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Abstract—The horizontal visibility graph (HVG) representa-
tion of a time series is a structured graph whose connectivity
properties have been used to study the dynamics of a wide range
of nonlinear systems. Applications range from the brain (EEG),
the heart (ECG) and the financial markets (bid prices), to the
sun (solar intensity readings) and river flows. HVGs have also
been extended to image-based pattern recognition. Efficient and
scalable online HVG construction is vital to extending HVG-
based time series analysis to long, streaming, and distributed
real-world time series data.

The fastest scalable method for constructing HVGs today is the
binary search tree (BST) encoding–decoding algorithm, which is
O(n logn) in time series length for balanced data such as noise.
However, in practice BST is highly sensitive to the geometric
structure of a time series and its performance degrades signifi-
cantly towards O(n2) when data possess long term dependencies
or when the sample frequency is high, which occur regularly in
practice. To avoid these problems we leverage an O(n) ordered
rooted tree representation of time series that is (graph) dual to
the HVG. We demonstrate that this representation leads to an
algorithm for HVG construction that is agnostic with respect
to the geometry and auto-correlations of the underlying data.
Moreover, it possesses an efficient branch fusion operation for
tree merging, leading to the idea of a bipartite HVG introduced
in this paper, which allows HVGs for very large time series to
be constructed efficiently in parallel.

After introducing our method and algorithms for parallel
construction of HVGs we report on experimental benchmarks
comparing their real-world performance to existing approaches
on long time series. On data sampled from fractional Brownian
motions, deterministic chaotic systems, brain EEG recordings,
and the financial markets, our dual tree algorithms significantly
outperform previous methods.

Index Terms—time series analysis, graph algorithms

I. INTRODUCTION AND RELATED WORK

Recently, the promise of using powerful graph theory meth-
ods to solve problems in time series analysis and classification
has led to a number of proposed maps from sequential data to
graph structures: see [1] and [2] for surveys. The idea is to use
well-studied local or global graph connectivity properties, such
as vertex degree sequences or graph centrality measures, to
infer key properties of the input time series. Methods include
phase space based recurrence networks [3], visibility graphs
[4]–[6], and Markov chain transition networks [7], [8].

The horizontal visibility graph (HVG) map from sequences
to graphs, studied here, is particularly intuitive [9]. Given a
time series τ = (x1, . . . , xn) ∈ Rn its HVG is the graph
HVG(τ) with vertices {1, . . . , n} and edges between any

pair i < j ∈ V whenever the following horizontal visibility
criterion is satisfied:

∀k ∈ V, i < k < j =⇒ xk < xi, xj . (1)

Despite its structural simplicity, illustrated in Figure 1, this
graph captures much of the geometry of τ while remaining
invariant under (strictly positive) monotonic transformations to
both axes: in other words, warping the time or value axis does
not affect the resulting graph. As a result, its invariants capture

Fig. 1. A time series τ and its directed horizontal visibility graph DHVG(τ).

dynamic properties of the physical system generating the
time series. For example, the degrees of HVG graph vertices
can be used to quantify dynamic irreversibility in nonlinear
systems [10] and to estimate Lyapunov exponents and other
measures of chaos [11], [12]. In stochastic physics the vertex
degrees of HVGs can be used to estimate Hurst exponents to
quantify long-term auto-correlations in data [13]. Empirical
applications of HVGs extend from analyzing stock market
dynamics [14], through pathology detection using medical
sensor data including EEGs [15]–[17] and ECGs [18]–[20],
to predicting river flow patterns [21], solar activity [22]–
[24], turbulence in plasmas [25], optical phenomena [26], and
faults in mechanical bearings [27]. Simple extensions of the
HVG can also be used for pattern recognition and image
classification tasks [28], or for the challenge of characterizing
oil-water flow patterns [16].

Extending HVG-based time series analyses like those above
into Big Data contexts motivates the search for HVG con-
struction algorithms that are scalable. An algorithm capable of
subsequence batch processing to create subgraphs of the HVG,
followed by their recombination into a final graph, would
enable parallel CPU and/or multi-node distributed speedup of
the graph construction process. The following two qualities are



desirable for processing long, distributed, or streaming time
series data in this way:

1) The algorithm processes each subsequence efficiently,
ideally O(n) in the subsequence length.

2) The algorithm combines multiple batch outputs to pro-
duce the final HVG efficiently, ideally O(n) in the
number of nodes in the final graph.

To date, no algorithm achieves both of these objectives.

Existing Algorithms

The original HVG algorithm implementation [29] provided
in Fortran 90/95 alongside the first papers on HVG analysis
[9], [30] is O(n) in time series length on average, but only
for noisy (stochastic/chaotic) time series. This omits many
sequences of interest, such as the non-equilibrium dynamics
of an oscillator damped by a non-conservative force or even
a simple linear decreasing trend. For arbitrary sequences
including these, its worst-case complexity is O(n2).

A ‘fast weighted horizontal visibility graph’ (FWHVG)
algorithm was developed to help analyze EEGs for epilepsy
detection [15]. This is a simple worst-case O(n) algorithm for
HVG construction, with edge weights added to the resulting
graph to capture temporal relationships relevant to the analysis.
However, the geometric information relevant to ‘merging’
multiple HVG subgraphs together is ignored by the FWHVG
algorithm, so it cannot leverage subsequence batching and it
is not inherently scalable.

More recently two algorithms were published that have the
potential to help scale HVG construction to multiple parallel
batch processes over subsequences [31], [32]. They are both
suitable for computing the so-called natural visibility graph
(NVG) as well, which extends the HVG with new edges that
capture convexity relations between subsequences of the data
[33]. Here, we only consider their application to the HVG.

The first is a ‘divide and conquer’ (DC) style algorithm
[31] based on the observation that each time series τ can be
decomposed into two subsequences τ1, τ2 around its global
maximum value xi, so that their concatenation gives τ =
τ1 + (xi) + τ2. If xi is maximal, then the horizontal visibility
criterion (1) ensures that HVG(τ) consists of exactly the
disjoint union of those edges whose endpoints include vertex i,
with the edges in HVG(τ1) and the edges in HVG(τ2). Using
this decomposition, the DC algorithm recursively computes
an HVG via the HVGs of its subsequences generated by
maximum value splits. In the average case with balanced
data such as noise this is an O(n log n) process, and in the
worst case of unbalanced data such as correlated or monotonic
sequences this is an O(n2) process.

Since the DC algorithm decomposes τ into subsequences
it offers the possibility of distributing HVG construction over
parallel processes. However, in practice the algorithm requires
an entire time series to begin batch creation via splitting, so
it cannot deal with streaming data, and moreover the batches
cannot be fixed in size beforehand and depend entirely on
the geometric characteristics of the input time series: while
a noisy sequence is likely to split into roughly equal-sized

subsequences, trended or correlated stochastic sequences can
lead to a large imbalance in batch size across the computation,
which negates the benefits of distributing the calculation.
Similarly, the depth of the recursion followed by the DC
approach on imbalanced data can quickly exceed the default
maximum recursion depths of language interpreters, even for
medium-sized sequences [34].

A second method for scalable HVG construction is the
‘binary search tree’ (BST) encoding-decoding algorithm [32]
developed to deal with some of the shortcomings of the DC
method. This technique uses a novel online process to build a
BST encoding of the input time series, whereby new incoming
sequence values extend the tree via a query on the existing
structure. First, an indexed time series τ = (x1, . . . , xn) is
sorted into decreasing order of xi then a BST is built in the
standard way: beginning with the largest xi as a root node,
each subsequent sorted value is added by comparing its index
with the indices of the existing nodes in the BST, recursively
descending the tree from the root by moving left when the
new index is less than an existing node and right when it is
larger, finally adding a child node to an existing value when a
vacant spot is found. Once the encoding is computed, which
is an O(n log n) process on time series length on average for
balanced data and O(n2) in the worst case, the vertex-edge
representation of the HVG of τ is constructed by processing a
set of edge connectivity rules [32, §IV.B]; these ‘decoding’
steps translate the branching structure in the BST to the
edge structure of the HVG and take O(n log n) operations
to complete.

The BST approach has the benefit of being able to run online
with new data points being added as they arrive. Moreover, it
has the elegant property of being able to ‘merge’ two BST
encodings of subsequences τ1, τ2 to give the correct BST of
their concatenation τ = τ1 + τ2. It does this by using the root
node of the BST for τ2, corresponding to the maximum value
in the subsequence τ2, to query the BST of τ1. However, when
a vacant spot is found for the query node to be added to the
tree of τ1, the entire BST of τ2 is added as a subtree at this
point. The connectivity rules for decoding a BST to an HVG
then ensure that the resulting HVG is exactly that of the full
sequence τ . The merge operation is average-case O(log n) for
balanced data and worst-case O(n) in general, on the length
of τ1.

Unlike the DC algorithm, the BST approach enables gen-
uinely online and fixed batch size parallel processing of a
time series to produce its HVG, via the BST merge opera-
tion. However, its runtime complexity suffers from the same
sensitivity to the geometric properties of the input sequence as
the DC approach: on balanced data the algorithm encodes time
series in balanced binary search trees, with depth O(log n) and
therefore construction time O(n log n), but on unbalanced data
the encoded BSTs have depth O(n) leading to build times of
O(n2). Thus while the BST approach offers scalability via
subsequence batch processing, it does not do this efficiently
in general.



Contribution

The horizontal visibility criterion (1) allows intermediate
values xk to ‘block’ the existence of edges between i < j
whenever xk ≥ xi or xk ≥ xj , so the resulting graphs always
consist of a hierarchy of nested edges, as shown in Figure 1.
It is the structure of the hierarchy of these nested edges that
we exploit in what follows.

In particular we outline worst-case O(n) scalable algo-
rithms for both HVG construction and merging, based on the
concept of a ‘dual tree HVG’ (DTHVG) that encodes the
edge nesting. The DTHVG is a graph structure that preserves
enough geometric information from input sequences to make
merging possible. Our concept of a ‘bipartite HVG’ is also
introduced as a key component of the merging process. We
show that our DTHVG merge Algorithm 2 reduces to the
FWHVG one [15] when one of the two input subsequences
is of length one. However, our merge algorithm extends to
arbitrary-length subsequence merging for genuine scalability.
In the final sections we observe that the empirical performance
of the DTHVG approach outperforms both the DC and BST
encoding-decoding approaches, by orders of magnitude, on
both balanced and unbalanced synthetic and real-world data.

II. PROPOSED METHOD: VISIBILITY VIA MERGE TREES

In this section we leverage a result on the topology of
time series which implies that simple constructions on ordered
rooted metric trees can be used indirectly to build and manip-
ulate horizontal visibility graphs. We first use this to give a
concrete translation from the operation of iterated leaf grafting
on such trees to iterated edge nesting in HVGs. Extending
beyond single edge grafting to the fusion of entire branches
in two trees then leads to the ‘bipartite HVG’ idea defined in
Section II-C below.

A. Duality with Trees

Our method employs a variant of a common geometric
representation of time series, used widely in the physics of
self-similar systems and more recently in Topological Data
Analysis, called the (sub-level set) merge tree of the data.
For discrete data the merge tree is most often expressed with
respect to a linear interpolation of the sequence but in this
paper we use a definition with a more direct link to horizontal
visibility graphs.

Informally, consider a discrete time series τ = (x1, . . . , xn).
These data can be represented visually in the plane as shown
in Figure 2, using a bar graph Bτ ⊂ R2 consisting of
narrow vertical bars with heights xi spaced out evenly along
the horizontal axis in R2. We can imagine the bars being
unbounded and extending downwards in R2 to −∞. The
complement of these bars is then a space Tτ = R2 − Bτ

with gaps where the bars appeared. Contracting Tτ by the
equivalence relation that squashes horizontal lines to points,

(x, y) ∼= (x′, y′) ∈ Tτ iff

 y = y′ and the straight
line joining (x, y) to (x′, y′)

in R2 lies entirely in Tτ ,
(2)

gives an ordered metric tree we call the time series merge tree
Tτ = Tτ/∼= of τ . In this setting the tree is unbounded due to
infinite half-open edges where the root and leaf vertices would
usually attach and it has a natural height function h : Tτ → R
inherited from Tτ since the equivalence ∼= does not identify
any pair of points in Tτ whose y values differ.

Fig. 2. A bar graph representation Bτ ⊂ R2 of a discrete time series τ (black
bars – left). Its complement Tτ in the plane (shaded region – middle). The
merge tree Tτ that results from squashing horizontal lines in Tτ according
to the equivalence relation ∼= defined in Equation 2 in the text (right).

The connection between time series merge trees and hori-
zontal visibility graphs stems from a recent result [35, The-
orem 11] as follows. First recall that the dual graph G∗

of an embedded plane graph G ⊂ R2 consists of vertices
corresponding to each connected region ρ ∈ R2 − G in the
complement of G and edges between vertices ρ1, ρ2 exactly
when their closures intersect along some interval I , meaning
there exists a continuous map ρ1 ∩ ρ2 → I . A plane graph
dual is illustrated in Figure 3. The main result in [35] shows

Fig. 3. A plane graph G (left) and its dual graph G∗ (right).

that the HVG of τ is in fact a subgraph of the dual T ∗τ of
the quotient space Tτ = Tτ/∼= described above.1 Moreover
the HVG omits only two vertices and their corresponding
edges from T ∗τ : those corresponding to the two regions whose
boundaries intersect along the root edge of the tree Tτ . So for
practical purposes horizontal visibility graphs can be thought
of as merge trees and the latter can be used to formally reason
about HVGs, the main difference being that HVGs ‘forget’
the induced height function h : Tτ → R on the tree. We call
the dual graph T ∗τ the dual tree horizontal visibility graph or
DTHVG for short.

For clarity in the remainder of this paper we visualize time
series merge trees as in Figure 4. That is, Tτ is drawn on an
upper half-plane {(x, y) : y > ymin} ⊂ R2 and ‘leaves’ are
anchored along the boundary edge y = ymin. Formally the
leaf edges are half-open and this boundary actually designates

1More formally the finding in [35] states that the HVG is contained in the
dual of the (Alexandroff) one-point compactification of Tτ with respect to a
natural embedding of this graph in the 2-sphere.



the limit y → −∞ so the edges are never incident to it.
The dual T ∗τ of Tτ for τ = (x1, . . . , xn) in this depiction is
constructed by adding vertices for each of the n connected
regions {1̄, 2̄ . . . , n̄} ‘under’ Tτ plus a vertex for each of
the two connected regions −∞ and ∞ ‘above’ Tτ whose
boundaries meet along the half-edge corresponding to the root
of Tτ . Edges (̄i, j̄) are added to T ∗τ to connect any regions in
the half-plane that share a boundary edge in the drawing of
Tτ .

Fig. 4. A time series merge tree Tτ (left) and its dual T ∗τ (right) for
an example time series τ = (6, 1, 3, 2, 4, 1, 5) (middle). Vertices in T ∗τ
correspond to the labelled regions in Tτ . In particular the square vertices
in T ∗τ correspond to the two regions ‘above’ the tree Tτ . Note that the
subgraph of T ∗τ defined by the circular vertices, corresponding to regions
i for i = 1, . . . , 7 ‘below’ the tree, is the horizontal visibility graph of τ .

B. From Leaf Grafting to Efficient Online Visibility

By moving from horizontal visibility to a dual tree repre-
sentation an efficient online construction method for HVGs
becomes evident. Consider a time series τ = (x1, . . . , xn).
We can process it to create an increasing sequence of trees

ε = T0 < T1 < · · · < Tn = Tτ

whose final tree corresponds to the DTHVG.2 In following
this process the intermediate trees Ti will also correspond to
the visibility graphs of the prefix sequences τi = (x1, . . . , xi)
of τ , meaning that the resulting algorithm will be inherently
online.

The following definition and lemma capture the operation
required to move from each Ti to Ti+1.

Definition 1. Given a time series merge tree T in the plane
suppose its leaf edges are labelled {l0, . . . , ln} in increasing
order according to their order in the x direction. Denote by pi
the unique path in T that includes leaf edge li and the root
edge at the top of the tree. The operation of grafting a new leaf
on to T involves choosing a point anywhere on the ‘leading’
or ‘rightmost’ branch pn and connecting a new edge li+1 to
it.

The two ways in which grafting can extend a merge tree are
illustrated in Figure 5. In either case the next Lemma shows
that when processing a time series, if the height h(p) ∈ R of
the graft point p in the tree is chosen correctly on each iteration
then the resulting sequence of trees will be the merge trees of
the prefix sequences of τ .

Lemma 2. Given a time series merge tree Ti corresponding
to a sequence τi = (x1, . . . , xi) and a new value xi+1, the

2The initial tree ε is a single edge from y = −∞ to y =∞.

Fig. 5. Leaf grafting on to an existing merge tree Ti corresponds to extending
an HVG with a new vertex. The graft can connect a new leaf edge li+1 to
an existing vertex on the leading branch pi of the tree (left) or it can create
a new vertex and bisect an existing edge on the leading branch of the tree
(right).

operation of grafting a new leaf edge li+1 to Ti at the unique
point p in the leading branch pi in Ti satisfying h(p) = xi+1

results in a tree Ti+1 that is precisely the merge tree of the
extended sequence τi+1 = (x1, . . . , xi, xi+1).

Proof. When leaf li+1 is merged on to Ti it creates a new
enclosed region i+ 1 under the tree and thus new shared edges
between regions. The set Λ of those edges in Ti+1 that are on
the intersection of pi and the boundary of i+ 1 consists of a
single edge eα from the boundary of each region α satisfying
the following conditions.
• In the case that li+1 was grafted to an existing vertex in
Ti:

– eα was previously on the the boundaries of α and
∞ in Ti,

– xα ≤ xi+1, since li+1 was merged at height xi+1.
• In the case that li+1 was grafted to an edge eα∗ ∈ Λ in
Ti:

– α ≥ α∗,
– eα was previously on the the boundaries of α and
∞ in Ti,

– α > α∗ ⇒ xα ≤ xi+1, since li+1 was merged at
height xi+1.

In either case for all eα ∈ Λ there is no k with α < k ≤
i such that xk ≥ xα, xi+1. So the regions α indexing the
edges in Λ are precisely those whose corresponding bars bα
are horizontally visible to the added bi+1. So Ti+1 is the merge
tree of τi+1.

Since the merge tree contains the HVG in its dual, the
upshot of Lemma 2 is that iterated grafting of leaves on to
merge trees is an online process for building HVGs. Moreover
the only data required at each step are the edge lengths along
the current ‘leading branch’ (rightmost branch) of the tree.
No other information about the existing merge tree is required
to correctly graft a new leaf. Symmetrically, we can consider
grafting a leaf edge on to the current ‘trailing branch’ (leftmost
branch) of the tree, such as when a previous data point is
provided. In this case the only data required are the edge
lengths along the trailing branch. Accordingly we define a
DTHVG data structure as follows.

Definition 3. Given a time series τ = (x1, . . . , xn) its dual
tree horizontal visibility graph DTHVG(τ) = (V,E,Γ,Λ)



consists of the vertices and edges (V,E) of the HVG of the
sequence (∞, x1, . . . , xn,∞) and two stacks of (region index,
sequence value) pairs, Γ and Λ, corresponding to the regions
with an edge respectively on the trailing or leading branches
of the tree.

This data structure is incorporated naturally into the efficient
HVG construction presented in Algorithm 1. The stack Λ is
kept up-to-date to reflect the regions with an edge on the
current ‘leading branch’ of the tree. When a new vertex is
added to the HVG this stack is processed to add new edges
to all of the regions in the stack that share a boundary edge
with the new region under the merge tree and to update the
stack appropriately. Note that the stack Γ in the DTHVG data
structure corresponding to the trailing branch is not used in this
computation, other than to populate it with a monotonically
increasing subsequence of elements of τ .

In practice the vertex and edge sets of DTHVG(τ) =
(V,E,Γ,Λ) can be maintained explicitly by the algorithm
during processing since the edges E are in bijective correspon-
dence with the edge set of the corresponding tree. Therefore
no encoding or decoding steps are required during operation.
This leads to an extremely simple implementation. Moreover
the process is optimal with respect to the worst case number
of operations needed to process any time series as the next
result shows.

Proposition 4. The dual tree-based algorithm (DT) in Algo-
rithm 1 has worst case time complexity O(n) with respect to
the length of input sequence n = |τ |.

Proof. The code inside the while block of Algorithm 1 adds
exactly one edge to E each time it is entered. As an outerplanar
graph, the number of edges in the HVG of a sequence of length
n is bounded above by 2n− 3 [36]. Thus the loop condition
is satisfied at most 2n − 3 times when processing the entire
sequence τ . Since the while loop’s code block involves only
pops, pushes, equality checking and assignment, which are all
O(1), the total cost of the algorithm is O(n).

Indeed this proof shows that Algorithm 1 is O(n) with a
very small constant factor of 2, meaning it should be fast in
practice as well. Section III below explores the extent to which
this is true.

C. From Branch Fusion to Efficient Graph Merging

A key benefit of the binary search tree algorithm over the
divide and conquer approach is that it allows ‘merging’ of pairs
of pre-computed HVG encodings to construct larger HVG
encodings. This makes BST scalable in the sense that batches
of time series values can be converted to small HVG binary
search tree representations, say on different cores of a multi-
core processor, and these can then be combined together to
give the full HVG that would result from taking all batches
together and computing the HVG in its entirety ‘offline’.

The dual tree approach to HVGs also provides a natural
merge operation. It is based on the idea of fusing two merge
trees together along their closest branches.

Algorithm 1: Linear-Time Algorithm for DTHVG
Construction.
Data: time series τ = (x1, . . . , xn) ∈ Rn
Result: dual tree horizontal visibility graph of τ

1 V ← {1, . . . , n}
2 E ← ∅
3 Γ← Stack() // Regions with an edge in

trailing branch of Tτ
4 γ ← −∞ // Store max value seen so far
5 Λ← Stack() // Regions with an edge in

leading branch of Tτ
6 for v ∈ V do
7 if xv > γ then
8 γ ← xv
9 Γ.push((v, xv))

10 while Λ is not empty do
11 (u, xu)← Λ.pop()
12 E ← E ∪ {(u, v)}
13 if xu > xv then Λ.push((u, xu))
14 if xu ≥ xv then break
15 Λ.push((v, xv))
16 return (V,E,Γ,Λ)

Definition 5. Given time series merge trees T, T ′ in the
plane, suppose their leaf edges are labelled {l0, . . . , lm} and
{l′1, . . . , l′n} in increasing order according to their order in the
x direction. Denote by pi the unique path in T that includes
leaf edge li and the root edge at the top of the tree, and
similarly for p′i in T ′. The operation of fusing tree T to T ′,
denoted T � T ′, involves applying the equivalence relation ∼=
of Equation 2 to the points in the leading branch pm in T
and the trailing branch p′0 in T ′. That is, points on the two
paths are identified if and only if they are at the same height
according to the induced height functions h : T → R and
h′ : T ′ → R.

Fig. 6. Fusing two merge trees along their leading and trailing branches pm
and p′0 corresponds to merging two HVGs. The fused path contains vertices
at every height in the union of the heights of vertices in pm and p′0. Note that
the resulting leading and trailing branches p′′0 and p′′m+n in the merged tree
T � T ′ are not necessarily equal to the input trailing and leading branches,
p0 and p′n respectively, since one or more vertices in one of the branches
being fused may exceed the height of the root of the other tree.

Extending HVGs in this way is illustrated in Figure 6.
Similar to leaf grafting, the only data required to construct
the combined tree T �T ′ are the indices of the regions whose
boundaries include an edge on the leading or trailing branches.



In Algorithm 1 the leading edge data were managed in a stack
but the trailing edge data were not used. To permit merging we
now simply use the second stack in the DTHVG data structure
of Definition 3 to represent the (regions incident to) the trailing
edge of the merge tree. The work is then in determining how
the regions defined by the leading and trailing stacks of T and
T ′ respectively should be connected in the fused tree T � T ′.
To help with this we make the following definition.

Definition 6. Given two time series τ = (x1, . . . , xm) and
τ ′ = (xm+1, . . . , xm+n), the bipartite horizontal visibility
graph HVGbp(τ, τ ′) = (Vbp, Ebp) of the pair is the sub-
graph of HVG(τ ′′) = (V,E) of the concatenated sequence
τ ′′ := τ + τ ′ defined as follows:

Vbp = V,

Ebp = {(u, v) ∈ E : u ≤ m and v > m}.

Thus the bipartite HVG of any prefix-suffix partition of a time
series τ contains precisely those edges from the regular HVG
of τ that connect the prefix vertices to the suffix vertices.

Merging can make use of the bipartite HVG as follows.
Given a time series τ = (x1, . . . , xm) with merge tree T
and time series τ ′ = (xm+1, . . . , xm+n) with merge tree T ′,
suppose the leading branch of T is represented by the stack
of strictly increasing indices Λ = (λ1, . . . , λa), a ≤ m with
each λi ∈ {1 . . . ,m}. Similarly let the trailing branch of
T ′ be represented by the stack of strictly increasing indices
Γ = (γ1, . . . , γb), b ≤ n with each γi ∈ {m+ 1, . . . ,m+ n}.
Note that the corresponding subsequences of values τΛ =
(xλ1 , . . . , xλa) from τ and τ ′Γ = (xγ1 , . . . , xγb) from τ ′ are
then strictly monotonically decreasing and increasing respec-
tively. These two subsequences, τΛ and τ ′Γ, give the heights
of the vertices that will appear on the fused branch of the
tree T � T ′, while the edges between them give the (duals
of the) edges that need to be added to the edges in HVG(τ)
and HVG(τ ′) to give the additional edges in the final merged
HVG(τ + τ ′).

Computing the resulting vertex heights, and thus edge
lengths, in the fused branch is easy enough: simply compute
the unique interleaving of the two sequences Λ and Γ, which
are already monotonic sequences, that gives a total order on
the set of their values τΛ ∪ τ ′Γ.3 This is an O(n) operation on
the interleaved sequence length.

However to explicitly represent the dual graph that contains
the merged HVG we also need to keep track of which regions
in the two input trees now share boundary edges. This is where
the bipartite HVG can be used in the tree-fusing operation:

1) Begin with merge trees T, T ′ for two time series τ =
(x1, . . . , xm), τ ′ = (x1+m, . . . , xn+m).

2) Extract lists Λ,Λ′ of the regions under T, T ′ whose
boundary has an edge on the leading (rightmost) branch
of the tree.

3For uniqueness in the presence of equal values xλi
= xγj a convention

for their interleaved order is needed: for example indices from Λ precede
those from Γ in the interleaving.

3) Extract lists Γ,Γ′ of the regions under T, T ′ whose
boundary has an edge on the trailing (leftmost) branch
of the tree.

4) Take the duals of T, T ′ and exclude the first and last
vertices to give the HVGs (Vτ , Eτ ), (Vτ ′ , Eτ ′) of τ, τ ′.

5) Compute the bipartite graph HVGbp(τΛ, τ
′
Γ′) =

(Vbp, Ebp) of the leading and trailing branch subse-
quences to be connected.

6) The vertex and edge sets of the merged HVG
(Vτ+τ ′ , Eτ+τ ′) are the disjoint unions:

Vτ+τ ′ = Vτ ∪ Vτ ′ ,
Eτ+τ ′ = Eτ ∪ Eτ ′ ∪ Ebp.

7) For subsequent merges also compute the regions ΓT�T ′

under T�T ′ whose boundary has an edge on the trailing
(leftmost) branch of the tree, and the regions ΛT�T ′

under T�T ′ whose boundary has an edge on the leading
(rightmost) branch of the tree:

ΓT�T ′ = Γ ∪ {i ∈ Γ′ : xi > max
j∈Γ

(xj)},

ΛT�T ′ = {i ∈ Λ : xi > max
j∈Λ′

(xj)} ∪ Λ′.

Pseudocode to implement HVG merging using this idea of
fusing merge trees appears in Algorithm 2. Keeping track
of the stacks that represent the indices of the regions with
boundary edges in the trailing and leading branches of the
trees is the key algorithmic requirement. As with leaf grafting
the algorithm does not explicitly represent the tree since its
dual is fully determined by the HVG and its leading and
trailing branch data. Lines 1-6 construct the subsequences
of τ, τ ′ corresponding to their leading and trailing branches
respectively. Line 7 constructs the bipartite horizontal visibility
graph joining these subsequences. Lines 8-16 compute the
leading and trailing branch indices of the fused tree.

As with online DTHVG construction via leaf grafting, the
process is O(n) where in this case n is the number of vertices
in the output HVG. All loops are iterated at most O(n) times
and contain lines that are worst-case O(1). Line 7 is the only
exception, where a function to compute the bipartite HVG is
called. As mentioned above this is O(n) on its longest input
sequence length since the key computation is an interleaving
of monotonic subsequences of the inputs.

III. NUMERICAL EXPERIMENTS

We now present numerical results to show how the dual tree
(DT) algorithm performs in practice, compared to the binary
search tree (BST) and divide and conquer (DC) approaches.4

Test processors were 2.1GHz Intel Core (Haswell, IBRS)
CPUs and the test machine had 32GB of RAM available across
64 logical cores. To ensure a fair comparison the maximum
recursion depth of the Python interpreter was set to the length
of the series, to guarantee that BST and DC would complete
on unbalanced data.

4All Python code, time series data, and raw results are available online [37]
to enable others to reproduce and/or extend the results shown here.



Algorithm 2: Linear-Time Algorithm for DTHVG
Merging.

Data: DTHVGs (V,E,Γ,Λ) and (V ′, E′,Γ′,Λ′)
associated to Time series τ = (x1, . . . , xm) and
τ ′ = (x1+m, . . . , xn+m).

Result: DTHVG of concatenated time series
τ + τ ′ = (x1, . . . , xn+m)

1 τΛ ← ε
2 for i ∈ Λ do
3 τΛ ← τΛ + xi
4 τ ′Γ′ ← ε
5 for i ∈ Γ′ do
6 τ ′Γ′ ← τ ′Γ′ + xi
7 (Vbp, Ebp)← HVGbp(τΛ, τ

′
Γ′)

8 Γ′′ ← Γ
9 for i ∈ Γ′ do

10 if xi > xγ , where γ is the last entry in Γ′′ then
11 Γ′′ ← Γ′′ + i
12 Λ′′ ← ε
13 for i ∈ Λ do
14 if xi > xλ, where λ is the first entry in Λ′ then
15 Λ′′ ← Λ′′ + i
16 Λ′′ ← Λ′′ + Λ′

17 return (V ∪ V ′, E ∪ E′ ∪ Ebp,Γ
′′,Λ′′)

Note that all times reported for the BST method are for
the encoding step only. The additional overhead of decoding
the binary search tree to give a vertex-edge or adjacency
representation of the HVG, such as those returned by the DC
and DT methods, is not included.

A. Baseline Performance

The baseline performance of the three algorithms on in-
creasingly long sequences is presented in Figure 7. Details
of the corresponding sources can be found in Table I. They
show that DT quickly outperforms BST and DC by orders
of magnitude and that this performance is consistent across
the systems considered. For very short sequences of around
five hundred points the performances are closer but the run-
ning times diverge rapidly even for relatively short sequence
lengths. These are not long sequences but the divergence in
runtime performance is already apparent.

As illustrated in Figure 7 and Table II, the performance
advantage of DT over the others is lowest for sequences of
Random Noise. This is expected because uniformly sampled
data lead more probably to balanced search trees and faster
data sorting for BST and to more evenly sized splits of the data
for DC. In turn this leads to reduced recursion depth during
execution and consequently to faster run times. Line-by-line
code profiling using Python’s line profiler and cProfile

modules confirms this. Nevertheless the DT method is still
faster than BST by a factor of 2.76 for this ‘worst’ case. On
the other hand Random Walk sequences correspond to the
greatest advantage for DT with a speed up of 50.94 times,
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Fig. 7. Running times for BST, DC, and DT algorithms on trajectories
generated by a range of dynamical systems (see Table I for details). The
Lorenz and Rössler systems here were sampled from ODE solutions of length
tmax = 250 and tmax = 1024 seconds respectively. All times are averages
over ten trajectories of each length.

since the resulting binary search trees are less balanced. In
the next section we quantify the impact of correlations along
an incremental trajectory such as this in more detail. For now,
we can conclude that the baseline performance of DTHVG
construction, without the benefit of a distributed workload, is
significantly better than the baseline performance of the BST
construction of HVGs.

B. Long Range Dependence, Sample Frequency, and Noise

As the DTHVG construction algorithm does not recurse its
performance is far less dependent on the geometric structure of
an input time series. Here we consider the sensitivity of HVG
algorithms to statistical correlations, different sample rates on
continuous sources and also to the presence of noise. All time
series have fixed length 215. Only the BST and DT runtimes
are compared since DC is orders of magnitude slower.

1) Sensitivity to Long Range Dependence: We use frac-
tional Brownian motion (fBm) trajectories to quantify the
impact of short versus long range dependence between points
in a stochastic incremental trajectory. The fBm generalizes
random walks by inclusion of a parameter that controls the
extent to which previous time series values influence the
value of the next sample to be drawn. In particular an fBm
is a continuous trajectory Bh(t) on some interval [0, tmax],
where Bh(0) = 0, E[Bh(t)] = 0, and whose auto-covariance
is parameterized by a Hurst exponent h ∈ (0, 1) according
to E[Bh(t)Bh(s)] = 1

2

(
|t|2h + |s|2h − |t− s|2h

)
. For low

values of the Hurst exponent h < 0.5 there is a negative
correlation between increments on the trajectory, leading to
higher frequency variations over shorter time spans as in
the left panel of Figure 8. For higher values h > 0.5 the
increments exhibit long range dependence leading to sustained
trends over longer durations, as in the right panel of Figure 8.
For h = 0.5 the trajectory increments are independent, giving



the continuous time version of the discrete Random Walk used
in the previous section.
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Fig. 8. Running times for BST and DT algorithms on fractional Brownian
motion (fBm) trajectories with increasing Hurst exponents (centre). All times
are averaged over ten trajectories of length 215 with the given exponent.
Example trajectories from a fBm with h = 0.2 (left) and h = 0.8 (right) are
also shown. The trajectories were generated using the method of Davies and
Harte [38] as implemented in the Python fbm module.

The centre panel in Figure 8 shows that as the strength of
positive correlation between points in a trajectory increases, so
does the processing time of the BST algorithm. This indicates
that if used to process a time series from a system whose auto-
covariance decays as a power law the BST processing time will
be significantly worse than if the auto-covariance decay were
exponential. By contrast the DT algorithm maintains a stable
performance profile even for sequences with very strong long
range dependence.

2) Sensitivity to Sample Frequency: In practice time series
are sampled from physical sources using a sample frequency
that depends on the application and on the sensitivity of
measuring equipment. To illustrate the sensitivity to sample
frequency of the preprocessing step of computing an HVG,
we consider the continuous deterministic Rössler trajectory
defined in Table I. Equal length sequences of this system
trajectory were sampled at a range of frequencies from 8Hz
to 128Hz, and the BST and DT algorithm run times were
recorded. The results are shown in Figure 9.
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Fig. 9. Running times for BST and DT algorithms on sequences of fixed
length 215 sampled from Rössler trajectories at increasing frequencies. All
times are averaged over ten trajectories. An example trajectory with f = 8Hz
(left) and f = 128Hz (right) are also shown.

The effect of increasing frequency on the run time of the
Dual Tree algorithm is negligible, while the run time of the
Binary Search Tree algorithm increases almost one hundred
fold for the range of frequencies considered. A similar pattern
is witnessed for other continuous deterministic systems. Again
this is due to the increased recursion depth of BST when
there are increasingly longer monotonic subsequences in a

time series, a situation that occurs in practice when the sample
frequency is increased.

3) Sensitivity to Noise: There is also an effect of varying the
signal to noise ratio of a signal on its HVG construction time.
Two cycles of a pure sine wave with varying levels of additive
noise were processed using the BST and DT algorithms and
the results are shown in Figure 10.
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Fig. 10. Running times for BST and DT algorithms on two cycles of noisy
periodic motion y = sin(t) + nε where t ∈ [0, 4π], ε is uniformly sampled
from [0, 1) and n is a scale factor (centre). All times are averaged over ten
trajectories of length 215 with the given noise factor. An example trajectory
with n = 5 (left) and n = 50 (right) are also shown.

As suggested by the benchmark results in Section III-A
above, a signal that is mostly random leads to more balanced
binary search trees and thus faster processing. Thus as the
signal is lost to the increasing effects of noise, the processing
time of the BST algorithm improves. In particular adding
any amount of noise to the pure underlying signal improves
the BST processing time by an order of magnitude and its
performance slowly improves as the signal is dominated by
the noise. Of course, the payoff for the improved speed of
BST in this case is loss of access to the signal that supports
the data. By contrast the signal to noise ratio has a negligible
effect on the dual tree algorithm processing time.

C. Scaling Performance on Batched Data

Next we compare the HVG merging performance of the
binary search tree and dual tree algorithms. In this section,
figures record only the merge times and exclude the baseline
subsequence HVG creation times for individual batches, which
as we observed above is much lower for the DT construction
method.

In Figure 11 we see a summary of merge times for the two
algorithms on balanced EEG and unbalanced financial data
sets, both of large scale >1M data points per sequence, as
the input subsequence length (that is: batch size) is varied.
As expected the more balanced data leads to a similar per-
formance between the two algorithms with a slight advantage
for the DTHVG approach. However, on the financial price
data there is a rapid divergence in runtimes. The DT method
maintains a relatively flat runtime performance while the
BST approach increases its runtime rapidly as the batch size
increases beyond around 50,000 sequence values. By the time
the input subsequences approach length 0.5M, the difference
in performance between the algorithms is substantial.

Figure 12 shows similar runtime profiles for merging HVGs
of fractional Brownian motion trajectories, across different
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Fig. 11. Mean HVG merge times in seconds, plotted against size of HVG
being merged (top row). Results are over five EEG channels each of length
3×106 (top left) and five foreign exchange currency tick-level bid prices with
sequence lengths between 1.5×106 and 2.8×106 (top right). For each batch
size the HVG of the entire sequence was computed by repeatedly merging
the batch-sized HVGs. Note that construction times of the input HVGs are
not included since the BST construction time dominates and obscures the
underlying merge times. Segments of example trajectories from the two classes
of sequence are also shown for reference (bottom).

values of the Hurst index h. By the time the subgraphs being
merged are of length approaching 0.25M data points, the
DT algorithm is already orders of magnitude faster for all
of the sampled trajectories. For lower values of the Hurst
index, the two algorithms maintain relatively stable runtimes,
but for higher values of the Hurst index, corresponding to
more positively correlated data, there is a clear divergence in
performance. Additionally, in all cases the DTHVG merging
algorithm shows much less variance in its runtime performance
across batch sizes than does the BST algorithm.

IV. CONCLUSION

In this paper we have introduced a time series representa-
tion, the dual tree horizontal visibility graph (DTHVG) data
structure, that directly captures enough of the geometry of a se-
quence to enable efficient construction and merging of HVGs.
We have shown that this offers both theoretical advantages,
namely O(n) worst-case runtime for both graph construction
and merging, and empirical advantages, namely significant
runtime performance improvements over the best existing
scalable algorithms for HVG construction and merging. Our
dual tree HVG merging algorithm reduces to the fast FWHVG
algorithm [15] in the case of online/streaming data, but it
offers significant scalability via its ability to merge outputs of
parallel computations on arbitrary length subsequences. It does
this with a much better theoretical and practical performance
than previous methods, remaining performance-agnostic with
respect to balanced and unbalanced time series data sets.
These benefits enable practical HVG construction on much
longer time series than existing methods allow. Key features
are summarized in comparison Table III, while Python code
and data for the above experiments are also available in a
Github repository associated with this paper [37] to enable
reproduction and improvement of the results.
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V. TABLES

TABLE I
DYNAMICS OF TIME SERIES {xi} USED FOR BASELINE PERFORMANCE ANALYSIS. WHEN REQUIRED, INITIAL CONDITIONS WERE SELECTED UNIFORMLY

FROM [0, 1). THE PARAMETER VALUES CHOSEN IMPLY THAT DETERMINISTIC TRAJECTORIES ARE CHAOTIC.

Name Discrete Stochastic Dynamics

Logistic Map X ×
xi+1 = rxi(1− xi)

r = 3.9995

Lorenz System × ×

ẋ = σ(y − x)

ẏ = x(ρ− z)− y
ż = xy − βz

(σ, ρ, β) = (10, 28, 8/3)

Random Noise X X P (xi ≤ x) =

0 : x < 0
x : 0 ≤ x ≤ 1
1 : x > 1

Random Walk X X
P (xi+1 = xi + 1) = 0.5

P (xi+1 = xi − 1) = 0.5

Rössler System × ×

ẋ = b+ x(z − c)
ẏ = z + ay

ż = −y − x
(a, b, c) = (0.2, 0.2, 5.7)

Standard Map X ×
xi+1 = xi +K sin(θi)

θi+1 = θi + xi+1

K = 1.2

TABLE II
MEAN RUNNING TIMES IN SECONDS OF HVG ALGORITHMS OVER NINETY TRAJECTORIES FROM THE GIVEN SOURCES (TEN TRAJECTORIES FOR EACH OF
NINE LENGTHS 28, 29, . . . , 216). SUBSCRIPTS ON THE CONTINUOUS SOURCES INDICATE THE DURATION OF THE SAMPLED TRAJECTORIES IN SECONDS.

THE SPEEDUP IS THE RATIO tBST/tDT OF THE MEAN COMPUTE TIMES.

DT vs BST
BST DC DT Speedup

Logistic Map 0.65 12.45 0.19 3.42
Lorenz250 System 6.52 402.58 0.15 43.47
Random Noise 0.94 11.73 0.34 2.76
Random Walk 8.66 394.13 0.17 50.94
Rössler1024 System 5.60 326.75 0.14 40.00
Standard Map 1.20 36.09 0.19 6.32

TABLE III
FEATURE COMPARISON WITH PUBLISHED HVG ALGORITHMS.

HVG FWHVG DC BST Dual Tree
Source [29] 2009 [15] 2014 [31] 2015 [32] 2020 -

Balanced Data O(n) O(n) O(n logn) O(n logn) O(n)
Arbitrary Data O(n2) O(n) O(n2) O(n2) O(n)

Online × Possible × X X
Scalable × × × X X

Non-Recursive X X × × X
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[30] L. Lacasa, A. Nuñez, É. Roldán, J. M. R. Parrondo, and B. Luque,
“Time series irreversibility: A visibility graph approach,” The European
Physical Journal B, vol. 85, no. 6, p. 217, Jun. 2012.

[31] X. Lan, H. Mo, S. Chen, Q. Liu, and Y. Deng, “Fast transformation from
time series to visibility graphs,” Chaos: An Interdisciplinary Journal of
Nonlinear Science, vol. 25, no. 8, p. 083105, Aug. 2015.

[32] D. Fano Yela, F. Thalmann, V. Nicosia, D. Stowell, and M. Sandler,
“Online visibility graphs: Encoding visibility in a binary search tree,”
Physical Review Research, vol. 2, no. 2, p. 023069, Apr. 2020.

[33] L. Lacasa, B. Luque, F. Ballesteros, J. Luque, and J. C. Nuño, “From
time series to complex networks: The visibility graph,” Proceedings of
the National Academy of Sciences, vol. 105, no. 13, pp. 4972–4975,
Apr. 2008.

[34] S. Ghosh and A. Dutta, “An efficient non-recursive algorithm for
transforming time series to visibility graph,” Physica A: Statistical
Mechanics and its Applications, vol. 514, pp. 189–202, Jan. 2019.

[35] C. Stephen, “Horizon Visibility Graphs and Time Series Merge Trees
are Dual,” arXiv:1906.08825 [nlin, physics:physics], Jun. 2019.

[36] G. Gutin, T. Mansour, and S. Severini, “A characterization of horizontal
visibility graphs and combinatorics on words,” Physica A: Statistical
Mechanics and its Applications, vol. 390, no. 12, pp. 2421–2428, Jun.
2011.

[37] C. Stephen, “Dual Tree Horizontal Visibility Graphs: Python Code
for Linear-Time HVGs,” https://github.com/colinstephen/dual tree hvg,
2020.

[38] R. B. Davies and D. S. Harte, “Tests for Hurst effect,” Biometrika,
vol. 74, no. 1, pp. 95–101, 1987.


	Scalable cs
	paper
	Introduction and Related Work
	Proposed Method: Visibility via Merge Trees
	Duality with Trees
	From Leaf Grafting to Efficient Online Visibility
	From Branch Fusion to Efficient Graph Merging

	Numerical Experiments
	Baseline Performance
	Long Range Dependence, Sample Frequency, and Noise
	Sensitivity to Long Range Dependence
	Sensitivity to Sample Frequency
	Sensitivity to Noise

	Scaling Performance on Batched Data

	Conclusion
	Tables
	References


