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Abstract—The emergence of new nanoscale technologies has
imposed significant challenges to designing reliable electronic
systems in radiation environments. A few types of radiation like
Total Ionizing Dose (TID) effects often cause permanent damages
on such nanoscale electronic devices, and current state-of-the-
art technologies to tackle TID make use of expensive radiation-
hardened devices. This paper focuses on a novel and differ-
ent approach: using machine learning algorithms on consumer
electronic level Field Programmable Gate Arrays (FPGAs) to
tackle TID effects and monitor them to replace before they stop
working. This condition has a research challenge to anticipate
when the board results in a total failure due to TID effects.
We observed internal measurements of the FPGA boards under
gamma radiation and used three different anomaly detection
machine learning (ML) algorithms to detect anomalies in the
sensor measurements in a gamma-radiated environment. The
statistical results show a highly significant relationship between
the γ radiation exposure levels and the board measurements.
Moreover, our anomaly detection results have shown that a One-
Class Support Vector Machine with Radial Basis Function Kernel
has an average Recall score of 0.95. Also, all anomalies can be
detected before the boards stop working.

Index Terms—Machine Learning, Anomaly Detection, Gamma
radiation, Field Programmable Gate Arrays, TID

I. INTRODUCTION

One of the biggest challenges in the European Union is
the cleaning of nuclear waste [1]. This task involves handling
and moving extreme toxic material contaminated with different
types of ionizing radiation. Unfortunately, higher doses of
radiation harm the human body; therefore, the cleaning process
should be taken with much precaution. Luckily, most of this
work can be done by robots, but sadly the electronic devices
controlling them are also susceptible to radiation. Remarkably,
many artificial intelligence algorithms used in robots heavily
rely on high-speed processors or graphics processing units
(GPUs) which leads to significant growth in reliability issues
due to the nature of the nanoscale technologies used in those
chips,

One can categorize the radiation consequences on contam-
inated sites into two broad types: permanent and transient
effects. One example of the permanent effects is the Total
Ionizing Dose (TID), while Single Event Upset (SEU) is an
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example of transient effects. TID effect is a phenomenon that
causes permanent damage, which inevitably, at some point,
is going to result in total failure of the electronics. TID effects
can only be minimized to extend the system life. The litera-
ture has come up with special hardened devices specifically
targeting this effect [2], [3]. Typically, these devices are much
more expensive than unhardened ones. On the other hand,
SEUs are transient effects that cause bit-flips on memory
elements. For example, one of the most employed solutions
for radiation environments, especially for space applications,
is Field Programmable Gate Arrays (FPGAs) due to their
reconfiguration capability and performance aspects. FPGAs
are predominantly used for these applications [4]–[6] as they
allow reconfiguration and thus hardware adaptability to deal
with most transient effects.

The underlying idea of this paper is that instead of using an
approach with radiation-hardened devices, we adopt consumer
electronic level COTS (commercial off-the-shelf) devices and
then monitor, manage and replace them with healthy ones
before they stop working. This condition brings us a research
challenge to anticipate when the board results in a total failure
due to radiation, specifically TID effects.

In this paper, we first employ a statistical analysis of the
collected data to prove that the measured values of the board
under radiation show statistical significance compared to a
scenario without radiation. Later, the paper tries to answer
whether it is possible to predict when the board will stop
working due to radiation with reasonable accuracy. For this
purpose, we tested a low-cost COTS unhardened consumer
electronic level 28nm FPGA used in many fault-tolerant tech-
niques for transient radiation effects. We employ this board
under gamma (γ) radiation and log its behaviour.

The monitoring of these boards needs to be executed with an
enhanced approach. The paper shows that using simple tech-
niques to observe voltage and temperatures may not indicate
that the board will stop working. For example, one widely
used data analysis tool is R control charts. This type of chart,
popularly known as a control chart, monitors the mean and
range of normally distributed variables simultaneously when
samples are collected at regular intervals. Such a technique
uses upper and lower control limits (UCL and LCL) to monitor
the behaviour of the variables. Still, it may not be sufficient to
indicate that a given board is behaving abnormally. A few data
points outside the operational limits caused by radiation do not
suggest that the board will stop operating. This paper shows
that this might take a few minutes or more than one hour. For
this reason, we employ state-of-the-art machine learning (ML)
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techniques to understand and try to predict when the board is
behaving abnormally. Authors in [7] reviews works that used
ML for failure prediction in industrial mechanical systems for
the last decade and identify opportunities for future research,
although there is no focus on electronics.

The novelty of this works is three-folded: First, this is the
first study to monitor and measure voltages and temperatures
on a consumer electronic level SRAM-based FPGA SoC (Sys-
tem on Chip) under γ radiation. Second, this is the first study
performing a quantitative/statistical analysis of the effects of
gamma radiation on voltages and temperatures of an FPGA
and then compare to an environment without radiation. Finally,
this is the first work using machine learning algorithms trying
to predict when the board will be rendered in-operational by
gamma radiation through the observation of temperature and
voltage values only.

The paper is organized as follows. Section III details the
hardware setup to monitor and test the boards under ex-
periment, later presenting an example where the proposed
technique might be used. Section II reviews the state-of-the-art
of related techniques. Section IV explains the statistical anal-
ysis while Section V details the employed machine learning
techniques and how to measure its accuracy. Section VI details
the experiments carried out under γ radiation and how the
data was organized to feed the machine learning algorithms.
Finally, Section VII evaluates, compares and discuss the
results, and Section VIII draws conclusions and future plans.

II. RELATED WORK

As the sophistication of embedded systems grows, their
vulnerability to errors is adversely affected due to an increase
in critical points of failure. Adopting fault mitigation or fault
tolerance techniques is vital if FPGAs are used in radiation en-
vironments. Fault tolerance techniques that enhance embedded
processor reliability can be categorized as hardware-, software-
and hybrid-based techniques [8].

The hardware-based techniques, which mainly rely on spa-
tial redundancy, provide two or more instances of a hardware
component, such as processors, memories, buses or power
supplies, for protection against soft errors. This class of
techniques include Triple Modular Redundancy (TMR) [9],
Duplication with Comparison (DWC) [10] and hardware mon-
itors [11] which incorporate watchdog or checker modules
to monitor the system and detect errors by verifying the
control-flow related memory accesses of the target processor.
These techniques can protect the system from errors in the
computation outputs, i.e. SDCs, as exemplified in [12].

Software-implemented hardware fault tolerance (SIHFT)
approaches handle hardware malfunctions by merely shielding
the software without any hardware alteration. These techniques
rely on adding redundant software code for comparison to
detect errors. However, they exhibit a high-performance over-
head, which may not be viable for some real-time systems.
These kinds of techniques, such as ABFT [13], HETA [14]
and S-SETA [15], detect control-flow faults leading to FIs,
which manifest themselves as hangs or crashes, and then place
the system into a fail-safe state. Note that both hardware- and

software-based techniques are not capable of correcting 100%
of the errors, but rather detecting them to avoid a failure that
would have adverse effects on the entire mission. Furthermore,
they protect the system either from SDCs or FIs, but not both.

The hybrid techniques are the ones that use a SIHFT
method combined with a hardware intellectual property (IP),
which performs consistency checks in the processor, making
them effective against both SDCs and FIs. For instance, the
lockstep technique is a hybrid fault-tolerance technique based
on software and hardware redundancy. It employs the concepts
of checkpointing and recovery mechanisms (e.g. roll-back
recovery, roll-forward recovery) at the software level, and pro-
cessor replication and checker circuits at the hardware level, as
explained in the following sections. Therefore, it is capable of
both error detection and correction. The lockstep technique’s
most significant merit is its ability to detect and correct both
SDCs and FIs, unlike many other fault tolerance techniques.
Several researchers have developed and implemented their
lockstep technique version, such as those in [16]–[20], to make
a range of processors resistant to radiation-induced soft errors,
extensively analyzed and compared in [21].

The Authors in [22] evaluated a (60C) gamma-ray radiation
testing of a space application FPGA, namely the RT4G150
from Microsemi. Microsemi is a qualified manufacturers list
(QML)-certified manufacturer of high-reliability FPGAs for
space applications, while RTG4 is the 4th generation family
of radiation-tolerant flash-based FPGAs. The work assesses the
degradation of the flash cell through its threshold-voltage (VT )
shift. For space applications, dynamic burn-in (DBI) testing
is used to evaluate the long term reliability of the device.
Among all product screening tests employed by many business
categories, including automotive, aerospace, and defence, the
burn-in (BI) test is one of the most effective tests for early
failure detection. The work indicates that RTG4 shows a shift
of the programmed Pflash cell VT post-DBI is observed. The
programmed Pflash VTshift is due to voltage degradation,
resulting from approximately 1.75% degradation of the DAC’s
output. It is essential to emphasize that this work does not
monitor the temperature of the FPGA, this being out of the
scope of the project.

In [23] Authors evaluated a COTS FPGA, namely Mi-
crosemi ProASIC3E A3PE1500. Despite their low reliability,
the authors state that this FPGA has been considered a
promising alternative to replace radiation-hardened ones. The
paper analyses the Single-Event Upset (SEU) sensitivity of
the FPGA for a combined set of Electromagnetic Interference
(EMI) and TID tests. This component was under the pre-
qualification process for use in some satellites of the Brazilian
Space Program. The TID test was performed by exposing the
FPGA to a 10-keV effective energy X-ray beam. The device
was roughly exposed to the TID expected to be cumulated on
satellite electronics after operation for a period of 4 or 5 years
in a given orbit, as specified by the Brazilian National Institute
for Space Research. The conclusion is that FFs present a
lower SEU-immunity degradation when exposed to conducted-
EMI (5.6%) than SRAM cells (resp. 6.3%); the latter memory
elements are intrinsically more robust to EMI since they
present a much lower cross-section than FFs. Note that this
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work does not monitor the temperature of the FPGA as well.
Tarrilho et al. [24] analyze the behaviour of flash-based

FPGA from Actel under TID. In this work, a design with
an embedded system composed of a MIPS microprocessor
hardened with fault-tolerant techniques is employed on a
COTS flash-based FPGA ProASIC3E family from Actel. The
TID experiment with no reconfiguration monitored the power
supply current during radiation and the FPGA temperature.
They reported that the Icc started to change after 45 krad(Si)
when some modules stopped working. The current increases
promptly and reaches 1.5 times the original current just before
65 krad(Si). The temperature and current drop abruptly when
most modules fail around 65 krad(Si). The paper primarily
showed the failure dose for some internal modules and did
not present when the current starts behaving abnormally.

In [25] evaluate TID effects on an SRAM-based COTS
FPGA. They combine hardware and software techniques to
perform on-chip irradiation via a 90Sr/90Y electron source and
assess the degradation of the system. The experiment consists
of two executions of Zynq XC7Z020T chips hosted by two
distinct Zedboards. The analysis focuses on ring oscillators
(ROs) implemented on the programmable logic of the FPGA
for estimating/predicting the performance degradation due
to the TID effects. The authors show specifically the RO
frequency according to temperature, current and accumulated
dose. The authors indicate that specifically for COTS 28-nm
Zynq-7000 chips, the results show increased TID tolerance
beyond the Mrad level. The tests were conducted with the
FPGAs surviving up to 2 Mrad(Si). In summary, this work
shows that COTS FPGAs can survive significant amounts of
ionizing radiation, although not displaying the limit, since it
was not the objective of their work.

These papers [22]–[24] summarize most related work for
TID effects in FPGAs. They either focus on flash-based
devices [22], [24] or point out [23] that they could be a
promising alternative for radiation-hardened ones. Also, only
one paper monitors current and temperature, although it is not
the main objective of that paper to correlate or predict the
FPGA stop working.

III. EXPERIMENTAL DESIGN

This section explains the setup, shown in Fig. 1, built to
measure and log all the tested experiments, later detailed in
Section VI. The experimental setup is composed of (i) a laptop
to control, collect and log all data; (ii) a Design Under Test
(DUT) board and (iii) a special monitoring board to collect the
data from it. The only electronic device exposed to radiation
is the DUT, that being the reason for the monitoring board,
which is outside the radiation cavity and connected to the DUT
with voltage and temperature probes.

The DUT is a MiniZed board, depicted in Fig. 2, a widely
available and, most used, equipped with a low-cost (≈£100)
Xilinx 28nm Zynq FPGA. The monitoring board is an Ar-
duino board coupled with temperature and voltage sensors,
which during the experiments are located outside the radiation
chamber; therefore, it can be reused.

The MiniZed board [26] (Fig. 2) is a development
board containing a Xilinx Zynq single-core SoC XC7Z007S-

Fig. 1. Block diagram of the experimental setup. Only the DUT is under
radiation.

Fig. 2. Employed a Minized board with connectors attached to monitor
voltage and two thermocouple pairs to measure temperatures.

1CLG225C [27] with 512MB DDR3L micron storage, a
128MB QSPI flash and 8GB eMMC. The FPGA contains a
programmable logic and a Programmable Logic (PL)(FPGA)
and Processing Subsystem(PS) (ARM Cortex-A9). The FPGA
chip is fed by a power management integrated circuit (PMIC)
Dialog DA9062 [28] which controls five different voltages
[29]: 0.675, 1.0, 1.35, 1.8 and 3.3 volts, detailed in Table I.

For example, VDDR3 supplies the voltage to the DDR3
memory of the board. The monitoring board is organized to
monitor these voltages. We also use a thermocouple Wire to
monitor the temperature on the surface of both FPGA and
PMIC. This setup is arranged so that only the DUT and wires
connecting to the monitoring board are inside the radiation
chamber; therefore, the radiation does not interfere with the
monitoring electronics.

The monitoring board is an Elegoo R3 board [30], which is
completely compatible with the official Arduino R3 version.
The board is composed of an Atmel ATMEGA328P chip
[31] and coupled with five DC0-25V voltage sensors and two
Digilent Pmod TC1 K-Type thermocouple modules [32]. The
thermocouple sensor module works with a temperature range
of -73°C to 482°C with a 0.25°C resolution. The voltage
sensor works with a range of DC 0 to 25 V with a resolution of
0.01 V. The board collects one reading each second, operating
in a 1 Hz frequency. The data is sent to a laptop and stored
for later computation. In parallel, the MiniZed board runs
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TABLE I
TEMPERATURE AND VOLTAGE MONITORED VALUES

Symbol Expected value Description

TFPGA - FPGA temperature

TPMIC - PMIC temperature

Vcore 1 V Core supply

Vaux 1.8 V Auxiliary supply

Vddr3 1.35 V DDR3

Vtt 0.675 V Vtt

Vcco 3.3 V Vcco / board voltage

2
3

1

Fig. 3. The monitoring board composed of an Elegoo R3 board (1) coupled
with voltage (2) and temperature (3) sensors.

a compute an intense set of operations whose outputs are
sent to the host laptop through a serial interface for a sanity
check aiming to determine if the board is still operational.
When the board stops sending data, it is considered to be
dead. Later, all the boards used on experiments were tested
individually outside the radiation chamber to ensure they were
inoperational. We tried to download the provided sanity check,
and none of the boards responded to the cable connection
attempts, confirming that the boards were dead.

A. Motivational example

Figure 4 shows the measurements of the Minized board
under normal operation. We monitor the power controlling IC
and the FPGA temperature (TPMIC and TFPGA respectively)
and five voltages (Vddr3, Vaux, Vcore, Vtt and Vcco) supplied to
the FPGA. One can see a normal fluctuation in the temperature
and voltages within some bounds. On the other hand, Figure
5 shows the same type of board under gamma radiation,
where the black lines on voltages are the average of the
initial readings. The temperature starts to rise faster, and
voltages operate outside their normal bounds and eventually,
the board stops working. These two simple examples clearly
show that the board is not behaving normally under radiation,
as expected. Later sections try to correlate these behaviours
to predict when the board will stop working. Furthermore,

we would use state-of-the-art machine learning techniques to
evaluate whether it is possible to indicate when a board will
fail based on voltages and temperature sensor readings.
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Fig. 4. Voltage and temperature sensor reading in an environment without
radiation. Temperature and voltage values operate inside certain bounds, and
there are few deviations from the mean.
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Fig. 5. Voltage and temperature sensor reading on an environment with γ
radiation. Temperature and voltage values operate outside bounds compared
to a mean without radiation.
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IV. UNDERSTANDING THE STATISTICAL EFFECT OF
GAMMA RADIATION ON MINIZED BOARDS

To examine the effects of different levels of γ radiation on
our boards, we conducted a statistical analysis using measure-
ments for boards that stopped working after being exposed to γ
radiation and for boards used in a non-radiation environment.
To test whether any significant differences occurred in these
measurements, we conducted one-way Multivariate Analyses
of Variance (MANOVA). The first MANOVA test compared
the γ radiation effects on the boards (i.e. 0: the measurements
collected from boards working under γ radiation; 1: measure-
ments obtained from boards on a non-radiation site) as inde-
pendent variable, and sensor measurements, two temperatures
(TPMIC and TFPGA) and five voltages(Vddr3, Vaux, Vcore, Vtt
and Vcco) as dependent variables. The second MANOVA test
involved different γ radiation levels (to which boards were
exposed) as an independent variable (i.e. γ radiation levels
detailed in Table IV) and temperature and voltage as dependent
variables.

The statistical results are presented in Table II and Table III.
The partial eta squared (η2) represents the effect size, deter-
mining how much the relationship will affect the values. On
the other hand, the F-value is the test statistic used to determine
how much one variable is associated with the response. The
factors and interaction effects were analyzed with one-way
analysis using the partial eta squared index of effect size. The
Bonferroni procedure was used here. The definitions in [33]
have been adopted to discuss the effect sizes: small effect
size (η2 ≤ .01), medium effect size (.01 ≤ η2 ≤ .06) and
large effect size (.06 ≤ η2 ≤ .14). The MANOVA levels of
significance are reported using the F-statistics and probability
p. A risk of α of .05 was used in all statistical tests.

TABLE II
RESULTS OF ONE-WAY MULTIVARIATE ANALYSES OF VARIANCE TO

DISCOVER THE SENSORY OBSERVATION DIFFERENCE BETWEEN
FUNCTIONING AND NON-FUNCTIONING SENSOR BOARDS USED IN

RADIATION AND NON-RADIATION ENVIRONMENTS. η2 IS THE PARTIAL
ETA SQUARED MEASURE OF EFFECT SIZE.

?p < .05,?? p < .01,??? p < .001. THE TABLE DEMONSTRATES THE
STATISTICAL EFFECT OF THE MAIN FACTOR. THE ERROR DEGREES OF

FREEDOM WAS THE SAME FOR EACH DEPENDENT VARIABLE.

Source Dependent Variable df F η2

γ Radiation
Functioning

TPMIC 1 33051.493??? .214

TFPGA 1 18569.785??? .133

Vaux 1 1040594.28??? .896

Vddr3 1 463097.020??? .793

Vcore 1 30362.611??? .200

Vtt 1 19258.336??? .137

Vcco 1 87822.015??? .420

Error 121226

A. Comparison of boards behaviour on radiation and non-
radiation sites

There was a highly significant effect of the functioning
(Functioning) of the boards deployed in radiation site when
compared to a non-radiation sites in Table II. Overall, there

TABLE III
RESULTS OF ONE-WAY MULTIVARIATE ANALYSES OF VARIANCE TO

DISCOVER THE SENSORY OBSERVATION DIFFERENCE FOR SENSOR BOARDS
AT DIFFERENT GAMMA RADIATION LEVELS.

?p < .05,?? p < .01,??? p < .001. THE TABLE DEMONSTRATES THE
STATISTICAL EFFECT OF THE MAIN FACTOR. THE ERROR DEGREES OF

FREEDOM WAS THE SAME FOR EACH DEPENDENT VARIABLE.

Source Dependent Variable df F η2

γ Radiation TPMIC 6 9721.465??? .325

TFPGA 6 4066.381??? .168

Vaux 6 197999.152??? .907

Vddr3 6 94615.951??? .824

Vcore 6 6617.718??? .247

Vtt 6 4006.448??? .165

Vcco 6 148.701??? .577

Error 121221

was highly significant effect on the functioning of the sensor
boards with very large effect sizes when the measurements col-
lected from radiation and non-radiation sites: F (1, 121226) =
33051.493, p < .001, η2 = .214 for temperature 1;
F (1, 121226) = 18569.785, p < .001, η2 = .133 for tempera-
ture 2; F (1, 121226) = 1040594.28, p < .001, η2 = .896 for
voltage 1; F (1, 121226) = 463097.020, p < .001, η2 = .793
for voltage 2; ; F (1, 121226) = 30362.611, p < .001, η2 =
.200 for voltage 3; ; F (1, 121226) = 19258.336, p < .001,
η2 = .137 for voltage 4; ; F (1, 121226) = 87822.015, p <
.001, η2 = .420 for voltage 5.

Our results indicate a significant difference in the obtained
measurements between the radiation and non-radiation sites.
This was an expected result, but this is the first work reporting
these findings to the best of the authors’ knowledge. It is im-
portant to emphasize that since it corroborates the underlying
assumption of the proposed analysis of this paper.

B. The effect of different γ radiation levels

There was a highly significant effect of γ radiation lev-
els (γ Radiation) with a very large effect sizes on the
sensor board measurements in Table III: F (6, 121221) =
9721.465, p < .001, η2 = .325 for temperature 1;
F (6, 121221) = 4066.381, p < .001, η2 = .168 for tempera-
ture 2; F (6, 121221) = 197999.152, p < .001, η2 = .907 for
voltage 1; F (6, 121226) = 94615.951, p < .001, η2 = .824
for voltage 2; ; F (6, 121221) = 6617.718, p < .001, η2 =
.247 for voltage 3; ; F (6, 121221) = 4006.448, p < .001,
η2 = .165 for voltage 4; ; F (6, 121221) = 27547.584, p <
.001, η2 = .577 for voltage 5.

The posthoc analyses showed highly significant differences
between most sensors when exposed to different γ radiation
levels p < .001. However, there were no significant differences
in the following interactions. For temperature 1 measurements,
there was no significant difference between 2469 and 7707 γ
radiation levels. For temperature 2, there was no significant
difference between 0 and 5871 γ radiation levels, and there
was only a significant difference between 7707 and 16966 γ
radiation levels p < .05. For voltage 1, there was no significant
difference between 2469 and 5137 and 5871 γ radiation levels.
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Similar to temperature 2 results, there was only a significant
difference between 7707 and 16966 γ radiation levels for
voltage 1 measurements. For voltage 2 measurements, there
was a significant difference between 7707 and 16966 γ radi-
ation levels (p < .05). For voltage 3 measurements, there was
no significant difference between 1209 and 7707 γ radiation
levels and between 5137 and 5871 γ radiation levels. For
voltage 4 measurements, there was no significant difference
between 1209 and 7707 and 16966 γ radiation levels. For
voltage 5 measurements, there was no significant difference
between 2469 and 5971 γ radiation levels and between 7707
and 16966 γ radiation levels.

These results indicate that it is impossible to correlate a
given voltage to a radiation level and create a relationship
between them. Different sensor inputs would have different
weights depending on the radiation rate level. For this reason,
more elaborate approaches, such as machine learning algo-
rithms, would have better results since there is a tuning of
inputs through experience, in this case, the historical readings
of temperature and voltage.

V. ANOMALY DETECTION WITH MACHINE LEARNING
MODELS

Typically, anomalous data in this study are connected to
problems or rare events such as abnormal temperatures or
voltages or malfunctioning components. This connection may
imply which data points can be considered anomalies to
identify these events that are typically useful for predicting
the early failure of the system. This section explores three
machine learning models: 1) Elliptical Envelope, 2) Local
Outlier Factor, 3) One-Class Support Vector Machine as our
anomaly detectors.

A. Machine Learning Models

1) Elliptical Envelope: Elliptical Envelope is a Gaussian
distribution-based method that forms the key data parameters
into an underlying multivariate Gaussian distribution expres-
sion. In short, it attempts to identify a boundary ellipse that
covers most of the data. Therefore, any data not within the
ellipse can be classified as an anomaly. The FAST-minimum
covariance determinant is used to estimate the size of the
ellipse, which selects non-overlapping samples of data and
computes the mean u and covariance matrix C. Therefore,
Mahalanobis distance dMH for the input data vector x can be
calculated using the following equation, and the data are then
ordered ascendingly by dMH [34].

dMH =

√
(x− µ)TC−1(x− µ)

2) Local Outlier Factor: Local Outlier Factor is one of the
Nearest Neighbour based methods for anomaly detection. In
general, normal data are usually grouped in a neighbourhood
that seems dense compared to the abnormal data, which are far
from their close neighbours. To quantify this neighbourhood,
these types of approaches typically use distance-based or
density-based methods, where both ways require a similarity
or a distance calculation to determine whether the data are on

the degree of abnormality or not. We use the Local Outlier
Factor (LOF) abnormal detector in this study [35].

3) One-Class Support Vector Machine: One-Class Sup-
port Vector Machine (OCSVM) [36] is a classification-based
anomaly detection method. Depending on the availability
of labels, it can be divided into one-class and multi-class
classification models. This approach is similar to all other
supervised learning techniques, has two phases: 1) Training
phase and 2) Testing phase. In the training phase, the classifier
is trained using the labelled data, and then the data are
classified as normal or abnormal using the trained model in
the testing phase. In OCSVM, the classification rule for the
linear decision boundary is given as follows:

f(x) = 〈~w, ~x〉+ b

where ~w and b are the normal vector and bias, respectively.
The algorithm is trying to find the rule f within the maximal
geometric margin and then assign a label to a test example ~x.
For example, if f(x) > 0, the label of ~x will be marked as
normal; otherwise, it is labelled anomaly. This optimization
problem can be solved by

min
α

1

2

∑
ij

αiαjK(xi,xj)

where αi is the ith weight, 0 ≤ αi ≤ 1
vl and

∑
i

αi = 1. v

is a variable to control the maximizing the distance between
the origin and the number of data points contained in the
boundary. l is the number of points in the training dataset.
K(xi, xj) is the kernel function, and it is given as follows.

K(x, y) = 〈φ(x), φ(y)〉

where φ maps the training vectors from input space X to a
high dimensional feature space.

A series of mathematical functions, known as the kernel,
is used by SVM algorithms. The kernel function takes data
as input and translates it into the appropriate form. Differ-
ent SVM algorithms use various kernel function types. The
adopted version, OCSVM, uses the Radial Basis Function
(RBF) kernel [37].

B. Evaluation Metrics: Precision, Recall, F1 score

This paper employs three well-known metrics for pattern
recognition/classification to evaluate the machine learning
models: Precision, Recall and F1 score [38]. Precision is the
fraction of relevance among the retrieved instances, while
Recall is the fraction of the total amount of relevant instances.
All these metrics would signify better results as they approach
the value of 1.

In the context of this paper, there are two kinds of data:
annotated and not annotated – data with an anomaly and
without it. The employed models should recognize if the data
are an anomaly or not. Suppose we have a given dataset with
ten anomalies and the remaining data are not an anomaly. A
given ML model identifies eight data points as anomalies, of
which five are anomalies (true positive) while the rest are not
(false positives). The ML model’s precision is 5/8, while the
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Recall is 5/10. In this example, precision means how valid the
results are, while Recall shows how complete the results are.

F1 score is a metric for accuracy. It considers both the
precision and the Recall to compute the score. The F1 score
is then calculated using the harmonic mean of the Precision
and Recall, where an F1 score has its best value at 1 (perfect
precision and Recall).

VI. RADIATION EXPERIMENTS

The experiments took place on the Dalton Cumbrian Facility
(DCF) laboratory, where a γ radiation source is available
[39]. The source is composed of a Cobalt (60C) self-shielded
irradiator that can provide absorbed dose rates of up to 20
kGy/h depending on the distance from the source to the DUT.
The radiation cavity contains three rods, as shown in Fig. 6,
with different dose rates for each one. Thus, different radiation
rates are achieved using various configurations of the available
rods, including lead obstacles to absorb the radiation and/or
positioning the samples at different distances from the sources.

Fig. 6. Minized board inside radiation chamber. The three pipes on the back
contain three radiation rods that are lifted from the ground when the chamber
is closed.

We employ six different experiments, each one using a
separate board (DUT) under radiation – each board will be
referred by its experiment number. Table IV shows each
feature of the experiments where different radiation rates were
applied to see how the boards would behave. The DUT time
is the time between the start of the experiment until the FPGA
board stops sending data through the serial connection. This
time should be considered the operational time of the DUT.
On the other hand, the Monitoring board time is the time from
the start of the experiment until the monitored voltages drop to
zero, which means that the board itself, including the PMIC,
is entirely inoperative. In each experiment, the board is under
a constant radiation rate and stays the same distance from
the rods. Before the actual radiation experiment begins, the
radiation rate is measured using a probe removed afterwards.
For this reason, the probe is inserted, the radiation is released
and measured for one minute, then the experiment is stopped,
and the probe is removed. The radiation rate measured during
that period is assumed to be constant for the whole experiment.

TABLE IV
RADIATION EXPERIMENT FOR THE DUT

Exp. #
Radiation

Rate (Gy/h)
DUT Time Monitoring Board Time

0 1209 1:56:00 2:00:11

1 2469 0:39:14 0:41:31

2 5137 0:23:16 0:27:28

3 5871 0:19:49 0:23:23

4 7707 0:12:39 0:13:39

5 16966 0:06:58 0:07:38

After the experiments, all the boards stopped working.
During the experiments, one can see an increase in the voltage
bounds on all experiments. The interesting point is that the
deviation from the normal bounds does not indicate that the
board will stop working right away. If we take, for example,
the two extremes for the radiation rates, i.e. experiments 0
and 5, one took almost two hours while the other took less
than ten minutes to stop working. Fig. 7 shows that although
experiment 5 exhibits an early change in the bounds of the
voltages, the board can take more than one hour to stop
working. On the other hand, the board might take a few
minutes to stop working with a higher radiation rate after
the first values outside the normal bounds are observed. This
observation leads to a search for a more elaborate way of
predicting when the board will stop working than just watching
voltages outside the normal bounds of operation.

VII. EVALUATIONS

This Section compares the OCSVM method against the Lo-
cal Outlier Factor and Elliptical Envelope methods. OCSVM
copes well with non-linear functions and might be a more
suitable approach for this problem. The section is divided
into four subsections. The first one shows how the data
was preprocessed and explains the methodology used in the
second subsection, where the training set is built. Then, the
third subsection compares the OCSVM against the two other
methods using the training set. Finally, the last subsection
further explores how early we can detect anomalies with
OCSVM.

A. Training and Testing Methodology

This subsection explains the steps to build the training data,
later used to compare different approaches. The objective here
is to compare how the training data would affect the results
rather than comparing different ML algorithms. Hence, we
show the comparison using the OCSVM algorithm.

The first step is to remove as least from the collected
data, all of which are time-stamped. Unfortunately, a few
points show the temperature as zero or undefined (e.g. NaN).
Therefore, all data points for that period were removed, even
if another sensor showed consistent data. These removals do
not interfere with the evaluation since all the data points are
time-stamped.

After the data trimming step, we compare two approaches:
one using seven features (five voltages and two temperatures)
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Fig. 8. Comparison using different features as input for the training data.
Respectively lines show the results using i) seven features (five voltages and
two temperatures) and ii) the same seven features plus the constant radiation
rate.

and one using the same features plus a constant value for the
radiation rate – the rates shown in Table IV. Fig. 8 shows
the precision of the two models with the six experiments.
Using the constant radiation rate as input weakens the results
significantly. Therefore, for further experiments, only voltage
and temperature values are considered.

B. Exploring the best training and testing strategy in a radi-
ation site

At this point, the number of features is defined, we came up
with three training and testing strategies to evaluate, compute
or organize the measured data. The target is to find the right
balance of data points in the training set. The following strate-
gies evaluate trade-offs between a set of experiments employed
and the number of data points. Each strategy represents a data
processing approach, and it is detailed next as follows:

• Strategy 1: Train the model with the first minutes of a
given board and then test on the remaining measurements
of the same board.

• Strategy 2: Train the model with the first minutes of a
set of different experiments and test on the remaining
measurements of all boards.

• Strategy 3: Choose the number of data points that gives
the best results in terms of F1 score.

The first strategy was employed using the first few minutes
of each board and then test on the remaining measurements
on the same board. Fig. 9 shows the results for this strategy.
Even using the same board data and comparing it with the
remaining data does not provide good results. Only board from
experiment 5 shows good scores for F1 and precision.

0

0.2

0.4

0.6

0.8

1

F1 Precision Recall

S
co

re

0
1
2
3
4
5

Fig. 9. Results using each experiment separately as training data.

Because of the weaker results of strategy 1, we decided to
include more boards on the training data. Strategy 2 evaluates
different sets of boards as training data to check how many
we need to include to get the best results. For this strategy,
we trained all combinations sets of two up to all six boards,
i.e. sets of two boards {{0,1}, {0,2}, ... {4,5}}, sets of three
boards {{0,1,2}, {0,1,3}, ... {3,4,5}} and so on. Later we
compared the F1 score for each board separately. Results
shown in Fig. 10 include the worst and best set of boards
only for the sake of space. One can assume that we get better
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results as we feed more information to the model (different
boards). For example, the worst results for sets with two, three
and four boards are much lower than results using five or all
six boards.
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Fig. 10. Using sets of 2, 3, 4, 5 and all boards as training data. Figure showing
only best and worst results for each set.

On the third strategy, we evaluate the effects of the amount
of training data fed into the model. Fig. 11 shows the com-
parison of using the first 300, 360, 420, 480, 520 and all data
points as input for the model. Interestingly, as we feed more
data to the training set, it does not mean we would get better
results. Adding more than 420 points does not increase the
F1 score, and as it shows better average results, we keep this
number of data points as a training set for all experiments.
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Fig. 11. Comparison of training data for input data. Using the first 420 data
points from all experiments show better results. 420 data points represent
roughly seven minutes of data.

C. Comparison of OCSVM with other anomaly detection
techniques

This subsection compares three state-of-the-art machine
learning techniques: i) Elliptical Envelope, ii) Local Outlier
Factor and iii) One Class Support Vector Machine (OCSVM).
These techniques are trained using the proposed dataset,
discussed previously, as inputs.

To compare the anomaly detection results, we first need
to annotate the data showing where the anomalies happened
and then compare with the ML algorithms outputs. We have
calculated the size of the time window where each board

TABLE V
WINDOW TIMES WHERE VOLTAGES EXHIBIT VALUES OUTSIDE USUAL

BOUNDS FOR EACH EXPERIMENT.

Exp. # Window Time

0 74 min

1 18 min

2 07 min

3 07 min

4 06 min

5 03 min

exhibits values outside usual bounds during radiation experi-
ments, visually observing the measured voltage (we could not
observe such values for temperature). Table shows the size
of this window, and associated calculations are displayed for
each board in Table V. As can be seen, the minimum window
size observed is approximately 3 minutes. That is to say that
the last 3 minutes of each experiment is the time where each
board exhibits values outside normal bounds. Therefore, after
adding a safety margin of 2 minutes, we annotate the last
5 minutes of each experiment as anomalies for use in the
training dataset fed into the machine learning algorithms. Five
minutes is roughly equivalent to 300 data points; therefore,
we annotate this number of points as an anomaly. Besides the
observed window size, 300 data points also give the developer
a reasonable amount of time to take action before the board
stops working, e.g., move the computed data to safe storage,
to another computing node in the system or even move it
away from the radiation environment. We can also consider a
different amount of time as annotation, but it would result in
the retraining of the model. Then finally, we can summarize
the training set with the annotation as follows:

• Remove all the inconsistent sensor readings;
• Collect the first 420 data points from all boards (as

justified in Fig. 11);
• We annotate the last 300 data points as an anomaly.
Using that training set, we then employ a multivariate

analysis with seven variables (including five voltage and two
temperature values) to feed the ML algorithms. Fig. 12 sum-
marizes the results for Elliptical Envelope, LOF and OCSVM
algorithms where the F1, Precision, and Recall scores are
shown for each model. OCSVM demonstrates better outcomes
for all scores. It is essential to highlight that the Recall score
for OCSVM is the one for all experiments except number
two, which is a remarkable result, showing an average Recall
score of 0.95 and strong evidence that the model can detect
the relevant results. The recall score in experiment 2 is not
the maximum one but shows a high value (0.842) and will be
discussed next.

D. Exploring how early OCSVM can detect anomalies

As the OCSVM showed the best F1, Precision and Recall
results, this subsection details each experiment separately, as
illustrated in Fig. 13. Each experiment shows in the rows:
(i) the five observed voltages; (ii) two temperatures; (iii)
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Fig. 12. Comparison of machine learning models for the dataset.

anomaly annotation; and (iv) the OCSVM model output (i.e. 0
represents normal data and 1 an anomaly both for annotation
and model output).

Table VI shows that in all experiments except one, the
model marks the abnormal behaviour of the board before the
annotation. This is an exceptional result, indicating that the
model can be used as a suitable indicator/warning before the
board stops working. Note that the ML output for experiment
2 is delayed by only 12 seconds; nevertheless, there still
would be enough time for the board to be saved before it
is permanently damaged.

TABLE VI
TIME SHOWING HOW EARLIER THE OCSVM MARKS THE ANNOTATION

(AROUND 5 MINUTES BEFORE THE BOARD STOPS WORKING). THE MODEL
PREDICTION IS CALCULATED WITH (ANNOTATION - PREDICTION) FROM

FIG. 13.

Exp. # Experiment duration
Model prediction

before the annotation
0 2:00:11 1:43:53

1 0:41:31 0:25:56

2 0:27:28 -0:00:12

3 0:23:23 0:07:04

4 0:13:39 0:06:42

5 0:07:38 0:00:34

Experiment 0 is the longest in time under radiation mainly
because it has the lowest radiation rate among the experiments.
The board took almost two hours to stop working, and it is the
worst result for the model output. Although the model could
point to the anomaly, it has done it earlier, more than one hour
before the board stops working. Experiment 1 has a shorter
execution time, and the model was also capable of predicting
before the anomaly, i.e. 25 minutes before the annotation.
Experiment 2 has one particular behaviour different from the
others. The model output shows one unique point marking as
an anomaly in the first minutes. As this was the only point
and not a continuous trend, we can disregard this result -
one should always observe the trend rather than particular
points. The model then marks only points 12 seconds after
the anomaly annotation. We still consider this a good result
since a few seconds later would still allow time to take action.

In experiments 3, 4 and 5, the model behaves similarly,
marking the anomaly 7, 6 and 0.5 minutes before the annota-
tion, which is a remarkable result. To summarize, all boards

would have been saved since the model can point out before
a board dies completely, thus allowing a few minutes for
the designer to save or transfer the processed data to a safe
environment.

It is essential to point out that the model has a trade-off. As
we gathered more experiments with high radiation rates, five
of the experiments have more than 2000 Gy/h; the model has
been trained with more data for these environments. Therefore
it also performs better, i.e. predicts near the annotation, on
experiments with high radiation rates. As we feed more
information, that is, more experiments in different radiation
rates, the model should perform better.

VIII. CONCLUSION AND FUTURE WORKS

This paper proposed an anomaly detection machine-learning
algorithm to predict when a COTS FPGA would stop working
due to gamma radiation. The OCSVM algorithm showed the
best results in terms of Recall score and was capable of
pointing out 100% of the anomalies before the board stopped
working. Annotating the anomaly before it stops working and
giving time to the designer to take actions allowed to detect
the anomaly before the board dies, considered an extraordinary
achievement since it will enable the designer to use this as an
assumption for future works. This work employed six boards
that were inoperable after the experiments. Using more boards
with different radiation rates can improve the model results.

Future works include using the OCSVM algorithm at run-
time experiments. The proposed approach with DUT and
a monitoring board can also be modified to execute on a
self-contained solution. The Arduino board of the DUT was
used to remove the monitoring board and sensors from the
radiation environment. In a real-case scenario, this would not
be possible. To tackle that approach, the Minized board (DUT)
could use the sensor boards directly and execute the OCSVM
algorithm itself.
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[21] E. W. Wächter, S. Kasap, X. Zhai, S. Ehsan, and K. McDonald-
Maier, “Survey of lockstep based mitigation techniques for soft errors in
embedded systems,” in Computer Science and Electronic Engineering
Conference (CEEC 2019), 2019, pp. 124–127.

[22] N. Rezzak, J. Wang, M. Traas, A. Zerrouki, G. Bakker, F. Xue, A. Cai,
F. Hawley, J. McCollum, and E. Hamdy, “Investigation of tid and
dynamic burn-in-induced vT shift on rtg4 flash-based fpga,” IEEE
Transactions on Nuclear Science, vol. 65, no. 1, pp. 64–70, 2018.

[23] P. Villa, E. Bezerra, R. Goerl, L. Poehls, F. Vargas, N. Medina, N. Added,
V. de Aguiar, E. Macchione, F. Aguirre, and M. da Silveira, “Analysis
of cots fpga seu-sensitivity to combined effects of conducted-emi and
tid,” in 2017 11th International Workshop on the Electromagnetic
Compatibility of Integrated Circuits (EMCCompo), 2017, pp. 27–32.

[24] J. Tarrillo, J. R. Azambuja, F. L. Kastensmidt, E. C. P. Fonseca,
R. Galhardo, and O. Goncalez, “Analyzing the effects of tid in an
embedded system running in a flash-based fpga,” IEEE Transactions
on Nuclear Science, vol. 58, no. 6, pp. 2855–2862, 2011.

[25] G. Lentaris, K. Maragos, D. Soudris, F. Di Capua, L. Campajola,
M. Campajola, A. Costantino, G. Furano, A. Tavoularis, and L. Santos,
“Tid evaluation system with on-chip electron source and programmable
sensing mechanisms on fpga,” IEEE Transactions on Nuclear Science,
vol. 66, no. 1, pp. 312–319, 2019.

[26] “Minized board product brief,” http://zedboard.org/.
[27] “Zynq-7000 SoC Data Sheet,” https://www.xilinx.com/.
[28] “DA9062 Data Sheet,” https://www.dialog-semiconductor.com/.
[29] “MiniZed Power Architecture,” zedboard.org.
[30] “Elegoo R3 board,” https://www.elegoo.com/.
[31] “ATmega Data Sheet,” http://ww1.microchip.com/.
[32] “PmodTC1 Board Reference Manual,” https://reference.digilentinc.com/.
[33] J. Cohen, Statistical power analysis for the behavioral sciences (2nd

ed.). Hillsdale, NJ: Lawrence Erlbaum Associates., 1977.
[34] B. Hoyle, M. M. Rau, K. Paech, C. Bonnett, S. Seitz, and J. Weller,

“Anomaly Detection for Machine Learning Redshifts applied to SDSS
Galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 452,
no. 4, pp. 4183–4194, 2015.

[35] M. Alshawabkeh, B. Jang, and D. Kaeli, “Accelerating the Local
Outlier Factor Algorithm on a GPU for Intrusion Detection Systems,”
in Proceedings of the 3rd Workshop on General-Purpose Computation
on Graphics Processing Units, ser. GPGPU-3. New York, NY, USA:
Association for Computing Machinery, 2010, p. 104–110.

[36] K. A. Heller, K. M. Svore, A. D. Keromytis, and S. J. Stolfo, “One Class
Support Vector Machines for Detecting Anomalous Windows Registry
Accesses,” in Proceedings of the ICDM Workshop on Data Mining for
Computer Security, 2003.

[37] D. S. Broomhead and D. Lowe, “Radial basis functions, multi-variable
functional interpolation and adaptive networks,” Royal Signals and
Radar Establishment Malvern (United Kingdom), Tech. Rep., 1988.

[38] D. Powers, “Evaluation: from precision, recall and f-measure toroc, in-
formedness, markedness and correlation,” Journal of Machine Learning
Technologies, vol. 2, no. 1, pp. 37–63, 2011.

[39] “Dalton Cumbrian Facility,” https://www.dalton.manchester.ac.uk/
research/facilities/cumbria-facilities/.

Eduardo Weber Wachter received the B.Eng. de-
gree in computer engineering from the State Univer-
sity of Rio Grande do Sul, Guaı́ba, Brazil, in 2009
and the PhD degree in computer science from the
Pontifical Catholic University of Rio Grande do Sul,
Porto Alegre, Brazil, in 2015. His research interests
are Many Cores, NoC, reconfigurable architectures,
Fault Tolerance and Reliability of such systems. He
is currently a Teaching Fellow with the University
of Warwick, U.K.

Server Kasapr (M’10) received the B.Sc. (Hons.)
degree in electrical and electronic engineering
from Middle East Technical University, Ankara,
Turkey,and the M.Sc.(Distinction) and PhD de-
grees in electronic engineering from the System-
Level Integration Research Group, University of
Edinburgh, Edinburgh, U.K., in 2006, 2007, and
2010, respectively. His current research interests
include reconfigurable dataflow computing for finite-
difference time-domain simulations, FPGAhardware
design and implementation for digital signal process-

ing applications, and high-performance scientific computing in general. He is
currently a Lecturer at Coventry University, U.K.
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