

of the model, and the reproduction path is also smoother. It has a clear effect on strong non-linear 

systems, but it makes nearly no difference for a relatively gentle demonstration path. 

In summary, in order to improve LfD performance, some trade-offs should be made. That is, a 

high-precision task generally requires more advanced algorithms or sensors to satisfy users’ needs but 

the system could be more complex. For the above reviewed research, there are two common issues: 



• One issue is in demonstrations, i.e., the number of demonstration paths is limited and there could 

some inevitable human trembling errors during the generation of the demonstrations. Effective 

optimisation algorithms are imperative to address this issue; 

• Another issue is the inadaptability of LfD-based regression paths suitable for dynamic scenarios. As 

discussed in [26-27], B-spline [28] can generate different styles of smooth curves by adjusting the 

control points and weights. Compared with DMP and GMM/GMR, B-spline is more convenient and 

robust. Motivated by the idea, design of a B-spline cut-in algorithm based on GMM/GMR will be 

explored in this paper. 

2.2 LfD criteria for model parameters selection 

To encode demonstrations, criteria for model parameter selection are critical for learning results. 

BIC, which was proposed by Schwarz et al. [29], is one of the most popular criteria due to its simplicity 

and effectiveness. In [30-32], the effectiveness of BIC in solving GMM parameters was revealed. BIC 

can choose a model that maximises the posterior probability of the model. That is, it selects the model 

that best matches the data distribution. Various researchers have conducted research based on BIC. 

Mehrjou et al. proposed an improved BIC [33]. In clustering, the performance of the proposed method 

is better when there is a number of data points or the components of the dataset overlap. However, in 

LfD applications, as a regression path is used to drive the cobot, the quality of the regression path can 

directly affect the effect of task execution. BIC and its improved strategy are able to balance the 

complexity of the model and the degree of fitting. Therefore, BIC can confirm the GMM parameters. 

As mentioned above, the quality of the regression path is also crucial for driving cobots. Unfortunately, 

BIC can only guarantee that the selected parameter is optimised for GMM, but the evaluation of the 

regression path cannot be made using BIC. Therefore, some researchers determined the optimal number 

range of Gaussian clusters by manual selection and observing the regression path under the different 

number of Gaussian clusters [15]. In [16], the number of Gaussian clusters was determined by 

comparing the Root Mean Square (RMS) errors of the regression path and demonstration paths. 

However, the search range is small, and global or local optimal values were not be identified. 

To obtain a proper regression path, it is necessary to calculate the relationship between the 

regression path and demonstration paths. A distance can be used as one of the criteria to measure the 

similarity of the paths. Because a regression path is composed of timeseries, three main methods could 

be employed, i.e., Euclidean Distance (||Eudis||), Longest Common Subsequence (LCSS), and Dynamic 

Time Warping (DTW) [34-35]. Considering ||Eudis|| has the lowest computational complexity, if a 

regression path and demonstration paths share the same timeseries, ||Eudis|| can be used to minimise the 

use of computing resources. Consequently, it is sensible to consider combining BIC and path similarity 

to optimise GMM/GMR. 

 



3.  Overview of GMM/GMR Optimisation 

3.1  Concepts of Gaussian, GMM and GMR 

Fig. 3 is used to illustrate the concept of Gaussian clusters. Demonstration paths are decomposed 

into a series of constructive points. These points are then clustered to form a number of Gaussian 

clusters (shown in Fig. 3(a)). Each Gaussian (denoted as the i-th Gaussian here) consists of the position 

mean 𝝁𝒊 and covariance 𝝈𝒊 . 𝝁𝒊  is a 1×D vector and 𝝈𝒊 is a D×D matrix, where D is the dimension of 

the coordinate system (D = 2 or 3). For a 2-D problem,  𝝈𝒊  can be further decomposed to obtain 

eigenvalues 𝜆𝑖1  and 𝜆𝑖2 , and orthogonal eigenvectors 𝒂𝑖1  and 𝒂𝑖2  (shown in Fig. 3(b)). The 

eigenvectors 𝒂𝑖1 and 𝒂𝑖2 represent the directions of the major axis and minor axis of the i-th Gaussian, 

respectively.  √𝜆𝑖1 and √𝜆𝑖2 are the lengths of the major axis and minor axis of the i-th Gaussian, 

respectively. 

 
Fig. 3: Gaussian clusters encoding demonstration paths. 

The probability density function of the i-th Gaussian 𝑁𝑖(∙) is calculated below: 

𝑁𝑖(𝒑𝑗|𝝁𝒊, 𝝈𝒊) =
1

(2𝜋)𝐷/2|𝝈𝒊|
1/2 𝑒𝑥𝑝(−

1

2
(𝒑𝑗 − 𝝁𝒊)

𝑇
𝝈𝒊

−1(𝒑𝑗 − 𝝁𝒊))  (1) 

where 𝒑𝑗 represents the position of a constructive point from demonstrations (j=1,.., m; m is the total 

number of points in all the demonstrations). 

GMM is the summed up of weighted Gaussian clusters, and the probability density function of GMM, 

i.e.,  𝑃𝐺𝑀𝑀(∙), can be calculated as follows: 

𝑃𝐺𝑀𝑀(𝒑𝑗) = ∑ 𝜔𝑖 ∙ 𝑁𝑖(𝒑𝑗|𝝁𝒊, 𝝈𝒊)
𝐾
𝑖=1 , s.t. ∑ 𝜔𝑖 = 1𝐾

𝑖=1  (0≤𝜔𝑖≤1)  (2) 

Where K is the total number of Gaussian clusters, 𝜔𝑖 is the weight of the i-th Gaussian contributing 

to the construction process of GMM. 

After obtaining GMM, a regression path can be reproduced based on GMR. To implement GMR, 

a series of time-step 𝑡 = (𝑡1, … , 𝑡𝑗, … , 𝑡𝑚) are added to divide each demonstration path evenly, and the 

points of each path can be re-written as [(𝑡1, 𝒑1), … , (𝑡𝑗, 𝒑𝑗), … , (𝑡𝑚, 𝒑𝑚)]. Thus, each path has the 

same number of points for better alignment between demonstrations. 
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The calculation process of GMR is based on 𝑥𝑗, 𝑦𝑗 and 𝑧𝑗 respectively ((𝑥𝑗, 𝑦𝑗 , 𝑧𝑗) ∈ 𝒑𝑗). The basic 

steps are as follows (using the calculation process on 𝑥𝑗 as an example) [36]: 

Step 1: According to the conditional probability theorem, the joint probability 𝑃(𝑡𝑗, x𝑗)  is 

computed below: 

𝑃(𝑡𝑗, 𝑥𝑗) = ∑ (𝜔𝑖 ∙
𝐾
𝑖=1 𝑁𝑖(𝑥𝑗|𝑡𝑗;𝑚𝑖(𝑡𝑗), 𝑐𝑜𝑣𝑖) ∙ 𝑁𝑖(𝑡𝑗|𝜇𝑖𝑡 , 𝜎𝑖𝑡)), s.t. ∑ 𝜔𝑖 = 1𝐾

𝑖=1  (0≤𝜔𝑖≤1) (3) 

𝝁𝒊 = [
𝜇𝑖𝑡
𝜇𝑖𝑥

]     𝝈𝒊 = [
𝜎𝑖𝑡𝑡 𝜎𝑖𝑡𝑥
𝜎𝑖𝑥𝑡 𝜎𝑖𝑥𝑥

]    (4) 

where 𝜇𝑖𝑡  represents the means of 𝑡𝑗  for the i-th Gaussian; 𝜎𝑖𝑡𝑡 , 𝜎𝑖𝑥𝑡 , 𝜎𝑖𝑡𝑥  and 𝜎𝑖𝑥𝑥  represent the 

covariance of ( 𝑡𝑗 , 𝑡𝑗 ), ( 𝑥𝑗 , 𝑡𝑗 ), ( 𝑡𝑗 , 𝑥𝑗 ) and ( 𝑥𝑗 , 𝑥𝑗 ) for the i-th Gaussian respectively; 

𝑁𝑖(𝑥𝑗|𝑡𝑗; 𝑚𝑖(𝑡𝑗), 𝑐𝑜𝑣𝑖) is the conditional probability density function for 𝑥𝑗 relative to 𝑡𝑗; 𝑚𝑖(𝑡𝑗) and 

𝑐𝑜𝑣𝑖 are the mean and covariance respectively, which can be computed below: 

𝑚𝑖(𝑡𝑗) = 𝜇𝑖𝑥 + 𝜎𝑖𝑥𝑡 ∙ 𝜎𝑖𝑡𝑡
−1 ∙ (𝑡𝑗 − 𝜇𝑖𝑡)    (5) 

𝑐𝑜𝑣𝑖 = 𝜎𝑖𝑥𝑥 − 𝜎𝑖𝑥𝑡 ∙ 𝜎𝑖𝑡𝑡
−1 ∙ 𝜎𝑖𝑡𝑥     (6) 

Step 2: Marginal probability𝑃(𝑡𝑗) is computed below: 

𝑃(𝑡𝑗) = ∫𝑃(𝑡𝑗, 𝑥𝑗)𝑑𝑥 = ∑ 𝜔𝑖
𝐾
𝑖=𝑖 ∙ 𝑁𝑖(𝑡𝑗|𝜇𝑖𝑡 , 𝜎𝑖𝑡)   (7) 

Step 3: The output data 𝑥𝑗
′ is computed using the following process: 

The function of regression can be inferred from the joint probability and marginal probability. The 

conditional probability 𝑃(𝑥𝑗|𝑡𝑗; 𝑚𝑖(𝑡𝑗), 𝑐𝑜𝑣𝑖) is shown in Equation (8): 

𝑃(𝑥𝑗|𝑡𝑗; 𝑚𝑖(𝑡𝑗), 𝑐𝑜𝑣𝑖) =
𝑃(𝑡𝑗, 𝑥𝑗)

𝑃(𝑡𝑗)
=
∑ (𝜔𝑖 ∙
𝐾
𝑖=1 𝑁𝑖(𝑥𝑗|𝑡𝑗;𝑚𝑖(𝑡𝑗), 𝑐𝑜𝑣𝑖) ∙ 𝑁𝑖(𝑡𝑗|𝜇𝑖𝑡 , 𝜎𝑖𝑡))

∑ 𝜔𝑖
𝐾
𝑖=𝑖 ∙ 𝑁𝑖(𝑡𝑗|𝜇𝑖𝑡 , 𝜎𝑖𝑡)

 

 = ∑ 𝛼𝑖(𝑡𝑗) ∙
𝐾
𝑖=1 𝑁𝑖(𝑥𝑗|𝑡𝑗; (𝑡𝑗), 𝑐𝑜𝑣𝑖)                (8) 

where 𝛼𝑖(𝑡𝑗) is the mixture weights of GMR, which can be defined below: 

𝛼𝑖(𝑡𝑗) =
𝜔𝑖∙𝑁𝑖(𝑡𝑗|𝜇𝑖𝑡,𝜎𝑖𝑡)

∑ 𝜔𝑖∙
𝐾
𝑖=1 𝑁𝑖(𝑡𝑗|𝜇𝑖𝑡,𝜎𝑖𝑡)

     (9) 

The final regression data 𝑥𝑗
𝐺𝑀𝑅 from GMR can be computed in Equation (10): 

𝑥𝑗
𝐺𝑀𝑅 = 𝐸(𝑥𝑗|𝑡𝑗) = ∑ 𝛼𝑖(𝑡𝑗) ∙

𝐾
𝑖=1 𝑚𝑖(𝑡𝑗)   (10) 

3.2  Calculation the number of Gaussian clusters for GMM/GMR 

The calculation of GMM consists of two primary steps: 1) constructive points are clustered to set up 

initial Gaussian clusters and the corresponding GMM; 2) the parameters of the initial Gaussian clusters, 

including 𝜔𝑖, 𝝁𝒊 and 𝝈𝒊, are continuously optimised to fine-tune the Gaussian clusters and furthermore 

GMM/GMR. The K-means algorithm is popularly used to develop Step 1). For Step 2), the EM 

algorithm is effective in improving these parameters iteratively. 

The procedure of the K-means algorithm for the above Step 1) is below: 

i) Selecting K cluster centre points in all the data of demonstrations randomly; 



ii) Calculating the distance between each point of demonstrations 𝒑𝑗 and each cluster centre point, 

and allocating data to clusters according to the shortest distances to the centres of the clusters;  

iii) Re-calculating the centre points of clusters according to the updated results;  

iv) Calculating the above ii) and iii) iteratively until the centre point of each cluster is unchanged; 

v) Considering each cluster as the base for Gaussian clusters, calculating 𝝁𝒊  and 𝝈𝒊  for each 

Gaussian, and deciding 𝜔𝑖 proportionally according to the number of points contained in each 

cluster; 

iv) Calculating GMM based on Gaussian clusters. 

 

The EM algorithm for the above Step 2) will carry on the E-step and M-step iteratively until 

convergence. The E-step and M-step are depicted below: 

E-step: the probability of each point 𝒑𝑗 from each Gaussian should be estimated based on the entire 

points and then the problem is transformed to solve the posterior probability. According to the Bayes’ 

theorem, the posterior probability (𝛾𝑗𝑖) of each point 𝒑𝑗 for the i-th Gaussian can be written below: 

𝛾𝑗𝑖 =
𝜔𝑖∙𝑁𝑖(𝒑𝑗|𝝁𝒊,𝝈𝒊)

∑ 𝜔𝑖∙𝑁𝑖(𝒑𝑗|𝝁𝒊,𝝈𝒊)
𝐾
i=1

      (11) 

where 𝑁𝑖(𝒑𝑗|𝝁𝒊, 𝝈𝒊) is the probability density function of the i-th Gaussian; 𝜔𝑖 is the weight of the 

i-th Gaussian; K is the total number of Gaussian clusters. 

M-step: the value of log of the likelihood function of demonstrations (𝐿𝐿 = ln(∏ 𝑃𝐺𝑀𝑀(𝒙𝒋
𝑚
𝑗=1 )) is 

maximised to re-estimate the parameters (𝜔𝑖, 𝝁𝒊 and 𝝈𝒊) of each Gaussian by 𝛾𝑗𝑖. The partial derivatives 

of 𝝁𝒊 and 𝝈𝒊 need to be calculated through log of the likelihood function (𝐿𝐿), i.e., 
𝜕(𝐿𝐿)

𝜕(𝝁𝒊)
 and 

𝜕(𝐿𝐿)

𝜕(𝝈𝑖)
, while 

it is necessary to construct Lagrange multipliers and then partial derivatives to solve 𝜔𝑖, i.e., 
𝜕(𝐿𝑎𝑔(𝐿𝐿))

𝜕(𝜔𝑖)
. 

The relevant details are shown below: 

𝜔𝑖 =
1

𝑚
∑ 𝛾𝑗𝑖
𝑚
𝑗=1       (12) 

𝝁𝑖 =
∑ 𝛾𝑗𝑖
𝑚
𝑗=1 ∙𝒑𝑗

∑ 𝛾𝑗𝑖
𝑚
𝑗=1

      (13) 

𝝈𝒊 =
∑ 𝛾𝑗𝑖
𝑚
𝑗=1 ∙(𝒑𝑗−𝝁𝑖)∙(𝒑𝑗−𝝁𝑖)

𝑇

∑ 𝛾𝑗𝑖
𝑚
𝑗=1

      (14) 

where m is the total number of constructive points from demonstrations. 

3.3  Gaussian cluster optimisation 

For the above EM algorithm, the number of Gaussian clusters is pre-determined and fixed. However, 

it could cause the generated GMM/GMR under-/over-fitting. If this happens, GMM/GMR are either 

incapable of keeping the features of demonstrations well, or cause a reproduced path much zigged. To 

address the challenge, a novel optimisation algorithm for GMM/GMR is developed. The algorithm 

includes the following innovative strategies: 1) Gaussian noises are added into demonstrations to enrich 



and scatter their construction points for a better support on GMM/GMR generation; 2) based on the 

enriched demonstrations, an optimisation process enabled by a SA-RL algorithms, which uses a novel 

optimisation criterion and embeds the K-means and EM algorithms, to optimise the number and the 

parameters of Gaussian clusters leading to optimal GMM/GMR. 

Meanwhile, for GMR, it could be still non-adaptive to dynamic situations, such that in the pick-and-

place example the starting point of a task could be changed significantly different from those of 

demonstrations. Therefore, a new adaptive process is designed with the following steps: 1) a reproduced 

path based on GMR is generated; 2) to enhance the adaptability and the accuracy of the reproduced path 

fitting into the new situation, the path is amended using a B-spline based cut-in algorithm. 

The framework of the above processes is shown in Fig. 4. The technical details are elaborated in the 

following Section 4. 

 

Fig. 4: The framework of the GMM/GMR optimisation processes. 

4.  GMM/GMR Optimisation 

4.1 The Gaussian noise strategy 

To better support the optimisation of Gaussian clusters and GMM/GMR, constructive points of 

demonstrations are enriched and scattered with Gaussian noises. The formulas are given below: 

𝑥𝑗
′ = 𝑥𝑗 + 𝑟     (15) 

𝑦𝑗
′ = 𝑦𝑗 + 𝑟     (16) 

𝑧𝑗
′ = 𝑧𝑗 + 𝑟     (17) 

𝑟~𝑁(𝝁
𝒏𝒐𝒊𝒔𝒆

,𝝈𝒏𝒐𝒊𝒔𝒆)     (18) 

Initialisation: generating candidate Gaussian noises 

End 

Gaussian cluster optimisation process 

(1) Calculating the optimisation objective; 

(2) Determining the parameters of Gaussian clusters using the 

IBE and the SA-RL optimisation process (the process also 

including the K-means and EM algorithms on calculating 

the parameters of Gaussian clusters and GMR for 

calculating the reproduced path). 

GMM generation 
 

Reproduced path generation 

(1) Calculating the reproduced path using GMR; 

(2) Amending the path using a B-spline based cut-in algorithm. 

  



𝑁(𝝁𝒏𝒐𝒊𝒔𝒆
,𝝈𝒏𝒐𝒊𝒔𝒆) =

1

√2𝜋𝝈𝒏𝒐𝒊𝒔𝒆
𝑒
−
(𝑟−𝝁𝒏𝒐𝒊𝒔𝒆)

2

2𝝈𝒏𝒐𝒊𝒔𝒆
2

                               (19) 

where 𝑥𝑗
′ , 𝑦𝑗

′ , 𝑧𝑗
′  are Gaussian noise-enhanced points of demonstrations; 𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗  are the original 

points of the demonstrations;𝑟~𝑁(𝝁𝒏𝒐𝒊𝒔𝒆, ∆𝒏𝒐𝒊𝒔𝒆) means a random value𝑟, which is considered as a 

noise, obeys the Gaussian distribution with a probability density function of 𝑁(𝝁𝒏𝒐𝒊𝒔𝒆, 𝝈𝒏𝒐𝒊𝒔𝒆); 𝝁𝒏𝒐𝒊𝒔𝒆 

and 𝝈𝒏𝒐𝒊𝒔𝒆 are the mean and variance of Gaussian noises respectively. 

4.2 Optimisation criterion for Gaussian clusters 

Bayesian Information Criterion (BIC) is an effective criterion to modelling a finite set of data 

(demonstrations in the context of this research). BIC can be used to evaluate the quality of a model from 

two aspects: 1) the fitting degree of the model, 2) the complexity of the model. BIC is defined below: 

𝐵𝐼𝐶 = −2 ln 𝐿(𝜃|𝐵) + 𝑝 ∙ 𝑙𝑛(𝑚)    (20) 

where 𝐿(∙) is the likelihood function; ln 𝐿(𝜃|𝐵) means the Logarithm of the likelihood function of 

the points in Gaussian clusters; 𝑝 is the number of parameters in Gaussian clusters; m is the number of 

the constructive points of demonstrations. 

The smallest of a BIC value will support the better GMM/GMR. Nevertheless, based on the BIC 

criterion, unsmooth features in geometry from demonstrations, such as tremble and abrupt changes 

caused by human operators, could be kept in GMM/GMR and the corresponding reproduced path could 

become less smooth (over-fitting). Thus, Gaussian noises are measures introduced to scatter 

demonstrations so that the above unsmooth features could be alleviated during Gaussian clusters and 

GMM/GMR optimisation. However, through numerical trials shown in Fig. 5, it is observed that the 

BIC value will become significantly larger with an increase of 𝝈𝒏𝒐𝒊𝒔𝒆. Meanwhile, with an increased 

𝝈𝒏𝒐𝒊𝒔𝒆, the number of Gaussian clusters (K) becomes smaller, which could lead to under-fitting. Based 

on the observation, the BIC criterion is not an ideal design, and a new criterion should be developed 

based on the following considerations: 

 
Fig. 5: Experimental results showing the impacts of 𝝁𝒏𝒐𝒊𝒔𝒆, 𝝈𝒏𝒐𝒊𝒔𝒆 on K and BIC. 

• It could achieve a good balance between under-fitting and over-fitting by adjusting the number of 

Gaussian clusters to an appropriate extend. Therefore, the Logarithm of the number of Gaussian 

clusters, i.e., 𝑙𝑛𝐾 (𝐾 is the number of Gaussian clusters), can be designed as a penalty term to be 
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(a) Impact of 𝝁𝒏𝒐𝒊𝒔𝒆 and 𝝈𝒏𝒐𝒊𝒔𝒆 on BIC                    (b) Impact of 𝝁𝒏𝒐𝒊𝒔𝒆 and 𝝈𝒏𝒐𝒊𝒔𝒆 on Gaussian clusters 



embedded into the criterion. That is, through introducing 𝑙𝑛𝐾𝐵𝐼𝐶, the numbers of Gaussian clusters 

corresponding to lower BIC values with little or no scatter can be excluded; 

• It is also worth noticing that a regression path is not always the smoother the better. An excessively 

smooth regression path driven by 𝑙𝑛𝐾𝐵𝐼𝐶 could lose the desired features of demonstration paths. 

That is, it may generate a large deviation from leant demonstrations (under-fitting). Therefore, in the 

new criterion, it is necessary to integrate the assessment of similarity between demonstrations and 

their regression path in order to balance the under-/over-fitting aspects as well. Thus, a Euclidean 

Distance (||Eudis||) is introduced for the similarity assessment:  

||𝐸𝑢𝑑𝑖𝑠|| = ∑ ∑ (√(𝑥𝑗
′ − 𝑥𝑖𝑗)

2
+ (𝑦𝑗

′ − 𝑦𝑖𝑗)
2
+(𝑧𝑗

′ − 𝑧𝑖𝑗)
2
)𝑚

𝑗=1
𝑛
𝑖=1   (21) 

where 𝐸𝑢𝑑𝑖𝑠𝑙 is the distance between the regression path and all demonstrations; m is the 

total number of constructive points of all demonstrations; n is the total number of demonstrations; 

(𝑥𝑗
′, 𝑥𝑖𝑗), (𝑦𝑗

′, 𝑦𝑖𝑗) and (𝑧𝑗
′, 𝑧𝑖𝑗) are the corresponding constructive points in the reproduced path and 

the i-th demonstration;  

• When the scattering level of Gaussian noises increases, the BIC value will change drastically (high 

variance) while the degree of change on ||Eudis|| is lower (low variance). To incorporate the above 

elements and avoid excessively biased results, a scaling factor (𝑠𝑓) is added to scale the two elements. 

The new optimisation criterion (Integrated BIC-||Eudis||, in short IBE) can be written below: 

𝐼𝐵𝐸 =
𝑙𝑛𝐾∙𝐵𝐼𝐶

𝑠𝑓
+ ||𝐸𝑢𝑑𝑖𝑠||    (22) 

𝑠𝑓 = 
𝑠𝑡𝑑(𝐵𝐼𝐶)

𝑠𝑡𝑑(||𝐸𝑢𝑑𝑖𝑠||)
       (23) 

where std is for the standardised deviation. 

4.3 SA-RL optimisation algorithm 

The optimised algorithm consists of the following three steps: 1) Input: the ranges of 𝝁𝒏𝒐𝒊𝒔𝒆, 

𝝈𝒏𝒐𝒊𝒔𝒆 and the number of Gaussian clusters are pre-specified; 2) Initialisation: a set of Gaussian clusters 

within the above ranges are generated; 3) Optimisation: the SA-RL optimisation process (including the 

K-means and EM algorithms for calculating BIC and ||Eudis||) is conducted based on the IBE criterion 

to optimise the number of Gaussian clusters. In the algorithm, SA is designed for a global search, and 

RL is for fine-tuning a search area locally. 

Compared with some metaheuristic optimisation algorithms that conduct computations on a large 

number of populations, such as PSO (Particle Swarm Optimisation), GA (Genetic Algorithm), ACO 

(Ant Colony Optimisation) and FOA (Fruit Fly Optimisation Algorithm), SA proved to be efficient in 

identifying an optimal or near-optimal solution [37]. Thus, SA is chosen here as a base to design this 

algorithm. RL, which is an increasingly popular technique to operate on complex problem spaces, is 

also able to identify an optimal or near-optimal solution [38]. In this research, RL is integrated to fine-

tune the research within a small-scale scope near the minimum value obtained by SA under each 



iterative temperature. By combining different strategies of SA and RL, the algorithm convergence could 

be accelerated and the success rate of obtaining the global minimum solution could be improved. 

Fig. 6 is used to illustrate the process of the SA-RL optimisation. Some critical steps are below: 

• The possible scopes of 𝝁𝒏𝒐𝒊𝒔𝒆, 𝝈𝒏𝒐𝒊𝒔𝒆 and the corresponding Gaussian clusters are pre-specified 

according to some experiments. A set of 𝝁𝒏𝒐𝒊𝒔𝒆, 𝝈𝒏𝒐𝒊𝒔𝒆 and the corresponding Gaussian clusters is 

called an index (a potential solution). They will be used to calculate BIC, ||Eudis|| and IBE. In Fig. 

6, the x axis represents indexes, and the y axis represents the IBEs of the indexes. 

• A SA is executed within a search loop by lowering its working temperature continuously. Within 

the loop, under a temperature, a local search is executed by the SA for n times. The search is possible 

to fall into a local minimum point H after n rounds of computations. In Fig 6, the points in purple 

demonstrate the search process by the SA and an agent represents the current step of the SA (a 

solution, which includes an index and its IBE). 

• Under the above temperature of the local search by the SA, a RL is then used to fine-tune the search 

by skipping from the local minimum H and identifying a smaller value nearby. For the RL, a local 

search range (indicated by brackets in Fig. 6) is specified around H. In the RL, a Q-table is used to 

define the best action for each state, and ε-greedy is used to define a probability to determine whether 

an agent will move to a next solution with a higher Q value (reward) or a solution with a smaller Q 

value (penalty). Based on the RL, the agent could reach a smaller value L closer to H. 

• The above steps continue until the search loop of the SA is completed (reaching the last temperature). 

 

Fig. 6: Illustrations of the optimisation process of the SA-RL algorithm. 

For the problem presented in this research, the local search process can be modelled as a Markov 

Decision Process (MDP). That is, the real-time position of a search agent is determined based on the 

current state. The future state only depends on the current state instead of historical states. It is similar 

to the Markov process so that the adoption of RL is appropriate. In comparison with swarm-based 

optimisation algorithms or the genetic algorithms, the Q-learning algorithm (a RL algorithm) uses a 

single agent for searching. Compared with other RL algorithms, the update method of the Q-learning 

algorithm is relatively simple and easy to implement. Meanwhile, the Q-learning algorithm is more 

efficient in local exploration as the search space is discrete and the amount of states is small. Therefore, 
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in this research, the Q-learning algorithm is devised to execute local search to fine-tune the global search 

conducted by the SA process. 

In this research, the standard Q-learning algorithm is adopted and the reward function is set. 

According to the Q-learning algorithm, a reward is only obtained when the agent moves to the next 

state. To elaborate the Q-learning algorithm for this problem, Table 1 shows the definition of some key 

terms in the MDP, which includes the states, actions, transitions and rewards. 

Table 1: Define the MDP in the RL process. 

State — 𝑆 

𝑆 represents a series of search parameters, which consist of  𝝁𝒏𝒐𝒊𝒔𝒆, 𝝈𝒏𝒐𝒊𝒔𝒆 and 

Gaussian clusters. That is, 𝑆 =[𝑠𝑠1:(𝝁𝒏𝒐𝒊𝒔𝒆𝟏, 𝝈𝒏𝒐𝒊𝒔𝒆𝟏 and c1 (Gaussian 

clusters)); …; 𝑠𝑠𝑖:(𝝁𝒏𝒐𝒊𝒔𝒆_𝒊, 𝝈𝒏𝒐𝒊𝒔𝒆_𝒊 and ci)]; …; 𝑠𝑠𝑛:(𝝁𝒏𝒐𝒊𝒔𝒆_𝒏, 𝝈𝒏𝒐𝒊𝒔𝒆_𝒏 and 

cn)]. 

Action — 𝐴 
𝐴 is a movement option of an agent. That is, 𝐴 = [𝑎1:“left”; 𝑎2:“right”; 

𝑎3:“up”; 𝑎4:“down”].  

Transition — 𝑇 

𝑇 represents the probability of transition from the current state to the next 

state. In this research, to improve the computational efficiency, the probability 

is 100%. 

Reward — 𝑅 𝑅 is assigned to a search parameter set in 𝑆. It is set as 
1

𝐼𝐵𝐸𝑠𝑠𝑖
. 

The local minimum H can be obtained when the SA process is completed. Subsequently, a local 

search process based on the Q-learning algorithm is carried out. In Fig. 6, the star point L means the 

last position of the search agent after the local search, and the bracket specifies the local search area of 

the Q-learning algorithm.  

As shown in Fig. 6, the agent in the bracket (the local search area) only have two movement 

directions, i.e., “left” and “right”.  To extend the exploration area of the agent and improve search 

efficiency, in this paper, the search space in the one-dimensional bracket is mapped into a two-

dimensional checkerboard. For instance, as shown in Fig. 7, it is assumed that 𝑆 = [𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠25] 

in the bracket. The twenty-five sets are arranged into a 5*5 checkerboard.  

 

Fig. 7: The local exploration area represented by a checkerboard. 
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The search process of the Q-learning algorithm is also shown in Fig. 7. The red line represents the 

agent's movement path. According to Fig. 7, the agent (𝑠𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡) is randomly initialised to start from 

𝑠𝑠21 (𝑠𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑠𝑠21). 𝑄(𝑆, 𝐴) is a state-action value, which is the value of performing a specific 𝐴 

in the current agent. 𝑄(𝑆, 𝐴) can update based on Equation (24). With the agent moves, the value of 

𝑄(𝑆, 𝐴) in the Q-table will be updated. The details are as follows: 

• As aforementioned, the agent is randomly initialised as 𝑠𝑠21. The next 𝐴 is selected according to ε-

greedy (ε-greedy is a real number that is from zero to one); 

• When the agent reaches 𝑠𝑠16, 𝑅 =
1

𝐼𝐵𝐸𝑠𝑠16
  is assigned to the agent; 

• It is noted that when the agent reaches 𝑠𝑠16 , it cannot move upward because of the boundary 

restriction as shown in Fig. 7. Thus, in 𝑠𝑠16, the agent only has three options of movement, that is, 

𝑎1:“left”, 𝑎2  :“right”, 𝑎4  :“down”. The values of 𝑄(𝑠𝑠16, 𝑎1), 𝑄(𝑠𝑠16, 𝑎2), and 𝑄(𝑠𝑠16, 𝑎4) from 

the Q-table are calculated, and the maximum value is determined, i.e. 𝑚𝑎𝑥
𝑎1,𝑎2,𝑎4

 𝑄 (𝑠𝑠16,

𝑎1
𝑎2
𝑎4
); 

• Set 𝛼 ∈ (0,1) and 𝛾 ∈ (0,1), where 𝛼 is learning rate and𝛾 is the attenuation value; 

• 𝑄(𝑠𝑠21, 𝑎1) can be calculated as shown in Equations (24) and (25), and Equation (25) represents the 

agent position from ss21 to ss16: 

𝑄(𝑠s21, 𝑎1) ← 𝑄(ss21, 𝑎1) + 𝛼 [
1

𝐼𝐵𝐸𝑠𝑠16
+ 𝛾 𝑚𝑎𝑥

𝑎1,𝑎2,𝑎4
 𝑄 (𝑠𝑠16,

𝑎1
𝑎2
𝑎4
) − 𝑄(𝑠s21, 𝑎1)]           (24) 

𝑇ℎ𝑒𝑎𝑔𝑒𝑛𝑡 ∶ ss𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← ss16                                                  (25) 

• When sH or the limit of iteration is reached, the above exploration process will stop. 

The above steps of the SA-RL algorithm continue until the search loop of the SA process is 

completed (reaching the last temperature). Table 2 shows the pseudo-code for the SA-RL algorithm. 

Table 2: A pseudo-code for the SA-RL algorithm. 

Inputs: 

Identify the feasible search ranges of 𝝁𝒏𝒐𝒊𝒔𝒆, 𝝈𝒏𝒐𝒊𝒔𝒆 and the number of Gaussian clusters 

Calculate each index (𝝁𝒏𝒐𝒊𝒔𝒆, 𝝈𝒏𝒐𝒊𝒔𝒆 and the corresponding number of Gaussian clusters within their ranges) 

Calculate BIC, ||Eudis|| and then sf for each index 

Store the above candidate solutions as a search space S 

Set a global minimum IBE as 𝐼𝐵𝐸𝑏𝑒𝑠𝑡  

Initialisation: 

Set SA contents: set the start temperature = T_start, end temperature = T_end, current temperature = T 

Set RL contents: set ε-greedy∈ (0,1), Q-table(𝑄(𝑆, 𝐴)),𝛼, 𝛾, S, A, T, R, and the limit step number = lsn 

Optimisation: 

<<SA process>> 

Choose a solution randomly in S as a starting point; set it as the agent (its IBE is labelled 𝐼𝐵𝐸𝑎𝑔𝑒𝑛𝑡) and 

𝐼𝐵𝐸𝑏𝑒𝑠𝑡 ← 𝐼𝐵𝐸𝑎𝑔𝑒𝑛𝑡 

While T >= T_end 

Loop under the current T for n times 

Choose a random neighbourhood of the agent in S as a new solution) and label its IBE as 𝐼𝐵𝐸𝑛𝑒𝑤  

If 𝐼𝐵𝐸𝑛𝑒𝑤 < 𝐼𝐵𝐸𝑎𝑔𝑒𝑛𝑡  

𝐼𝐵𝐸𝑏𝑒𝑠𝑡 ← 𝐼𝐵𝐸𝑎𝑔𝑒𝑛𝑡 



Replace the agent using the new solution 

Otherwise: If r<p (𝑝 = 𝑒−
𝐼𝐵𝐸𝑛𝑒𝑤−𝐼𝐵𝐸𝑎𝑔𝑒𝑛𝑡

𝑇  and r∈ [0,1]) 

Replace the agent using the new solution 

End If 

End Loop 

<<RL process>> 

Specify a local search range as exploration environment around the solution of 𝐼𝐵𝐸𝑏𝑒𝑠𝑡  

Adjusts the format of search area 

Repeat: 

        If x>ε-greedy (x is randomly generated and x∈ [0,1]) or all 𝑄(𝑆, 𝐴) = 0 

              Choose a specific action a randomly from 𝐴, observe R and next 𝑆 called s’ 

              Calculate 𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼 [𝑅 + 𝛾𝑚𝑎𝑥
𝐴

 𝑄(𝑠′, 𝐴) − 𝑄(𝑠, 𝑎)] 

              𝑠 ← 𝑠′ 

        Else  

              Choose the action a according to max 𝑄(𝑆, 𝐴), observe R and next 𝑆 called s’ 

              Calculate 𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼 [𝑅 + 𝛾𝑚𝑎𝑥
𝐴

 𝑄(𝑠′, 𝐴) − 𝑄(𝑠, 𝑎)] 

              𝑠 ← 𝑠′ 

        END if 

Until lsn or sH 

𝐼𝐵𝐸𝑏𝑒𝑠𝑡 ← extracttheminimum𝐼𝐵𝐸𝑎𝑔𝑒𝑛𝑡  in RL process 

Reduce T by 𝑇 =
𝑇_𝑠𝑡𝑎𝑟𝑡

1+𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 

End While 

Output： 

The agent is the best solution 

4.4 Adaptive reproduced path with GMR 

To better address a dynamic situation, a B-spline based cut-in algorithm is integrated with GMR 

to be adaptive to changes. The algorithm can address the dynamic setting while keeping the 

characteristic of the regression path. The process can be explained using the example shown in Fig. 8. 

In Fig. 8(a) the curve R is the original regression path, in which 𝑂𝑠 is the start point, 𝑂𝑒 is the end point, 

and 𝑂1 − 𝑂5 are the intermediate points. Point a is the new start point in a dynamic situation, and 𝑂𝑒 is 

still the end point in the situation. Fig. 8(b) shows the reproduced path represented in the curve NR. 

 
Fig. 8: B-spline based cut-in algorithm for path reproducing in a dynamic situation. 

The procedures of the algorithm are below: 

1. If Point a is simply inserted into Curve R, there could exist a redundant turning problem in the 

regression path. To avoid this problem, an improved procedure is designed here. As shown in the 

Fig. 8(a), based on Points a, 𝑂𝑠 and𝑂𝑒, an x-y-z coordinate system is built. The points on the 

(a) Calculation of the cut-in point (b) Reproducing the path 

      



demonstration path are projected on the x-y plane (𝑝1 − 𝑝5). The distances between Points a and 

the projected points (𝑝1 − 𝑝5) are calculated. The point with the shortest distance between its 

projected point on the x-y plane and Point a is chosen as the cut-in point, and the points before 

the cut-in point on the reproduced path are removed. 

2. A new path, starting from Point a, should be integrated into the trimmed reproduced path starting 

from the cut-in point. To make the integrated path smooth, a B-spline curve is introduced. Point 

a, the cut-in point and the next point to the cut-in point on the reproduced path are knot points for 

generating the B-spline curve. The formula is represented below.  

𝑃(𝑢) = ∑ 𝑃𝑖
𝑛
𝑖=0 ∙ 𝐵𝑖,𝑘(𝑢)                                                 (26) 

where 𝑃𝑖 is the set of control points (e.g., 𝑃𝑖 = (𝑎, 𝑂2, 𝑂3) in this example). 𝐵𝑖,𝑘(𝑢) means the base 

functions of k-times B-spline. In the research, k = 3 (called a cubic B-spline). 

5. Case Studies and Discussions 

An experiment platform shown in Fig. 9 was established to support the approach presented in this 

paper. The platform mainly includes two UR5 cobots (the right one was employed in the experiment), 

a two-finger adaptive gripper, a 3D camera, and a computer system. 

3D Camera

Working Table

Teaching Pendant

Controller
Communication 

Convertor

Switch

2-Finger Adaptive 

Gripper

UR5 Collaborative 

Robot

 

Fig. 9: The experimental platform. 

Two pick-and-place cases were used to validate the approach. They are: 

• Case study 1: there are some objects (with slightly deviated positions) transmitted on a production 

conveyer, and a cobot with a gripper picks them up one-by-one and place them into a packaging 

box along a path; 

• Case study 2: there are several obstacles along the paths of the pick-and-place operations, and 

the cobot should avoid collisions with the obstacles (e.g., humans) during the pick-and-place 

operations. 

Fig. 10 shows the two case studies. Trajectories in red represent the paths required by the two tasks. 

It is obvious that the first task is barrier free along the path, while the second task needs to plan paths 

avoiding several obstacles so that the paths are in S-shape. Experimental results of the two cases are 

explained below. 



 
Fig. 10: Two tasks of pick-and-place for approach validation. 

5.1 Case study 1 

 Five demonstrations paths for the first pick-and-place task were generated (illustrated in Fig. 11).  

 
Fig. 11: Demonstration paths and Gaussian noises for the pick-and-place task. 

For the case study, the search ranges of 𝝁𝒏𝒐𝒊𝒔𝒆, 𝝈𝒏𝒐𝒊𝒔𝒆 and the number of Gaussian clusters were 

pre-specified. After using the approach based on the BIC, ||Eudis|| or IBE, the minimum number of 

Gaussian clusters identified as (15, 7, 5). It shows IBE can obtain the minimum number of Gaussian 

clusters, which means the calculation for Gaussian clusters and GMM/GMR will be more efficient in 

comparison with the calculation using BIC or ||Eudis||. Three reproduced paths based on the 

demonstrations generated using BIC, ||Eudis|| or IBE are shown in Fig 12. It can be observed that the 

reproduced paths optimised by using the three criteria all retain the characteristic of the demonstrations. 

 
Fig. 12: Demonstration paths and reproduced paths. 

(a) A pick-and-place task                                     (b) A pick-and-place task with obstacle avoidance 

(a) Human demonstration                (b) Five demonstration paths                        (c) Gaussian noises for the paths 

Demonstration 

paths 

Start area 
Destination 

(a) Demonstrations (in blue) and reproduced paths       (b) Reproduced paths generated using different criteria 



According to Fig. 13, GMM/GMR obtained by BIC and ||Eudis|| were unable to eliminate 

trembling features of human demonstrations when calculating reproduced paths. It can clearly indicate 

that the path generated using BIC contains some unsmooth features leading to redundant twists and 

sharp turns in the paths, which will affect the movement of a cobot. For instance, a sharp turn will cause 

a sudden change of the speed and acceleration of the cobot generating vibration. The reproduced path 

obtained by 𝑙𝑛𝐾𝐵𝐼𝐶  prefers a smaller number of Gaussian clusters while some features of the 

demonstrations are lost (thereby smoother). As analysed earlier, IBE is designed to balance the under-

/over-fitting so that the reproduced path can preserve the characteristics of demonstration while keeping 

smooth. It means IBE outperforms other criteria in GMM/GMR optimisation. 

 
Fig. 13: Reproduced paths obtained by IBE, BIC, 𝑙𝑛𝐾𝐵𝐼𝐶 and ||Eudis||. 

To qualitatively evaluate the results, curvatures are introduced. Fig. 14 illustrates the curvatures of 

some selected areas of the paths generated based on the criterion of IBE, BIC and ||Eudis|| in Fig. 13. 
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Fig. 14: Curvatures (curves projected on the x-y plane) of the examples in Fig. 13. 

In the pick-and-place task, the reproduced path should be adaptive with a significant change of a 

start position in a dynamic manufacturing situation. The adaptive path calculated through the B-spline 

based cut-in algorithm is shown in Fig. 15. The start point is a. The purple curve passing through a and 

o3 shows the adaptive cut-in path.  

 
Fig. 15: A reproduced path adaptive to the start point using the B-spline based cut-in algorithm. 

5.2 Case study 2 

(a) Curvatures for Area 1 (BIC and IBE)                               (b) Curvatures for Area 2 (BIC and IBE) 

(c) Curvatures for Area 3 (BIC and IBE)                             (d) Curvatures for Area 4 (||Eudis|| and IBE) 

(e) Curvatures for Area 5 (|Eudis|| and IBE)                         (f) Curvatures for Area 6 (|Eudis|| and IBE) 



In Fig 16, three reproduced paths and demonstration paths for the second case study are shown. S-

shape reproduced paths based demonstrated paths were established for task accomplishment and 

obstacle avoidance. The best results of S-shape demonstration paths using BIC, ||Eudis|| and IBE in 

terms of the number of Gaussian clusters are (15, 13, 7). The same conclusion can be drawn as the case 

study 1. That is, it clearly shows that the number of Gaussian clusters obtained for the IBE criterion is 

the smallest and thereby more efficient in computing compared with BIC and ||Eudis||.  

 
          Fig. 16: Demonstrations paths and reproduced paths. 

Fig. 17 shows reproduced paths optimised by using the IBE, BIC, ||Eudis|| and 𝑙𝑛𝐾𝐵𝐼𝐶 

respectively. It can be observed that the reproduced paths optimised by using the four criteria all retain 

the characteristic ‘S’ shape. Similarly as the first case study, it also clearly indicates that the paths by 

using BIC and ||Eudis|| have some unsmooth features such as redundant twists and sharp turns in the 

paths (over-fitting) while the path obtained by 𝑙𝑛𝐾𝐵𝐼𝐶 lost a feature (under-fitting). The criterion of 

IBE balances the aspects and demonstrates a better result. 

 
Fig. 17: Reproduced paths obtained by using different criteria. 

(a) Path using IBE                                                                    (b) Path using BIC                                 
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         (c) Path using 𝑙𝑛𝐾𝐵𝐼𝐶                                                            (d) Path using ||Eudis||      
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Fig. 18 illustrates the curvatures for the selected areas of the paths generated based on the criterion 

of IBE, BIC and ||Eudis|| in Fig. 17. 

 
Fig. 18: Curvatures (curves projected on the x-z plane) of the examples in Fig. 17. 

The SA-RL optimisation algorithm with IBE can effectively optimise the number and parameters 

of Gaussian clusters. In the actual task execution, the algorithm could obtain the global minimum 

solution within 10 steps. To show the effectiveness of the SA-RL optimisation, it was compared with a 

SA and a SA enhanced with a mutation operation. The probabilities of obtaining a global minimum 

solution for the algorithms are shown in Table 3. It clearly shows the advantage of the SA-RL 

optimisation algorithm in identifying a global minimum solution in terms of high success rate. 

Table 3: The success rates of obtaining a global minimum solution using different algorithms.  

Task Algorithm Success rate of obtaining minimum solutions  

Case study 1 

 

SA 65% 

SA-RL 93% 

Case study 2 SA 68% 

 SA-RL 90% 

GMM is calculated by the K-means and EM algorithms. The quality of the reproduced path can 

directly reflect the algorithm quality of GMM, K-means and EM. Therefore, the evaluation of GMM 

can be based on the variance analysis of demonstration paths (as a training set) and the reproduced path 

(as a testing set). The details are shown in Table 4 to Table 7 (the research performed variance analysis 

to each point on the two case studies, i.e., five demonstration paths and S-shaped demonstration paths). 

Table 4: Variances results with no Gaussian noises for Case study 1. 

Paths Element/criterion x y z 

Demonstration path 
Average 16837.04 90.58 1309.93 

Maximum 18247.65 247.07 1347.57 

Reproduced path and 

demonstration paths 
Only BIC 6.19 5.30 6.62 

Table 5: Variance results with Gaussian noises for Case study 1. 

Paths Element/criterion x y z 

Demonstration path Average 16881.85 175.66 1378.54 

(a) Curvatures for Area 1 (BIC and IBE)          (b) Curvatures for Area 2 (BIC and IBE)       (c) Curvatures for Area 3 (|Eudis|| and IBE) 



Maximum 18279.96 344.77 1439.43 

Reproduced path and 

demonstration path 
IBE 5.89 4.11 5.66 

Table 6: Variance results with no Gaussian noises for Case study 2. 

Paths Element/criterion x y z 

Demonstration path 
Average 14803.39 5065.06 116.55 

Maximum 17091.98 6002.62 165.5 

Reproduced path and 

demonstration path 
Only BIC 41.69 135.74 25.81 

Table 7: Variance results with Gaussian noises for Case study 2. 

Paths Element/criterion x y z 

Demonstration path 
Average 14836.19 5126.42 172.71 

Maximum 17177.39 6051.14 222.68 

Reproduced path and 

demonstration path 
IBE 11.61 131.14 1.45 

    In Tables 4-7, “Average” refers to the mean of the variance of each type of demonstration path 

(five demonstration paths /S-shaped demonstration paths), “maximum” is the extreme variance in each 

dimension (x, y or z) of the demonstration paths. It shows that the variance of the scattered data with 

Gaussian noises is slightly larger than that of the original demonstrations. The reason is that the data 

distributions of the original demonstrations are changed during the scattering process, which inevitably 

generates differences between the data thereby increasing the variance. At the same time, the variance 

(to each point) between the demonstration paths and its reproduced path is calculated based on BIC (no 

Gaussian noises) and IBE (Gaussian noises added). The variance for the reproduced path calculated by 

IBE is slightly smaller than that calculated by BIC. Compared with the appropriate state calculated by 

IBE, BIC contains some uncontrollable redundant turns, which further increases the difference between 

the reproduced path and the demonstration paths. Therefore, the overall variance calculated by IBE is 

smaller than that calculated by BIC. 

5.3 Discussions  

According to the above results, the appropriate parameters for Gaussian noise can eliminate errors 

from human demonstrations, e.g., smoothening reproduced paths. Randomly generated parameters of 

Gaussian noise may not obtain the best GMM. Therefore, BIC and ||Eudis|| based IBE and the SA-RL 

optimisation process are designed to identify the best parameters. Among the processes, there are three 

topics that need further discussion. 

(1) The recommendation of the parameters of Gaussian noises (𝝁𝒏𝒐𝒊𝒔𝒆, 𝝈𝒏𝒐𝒊𝒔𝒆) 



𝝁𝒏𝒐𝒊𝒔𝒆 is the mean, which controls the translation of the point cloud of Gaussian noises. 𝝈𝒏𝒐𝒊𝒔𝒆 is 

the variance, which controls the degree of deviation of the point cloud around the mean. In other words, 

𝝈𝒏𝒐𝒊𝒔𝒆 decides the scattering degree of Gaussian noises added into demonstrations. A larger 𝝈𝒏𝒐𝒊𝒔𝒆 

makes the area of the point cloud bigger, and vice versa. While 𝝁𝒏𝒐𝒊𝒔𝒆 is not for scattering the data, 

𝝈𝒏𝒐𝒊𝒔𝒆 plays a major role in forming the point cloud of Gaussian noises. This result shows that 𝝁𝒏𝒐𝒊𝒔𝒆 

has a smaller effect on the smoothness and correctness of reproduced paths than 𝝈𝒏𝒐𝒊𝒔𝒆. At the same 

time, a larger 𝝁𝒏𝒐𝒊𝒔𝒆 will cause the overall displacement of demonstration paths, which are not preferred. 

It is worth noting that Gaussian noise is added into three dimensions respectively, and then integrate 

them into Gaussian noise points. Therefore, Gaussian noise can be independently controlled in task-

relevant dimensions. That is, Gaussian noise can be added for a certain dimension or the entire data. At 

the same time, if there is a requirement for the variance of the data, the scope of 𝝈𝒏𝒐𝒊𝒔𝒆 should be further 

discussed. Therefore, it suggests that when initialising the search range, the range of 𝝁𝒏𝒐𝒊𝒔𝒆 should be 

limited to a small scope while the range of 𝝈𝒏𝒐𝒊𝒔𝒆 can be designed to be relatively large. 

In this research, Gaussian noises are added in the x, y, and z dimensions for generic conditions. 

Nevertheless, adding Gaussian noises could increase potential collision risks between an updated 

regression path and obstacles. For instance, as shown in Fig. 19, for a narrow passage problem, it would 

generate collisions if Gaussian noise is added along the axis (Y axis in this example) that is orthogonal 

to the passage direction. 

 

Fig. 19: A narrow passage problem where Gaussian noise-enhanced path could generate collisions. 

In this research, for the strategy of adding Gaussian noise, collision avoidance from obstacles is 

not fully considered yet. Thus, the limitation of the approach is that it could be incompetent when 

addressing some complex practical situations such as the above narrow passage problem and other 

complex situations. A further work, which is undertaken by the authors and to be reported in near future, 

is that adding Gaussian noise is modelled as a constraint-based optimisation problem. In the model, the 

constraint is that the regression path generated from demonstrations with Gaussian noise should avoid 

obstacles. That is, 

Minimise: 𝐼𝐵𝐸 =
𝑙𝑛𝐾∙𝐵𝐼𝐶

𝑠𝑓
+ ||𝐸𝑢𝑑𝑖𝑠|| 

Subject to: Distance (path,  obstacles) ≥ 𝜃 
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where Distance (path, obstacles) refers to the shortest distance between the regression path and 

obstacles, and 𝜃 is a pre-set threshold that is the minimum value to allow the end-effect of a cobot to 

move along the regression path without collisions with the obstacles. 

In the future work, the SA-RL optimisation algorithm presented in this research will be further 

enhanced by considering the constraint for obstacle avoidance during adding Gaussian noise. 

(2) The sf term of IBE 

sf is the scaling factor, and its main purpose is to scale the BIC value in the IBE criterion. Experiment 

results showed that the variance of BIC is larger than that of ||Eudis||. Meanwhile, after adding the 

penalty term, the result of IBE is severely biased. It is important to choose a proper sf for good 

performance of the algorithm. Experimental results showed that the value of sf has good robustness 

within a certain range, the optimal value range of sf was determined to be around the standard deviation 

(BIC) divided by the standard deviation of ||Eudis||, that is, 𝑠𝑓 =
𝑆𝑡𝑑(𝐵𝐼𝐶)

𝑆𝑡𝑑(𝐸𝑢𝑑𝑖𝑠)
. The results for the two case 

studies are shown in Fig. 20 and Fig. 21, respectively. 

 
Fig. 20: sf for Case study 1. 

 
Fig. 21: sf for Case study 2. 

(3) Comparison of optimisation criteria 

On one hand, if only BIC is considered as the optimisation criterion, the result will be biased towards 

zero variance. Since demonstration paths are in low entropy without Gaussian noises, it has a lower 
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BIC value and the number of Gaussian clusters would be greater. This can result in more zigs in 

reproduced path. Such a path is not satisfactory. On the other hand, if ||Eudis|| is used for consideration 

only, it will choose a reproduced path that is the most similar to demonstration paths, i.e., a path with 

the minimum ||Eudis|| value. 

Smoothness is an important factor to ensure the quality of a reproduced path. There could be some 

trembles in demonstration paths by human operators, leading to an unsmooth reproduced path. Thus, 

only using Eudis is not sufficient to ensure the smoothness of a reproduced path. Thus, ||Eudis|| is not 

conducive to eliminating human errors in demonstrations as well. Thus, Gaussian noises are designed 

addressing not only the over-/under-fitting issue but also the potential un-smoothness issue by adding 

“deviating” constructive points to repair trembles. IBE, which incorporates BIC, Gaussian noises and a 

scaling factor, is designed as an optimisation criterion to support the SA-RL optimisation algorithm to 

select the most appropriate reproduced path. That is, by using IBE, the above aspects are 

comprehensively assessed and balanced so that it can conclude that IBE is the best choice. In the case 

studies, curvatures are calculated to evaluate the smoothness and compare the results obtained using 

BIC, Eudis and IBE. Experimental results prove that IBE outperformed other criteria. 

Meanwhile the smoothness of an adaptive reproduced path is further ensured owing to the 

introduction of NURBS and its C0-C2 continuity. 

(4) Analysis of the appropriate number of demonstrations 

  In this research, the appropriate number of demonstrations was trialled using the case studies. It 

was concluded that too many demonstration paths are not recommended. There are three reasons: 1) in 

the same demonstration area, if there are many demonstration paths, i.e., massive data, it will consume 

more computing resources; 2) the role of Gaussian noises is to eliminate demonstration errors and 

expand the demonstration area, so that excessive demonstration paths are not necessary; 3) setting up a 

large number of demonstrations is also time-consuming. Therefore, for manufacturing applications in 

relative complexities, 4-7 demonstration paths should be sufficient and therefore recommended. 

In the research, ||Eudis|| is employed to measure the similarity between a demonstrated path and a 

reproduced path. This requires the reproduced path to have the same number of time-step points in 

corresponding to those of the demonstration path one-by-one. In applications, GMR is adjustable to 

adding or removing some intermediate points to meet the requirement of each specific task. 

6. Conclusions 

GMM/GMR based LfD approaches are useful technologies to support humans in operating cobots 

intuitively. However, the effectiveness of the approaches could be crippled by potential issues such as 

under-/over-fitting in reproduced solutions. To tackle the issues, this paper presents a novel optimised 

approach to improve GMM/GMR so that LfD enabled cobots can carry out a variety of complex 

manufacturing tasks in a robust and adaptive means. In the research, innovative strategies are developed, 

analysed and validated. Firstly, a Gaussian noise strategy is introduced to enhance demonstrations by 



scattering data clouds. Based on it, a SA-RL based optimisation algorithm with an effective optimisation 

criterion (i.e., IBE) is then developed to eliminate under-/over-fitting issues in GMM/GMR. That is, 

GMM/GMR can achieve refinement in terms of important feature preservation and smoothness in 

reproduced paths. Finally, a B-spline based cut-in algorithm is integrated with GMR to improve the 

adaptability of reproduced paths for dynamic manufacturing tasks. Case studies were conducted and 

experimental analyses highlighted that this approach was boosted by the strategies and algorithms. 

Computational efficiency, solution quality and adaptability were significantly improved, and the 

potential applicability of the approach to practical manufacturing scenarios were clearly demonstrated. 

In near future work, research will be conducted in the following aspects: 

• For GMM/GMR, it is important to develop a sensible strategy to handle complex obstacles in 

practical situations, such as a movable human operator during operations; 

• Different distance criteria such as the Mahalanobis distance will be carefully evaluated and 

compared in future research; 

• Our future research will also consider the constraints of orientation, singularity and accessibility as 

well as robotic kinematics and dynamics in the optimisation; 

• It is essential to consider validating the research in more complex industrial applications, including 

assembly and disassembly for complex products. 
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